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Preface

This text is intended for researchers interested in the application of feedback and
control to biomolecular systems. The material has been designed so that it can
be used in parallel with the textbook Feedback Systems [1] as part of a course
on biomolecular feedback and control systems, or as a stand-alone reference for
readers who have had a basic course in feedback and control theory. The full text for
this book, along with additional supplemental material, is available on a companion
Web site:

http://www.cds.caltech.edu/˜murray/BFS

The material in this book is intended to be useful to three overlapping audi-
ences: graduate students in biology and bioengineering interested in understanding
the role of feedback in natural and engineered biomolecular systems; advanced un-
dergraduates and graduate students in engineering disciplines who are interested in
the use of feedback in biological circuit design; and established researchers in the
biological sciences who want to explore the potential application of principles and
tools from control theory to biomolecular systems. We have written the text assum-
ing some familiarity with basic concepts in feedback and control, but have tried to
provide insights and specific results as needed, so that the material can be learned
in parallel. We also assume some familiarity with cell biology, at the level of a first
course for non-majors. The individual chapters in the text indicate the prerequisites
in more detail, most of which are covered either in Åström and Murray [1] or in
the supplemental information available from the companion Web site.

Acknowledgments. Many colleagues and students provided feedback and advice on
the book. We would particularly like to thank Mustafa Khammash, Eric Klavins,
and Eduardo Sontag, who gave detailed comments on some of the early versions
of the text. In addition, we would like to acknowledge Abdullah Amadeh, Andras
Gyorgy, Narmada Herath, Yutaka Hori, Shridhar Jayanthi, Scott Livingston, Rob
Phillips, Phillip Rivera, Vipul Singhal, Anandh Swaminathan, Eric Winfree, and
Enoch Yeung for their support and comments along the way. Finally, we would
like to thank Caltech, MIT and the University of Michigan for providing the many
resources that were necessary to bring this book to fruition.

Domitilla Del Vecchio Richard M. Murray
Cambridge, Massachusetts Pasadena, California

http://www.cds.caltech.edu/~murray/BFS
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Chapter 1

Introductory Concepts

This chapter provides a brief introduction to concepts from systems biology, tools
from differential equations and control theory, and approaches to modeling, anal-
ysis and design of biomolecular feedback systems. We begin with a discussion of
the role of modeling, analysis and feedback in biological systems. This is followed
by a short review of key concepts and tools from control and dynamical systems
theory, intended to provide insight into the main methodology described in the text.
Finally, we give a brief introduction to the field of synthetic biology, which is the
primary topic of the latter portion of the text. Readers who are familiar with one or
more of these areas can skip the corresponding sections without loss of continuity.

1.1 Systems biology: Modeling, analysis and role of feedback

At a variety of levels of organization—from molecular to cellular to organismal—
biology is becoming more accessible to approaches that are commonly used in
engineering: mathematical modeling, systems theory, computation and abstract ap-
proaches to synthesis. Conversely, the accelerating pace of discovery in biological
science is suggesting new design principles that may have important practical ap-
plications in human-made systems. This synergy at the interface of biology and
engineering offers many opportunities to meet challenges in both areas. The guid-
ing principles of feedback and control are central to many of the key questions in
biological science and engineering and can play an enabling role in understanding
the complexity of biological systems.

In this section we summarize our view on the role that modeling and analysis
should (eventually) play in the study of biological systems, and discuss some of
the ways in which an understanding of feedback principles in biology can help us
better understand and design complex biomolecular circuits.

There are a wide variety of biological phenomena that provide a rich source of
examples for control, including gene regulation and signal transduction; hormonal,
immunological, and cardiovascular feedback mechanisms; muscular control and
locomotion; active sensing, vision, and proprioception; attention and conscious-
ness; and population dynamics and epidemics. Each of these (and many more) pro-
vide opportunities to figure out what works, how it works, and what can be done to
affect it. Our focus here is at the molecular scale, but the principles and approach
that we describe can also be applied at larger time and length scales.
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Modeling and analysis

Over the past several decades, there have been significant advances in modeling
capabilities for biological systems that have provided new insights into the com-
plex interactions of the molecular-scale processes that implement life. Reduced-
order modeling has become commonplace as a mechanism for describing and doc-
umenting experimental results, and high-dimensional stochastic models can now
be simulated in reasonable periods of time to explore underlying stochastic effects.
Coupled with our ability to collect large amounts of data from flow cytometry,
micro-array analysis, single-cell microscopy, and other modern experimental tech-
niques, our understanding of biomolecular processes is advancing at a rapid pace.

Unfortunately, although models are becoming much more common in biolog-
ical studies, they are still far from playing the central role in explaining complex
biological phenomena. Although there are exceptions, the predominant use of mod-
els is to “document” experimental results: a hypothesis is proposed and tested us-
ing careful experiments, and then a model is developed to match the experimental
results and help demonstrate that the proposed mechanisms can lead to the ob-
served behavior. This necessarily limits our ability to explain complex phenomena
to those for which controlled experimental evidence of the desired phenomena can
be obtained.

This situation is much different than standard practice in the physical sciences
and engineering, as illustrated in Figure 1.1 (in the context of modeling, analysis,
and control design for gas turbine aeroengines). In those disciplines, experiments
are routinely used to help build models for individual components at a variety of
levels of detail, and then these component-level models are interconnected to ob-
tain a system-level model. This system-level model, carefully built to capture the
appropriate level of detail for a given question or hypothesis, is used to explain,
predict, and systematically analyze the behaviors of a system. Because of the ways
in which models are viewed, it becomes possible to prove (or invalidate) a hypoth-
esis through analysis of the model, and the fidelity of the models is such that deci-
sions can be made based on them. Indeed, in many areas of modern engineering—
including electronics, aeronautics, robotics, and chemical processing, to name a
few—models play a primary role in the understanding of the underlying physics
and/or chemistry, and these models are used in predictive ways to explore design
tradeoffs and failure scenarios.

A key element in the successful application of modeling in engineering dis-
ciplines is the use of reduced-order models that capture the underlying dynamics
of the system without necessarily modeling every detail of the underlying mech-
anisms. These reduced-order models are often coupled with schematics diagrams,
such as those shown in Figure 1.2, to provide a high level view of a complex sys-
tem. The generation of these reduced-order models, either directly from data or
through analytical or computational methods, is critical in the effective applica-
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Figure 1.1: Sample modeling, analysis and design framework for an engineering system.
The physical system (in this case a jet engine) is first modeled using a detailed mathemati-
cal description that captures the essential physics that are relevant for the design. Reduced-
order models (typically differential equations and steady state input/output maps) are then
created for use in analysis and design. A list of some typical tools in this domain are shown
in the box on the right. These tools are used to design the system and then combined with
simulations and system identification tools. Finally, a hierarchy of testing environments
are used as the system is built and tested, finally resulting in an implementation of the full
system. Additional details can be found in [28]

.

tion of modeling since modeling of the detailed mechanisms produces high fidelity
models that are too complicated to use with existing tools for analysis and design.
One area in which the development of reduced-order models is fairly advanced is
in control theory, where input/output models, such as block diagrams and transfer
functions, are used to capture structured representations of dynamics at the appro-
priate level of fidelity for the task at hand [1].

While developing predictive models and corresponding analysis tools for biol-
ogy is much more difficult, it is perhaps even more important that biology make
use of models, particularly reduced-order models, as a central element of under-
standing. Biological systems are by their nature extremely complex and can be-
have in counterintuitive ways. Only by capturing the many interacting aspects of
the system in a formal model can we ensure that we are reasoning properly about
its behavior, especially in the presence of uncertainty. To do this will require sub-
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Figure 1.2: Schematic diagrams representing models in different disciplines. Each diagram
is used to illustrate the dynamics of a feedback system: (a) electrical schematics for a power
system [56], (b) a biological circuit diagram for a synthetic clock circuit [6], (c) a process
diagram for a distillation column [84] and (d) a Petri net description of a communication
protocol.

stantial effort in building models that capture the relevant dynamics at the proper
scales (depending on the question being asked), as well as building an analytical
framework for answering questions of biological relevance.

The good news is that a variety of new techniques, ranging from experiments to
computation to theory, are enabling us to explore new approaches to modeling that
attempt to address some of these challenges. In this text we focus on the use of rele-
vant classes of reduced-order models that can be used to capture many phenomena
of biological relevance.

Dynamic behavior and phenotype

One of the key needs in developing a more systematic approach to the use of mod-
els in biology is to become more rigorous about the various behaviors that are im-
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Figure 1.3: Conceptual modeling framework for biomolecular feedback systems. The
chemical kinetics block represents reactions between molecular species, resulting in signal-
ing molecules and bound promoters. The DNA layout block accounts for the organization
of the DNA, which may be “rewired” to achieve a desired function. The TX-TL processes
block represents the core transcription and translation processes, which are often much
slower than the reactions between various species. The inputs and outputs of the various
blocks represent interconnections and external interactions.

portant for biological systems. One of the key concepts that needs to be formalized
is the notion of “phenotype.” This term is often associated with the existence of an
equilibrium point in a reduced-order model for a system, but clearly more complex
(non-equilibrium) behaviors can occur and the “phenotypic response” of a system
to an input may not be well-modeled by a steady operating condition. Even more
problematic is determining which regulatory structures are “active” in a given phe-
notype (versus those for which there is a regulatory pathway that is saturated and
hence not active).

Figure 1.3 shows a graphical representation of a class of systems that captures
many of the features we are interested in. The chemical kinetics of the system are
typically modeled using mass action kinetics (reaction rate equations) and repre-
sent the fast dynamics of chemical reactions. The reactions include the binding
of activators and repressors to DNA, as well as the initiation of transcription. The
DNA layout block represents the physical layout of the DNA, which determines
which genes are controlled by which promoters. The core processes of transcrip-
tion (TX) and translation (TL) represent the slow dynamics (relative to the chemical
kinetics) of protein expression (including maturation).

Several other inputs and outputs are represented in the figure. In the chemical
kinetics block, we allow external inputs, such as chemical inducers, and external
parameters (rate parameters, enzyme concentrations, etc.) that will affect the re-
actions that we are trying to capture in our model. We also include a (simplified)
notion of disturbances, represented in the diagram as an external input that affects
the rate of transcription. This disturbance is typically a stochastic input that rep-
resents the fact that gene expression can be noisy. In terms of outputs, we capture
two possibilities in the diagram: small molecule outputs—often used for signaling
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to other subsystems but which could include outputs from metabolic processes—
and protein outputs, such as as fluorescent reporters.

Another feature of the diagram is the block labeled “unmodeled dynamics,”
which represents the fact that our models of the core processes of gene expression
are likely to be simplified models that ignore many details. These dynamics are
modeled as a feedback interconnection with transcription and translation, which
turns out to provide a rich framework for application of tools from control theory
(but unfortunately one that we will not explore in great detail within this text).
Tools for understanding this class of uncertainty are available for both linear and
nonlinear control systems [1] and allow stability and performance analyses in the
presence of uncertainty.

The combination of partially unknown parameters, external disturbances, and
unmodeled dynamics are collectively referred to as model uncertainty and are an
important element of our analysis of biomolecular feedback systems. Often we will
analyze the dynamic behavior of a system assuming that the parameters are known,
disturbances are small and our models are accurate. This analysis can give valuable
insights into the behavior of the system, but it is important to make sure that this
behavior is robust with respect to uncertainty, a topic that we will discuss in some
detail in Chapter 3.

A somewhat common situation is that a system may have multiple equilibrium
points and the “phenotype” of the system is represented by the particular equilib-
rium point that the system converges to. In the simplest case, we can have bistabil-

ity, in which there are two equilibrium points for a fixed set of parameters. Depend-
ing on the initial conditions and external inputs, a given system may end up near
one equilibrium point or the other, providing two distinct phenotypes. A model
with bistability (or multi-stability) provides one method of modeling memory in
a system: the cell or organism remembers its history by virtue of the equilibrium
point to which it has converted.

For more complex phenotypes, where the subsystems are not at a steady op-
erating point, one can consider temporal patterns such as limit cycles (periodic
orbits) or non-equilibrium input/output responses. Analysis of these more compli-
cated behaviors requires more sophisticated tools, but again model-based analysis
of stability and input/output responses can be used to characterize the phenotypic
behavior of a biological system under different conditions or contexts.

Additional types of analysis that can be applied to systems of this form include
sensitivity analysis (dependence of solution properties on selected parameters), un-
certainty analysis (impact of disturbances, unknown parameters and unmodeled dy-
namics), bifurcation analysis (changes in phenotype as a function of input levels,
context or parameters) and probabilistic analysis (distributions of states as a func-
tion of distributions of parameters, initial conditions or inputs). In each of these
cases, there is a need to extend existing tools to exploit the particular structure of
the problems we consider, as well as modify the techniques to provide relevance to
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biological questions.

Stochastic behavior

Another important feature of many biological systems is stochasticity: biological
responses have an element of randomness so that even under carefully controlled
conditions, the response of a system to a given input may vary from experiment to
experiment. This randomness can have many possible sources, including external
perturbations that are modeled as stochastic processes and internal processes such
as molecular binding and unbinding, whose stochasticity stems from the underlying
thermodynamics of molecular reactions.

While for many engineered systems it is common to try to eliminate stochastic
behavior (yielding a “deterministic” response), for biological systems there appear
to be many situations in which stochasticity is important for the way in which or-
ganisms survive. In biology, nothing is 100% and so there is always some chance
that two identical organisms will respond differently. Thus viruses are never com-
pletely contagious and so some organisms will survive, and DNA replication is
never error free, and so mutations and evolution can occur. In studying circuits
where these types of effects are present, it thus becomes important to study the
distribution of responses of a given biomolecular circuit, and to collect data in a
manner that allows us to quantify these distributions.

One important indication of stochastic behavior is bimodality. We say that a cir-
cuit or system is bimodal if the response of the system to a given input or condition
has two or more distinguishable classes of behaviors. An example of bimodal-
ity is shown in Figure 1.4, which shows the response of the galactose metabolic
machinery in yeast. We see from the figure that even though genetically identical
organisms are exposed to the same external environment (a fixed galactose con-
centration), the amount of activity in individual cells can have a large amount of
variability. At some concentrations there are clearly two subpopulations of cells:
those in which the galactose metabolic pathway is turned on (higher reporter fluo-
rescence values on the y axis) and those for which it is off (lower reporter fluores-
cence).

Another characterization of stochasticity in cells is the separation of noisiness
in protein expression into two categories: “intrinsic” noise and “extrinsic” noise.
Roughly speaking, extrinsic noise represents variability in gene expression that
affects all proteins in the cell in a correlated way. Extrinsic noise can be due to
environmental changes that affect the entire cell (temperature, pH, oxygen level) or
global changes in internal factors such as energy or metabolite levels (perhaps due
to metabolic loading). Intrinsic noise, on the other hand, is the variability due to the
inherent randomness of molecular events inside the cell and represents a collection
of independent random processes. One way to attempt to measure the amount of
intrinsic and extrinsic noise is to take two identical copies of a biomolecular cir-
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Figure 1.4: Galactose response in yeast [94]. (a) GAL signaling circuitry showing a num-
ber of different feedback pathways that are used to detect the presence of galactose and
switch on the metabolic pathway. (b) Pathway activity as a function of galactose concen-
tration. The points at each galactose concentration represent the activity level of the galac-
tose metabolic pathway in an individual cell. Black dots indicate the mean of a Gaussian
mixture model classification [94]. Small random deviations were added to each galactose
concentration (horizontal axis) to better visualize the distributions.

cuit and compare their responses [26, 90]. Correlated variations in the output of
the circuits corresponds (roughly) to extrinsic noise and uncorrelated variations to
intrinsic noise [42, 90].

The types of models that are used to capture stochastic behavior are very dif-
ferent than those used for deterministic responses. Instead of writing differential
equations that track average concentration levels, we must keep track of the indi-
vidual events that can occur with some probability per unit time (or “propensity”).
We will explore the methods for modeling and analysis of stochastic systems in
Chapter 4.

1.2 The cell as a system

The molecular processes inside a cell determine its behavior and are responsible
for metabolizing nutrients, generating motion, enabling procreation and carrying
out the other functions of the organism. In multi-cellular organisms, different types
of cells work together to enable more complex functions. In this section we briefly
describe the role of dynamics and control within a cell and discuss the basic pro-
cesses that govern its behavior and its interactions with its environment. We assume
knowledge of the basics of cell biology at the level found in standard textbooks on
cell biology such as Alberts et al. [2] or Phillips et al. [76].

Figure 1.5 shows a schematic of the major components in the cell: sensing,
signaling, regulation, and metabolism. Sensing of environmental signals typically
occurs through membrane receptors that are specific to different molecules. Cells
can also respond to light or pressure, allowing the cell to sense the environment,
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Figure 1.5: The cell as a system. The major subsystems are sensing, signaling, regulation,
and metabolism.

including other cells. There are several types of receptors, some allow the signaling
molecules in the environment to enter the cell wall, such as in the case of ion
channels. Others activate proteins on the internal part of the cell membrane once
they externally bind to the signaling molecule, such as enzyme-linked receptors or
G-protein coupled receptors.

As a consequence of the sensing, a cascade of signal transduction occurs (sig-
naling) in which proteins are sequentially activated by (usually) receiving phos-
phate groups from ATP molecules through the processes of phosphorylation and/or
phosphotransfer. These cascades transmit information to downstream processes,
such as gene expression, by amplifying the information and dynamically filter-
ing signals to select for useful features. The temporal dynamics of environmental
signals and the kinetic properties of the stages in the signaling cascades determine
how a signal is transmitted/filtered. At the bottom stages of signaling cascades, pro-
teins are activated to become transcription factors, which can activate or repress the
expression of other proteins through regulation of gene expression. The temporal
dynamics of this regulation, with timescales in the range of minutes to hours, are
usually much slower than that of the transmission in the signaling pathway, which
has timescales ranging from subseconds to seconds. Metabolic pathways, such as
the glycolysis pathway, also characterized by very fast time scales, are in charge of
producing the necessary resources for all the other processes in the cells. Through
these pathways, nutrients in the environment, such as glucose, are broken down
through a series of enzymatic reactions, producing, among other products, ATP,
which is the energy currency in the cell used for many of the reactions, including
those involved in signaling and gene expression.
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cesses involved in regulating flagellar motion. Figure taken from Rao et al. [81].

Example: Chemotaxis

As an example of a sensing-transmission-actuation process in the cell, we consider
chemotaxis, the process by which micro organisms move in response to chemical
stimuli. Examples of chemotaxis include the ability of organisms to move in the
direction of nutrients or move away from toxins in the environment. Chemotaxis
is called positive chemotaxis if the motion is in the direction of the stimulus and
negative chemotaxis if the motion is away from the stimulus.

The chemotaxis system in E. coli consists of a sensing system that detects the
presence of nutrients, an actuation system that propels the organism in its envi-
ronment, and control circuitry that determines how the cell should move in the
presence of chemicals that stimulate the sensing system. The main components of
the control circuitry are shown in Figure 1.6. The sensing component is responsi-
ble for detecting the presence of ligands in the environment and initiating signaling
cascades. The computation component, realized through a combination of protein
phosphorylation and methylation, implements a feedback (integral) controller that
allows the bacterium to adapt to changes in the environmental ligand concentra-
tion. This adaptation occurs by an actuator that allows the bacterium to ultimately
move in the direction in which the ligand concentration increases.

The actuation system in the E. coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown in
Figure 1.7a. When the flagella all spin in the counterclockwise direction, the indi-
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Figure 1.7: Bacterial chemotaxis. (a) Flagellar motors are responsible for spinning flagella.
(b) When flagella spin in the clockwise direction, the organism tumbles, while when they
spin in the counter clockwise direction, the organism runs. (c) The direction in which the
flagella spin is determined by whether the CheY protein is phosphorylated. Figures from
Phillips, Kondev and Theriot [76]; used with permission of Garland Science.

vidual flagella form a bundle and cause the organism to move roughly in a straight
line. This behavior is called a “run” motion. Alternatively, if the flagella spin in
the clockwise direction, the individual flagella do not form a bundle and the organ-
ism “tumbles,” causing it to rotate (Figure 1.7b). The selection of the motor direc-
tion is controlled by the protein CheY: if phosphorylated CheY binds to the motor
complex, the motor spins clockwise (tumble), otherwise it spins counterclockwise
(run). As a consequence, the chemotaxis mechanism is stochastic in nature, with
biased random motions causing the average behavior to be either positive, negative,
or neutral (in the absence of stimuli).
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Figure 1.8: Open and closed loop systems. (a) The output of system 1 is used as the input
of system 2, and the output of system 2 becomes the input of system 1, creating a closed
loop system. (b) The interconnection between system 2 and system 1 is removed, and the
system is said to be open loop.

1.3 Control and dynamical systems tools1

To study the complex dynamics and feedback present in biological systems, we
will make use of mathematical models combined with analytical and computational
tools. In this section we present a brief introduction to some of the key concepts
from control and dynamical systems that are relevant for the study of biomolecular
systems considered in later chapters. More details on the application of specific
concepts listed here to biomolecular systems is provided in the main body of the
text. Readers who are familiar with introductory concepts in dynamical systems
and control, at the level described in Åström and Murray [1], for example, can skip
this section.

Dynamics, feedback and control

A dynamical system is a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The term feedback refers to a situation
in which two (or more) dynamical systems are connected together such that each
system influences the other and their dynamics are thus strongly coupled. Simple
causal reasoning about a feedback system is difficult because the first system in-
fluences the second and the second system influences the first, leading to a circular
argument. This makes reasoning based on cause and effect tricky, and it is neces-
sary to analyze the system as a whole. A consequence of this is that the behavior
of feedback systems is often counterintuitive, and it is therefore often necessary to
resort to formal methods to understand them.

Figure 1.8 illustrates in block diagram form the idea of feedback. We often use
the terms open loop and closed loop when referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a cycle, as
shown in Figure 1.8a. If we break the interconnection, we refer to the configuration
as an open loop system, as shown in Figure 1.8b.

Biological systems make use of feedback in an extraordinary number of ways,
on scales ranging from molecules to cells to organisms to ecosystems. One ex-

1The material in this section is adapted from Feedback Systems, Chapter 1 [1].
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ample is the regulation of glucose in the bloodstream through the production of
insulin and glucagon by the pancreas. The body attempts to maintain a constant
concentration of glucose, which is used by the body’s cells to produce energy.
When glucose levels rise (after eating a meal, for example), the hormone insulin
is released and causes the body to store excess glucose in the liver. When glucose
levels are low, the pancreas secretes the hormone glucagon, which has the opposite
effect. Referring to Figure 1.8, we can view the liver as system 1 and the pancreas
as system 2. The output from the liver is the glucose concentration in the blood,
and the output from the pancreas is the amount of insulin or glucagon produced.
The interplay between insulin and glucagon secretions throughout the day helps
to keep the blood-glucose concentration constant, at about 90 mg per 100 mL of
blood.

Feedback has many interesting properties that can be exploited in designing sys-
tems. As in the case of glucose regulation, feedback can make a system resilient
toward external influences. It can also be used to create linear behavior out of non-
linear components, a common approach in electronics. More generally, feedback
allows a system to be insensitive both to external disturbances and to variations in
its individual elements.

Feedback has potential disadvantages as well. It can create dynamic instabilities
in a system, causing oscillations or even runaway behavior. Another drawback,
especially in engineering systems, is that feedback can introduce unwanted sensor
noise into the system, requiring careful filtering of signals. It is for these reasons
that a substantial portion of the study of feedback systems is devoted to developing
an understanding of dynamics and a mastery of techniques in dynamical systems.

Feedback properties

Feedback is a powerful idea that is used extensively in natural and technological
systems. The principle of feedback is simple: implement correcting actions based
on the difference between desired and actual performance. In engineering, feed-
back has been rediscovered and patented many times in many different contexts.
The use of feedback has often resulted in vast improvements in system capability,
and these improvements have sometimes been revolutionary in areas such as power
generation and transmission, aerospace and transportation, materials and process-
ing, instrumentation, robotics and intelligent machines, and networking and com-
munications. The reason for this is that feedback has some truly remarkable prop-
erties, which we discuss briefly here.

Robustness to uncertainty. One of the key uses of feedback is to provide robustness
to uncertainty. By measuring the difference between the sensed value of a regulated
signal and its desired value, we can supply a corrective action. If the system under-
goes some change that affects the regulated signal, then we sense this change and
try to force the system back to the desired operating point.



cdstools.tex, v5725 2014-06-12 14:04:14Z (ddv)

14 CHAPTER 1. INTRODUCTORY CONCEPTS

Compute

Actuate
throttle

Sense
speed

(a) Block diagram

0 5 10

25

30

Time (s)

S
pe

ed
 (

m
/s

)

m

(b) System’s response

Figure 1.9: A feedback system for controlling the speed of a vehicle. (a) In the block
diagram, the speed of the vehicle is measured and compared to the desired speed within
the “Compute” block. Based on the difference in the actual and desired speeds, the throttle
(or brake) is used to modify the force applied to the vehicle by the engine, drivetrain and
wheels. (b) The figure shows the response of the control system to a commanded change
in speed from 25 m/s to 30 m/s. The three different curves correspond to differing masses
of the vehicle, between 1000 and 3000 kg, demonstrating the robustness of the closed loop
system to a very large change in the vehicle characteristics.

As an example of this principle, consider the simple feedback system shown
in Figure 1.9. In this system, the speed of a vehicle is controlled by adjusting the
amount of gas flowing to the engine. Simple proportional-integral (PI) feedback
is used to make the amount of gas depend on both the error between the current
and the desired speed and the integral of that error. The plot in Figure 1.9b shows
the results of this feedback for a step change in the desired speed and a variety of
different masses for the car, which might result from having a different number of
passengers or towing a trailer. Notice that independent of the mass (which varies by
a factor of 3!), the steady-state speed of the vehicle always approaches the desired
speed and achieves that speed within approximately 5 s. Thus the performance of
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide robustness is the neg-
ative feedback amplifier. When telephone communications were developed, ampli-
fiers were used to compensate for signal attenuation in long lines. A vacuum tube
was a component that could be used to build amplifiers. Distortion caused by the
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-
jor breakthrough was the invention of the feedback amplifier in 1927 by Harold S.
Black, an electrical engineer at Bell Telephone Laboratories. Black used negative

feedback, which reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier.

Feedback is also pervasive in biological systems, where transcriptional, trans-
lational and allosteric mechanisms are used to regulate internal concentrations of
various species, and much more complex feedbacks are used to regulate proper-
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ties at the organism level (such as body temperature, blood pressure and circadian
rhythm). One difference in biological systems is that the separation of sensing, ac-
tuation and computation, a common approach in most engineering control systems,
is less evident. Instead, the dynamics of the molecules that sense the environmen-
tal condition and make changes to the operation of internal components may be
integrated together in ways that make it difficult to untangle the operation of the
system. Similarly, the “reference value” to which we wish to regulate a system may
not be an explicit signal, but rather a consequence of many different changes in the
dynamics that are coupled back to the regulatory elements. Hence we do not see
a clear “set point” for the desired ATP concentration, blood oxygen level or body
temperature, for example. These difficulties complicate our analysis of biological
systems, though many important insights can still be obtained.

Design of dynamics. Another use of feedback is to change the dynamics of a sys-
tem. Through feedback, we can alter the behavior of a system to meet the needs of
an application: systems that are unstable can be stabilized, systems that are slug-
gish can be made responsive and systems that have drifting operating points can
be held constant. Control theory provides a rich collection of techniques to analyze
the stability and dynamic response of complex systems and to place bounds on the
behavior of such systems by analyzing the gains of linear and nonlinear operators
that describe their components.

An example of the use of control in the design of dynamics comes from the area
of flight control. The following quote, from a lecture presented by Wilbur Wright
to the Western Society of Engineers in 1901 [68], illustrates the role of control in
the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at sufficient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of sufficient lightness and power to drive these planes at sustaining
speed . . . Inability to balance and steer still confronts students of the
flying problem . . . When this one feature has been worked out, the
age of flying will have arrived, for all other difficulties are of minor
importance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
tried to build stable airplanes. These would have been easier to fly, but because
of their poor maneuverability they could not be brought up into the air. By using
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Figure 1.10: Aircraft autopilot system. The Sperry autopilot (left) contained a set of four
gyros coupled to a set of air valves that controlled the wing surfaces. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able to maintain level
flight as a mechanic walked on the wing (right) [44].

their insight and skillful experiments, the Wright brothers made the first successful
flight at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, invented
by Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized
pendulum to provide an indication of the vertical. He then arranged a feedback
mechanism that would pull the stick to make the plane go up if it was pointing
down, and vice versa. The Sperry autopilot was the first use of feedback in aero-
nautical engineering, and Sperry won a prize in a competition for the safest airplane
in Paris in 1914. Figure 1.10 shows the Curtiss seaplane and the Sperry autopilot.
The autopilot is a good example of how feedback can be used to stabilize an unsta-
ble system and hence “design the dynamics” of the aircraft.

One of the other advantages of designing the dynamics of a device is that it
allows for increased modularity in the overall system design. By using feedback to
create a system whose response matches a desired profile, we can hide the com-
plexity and variability that may be present inside a subsystem. This allows us to
create more complex systems by not having to simultaneously tune the responses
of a large number of interacting components. This was one of the advantages of
Black’s use of negative feedback in vacuum tube amplifiers: the resulting device
had a well-defined linear input/output response that did not depend on the individ-
ual characteristics of the vacuum tubes being used.

Drawbacks of feedback. While feedback has many advantages, it also has some
drawbacks. Chief among these is the possibility of instability if the system is not
designed properly. We are all familiar with the undesirable effects of feedback
when the amplification on a microphone is turned up too high in a room. This is an
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example of feedback instability, something that we obviously want to avoid. This
is tricky because we must design the system not only to be stable under nominal
conditions but also to remain stable under all possible perturbations of the dynam-
ics. In biomolecular systems, these types of instabilities may exhibit themselves
as situations in which cells no longer function properly due to over expression of
engineered genetic components, or small fluctuations in parameters may cause the
system to suddenly cease to function properly.

In addition to the potential for instability, feedback inherently couples different
parts of a system. One common problem is that feedback often injects “crosstalk”
into the system. By coupling different parts of a biomolecular circuit, the fluctua-
tions in one part of the circuit affect other parts, which themselves may couple to
the initial source of the fluctuations. If we are designing a biomolecular system, this
crosstalk may affect our ability to design independent “modules” whose behavior
can be described in isolation.

Coupled to the problem of crosstalk is the substantial increase in complexity
that results when embedding multiple feedback loops in a system. An early engi-
neering example of this was the use of microprocessor-based feedback systems in
automobiles. The use of microprocessors in automotive applications began in the
early 1970s and was driven by increasingly strict emissions standards, which could
be met only through electronic controls. Early systems were expensive and failed
more often than desired, leading to frequent customer dissatisfaction. It was only
through aggressive improvements in technology that the performance, reliability
and cost of these systems allowed them to be used in a transparent fashion. Even
today, the complexity of these systems is such that it is difficult for an individual
car owner to fix problems. While nature has evolved many feedback structures that
are robust and reliable, engineered biomolecular systems are still quite rudimen-
tary and we can anticipate that as we increase the use of feedback to compensate
for uncertainty, we will see a similar period in which engineers must overcome a
steep learning curve before we can get robust and reliable behavior as a matter of
course.

Feedforward. Feedback is reactive: there must be an error before corrective actions
are taken. However, in some circumstances it is possible to measure a disturbance
before it enters the system, and this information can then be used to take corrective
action before the disturbance has influenced the system. The effect of the distur-
bance is thus reduced by measuring it and generating a control signal that coun-
teracts it. This way of controlling a system is called feedforward. Feedforward is
particularly useful in shaping the response to command signals because command
signals are always available. Since feedforward attempts to match two signals, it
requires good process models; otherwise the corrections may have the wrong size
or may be badly timed.

The ideas of feedback and feedforward are very general and appear in many dif-
ferent fields. In economics, feedback and feedforward are analogous to a market-
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based economy versus a planned economy. In business, a feedforward strategy
corresponds to running a company based on extensive strategic planning, while a
feedback strategy corresponds to a reactive approach. In biology, feedforward has
been suggested as an essential element for motion control in humans that is tuned
during training. Experience indicates that it is often advantageous to combine feed-
back and feedforward, and the correct balance requires insight and understanding
of their respective properties.

Positive feedback. In most of control theory, the emphasis is on the role of negative

feedback, in which we attempt to regulate the system by reacting to disturbances in
a way that decreases the effect of those disturbances. In some systems, particularly
biological systems, positive feedback can play an important role. In a system with
positive feedback, the increase in some variable or signal leads to a situation in
which that quantity is further increased through its dynamics. This has a destabi-
lizing effect and is usually accompanied by a saturation that limits the growth of
the quantity. Although often considered undesirable, this behavior is used in bio-
logical (and engineering) systems to obtain a very fast response to a condition or
signal.

One example of the use of positive feedback is to create switching behavior,
in which a system maintains a given state until some input crosses a threshold.
Hysteresis is often present so that noisy inputs near the threshold do not cause the
system to jitter. This type of behavior is called bistability and is often associated
with memory devices.

1.4 Input/Output modeling2

A model is a mathematical representation of a physical, biological or information
system. Models allow us to reason about a system and make predictions about
how a system will behave. In this text, we will mainly be interested in models of
dynamical systems describing the input/output behavior of systems, and we will
often work in “state space” form. In the remainder of this section we provide an
overview of some of the key concepts in input/output modeling. The mathematical
details introduced here are explored more fully in Chapter 3.

The heritage of electrical engineering

The approach to modeling that we take builds on the view of models that emerged
from electrical engineering, where the design of electronic led to a focus on in-
put/output behavior. A system was considered a device that transforms inputs to
outputs, as illustrated in Figure 1.11. Conceptually an input/output model can be

2The material in this section is adapted from Feedback Systems, Sections 2.1–2.2 [1].



iomodeling.tex, v5734 2014-06-14 17:46:23Z (murray)

1.4. INPUT/OUTPUT MODELING 19

7

+v

–v

vos adj

(+)

(–)

Inputs
Output3

2

6

4

Q9

Q1 Q2

Q3 Q4

Q7

Q5

R1 R12

R8

R7 R9

R10

R11R2

Q6
Q22

Q17

Q16

Q18
30pF

Q15

Q14

Q20

Q8

(a) Electronic amplifier

System
OutputInput

(b) Block diagram

Figure 1.11: Illustration of the input/output view of a dynamical system. (a) The figure
shows a detailed circuit diagram for an electronic amplifier; the one in (b) is its represen-
tation as a block diagram.

viewed as a giant table of inputs and outputs. Given an input signal u(t) over some
interval of time, the model should produce the resulting output y(t).

The input/output framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio or
a television and break it down into manageable pieces such as the receiver, demod-
ulator, amplifier and speakers. Each of these pieces has a set of inputs and outputs
and, through proper design, these components can be interconnected to form the
entire system.

The input/output view is particularly useful for the special class of linear time-

invariant systems. This term will be defined more carefully below, but roughly
speaking a system is linear if the superposition (addition) of two inputs yields an
output that is the sum of the outputs that would correspond to individual inputs be-
ing applied separately. A system is time-invariant if the output response for a given
input does not depend on when that input is applied. While most biomolecular sys-
tems are neither linear nor time-invariant, they can often be approximated by such
models, often by looking at perturbations of the system from its nominal behavior,
in a fixed context.

One of the reasons that linear time-invariant systems are so prevalent in model-
ing of input/output systems is that a large number of tools have been developed to
analyze them. One such tool is the step response, which describes the relationship
between an input that changes from zero to a constant value abruptly (a step input)
and the corresponding output. The step response is very useful in characterizing
the performance of a dynamical system, and it is often used to specify the desired
dynamics. A sample step response is shown in Figure 1.12a.
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Figure 1.12: Input/output response of a linear system. The step response (a) shows the
output of the system due to an input that changes from 0 to 1 at time t = 5 s. The fre-
quency response (b) shows the amplitude gain and phase change due to a sinusoidal input
at different frequencies.

Another way to describe a linear time-invariant system is to represent it by its
response to sinusoidal input signals. This is called the frequency response, and a
rich, powerful theory with many concepts and strong, useful results has emerged
for systems that can be described by their frequency response. The results are based
on the theory of complex variables and Laplace transforms. The basic idea behind
frequency response is that we can completely characterize the behavior of a system
by its steady-state response to sinusoidal inputs. Roughly speaking, this is done
by decomposing any arbitrary signal into a linear combination of sinusoids (e.g.,
by using the Fourier transform) and then using linearity to compute the output by
combining the response to the individual frequencies. A sample frequency response
is shown in Figure 1.12b.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.

The control view

When control theory emerged as a discipline in the 1940s, the approach to dy-
namics was strongly influenced by the electrical engineering (input/output) view.
A second wave of developments in control, starting in the late 1950s, was inspired
by mechanics, where the state space perspective was used. The emergence of space
flight is a typical example, where precise control of the orbit of a spacecraft is es-
sential. These two points of view gradually merged into what is today the state
space representation of input/output systems.

The development of state space models involved modifying the models from
mechanics to include external actuators and sensors and utilizing more general
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forms of equations. In control, models often take the form

dx

dt
= f (x,u), y = h(x,u), (1.1)

where x is a vector of state variables, u is a vector of control signals and y is a
vector of measurements. The term dx/dt (sometimes also written as ẋ) represents
the derivative of x with respect to time, now considered a vector, and f and h

are (possibly nonlinear) mappings of their arguments to vectors of the appropriate
dimension.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x

can be reached with the proper choice of u (reachability) and if the measurement y

contains enough information to reconstruct the state (observability). These topics
are addressed in greater detail in Åström and Murray [1].

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views of input/output repre-
sentations and state space representations are particularly useful when modeling
uncertainty since state models are convenient to describe a nominal model but un-
certainties are easier to describe using input/output models (often via a frequency
response description).

An interesting observation in the design of control systems is that feedback sys-
tems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system valida-
tion, where one wishes to verify that the detailed response of the system performs
as it was designed. Because of these different uses of models, it is common to use
a hierarchy of models having different complexity and fidelity.

State space systems

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a biochemical system the state
is composed of the variables required to account for the current context of the cell,
including the concentrations of the various species and complexes that are present.
It may also include the spatial locations of the various molecules. A key issue in
modeling is to decide how accurately this information has to be represented. The
state variables are gathered in a vector x ∈ Rn called the state vector. The control
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variables are represented by another vector u ∈ Rp, and the measured signal by the
vector y ∈ Rq. A system can then be represented by the differential equation (1.1),
where f : Rn ×Rq → Rn and h : Rn ×Rq → Rm are smooth mappings. We call a
model of this form a state space model.

The dimension of the state vector is called the order of the system. The sys-
tem (1.1) is called time-invariant because the functions f and h do not depend
explicitly on time t; there are more general time-varying systems where the func-
tions do depend on time. The model consists of two functions: the function f gives
the rate of change of the state vector as a function of state x and control u, and the
function h gives the measured values as functions of state x and control u.

A system is called a linear state space system if the functions f and h are linear
in x and u. A linear state space system can thus be represented by

dx

dt
= Ax+Bu, y =Cx+Du, (1.2)

where A, B, C and D are constant matrices. Such a system is said to be linear and

time-invariant, or LTI for short. The matrix A is called the dynamics matrix, the
matrix B is called the control matrix, the matrix C is called the sensor matrix and
the matrix D is called the direct term. Frequently systems will not have a direct
term, indicating that the control signal does not influence the output directly.

1.5 From systems to synthetic biology

The rapidly growing field of synthetic biology seeks to use biological principles
and processes to build useful engineering devices and systems. Applications of
synthetic biology range from materials production (drugs, biofuels) to biological
sensing and diagnostics (chemical detection, medical diagnostics) to biological ma-
chines (bioremediation, nanoscale robotics). Like many other fields at the time of
their infancy (electronics, software, networks), it is not yet clear where synthetic
biology will have its greatest impact. However, recent advances such as the abil-
ity to “boot up” a chemically synthesized genome [30] demonstrate the ability to
synthesize systems that offer the possibility of creating devices with substantial
functionality. At the same time, the tools and processes available to design systems
of this complexity are much more primitive, and de novo synthetic circuits typi-
cally use a tiny fraction of the number of genetic elements of even the smallest
microorganisms [78].

Several scientific and technological developments over the past four decades
have set the stage for the design and fabrication of early synthetic biomolecular
circuits (see Figure 1.13). An early milestone in the history of synthetic biology
can be traced back to the discovery of mathematical logic in gene regulation. In
their 1961 paper, Jacob and Monod introduced for the first time the idea of gene
expression regulation through transcriptional feedback [47]. Only a few years later
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Figure 1.13: Milestones in the history of synthetic biology.

(1969), restriction enzymes that cut double-stranded DNA at specific recognition
sites were discovered by Arber and co-workers [5]. These enzymes were a major
enabler of recombinant DNA technology, in which genes from one organism are
extracted and spliced into the chromosome of another. One of the most celebrated
products of this technology was the large scale production of insulin by employing
E. coli bacteria as a cell factory [95].

Another key innovation was the development of the polymerase chain reac-
tion (PCR), devised in the 1980s, which allows exponential amplification of small
amounts of DNA and can be used to obtain sufficient quantities for use in a variety
of molecular biology laboratory protocols where higher concentrations of DNA are
required. Using PCR, it is possible to “copy” genes and other DNA sequences out
of their host organisms.

The developments of recombinant DNA technology, PCR and artificial synthe-
sis of DNA provided the ability to “cut and paste” natural or synthetic promoters
and genes in almost any fashion. This cut and paste procedure is called cloning and
traditionally consists of four primary steps: fragmentation, ligation, transfection (or
transformation) and screening. The DNA of interest is first isolated using restric-
tion enzymes and/or PCR amplification. Then, a ligation procedure is employed in
which the amplified fragment is inserted into a vector. The vector is often a piece
of circular DNA, called a plasmid, that has been linearized by means of restriction
enzymes that cleave it at appropriate restriction sites. The vector is then incubated
with the fragment of interest with an enzyme called DNA ligase, producing a single
piece of DNA with the target DNA inserted. The next step is to transfect (or trans-
form) the DNA into living cells, where the natural replication mechanisms of the
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Figure 1.14: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well
as the circuit diagram (center). The flat headed arrow between the protein names represents
repression. (b) A simulation of a simple model for the repressilator, showing the oscillation
of the individual protein concentrations. (Figure courtesy M. Elowitz.)

cell will duplicate the DNA when the cell divides. This process does not transfect
all cells, and so a selection procedure is required to isolate those cells that have
the desired DNA inserted in them. This is typically done by using a plasmid that
gives the cell resistance to a specific antibiotic; cells grown in the presence of that
antibiotic will only live if they contain the plasmid. Further selection can be done
to ensure that the inserted DNA is also present.

Once a circuit has been constructed, its performance must be verified and, if
necessary, debugged. This is often done with the help of fluorescent reporters. The
most famous of these is GFP, which was isolated from the jellyfish Aequorea vic-

toria in 1978 by Shimomura [86]. Further work by Chalfie and others in the 1990s
enabled the use of GFP in E. coli as a fluorescent reporter by inserting it into an ap-
propriate point in an artificial circuit [19]. By using spectrofluorometry, fluorescent
microscopy or flow cytometry, it is possible to measure the amount of fluorescence
in individual cells or collections of cells and characterize the performance of a
circuit in the presence of inducers or other factors. Two early examples of the ap-
plication of these technologies were the repressilator [25] and a synthetic genetic
switch [29].

The repressilator is a synthetic circuit in which three proteins each repress an-
other in a cycle. This is shown schematically in Figure 1.14a, where the three pro-
teins are TetR, λ cI and LacI. The basic idea of the repressilator is that if TetR is
present, then it represses the production of λ cI. If λ cI is absent, then LacI is pro-
duced (at the unregulated transcription rate), which in turn represses TetR. Once
TetR is repressed, then λ cI is no longer repressed, and so on. If the dynamics of
the circuit are designed properly, the resulting protein concentrations will oscillate,
as shown in Figure 1.14b.
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(b) Switch simulation

Figure 1.15: Stability of a genetic switch. The circuit diagram in (a) represents two proteins
that are each repressing the production of the other. The inputs u1 and u2 interfere with this
repression, allowing the circuit dynamics to be modified. The simulation in (b) shows the
time response of the system starting from two different initial conditions. The initial portion
of the curve corresponds to protein B having higher concentration than A, and converges to
an equilibrium where A is off and B is on. At time t = 10, the concentrations are perturbed,
moving the concentrations into a region of the state space where solutions converge to the
equilibrium point with the A on and B off.

The repressilator can be constructed using the techniques described above. We
can make copies of the individual promoters and genes that form our circuit by
using PCR to amplify the selected sequences out of the original organisms in which
they were found. TetR is the tetracycline resistance repressor protein that is found
in gram-negative bacteria (such as E. coli) and is part of the circuitry that provides
resistance to tetracycline. LacI is the gene that produces lac repressor, responsible
for turning off the lac operon in the lactose metabolic pathway in E. coli. And λ cI
comes from λ phage, where it is part of the regulatory circuitry that regulates lysis
and lysogeny.

By using restriction enzymes and related techniques, we can separate the nat-
ural promoters from their associated genes, and then ligate (reassemble) them in
a new order and insert them into a “backbone” vector (the rest of the plasmid, in-
cluding the origin of replication and appropriate antibiotic resistance). This DNA
is then transformed into cells that are grown in the presence of an antibiotic, so
that only those cells that contain the repressilator can replicate. Finally, we can
take individual cells containing our circuit and let them grow under a microscope
to image fluorescent reporters coupled to the oscillator.

Another early circuit in the synthetic biology toolkit is a genetic switch built
by Gardner et al. [29]. The genetic switch consists of two repressors connected
together in a cycle, as shown in Figure 1.15a. The intuition behind this circuit is
that if the gene A is being expressed, it will repress production of B and maintain
its expression level (since the protein corresponding to B will not be present to
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repress A). Similarly, if B is being expressed, it will repress the production of A
and maintain its expression level. This circuit thus implements a type of bistability

that can be used as a simple form of memory. Figure 1.15b shows the time traces
for the system, illustrating the bistable nature of the circuit. When the initial con-
dition starts with a concentration of protein B greater than that of A, the solution
converges to the equilibrium point where B is on and A is off. If A is greater than
B, then the opposite situation results.

These seemingly simple circuits took years of effort to get to work, but showed
that it was possible to synthesize a biological circuit that performed a desired func-
tion that was not originally present in a natural system. Today, commercial synthe-
sis of DNA sequences and genes has become cheaper and faster, with a price often
below $0.20 per base pair.3 The combination of inexpensive synthesis technolo-
gies, new advances in cloning techniques, and improved devices for imaging and
measurement has vastly simplified the process of producing a sequence of DNA
that encodes a given set of genes, operator sites, promoters and other functions.
These techniques are a routine part of undergraduate courses in molecular and syn-
thetic biology.

As illustrated by the examples above, current techniques in synthetic biology
have demonstrated the ability to program biological function by designing DNA
sequences that implement simple circuits. Most current devices make use of tran-
scriptional or post-transcriptional processing, resulting in very slow timescales (re-
sponse times typically measured in tens of minutes to hours). This restricts their
use in systems where faster response to environmental signals is needed, such as
rapid detection of a chemical signal or fast response to changes in the internal envi-
ronment of the cell. In addition, existing methods for biological circuit design have
limited modularity (reuse of circuit elements requires substantial redesign or tun-
ing) and typically operate in very narrow operating regimes (e.g., a single species
grown in a single type of media under carefully controlled conditions). Further-
more, engineered circuits inserted into cells can interact with the host organism
and have other unintended interactions.

As an illustration of the dynamics of synthetic devices, Figure 1.16 shows a
typical response of a genetic element to an inducer molecule [18]. In this circuit,
an external signal of homoserine lactone (HSL) is applied at time zero and the
system reaches 10% of the steady state value in approximately 15 minutes. This
response is limited in part by the time required to synthesize the output protein
(GFP), including delays due to transcription, translation and folding. Since this
is the response time for the underlying “actuator,” circuits that are composed of
feedback interconnections of such genetic elements will typically operate at 5–10
times slower speeds. While these speeds are appropriate in many applications (e.g.,
regulation of steady state enzyme levels for materials production), in the context
of biochemical sensors or systems that must maintain a steady operating point in

3As of this writing; divide by a factor of two for every two years after the publication date.
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Figure 1.16: Expression of a protein using an inducible promoter [18]. (a) The circuit
diagram indicates the DNA sequences that are used to construct the part (chosen from the
BioBrick library). (b) The measured response of the system to a step change in the inducer
level (HSL).

more rapidly changing thermal or chemical environments, this response time is too
slow to be used as an effective engineering approach.

By comparison, the input/output response for the signaling component in E. coli

chemotaxis is shown in Figure 1.17 [85]. Here the response of the kinase CheA is
plotted in response to an exponential ramp in the ligand concentration. The re-
sponse is extremely rapid, with the timescale measured in seconds. This rapid re-
sponse is implemented by conformational changes in the proteins involved in the
circuit, rather than regulation of transcription or other slower processes.

The field of synthetic biology has the opportunity to provide new approaches
to solving engineering and scientific problems. Sample engineering applications
include the development of synthetic circuits for producing biofuels, ultrasensitive
chemical sensors, or production of materials with specific properties that are tuned
to commercial needs. In addition to the potential impact on new biologically engi-
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Figure 1.17: Responses of E. coli chemotaxis signaling network to exponential ramps in
ligand concentration. Time responses of the “sensing” subsystem (from Shimizu, Tu and
Berg; Molecular Systems Biology, 2010), showing the response to exponential inputs.
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neered devices, there is also the potential for impact in improved understanding of
biological processes. For example, many diseases such as cancer and Parkinson’s
disease are closely tied to kinase dysfunction. The analysis of robust systems of
kinases and the ability to synthesize systems that support or invalidate biological
hypotheses may lead to a better systems understanding of failure modes that lead
to such diseases.

1.6 Further reading

There are numerous survey articles and textbooks that provide more detailed intro-
ductions to the topics introduced in this chapter. In the field of systems biology, the
textbook by Alon [4] provides a broad view of some of the key elements of modern
systems biology. A more comprehensive set of topics is covered in the textbook by
Klipp [54], while a more engineering-oriented treatment of modeling of biological
circuits can be found in the text by Myers [72]. Two other books that are particu-
larly noteworthy are Ptashne’s book on the phage λ [77] and Madhani’s book on
yeast [61], both of which use well-studied model systems to describe a general set
of mechanisms and principles that are present in many different types of organisms.

Several textbooks and research monographs provide excellent resources for
modeling and analysis of biomolecular dynamics and regulation. J. D. Murray’s
two-volume text [71] on biological modeling is an excellent reference with many
examples of biomolecular dynamics. The textbook by Phillips, Kondev and The-
riot [76] provides a quantitative approach to understanding biological systems, in-
cluding many of the concepts discussed in this chapter. Courey [20] gives a detailed
description of mechanisms transcriptional regulation. The topics in dynamical sys-
tems and control theory that are briefly introduced here are covered in more detail
in Åström and Murray [1] and can also be found in the text by Ellner and Gucken-
heimer [24].

Synthetic biology is a rapidly evolving field that includes many different sub-
areas of research, but few textbooks are currently available. In the specific area of
biological circuit design that we focus on here, there are a number of good survey
and review articles. The article by Baker et al. [8] provides a high level descrip-
tion of the basic approach and opportunities. Additional survey and review papers
include Voigt [97], Purnick and Weiss [78], and Khalil and Collins [52].
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Chapter 2

Dynamic Modeling of Core Processes

The goal of this chapter is to describe basic biological mechanisms in a way that
can be represented by simple dynamical models. We begin the chapter with a dis-
cussion of the basic modeling formalisms that we will utilize to model biomolecu-
lar feedback systems. We then proceed to study a number of core processes within
the cell, providing different model-based descriptions of the dynamics that will
be used in later chapters to analyze and design biomolecular systems. The focus
in this chapter and the next is on deterministic models using ordinary differential
equations; Chapter 4 describes how to model the stochastic nature of biomolecular
systems.

2.1 Modeling chemical reactions

In order to develop models for some of the core processes of the cell, we will need
to build up a basic description of the biochemical reactions that take place, includ-
ing production and degradation of proteins, regulation of transcription and trans-
lation, and intracellular sensing, action and computation. As in other disciplines,
biomolecular systems can be modeled in a variety of different ways, at many dif-
ferent levels of resolution, as illustrated in Figure 2.1. The choice of which model
to use depends on the questions that we want to answer, and good modeling takes
practice, experience, and iteration. We must properly capture the aspects of the
system that are important, reason about the appropriate temporal and spatial scales
to be included, and take into account the types of simulation and analysis tools
to be applied. Models that are to be used for analyzing existing systems should
make testable predictions and provide insight into the underlying dynamics. De-
sign models must additionally capture enough of the important behavior to allow
decisions to be made regarding how to interconnect subsystems, choose parameters
and design regulatory elements.

In this section we describe some of the basic modeling frameworks that we will
build on throughout the rest of the text. We begin with brief descriptions of the
relevant physics and chemistry of the system, and then quickly move to models
that focus on capturing the behavior using reaction rate equations. In this chapter
our emphasis will be on dynamics with time scales measured in seconds to hours
and mean behavior averaged across a large number of molecules. We touch only
briefly on modeling in the case where stochastic behavior dominates and defer a
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Figure 2.1: Different methods of modeling biomolecular systems.

more detailed treatment until Chapter 4.

Reaction kinetics

At the fine end of the modeling scale, we can attempt to model the molecular

dynamics of the cell, in which we attempt to model the individual proteins and other
species and their interactions via molecular-scale forces and motions. At this scale,
the individual interactions between protein domains, DNA and RNA are resolved,
resulting in a highly detailed model of the dynamics of the cell.

For our purposes in this text, we will not require the use of such a detailed
scale and we will consider the main modeling formalisms depicted in Figure 2.1.
We start with the abstraction of molecules that interact with each other through
stochastic events that are guided by the laws of thermodynamics. We begin with
an equilibrium point of view, commonly referred to as statistical mechanics, and
then briefly describe how to model the (statistical) dynamics of the system using
chemical kinetics. We cover both of these points of view very briefly here, primarily
as a stepping stone to deterministic models.

The underlying representation for both statistical mechanics and chemical ki-
netics is to identify the appropriate microstates of the system. A microstate cor-
responds to a given configuration of the components (species) in the system rela-
tive to each other and we must enumerate all possible configurations between the
molecules that are being modeled.

As an example, consider the distribution of RNA polymerase in the cell. It is
known that most RNA polymerases are bound to the DNA in a cell, either as they
produce RNA or as they diffuse along the DNA in search of a promoter site. Hence
we can model the microstates of the RNA polymerase system as all possible lo-
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Figure 2.2: Microstates for RNA polymerase. Each microstate of the system corresponds
to the RNA polymerase being located at some position in the cell. If we discretize the
possible locations on the DNA and in the cell, the microstate corresponds to all possi-
ble non-overlapping locations of the RNA polymerases. Figure from Phillips, Kondev and
Theriot [76]; used with permission of Garland Science.

cations of the RNA polymerase in the cell, with the vast majority of these corre-
sponding to the RNA polymerase at some location on the DNA. This is illustrated
in Figure 2.2. In statistical mechanics, we model the configuration of the cell by
the probability that the system is in a given microstate. This probability can be
calculated based on the energy levels of the different microstates. The laws of sta-
tistical mechanics state that if we have a set of microstates Q, then the steady state
probability that the system is in a particular microstate q is given by

P(q) =
1
Z

e−Eq/(kBT ), (2.1)

where Eq is the energy associated with the microstate q ∈ Q, kB is the Boltzmann
constant, T is the temperature in degrees Kelvin, and Z is a normalizing factor,
known as the partition function,

Z =
∑

q∈Q
e−Eq/(kBT ).

By keeping track of those microstates that correspond to a given system state
(also called a macrostate), we can compute the overall probability that a given
macrostate is reached. Thus, if we have a set of states S ⊂ Q that corresponds to a
given macrostate, then the probability of being in the set S is given by

P(S ) =
1
Z

∑

q∈S
e−Eq/(kBT ) =

∑

q∈S e−Eq/(kBT )

∑

q∈Q e−Eq/(kBT )
. (2.2)
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This can be used, for example, to compute the probability that some RNA poly-
merase is bound to a given promoter, averaged over many independent samples,
and from this we can reason about the rate of expression of the corresponding
gene.

Statistical mechanics describes the steady state distribution of microstates, but
does not tell us how the microstates evolve in time. To include the dynamics, we
must consider the chemical kinetics of the system and model the probability that
we transition from one microstate to another in a given period of time. Let q rep-
resent the microstate of the system, which we shall take as a vector of integers that
represents the number of molecules of a specific type (species) in given configura-
tions or locations. Assume we have a set of m chemical reactions Rj, j = 1, . . . ,M,
in which a chemical reaction is a process that leads to the transformation of one
set of chemical species to another one. We use ξ j to represent the change in state q

associated with reaction Rj. We describe the kinetics of the system by making use
of the propensity function a j(q, t) associated with reaction Rj, which captures the
instantaneous probability that at time t a system will transition between state q and
state q+ ξ j.

More specifically, the propensity function is defined such that

a j(q, t)dt = Probability that reaction Rj will occur between time t

and time t+dt given that the microstate is q.

We will give more detail in Chapter 4 regarding the validity of this functional form,
but for now we simply assume that such a function can be defined for our system.

Using the propensity function, we can keep track of the probability distribu-
tion for the state by looking at all possible transitions into and out of the current
state. Specifically, given P(q, t), the probability of being in state q at time t, we can
compute the time derivative dP(q, t)/dt as

dP

dt
(q, t) =

M∑

j=1

(

a j(q− ξ j, t)P(q− ξ j, t)−a j(q, t)P(q, t)
)

. (2.3)

This equation (and its variants) is called the chemical master equation (CME). The
first sum on the right-hand side represents the transitions into the state q from some
other state q− ξ j and the second sum represents the transitions out of the state q.

The dynamics of the distribution P(q, t) depend on the form of the propensity
functions a j(q, t). Consider a simple reversible reaction of the form

A+B −−−⇀↽−−− AB, (2.4)

in which a molecule of A and a molecule of B come together to form the complex
AB, in which A and B are bound to each other, and this complex can, in turn,
dissociate back into the A and B species. In the sequel, to make notation easier,
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we will sometimes represent the complex AB as A : B. It is often useful to write
reversible reactions by splitting the forward reaction from the backward reaction:

Rf : A+B −−→ AB,

Rr : AB −−→ A+B.
(2.5)

We assume that the reaction takes place in a well-stirred volume Ω and let the
configurations q be represented by the number of each species that is present. The
forward reaction Rf is a bimolecular reaction and we will see in Chapter 4 that it
has a propensity function

a f(q) =
k f

Ω
nAnB,

where k f is a parameter that depends on the forward reaction, and nA and nB are
the number of molecules of each species. The reverse reaction Rr is a unimolecular
reaction and we will see that it has a propensity function

a r(q) = k r nAB,

where k r is a parameter that depends on the reverse reaction and nAB is the number
of molecules of AB that are present.

If we now let q = (nA,nB,nAB) represent the microstate of the system, then we
can write the chemical master equation as

dP

dt
(nA,nB,nAB) = k rnABP(nA−1,nB−1,nAB+1)− k f

Ω
nAnBP(nA,nB,nAB).

The first term on the right-hand side represents the transitions into the microstate
q = (nA,nB,nAB) and the second term represents the transitions out of that state.

The number of differential equations depends on the number of molecules of
A, B and AB that are present. For example, if we start with one molecule of A, one
molecule of B, and three molecules of AB, then the possible states and dynamics
are

q0 = (1,0,4), dP0/dt = 3k rP1,

q1 = (2,1,3), dP1/dt = 4k rP0−2(k f/Ω)P1,

q2 = (3,2,2), dP2/dt = 3k rP1−6(k f/Ω)P2,

q3 = (4,3,1), dP3/dt = 2k rP2−12(k f/Ω)P3,

q4 = (5,4,0), dP4/dt = 1k rP3−20(k f/Ω)P4,

where Pi = P(qi, t). Note that the states of the chemical master equation are the
probabilities that we are in a specific microstate, and the chemical master equation
is a linear differential equation (we see from equation (2.3) that this is true in
general).

The primary difference between the statistical mechanics description given by
equation (2.1) and the chemical kinetics description in equation (2.3) is that the
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master equation formulation describes how the probability of being in a given mi-
crostate evolves over time. Of course, if the propensity functions and energy levels
are modeled properly, the steady state, average probabilities of being in a given
microstate, should be the same for both formulations.

Reaction rate equations

Although very general in form, the chemical master equation suffers from being a
very high-dimensional representation of the dynamics of the system. We shall see
in Chapter 4 how to implement simulations that obey the master equation, but in
many instances we will not need this level of detail in our modeling. In particular,
there are many situations in which the number of molecules of a given species
is such that we can reason about the behavior of a chemically reacting system
by keeping track of the concentration of each species as a real number. This is
of course an approximation, but if the number of molecules is sufficiently large,
then the approximation will generally be valid and our models can be dramatically
simplified.

To go from the chemical master equation to a simplified form of the dynam-
ics, we begin by making a number of assumptions. First, we assume that we can
represent the state of a given species by its concentration nA/Ω, where nA is the
number of molecules of A in a given volume Ω. We also treat this concentration
as a real number, ignoring the fact that the real concentration is quantized. Finally,
we assume that our reactions take place in a well-stirred volume, so that the rate of
interactions between two species is solely determined by the concentrations of the
species.

Before proceeding, we should recall that in many (and perhaps most) situations
inside of cells, these assumptions are not particularly good ones. Biomolecular
systems often have very small molecular counts and are anything but well mixed.
Hence, we should not expect that models based on these assumptions should per-
form well at all. However, experience indicates that in many cases the basic form
of the equations provides a good model for the underlying dynamics and hence we
often find it convenient to proceed in this manner.

Putting aside our potential concerns, we can now create a model for the dy-
namics of a system consisting of a set of species Si, i = 1, . . . ,n, undergoing a set
of reactions Rj, j = 1, . . . ,M. We write xi = [Si] = nSi

/Ω for the concentration of
species i (viewed as a real number). Because we are interested in the case where
the number of molecules is large, we no longer attempt to keep track of every pos-
sible configuration, but rather simply assume that the state of the system at any
given time is given by the concentrations xi. Hence the state space for our system
is given by x ∈ Rn and we seek to write our dynamics in the form of an ordinary
differential equation (ODE)

dx

dt
= f (x, θ),
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where θ ∈Rp represents the vector of parameters that govern dynamic behavior and
f : Rn ×Rp → Rn describes the rate of change of the concentrations as a function
of the instantaneous concentrations and parameter values.

To illustrate the general form of the dynamics, we consider again the case of a
basic bimolecular reaction

A+B −−−⇀↽−−− AB.

Each time the forward reaction occurs, we decrease the number of molecules of A
and B by one and increase the number of molecules of AB (a separate species) by
one. Similarly, each time the reverse reaction occurs, we decrease the number of
molecules of AB by one and increase the number of molecules of A and B.

Using our discussion of the chemical master equation, we know that the likeli-
hood that the forward reaction occurs in a given interval dt is given by a f(q)dt =

(k f/Ω)nAnBdt and the reverse reaction has likelihood a r(q) = k rnAB. If we assume
that nAB is a real number instead of an integer and ignore some of the formalities
of random variables, we can describe the evolution of nAB using the equation

nAB(t+dt) = nAB(t)+a f (q− ξ f )dt−ar(q)dt.

Here we let q be the state of the system with the number of molecules of AB equal
to nAB and ξ f represents the change in state from the forward reaction (nA and nB

are decreased by one and nAB is increased by one). Roughly speaking, this equation
states that the (approximate) number of molecules of AB at time t+ dt compared
with time t increases by the probability that the forward reaction occurs in time dt

and decreases by the probability that the reverse reaction occurs in that period.
To convert this expression into an equivalent one for the concentration of the

species AB, we write [AB] = nAB/Ω, [A] = nA/Ω, [B] = nB/Ω, and substitute the
expressions for a f (q) and ar(q):

[AB](t+dt)− [AB](t) =
(

a f(q− ξ f, t)−a r(q)
)

/Ω ·dt

=
(

k fnAnB/Ω
2− k rnAB/Ω

)

dt

=
(

k f[A][B]− k r[AB]
)

dt.

Taking the limit as dt approaches zero, we obtain

d

dt
[AB] = k f[A][B]− k r[AB].

Our derivation here has skipped many important steps, including a careful deriva-
tion using random variables and some assumptions regarding the way in which dt

approaches zero. These are described in more detail when we derive the chemi-
cal Langevin equation (CLE) in Chapter 4, but the basic form of the equations are
correct under the assumptions that the reactions are well-stirred and the molecular
counts are sufficiently large.
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In a similar fashion we can write equations to describe the dynamics of A and
B and the entire system of equations is given by

d[A]
dt
= k r[AB]− k f[A][B],

d[B]
dt
= k r[AB]− k f[A][B],

d[AB]
dt

= k f[A][B]− k r[AB],

or

dA

dt
= k rC− k fA ·B,

dB

dt
= k rC− k fA ·B,

dC

dt
= k fA ·B− k rC,

where C = [AB], A = [A], and B = [B]. These equations are known as the mass

action kinetics or the reaction rate equations for the system. The parameters k f and
k r are called the rate constants and they match the parameters that were used in the
underlying propensity functions.

Note that the same rate constants appear in each term, since the rate of pro-
duction of AB must match the rate of depletion of A and B and vice versa. We
adopt the standard notation for chemical reactions with specified rates and write
the individual reactions as

A+B
k f−→ AB, AB

k r−→ A+B,

where k f and k r are the reaction rate constants. For bidirectional reactions we can
also write

A+B
k f−−⇀↽−−
k r

AB.

It is easy to generalize these dynamics to more complex reactions. For example,
if we have a reversible reaction of the form

A+2B
k f−−⇀↽−−
k r

2C+D,

where A, B, C and D are appropriate species and complexes, then the dynamics for
the species concentrations can be written as

d

dt
A = k rC

2 ·D− k fA ·B2,
d

dt
C = 2k fA ·B2−2k rC

2 ·D,

d

dt
B = 2k rC

2 ·D−2k fA ·B2,
d

dt
D = k fA ·B2− k rC

2 ·D.
(2.6)

Rearranging this equation, we can write the dynamics as

d

dt




A

B

C

D




=




−1 1
−2 2
2 −2
1 −1







k fA ·B2

k rC
2 ·D



. (2.7)
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We see that in this decomposition, the first term on the right-hand side is a matrix
of integers reflecting the stoichiometry of the reactions and the second term is a
vector of rates of the individual reactions.

More generally, given a chemical reaction consisting of a set of species Si,
i = 1, . . . ,n and a set of reactions Rj, j = 1, . . . ,M, we can write the mass action
kinetics in the form

dx

dt
= Nv(x),

where N ∈ Rn×M is the stoichiometry matrix for the system and v(x) ∈ RM is the
reaction flux vector. Each row of v(x) corresponds to the rate at which a given
reaction occurs and the corresponding column of the stoichiometry matrix corre-
sponds to the changes in concentration of the relevant species. For example, for the
system in equation (2.7) we have

x = (A,B,C,D), N =




−1 1
−2 2
2 −2
1 −1




, v(x) =




k fA ·B2

k rC
2 ·D



.

The conservation of species is at the basis of reaction rate models since species are
usually transformed, but are not created from nothing or destroyed. Even the basic
process of protein degradation transforms a protein of interest A into a product X
that is not used in any other reaction. Specifically, the degradation rate of a protein
is determined by the amounts of proteases present, which bind to recognition sites
(degradation tags) and then degrade the protein. Degradation of a protein A by a
protease P can then be modeled by the following two-step reaction:

A+P
a−⇀↽−
d

AP
k−→ P+X.

As a result of the reaction, protein A has “disappeared,” so that this reaction is often
simplified to A −−→ ∅. Similarly, the birth of a molecule is a complicated process
that involves many reactions and species, as we will see later in this chapter. When
the process that creates a species of interest A is not relevant for the problem under
study, we will use the shorter description of a birth reaction given by

∅
k f−→ A

and describe its dynamics using the differential equation

dA

dt
= k f.

Example 2.1 (Covalent modification of a protein). Consider the set of reactions
involved in the phosphorylation of a protein by a kinase, as shown in Figure 2.3.
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Figure 2.3: Phosphorylation of a protein via a kinase. In the process of phosphorylation,
a protein called a kinase binds to ATP (adenosine triphosphate) and transfers one of the
phosphate groups (P) from ATP to a substrate, hence producing a phosphorylated substrate
and ADP (adenosine diphosphate). Reproduced from Madhani [61].

Let S represent the substrate, K represent the kinase and S* represent the phospho-
rylated (activated) substrate. The sets of reactions illustrated in Figure 2.3 are

R1 : K+ATP −−→ K:ATP,

R2 : K:ATP −−→ K+ATP,

R3 : S+K:ATP −−→ S:K:ATP,

R4 : S:K:ATP −−→ S+K:ATP,

R5 : S:K:ATP −−→ S∗:K:ADP,

R6 : S∗:K:ADP −−→ S∗+K:ADP,

R7 : K:ADP −−→ K+ADP,

R8 : K+ADP −−→ K:ADP.

We now write the kinetics for each reaction:

v1 = k1 [K][ATP],

v2 = k2 [K:ATP],

v3 = k3 [S][K:ATP],

v4 = k4 [S:K:ATP],

v5 = k5 [S:K:ATP],

v6 = k6 [S∗:K:ADP],

v7 = k7 [K:ADP],

v8 = k8 [K][ADP].

We treat [ATP] as a constant (regulated by the cell) and hence do not directly
track its concentration. (If desired, we could similarly ignore the concentration of
ADP since we have chosen not to include the many additional reactions in which
it participates.)
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The kinetics for each species are thus given by

d

dt
[K] = −v1+ v2+ v7− v8,

d

dt
[S∗] = v6,

d

dt
[K:ATP] = v1− v2− v3+ v4,

d

dt
[S∗:K:ADP] = v5− v6,

d

dt
[S] = −v3+ v4,

d

dt
[ADP] = v7− v8,

d

dt
[S:K:ATP] = v3− v4− v5,

d

dt
[K:ADP] = v6− v7+ v8.

Collecting these equations together and writing the state as a vector, we obtain

d

dt




[K]
[K:ATP]

[S]
[S:K:ATP]

[S∗]
[S∗:K:ADP]

[ADP]
[K:ADP]




︸            ︷︷            ︸

x

=




−1 1 0 0 0 0 1 −1
1 −1 −1 1 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 1 −1 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 1 −1 1




︸                                                 ︷︷                                                 ︸

N




v1

v2

v3

v4

v5

v6

v7

v8




,

︸︷︷︸

v(x)

which is in standard stoichiometric form. ∇

Reduced-order mechanisms

In this section, we look at the dynamics of some common reactions that occur in
biomolecular systems. Under some assumptions on the relative rates of reactions
and concentrations of species, it is possible to derive reduced-order expressions for
the dynamics of the system. We focus here on an informal derivation of the relevant
results, but return to these examples in the next chapter to illustrate that the same
results can be derived using a more formal and rigorous approach.

Simple binding reaction. Consider the reaction in which two species A and B bind
reversibly to form a complex C = AB:

A+B
a−⇀↽−
d

C, (2.8)

where a is the association rate constant and d is the dissociation rate constant.
Assume that B is a species that is controlled by other reactions in the cell and that
the total concentration of A is conserved, so that A+C = [A]+ [AB] = Atot. If the
dynamics of this reaction are fast compared to other reactions in the cell, then the
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amount of A and C present can be computed as a (steady state) function of the
amount of B.

To compute how A and C depend on the concentration of B at the steady state,
we must solve for the equilibrium concentrations of A and C. The rate equation for
C is given by

dC

dt
= aB ·A−dC = aB · (Atot−C)−dC.

By setting dC/dt = 0 and letting Kd := d/a, we obtain the expressions

C =
Atot(B/Kd)
1+ (B/Kd)

, A =
Atot

1+ (B/Kd)
.

The constant Kd is called the dissociation constant of the reaction. Its inverse mea-
sures the affinity of A binding to B. The steady state value of C increases with B

while the steady state value of A decreases with B as more of A is found in the
complex C.

Note that when B ≈ Kd, A and C have equal concentration. Thus the higher the
value of Kd, the more B is required for A to form the complex C. Kd has the units
of concentration and it can be interpreted as the concentration of B at which half
of the total number of molecules of A are associated with B. Therefore a high Kd

represents a weak affinity between A and B, while a low Kd represents a strong
affinity.

Cooperative binding reaction. Assume now that B binds to A only after dimeriza-
tion, that is, only after binding another molecule of B. Then, we have that reac-
tions (2.8) become

B+B
k1−−⇀↽−−
k2

B2, B2+A
a−⇀↽−
d

C, A+C = Atot,

in which B2 =B : B represents the dimer of B, that is, the complex of two molecules
of B bound to each other. The corresponding ODE model is given by

dB2

dt
= k1B2− k2B2−aB2 · (Atot−C)+dC,

dC

dt
= aB2 · (Atot−C)−dC.

By setting dB2/dt = 0, dC/dt = 0, and by defining Km := k2/k1, we obtain that

B2 = B2/Km, C =
Atot(B2/Kd)
1+ (B2/Kd)

, A =
Atot

1+ (B2/Kd)
,

so that

C =
AtotB

2/(KmKd)
1+B2/(KmKd)

, A =
Atot

1+B2/(KmKd)
.

As an exercise (Exercise 2.2), the reader can verify that if B binds to A as a complex
of n copies of B, that is,

B+B+ · · ·+B
k1−−⇀↽−−
k2

Bn, Bn+A
a−⇀↽−
d

C, A+C = Atot,



modeling.tex, v5734 2014-06-14 17:46:23Z (murray)

2.1. MODELING CHEMICAL REACTIONS 41

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Normalized concentration

C

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Normalized concentration

 

 

A

n = 1
n = 5
n = 50

Figure 2.4: Steady state concentrations of the complex C and of A as functions of the
concentration of B.

then we have that the expressions of C and A change to

C =
AtotB

n/(KmKd)
1+Bn/(KmKd)

, A =
Atot

1+Bn/(KmKd)
.

In this case, we say that the binding of B to A is cooperative with cooperativity n.
Figure 2.4 shows the above functions, which are often referred to as Hill functions
and n is called the Hill coefficient.

Another type of cooperative binding is when a species R can bind A only after
another species B has bound A. In this case, the reactions are given by

B+A
a−⇀↽−
d

C, R+C
a′−−⇀↽−−
d′

C
′
, A+C+C′ = Atot.

Proceeding as above by writing the ODE model and equating the time derivatives
to zero to obtain the equilibrium, we obtain the equilibrium relations

C =
1

Kd
B(Atot−C−C′), C′ =

1
K′dKd

R(Atot−C−C′).

By solving this system of two equations for the unknowns C′ and C, we obtain

C′ =
Atot(B/Kd)(R/K′d)

1+ (B/Kd)+ (B/Kd)(R/K′d)
, C =

Atot(B/Kd)
1+ (B/Kd)+ (B/Kd)(R/K′d)

.

In the case in which B would bind cooperatively with other copies of B with coop-
erativity n, the above expressions become

C′ =
Atot(Bn/KmKd)(R/K′d)

1+ (Bn/KmKd)(R/K′d)+ (Bn/KmKd)
,

C =
Atot(Bn/KmKd)

1+ (Bn/KmKd)(R/K′d)+ (Bn/KmKd)
.
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Competitive binding reaction. Finally, consider the case in which two species Ba
and Br both bind to A competitively, that is, they cannot be bound to A at the same
time. Let Ca be the complex formed between Ba and A and let Cr be the complex
formed between Br and A. Then, we have the following reactions

Ba+A
a−⇀↽−
d

Ca, Br+A
a′−−⇀↽−−
d′

Cr, A+Ca+Cr = Atot,

for which we can write the differential equation model as

dCa

dt
= aBa · (Atot−Ca−Cr)−dCa,

dCr

dt
= a′Br · (Atot−Ca−Cr)−d′Cr.

By setting the time derivatives to zero, we obtain

Ca(aBa+d) = aBa(Atot−Cr), Cr(a′Br +d′) = a′Br(Atot−Ca),

so that

Cr =
Br(Atot−Ca)

Br +K′d
, Ca

(

Ba+Kd−
BaBr

Br +K′d

)

= Ba

(
K′d

Br +K′d

)

Atot,

from which we finally determine that

Ca =
Atot(Ba/Kd)

1+ (Ba/Kd)+ (Br/K
′
d)
, Cr =

Atot(Br/K
′
d)

1+ (Ba/Kd)+ (Br/K
′
d)
.

In this derivation, we have assumed that both Ba and Br bind A as monomers.
If they were binding as dimers, the reader should verify that they would appear in
the final expressions with a power of two (see Exercise 2.3).

Note also that in this derivation we have assumed that the binding is competi-
tive, that is, Ba and Br cannot simultaneously bind to A. If they can bind simultane-
ously to A, we have to include another complex comprising Ba, Br and A. Denoting
this new complex by C

′
, we must add the two additional reactions

Ca+Br
ā−⇀↽−̄
d

C
′
, Cr+Ba

ā′−−⇀↽−−
d̄′

C
′
,

and we should modify the conservation law for A to Atot = A+Ca +Cr +C′. The
reader can verify that in this case a mixed term BrBa appears in the equilibrium
expressions (see Exercise 2.4).

Enzymatic reaction. A general enzymatic reaction can be written as

E+S
a−⇀↽−
d

C
k−→ E+P,
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in which E is an enzyme, S is the substrate to which the enzyme binds to form
the complex C = ES, and P is the product resulting from the modification of the
substrate S due to the binding with the enzyme E. Here, a and d are the association
and dissociation rate constants as before, and k is the catalytic rate constant. En-
zymatic reactions are very common and include phosphorylation as we have seen
in Example 2.1 and as we will see in more detail in the sequel. The corresponding
ODE model is given by

dS

dt
= −aE ·S +dC,

dC

dt
= aE ·S − (d+ k)C,

dE

dt
= −aE ·S +dC+ kC,

dP

dt
= kC.

The total enzyme concentration is usually constant and denoted by Etot, so that
E+C = Etot. Substituting E = Etot−C in the above equations, we obtain

dS

dt
= −a(Etot−C) ·S +dC,

dC

dt
= a(Etot−C) ·S − (d+ k)C,

dE

dt
= −a(Etot−C) ·S +dC+ kC,

dP

dt
= kC.

This system cannot be solved analytically, therefore, assumptions must be used
in order to reduce it to a simpler form. Michaelis and Menten assumed that the
conversion of E and S to C and vice versa is much faster than the decomposition
of C into E and P. Under this assumption and letting the initial concentration S (0)
be sufficiently large (see Example 3.12), C immediately reaches its steady state
value (while P is still changing). This approximation is called the quasi-steady

state approximation and the mathematical conditions on the parameters that justify
it will be dealt with in Section 3.5. The steady state value of C is given by solving
a(Etot−C)S − (d+ k)C = 0 for C, which gives

C =
EtotS

S +Km

, with Km =
d+ k

a
,

in which the constant Km is called the Michaelis-Menten constant. Letting Vmax =

kEtot, the resulting kinetics

dP

dt
= k

EtotS

S +Km

= Vmax
S

S +Km

(2.9)

are called Michaelis-Menten kinetics.
The constant Vmax is called the maximal velocity (or maximal flux) of modifi-

cation and it represents the maximal rate that can be obtained when the enzyme is
completely saturated by the substrate. The value of Km corresponds to the value of
S that leads to a half-maximal value of the production rate of P. When the enzyme
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Figure 2.5: Enzymatic reactions. (a) Transfer curve showing the production rate for P as a
function of substrate concentration for Km = 1. (b) Time plots of product P(t) for different
values of the Km. In the plots S tot = 1 and Vmax = 1.

complex can be neglected with respect to the total substrate amount S tot, we have
that S tot = S +P+C ≈ S +P, so that the above equation can be also rewritten as

dP

dt
=

Vmax(S tot −P)
(S tot −P)+Km

.

When Km ≪ S tot and the substrate has not yet been all converted to product,
that is, S ≫ Km, we have that the rate of product formation becomes approximately
dP/dt ≈ Vmax, which is the maximal speed of reaction. Since this rate is constant
and does not depend on the reactant concentrations, it is usually referred to as zero-

order kinetics. In this case, the system is said to operate in the zero-order regime. If
instead S ≪ Km, the rate of product formation becomes dP/dt ≈ Vmax/KmS , which
is linear with the substrate concentration S . This production rate is referred to as
first-order kinetics and the system is said to operate in the first-order regime (see
Figure 2.5).

2.2 Transcription and translation

In this section we consider the processes of transcription and translation, using the
modeling techniques described in the previous section to capture the fundamental
dynamic behavior. Models of transcription and translation can be done at a variety
of levels of detail and which model to use depends on the questions that one wants
to consider. We present several levels of modeling here, starting with a fairly de-
tailed set of reactions and ending with highly simplified models that can be used
when we are only interested in average production rate of proteins at relatively long
time scales.
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Figure 2.6: Geometric structure of DNA. The layout of the DNA is shown at the top. RNA
polymerase binds to the promoter region of the DNA and transcribes the DNA starting at
the +1 site and continuing to the termination site. The transcribed mRNA strand has the
ribosome binding site (RBS) where the ribosomes bind, the start codon where translation
starts and the stop codon where translation ends.

The central dogma: Production of proteins

The genetic material inside a cell, encoded in its DNA, governs the response of a
cell to various conditions. DNA is organized into collections of genes, with each
gene encoding a corresponding protein that performs a set of functions in the cell.
The activation and repression of genes are determined through a series of complex
interactions that give rise to a remarkable set of circuits that perform the functions
required for life, ranging from basic metabolism to locomotion to procreation. Ge-
netic circuits that occur in nature are robust to external disturbances and can func-
tion in a variety of conditions. To understand how these processes occur (and some
of the dynamics that govern their behavior), it will be useful to present a relatively
detailed description of the underlying biochemistry involved in the production of
proteins.

DNA is a double stranded molecule with the “direction” of each strand specified
by looking at the geometry of the sugars that make up its backbone. The comple-
mentary strands of DNA are composed of a sequence of nucleotides that consist of
a sugar molecule (deoxyribose) bound to one of four bases: adenine (A), cytocine
(C), guanine (G) and thymine (T). The coding region (by convention the top row of
a DNA sequence when it is written in text form) is specified from the 5′ end of the
DNA to the 3′ end of the DNA. (The 5′ and 3′ refer to carbon locations on the de-
oxyribose backbone that are involved in linking together the nucleotides that make
up DNA.) The DNA that encodes proteins consists of a promoter region, regulator
regions (described in more detail below), a coding region and a termination region
(see Figure 2.6). We informally refer to this entire sequence of DNA as a gene.

Expression of a gene begins with the transcription of DNA into mRNA by RNA
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Figure 2.7: Production of messenger RNA from DNA. RNA polymerase, along with other
accessory factors, binds to the promoter region of the DNA and then “opens” the DNA
to begin transcription (initiation). As RNA polymerase moves down the DNA in the tran-
scription elongation complex (TEC), it produces an RNA transcript (elongation), which
is later translated into a protein. The process ends when the RNA polymerase reaches the
terminator (termination). Reproduced from Courey [20].

polymerase, as illustrated in Figure 2.7. RNA polymerase enzymes are present in
the nucleus (for eukaryotes) or cytoplasm (for prokaryotes) and must localize and
bind to the promoter region of the DNA template. Once bound, the RNA poly-
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merase “opens” the double stranded DNA to expose the nucleotides that make up
the sequence. This reaction, called isomerization, is said to transform the RNA
polymerase and DNA from a closed complex to an open complex. After the open
complex is formed, RNA polymerase begins to travel down the DNA strand and
constructs an mRNA sequence that matches the 5′ to 3′ sequence of the DNA to
which it is bound. By convention, we number the first base pair that is transcribed
as +1 and the base pair prior to that (which is not transcribed) is labeled as -1. The
promoter region is often shown with the -10 and -35 regions indicated, since these
regions contain the nucleotide sequences to which the RNA polymerase enzyme
binds (the locations vary in different cell types, but these two numbers are typically
used).

The RNA strand that is produced by RNA polymerase is also a sequence of nu-
cleotides with a sugar backbone. The sugar for RNA is ribose instead of deoxyri-
bose and mRNA typically exists as a single stranded molecule. Another difference
is that the base thymine (T) is replaced by uracil (U) in RNA sequences. RNA
polymerase produces RNA one base pair at a time, as it moves from in the 5′ to 3′

direction along the DNA coding region. RNA polymerase stops transcribing DNA
when it reaches a termination region (or terminator) on the DNA. This termination
region consists of a sequence that causes the RNA polymerase to unbind from the
DNA. The sequence is not conserved across species and in many cells the termi-
nation sequence is sometimes “leaky,” so that transcription will occasionally occur
across the terminator.

Once the mRNA is produced, it must be translated into a protein. This process is
slightly different in prokaryotes and eukaryotes. In prokaryotes, there is a region of
the mRNA in which the ribosome (a molecular complex consisting of both proteins
and RNA) binds. This region, called the ribosome binding site (RBS), has some
variability between different cell species and between different genes in a given
cell. The Shine-Dalgarno sequence, AGGAGG, is the consensus sequence for the
RBS. (A consensus sequence is a pattern of nucleotides that implements a given
function across multiple organisms; it is not exactly conserved, so some variations
in the sequence will be present from one organism to another.)

In eukaryotes, the RNA must undergo several additional steps before it is trans-
lated. The RNA sequence that has been created by RNA polymerase consists of
introns that must be spliced out of the RNA (by a molecular complex called the
spliceosome), leaving only the exons, which contain the coding region for the pro-
tein. The term pre-mRNA is often used to distinguish between the raw transcript
and the spliced mRNA sequence, which is called mature mRNA. In addition to
splicing, the mRNA is also modified to contain a poly(A) (polyadenine) tail, con-
sisting of a long sequence of adenine (A) nucleotides on the 3′ end of the mRNA.
This processed sequence is then transported out of the nucleus into the cytoplasm,
where the ribosomes can bind to it.

Unlike prokaryotes, eukaryotes do not have a well-defined ribosome binding se-
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Figure 2.8: Translation is the process of translating the sequence of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protein synthesis. The genetic
code describes the relationship between the sequence of base pairs in a gene and the cor-
responding amino acid sequence that it encodes. In the cell cytoplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assemble the protein. Figure and
caption courtesy the National Human Genome Research Institute.

quence and hence the process of the binding of the ribosome to the mRNA is more
complicated. The Kozak sequence, A/GCCACCAUGG, is the rough equivalent of
the ribosome binding site, where the underlined AUG is the start codon (described
below). However, mRNA lacking the Kozak sequence can also be translated.

Once the ribosome is bound to the mRNA, it begins the process of translation.
Proteins consist of a sequence of amino acids, with each amino acid specified by
a codon that is used by the ribosome in the process of translation. Each codon
consists of three base-pairs and corresponds to one of the twenty amino acids or
a “stop” codon. The ribosome translates each codon into the corresponding amino
acid using transfer RNA (tRNA) to integrate the appropriate amino acid (which
binds to the tRNA) into the polypeptide chain, as shown in Figure 2.8. The start
codon (AUG) specifies the location at which translation begins, as well as coding
for the amino acid methionine (a modified form is used in prokaryotes). All sub-
sequent codons are translated by the ribosome into the corresponding amino acid
until it reaches one of the stop codons (typically UAA, UAG and UGA).

The sequence of amino acids produced by the ribosome is a polypeptide chain
that folds on itself to form a protein. The process of folding is complicated and



proteins.tex, v5734 2014-06-14 17:46:23Z (murray)

2.2. TRANSCRIPTION AND TRANSLATION 49

Table 2.1: Rates of core processes involved in the creation of proteins from DNA in E. coli.

Process Characteristic rate Source
mRNA transcription rate 24-29 bp/s [13]
Protein translation rate 12–21 aa/s [13]
Maturation time (fluorescent proteins) 6–60 min [13]
mRNA half-life ∼ 100 s [101]
E. coli cell division time 20–40 min [13]
Yeast cell division time 70–140 min [13]
Protein half-life ∼ 5×104 s [101]
Protein diffusion along DNA up to 104 bp/s [76]
RNA polymerase dissociation constant ∼ 0.3–10,000 nM [13]
Open complex formation kinetic rate ∼ 0.02 s−1 [13]
Transcription factor dissociation constant ∼ 0.02–10,000 nM [13]

involves a variety of chemical interactions that are not completely understood. Ad-
ditional post-translational processing of the protein can also occur at this stage,
until a folded and functional protein is produced. It is this molecule that is able to
bind to other species in the cell and perform the chemical reactions that underlie
the behavior of the organism. The maturation time of a protein is the time required
for the polypeptide chain to fold into a functional protein.

Each of the processes involved in transcription, translation and folding of the
protein takes time and affects the dynamics of the cell. Table 2.1 shows represen-
tative rates of some of the key processes involved in the production of proteins.
In particular, the dissociation constant of RNA polymerase from the DNA pro-
moter has a wide range of values depending on whether the binding is enhanced
by activators (as we will see in the sequel), in which case it can take very low val-
ues. Similarly, the dissociation constant of transcription factors with DNA can be
very low in the case of specific binding and substantially larger for non-specific
binding. It is important to note that each of these steps is highly stochastic, with
molecules binding together based on some propensity that depends on the bind-
ing energy but also the other molecules present in the cell. In addition, although
we have described everything as a sequential process, each of the steps of tran-
scription, translation and folding are happening simultaneously. In fact, there can
be multiple RNA polymerases that are bound to the DNA, each producing a tran-
script. In prokaryotes, as soon as the ribosome binding site has been transcribed,
the ribosome can bind and begin translation. It is also possible to have multiple
ribosomes bound to a single piece of mRNA. Hence the overall process can be
extremely stochastic and asynchronous.
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Reaction models

The basic reactions that underlie transcription include the diffusion of RNA poly-
merase from one part of the cell to the promoter region, binding of an RNA poly-
merase to the promoter, isomerization from the closed complex to the open com-
plex, and finally the production of mRNA, one base-pair at a time. To capture this
set of reactions, we keep track of the various forms of RNA polymerase accord-
ing to its location and state: RNAPc represents RNA polymerase in the cytoplasm,
RNAPp represents RNA polymerase in the promoter region, and RNAPd is RNA
polymerase non-specifically bound to DNA. We must similarly keep track of the
state of the DNA, to ensure that multiple RNA polymerases do not bind to the same
section of DNA. Thus we can write DNAp for the promoter region, DNAi for the
ith section of the gene of interest and DNAt for the termination sequence. We write
RNAP : DNA to represent RNA polymerase bound to DNA (assumed closed) and
RNAP : DNAo to indicate the open complex. Finally, we must keep track of the
mRNA that is produced by transcription: we write mRNAi to represent an mRNA
strand of length i and assume that the length of the gene of interest is N.

Using these various states of the RNA polymerase and locations on the DNA,
we can write a set of reactions modeling the basic elements of transcription as

Binding to DNA: RNAPc −−−⇀↽−−− RNAPd,

Diffusion along DNA: RNAPd −−−⇀↽−−− RNAPp,

Binding to promoter: RNAPp+DNAp −−−⇀↽−−− RNAP : DNAp,

Isomerization: RNAP : DNAp −−→ RNAP : DNAo,

Start of transcription: RNAP : DNAo −−→ RNAP : DNA1+DNAp,

mRNA creation: RNAP : DNA1 −−→ RNAP : DNA2 : mRNA1,

Elongation: RNAP : DNAi+1 : mRNAi

−−→ RNAP : DNAi+2 : mRNAi+1,

Binding to terminator: RNAP:DNAN : mRNAN−1

−−→ RNAP : DNAt+mRNAN,

Termination: RNAP : DNAt −−→ RNAPc,

Degradation: mRNAN −−→ ∅.
(2.10)

Note that at the start of transcription we “release” the promoter region of the DNA,
thus allowing a second RNA polymerase to bind to the promoter while the first
RNA polymerase is still transcribing the gene. This allows the same DNA strand
to be transcribed by multiple RNA polymerase at the same time. The species
RNAP : DNAi+1 : mRNAi represents RNA polymerases bound at the (i+1)th sec-
tion of DNA with an elongating mRNA strand of length i attached to it. Upon bind-
ing to the terminator region, the RNA polymerase releases the full mRNA strand
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mRNAN. This mRNA has the ribosome binding site at which ribosomes can bind
to start translation. The main difference between prokaryotes and eukaryotes is that
in eukaryotes the RNA polymerase remains in the nucleus and the mRNAN must
be spliced and transported to the cytoplasm before ribosomes can start translation.
As a consequence, the start of translation can occur only after mRNAN has been
produced. For simplicity of notation, we assume here that the entire mRNA strand
should be produced before ribosomes can start translation. In the procaryotic case,
instead, translation can start even for an mRNA strand that is still elongating (see
Exercise 2.6).

A similar set of reactions can be written to model the process of translation.
Here we must keep track of the binding of the ribosome to the ribosome binding
site (RBS) of mRNAN, translation of the mRNA sequence into a polypeptide chain,
and folding of the polypeptide chain into a functional protein. Specifically, we
must keep track of the various states of the ribosome bound to different codons
on the mRNA strand. We thus let Ribo : mRNARBS denote the ribosome bound
to the ribosome binding site of mRNAN, Ribo : mRNAAAi the ribosome bound to
the ith codon (corresponding to an amino acid, indicated by the superscript AA),
Ribo : mRNAstart and Ribo : mRNAstop the ribosome bound to the start and stop
codon, respectively. We also let PPCi denote the polypeptide chain consisting of i

amino acids. Here, we assume that the protein of interest has M amino acids. The
reactions describing translation can then be written as

Binding to RBS: Ribo+mRNAN −−−⇀↽−−− Ribo : mRNARBS,

Start of translation: Ribo : mRNARBS −−→ Ribo : mRNAstart+mRNAN,

Polypeptide chain creation: Ribo : mRNAstart −−→ Ribo : mRNAAA2 : PPC1,

Elongation, i = 1, . . . ,M: Ribo : mRNAAA(i+1) : PPCi

−−→ Ribo : mRNAAA(i+2) : PPCi+1,

Stop codon: Ribo : mRNAAAM : PPCM−1

−−→ Ribo : mRNAstop+PPCM,

Release of mRNA: Ribo : mRNAstop −−→ Ribo,

Folding: PPCM −−→ protein,

Degradation: protein −−→ ∅.
(2.11)

As in the case of transcription, we see that these reactions allow multiple ribosomes
to translate the same piece of mRNA by freeing up mRNAN. After M amino acids
have been chained together, the M-long polypeptide chain PPCM is released, which
then folds into a protein. As complex as these reactions are, they do not directly
capture a number of physical phenomena such as ribosome queuing, wherein ri-
bosomes cannot pass other ribosomes that are ahead of them on the mRNA chain.
Additionally, we have not accounted for the existence and effects of the 5′ and
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3′ untranslated regions (UTRs) of a gene and we have also left out various error
correction mechanisms in which ribosomes can step back and release an incorrect
amino acid that has been incorporated into the polypeptide chain. We have also left
out the many chemical species that must be present in order for a variety of the
reactions to happen (NTPs for mRNA production, amino acids for protein produc-
tion, etc.). Incorporation of these effects requires additional reactions that track the
many possible states of the molecular machinery that underlies transcription and
translation. For more detailed models of translation, the reader is referred to [3].

When the details of the isomerization, start of transcription (translation), elon-
gation, and termination are not relevant for the phenomenon to be studied, the tran-
scription and translation reactions are lumped into much simpler reduced reactions.
For transcription, these reduced reactions take the form:

RNAP+DNAp −−−⇀↽−−− RNAP:DNAp,

RNAP:DNAp −−→mRNA+RNAP+DNAp,

mRNA −−→ ∅,
(2.12)

in which the second reaction lumps together isomerization, start of transcription,
elongation, mRNA creation, and termination. Similarly, for the translation process,
the reduced reactions take the form:

Ribo+mRNA −−−⇀↽−−− Ribo:mRNA,

Ribo:mRNA −−→ protein+mRNA+Ribo,

Ribo:mRNA −−→ Ribo,

protein −−→ ∅,

(2.13)

in which the second reaction lumps the start of translation, elongation, folding, and
termination. The third reaction models the fact that mRNA can also be degraded
when bound to ribosomes when the ribosome binding site is left free. The process
of mRNA degradation occurs through RNase enzymes binding to the ribosome
binding site and cleaving the mRNA strand. It is known that the ribosome binding
site cannot be both bound to the ribosome and to the RNase [66]. However, the
species Ribo : mRNA is a lumped species encompassing configurations in which
ribosomes are bound on the mRNA strand but not on the ribosome binding site.
Hence, we also allow this species to be degraded by RNase.

Reaction rate equations

Given a set of reactions, the various stochastic processes that underlie detailed
models of transcription and translation can be specified using the stochastic mod-
eling framework described briefly in the previous section. In particular, using either
models of binding energy or measured rates, we can construct propensity functions
for each of the many reactions that lead to production of proteins, including the
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motion of RNA polymerase and the ribosome along DNA and RNA. For many
problems in which the detailed stochastic nature of the molecular dynamics of the
cell are important, these models are the most relevant and they are covered in some
detail in Chapter 4.

Alternatively, we can move to the reaction rate formalism and model the reac-
tions using differential equations. To do so, we must compute the various reaction
rates, which can be obtained from the propensity functions or measured experimen-
tally. In moving to this formalism, we approximate the concentrations of various
species as real numbers (though this may not be accurate for some species that
exist at low molecular counts in the cell). Despite these approximations, in many
situations the reaction rate equations are sufficient, particularly if we are interested
in the average behavior of a large number of cells.

In some situations, an even simpler model of the transcription, translation and
folding processes can be utilized. Let the “active” mRNA be the mRNA that is
available for translation by the ribosome. We model its concentration through a
simple time delay of length τm that accounts for the transcription of the ribosome
binding site in prokaryotes or splicing and transport from the nucleus in eukary-
otes. If we assume that RNA polymerase binds to DNA at some average rate (which
includes both the binding and isomerization reactions) and that transcription takes
some fixed time (depending on the length of the gene), then the process of tran-
scription can be described using the delay differential equation

dmP

dt
= α−µmP− δ̄mP, m∗P(t) = e−µτ

m

mP(t−τm), (2.14)

where mP is the concentration of mRNA for protein P, m∗P is the concentration of
active mRNA, α is the rate of production of the mRNA for protein P, µ is the growth
rate of the cell (which results in dilution of the concentration) and δ̄ is the rate of
degradation of the mRNA. Since the dilution and degradation terms are of the same
form, we will often combine these terms in the mRNA dynamics and use a single
coefficient δ = µ+ δ̄. The exponential factor in the second expression in equation
(2.14) accounts for dilution due to the change in volume of the cell, where µ is
the cell growth rate. The constants α and δ capture the average rates of production
and decay, which in turn depend on the more detailed biochemical reactions that
underlie transcription.

Once the active mRNA is produced, the process of translation can be described
via a similar ordinary differential equation that describes the production of a func-
tional protein:

dP

dt
= κm∗P−γP, P f (t) = e−µτ

f

P(t−τ f ). (2.15)

Here P represents the concentration of the polypeptide chain for the protein, and
P f represents the concentration of functional protein (after folding). The parame-
ters that govern the dynamics are κ, the rate of translation of mRNA; γ, the rate of
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degradation and dilution of P; and τ f , the time delay associated with folding and
other processes required to make the protein functional. The exponential term again
accounts for dilution due to cell growth. The degradation and dilution term, param-
eterized by γ, captures both the rate at which the polypeptide chain is degraded and
the rate at which the concentration is diluted due to cell growth.

It will often be convenient to write the dynamics for transcription and transla-
tion in terms of the functional mRNA and functional protein. Differentiating the
expression for m∗P, we see that

dm∗P(t)

dt
= e−µτ

m dmP

dt
(t−τm)

= e−µτ
m(

α−δmP(t−τm)
)

= ᾱ−δm∗P(t),
(2.16)

where ᾱ = e−µτ
m

α. A similar expansion for the active protein dynamics yields

dP f (t)
dt

= κ̄m∗P(t−τ f )−γP f (t), (2.17)

where κ̄ = e−µτ
f

κ. We shall typically use equations (2.16) and (2.17) as our (re-
duced) description of protein folding, dropping the superscript f and overbars
when there is no risk of confusion. Also, in the presence of different proteins, we
will attach subscripts to the parameters to denote the protein to which they refer.

In many situations the time delays described in the dynamics of protein pro-
duction are small compared with the time scales at which the protein concentration
changes (depending on the values of the other parameters in the system). In such
cases, we can simplify our model of the dynamics of protein production even fur-
ther and write

dmP

dt
= α−δmP,

dP

dt
= κmP−γP. (2.18)

Note that we here have dropped the superscripts ∗ and f since we are assuming that
all mRNA is active and proteins are functional and dropped the overbar on α and
κ since we are assuming the time delays are negligible. The value of α increases
with the strength of the promoter while the value of κ increases with the strength of
the ribosome binding site. These strengths, in turn, can be affected by changing the
specific base-pair sequences that constitute the promoter RNA polymerase binding
region and the ribosome binding site.

Finally, the simplest model for protein production is one in which we only keep
track of the basal rate of production of the protein, without including the mRNA
dynamics. This essentially amounts to assuming the mRNA dynamics reach steady
state quickly and replacing the first differential equation in (2.18) with its equilib-
rium value. This is often a good assumption as mRNA degration is usually about
100 times faster than protein degradation (see Table 2.1). Thus we obtain

dP

dt
= β−γP, β := κ

α

δ
.
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This model represents a simple first-order, linear differential equation for the rate
of production of a protein. In many cases this will be a sufficiently good approxi-
mate model, although we will see that in some cases it is too simple to capture the
observed behavior of a biological circuit.

2.3 Transcriptional regulation

The operation of a cell is governed in part by the selective expression of genes in
the DNA of the organism, which control the various functions the cell is able to
perform at any given time. Regulation of protein activity is a major component of
the molecular activities in a cell. By turning genes on and off, and modulating their
activity in more fine-grained ways, the cell controls its many metabolic pathways,
responds to external stimuli, differentiates into different cell types as it divides, and
maintains the internal state of the cell required to sustain life.

The regulation of gene expression and protein activity is accomplished through
a variety of molecular mechanisms, as discussed in Section 1.2 and illustrated in
Figure 2.9. At each stage of the processing from a gene to a protein, there are po-
tential mechanisms for regulating the production processes. The remainder of this
section will focus on transcriptional control and the next section on selected mech-
anisms for controlling protein activity. We will focus on prokaryotic mechanisms.

Transcriptional regulation of protein production

The simplest forms of transcriptional regulation are repression and activation, both
controlled through proteins called transcription factors. In the case of repression,
the presence of a transcription factor (often a protein that binds near the promoter)
turns off the transcription of the gene and this type of regulation is often called
negative regulation or “down regulation.” In the case of activation (or positive reg-
ulation), transcription is enhanced when an activator protein binds to the promoter
site (facilitating binding of the RNA polymerase).

Repression. A common mechanism for repression is that a protein binds to a region
of DNA near the promoter and blocks RNA polymerase from binding. The region
of DNA to which the repressor protein binds is called an operator region (see
Figure 2.10a). If the operator region overlaps the promoter, then the presence of
a protein at the promoter can “block” the DNA at that location and transcription
cannot initiate. Repressor proteins often bind to DNA as dimers or pairs of dimers
(effectively tetramers). Figure 2.10b shows some examples of repressors bound to
DNA.

A related mechanism for repression is DNA looping. In this setting, two repres-
sor complexes (often dimers) bind in different locations on the DNA and then bind
to each other. This can create a loop in the DNA and block the ability of RNA poly-
merase to bind to the promoter, thus inhibiting transcription. Figure 2.11 shows an
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Figure 2.9: Regulation of proteins. Transcriptional control includes mechanisms to tune
the rate at which mRNA is produced from DNA, while translation control includes mech-
anisms to tune the rate at which the protein polypeptide chain is produced from mRNA.
Protein activity control encompasses many processes, such as phosphorylation, methyla-
tion, and allosteric modification . Figure from Phillips, Kondev and Theriot [76]; used with
permission of Garland Science.

example of this type of repression, in the lac operon. (An operon is a set of genes
that is under control of a single promoter.)

Activation. The process of activation of a gene requires that an activator protein be
present in order for transcription to occur. In this case, the protein must work to
either recruit or enable RNA polymerase to begin transcription.

The simplest form of activation involves a protein binding to the DNA near
the promoter in such a way that the combination of the activator and the promoter
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Figure 2.10: Repression of gene expression. A repressor protein binds to operator sites on
the gene promoter and blocks the binding of RNA polymerase to the promoter, so that
the gene is off. Figure from Phillips, Kondev and Theriot [76]; used with permission of
Garland Science.

sequence bind RNA polymerase. Figure 2.12 illustrates the basic concept.

Another mechanism for activation of transcription, specific to prokaryotes, is
the use of sigma factors. Sigma factors are part of a modular set of proteins that
bind to RNA polymerase and form the molecular complex that performs transcrip-

(a) DNA looping

5 nm

(b) lac repressor

Figure 2.11: Repression via DNA looping. A repressor protein can bind simultaneously
to two DNA sites downstream of the start of transcription, thus creating a loop that pre-
vents RNA polymerase from transcribing the gene. Figure from Phillips, Kondev and The-
riot [76]; used with permission of Garland Science.
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Figure 2.12: Activation of gene expression. (a) Conceptual operation of an activator. The
activator binds to DNA upstream of the gene and attracts RNA polymerase to the DNA
strand. (b) Examples of activators: catabolite activator protein (CAP), p53 tumor suppres-
sor, zinc finger DNA binding domain and leucine zipper DAN binding domain. Figure
from Phillips, Kondev and Theriot [76]; used with permission of Garland Science.

tion. Different sigma factors enable RNA polymerase to bind to different promot-
ers, so the sigma factor acts as a type of activating signal for transcription. Table 2.2
lists some of the common sigma factors in bacteria. One of the uses of sigma fac-
tors is to produce certain proteins only under special conditions, such as when the
cell undergoes heat shock. Another use is to control the timing of the expression of
certain genes, as illustrated in Figure 2.13.

Inducers. A feature that is present in some types of transcription factors is the ex-
istence of an inducer molecule that combines with the protein to either activate
or inactivate its function. A positive inducer is a molecule that must be present in
order for repression or activation to occur. A negative inducer is one in which the

Table 2.2: Sigma factors in E. coli [2].

Sigma factor Promoters recognized
σ70 most genes
σ32 genes associated with heat shock
σ38 genes involved in stationary phase and stress response
σ28 genes involved in motility and chemotaxis
σ24 genes dealing with misfolded proteins in the periplasm
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Figure 2.13: Use of sigma factors to control the timing of gene expression in a bacterial
virus. Early genes are transcribed by RNA polymerase bound to bacterial sigma factors.
One of the early genes, called 28, encodes a sigma-like factor that binds to RNA poly-
merase and allow it to transcribe middle genes, which in turn produce another sigma-like
factor that allows RNA polymerase to transcribe late genes. These late genes produce pro-
teins that form a coat for the viral DNA and lyse the cell. Reproduced from Alberts et
al. [2].

presence of the inducer molecule blocks repression or activation, either by chang-
ing the shape of the transcription factor protein or by blocking active sites on the
protein that would normally bind to the DNA. Figure 2.14 summarizes the various
possibilities. Common examples of repressor-inducer pairs include lacI and lactose
(or IPTG), and tetR and aTc. Lactose/IPTG and aTc are both negative inducers, so
their presence causes the otherwise repressed gene to be expressed. An example of
a positive inducer is cyclic AMP (cAMP), which acts as a positive inducer for the
CAP activator.

Combinatorial promoters. In addition to promoters that can take either a repressor
or an activator as the sole input transcription factor, there are combinatorial pro-
moters that can take both repressors and activators as input transcription factors.
This allows genes to be switched on and off based on more complex conditions,
represented by the concentrations of two or more activators or repressors.

Figure 2.15 shows one of the classic examples, a promoter for the lac system.
In the lac system, the expression of genes for metabolizing lactose are under the
control of a single (combinatorial) promoter. CAP, which is positively induced by
cAMP, acts as an activator and LacI (also called “Lac repressor”), which is neg-
atively induced by lactose, acts as a repressor. In addition, the inducer cAMP is
expressed only when glucose levels are low. The resulting behavior is that the pro-
teins for metabolizing lactose are expressed only in conditions where there is no
glucose (so CAP is active) and lactose is present.

More complicated combinatorial promoters can also be used to control tran-
scription in two different directions, an example that is found in some viruses.

Antitermination. A final method of activation in prokaryotes is the use of antiter-

mination. The basic mechanism involves a protein that binds to DNA and deacti-
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Figure 2.14: Effects of inducers. (a) In the case of repressors, a negative inducer binds to
the repressor making it unbind DNA, thus enabling transcription. A positive inducer, by
contrast, activates the repressor allowing it to bind DNA. (b) In the case of activators, a
negative inducer binds to the activator making it unbind DNA, thus preventing transcrip-
tion. A positive inducer instead enables the activator to bind DNA, allowing transcription.
Reproduced from Alberts et al. [2].

vates a site that would normally serve as a termination site for RNA polymerase.
Additional genes are located downstream from the termination site, but without a
promoter region. Thus, in the absence of the antiterminator protein, these genes are
not expressed (or expressed with low probability). However, when the antitermina-
tion protein is present, the RNA polymerase maintains (or regains) its contact with
the DNA and expression of the downstream genes is enhanced. In this way, an-
titermination allows downstream genes to be regulated by repressing “premature”
termination. An example of an antitermination protein is the protein N in phage
λ, which binds to a region of DNA labeled nut (for N utilization), as shown in
Figure 2.16 [36].

Reaction models

We can capture the molecular interactions responsible for transcriptional regula-
tion by modifying the RNA polymerase binding reactions in equation (2.10). For
a repressor (Rep), we simply have to add a reaction that represents the repressor
bound to the promoter DNAp:

Repressor binding: DNAp+Rep −−−⇀↽−−− DNA:Rep.
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Figure 2.15: Combinatorial logic for the lac operator. The CAP-binding site and the oper-
ator in the promoter can be both bound by CAP (activator) and by LacI (Lac repressor),
respectively. The only configuration in which RNA polymerase can bind the promoter and
start transcription is where CAP is bound but LacI is not bound. Figure from Phillips,
Kondev and Theriot [76]; used with permission of Garland Science.

This reaction acts to “sequester” the DNA promoter site so that it is no longer avail-
able for binding by RNA polymerase. The strength of the repressor is reflected
in the reaction rate constants for the repressor binding reaction. Sometimes, the

nutL

λ

pL pR

– N

+ N

nutR

Figure 2.16: Antitermination. Protein N binds to DNA regions labeled nut, enabling tran-
scription of longer DNA sequences. Reproduced from [36].
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RNA polymerase can bind to the promoter even when the repressor is bound, usu-
ally with lower association rate constant. In this case, the repressor still allows
some transcription even when bound to the promoter and the repressor is said to be
“leaky.”

The modifications for an activator (Act) are a bit more complicated, since we
have to modify the reactions to require the presence of the activator before RNA
polymerase can bind the promoter. One possible mechanism, known as the recruit-

ment model, is given by

Activator binding: DNAp+Act −−−⇀↽−−− DNAp:Act,

RNAP binding w/ activator: RNAPp+DNAp:Act −−−⇀↽−−− RNAP:DNAp:Act,

Isomerization: RNAP:DNAp:Act −−→ RNAP:DNAo:Act,

Start of transcription: RNAP:DNAo:Act −−→ RNAP:DNA1+DNAp:Act.
(2.19)

In this model, RNA polymerase cannot bind to the promoter unless the activator
is already bound to it. More generally, one can model both the enhanced binding
of the RNA polymerase to the promoter in the presence of the activator, as well as
the possibility of binding without an activator. This translates into the additional
reaction RNAPp+DNAp −−−⇀↽−−− RNAP:DNAp. The relative reaction rates determine
how strong the activator is and the “leakiness” of transcription in the absence of
the activator. A different model of activation, called allosteric activation, is one in
which the RNA polymerase binding rate to DNA is not enhanced by the presence
of the activator bound to the promoter, but the open complex (and hence start of
transcription) formation can occur only (is enhanced) in the presence of the activa-
tor.

A simplified ordinary differential equation model of transcription in the pres-
ence of activators or repressors can be obtained by accounting for the fact that
transcription factors and RNAP bind to the DNA rapidly when compared to other
reactions, such as isomerization and elongation. As a consequence, we can make
use of the reduced-order models that describe the quasi-steady state concentrations
of proteins bound to DNA as described in Section 2.1. We can consider the com-
petitive binding case to model a strong repressor that prevents RNA polymerase
from binding to the DNA. In the sequel, we remove the superscripts “p” and “d”
from RNA polymerase to simplify notation. The quasi-steady state concentration
of the complex of DNA promoter bound to the repressor will have the expression

[DNAp:Rep] =
[DNA]tot([Rep]/Kd)

1+ [Rep]/Kd+ [RNAP]/K′d

and the steady state amount of DNA promoter bound to the RNA polymerase will
be given by

[RNAP:DNAp] =
[DNA]tot([RNAP]/K′d)

1+ [RNAP]/K′d+ [Rep]/Kd
,
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in which K′d is the dissociation constant of RNA polymerase from the promoter,
while Kd is the dissociation constant of Rep from the promoter, and [DNA]tot rep-
resents the total concentration of DNA. The free DNA promoter with RNA poly-
merase bound will allow transcription, while the complex DNAp : Rep will not
allow transcription as it is not bound to RNA polymerase. Using the lumped reac-
tions (2.12) with reaction rate constant k f, this can be modeled as

d[mRNA]
dt

= F([Rep])−δ[mRNA],

in which the production rate is given by

F([Rep]) = k f
[DNA]tot ([RNAP]/K′d)

1+ [RNAP]/K′d+ [Rep]/Kd
.

If the repressor binds to the promoter with cooperativity n, the above expression
becomes (see Section 2.1)

F([Rep]) = k f
[DNA]tot ([RNAP]/K′d)

1+ [RNAP]/K′d+ [Rep]n/(KmKd)
,

in which Km is the dissociation constant of the reaction of n molecules of Rep
binding together. The function F is usually represented in the standard Hill function
form

F([Rep]) =
α

1+ ([Rep]/K)n
,

in which α and K are given by

α =
k f[DNA]tot([RNAP]/K′d)

1+ ([RNAP]/K′d)
, K =

(

KmKd(1+ ([RNAP]/K′d)
)1/n
.

Finally, if the repressor allows RNA polymerase to still bind to the promoter at a
small rate (leaky repressor), the above expression can be modified to take the form

F([Rep]) =
α

1+ ([Rep]/K)n
+α0, (2.20)

in which α0 is the basal expression rate when the promoter is fully repressed, usu-
ally referred to as leakiness (see Exercise 2.8).

To model the production rate of mRNA in the case in which an activator Act
is required for transcription, we can consider the case in which RNA polymerase
binds only when the activator is already bound to the promoter (recruitment model).
To simplify the mathematical derivation, we rewrite the reactions (2.19) involving
the activator with the lumped transcription reaction (2.12) into the following:

DNAp+Act −−−⇀↽−−− DNAp:Act,

RNAP+DNAp:Act −−−⇀↽−−− RNAP:DNAp:Act,

RNAP:DNAp:Act
k f−→mRNA+RNAP+DNAp:Act,

(2.21)
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in which the third reaction lumps together isomerization, start of transcription,
elongation and termination. The first and second reactions fit the structure of the
cooperative binding model illustrated in Section 2.1. Also, since the third reaction
is much slower than the first two, the complex RNAP : DNAp : Act concentration
can be well approximated at its quasi-steady state value. The expression of the
quasi-steady state concentration was given in Section 2.1 in correspondence to the
cooperative binding model and takes the form

[RNAP:DNAp:Act] =
[DNA]tot([RNAP]/K′d)([Act])/Kd)

1+ ([Act]/Kd)(1+ [RNAP]/K′d)
,

in which K′d is the dissociation constant of RNA polymerase with the complex of
DNA bound to Act and Kd is the dissociation constant of Act with DNA. When
the activator Act binds to the promoter with cooperativity n, the above expression
becomes

[RNAP:DNAp:Act] =
[DNA]tot([RNAP][Act]n)/(KdK′dKm)

1+ ([Act]n/KdKm)(1+ [RNAP]/K′d)
,

in which Km is the dissociation constant of the reaction of n molecules of Act
binding together.

In order to write the differential equation for the mRNA concentration, we con-
sider the third reaction in (2.21) along with the above quasi-steady state expressions
of [RNAP : DNAp : Act] to obtain

d [mRNA]
dt

= F([Act])−δ[mRNA],

in which

F([Act]) = k f
[DNA]tot([RNAP][Act]n)/(KdK′dKm)

1+ ([Act]n/KdKm)(1+ [RNAP]/K′d)
=:
α([Act]/K)n

1+ ([Act]/K)n
,

where α and K are implicitly defined. The right-hand side of this expression is in
standard Hill function form.

If we assume that RNA polymerase can still bind to DNA even when the acti-
vator is not bound, we have an additional basal expression rate α0 so that the new
form of the production rate is given by (see Exercise 2.9)

F([Act]) =
α([Act]/K)n

1+ ([Act]/K)n
+α0. (2.22)

As indicated earlier, many activators and repressors operate in the presence of
inducers. To incorporate these dynamics in our description, we simply have to add
the reactions that correspond to the interaction of the inducer with the relevant
protein. For a negative inducer, we can add a reaction in which the inducer binds
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the regulator protein and effectively sequesters it so that it cannot interact with the
DNA. For example, a negative inducer operating on a repressor could be modeled
by adding the reaction

Rep+ Ind −−−⇀↽−−− Rep:Ind.

Since the above reactions are very fast compared to transcription, they can be as-
sumed at the quasi-steady state. Hence, the free amount of repressor that can still
bind to the promoter can be calculated by writing the ODE model corresponding
to the above reactions and by setting the time derivatives to zero. This yields

[Rep] =
[Rep]tot

1+ [Ind]/K̄d
,

in which [Rep]tot = [Rep]+ [Rep:Ind] is the total amount of repressor (bound and
unbound to the inducer) and K̄d is the dissociation constant of Ind binding to Rep.
This expression of the repressor concentration needs to be substituted in the ex-
pression of the production rate F([Rep]).

Positive inducers can be handled similarly, except now we have to modify the
binding reactions to only work in the presence of a regulatory protein bound to an
inducer. For example, a positive inducer on an activator would have the modified
reactions

Inducer binding: Act+ Ind −−−⇀↽−−− Act:Ind,

Activator binding: DNAp+Act:Ind −−−⇀↽−−− DNAp:Act:Ind,

RNAP binding w/ activator: RNAP+DNAp:Act:Ind −−−⇀↽−−− RNAP:DNAp:Act:Ind,

Isomerization: RNAP:DNAp:Act:Ind −−→ RNAP:DNAo:Act:Ind,

Start of transcription: RNAP:DNAo:Act:Ind −−→ RNAP:DNA1

+DNAp:Act:Ind.

Hence, in the expression of the production rate F([Act]), we should substitute the
concentration [Act:Ind] in place of [Act]. This concentration, in turn, is well ap-
proximated by its quasi-steady state value since binding reactions are much faster
than isomerization and transcription, and can be obtained as in the negative inducer
case.

Example 2.2 (Autoregulation of gene expression). Consider the circuits shown in
Figure 2.17, representing an unregulated gene, a negatively autoregulated gene and
a positively autoregulated gene. We want to model the dynamics of the protein A
starting from zero initial conditions for the three different cases to understand how
the three different circuit topologies affect dynamics.

The dynamics of the three circuits can be written in a common form,

dmA

dt
= F(A)−δmA,

dA

dt
= κmA−γA, (2.23)
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A

mA

(c) Positive autoregulation

Figure 2.17: Autoregulation of gene expression. In (a) the circuit is unregulated, while (b)
shows negative autoregulation and (c) shows positive autoregulation.

where F(A) is in one of the following forms:

Funreg(A) = αB, Frepress(A) =
αB

1+ (A/K)n
+α0, Fact(A) =

αA(A/K)n

1+ (A/K)n
+αB.

We choose the parameters to be

αA = 0.375 nM/s, αB = 0.5 nM/s, α0 = 5×10−4 nM/s,

κ = 0.116 s−1, δ = 5.78×10−3 s−1, γ = 1.16×10−3 s−1,

K = 104 nM, n = 2,

corresponding to biologically plausible values. Note that the parameters are chosen
so that F(0) ≈ αB for each circuit.

Figure 2.18a shows the results of simulations comparing the response of the
three circuits. We see that initial increase in protein concentration is identical for
each circuit, consistent with our choice of Hill functions and parameters. As the
expression level increases, the effects of positive and negative regulation are seen,
leading to different steady state expression levels. In particular, the negative feed-
back circuit reaches a lower steady state expression level while the positive feed-
back circuit settles to a higher value.

In some situations, it makes sense to ask whether different circuit topologies
have different properties that might lead us to choose one over another. In the case
where the circuit is going to be used as part of a more complex pathway, it may
make the most sense to compare circuits that produce the same steady state concen-
tration of the protein A. To do this, we must modify the parameters of the individual
circuits, which can be done in a number of different ways: we can modify the pro-
moter strengths, degradation rates, or other molecular mechanisms reflected in the
parameters.

The steady state expression level for the negative autoregulation case can be
adjusted by using a stronger promoter (modeled by αB) or ribosome binding site
(modeled by κ). The equilibrium point for the negative autoregulation case is given
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Figure 2.18: Simulations for autoregulated gene expression. (a) Non-adjusted expression
levels. (b) Equalized expression levels.

by the solution of the equations

mA,e =
αKn

δ(Kn+An
e)
, Ae =

κ

γ
mA,e.

These coupled equations can be solved for mA,e and Ae, but in this case we simply
need to find values α′

B
and κ′ that give the same values as the unregulated case. For

example, if we equate the mRNA levels of the unregulated system with that of the
negatively autoregulated system, we have

αB

δ
=

1
δ

(
α′

B
Kn

Kn+An
e

+α0

)

=⇒ α′B = (αB−α0)
Kn+An

e

Kn
, Ae =

αBκ

δγ
,

where Ae is the desired equilibrium value (which we choose using the unregulated
case as a guide).

A similar calculation can be done for the case of positive autoregulation, in
this case decreasing the promoter parameters αA and αB so that the steady state
values match. A simple way to do this is to leave αA unchanged and decrease αB

to account for the positive feedback. Solving for α′
B

to give the same mRNA levels
as the unregulated case yields

α′B = αB−αA

An
e

Kn+An
e

.

Figure 2.18b shows simulations of the expression levels over time for the mod-
ified circuits. We see now that the expression levels all reach the same steady state
value. The negative autoregulated circuit has the property that it reaches the steady
state more quickly, due to the increased rate of protein expression when A is small
(α′

B
> αB). Conversely, the positive autoregulated circuit has a slower rate of ex-

pression than the constitutive case, since we have lowered the rate of protein ex-
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pression when A is small. The initial higher and lower expression rates are com-
pensated for via the autoregulation, resulting in the same expression level in steady
state. ∇

We have described how a Hill function can model the regulation of a gene
by a single transcription factor. However, genes can also be regulated by multiple
transcription factors, some of which may be activators and some may be repressors,
as in the case of combinatorial promoters. The mRNA production rate can thus take
several forms depending on the roles (activators versus repressors) of the various
transcription factors. In general, the production rate resulting from a promoter that
takes as input transcription factors Pi for i ∈ {1, ...,N} will be denoted F(P1, ...,PN).

The dynamics of a transcriptional module are often well captured by the ordi-
nary differential equations

dmPi

dt
= F(P1, ...,PN)−δPi

mPi
,

dPi

dt
= κPi

mPi
−γPi

Pi. (2.24)

For a combinatorial promoter with two input proteins, an activator Pa and a repres-
sor Pr, in which, for example, the activator cannot bind if the repressor is bound
to the promoter, the function F(Pa,Pr) can be obtained by employing the competi-
tive binding in the reduced-order models of Section 2.1. In this case, assuming the
activator has cooperativity n and the repressor has cooperativity m, we obtain the
expression

F(Pa,Pr) = α
(Pa/Ka)n

1+ (Pa/Ka)n+ (Pr/Kr)m
, (2.25)

where Ka = (Km,aKd,a)(1/n), Kr = (Km,rKd,r)(1/m), in which Kd,a and Kd,r are the dis-
sociation constants of the activator and repressor, respectively, from the DNA pro-
moter site, while Km,a and Km,r are the dissociation constants for the cooperative
binding reactions for the activator and repressor, respectively. In these expressions,
RNA polymerase does not explicitly appear as it affects the values of the disso-
ciation constants and of α. In the case in which the activator is “leaky,” that is,
some transcription still occurs even when there is no activator, the above expres-
sion should be modified to

F(Pa,Pr) = α
(Pa/Ka)n

1+ (Pa/Ka)n+ (Pr/Kr)m
+α0, (2.26)

where α0 is the basal transcription rate when no activator is present. If the basal rate
can still be repressed by the repressor, the above expression should be modified to
(see Exercise 2.10)

F(Pa,Pr) =
α(Pa/Ka)n+α0

1+ (Pa/Ka)n+ (Pr/Kr)m
. (2.27)



regulation.tex, v5734 2014-06-14 17:46:23Z (murray)

2.3. TRANSCRIPTIONAL REGULATION 69

A

B

C

(a) Circuit diagram

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000
0

50

0 200 400 600 800 1000
0

0.5

1

Time (min)

A
B

C

(b) Simulation

Figure 2.19: The incoherent feedforward loop (type I). (a) A schematic diagram of the
circuit. (b) A simulation of the model in equation (2.28) with βA = 0.01 µM/min, γ = 0.01
min−1, βB = 1 µM/min, βC = 100 µM/min, KB = 0.001 µM , and KA = 1 µM.

Example 2.3 (Incoherent feedforward loops). Combinatorial promoters with two
inputs are often used in systems where a logical “and” is required. As an example,
we illustrate here an incoherent feedforward loop (type I) [4]. Such a circuit is
composed of three transcription factors A, B, and C, in which A directly activates C
and B while B represses C. This is illustrated in Figure 2.19a. This is different from
a coherent feedforward loop in which both A and B activate C. In the incoherent
feedforward loop, if we would like C to be high only when A is high and B is low
(“and” gate), we can consider a combinatorial promoter in which the activator A
and the repressor B competitively bind to the promoter of C. The resulting Hill
function is given by the expression in equation (2.25). Depending on the values
of the constants, the expression of C is low unless A is high and B is low. The
resulting ODE model, neglecting the mRNA dynamics, is given by the system

dA

dt
= βA−γA,

dB

dt
= βB

A/KA

1+ (A/KA)
−γB,

dC

dt
= βC

A/KA

1+ (A/KA)+ (B/KB)
−γC,

(2.28)

in which we have assumed no cooperativity of binding for both the activator and
the repressor. If we view βA as an input to the system and C as an output, we can
investigate how this output responds to a sudden increase of βA. Upon a sudden
increase of βA, protein A builds up and binds to the promoter of C initiating tran-
scription, so that protein C starts getting produced. At the same time, protein B
is produced and accumulates until it reaches a large enough value to repress C.
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Figure 2.20: In allosteric regulation, a regulatory molecule binds to a site separate from
the catalytic site (active site) of an enzyme. This binding causes a change in the three-
dimensional conformation of the protein, turning off (or turning on) the catalytic site.

Hence, we can expect a pulse of C production for suitable parameter values. This
is shown in Figure 2.19b. Note that if the production rate constant βC is very large,
a little amount of A will cause C to immediately tend to a very high concentration.
This explains the large initial slope of the C signal in Figure 2.19b. ∇

2.4 Post-transcriptional regulation

In addition to regulation of expression through modifications of the process of tran-
scription, cells can also regulate the production and activity of proteins via a col-
lection of other post-transcriptional modifications. These include methods of mod-
ulating the translation of proteins, as well as affecting the activity of a protein via
changes in its conformation.

Allosteric modifications to proteins

In allosteric regulation, a regulatory molecule, called allosteric effector, binds to a
site separate from the catalytic site (active site) of an enzyme. This binding causes
a change in the conformation of the protein, turning off (or turning on) the catalytic
site (Figure 2.20).

An allosteric effector can either be an activator or an inhibitor, just like inducers
work for activation or inhibition of transcription factors. Inhibition can either be
competitive or not competitive. In the case of competitive inhibition, the inhibitor
competes with the substrate for binding the enzyme, that is, the substrate can bind
to the enzyme only if the inhibitor is not bound. In the case of non-competitive
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inhibition, the substrate can be bound to the enzyme even if the latter is bound to
the inhibitor. In this case, however, the product may not be able to form or may
form at a lower rate, in which case, we have partial inhibition.

Activation can be absolute or not. Specifically, an allosteric effector is an abso-

lute activator when the enzyme can bind to the substrate only when the enzyme is
bound to the allosteric effector. Otherwise, the allosteric effector is a non-absolute
activator. In this section, we derive the expressions for the production rate of the
active protein in an enzymatic reaction in the two most common cases: when we
have a (non-competitive) inhibitor I or an (absolute) activator A of the enzyme.

Allosteric inhibition

Consider the standard enzymatic reaction

E+S
a−⇀↽−
d

ES
k−→ E+P,

in which enzyme E binds to substrate S and transforms it into the product P. Let I be
a (non-competitive) inhibitor of enzyme E so that when E is bound to I, the complex
EI can still bind to substrate S, however, the complex EIS is non-productive, that
is, it does not produce P. Then, we have the following additional reactions:

E+ I
k+−−⇀↽−−
k−

EI, ES+ I
k+−−⇀↽−−
k−

EIS, EI+S
a−⇀↽−
d

EIS,

in which, for simplicity of notation, we have assumed that the dissociation constant
between E and I does not depend on whether E is bound to the substrate S. Simi-
larly, we have assumed that the dissociation constant of E from S does not depend
on whether the inhibitor I is bound to E. Additionally, we have the conservation
laws:

Etot = E+ [ES]+ [EI]+ [EIS], S tot = S +P+ [ES]+ [EIS].

The production rate of P is given by dP/dt = k[ES]. Since binding reactions are
very fast, we can assume that all the complexes’ concentrations are at the quasi-
steady state. This gives

[EIS] =
a

d
[EI] ·S , [EI] =

k+

k−
E · I, [ES] =

S ·E
Km

,

where Km = (d+ k)/a is the Michaelis-Menten constant. Using these expressions,
the conservation law for the enzyme, and the fact that a/d ≈ 1/Km, we obtain

E =
Etot

(I/Kd+1)(1+S/Km)
, with Kd = k−/k+,
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so that

[ES] =
S

S +Km

Etot

1+ I/Kd

and, as a consequence,

dP

dt
= kEtot

(

1
1+ I/Kd

)(

S

S +Km

)

.

In our earlier derivations of the Michaelis-Menten kinetics Vmax = kEtot was called
the maximal velocity, which occurs when the enzyme is completely saturated by
the substrate (Section 2.1, equation (2.9)). Hence, the effect of a non-competitive
inhibitor is to decrease the maximal velocity Vmax to Vmax/(1+ I/Kd).

Another type of inhibition occurs when the inhibitor is competitive, that is,
when I is bound to E, the complex EI cannot bind to protein S. Since E can either
bind to I or S (not both), I competes against S for binding to E (see Exercise 2.13).

Allosteric activation

In this case, the enzyme E can transform S to its active form only when it is bound
to A. Also, we assume that E cannot bind S unless E is bound to A (from here, the
name absolute activator). The reactions should be modified to

E+A
k+−−⇀↽−−
k−

EA, EA+S
a−⇀↽−
d

EAS
k−→ P+EA,

with conservation laws

Etot = E+ [EA]+ [EAS], S tot = S +P+ [EAS].

The production rate of P is given by dP/dt = k [EAS]. Assuming as above that the
complexes are at the quasi-steady state, we have that

[EA] =
E ·A
Kd
, [EAS] =

S · [EA]
Km

,

which, using the conservation law for E, leads to

E =
Etot

(1+S/Km)(1+A/Kd)
and [EAS] =

(

A

A+Kd

)(

S

S +Km

)

Etot.

Hence, we have that
dP

dt
= kEtot

(

A

A+Kd

)(

S

S +Km

)

.

The effect of an absolute activator is to modulate the maximal speed of modification
by a factor A/(A+Kd).
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Figure 2.21: Maximal velocity in the presence of allosteric effectors (inhibitors or acti-
vators). The plots in (a) show the maximal velocity Vmax/(1+ I/Kd) as a function of the
inhibitor concentration I. The plots in (b) show the maximal velocity VmaxA/(A+Kd) as a
function of the activator concentration A. The different plots show the effect of the disso-
ciation constant for Vmax = 1.

Figure 2.21 shows the behavior of the maximal velocity as a function of the
allosteric effector concentration. As the dissociation constant decreases, that is, the
affinity of the effector increases, a very small amount of effector will cause the
maximal velocity to reach Vmax in the case of the activator and 0 in the case of the
inhibitor.

Another type of activation occurs when the activator is not absolute, that is,
when E can bind to S directly, but cannot activate S unless the complex ES first
binds A (see Exercise 2.14).

Covalent modifications to proteins

In addition to regulation that controls transcription of DNA into mRNA, a variety
of mechanisms are available for controlling expression after mRNA is produced.
These include control of splicing and transport from the nucleus (in eukaryotes),
the use of various secondary structure patterns in mRNA that can interfere with
ribosomal binding or cleave the mRNA into multiple pieces, and targeted degrada-
tion of mRNA. Once the polypeptide chain is formed, additional mechanisms are
available that regulate the folding of the protein as well as its shape and activity
level.

One of the most common types of post-transcriptional regulation is through the
covalent modification of proteins, such as through the process of phosphorylation.
Phosphorylation is an enzymatic process in which a phosphate group is added to
a protein and the resulting conformation of the protein changes, usually from an
inactive configuration to an active one. The enzyme that adds the phosphate group
is called a kinase and it operates by transferring a phosphate group from a bound
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ATP molecule to the protein, leaving behind ADP and the phosphorylated protein.
Dephosphorylation is a complementary enzymatic process that can remove a phos-
phate group from a protein. The enzyme that performs dephosphorylation is called
a phosphatase. Figure 2.3 shows the process of phosphorylation in more detail.

Since phosphorylation and dephosphorylation can occur much more quickly
than protein production and degradation, it is used in biological circuits in which
a rapid response is required. One common pattern is that a signaling protein will
bind to a ligand and the resulting allosteric change allows the signaling protein to
serve as a kinase. The newly active kinase then phosphorylates a second protein,
which modulates other functions in the cell. Phosphorylation cascades can also be
used to amplify the effect of the original signal; we will describe this in more detail
in Section 2.5.

Kinases in cells are usually very specific to a given protein, allowing detailed
signaling networks to be constructed. Phosphatases, on the other hand, are much
less specific, and a given phosphatase species may dephosphorylate many different
types of proteins. The combined action of kinases and phosphatases is important in
signaling since the only way to deactivate a phosphorylated protein is by removing
the phosphate group. Thus phosphatases are constantly “turning off” proteins, and
the protein is activated only when sufficient kinase activity is present.

Phosphorylation of a protein occurs by the addition of a charged phosphate
(PO4) group to the serine (Ser), threonine (Thr) or tyrosine (Tyr) amino acids. Sim-
ilar covalent modifications can occur by the attachment of other chemical groups
to select amino acids. Methylation occurs when a methyl group (CH3) is added
to lysine (Lys) and is used for modulation of receptor activity and in modifying
histones that are used in chromatin structures. Acetylation occurs when an acetyl
group (COCH3) is added to lysine and is also used to modify histones. Ubiquitina-

tion refers to the addition of a small protein, ubiquitin, to lysine; the addition of a
polyubiquitin chain to a protein targets it for degradation.

Here, we focus on reversible cycles of modification, in which a protein is in-
terconverted between two forms that differ in activity. At a high level, a covalent
modification cycle involves a target protein X, an enzyme Z for modifying it, and
a second enzyme Y for reversing the modification (see Figure 2.22). We call X∗

the activated protein. There are often allosteric effectors or further covalent modi-
fication systems that regulate the activity of the modifying enzymes, but we do not
consider this added level of complexity here. The reactions describing this system
are given by the following two enzymatic reactions, also called a two-step reaction

model:

Z+X
a1−−⇀↽−−
d1

C1
k1−→ X∗+Z, Y+X∗

a2−−⇀↽−−
d2

C2
k2−→ X+Y,

in which we have let C1 be the kinase/protein complex and C2 be the active pro-
tein/phosphatase complex. The corresponding differential equation model is given



allostery.tex, v5734 2014-06-14 17:46:23Z (murray)

2.4. POST-TRANSCRIPTIONAL REGULATION 75

Output

X*X

Z

Y

Input

(a) General diagram

Substrate

Phosphatase

Kinase

Z ATP ADP

P

P

Z

C1

C2

X X

Y + Y

(b) Detailed view

Figure 2.22: (a) General diagram representing a covalent modification cycle. (b) Detailed
view of a phosphorylation cycle including ATP, ADP, and the exchange of the phosphate
group “p.”

by

dZ

dt
= −a1Z ·X+ (k1+d1)C1,

dX∗

dt
= k1C1−a2Y ·X∗+d2C2,

dX

dt
= −a1Z ·X+d1C1+ k2C2,

dC2

dt
= a2Y ·X∗− (d2+ k2)C2,

dC1

dt
= a1Z ·X− (d1+ k1)C1,

dY

dt
= −a2Y ·X∗+ (d2+ k2)C2.

Furthermore, we have that the total amounts of enzymes Z and Y are conserved.
Denote the total concentrations of Z, Y, and X by Ztot, Ytot, and Xtot, respectively.
Then, we have also the conservation laws

Z+C1 = Ztot, Y +C2 = Ytot, X+X∗+C1+C2 = Xtot.

Using the first two conservation laws, we can reduce the above system of differen-
tial equations to the following one:

dC1

dt
= a1(Ztot−C1) ·X− (d1+ k1)C1,

dX∗

dt
= k1C1−a2(Ytot−C2) ·X∗+d2C2,

dC2

dt
= a2(Ytot−C2) ·X∗− (d2+ k2)C2.

As in the case of the enzymatic reaction, this system cannot be analytically
integrated. To simplify it, we can perform a similar approximation as done for the
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enzymatic reaction. In particular, the complexes’ concentrations C1 and C2 reach
their steady state values very quickly under the assumption a1Ztot, a2Ytot, d1, d2≫
k1, k2. Therefore, we can approximate the above system by substituting for C1 and
C2 their steady state values, given by the solutions to

a1(Ztot−C1) ·X− (d1+ k1)C1 = 0

and
a2(Ytot−C2) ·X∗− (d2+ k2)C2 = 0.

By solving these equations, we obtain that

C2 =
YtotX

∗

X∗+Km,2
, with Km,2 =

d2+ k2

a2
,

and

C1 =
ZtotX

X+Km,1
, with Km,1 =

d1+ k1

a1
.

As a consequence, the model of the phosphorylation system can be well approxi-
mated by

dX∗

dt
= k1

ZtotX

X+Km,1
−a2

YtotKm,2

X∗+Km,2
·X∗+d2

YtotX
∗

X∗+Km,2
,

which, considering that a2Km,2−d2 = k2, leads finally to

dX∗

dt
= k1

ZtotX

X+Km,1
− k2

YtotX
∗

X∗+Km,2
. (2.29)

We will come back to the modeling of this system after we have introduced sin-
gular perturbation theory, through which we will be able to perform a formal analy-
sis and mathematically characterize the assumptions needed for approximating the
original system by the first-order model (2.29). Also, note that X should be replaced
by using the conservation law by X = Xtot−X∗−C1−C2, which can be solved for X

using the expressions of C1 and C2. Under the common assumption that the amount
of enzyme is much smaller than the amount of substrate (Ztot,Ytot≪ Xtot) [35], we
have that X ≈ Xtot − X∗ [35], leading to a form of the differential equation (2.29)
that is simple enough to be analyzed mathematically.

Simpler models of phosphorylation cycles can be considered, which often-times
are instructive as a first step to study a specific question of interest. In particular, the
one-step reaction model!in phosphorylation neglects the complex formation in the
two enzymatic reactions and simply models them as a single irreversible reaction
(see Exercise 2.12).

It is important to note that the speed of enzymatic reactions, such as phospho-
rylation and dephosphorylation, is usually much faster than the speed of protein
production and protein decay. In particular, the values of the catalytic rate con-
stants k1 and k2, even if changing greatly from organism to organism, are typically
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Figure 2.23: Steady state characteristic curve showing the relevance of the response coef-
ficient for ultrasensitivity. As R→ 1, the points y10 and y90 tend to each other.

several orders of magnitude larger than protein decay and can be on the order of
103 min−1 in bacteria where typical rates of protein decay are about 0.01 min−1

(http://bionumbers.hms.harvard.edu/).

Ultrasensitivity

One relevant aspect of the response of the covalent modification cycle to its input
is the sensitivity of the steady state characteristic curve, that is, the map that deter-
mines the equilibrium value of the output X∗ corresponding to a value of the input
Ztot. Specifically, which parameters affect the shape of the steady state characteris-
tic is a crucial question. To study this, we set dX∗/dt = 0 in equation (2.29). Using
the approximation X ≈ Xtot−X∗, defining K̄1 := Km,1/Xtot and K̄2 := Km,2/Xtot, we
obtain

y :=
k1Ztot

k2Ytot
=

X∗/Xtot

(

K̄1+ (1−X∗/Xtot)
)

(K̄2+X∗/Xtot) (1−X∗/Xtot)
. (2.30)

Since y is proportional to the input Ztot, we study the equilibrium value of X∗ as
a function of y. This function is usually characterized by two key parameters: the
response coefficient, denoted R, and the point of half maximal induction, denoted
y50. Let yα denote the value of y corresponding to having X∗ equal α% of the
maximum value of X∗ obtained for y=∞, which is equal to Xtot. Then, the response
coefficient is defined as

R :=
y90

y10
,

and measures how switch-like the response of X∗ is to changes in y (Figure 2.23).
When R→ 1 the response becomes switch-like. In the case in which the steady
state characteristic is a Hill function, we have that X∗ = (y/K)n/(1+ (y/K)n), so
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Figure 2.24: Steady state characteristic curve of a covalent modification cycle as a function
of the Michaelis-Menten constants Km,1 and Km,2.

that yα = (α/(100−α))(1/n) and as a consequence

R = (81)(1/n), or equivalently n =
log(81)
log(R)

.

Hence, when n = 1, that is, the characteristic is of the Michaelis-Menten type, we
have that R = 81, while when n increases, R decreases. Usually, when n > 1 the
response is referred to as ultrasensitive and the formula n = log(81)/log(R) is often
employed to estimate the apparent Hill coefficient of an experimentally obtained
steady state characteristic since R can be calculated directly from the data points.

In the case of the current system, from equation (2.30), we have that

y90 =
(K̄1+0.1) 0.9

(K̄2+0.9) 0.1
and y10 =

(K̄1+0.9) 0.1

(K̄2+0.1) 0.9
,

so that

R = 81
(K̄1+0.1)(K̄2+0.1)

(K̄2+0.9)(K̄1+0.9)
. (2.31)

As a consequence, when K̄1, K̄2≫ 1, we have that R→ 81, which gives a Michaelis-
Menten type of response. If instead K̄1, K̄2≪ 0.1, we have that R→ 1, which corre-
sponds to a theoretical Hill coefficient n≫ 1, that is, a switch-like response (Figure
2.24). In particular, if we have, for example, K̄1 = K̄2 = 10−2, we obtain an apparent
Hill coefficient greater than 13. This type of ultrasensitivity is usually referred to
as zero-order ultrasensitivity. The reason for this name is due to the fact that when
Km,1 is much smaller than the total amount of protein substrate Xtot, we have that
ZtotX/(Km,1+X) ≈ Ztot. Hence, the forward modification rate is “zero order” in the
substrate concentration (no free enzyme is left, all is bound to the substrate).

One can study the behavior also of the point of half maximal induction

y50 =
K̄1+0.5

K̄2+0.5
,

to find that as K̄2 increases, y50 decreases and that as K̄1 increases, y50 increases.
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Figure 2.25: (a) Diagram of a phosphotransfer system. (b) Proteins X and Z are transferring
the phosphate group p to each other.

Phosphotransfer systems

Phosphotransfer systems are also a common motif in cellular signal transduction.
These structures are composed of proteins that can phosphorylate each other. In
contrast to kinase-mediated phosphorylation, where the phosphate donor is usually
ATP, in phosphotransfer the phosphate group comes from the donor protein itself
(Figure 2.25). Each protein carrying a phosphate group can donate it to the next
protein in the system through a reversible reaction.

Let X be a protein in its inactive form and let X∗ be the same protein once it
has been activated by the addition of a phosphate group. Let Z∗ be a phosphate
donor, that is, a protein that can transfer its phosphate group to the acceptor X.
The standard phosphotransfer reactions can be modeled according to the two-step
reaction model

Z∗+X
k1−−⇀↽−−
k2

C1

k3−−⇀↽−−
k4

X∗+Z,

in which C1 is the complex of Z bound to X bound to the phosphate group. Addi-
tionally, we assume that protein Z can be phosphorylated and protein X∗ dephos-
phorylated by other phosphorylation reactions by which the phosphate group is
taken to and removed from the system. These reactions are modeled as one-step
reactions depending only on the concentrations of Z and X∗, that is:

Z
π1−−→ Z∗, X∗

π2−−→ X.

Proteins X and Z are conserved in the system, that is, Xtot = X +C1 + X∗ and
Ztot = Z +C1 +Z∗. We view the total amount of Z, Ztot, as the input to our system
and the amount of phosphorylated form of X, X∗, as the output. We are interested
in the steady state characteristic curve describing how the steady state value of X∗

depends on the value of Ztot.
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Figure 2.26: Steady state characteristic curve of the phosphotransfer system. Here, we have
set k2 = k3 = 0.1 s−1, k4 = 0.1 nM−1 s−1 , π1 = π2 = 3.1 s−1, and Xtot = 100 nM.

The differential equation model corresponding to this system is given by the
equations

dC1

dt
= k1

(

Xtot−X∗−C1
) ·Z∗− k3C1− k2C1+ k4X∗ · (Ztot−C1−Z∗),

dZ∗

dt
= π1(Ztot−C1−Z∗)+ k2C1− k1

(

Xtot−X∗−C1
) ·Z∗,

dX∗

dt
= k3C1− k4X∗ · (Ztot−C1−Z∗)−π2X∗.

(2.32)

The steady state transfer curve is shown in Figure 2.26 and it is obtained by sim-
ulating system (2.32) and recording the equilibrium values of X∗ corresponding
to different values of Ztot. The transfer curve is linear for a large range of values
of Ztot and can be rendered fairly close to a linear relationship for values of Ztot

smaller than Xtot by increasing k1. The slope of this linear relationship can be fur-
ther tuned by changing the values of k3 and k4 (see Exercise 2.15). Hence, this
system can function as an approximately linear anplifier. Its use in the realization
of insulation devices that attenuate the effects of loading from interconnections will
be illustrated in Chapter 6.

2.5 Cellular subsystems

In the previous section we have studied how to model a variety of core processes
that occur in cells. In this section we consider a few common “subsystems” in
which these processes are combined for specific purposes.

Intercellular signaling: MAPK cascades

The mitogen activated protein kinase (MAPK) cascade is a recurrent structural mo-
tif in several signal transduction pathways (Figure 2.27). The cascade consists of
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Figure 2.27: Schematic representation of the MAPK cascade. It has three levels: the first
one has a single phosphorylation, while the second and the third ones have a double phos-
phorylation.

a MAPK kinase (MAPKKK), denoted X0, a MAPK kinase (MAPKK), denoted
X1, and a MAPK, denoted X2. MAPKKKs activate MAPKKs by phosphorylation
at two conserved sites and MAPKKs activate MAPKs by phosphorylation at con-
served sites. The cascade relays signals from the cell membrane to targets in the
cytoplasm and nucleus. It has been extensively studied and modeled. Here, we pro-
vide a model for double phosphorylation, which is one of the main building blocks
of the MAPK cascade. Then, we construct a detailed model of the MAPK cascade,
including the reactions describing each stage and the corresponding rate equations.

Double phosphorylation model. Consider the double phosphorylation motif in Fig-
ure 2.28. The reactions describing the system are given by

E1+X
a1−−⇀↽−−
d1

C1
k1−→ X∗+E1, E2+X∗

a2−−⇀↽−−
d2

C2
k2−→ X+E2,

X∗+E1

a∗1−−⇀↽−−
d∗1

C3

k∗1−→ X∗∗+E1, E2+X∗∗
a∗2−−⇀↽−−
d∗2

C4

k∗2−→ X∗+E2,

in which C1 is the complex of E1 with X, C2 is the complex of E2 with X*, C3 is the
complex of E1 with X*, and C4 is the complex of E2 with X**. The conservation
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Figure 2.28: Schematic representation of a double phosphorylation cycle. E1 is the input
and X∗∗ is the output.

laws are given by

E1+C1+C3 = E1,tot, E2+C2+C4 = E2,tot,

Xtot = X+X∗+X∗∗+C1+C2+C3+C4.

As performed earlier, we assume that the complexes are at the quasi-steady state
since binding reactions are very fast compared to the catalytic reactions. This gives
the Michaelis-Menten form for the amount of formed complexes:

C1 = E1,tot
K∗1 X

K∗1X+K1X∗+K1K∗1
, C3 = E1,tot

K1 X∗

K∗1X+K1X∗+K1K∗1
,

C2 = E2,tot
K∗2 X∗

K∗2X∗+K2X∗∗+K2K∗2
, C4 = E2,tot

K2 X∗∗

K∗2X∗+K2X∗∗+K2K∗2
,

in which Ki = (di+ki)/ai and K∗
i
= (d∗

i
+k∗

i
)/a∗

i
are the Michaelis-Menten constants

for the enzymatic reactions. Since the complexes are at the quasi-steady state, it
follows that

d

dt
X∗ = k1C1− k2C2− k∗1C3+ k∗2C4,

d

dt
X∗∗ = k∗1C3− k∗2C4,

from which, substituting the expressions of the complexes, we obtain that

d

dt
X∗ = E1,tot

k1XK∗1 − k∗1X∗K1

K∗1X+K1X∗+K∗1K1
+E2,tot

k∗2X∗∗K2− k2X∗K∗2
K∗2X∗+K2X∗∗+K2K∗2

,

d

dt
X∗∗ = k∗1E1,tot

K1X∗

K∗1X+K1X∗+K1K∗1
− k∗2E2,tot

K2 X∗∗

K∗2X∗+K2X∗∗+K2K∗2
.

Detailed model of the MAPK cascade. We now give the entire set of reactions for
the MAPK cascade of Figure 2.27 as they are found in standard references (Huang-
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Ferrell model [43]):

E1+X0

a1,0−−−⇀↽−−−
d1,0

C1

k1,0−−→ X∗0+E1, P0+X∗0
a2,0−−−⇀↽−−−
d2,0

C2

k2,0−−→ X0+P0,

X∗0+X1

a1,1−−−⇀↽−−−
d1,1

C3

k1,1−−→ X∗1+X∗0, X∗1+P1

a2,1−−−⇀↽−−−
d2,1

C4

k2,1−−→ X1+P1,

X∗0+X∗1
a∗1,1−−−⇀↽−−−
d∗1,1

C5

k∗1,1−−→ X∗∗1 +X∗0, X∗∗1 +P1

a∗2,1−−−⇀↽−−−
d∗2,1

C6

k∗2,1−−→ X∗1+P1,

X∗∗1 +X2

a1,2−−−⇀↽−−−
d1,2

C7

k1,2−−→ X∗2+X∗∗1 , X∗2+P2

a2,2−−−⇀↽−−−
d2,2

C8

k2,2−−→ X2+P2,

X∗∗1 +X∗2
a∗1,2−−−⇀↽−−−
d∗1,2

C9

k∗1,2−−→ X∗∗2 +X∗∗1 , X∗∗2 +P2

a∗2,2−−−⇀↽−−−
d∗2,2

C10

k∗2,2−−→ X∗2+P2,

with conservation laws

X0,tot = X0+X∗0 +C1+C2+C3+C5,

X1,tot = X1+X∗1 +C3+X∗∗1 +C4+C5+C6+C7+C9,

X2,tot = X2+X∗2 +X∗∗2 +C7+C8+C9+C10,

E1,tot = E1+C1, P0,tot = P0+C2,

P1,tot = P1+C4+C6,

P2,tot = P2+C8+C10.

The corresponding ODE model is given by

dC1

dt
= a1,0E1 X0− (d1,0+ k1,0) C1,

dX∗0
dt
= k1,0 C1+d2,0 C2−a2,0 P0 X∗0 + (d1,1+ k1,1) C3−a1,1 X1 X∗0

+ (d∗1,1+ k∗1,1) C5−a∗1,1 X∗0 X∗1,

dC2

dt
= a2,0 P0 X∗0 − (d2,0+ k2,0) C2,

dC3

dt
= a1,1 X1 X∗0 − (d1,1+ k1,1) C3,

dX∗1
dt
= k1,1 C3+d2,1 C4−a2,1 X∗1 P1+d∗1,1C5−a∗1,1 X∗1 X∗0 + k∗2,1 C6,

dC4

dt
= a2,1 X∗1 P1− (d2,1+ k2,1) C4,

dC5

dt
= a∗1,1 X∗0 X∗1 − (d∗1,1+ k∗1,1) C5,

dX∗∗1
dt
= k∗1,1 C5−a∗2,1 X∗1 P1+d∗2,1 C6−a1,2 X∗∗1 X2
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Figure 2.29: Steady state characteristic curve of the MAPK cascade for every stage. The
x-axis shows concentration of E1,tot between 10−15 and 105 as indicated. Simulations from
the model of [80].

+ (d1,2+ k1,2) C7−a∗1,2 X∗∗1 X∗2 + (d∗1,2+ k∗1,2) C9,

dC6

dt
= a∗2,1 X∗∗1 P1− (d∗2,1+ k∗2,1) C6,

dC7

dt
= a∗1,2 X∗1 X2− (d∗1,2+ k∗1,2) C7,

dX∗2
dt
= −a2,2 X∗2 P2+d2,2 C8−a∗1,2 X∗2 X∗∗2 +d∗1,2 C9+ k∗2,2 C10,

dC8

dt
= a∗2,2 X∗2 P2− (d2,2+ k2,2) C8,

dX∗∗2
dt
= k∗1,2 C9−a∗2,2 X∗∗2 P2+d∗2,2 C10,

dC9

dt
= a∗1,2 X∗∗1 X∗2 − (d∗1,2+ k∗1,2) C9,

dC10

dt
= a∗2,2 X∗∗2 P2− (d∗2,2+ k∗2,2) C10.

The steady state characteristic curve obtained with the mechanistic model pre-
dicts that the response of the MAPKKK to the stimulus E1,tot is of the Michaelis-
Menten type. By contrast, the stimulus-response curve obtained for the MAPKK
and MAPK are sigmoidal and show high Hill coefficients, which increase from
the MAPKK response to the MAPK response. That is, an increased ultrasensitivity
is observed moving down in the cascade (Figure 2.29). These model observations
persist when key parameters, such as the Michaelis-Menten constants are changed
[43]. Furthermore, zero-order ultrasensitivity effects can be observed. Specifically,
if the amounts of MAPKK were increased, one would observe a higher apparent
Hill coefficient for the response of MAPK. Similarly, if the values of the Km for the
reactions in which the MAPKK takes place were decreased, one would also observe
a higher apparent Hill coefficient for the response of MAPK. Double phosphory-
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lation is also key to obtain a high apparent Hill coefficient. In fact, a cascade in
which the double phosphorylation was assumed to occur through a one-step model
(similar to single phosphorylation) predicted substantially lower apparent Hill co-
efficients.

Notice that while phosphorylation cascades, such as the MAPK cascade, are
usually viewed as unidirectional signal transmission systems, they actually allow
information to travel backward (from downstream to upstream). This can be qual-
itatively seen as follows. Assuming as before that the total amounts of enzymes
are much smaller than the total amounts of substrates (E1,tot,P0,tot,P1,tot,P2,tot ≪
X0,tot,X1,tot,X2,tot), we can approximate the conservation laws as

X0,tot ≈ X0+X∗0 +C3+C5,

X1,tot ≈ X1+X∗1 +C3+X∗∗1 +C5+C7+C9,

X2,tot ≈ X2+X∗2 +X∗∗2 +C7+C9.

Using these and assuming that the complexes are at the quasi-steady state, we ob-
tain the following functional dependencies:

C1 = f1(X∗0,X
∗
1,X

∗∗
1 ,X

∗
2,X

∗∗
2 ), C2 = f2(X∗0),

C3 = f3(X∗0,X
∗
1,X

∗∗
1 ,X

∗
2,X

∗∗
2 ), C5 = f5(X∗0,X

∗
1),

C7 = f7(X∗1,X
∗∗
1 ,X

∗
2,X

∗∗
2 ), C9 = f9(X∗∗1 ,X

∗
2).

The fact that C7 depends on X∗2 and X∗∗2 illustrates the counterintuitive fact that
the dynamics of the second stage are influenced by those of the third stage. Sim-
ilarly, the fact that C3 depends on X∗1,X

∗∗
1 ,X

∗
2,X

∗∗
2 indicates that the dynamics of

the first stage are influenced by those of the second stage and by that of the third
stage. The phenomenon by which the behavior of a “module” is influenced by that
of its downstream clients is called retroactivity, which is a phenomenon similar to
loading in electrical and mechanical systems, studied at length in Chapter 6. This
phenomenon in signaling cascades can allow perturbations to travel from down-
stream to upstream [75] and can lead to interesting dynamic behaviors such as
sustained oscillations in the MAPK cascade [80].

Exercises

2.1 Consider a cascade of three activators X→Y→ Z. Protein X is initially present
in the cell in its inactive form. The input signal of X, S x, appears at time t = 0.
As a result, X rapidly becomes active and binds the promoter of gene Y, so that
protein Y starts to be produced at rate β. When Y levels exceed a threshold K,
gene Z begins to be transcribed and translated at rate β. All proteins have the same
degradation/dilution rate γ.

(i) What are the concentrations of proteins Y and Z as a function of time?
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(ii) What is the minimum duration of the pulse S x such that Z will be produced?

(iii) What is the response time of protein Z with respect to the time of addition of
S x?

2.2 (Switch-like behavior in cooperative binding) Derive the expressions of C and
A as a function of B at the steady state when you have the cooperative binding
reactions

B+B+ ...+B
k1−−⇀↽−−
k2

Bn, Bn+A
a−⇀↽−
d

C, and A+C = Atot.

Make MATLAB plots of the expressions that you obtain and verify that as n in-
creases the functions become more switch-like.

2.3 Consider the case of a competitive binding of an activator A and a repressor R
with D and assume that before they can bind to D they have to cooperatively bind
according to the following reactions:

A+A+ ...+A
k1−−⇀↽−−
k2

An, R+R+ ...+R
k̄1−−⇀↽−−
k̄2

Rm,

in which the complex An contains n molecules of A and the complex Rm contains
m molecules of R. The competitive binding reactions with A are given by

An+D
a−⇀↽−
d

C, Rm+D
a′−−⇀↽−−
d′

C
′
,

and Dtot = D+C +C′.What are the steady state expressions for C and D as func-
tions of A and R?

2.4 Consider the following modification of the competitive binding reactions:

Ba+A
a−⇀↽−
d

C, Br+A
ā−⇀↽−̄
d

C̄, C+Br
a′−−⇀↽−−
d′

C
′
,

with Atot = A+C + C̄ +C′. What are the steady state expressions for A and C?
What information do you deduce from these expressions if A is a promoter, Ba
is an activator protein, and C is the activator/DNA complex that makes the gene
transcriptionally active?

2.5 Assume that we have an activator Ba and a repressor protein Br. We want to
obtain an input function such that when a large quantity of Ba is present, the gene
is transcriptionally active only if there is no Br, and when low amounts of Ba are
present, the gene is transcriptionally inactive (with or without Br). Write down the
reactions among Ba, Br, and the complexes formed with DNA (D) that lead to such
an input function. Demonstrate that indeed the set of reactions you picked leads to
the desired input function.
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2.6 Consider the transcription and translation reactions incorporating the elonga-
tion process as considered in this chapter in equations (2.10)–(2.11). Modify them
to the case in which an mRNA molecule can be translated to a polypeptide chain
even while it is still elongating.

2.7 (Transcriptional regulation with delay) Consider a repressor or activator B mod-
eled by a Hill function F(B). Show that in the presence of transcriptional delay τm,
the dynamics of the active mRNA can be written as

dm∗(t)
dt

= e−τ
m

F(B(t−τm))− δ̄m∗.

2.8 Derive the expression of the parameters α, α0 and K for the Hill function given
in equation (2.20), which is the form obtained for transcriptional repression with a
leaky repressor.

2.9 Consider the form of the Hill function in the presence of an activator with
some basal level of expression given in equation (2.22). Derive the expressions of
α, K and α0,

2.10 Derive the form of the Hill functions for combinatorial promoters with leak-
iness given in expressions (2.26)–(2.27).

2.11 Consider the phosphorylation reactions described in Section 2.4, but suppose
that the kinase concentration Z is not constant, but is instead produced and decays

according to the reaction Z
γ
−−−⇀↽−−−

k(t)
∅. How should the system in equation (2.29) be

modified? Use a MATLAB simulation to apply a periodic input stimulus k(t) using
parameter values: k1 = k2 = 1 min−1, a1 = a2 = 10 nM−1 min−1, d1 = d2 = 10 min−1,
γ= 0.01 min−1. Is the cycle capable of “tracking” the input stimulus? If yes, to what
extent when the frequency of k(t) is increased? What are the tracking properties
depending on?

2.12 Another model for the phosphorylation reactions, referred to as one-step re-

action model, is given by Z+X −−→ X∗+Z and Y+X∗ −−→ X+Y, in which the
complex formations are neglected. Write down the differential equation model and
compare the differential equation of X∗ to that of equation (2.29). List the assump-
tions under which the one-step reaction model is a good approximation of the two-
step reaction model.

2.13 (Competitive inhibition) Derive the expression of the production rate of X∗ in
a phosphorylation cycle in the presence of a competitive inhibitor I for Z.

2.14 (Non-absolute activator) Derive the expression of the production rate of X∗ in
a phosphorylation cycle in the presence of a non-absolute activator A for Z.
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2.15 Consider the model of phosphotransfer systems of equation (2.32) and deter-
mine how the steady state transfer curve changes when the values of k3 and k4 are
changed.
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Chapter 3

Analysis of Dynamic Behavior

In this chapter, we describe some of the tools from dynamical systems and feed-
back control theory that will be used in the rest of the text to analyze and design
biological circuits. We focus here on deterministic models and the associated anal-
yses; stochastic methods are given in Chapter 4.

3.1 Analysis near equilibria

As in the case of many other classes of dynamical systems, a great deal of insight
into the behavior of a biological system can be obtained by analyzing the dynamics
of the system subject to small perturbations around a known solution. We begin by
considering the dynamics of the system near an equilibrium point, which is one of
the simplest cases and provides a rich set of methods and tools.

In this section we will model the dynamics of our system using the input/output
modeling formalism described in Chapter 1:

dx

dt
= f (x, θ,u), y = h(x, θ), (3.1)

where x ∈ Rn is the system state, θ ∈ Rp are the system parameters and u ∈ Rq is
a set of external inputs (including disturbances and noise). The system state x is
a vector whose components will represent concentration of species, such as tran-
scription factors, enzymes, substrates and DNA promoter sites. The system param-
eters θ are also represented as a vector, whose components will represent biochem-
ical parameters such as association and dissociation rate constants, production rate
constants, decay rate constants and dissociation constants. The input u is a vector
whose components will represent concentration of a number of possible physical
entities, including kinases, allosteric effectors and some transcription factors. The
output y ∈ Rm of the system represents quantities that can be measured or that are
of interest for the specific problem under study.

Example 3.1 (Transcriptional component). Consider a promoter controlling a gene
g that can be regulated by a transcription factor Z. Let m and G represent the
mRNA and protein expressed by gene g. We can view this as a system in which
u = Z is the concentration of transcription factor regulating the promoter, the state
x = (x1, x2) is such that x1 = m is the concentration of mRNA and x2 = G is the
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concentration of protein, which we can take as the output of interest, that is, y=G =

x2. Assuming that the transcription factor regulating the promoter is a repressor, the
system dynamics can be described by the following system:

dx1

dt
=

α

1+ (u/K)n
−δx1,

dx2

dt
= κx1−γx2, y = x2, (3.2)

in which θ = (α,K, δ, κ,γ,n) is the vector of system parameters. In this case, we
have that

f (x, θ,u) =




α

1+ (u/K)n
−δx1

κx1−γx2




, h(x, θ) = x2.

∇

Note that we have chosen to explicitly model the system parameters θ, which
can be thought of as an additional set of (mainly constant) inputs to the system.

Equilibrium points and stability 1

We begin by considering the case where the input u and parameters θ in equa-
tion (3.1) are fixed and hence we can write the dynamics of the system as

dx

dt
= f (x). (3.3)

An equilibrium point of the dynamical system represents a stationary condition for
the dynamics. We say that a state xe is an equilibrium point for a dynamical system
if f (xe) = 0. If a dynamical system has an initial condition x(0) = xe, then it will
stay at the equilibrium point: x(t) = xe for all t ≥ 0.

Equilibrium points are one of the most important features of a dynamical sys-
tem since they define the states corresponding to constant operating conditions. A
dynamical system can have zero, one or more equilibrium points.

The stability of an equilibrium point determines whether or not solutions nearby
the equilibrium point remain close, get closer or move further away. An equilibrium
point xe is stable if solutions that start near xe stay close to xe. Formally, we say
that the equilibrium point xe is stable if for all ǫ > 0, there exists a δ > 0 such that

‖x(0)− xe‖ < δ =⇒ ‖x(t)− xe‖ < ǫ for all t > 0,

where x(t) represents the solution to the differential equation (3.3) with initial con-
dition x(0). Note that this definition does not imply that x(t) approaches xe as time
increases but just that it stays nearby. Furthermore, the value of δmay depend on ǫ,
so that if we wish to stay very close to the solution, we may have to start very, very

1The material of this section is adopted from Åström and Murray [1]
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Figure 3.1: Phase portrait (trajectories in the state space) on the left and time domain sim-
ulation on the right for a system with a single stable equilibrium point. The equilibrium
point xe at the origin is stable since all trajectories that start near xe stay near xe.

close (δ≪ ǫ). This type of stability is also called stability in the sense of Lyapunov.
If an equilibrium point is stable in this sense and the trajectories do not converge,
we say that the equilibrium point is neutrally stable.

An example of a neutrally stable equilibrium point is shown in Figure 3.1. The
figure shows the set of state trajectories starting at different initial conditions in the
two-dimensional state space, also called the phase plane. From this set, called the
phase portrait, we see that if we start near the equilibrium point, then we stay near
the equilibrium point. Indeed, for this example, given any ǫ that defines the range
of possible initial conditions, we can simply choose δ = ǫ to satisfy the definition
of stability since the trajectories are perfect circles.

An equilibrium point xe is asymptotically stable if it is stable in the sense of
Lyapunov and also x(t)→ xe as t→∞ for x(0) sufficiently close to xe. This corre-
sponds to the case where all nearby trajectories converge to the stable solution for
large time. Figure 3.2 shows an example of an asymptotically stable equilibrium
point. Note from the phase portraits that not only do all trajectories stay near the
equilibrium point at the origin, but that they also all approach the origin as t gets
large (the directions of the arrows on the phase portrait show the direction in which
the trajectories move).

An equilibrium point xe is unstable if it is not stable. More specifically, we say
that an equilibrium point xe is unstable if given some ǫ > 0, there does not exist a
δ > 0 such that if ‖x(0)− xe‖ < δ, then ‖x(t)− xe‖ < ǫ for all t. An example of an
unstable equilibrium point is shown in Figure 3.3.

The definitions above are given without careful description of their domain of
applicability. More formally, we define an equilibrium point to be locally stable

(or locally asymptotically stable) if it is stable for all initial conditions x ∈ Br(a),
where

Br(a) = {x : ‖x−a‖ < r}
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Figure 3.2: Phase portrait and time domain simulation for a system with a single asymp-
totically stable equilibrium point. The equilibrium point xe at the origin is asymptotically
stable since the trajectories converge to this point as t→∞.

is a ball of radius r around a and r > 0. A system is globally stable if it is stable
for all r > 0. Systems whose equilibrium points are only locally stable can have
interesting behavior away from equilibrium points (see [1], Section 4.4).

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called the region of attraction for the equilibrium point. In general,
computing regions of attraction is difficult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable equilibria
that are attracting. This gives partial information about the behavior of the system.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes an attractor. An unstable equilibrium point can be either a
source, if all trajectories lead away from the equilibrium point, or a saddle, if some
trajectories lead to the equilibrium point and others move away (this is the situ-
ation pictured in Figure 3.3). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as the one in Figure 3.1) is called
a center.

Example 3.2 (Bistable gene circuit). Consider a system composed of two genes
that express transcription factors repressing each other as shown in Figure 3.4a.
Denoting the concentration of protein A by x1 and that of protein B by x2, and
neglecting the mRNA dynamics, the system can be modeled by the following dif-
ferential equations:

dx1

dt
=

β1

1+ (x2/K2)n
−γx1,

dx2

dt
=

β2

1+ (x1/K1)n
−γx2.

Figure 3.4b shows the phase portrait of the system. This system is bistable be-
cause there are two (asymptotically) stable equilibria. Specifically, the trajectories
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Figure 3.3: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium point xe at the origin is unstable since not all trajectories
that start near xe stay near xe. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

converge to either of two possible equilibria: one where x1 is high and x2 is low
and the other where x1 is low and x2 is high. A trajectory will approach the first
equilibrium point if the initial condition is below the dashed line, called the sep-
aratrix, while it will approach the second one if the initial condition is above the
separatrix. Hence, the region of attraction of the first equilibrium is the region of
the plane below the separatrix and the region of attraction of the second one is the
portion of the plane above the separatrix. ∇

Nullcline analysis

Nullcline analysis is a simple and intuitive way to determine the stability of an
equilibrium point for systems in R2. Consider the system with x = (x1, x2) ∈ R2

described by the differential equations

dx1

dt
= f1(x1, x2),

dx2

dt
= f2(x1, x2).

The nullclines of this system are given by the two curves in the x1, x2 plane in
which f1(x1, x2) = 0 and f2(x1, x2) = 0. The nullclines intersect at the equilibria of
the system xe. Figure 3.5 shows an example in which there is a unique equilibrium.

The stability of the equilibrium is deduced by inspecting the direction of the
trajectory of the system starting at initial conditions x close to the equilibrium xe.
The direction of the trajectory can be obtained by determining the signs of f1 and
f2 in each of the regions in which the nullclines partition the plane around the
equilibrium xe. If f1 < 0 ( f1 > 0), we have that x1 is going to decrease (increase)
and similarly if f2 < 0 ( f2 > 0), we have that x2 is going to decrease (increase). In
Figure 3.5, we show a case in which f1 < 0 on the right-hand side of the nullcline
f1 = 0 and f1 > 0 on the left-hand side of the same nullcline. Similarly, we have
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Figure 3.4: (a) Diagram of a bistable gene circuit composed of two genes. (b) Phase por-
trait showing the trajectories converging to either one of the two possible stable equilibria
depending on the initial condition. The parameters are β1 = β2 = 1 µM/min, K1 = K2 = 0.1
µM, and γ = 1 min−1.

chosen a case in which f2 < 0 above the nullcline f2 = 0 and f2 > 0 below the same
nullcline. Given these signs, it is clear from the figure that starting from any point
x close to xe the vector field will always point toward the equilibrium xe and hence
the trajectory will tend toward such equilibrium. In this case, it then follows that
the equilibrium xe is asymptotically stable.

Example 3.3 (Negative autoregulation). As an example, consider expression of
a gene with negative feedback. Let x1 represent the mRNA concentration and x2

represent the protein concentration. Then, a simple model (in which for simplicity
we have assumed all parameters to be 1) is given by

dx1

dt
=

1
1+ x2

− x1,
dx2

dt
= x1− x2,

so that f1(x1, x2) = 1/(1+ x2)− x1 and f2(x1, x2) = x1− x2. Figure 3.5a exactly rep-
resents the situation for this example. In fact, we have that

f1(x1, x2) < 0 ⇐⇒ x1 >
1

1+ x2
, f2(x1, x2) < 0 ⇐⇒ x2 > x1,

which provides the direction of the vector field as shown in Figure 3.5a. As a
consequence, the equilibrium point is stable. The phase portrait of Figure 3.5b
confirms the fact since the trajectories all converge to the unique equilibrium point.

∇
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Figure 3.5: (a) Example of nullclines for a system with a single equilibrium point xe. To
understand the stability of the equilibrium point xe, one traces the direction of the vec-
tor field ( f1, f2) in each of the four regions in which the nullclines partition the plane. If
in each region the vector field points toward the equilibrium point, then such a point is
asymptotically stable. (b) Phase portrait for the negative autoregulation example.

Stability analysis via linearization

For systems with more than two states, the graphical technique of nullcline analysis
cannot be used. Hence, we must resort to other techniques to determine stability.
Consider a linear dynamical system of the form

dx

dt
= Ax, x(0) = x0, (3.4)

where A ∈ Rn×n. For a linear system, the stability of the equilibrium at the origin
can be determined from the eigenvalues of the matrix A:

λ(A) = {s ∈ C : det(sI−A) = 0}.

The polynomial det(sI − A) is the characteristic polynomial and the eigenvalues
are its roots. We use the notation λ j for the jth eigenvalue of A and λ(A) for the
set of all eigenvalues of A, so that λ j ∈ λ(A). For each eigenvalue λ j there is a
corresponding eigenvector v j ∈ Cn, which satisfies the equation Av j = λ jv j.

In general λ can be complex-valued, although if A is real-valued, then for any
eigenvalue λ, its complex conjugate λ∗ will also be an eigenvalue. The origin is al-
ways an equilibrium point for a linear system. Since the stability of a linear system
depends only on the matrix A, we find that stability is a property of the system. For
a linear system we can therefore talk about the stability of the system rather than
the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose system matrices
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are in diagonal form. In this case, the dynamics have the form

dx

dt
=




λ1 0
λ2
. . .

0 λn




x. (3.5)

It is easy to see that the state trajectories for this system are independent of each
other, so that we can write the solution in terms of n individual systems ẋ j = λ jx j.
Each of these scalar solutions is of the form

x j(t) = eλ jt x j(0).

We see that the equilibrium point xe = 0 is stable if λ j ≤ 0 and asymptotically stable
if λ j < 0.

Another simple case is when the dynamics are in the block diagonal form

dx

dt
=




σ1 ω1 0 0
−ω1 σ1 0 0

0 0
. . .

...
...

0 0 σm ωm

0 0 −ωm σm




x.

In this case, the eigenvalues can be shown to be λ j = σ j ± iω j. We once again can
separate the state trajectories into independent solutions for each pair of states, and
the solutions are of the form

x2 j−1(t) = eσ jt
(

x2 j−1(0)cosω jt+ x2 j(0)sinω jt
)

,

x2 j(t) = eσ jt
(−x2 j−1(0)sinω jt+ x2 j(0)cosω jt

)

,

where j = 1,2, . . . ,m. We see that this system is asymptotically stable if and only
if σ j = Reλ j < 0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some systems can
be transformed into these forms via coordinate transformations. One such class of
systems is those for which the A matrix has distinct (non-repeating) eigenvalues.
In this case there is a matrix T ∈ Rn×n such that the matrix T AT−1 is in (block)
diagonal form, with the block diagonal elements corresponding to the eigenvalues
of the original matrix A. If we choose new coordinates z = T x, then

dz

dt
= T ẋ = T Ax = T AT−1z

and the linear system has a (block) diagonal A matrix. Furthermore, the eigenval-
ues of the transformed system are the same as the original system since if v is an
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eigenvector of A, then w= Tv can be shown to be an eigenvector of T AT−1. We can
reason about the stability of the original system by noting that x(t) = T−1z(t), and
so if the transformed system is stable (or asymptotically stable), then the original
system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the stabil-
ity of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we make use of the
following theorem, proved in [1]:

Theorem 3.1 (Stability of a linear system). The system

dx

dt
= Ax

is asymptotically stable if and only if all eigenvalues of A all have a strictly negative

real part and is unstable if any eigenvalue of A has a strictly positive real part.

In the case in which the system state is two-dimensional, that is, x ∈R2, we have
a simple way of determining the eigenvalues of a matrix A. Specifically, denote by
tr(A) the trace of A, that is, the sum of the diagonal terms, and let det(A) be the
determinant of A. Then, we have that the two eigenvalues are given by

λ1,2 =
1
2

(

tr(A)±
√

tr(A)2−4det(A)
)

.

Both eigenvalues have negative real parts when (i) tr(A) < 0 and (ii) det(A) > 0.
An important feature of differential equations is that it is often possible to de-

termine the local stability of an equilibrium point by approximating the system by
a linear system. Suppose that we have a nonlinear system

dx

dt
= f (x)

that has an equilibrium point at xe. Computing the Taylor series expansion of the
vector field, we can write

dx

dt
= f (xe)+

∂ f

∂x

∣
∣
∣
∣
∣
xe

(x− xe)+higher-order terms in (x− xe).

Since f (xe) = 0, we can approximate the system by choosing a new state variable
z = x− xe and writing

dz

dt
= Az, where A =

∂ f

∂x

∣
∣
∣
∣
∣
xe

. (3.6)

We call the system (3.6) the linear approximation of the original nonlinear system
or the linearization at xe. We also refer to matrix A as the Jacobian matrix of the
original nonlinear system.
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The fact that a linear model can be used to study the behavior of a nonlinear
system near an equilibrium point is a powerful one. Indeed, we can take this even
further and use a local linear approximation of a nonlinear system to design a feed-
back law that keeps the system near its equilibrium point (design of dynamics).
Thus, feedback can be used to make sure that solutions remain close to the equilib-
rium point, which in turn ensures that the linear approximation used to stabilize it
is valid.

Example 3.4 (Negative autoregulation). Consider again the negatively autoregu-
lated gene modeled by the equations

dx1

dt
=

1
1+ x2

− x1,
dx2

dt
= x1− x2.

In this case,

f (x) =
( 1

1+x2
− x1

x1− x2

)

,

so that, letting xe = (x1,e, x2,e), the Jacobian matrix is given by

A =
∂ f

∂x

∣
∣
∣
∣
∣
xe

=





−1 − 1
(1+x2,e)2

1 −1



 .

It follows that tr(A) = −2 < 0 and that det(A) = 1+ 1/(1+ x2,e)2 > 0. Hence, inde-
pendently of the value of the equilibrium point, the eigenvalues both have negative
real parts, which implies that the equilibrium point xe is asymptotically stable. ∇

Frequency domain analysis

Frequency domain analysis is a way to understand how well a system can respond
to rapidly changing input stimuli. As a general rule, most physical systems display
an increased difficulty in responding to input stimuli as the frequency of variation
increases: when the input stimulus changes faster than the natural time scales of
the system, the system becomes incapable of responding. If instead the input is
changing much more slowly than the natural time scales of the system, the system
will have enough time to respond to the input. That is, the system behaves like
a “low-pass filter.” The cut-off frequency at which the system does not display a
significant response is called the bandwidth and quantifies the dominant time scale.
To identify this dominant time scale, we can perform input/output experiments in
which the system is excited with periodic inputs at various frequencies. Then, we
can plot the amplitude of response of the output as a function of the frequency of
the input stimulation to obtain the “frequency response” of the system.

Example 3.5 (Phosphorylation cycle). To illustrate the basic ideas, we consider
the frequency response of a phosphorylation cycle, in which enzymatic reactions
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Figure 3.6: (a) Diagram of a phosphorylation cycle, in which Z is the kinase, X is the
substrate, and Y is the phosphatase. (b) Bode plot showing the magnitude M and phase lag
φ for the frequency response of a one-step reaction model of the phosphorylation system
on the left. The parameters are β = γ = 0.01 min−1.

are each modeled by a one-step reaction. Referring to Figure 3.6a, we have that the
one-step reactions involved are given by

Z+X
k1−→ Z+X∗, Y+X∗

k2−→ Y+X,

with conservation law X + X∗ = Xtot. Let Ytot be the total amount of phosphatase.
We assume that the kinase Z has a time-varying concentration, which we view as
the input to the system, while X∗ is the output of the system.

The differential equation model for the dynamics is given by

dX∗

dt
= k1Z(t)(Xtot−X∗)− k2YtotX

∗.

If we assume that the cycle is weakly activated (X∗ ≪ Xtot), the above equation is
well approximated by

dX∗

dt
= βZ(t)−γX∗, (3.7)

where β = k1Xtot and γ = k2Ytot. To determine the frequency response, we set the
input Z(t) to a periodic function. It is customary to take sinusoidal functions as the
input signal as they lead to an easy way to calculate the frequency response. Let
then Z(t) = A0sin(ωt).

Since equation (3.7) is linear in the state X∗ and input Z, it can be directly
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integrated to yield

X∗(t) =
A0β

√

ω2+γ2
sin(ωt− tan−1(ω/γ))− A0βω

(ω2+γ2)
e−γt.

The second term dies out for t large enough. Hence, the steady state response
is given by the first term. In particular, the amplitude of response is given by
A0 β/

√

ω2+γ2, in which the gain β/
√

ω2+γ2 depends both on the system param-
eters and on the frequency of the input stimulation. As the frequency of the input
stimulation ω increases, the amplitude of the response decreases and approaches
zero for very high frequencies. Also, the argument of the sine function shows a
negative phase shift of tan−1(ω/γ), which indicates that there is an increased lag
in responding to the input when the frequency increases. Hence, the key quantities
in the frequency response are the magnitude M(ω), also called gain of the system,
and phase lag φ(ω) given by

M(ω) =
β

√

ω2+γ2
, φ(ω) = − tan−1

(

ω

γ

)

.

These are plotted in Figure 3.6b, a type of figure known as a Bode plot.
The bandwidth of the system, denoted ωB, is the frequency at which the gain

drops below M(0)/
√

2. In this case, the bandwidth is given by ωB = γ = k2Ytot,
which implies that the bandwidth of the system can be made larger by increasing
the amount of phosphatase. However, note that since M(0) = β/γ = k1Xtot/(k2Ytot),
increased phosphatase will also result in decreased amplitude of response. Hence,
if we want to increase the bandwidth of the system while keeping the value of
M(0) (also called the zero frequency gain) unchanged, one should increase the total
amounts of substrate and phosphatase in comparable proportions. Fixing the value
of the zero frequency gain, the bandwidth of the system increases with increased
amounts of phosphatase and substrate. ∇

More generally, the frequency response of a linear system with one input and
one output

ẋ = Ax+Bu, y =Cx+Du

is the response of the system to a sinusoidal input u = asinωt with input amplitude
a and frequency ω. The transfer function for a linear system is given by

Gyu(s) =C(sI−A)−1B+D

and represents the steady state response of a system to an exponential signal of the
form u(t) = est where s ∈ C. In particular, the response to a sinusoid u = asinωt is
given by y = Masin(ωt+φ) where the gain M and phase lag φ can be determined
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from the transfer function evaluated at s = iω:

Gyu(iω) = Meiφ,

M(ω) = |Gyu(iω)| =
√

Im(Gyu(iω))2+Re(Gyu(iω))2,

φ(ω) = tan−1
(
Im(Gyu(iω))

Re(Gyu(iω))

)

,

where Re( · ) and Im( · ) represent the real and imaginary parts of a complex number.
For finite dimensional linear (or linearized) systems, the transfer function can be
written as a ratio of polynomials in s:

G(s) =
b(s)
a(s)
.

The values of s at which the numerator vanishes are called the zeros of the transfer
function and the values of s at which the denominator vanishes are called the poles.

The transfer function representation of an input/output linear system is essen-
tially equivalent to the state space description, but we reason about the dynamics
by looking at the transfer function instead of the state space matrices. For example,
it can be shown that the poles of a transfer function correspond to the eigenval-
ues of the matrix A, and hence the poles determine the stability of the system.
In addition, interconnections between subsystems often have simple representa-
tions in terms of transfer functions. For example, two systems G1 and G2 in series
(with the output of the first connected to the input of the second) have a combined
transfer function Gseries(s) = G1(s)G2(s), and two systems in parallel (a single in-
put goes to both systems and the outputs are summed) has the transfer function
Gparallel(s) =G1(s)+G2(s).

Transfer functions are useful representations of linear systems because the prop-
erties of the transfer function can be related to the properties of the dynamics. In
particular, the shape of the frequency response describes how the system responds
to inputs and disturbances, as well as allows us to reason about the stability of
interconnected systems. The Bode plot of a transfer function gives the magnitude
and phase of the frequency response as a function of frequency and the Nyquist

plot can be used to reason about stability of a closed loop system from the open
loop frequency response ([1], Section 9.2).

Returning to our analysis of biomolecular systems, suppose we have a system
whose dynamics can be written as

ẋ = f (x, θ,u)

and we wish to understand how the solutions of the system depend on the param-
eters θ and input disturbances u. We focus on the case of an equilibrium solution
x(t; x0, θ0) = xe. Let z = x− xe, ũ = u− u0 and θ̃ = θ− θ0 represent the deviation of
the state, input and parameters from their nominal values. Linearization can be per-
formed in a way similar to the way it was performed for a system with no inputs.
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Specifically, we can write the dynamics of the perturbed system using its lineariza-
tion as

dz

dt
=

(

∂ f

∂x

)

(xe,θ0,u0)
·z +

(

∂ f

∂θ

)

(xe,θ0,u0)
· θ̃ +

(

∂ f

∂u

)

(xe,θ0,u0)
· ũ.

This linear system describes small deviations from xe(θ0,u0) but allows θ̃ and ũ to
be time-varying instead of the constant case considered earlier.

To analyze the resulting deviations, it is convenient to look at the system in the
frequency domain. Let y = Cx be a set of values of interest. The transfer functions
between θ̃, ũ and y are given by

Gyθ̃(s) =C(sI−A)−1Bθ, Gyũ(s) =C(sI−A)−1Bu,

where

A =
∂ f

∂x

∣
∣
∣
∣
∣
(xe,θ0,u0)

, Bθ =
∂ f

∂θ

∣
∣
∣
∣
∣
(xe,θ0,u0)

, Bu =
∂ f

∂u

∣
∣
∣
∣
∣
(xe,θ0,u0)

.

Note that if we let s = 0, we get the response to small, constant changes in
parameters. For example, the change in the outputs y as a function of constant
changes in the parameters is given by

Gyθ̃(0) = −CA−1Bθ.

Example 3.6 (Transcriptional regulation). Consider a genetic circuit consisting of
a single gene. The dynamics of the system are given by

dm

dt
= F(P)−δm, dP

dt
= κm−γP,

where m is the mRNA concentration and P is the protein concentration. Suppose
that the mRNA degradation rate δ can change as a function of time and that we
wish to understand the sensitivity with respect to this (time-varying) parameter.
Linearizing the dynamics around the equilibrium point (me,Pe) corresponding to a
nominal value δ0 of the mRNA degradation rate, we obtain

A =




−δ0 F′(Pe)
κ −γ



, Bδ =




−me

0



. (3.8)

For the case of no feedback we have F(P) = α and F′(P) = 0, and the system has
the equilibrium point at me = α/δ0, Pe = κα/(γδ0). The transfer function from δ to
P, after linearization about the steady state, is given by

Gol
Pδ(s) =

−κme

(s+δ0)(s+γ)
,
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Figure 3.7: Attenuation of perturbations in a genetic circuit with linearization given by
equation (3.8). The parameters of the closed loop system are given by α = 800 µM/s,
α0 = 5× 10−4

µM/s, γ = 0.001 s−1, δ0 = 0.005 s−1, κ = 0.02 s−1, n = 2, and K = 0.025
µM. For the open loop system, we have set α = Peδ0/(κ/γ) to make the steady state values
of open loop and closed loop systems the same.

where “ol” stands for open loop. For the case of negative regulation, we have

F(P) =
α

1+ (P/K)n
+α0,

and the resulting transfer function is given by

Gcl
Pδ(s) =

κme

(s+δ0)(s+γ)+ κσ
, σ = −F′(Pe) =

nαPn−1
e /K

n

(1+Pn
e/K

n)2
,

where “cl” stands for closed loop.
Figure 3.7 shows the frequency response for the two circuits. To make a mean-

ingful comparison between open loop and closed loop systems, we select the pa-
rameters of the open loop system such that the equilibrium point for both open loop
and closed loop systems are the same. This can be guaranteed if in the open loop
system we choose, for example, α = Peδ0/(κ/γ), in which Pe is the equilibrium
value of P in the closed loop system. We see that the feedback circuit attenuates
the response of the system to perturbations with low-frequency content but slightly
amplifies perturbations at high frequency (compared to the open loop system). ∇

3.2 Robustness

The term “robustness” refers to the general ability of a system to continue to func-
tion in the presence of uncertainty. In the context of this text, we will want to be
more precise. We say that a given function (of the circuit) is robust with respect
to a set of specified perturbations if the sensitivity of that function to perturba-
tions is small. Thus, to study robustness, we must specify both the function we are
interested in and the set of perturbations that we wish to consider.
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In this section we study the robustness of the system

dx

dt
= f (x, θ,u), y = h(x, θ)

to various perturbations in the parameters θ and disturbance inputs u. The function
we are interested in is modeled by the outputs y and hence we seek to understand
how y changes if the parameters θ are changed by a small amount or if external
disturbances u are present. We say that a system is robust with respect to these
perturbations if y undergoes little change as these perturbations are introduced.

Parametric uncertainty

In addition to studying the input/output transfer curve and the stability of a given
equilibrium point, we can also study how these features change with respect to
changes in the system parameters θ. Let ye(θ0,u0) represent the output correspond-
ing to an equilibrium point xe with fixed parameters θ0 and external input u0, so
that f (xe, θ0,u0) = 0. We assume that the equilibrium point is stable and focus here
on understanding how the value of the output, the location of the equilibrium point,
and the dynamics near the equilibrium point vary as a function of changes in the
parameters θ and external inputs u.

We start by assuming that u = 0 and investigate how xe and ye depend on θ; we
will write f (x, θ) instead of f (x, θ,0) to simplify notation. The simplest approach
is to analytically solve the equation f (xe, θ0) = 0 for xe and then set ye = h(xe, θ0).
However, this is often difficult to do in closed form and so as an alternative we
instead look at the linearized response given by

S x,θ :=
dxe

dθ

∣
∣
∣
∣
∣
θ0

, S y,θ :=
dye

dθ

∣
∣
∣
∣
∣
θ0

,

which are the (infinitesimal) changes in the equilibrium state and the output due
to a change in the parameter. To determine S x,θ we begin by differentiating the
relationship f (xe(θ), θ) = 0 with respect to θ:

d f

dθ
=
∂ f

∂x

dxe

dθ
+
∂ f

∂θ
= 0 =⇒ S x,θ =

dxe

dθ
= −

(

∂ f

∂x

)−1
∂ f

∂θ

∣
∣
∣
∣
∣
(xe,θ0)

. (3.9)

Similarly, we can compute the output sensitivity as

S y,θ =
dye

dθ
=
∂h

∂x

dxe

dθ
+
∂h

∂θ
= −





∂h

∂x

(

∂ f

∂x

)−1
∂ f

∂θ
− ∂h
∂θ





∣
∣
∣
∣
∣
∣
∣
(xe,θ0)

.

These quantities can be computed numerically and hence we can evaluate the effect
of small (but constant) changes in the parameters θ on the equilibrium state xe and
corresponding output value ye.
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A similar analysis can be performed to determine the effects of small (but con-
stant) changes in the external input u. Suppose that xe depends on both θ and u,
with f (xe, θ0,u0) = 0 and θ0 and u0 representing the nominal values. Then

dxe

dθ

∣
∣
∣
∣
∣
(θ0,u0)

= −
(

∂ f

∂x

)−1
∂ f

∂θ

∣
∣
∣
∣
∣
(xe,θ0,u0)

,
dxe

du

∣
∣
∣
∣
∣
(θ0,u0)

= −
(

∂ f

∂x

)−1
∂ f

∂u

∣
∣
∣
∣
∣
(xe,θ0,u0)

.

The sensitivity matrix can be normalized by dividing the parameters by their
nominal values and rescaling the outputs (or states) by their equilibrium values. If
we define the scaling matrices

Dxe = diag{xe}, Dye = diag{ye}, Dθ = diag{θ},

then the scaled sensitivity matrices can be written as

S̄ x,θ = (Dxe)−1S x,θD
θ, S̄ y,θ = (Dye)−1S y,θD

θ. (3.10)

The entries in these matrices describe how a fractional change in a parameter gives
a fractional change in the state or output, relative to the nominal values of the
parameters and state or output.

Example 3.7 (Transcriptional regulation). Consider again the case of transcrip-
tional regulation described in Example 3.6. We wish to study the response of the
protein concentration to fluctuations in its parameters in two cases: a constitutive

promoter (open loop) and self-repression (closed loop).
For the case of open loop we have F(P) = α, and the system has the equilibrium

point at me = α/δ, Pe = κα/(γδ). The parameter vector can be taken as θ = (α,δ,κ,γ)
and the state as x = (m,P). Since we have a simple expression for the equilibrium
concentrations, we can compute the sensitivity to the parameters directly:

∂xe

∂θ
=




1
δ
− α
δ2

0 0
κ
γδ
− κα
γδ2

α
γδ
− κα
δγ2



,

where the parameters are evaluated at their nominal values, but we leave off the
subscript 0 on the individual parameters for simplicity. If we choose the parame-
ters as θ0 = (0.00138,0.00578,0.115,0.00116), then the resulting sensitivity matrix
evaluates to

S
open
xe,θ
≈




173 −42 0 0
17300 −4200 211 −21100



. (3.11)

If we look instead at the scaled sensitivity matrix, then the open loop nature of the
system yields a particularly simple form:

S̄
open
xe,θ
=




1 −1 0 0
1 −1 1 −1



. (3.12)
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In other words, a 10% change in any of the parameters will lead to a comparable
positive or negative change in the equilibrium values.

For the case of negative regulation, we have

F(P) =
α

1+ (P/K)n
+α0,

and the equilibrium points satisfy

me =
γ

κ
Pe,

α

1+Pn
e/K

n
+α0 = δme =

δγ

κ
Pe. (3.13)

In order to make a proper comparison with the previous case, we need to choose the
parameters so that the equilibrium concentrations me,Pe match those of the open
loop system. We can do this by modifying the promoter strength α and/or the RBS
strength, which is proportional to κ, so that the second formula in equation (3.13)
is satisfied or, equivalently, choose the parameters for the open loop case so that
they match the closed loop steady state protein concentration (see Example 2.2).

Rather than attempt to solve for the equilibrium point in closed form, we instead
investigate the sensitivity using the computations in equation (3.13). The state,
dynamics and parameters are given by

x =

m P


 , f (x, θ) =




F(P)−δm
κm−γP



, θ =


α0 δ κ γ α n K


 .

Note that the parameters are ordered such that the first four parameters match the
open loop system. The linearizations are given by

∂ f

∂x
=




−δ F′(Pe)
β −γ



,

∂ f

∂θ
=




1 −me 0 0 ∂F/∂α ∂F/∂n ∂F/∂K

0 0 me −Pe 0 0 0



,

where again the parameters are taken to be at their nominal values and the deriva-
tives are evaluated at the equilibrium point. From this we can compute the sensi-
tivity matrix as

S x,θ =




− γ

γδ−κF′
γm

γδ−κF′ −
mF′

γδ−κF′
PF′

γδ−κF′ −γ∂F/∂α
γδ−κF′ −γ∂F/∂n

γδ−κF′ −
γ∂F/∂K

γδ−κF′

− κ
γδ−κF′

κm
γδ−κF′ −

δm
γδ−κF′

δP
γδ−κF′ −

κ∂F/∂α1
γδ−κF′ − κ∂F/∂n

γδ−κF′ −
κ∂F/∂K
γδ−κF′



,

where F′ = ∂F/∂P and all other derivatives of F are evaluated at the nominal
parameter values and the corresponding equilibrium point. In particular, we take
nominal parameters as θ = (5 ·10−4,0.005,0.115,0.001,800,2,0.025).

We can now evaluate the sensitivity at the same protein concentration as we use
in the open loop case. The equilibrium point is given by

xe =




me

Pe



=




0.239
23.9
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and the sensitivity matrix is

S closed
xe,θ

≈



76 −18 −1.15 115 0.00008 −0.45 5.34
7611 −1816 90 −9080. 0.008 −45 534



.

The scaled sensitivity matrix becomes

S̄ closed
xe,θ

≈



0.159 −0.44 −0.56 0.56 0.28 −3.84 0.56
0.159 −0.44 0.44 −0.44 0.28 −3.84 0.56



. (3.14)

Comparing this equation with equation (3.12), we see that there is reduction in the
sensitivity with respect to most parameters. In particular, we become less sensitive
to those parameters that are not part of the feedback (columns 2–4), but there is
higher sensitivity with respect to some of the parameters that are part of the feed-
back mechanism (particularly n). ∇

More generally, we may wish to evaluate the sensitivity of a (non-constant) so-
lution to parameter changes. This can be done by computing the function dx(t)/dθ,
which describes how the state changes at each instant in time as a function of
(small) changes in the parameters θ. This can be used, for example, to understand
how we can change the parameters to obtain a desired behavior or to determine the
most critical parameters that determine a specific dynamical feature of the system
under study.

Let x(t, θ0) be a solution of the nominal system

ẋ = f (x, θ0,u), x(0) = x0.

To compute dx/dθ, we write a differential equation for how it evolves in time:

d

dt

(

dx

dθ

)

=
d

dθ

(

dx

dt

)

=
d

dθ
( f (x, θ,u)) =

∂ f

∂x

dx

dθ
+
∂ f

∂θ
.

This is a differential equation with n×m states given by the entries of the ma-
trix S x,θ(t) = dx(t)/dθ and with initial condition S x,θ(0) = 0 (since changes to the
parameters do not affect the initial conditions).

To solve these equations, we must simultaneously solve for the state x and the
sensitivity S x,θ (whose dynamics depend on x). Thus, letting

M(t, θ0) :=
∂ f

∂x
(x, θ,u)

∣
∣
∣
∣
∣
x=x(t,θ0),θ=θ0

, N(t, θ0) :=
∂ f

∂θ
(x, θ,u)

∣
∣
∣
∣
∣
x=x(t,θ0),θ=θ0

,

we solve the set of n + nm coupled differential equations

dx

dt
= f (x, θ0,u),

dS x,θ

dt
= M(t, θ0)S x,θ +N(t, θ0), (3.15)

with initial condition x(0) = x0 and S x,θ(0) = 0.
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TimeTime
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Figure 3.8: Adaptation property. The system is said to have the adaptation property if the
steady state value of the output does not depend on the steady state value of the input.
Hence, after a constant input perturbation, the output returns to its original value.

This differential equation generalizes our previous results by allowing us to
evaluate the sensitivity around a (non-constant) trajectory. Note that in the spe-
cial case in which we are at an equilibrium point and the dynamics for S x,θ are
stable, the steady state solution of equation (3.15) is identical to that obtained in
equation (3.9). However, equation (3.15) is much more general, allowing us to de-
termine the change in the state of the system at a fixed time T , for example. This
equation also does not require that our solution stay near an equilibrium point; it
only requires that our perturbations in the parameters are sufficiently small. An ex-
ample of how to apply this equation to study the effect of parameter changes on an
oscillator is given in Section 5.4.

Several simulation tools include the ability to do sensitivity analysis of this sort,
including COPASI and the MATLAB SimBiology toolbox.

Adaptation and disturbance rejection

In this section, we study how systems can keep a desired output response even
in the presence of external disturbances. This property is particularly important
for biomolecular systems, which are usually subject to a wide range of pertur-
bations. These perturbations or disturbances can represent a number of different
physical entities, including changes in the circuit’s cellular environment, unmod-
eled/undesired interactions with other biological circuits present in the cell, or pa-
rameters whose values are uncertain.

Here, we represent the disturbance input to the system of interest by u and we
will say that the system adapts to the input u when the steady state value of its
output y is independent of the (constant) nonzero value of the input (Figure 3.8).
That is, the system’s output is robust to the disturbance input. Basically, after the
input changes to a constant nonzero value, the output returns to its original value
after a transient perturbation. Adaptation corresponds to the concept of disturbance

rejection in control theory. The full notion of disturbance rejection is more general,
depends on the specific disturbance input and is often studied using the internal
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Figure 3.9: A basic block diagram representing a system with integral action. In the di-
agram, the circles with

∑

represent summing junctions, such that the output arrow is a
signal given by the sum of the signals associated with the input arrows. The input signals
are annotated with a “+” if added or a “−” if subtracted. The desired output y0 is compared
to the actual output y and the resulting error is integrated to yield z. This error is then used
to change y. Here, the input u can be viewed as a disturbance input, which perturbs the
value of the output y.

model principle [17].
We illustrate two main mechanisms to attain adaptation: integral feedback and

incoherent feedforward loops (IFFLs). Here, we follow a similar treatment as that
of [87]. In particular, we study these two mechanisms from a mathematical stand-
point to illustrate how they achieve adaptation. Possible biomolecular implementa-
tions are presented in later chapters.

Integral feedback

In integral feedback systems, a “memory” variable z accounts for the accumulated
error between the output of interest y(t), which is affected by an external perturba-
tion u, and its nominal (or desired) steady state value y0. This accumulated error is
then used to change the output y itself through a gain k (Figure 3.9). If the input
perturbation u is constant, this feedback loop brings the system output back to the
desired value y0.

To understand why in this system the output y(t), after any constant input per-
turbation u, tends to y0 for t→∞ independently of the (constant) value of u, we
write the equations relating the accumulated error z and the output y as obtained
from the block diagram of Figure 3.9. The equations representing the system are
given by

dz

dt
= y0− y, y = kz+u,

so that the equilibrium is obtained by setting ż = 0, from which we obtain y = y0.
That is, the steady state of y does not depend on u. The additional question to
answer is whether, after a perturbation u occurs, y(t) tends to y0 for t→∞. This is
the case if and only if ż→ 0 as t→∞, which is satisfied if the equilibrium of the
system ż = −kz−u+y0 is asymptotically stable. This, in turn, is satisfied whenever
k > 0 and u is a constant. Hence, after a constant perturbation u is applied, the
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u x1 x2

Figure 3.10: Incoherent feedforward loop. The input u affects the output y = x2 through
two channels: it indirectly represses it through an intermediate variable x1 while directly
activating it through a different path.

system output y approaches its original steady state value y0, that is, y is robust to
constant perturbations.

More generally, a system with integral action can take the form

dx

dt
= f (x,u), u = (u1,u2), y = h(x),

dz

dt
= y0− y, u2 = k(x,z),

in which u1 is a disturbance input and u2 is a control input that takes the feedback
form u2 = k(x,z). The steady state value of y, being the solution to y0− y = 0, does
not depend on the disturbance u1. In turn, y tends to this steady state value for
t→∞ if and only if ż→ 0 as t→∞. This is the case if z tends to a constant value
for t→∞, which is satisfied if u1 is a constant and the steady state of the above
system is asymptotically stable.

Integral feedback is recognized as a key mechanism of perfect adaptation in
biological systems, both at the physiological level and at the cellular level, such as
in blood calcium homeostasis [23], in the regulation of tryptophan in E. coli [92],
in neuronal control of the prefrontal cortex [69], and in E. coli chemotaxis [100].

Incoherent feedforward loops

Feedforward motifs (Figure 3.10) are common in transcriptional networks and it
has been shown that they are overrepresented in E. coli gene transcription net-
works, compared to other motifs composed of three nodes [4]. Incoherent feed-
forward circuits represent systems in which the input u directly helps promote the
production of the output y = x2 and also acts as a delayed inhibitor of the output
through an intermediate variable x1. This incoherent counterbalance between pos-
itive and negative effects gives rise, under appropriate conditions, to adaptation. A
large number of incoherent feedforward loops participate in important biological
processes such as the EGF to ERK activation [73], the glucose to insulin release
[74], ATP to intracellular calcium release [65], micro-RNA regulation [91], and
many others.

Several variants of incoherent feedforward loops exist for perfect adaptation.
Here, we consider two main ones, depending on whether the intermediate variable
promotes degradation of the output or inhibits its production. An example where
the intermediate variable promotes degradation is provided by the “sniffer,” which
appears in models of neutrophil motion and Dictyostelium chemotaxis [99]. In the
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sniffer, the intermediate variable promotes degradation according to the following
differential equation model:

dx1

dt
= αu−γx1,

dx2

dt
= βu−δx1x2, y = x2. (3.16)

In this system, the steady state value of the output x2 is obtained by setting the time
derivatives to zero. Specifically, we have that ẋ1 = 0 gives x1 = αu/γ and ẋ2 = 0
gives x2 = βu/(δx1). In the case in which u , 0, these can be combined to yield
x2 = (βγ)/(δα), which is a constant independent of the input u. The linearization of
the system at the equilibrium is given by

A =




−γ 0
−δ(βγ)/(δα) −δ(αu/γ)



,

which has eigenvalues −γ and −δ(αu/γ). Since these are both negative, the equi-
librium point is asymptotically stable. Note that in the case in which, for example,
u goes back to zero after a perturbation, as it is in the case of a pulse, the output x2

does not necessarily return to its original steady state. That is, this system “adapts”
only to constant nonzero input stimuli but is not capable of adapting to pulses. This
can be seen from equation (3.16), which admits multiple steady states when u = 0.
For more details on this “memory” effect, the reader is referred to [89].

A different form for an incoherent feedforward loop is one in which the inter-
mediate variable x1 inhibits production of the output x2, such as in the system:

dx1

dt
= αu−γx1,

dx2

dt
= β

u

x1
−δx2, y = x2. (3.17)

The equilibrium point of this system for a constant nonzero input u is given by
setting the time derivatives to zero. From ẋ1 = 0, we obtain x1 =αu/γ and from ẋ2 =

0 we obtain that x2 = βu/(δx1), which combined together result in x2 = (βγ)/(δα),
which is again a constant independent of the input u.

By calculating the linearization at the equilibrium, one obtains

A =




−γ 0
−γ2/(α2u) −δ



,

whose eigenvalues are given by −γ and −δ. Hence, the equilibrium point is asymp-
totically stable. Further, one can show that the equilibrium point is globally asymp-
totically stable because the x1 subsystem is linear, stable, and x1 approaches a con-
stant value (for constant u) and the x2 subsystem, in which βu/x1 is viewed as an
external input is also linear and asymptotically stable.

High gain feedback

Integral feedback and incoherent feedforward loops provide means to obtain ex-
act rejection of constant disturbances. Sometimes, exact rejection is not possible,
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Figure 3.11: High gain feedback. A possible mechanism to attain disturbance attenuation
is to feedback the error y0−y between the desired output y0 and the actual output y through
a large gain G.

for example, because the physical constraints of the system do not allow us to im-
plement integral feedback or because the disturbance is not constant with time. In
these cases, it may be possible to still attenuate the effect of the disturbance on the
output of interest by the use of negative feedback with high gain. To explain this
concept, consider the diagram of Figure 3.11.

In a high gain feedback configuration, the error between the output y, perturbed
by some exogenous disturbance u, and a desired nominal output y0 is fed back with
a negative sign to produce the output y itself. If y0 > y, this will result in an increase
of y, otherwise it will result in a decrease of y. Mathematically, one obtains from
the block diagram that

y =
u

1+G
+ y0

G

1+G
,

so that as G increases the (relative) contribution of u on the output of the system
can be arbitrarily reduced.

High gain feedback can take a much more general form. Consider a system
with x ∈ Rn in the form ẋ = f (x). We say that this system is contracting if any
two trajectories starting from different initial conditions exponentially converge to
each other as time increases to infinity. A sufficient condition for the system to be
contracting is that in some set of coordinates, with matrix transformation denoted
Θ, the symmetric part of the linearization matrix (Jacobian)

1
2

(

∂ f

∂x
+
∂ f

∂x

T )

is negative definite. We denote the largest eigenvalue of this matrix by −λ for λ > 0
and call it the contraction rate of the system.

Now, consider the nominal system ẋ=G f (x) for G > 0 and its perturbed version
ẋp = G f (xp)+ u(t). Assume that the input u(t) is bounded everywhere in norm by
a constant C > 0. If the system is contracting, we have the following robustness
result:

‖x(t)− xp(t)‖ ≤ χ‖x(0)− xp(0)‖e−Gλt +
χC

λG
,
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Figure 3.12: Fold-change detection. The output response does not depend on the absolute
magnitude of the input but only on the fold change of the input.

in which χ is an upper bound on the condition number of the transformation matrix
Θ (ratio between the largest and the smallest eigenvalue of ΘTΘ) [60]. Hence, if
the perturbed and the nominal systems start from the same initial conditions, the
difference between their states can be made arbitrarily small by increasing the gain
G. Therefore, the contribution of the disturbance u on the system state can be made
arbitrarily small.

A comprehensive treatment of concepts of stability and robustness can be found
in standard references [53, 88].

Scale invariance and fold-change detection

Scale invariance is the property by which the output y(t) of the system does not
depend on the absolute amplitude of the input u(t) (Figure 3.12). Specifically, con-
sider an adapting system and assume that it preadapted to a constant background
input value a, then apply input a+b and let y(t) be the resulting output. Now con-
sider a new background input value pa and let the system preadapt to it. Then apply
the input p(a+b) and let ȳ(t) be the resulting output. The system has the scale in-
variance property if y(t) = ȳ(t) for all t. This also means that the output responds in
the same way to inputs changed by the same multiplicative factor (fold), hence this
property is also called fold-change detection. Looking at Figure 3.12, the outputs
corresponding to the two indicated inputs are identical since the fold change in the
input value is equal to b/a in both cases.

Some incoherent feedforward loops can implement the fold-change detection
property [34]. As an example, consider the feedforward motif represented by equa-
tions (3.17), in which the output is given by y = x2, and consider two inputs:
u1(t) = a for t < t0 and u1(t) = a + b1 for t ≥ t0, and u2(t) = pa for t < t0 and
u2(t) = pa+ pb1 for t ≥ t0. Assume also that at time t0 the system is at the steady
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state, that is, it is preadapted. Hence, we have that the two steady states from which
the system starts at t = t0 are given by x1,1 = aα/γ and x1,2 = paα/γ for the x1 vari-
able and by x2,1 = x2,2 = (βγ)/(δα) for the x2 variable. Integrating system (3.17)
starting from these initial conditions, we obtain for t ≥ t0

x1,1(t) = a
α

γ
e−γ(t−t0)+ (a+b)(1− e−γ(t−t0)),

x1,2(t) = pa
α

γ
e−γ(t−t0)+ p(a+b)(1− e−γ(t−t0)).

Using these in the expression of ẋ2 in equation (3.17) gives the differential
equations that x2,1(t) and x2,2(t) obey for t ≥ t0 as

dx2,1

dt
=

β(a+b)
aα
γ

e−γ(t−t0)+ (a+b)(1− e−γ(t−t0))
−δx2,1, x2,1(t0) = (βγ)/(δα)

and

dx2,2

dt
=

pβ(a+b)
paα
γ

e−γ(t−t0)+ p(a+b)(1− e−γ(t−t0))
−δx2,2, x2,2(t0) = (βγ)/(δα),

which gives x2,1(t) = x2,2(t) for all t ≥ t0. Hence, the system responds exactly the
same way after changes in the input of the same fold. The output response is not
dependent on the scale of the input but only on its shape.

3.3 Oscillatory behavior

In addition to equilibrium behavior, a variety of cellular processes involve oscilla-
tory behavior in which the system state is constantly changing, but in a repeating
pattern. Two examples of biological oscillations are the cell cycle and circadian
rhythm. Both of these dynamic behaviors involve repeating changes in the con-
centrations of various proteins, complexes and other molecular species in the cell,
though they are very different in their operation. In this section we discuss some of
the underlying ideas for how to model this type of oscillatory behavior, focusing
on those types of oscillations that are most common in biomolecular systems.

Biomolecular oscillators

Biological systems have a number of natural oscillatory processes that govern the
behavior of subsystems and whole organisms. These range from internal oscilla-
tions within cells to the oscillatory nature of the beating heart to various tremors
and other undesirable oscillations in the neuro-muscular system. At the biomolec-
ular level, two of the most studied classes of oscillations are the cell cycle and
circadian rhythm.

The cell cycle consists of a set of “phases” that govern the duplication and
division of cells into two new cells:
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• G1 phase - gap phase, terminated by “G1 checkpoint”;

• S phase - synthesis phase (DNA replication);

• G2 phase - gap phase, terminated by “G2 checkpoint”;

• M - mitosis (cell division).

The cell goes through these stages in a cyclical fashion, with the different enzymes
and pathways active in different phases. The cell cycle is regulated by many differ-
ent proteins, often divided into two major classes. Cyclins are a class of proteins
that sense environmental conditions internal and external to the cell and are also
used to implement various logical operations that control transition out of the G1
and G2 phases. Cyclin dependent kinases (CDKs)are proteins that serve as “actua-
tors” by turning on various pathways during different cell cycles.

An example of the control circuitry of the cell cycle for the bacterium Caulobac-

ter crescentus (henceforth Caulobacter) is shown in Figure 3.13 [57]. This or-
ganism uses a variety of different biomolecular mechanisms, including transcrip-
tional activation and repression, positive autoregulation (CtrA), phosphotransfer
and methylation of DNA.

The cell cycle is an example of an oscillator that does not have a fixed pe-
riod. Instead, the length of the individual phases and the transitioning of the differ-
ent phases are determined by the environmental conditions. As one example, the
cell division time for E. coli can vary between 20 minutes and 90 minutes due to
changes in nutrient concentrations, temperature or other external factors.

A different type of oscillation is the highly regular pattern encoding in circa-
dian rhythm, which repeats with a period of roughly 24 hours. The observation
of circadian rhythms dates as far back as 400 BCE, when Androsthenes described
observations of daily leaf movements of the tamarind tree [67]. There are three
defining characteristics associated with circadian rhythm: (1) the time to complete
one cycle is approximately 24 hours, (2) the rhythm is endogenously generated
and self-sustaining, and (3) the period remains relatively constant under changes
in ambient temperature. Oscillations that have these properties appear in many dif-
ferent organisms, including microorganisms, plants, insects and mammals. Some
common features of the circuitry implementing circadian rhythms in these organ-
isms is the combination of positive and negative feedback loops, often with the
positive elements activating the expression of clock genes and the negative ele-
ments repressing the positive elements [11]. Figure 3.14 shows some of the differ-
ent organisms in which circadian oscillations can be found and the primary genes
responsible for different positive and negative factors.
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Figure 3.13: The Caulobacter crescentus cell cycle. (a) Caulobacter cells divide asym-
metrically into a stalked cell, which is attached to a surface, and a swarmer cell that is
motile. The swarmer cells can become stalked cells in a new location and begin the cell
cycle anew. The transcriptional regulators CtrA, DnaA and GcrA are the primary factors
that control the various phases of the cell cycle. (b) The genetic circuitry controlling the
cell cycle consists of a large variety of regulatory mechanisms, including transcriptional
regulation and post-translational regulation. Figure obtained from [57].

Clocks, oscillators and limit cycles

To begin our study of oscillators, we consider a nonlinear model of the system
described by the differential equation

dx

dt
= f (x, θ,u), y = h(x, θ),

where x ∈ Rn represents the state of the system, u ∈ Rq represents the external
inputs, y ∈ Rm represents the (measured) outputs and θ ∈ Rp represents the model
parameters. We say that a solution (x(t),u(t)) is oscillatory with period T if y(t+
T ) = y(t). For simplicity, we will often assume that p = q = 1, so that we have a
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Figure 3.14: Overview of mechanisms for circadian rhythm in different organisms. Cir-
cadian rhythms are found in many different classes of organisms. A common pattern is a
combination of positive and negative feedback, as shown in the center of the figure. Driven
by environmental inputs (a), a variety of different genes are used to implement these posi-
tive and negative elements (b–f).

single input and single output, but most of the results can be generalized to the
multi-input, multi-output case.

There are multiple ways in which a solution can be oscillatory. One of the sim-
plest is that the input u(t) is oscillatory, in which case we say that we have a forced

oscillation. In the case of a stable linear system with one input and one output, an
input of the form u(t)= Asinωt will lead, after the transient due to initial conditions
has died out, to an output of the form y(t) = M ·Asin(ωt+φ) where M and φ repre-
sent the gain and phase of the system (at frequency ω). In the case of a nonlinear
system, if the output is periodic with the same period then we can write it in terms
of a set of harmonics,

y(t) = B0+B1 sin(ωt+φ1)+B2 sin(2ωt+φ2)+ · · · .

The term B0 represents the average value of the output (also called the bias), the
terms Bi are the magnitudes of the ith harmonic and φi are the phases of the har-
monics (relative to the input). The oscillation frequency ω is given by ω = 2π/T
where T is the oscillation period.



limitcyc.tex, v5736 2014-06-14 20:32:22Z (murray)

118 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR

A different situation occurs when we have no input (or a constant input) and still
obtain an oscillatory output. In this case we say that the system has a self-sustained

oscillation. This type of behavior is what is required for oscillations such as the
cell cycle and circadian rhythm, where there is either no obvious forcing function
or the forcing function is removed but the oscillation persists. If we assume that the
input is constant, u(t) = A0, then we are particularly interested in how the period T

(or equivalently the frequency ω), amplitudes Bi and phases φi depend on the input
A0 and system parameters θ.

To simplify our notation slightly, we consider a system of the form

dx

dt
= f (x, θ), y = h(x, θ), (3.18)

where the input is ignored (or taken to be one of the constant parameters) in the
analysis that follows. We have focused on the oscillatory nature of the output y(t)
thus far, but we note that if the states x(t) are periodic then the output is as well,
and this is the most common case. Hence we will often talk about the system being
oscillatory, by which we mean that there is a solution for the dynamics in which
the state satisfies x(t+T ) = x(t).

More formally, we say that a closed curve Γ ∈ Rn is an orbit if trajectories that
start on Γ remain on Γ for all time and if Γ is not an equilibrium point of the system.
As in the case of equilibrium points, we say that the orbit is stable if trajectories
that start near Γ stay near Γ, asymptotically stable if in addition nearby trajectories
approach Γ as t→∞ and unstable if it is not stable. The orbit Γ is periodic with
period T if for any x(t) ∈ Γ, x(t+T ) = x(t).

There are many different types of periodic orbits that can occur in a system
whose dynamics are modeled as in equation (3.18). A harmonic oscillator refer-
ences to a system that oscillates around an equilibrium point, but does not (usually)
get near the equilibrium point. The classical harmonic oscillator is a linear system
of the form

d

dt




x1

x2



=




0 ω

−ω 0







x1

x2



,

whose solutions are given by



x1(t)
x2(t)



=




cosωt sinωt

−sinωt cosωt







x1(0)
x2(0)



.

The frequency of this oscillation is fixed, but the amplitude depends on the values
of the initial conditions, as shown in Figure 3.15a. Note that this system has a
single equilibrium point at x = (0,0) and the eigenvalues of the equilibrium point
have zero real part, so trajectories neither expand nor contract, but simply oscillate.

An example of a nonlinear harmonic oscillator is given by the equation

dx1

dt
= x2+ x1(1− x2

1− x2
2),

dx2

dt
= −x1+ x2(1− x2

1− x2
2). (3.19)
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Figure 3.15: Examples of harmonic oscillators.

This system has an equilibrium point at x = (0,0), but the linearization of this equi-
librium point is unstable. The phase portrait in Figure 3.15b shows that the solu-
tions in the phase plane converge to a circular trajectory. In the time domain this
corresponds to an oscillatory solution. Mathematically the circle is called a limit

cycle. Note that in this case, the solution for any initial condition approaches the
limit cycle and the amplitude and frequency of oscillation “in steady state” (once
we have reached the limit cycle) are independent of the initial condition.

A different type of oscillation can occur in nonlinear systems in which the equi-
librium points are saddle points, having both stable and unstable eigenvalues. Of
particular interest is the case where the stable and unstable orbits of one or more
equilibrium points join together. Two such situations are shown in Figure 3.16. The
figure on the left is an example of a homoclinic orbit. In this system, trajectories
that start near the equilibrium point quickly diverge away (in the directions cor-
responding to the unstable eigenvalues) and then slowly return to the equilibrium
point along the stable directions. If the initial conditions are chosen to be precisely
on the homoclinic orbit Γ then the system slowly converges to the equilibrium

x1

x2

(a) Homoclinic orbit

x1

x2

(b) Heteroclinic orbit

Figure 3.16: Homoclinic and heteroclinic orbits.
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(b) Time domain solution

Figure 3.17: Example of a homoclinic orbit.

point, but in practice there are often disturbances present that will perturb the sys-
tem off of the orbit and trigger a “burst” in which the system rapidly escapes from
the equilibrium point and then slowly converges again. A somewhat similar type of
orbit is a heteroclinic orbit, in which the orbit connects two different equilibrium
points, as shown in Figure 3.16b.

An example of a system with a homoclinic orbit is given by the system

dx1

dt
= x2,

dx2

dt
= x1− x3

1. (3.20)

The phase portrait and time domain solutions are shown in Figure 3.17. In this
system, there are periodic orbits both inside and outside the two homoclinic cy-
cles (left and right). Note that the trajectory we have chosen to plot in the time
domain has the property that it rapidly moves away from the equilibrium point and
then slowly reconverges to the equilibrium point, before being carried away again.
This type of oscillation, in which one slowly returns to an equilibrium point before
rapidly diverging is often called a relaxation oscillation. Note that for this system,
there are also oscillations that look more like the harmonic oscillator case described
above, in which we oscillate around the unstable equilibrium points at x = (±1,0).

Example 3.8 (Glycolytic oscillations). Glycolysis is one of the principal metabolic
networks involved in energy production. It is a sequence of enzyme-catalyzed re-
actions that converts sugar into pyruvate, which is then further degraded to alcohol
(in yeast fermentation) and lactic acid (in muscles) under anaerobic conditions,
and ATP (the cell’s major energy supply) is produced as a result. Both damped
and sustained oscillations have been observed. Damped oscillations were first re-
ported by [22] while sustained oscillations in yeast cell free extracts were observed
in [41, 79].
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Figure 3.18: Oscillations in the glycolysis system. Parameters are v0 = 1, k1 = 1, and k2 =

1.00001.

Here we introduce the basic motif that is known to be at the core of this oscil-
latory phenomenon. Specifically, a substrate S is converted to a product P, which,
in turn, acts as an enzyme catalyzing the conversion of S into P. This is an example
of autocatalysis, in which a product is required for its own production. A simple
differential equation model of this system can be written as

dS

dt
= v0− v1,

dP

dt
= v1− v2, (3.21)

in which v0 is a constant production rate and

v1 = S F(P), F(P) =
α(P/K)2

1+ (P/K)2
, v2 = k2P,

where F(P) is the standard Hill function. Under the assumption that K ≫ P, we
have F(P) ≈ k1P2, in which we have defined k1 := α/K2. This second-order system
admits a stable limit cycle under suitable parameter conditions (Figure 3.18). ∇

One central question when analyzing the dynamical model of a given system
is to establish whether the model constructed admits sustained oscillations. This
way we can validate or disprove models of biomolecular systems that are known to
exhibit sustained oscillations. At the same time, we can provide design guidelines
for engineering biological circuits that function as clocks, as we will see in Chapter
5. With this respect, it is particularly important to determine parameter conditions
that are required and/or sufficient to obtain periodic behavior. To analyze these
sorts of questions, we need to introduce tools that allow us to infer the existence
and robustness of a limit cycle from a differential equation model.

In order to proceed, we first introduce the concept of ω-limit set of a point
p, denoted ω(p). Basically, the ω-limit set ω(p) represents the set of all points to
which the trajectory of the system starting from p tends as time approaches infinity.
This is formally defined in the following definition.
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Definition 3.1. A point x̄ ∈ Rn is called an ω-limit point of p ∈ Rn if there is a
sequence of times {ti} with ti→∞ for i→∞ such that x(ti, p)→ x̄ as i→∞. The
ω-limit set of p, denoted ω(p), is the set of all ω-limit points of p.

The ω-limit set of a system has several relevant properties, among which are
the facts that it cannot be empty and that it must be a connected set.

Limit cycles in the plane

Before studying periodic behavior of systems in Rn, we study the behavior of sys-
tems in R2. Several high-dimensional systems can often be well approximated by
systems in two dimensions by, for example, employing quasi-steady state approxi-
mations. For systems in R2, we will see that there are easy-to-check conditions that
guarantee the existence of a limit cycle.

The first result provides a simple check to rule out periodic solutions for sys-
tems in R2. Specifically, let x ∈ R2 and consider

dx1

dt
= f1(x1, x2),

dx2

dt
= f2(x1, x2), (3.22)

in which the functions fi : R2 → R2 for i = 1,2 are smooth. Then, we have the
following:

Theorem 3.2 (Bendixson’s criterion). Let D be a simply connected region in R2

(i.e., there are no holes in D). If the expression

∂ f1

∂x1
+
∂ f2

∂x2

is not identically zero and does not change sign in D, then system (3.22) has no

closed orbits that lie entirely in D.

Example 3.9. Consider the system

dx1

dt
= −x3

2+δx
3
1,

dx2

dt
= x3

1,

with δ ≥ 0. We can compute

∂ f1

∂x1
+
∂ f2

∂x2
= 3δx2

1,

which is not identically zero and does not change sign over all of R2 when δ ,
0. If δ , 0, we can thus conclude from Bendixson’s criterion that there are no
periodic solutions. We leave it as an exercise to investigate what happens when
δ = 0 (Exercise 3.5). ∇
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The following theorem completely characterizes the ω-limit set of any point for
a system in R2.

Theorem 3.3 (Poincaré-Bendixson). Let M be a bounded and closed positively

invariant region for the system ẋ = f (x) with x(0) ∈ M (i.e., any trajectory that

starts in M stays in M for all t ≥ 0). Assume that there are finitely many equilibrium

points in M. Let p ∈ M, then one of the following possibilities holds for ω(p):

(i) ω(p) is an equilibrium point;

(ii) ω(p) is a closed orbit;

(iii) ω(p) consists of a finite number of equilibrium points and orbits, each start-

ing (for t = 0) and ending (for t→∞) at one of the fixed points.

This theorem has two important consequences:

1. If the system does not have equilibrium points in M, since ω(p) is not empty,
it must be a periodic solution;

2. If there is only one equilibrium point in M and it is unstable and not a saddle
(i.e., the eigenvalues of the linearization at the equilibrium point are both
positive), then ω(p) is a periodic solution.

We will employ this result in Chapter 5 to determine parameter conditions under
which activator-repressor circuits admit sustained oscillations.

Limit cycles in Rn

The results above hold only for systems in two dimensions. However, there have
been extensions of the Poincaré-Bendixson theorem to systems with special struc-
ture in Rn. In particular, we have the following result, which can be stated as fol-
lows under some mild technical assumptions, which we omit here.

Theorem 3.4 (Hastings et al. [39]). Consider a system ẋ = f (x), which is of the

form

ẋ1 = f1(xn, x1),

ẋ j = f j(x j−1, x j), 2 ≤ j ≤ n

on the set M defined by xi ≥ 0 for all i with the following inequalities holding in

M:

(i)
∂ fi
∂xi
< 0 and

∂ fi
∂xi−1
> 0, for 2 ≤ i ≤ n, and

∂ f1
∂xn
< 0;

(ii) fi(0,0) ≥ 0 and f1(xn,0) > 0 for all xn ≥ 0;

(iii) The system has a unique equilibrium point x∗ = (x∗1, ..., x
∗
n) in M such that

f1(xn, x1)< 0 if xn > x∗n and x1 > x∗1, while f1(xn, x1)> 0 if xn < x∗n and x1 < x∗1;
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(iv)
∂ f1
∂x1

is bounded above in M.

Then, if the Jacobian of f at x∗ has no repeated eigenvalues and has any eigenvalue

with positive real part, then the system has a non-constant periodic solution in M.

This theorem states that for a system with cyclic structure in which the cy-
cle “has negative loop gain,” the instability of the equilibrium point (under some
technical assumption) is equivalent to the existence of a periodic solution. This the-
orem, however, does not provide information about whether the orbit is attractive
or not, that is, whether it is an ω-limit set of any point in M. This stability result
is implied by a general theorem, which can be stated as follows under some mild
technical assumptions, which we omit here.

Theorem 3.5 (Mallet-Paret and Smith [62]). Consider the system ẋ = f (x) with the

following cyclic feedback structure

ẋ1 = f1(xn, x1),

ẋ j = f j(x j−1, x j), 2 ≤ j ≤ n

on a set M defined by xi ≥ 0 for all i with all trajectories starting in M bounded for

t ≥ 0. Then, the ω-limit set ω(p) of any point p ∈ M can be one of the following:

(i) An equilibrium point;

(ii) A non-constant periodic orbit;

(iii) A set of equilibrium points connected by homoclinic or heteroclinic orbits.

As a consequence of the theorem, we have that for a system with cyclic feed-
back structure that admits one equilibrium point only and at which the linearization
has all eigenvalues with positive real part, the ω-limit set must be a periodic orbit.

In Chapter 5, we will apply these results to determine parameter conditions that
make loop circuits with state in Rn admit a limit cycle.

3.4 Bifurcations

Another important property of nonlinear systems is how their behavior changes as
the parameters governing the dynamics change. We can study this in the context of
models by exploring how the location of equilibrium points, their stability, their re-
gions of attraction and other dynamic phenomena, such as limit cycles, vary based
on the values of the parameters in the model.
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Figure 3.19: Phase portraits for a linear system as parameter θ changes. When θ is positive
and large in absolute value, the eigenvalues are real and negative, and the response is not
oscillatory (overdamped). When θ is positive but not too large in absolute value, the eigen-
values are complex with negative real part and damped oscillations arise (underdamped).
When θ = 0, the system displays oscillatory solutions, while when θ < 0, the equilibrium
point becomes unstable and trajectories diverge.

Parametric stability

Consider a differential equation of the form

dx

dt
= f (x, θ), x ∈ Rn, θ ∈ Rp, (3.23)

where x is the state and θ is a set of parameters that describe the family of equations.
The equilibrium solutions satisfy

f (x, θ) = 0,

and as θ is varied, the corresponding solutions xe(θ) can also vary. We say that
the system (3.23) has a bifurcation at θ = θ∗ if the behavior of the system changes
qualitatively at θ∗. This can occur either because of a change in stability type or
because of a change in the number of solutions at a given value of θ.

As an example of a bifurcation, consider the linear system

dx1

dt
= x2,

dx2

dt
= −kx1− θx2,

where k > 0 is fixed and θ is our bifurcation parameter. Figure 3.19 shows the
phase portraits for different values of θ. We see that at θ = 0 the system transitions
from a single stable equilibrium point at the origin to having an unstable equilib-
rium. Hence, as θ goes from negative to positive values, the behavior of the system
changes in a significant way, indicating a bifurcation.

A common way to visualize a bifurcation is through the use of a bifurcation

diagram. To create a bifurcation diagram, we choose a function y = h(x) such that
the value of y at an equilibrium point has some useful meaning for the question
we are studying. We then plot the value of ye = h(xe(θ)) as a function of θ for all
equilibria that exist for a given parameter value θ. By convention, we use dashed
lines if the corresponding equilibrium point is unstable and solid lines otherwise.
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θ

Saddle node bifurcation
ẋ = θ – x2 ẋ = θx – x2 ẋ = θx – x3

θ

Transcritical bifurcation

θ

Pitchfork bifurcation

x x x

Figure 3.20: Bifurcation diagrams for some common bifurcations. In a saddle node bifur-

cation, as θ decreases a stable and an unstable equilibrium point approach each other and
then “collide” for θ = 0 and annihilate each other. In a transcritical bifurcation, a stable
and an unstable equilibrum point approach each other, and then intersect at θ = 0, swap-
ping their stability. In a pitchfork bifurcation, a unique stable equilibrium point for θ < 0
gives rise to three equilibria at the point θ = 0, of which two are stable and one is unstable.

Figure 3.20 shows examples of some common bifurcation diagrams. Note that for
some types of bifurcations, such as the pitchfork bifurcation, there exist values of
θ where there is more than one equilibrium point. A system that exhibits this type
of behavior is said to be multistable. A common case is when there are two stable
equilibria, in which case the system is said to be bistable. We will see an example
of this in Chapter 5.

Hopf bifurcation

The bifurcations discussed above involved bifurcation of equilibrium points. An-
other type of bifurcation that can occur is when a system with an equilibrium point
admits a limit cycle as a parameter is changed through a critical value. The Hopf
bifurcation theorem provides a technique that is often used to understand whether
a system admits a periodic orbit when some parameter is varied. Usually, such an
orbit is a small amplitude periodic orbit that is present in the close vicinity of an
unstable equilibrium point.

Consider the system dependent on a parameter α:

dx

dt
= g(x,α), x ∈ Rn, α ∈ R,

and assume that at the equilibrium point xe corresponding to α=α0 (i.e., g(xe,α0)=
0), the linearization ∂g/∂x evaluated at (xe,α0) has a pair of (nonzero) imaginary
eigenvalues with the remaining eigenvalues having negative real parts. Define the
new parameter θ := α−α0 and redefine the system as

dx

dt
= f (x, θ) =: g(x, θ+α0),

so that the linearization ∂ f /∂x evaluated at (xe,0) has a pair of (nonzero) imaginary
eigenvalues with the remaining eigenvalues having negative real parts. Denote by
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Figure 3.21: Hopf bifurcation. (a) As θ increases a stable limit cycle appears. (b) As θ
increases a periodic orbit appears but it is unstable. Figure taken from [98].

λ(θ) = β(θ)+ iω(θ) the eigenvalue such that β(0) = 0. Then, if ∂β/∂θ evaluated at
θ = 0 is not zero, the system admits a small amplitude almost sinusoidal periodic
orbit for θ small enough and the system is said to go through a Hopf bifurcation at
θ = 0. If the small amplitude periodic orbit is stable, the Hopf bifurcation is said to
be supercritical, while if it is unstable it is said to be subcritical. Figure 3.21 shows
diagrams corresponding to these bifurcations.

In order to determine whether a Hopf bifurcation is supercritical or subcritical,
it is necessary to calculate a “curvature” coefficient, for which there are formulas
(Marsden and McCracken [64]) and available bifurcation software, such as AUTO.
In practice, it is often enough to calculate the value ᾱ of the parameter at which
the Hopf bifurcation occurs and simulate the system for values of the parameter
α close to ᾱ. If a small amplitude limit cycle appears, then the bifurcation is most
likely supercritical.

Example 3.10 (Glycolytic oscillations). Recalling the model of glycolytic oscil-
lations given in (3.21), we ask whether such an oscillator goes through a Hopf
bifurcation. In order to answer this question, we consider again the expression of
the eigenvalues

λ1,2 =
tr(J)±

√

tr(J)2−4det(J)
2

,

in which

tr(J) = k2− k1

(

v0

k2

)2

and det(J) = k1

(

v0

k2

)2

.

The eigenvalues are imaginary if tr(J) = 0, that is, if k1 = k3
2/v

2
0. Furthermore,

the frequency of oscillations is given by ω =
√

4det(J) =
√

4k1(v0/k2)2. There-
fore, this system goes through a Hopf bifurcation as the parameter k1 approaches
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k3
2/v

2
0. When k1 ≈ k3

2/v
2
0, an approximately sinusoidal oscillation appears. When k1

is large, the Hopf bifurcation theorem does not imply the existence of a periodic
solution. This is because the Hopf theorem provides only local results. ∇

The Hopf bifurcation theorem is based on center manifold theory for nonlinear
dynamical systems. For a rigorous treatment of Hopf bifurcation it is thus necessary
to study center manifold theory first, which is outside the scope of this text. For
details, the reader is referred to standard text in dynamical systems [98, 38].

In Chapter 5, we will illustrate how to employ Hopf bifurcation to understand
one of the key design principles of clocks based on two interacting species, an
activator and a repressor.

3.5 Model reduction techniques

The techniques that we have developed in this chapter can be applied to a wide
variety of dynamical systems. However, many of the methods require significant
computation and hence we would like to reduce the complexity of the models as
much as possible before applying them. In this section, we review methods for do-
ing such a reduction in the complexity of models. Most of the techniques are based
on the common idea that if we are interested in the slower time scale dynamics of
a system, the fast time scale dynamics can be approximated by their equilibrium
solutions. This idea was introduced in Chapter 2 in the context of reduced order
mechanisms; we present a more detailed mathematical analysis of such systems
here.

The mathematical analysis of systems with multiple time scales and the conse-
quent model order reduction is called singular perturbation theory. In particular,
we are concerned with systems that have processes evolving on both fast and slow
time scales and that can be written in a standard form, which we now introduce.
Let (x,y) ∈ D := Dx×Dy ⊂ Rn×Rm and consider the vector field

dx

dt
= f (x,y, ǫ), x(0) = x0,

ǫ
dy

dt
= g(x,y, ǫ), y(0) = y0,

(3.24)

in which 0 < ǫ ≪ 1 is a small parameter and both f (x,y,0) and g(x,y,0) are well-
defined. Since ǫ ≪ 1, the rate of change of y can be much larger than the rate of
change of x, resulting in y dynamics that are much faster than the x dynamics. That
is, this system has a slow time scale evolution (in x) and a fast time scale evolution
(in y), so that x is called the slow variable and y is called the fast variable.

If we are interested only in the slower time scale, then the above system can be
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approximated (under suitable conditions) by the reduced system

dx̄

dt
= f (x̄, ȳ,0), x̄(0) = x0,

0 = g(x̄, ȳ,0),

in which we have set ǫ = 0. Let y = h(x) denote the locally unique solution of
g(x,y,0)= 0. The manifold of (x,y) pairs where y= h(x) is called the slow manifold.
The implicit function theorem [63] shows that this solution exists whenever ∂g/∂y
is, at least locally, nonsingular. In fact, in such a case we have

dh

dx
= −∂g
∂y

−1 ∂g

∂x
.

We can rewrite the dynamics of x in the reduced system as

dx̄

dt
= f (x̄,h(x̄),0), x̄(0) = x0.

We seek to determine under what conditions the solution x(t) is “close” to the
solution x̄(t) of the reduced system. This problem can be addressed by analyzing
the fast dynamics, that is, the dynamics of the system in the fast time scale τ = t/ǫ.
In this case, we have that

dx

dτ
= ǫ f (x,y, ǫ),

dy

dτ
= g(x,y, ǫ), (x(0),y(0)) = (x0,y0),

so that when ǫ≪ 1, x(τ) does not appreciably change. Therefore, the above system
in the τ time scale can be well approximated by the system

dy

dτ
= g(x0,y,0), y(0) = y0,

in which x is “frozen” at the initial condition x0. This system is usually referred
to as the boundary layer system. For this system, the point y = h(x0) is an equi-
librium point. Such an equilibrium point is asymptotically stable if y(τ) converges
to h(x0) as τ→∞. In this case, the solution (x(t),y(t)) of the original system ap-
proaches (x̄(t),h(x̄(t))). This qualitative explanation is more precisely captured by
the following singular perturbation theorem under some mild technical assump-
tions, which we omit here [53].

Theorem 3.6. Assume that

Real



λ

(

∂

∂y
g(x,y)

∣
∣
∣
∣
∣
y=h(x)







 < 0
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uniformly for x ∈ Dx. Let the solution of the reduced system be uniquely defined for

t ∈ [0, t f ]. Then, for all tb ∈ (0, t f ] there are constants ǫ∗ > 0 and M > 0, and a set

Ω ⊆ D such that

‖x(t)− x̄(t)‖ ≤ Mǫ for t ∈ [0, t f ],

‖y(t)−h(x̄(t))‖ ≤ Mǫ for t ∈ [tb, t f ],

provided ǫ < ǫ∗ and (x0,y0) ∈Ω.

Example 3.11 (Hill function). In Section 2.1, we obtained the expression of the
Hill function by making a quasi-steady state approximation on the dynamics of re-
versible binding reactions. Here, we illustrate how Hill function expressions can be
derived by a formal application of singular perturbation theory. Specifically, con-
sider the simple binding scenario of a transcription factor X with DNA promoter
sites p. Assume that such a transcription factor is acting as an activator of the pro-
moter and let Y be the protein expressed under promoter p. Assume further that
X dimerizes before binding to promoter p. The reaction equations describing this
system are given by

X+X
k1−−⇀↽−−
k2

X2, X2+p
a−⇀↽−
d

C, C
k f−→mY+C,

mY
κ−→mY+Y, mY

δ−→ ∅, Y
γ
−→ ∅, p+C = ptot.

The corresponding differential equation model is given by

dX2

dt
= k1X2− k2X2−aX2(ptot−C)+dC,

dmY

dt
= k fC−δmY,

dC

dt
= aX2(ptot−C)−dC,

dY

dt
= κmY−γY,

in which we view X(t) as an input to the system. We will see later in Chapter 6
that the dynamics of the input X(t) will be “perturbed” by the physical process of
reversible binding that makes it possible for the system to take X as an input.

Since all the binding reactions are much faster than mRNA and protein produc-
tion and decay, we have that k2,d≫ k f, κ,δ,γ. Let Km := k2/k1, Kd := d/a, c := k2/d,
and ǫ := γ/d. Then, we can rewrite the above system by using the substitutions

d =
γ

ǫ
, a =

γ

Kdǫ
, k1 = c

γ

Kmǫ
, k2 = c

γ

ǫ
,

so that we obtain

ǫ
dX2

dt
= c
γ

Km
X2− cγX2−

γ

Kd
X2(ptot−C)+γC,

dmY

dt
= k fC−δmY,

ǫ
dC

dt
=
γ

Kd
X2(ptot−C)−γC, dY

dt
= κmY−γY.
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This system is in the standard singular perturbation form (3.24). As an exercise,
the reader can verify that the slow manifold is locally asymptotically stable (see
Exercise 3.10). The slow manifold is obtained by setting ǫ = 0 and determines X2

and C as functions of X. These functions are given by

X2 =
X2

Km
, C =

ptotX
2/(KmKd)

1+X2/(KmKd)
.

As a consequence, the reduced system becomes

dmY

dt
= k f

ptotX
2/(KmKd)

1+X2/(KmKd)
−δmY,

dY

dt
= κmY−γY,

which is the familiar expression for the dynamics of gene expression with an acti-
vator as derived in Section 2.1. Specifically, letting α = k f ptot and K =

√
KmKd, we

have that

F(X) = α
(X/K)2

1+ (X/K)2

is the standard Hill function expression. ∇

Example 3.12 (Enzymatic reaction). Recall the enzymatic reaction

E+S
a−⇀↽−
d

C
k−→ E+P,

in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the substrate
S due to the binding with the enzyme E. The corresponding system of differential
equations is given by

dE

dt
= −aES +dC+ kC,

dC

dt
= aES − (d+ k)C,

dS

dt
= −aES +dC,

dP

dt
= kC.

(3.25)

By considering that binding and unbinding reactions are much faster than the cat-
alytic reactions, mathematically expressed by d ≫ k, we showed before that by
approximating dC/dt = 0, we obtain C = EtotS /(S +Km), with Km = (d+ k)/a and
dP/dt = VmaxS /(S +Km) with Vmax = kEtot. From this, it also follows that

dE

dt
≈ 0 and

dS

dt
≈ −dP

dt
. (3.26)

How good is this approximation? By applying the singular perturbation method,
we will obtain a clear answer to this question. Specifically, define Kd := d/a and
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convert the system to standard singular perturbation form by defining the small
parameter ǫ := k/d, so that d = k/ǫ, a = k/(Kdǫ), and the system becomes

ǫ
dE

dt
= − k

Kd
ES + kC+ ǫkC, ǫ

dC

dt
=

k

Kd
ES − kC− ǫkC,

ǫ
dS

dt
= − k

Kd
ES + kC,

dP

dt
= kC.

We cannot directly apply singular perturbation theory on this system because
from the linearization of the first three equations, we see that the boundary layer
dynamics are not locally asymptotically stable since there are two zero eigenvalues.
This is because the three variables E,S ,C are not independent. Specifically, E =

Etot −C and S +C +P = S (0) = S tot, assuming that initially we have S in amount
S (0) and no P and C in the system. Given these conservation laws, the system can
be rewritten as

ǫ
dC

dt
=

k

Kd
(Etot−C)(S tot−C−P)− kC− ǫkC,

dP

dt
= kC.

Under the assumption made in the analysis of the enzymatic reaction that S tot ≫
Etot, we have that C≪ S tot so that the equations finally become

ǫ
dC

dt
=

k

Kd
(Etot−C)(S tot−P)− kC− ǫkC,

dP

dt
= kC.

We can verify (see Exercise 3.11) that in this system the boundary layer dynam-
ics are locally asymptotically stable, so that setting ǫ = 0 one obtains

C̄ =
Etot(S tot− P̄)

(S tot− P̄)+Km
=: h(P̄),

and thus that the reduced system is given by

dP̄

dt
= Vmax

(S tot− P̄)

(S tot− P̄)+Km
.

This system is the same as that obtained in Chapter 2. However, dC(t)/dt and
dE(t)/dt are not close to zero as obtained earlier. In fact, from the conservation
law S̄ +C̄+ P̄ = S (0) = S tot, we obtain that dS̄ /dt = −dP̄/dt−dC̄/dt, in which now
dC̄/dt = ∂h/∂P(P̄) ·dP̄/dt. Therefore, we have that

dĒ

dt
= −dC̄

dt
= − ∂h
∂P

(P̄)
dP̄

dt
, E(0) = Etot−h(P̄(0)), (3.27)

and
dS̄

dt
= −dP̄

dt
(1+
∂h

∂P
(P̄)), S̄ (0) = S tot−h(P̄(0))− P̄(0), (3.28)
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Figure 3.22: Simulation results for the enzymatic reaction comparing the approximations
from singular perturbation and from the quasi-steady state approximation (QSSA). Here,
we have S tot = 100 nM, Etot = 1 nM, a = 10 nM−1 min−1, d = 10 min−1, and k = 0.1 min−1.
The full model is the one in equations (3.25).

which are different from expressions (3.26).
These expressions are close to those in equation (3.26) only when ∂h/∂P is

small enough. In the plots of Figure 3.22, we show the time trajectories of the orig-
inal system, of the Michaelis-Menten quasi-steady state approximation (QSSA),
and of the singular perturbation approximation. In the original model (solid line
in Figure 3.22), E(t) starts from a unit concentration and immediately collapses to
zero as the enzyme is all consumed to form the complex C by the substrate, which
is in excess. Similarly, C(t) starts from zero and immediately reaches the maximum
possible value of one.

In the quasi-steady state approximation, both E(t) and C(t) are assumed to sta-
bilize immediately to their (quasi) steady state and then stay constant. This is de-
picted by the dotted plots in Figure 3.22, in which E(t) stays at zero for the whole
time and C(t) stays at one for the whole time. This approximation is fairly good
as long as there is an excess of substrate. When the substrate concentration goes
to zero as it is all converted to product, the complex concentration C goes back to
zero (see solid line of Figure 3.22). At this time, the concentrations of complex and
enzyme substantially change with time and the quasi-steady state approximation is
unsatisfactory. By contrast, the reduced dynamics obtained from the singular per-
turbation approach well represent the dynamics of the full system even during this
transient time. Hence, while the quasi-steady state approximation is good only as
long as there is an excess of substrate in the system, the reduced dynamics ob-
tained by the singular perturbation approach are a good approximation even when
the substrate concentration goes to zero.

In Figure 3.23, we show the curve C = h(P) and the trajectories of the full sys-
tem. All of the trajectories of the system immediately collapse into an ǫ-neighbor
of the curve C = h(P). From this plot, it is clear that ∂h/∂P is small as long as the
product concentration P is small enough, which corresponds to a substrate concen-
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Figure 3.23: The slow manifold of the system C = h(P) is shown by the solid line. The
dashed lines show the trajectories of the full system (3.25). These trajectories collapse into
an ǫ-neighbor of the slow manifold.

tration S large enough. This confirms that the quasi-steady state approximation is
good only as long as there is excess of substrate S . ∇

Exercises

3.1 (Frequency response of a phosphorylation cycle) Consider the model of a co-
valent modification cycle as illustrated in Chapter 2 in which the kinase Z is not

conserved, but it is produced and decays according to the reaction Z
γ
−−−⇀↽−−−
u(t)
∅. Let

u(t) be the input stimulus of the cycle and let X∗ be the output. Determine the fre-
quency response of X∗ to u, determine its bandwidth, and make plots of it. What
parameters can be used to tune the bandwidth?

3.2 (Design for robustness) Consider a one-step reaction model for a phosphory-
lation cycle as seen in Section 2.4, in which the input stimulus is the time-varying
concentration of kinase Z(t). When found in the cellular environment, this cycle is
subject to possible interactions with other cellular components, such as the non-
specific or specific binding of X* to target sites, to noise due to stochasticity of the
cellular environment, and to other crosstalk phenomena. For now, we can think of
these disturbances as acting like an aggregate rate of change on the output protein
X*, which we call d(t). Hence, we can model the “perturbed” cycle by

X∗

dt
= Z(t)k1Xtot

(

1− X∗

Xtot

)

− k2YtotX
∗+d(t).

Assume that you can tune all the parameters in this system. Can you tune these
parameters so that the response of X∗(t) to d(t) is arbitrarily attenuated while the
response of X∗(t) to Z(t) remains arbitrarily large? If yes, explain how these param-
eters should be tuned to reach this design objective.
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3.3 (Design limitations) This problem illustrates possible limitations that are in-
volved in any realistic design question. Here, we examine this through the open
loop and negative feedback transcriptional component. Specifically, we want to
compare the robustness of these two topologies to perturbations. We model these
perturbations as a time-varying disturbance affecting the production rate of mRNA
m and protein P. To slightly simplify the problem, we focus only on disturbances
affecting the production of protein. The open loop model becomes

dmP

dt
= α0−δmP,

dP

dt
= κmP−γP+d(t),

and the negative feedback system becomes

dmP

dt
= α0+

α

1+ (P/K)n
−δmP,

dP

dt
= κmP−γP+d(t).

Answer the following questions:

(i) After performing linearization about the equilibrium point, determine ana-
lytically the frequency response of P to d for both systems.

(ii) Sketch the magnitude plot of this response for both systems, compare them,
and determine what happens as κ and α increase (note: if your calculations
are correct, you should find that what really matters for the negative feed-
back system is the product ακ, which we can view as the feedback gain). Is
increasing the feedback gain the best strategy to decrease the sensitivity of
the system to the disturbance?

(iii) Pick parameter values and use MATLAB to draw plots of the frequency re-
sponse magnitude and phase as the feedback gain increases and validate your
predictions in (b). (Suggested parameters: δ= 1 hrs−1, γ = 1 hrs−1, K = 1 nM,
n = 1, ακ = {1,10,100,1000, ...}.)

(iv) Investigate the answer to (c) when you have δ = 20 hrs−1, that is, the time-
scale of the mRNA dynamics becomes faster than that of the protein dynam-
ics. What changes with respect to what you found in (c)?

(v) When δ is at least 10 times larger than γ, you can approximate the m dynam-
ics to the quasi-steady state. So, the two above systems can be reduced to
one differential equation. For these two reduced systems, determine analyti-
cally the frequency response to d and use it to determine whether arbitrarily
increasing the feedback gain is a good strategy to decrease the sensitivity of
response to the disturbance.

3.4 (Adaptation) Show that the dynamics of the “sniffer” in equation (3.16) can
be taken into the standard integral feedback form through a suitable change of
coordinates.
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Figure 3.24: Circuit topologies with two proteins: A and B.

3.5 (Bendixson criterion) Consider the system

dx1

dt
= −x3

2+δx
3
1,

dx2

dt
= x3

1.

When δ > 0, Bendixson’s criterion rules out the existence of a periodic solution
in R2. Assume now δ = 0, and determine whether the system admits a limit cycle
in R2. (Hint: consider the function V = x2

1 + x2
2 and determine the behavior of V(t)

when x1(t) and x2(t) are solutions to the above system.)

3.6 (Bendixson criterion) Consider the possible circuit topologies of Figure 3.24,
in which A and B are proteins and activation (→) and repression (⊣) interactions
represent transcriptional activation or repression. Approximate the mRNA dynam-
ics at the quasi-steady state. Use Bendixson’s criterion to rule out topologies that
cannot give rise to closed orbits.

3.7 (Two gene oscillator) Consider the feedback system composed of two genes
expressing proteins A (activator) and R (repressor), in which we denote by A, R,
mA, and mR, the concentrations of the activator protein, the repressor protein, the
mRNA for the activator protein, and the mRNA for the repressor protein, respec-
tively. The differential equation model corresponding to this system is given by

dmA

dt
=

α

1+ (R/K1)n
−δmA,

dA

dt
= κmA−γA,

dmR

dt
=
α(A/K2)m

1+ (A/K2)m
−δmR,

dR

dt
= κmR−γR.
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Determine parameter conditions under which this system admits a stable limit cy-
cle. Validate your findings through simulation.

3.8 (Goodwin oscillator) Consider the simple set of reactions

X1
k−→ X2

k−→ X3...
k−→ Xn.

Assume further that Xn is a transcription factor that represses the production of pro-
tein X1 through transcriptional regulation (assume simple binding of Xn to DNA).
Neglecting the mRNA dynamics of X1, write the differential equation model of
this system and determine conditions on the length n of the cascade for which the
system admits a stable limit cycle. Validate your findings through simulation.

3.9 (Phosphorylation via singular perturbation) Consider again the model of a co-
valent modification cycle as illustrated in Section 2.4 in which the kinase Z is not
constant, but it is produced and decays according to the reaction

Z
γ
−−−⇀↽−−−

u(t)
∅.

(i) Consider that d≫ k,γ,u(t) and employ singular perturbation with small pa-
rameter ǫ = γ/d to obtain the approximated dynamics of Z(t) and X∗(t). How
is this different from the result obtained in Exercise 2.12?

(ii) Simulate these approximated dynamics when u(t) is a periodic signal with
frequency ω and compare the responses of Z of these approximated dynam-
ics to those obtained in Exercise 2.12 as you changeω. What do you observe?
Explain.

3.10 (Hill function via singular perturbation) Show that the slow manifold of the
following system is asymptotically stable:

ǫ
dX2

dt
= c
γ

Km
X2− cγX2−

γ

Kd
X2(ptot−C)+γC,

dmY

dt
= αC−δmY,

ǫ
dC

dt
=
γ

Kd
X2(ptot−C)−γC, dY

dt
= βmY−γY.

3.11 (Enzyme dynamics via singular perturbation) Show that the slow manifold of
the following system is asymptotically stable:

ǫ
dC

dt
=

k

Kd
(Etot−C) · (S tot−P)− kC− ǫkC,

dP

dt
= kC.
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Chapter 4

Stochastic Modeling and Analysis

In this chapter we explore stochastic behavior in biomolecular systems, building
on our preliminary discussion of stochastic modeling in Section 2.1. We begin
by reviewing methods for modeling stochastic processes, including the chemical
master equation (CME), the chemical Langevin equation (CLE) and the Fokker-
Planck equation (FPE). Given a stochastic description, we can then analyze the
behavior of the system using a collection of stochastic simulation and analysis
tools. This chapter makes use of a variety of topics in stochastic processes; readers
should have a good working knowledge of basic probability and some exposure to
simple stochastic processes.

4.1 Stochastic modeling of biochemical Systems

Biomolecular systems are inherently noisy due to the random nature of molec-
ular reactions. When the concentrations of molecules are high, the deterministic
models we have used in the previous chapters provide a good description of the
dynamics of the system. However, if the molecular counts are low then it is often
necessary to explicitly account for the random nature of events. In this case, the
chemical reactions in the cell can be modeled as a collection of stochastic events
corresponding to chemical reactions between species. These include binding and
unbinding of molecules (such as RNA polymerase and DNA), conversion of one
set of species into another, and enzymatically controlled covalent modifications
such as phosphorylation. In this section we will briefly survey some of the differ-
ent representations that can be used for stochastic models of biochemical systems,
following the material in the textbooks by Phillips et al. [76], Gillespie [31] and
Van Kampen [51].

Statistical mechanics

At the core of many of the reactions and multi-molecular interactions that take
place inside of cells is the chemical physics associated with binding between two
molecules. One way to capture some of the properties of these interactions is
through the use of statistical mechanics and thermodynamics.

As described briefly already in Chapter 2, the underlying representation for
both statistical mechanics and chemical kinetics is to identify the appropriate mi-
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Figure 4.1: System in contact with a reservoir. While there is exchange of energy between
the system and the reservoir, there is no exchange of energy between them and the rest of
the world.

crostates of the system. A microstate corresponds to a given configuration of the
components (species) in the system relative to each other and we must enumerate
all possible configurations between the molecules that are being modeled.

In statistical mechanics, we model the configuration of the cell by the probabil-
ity that the system is in a given microstate. This probability can be calculated based
on the energy levels of the different microstates. Consider a setting in which our
system is in contact with a reservoir (Figure 4.1). Let Er represent the energy in
the reservoir, Es the energy in the system and Etot = Er +Es the total (conserved)
energy. Given two different energy levels Eq1 and Eq2 for the system of interest,
let Wr(Etot − Eqi

) be the number of possible microstates of the reservoir with en-
ergy Er = Etot−Eqi

, i = 1,2. The laws of statistical mechanics state that the ratio of
probabilities of being in microstates q1 and q2 is given by the ratio of the number
of possible states of the reservoir:

P(Eq1)

P(Eq2)
=

Wr(Etot−Eq1)

Wr(Etot−Eq2)
. (4.1)

Defining the entropy of the reservoir as S r = kB lnWr, where kB is Boltzmann’s
constant, we can rewrite equation (4.1) as

Wr(Etot−Eq1)

Wr(Etot−Eq2)
=

eS r(Etot−Eq1 )/kB

eS r(Etot−Eq2 )/kB
.

We now approximate S r(Etot−Es) in a Taylor series expansion around Etot, under
the assumption that Er ≫ Eqi

:

S r(Etot−Es) ≈ S r(Etot)−
∂S r

∂E
Es.

From the properties of thermodynamics, if we hold the volume and number of
molecules constant, then we can define the temperature as

∂S

∂E

∣
∣
∣
∣
∣
V,N

=
1
T
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and we obtain
P(Eq1)

P(Eq2)
=

e−Eq1/kBT

e−Eq2/kBT
.

This implies that
PEq ∝ e−Eq/(kBT )

and hence the probability of being in a microstate q is given by

P(q) =
1
Z

e−Eq/(kBT ), (4.2)

where we have written Eq for the energy of the microstate and Z is a normalizing
factor, known as the partition function, defined by

Z =
∑

q∈Q
e−Eq/(kBT ).

In many situations we do not care about the specific microstate that a system
is in, but rather whether the system is in any one of a number of microstates that
all correspond to the same overall behavior of the system. For example, we will
often not care whether a specific RNA polymerase is bound to a promoter, but
rather whether any RNA polymerase is bound to that promoter. We call the col-
lection of microstates that is of interest a macrostate (or sometimes system state).
A macrostate is defined as a set of states S ⊂ Q that correspond to a given condi-
tion that we wish to monitor. Given a macrostate S , the probability of being in that
macrostate is

P(S ) =
1
Z

∑

q∈S
e−Eq/(kBT ) =

∑

q∈S e−Eq/(kBT )

∑

q∈Q e−Eq/(kBT )
. (4.3)

It is this probability that allows us, for example, to determine whether any RNA
polymerase molecule is bound to a given promoter, averaged over many indepen-
dent samples. We can then use this probability to determine the rate of expression
of the corresponding gene.

Example 4.1 (Transcription factor binding). Suppose that we have a transcription
factor R that binds to a specific target region on a DNA strand (such as the pro-
moter region upstream of a gene). We wish to find the probability Pbound that the
transcription factor will be bound to this location as a function of the number of
transcription factor molecules nR in the system. If the transcription factor is a re-
pressor, for example, knowing Pbound(nR) will allow us to calculate the likelihood
of transcription occurring.

To compute the probability of binding, we assume that the transcription factor
can bind non-specifically to other sections of the DNA (or other locations in the
cell) and we let Nns represent the number of such sites. We let Ebound represent the
free energy associated with R bound to its specified target region and Ens represent



biochem.tex, v5737 2014-06-14 21:01:57Z (murray)

142 CHAPTER 4. STOCHASTIC MODELING AND ANALYSIS

the free energy for R in any other non-specific location, where we assume that
Ebound < Ens. The microstates of the system consist of all possible assignments of
the nR transcription factors to either a non-specific location or the target region of
the DNA. Since there is only one target site, there can be at most one transcription
factor attached there and hence we must count all of the ways in which either zero
or one molecule of R are attached to the target site.

If none of the nR copies of R are bound to the target region then these must be
distributed between the Nns non-specific locations. Each bound protein has energy
Ens, so the total energy for any such configuration is nREns. The number of such
combinations is

(
Nns
nR

)

, assuming the R’s are indistinguishable, and so the contribu-
tion to the partition function from these microstates is

Zns =

(

Nns

nR

)

e−nREns/(kBT ) =
Nns!

nR!(Nns−nR)!
e−nREns/(kBT ).

For the microstates in which one molecule of R is bound at a target site and the
other nR −1 molecules are at the non-specific locations, we have a total energy of
Ebound+ (nR−1)Ens and

(
Nns

(nR−1)

)

possible such states. The resulting contribution to
the partition function is

Zbound =
Nns!

(nR−1)!(Nns−nR+1)!
e−(Ebound−(nR−1)Ens)/(kBT ).

The probability that the target site is occupied is now computed by looking at
the ratio of the Zbound to Z = Zns+Zbound. After some basic algebraic manipulations,
it can be shown that

Pbound(nR) =

(
nR

Nns−nR+1

)

exp
[−(Ebound+Ens)/(kBT )

]

1+
(

nR
Nns−nR+1

)

exp
[−(Ebound+Ens)/(kBT )

] .

If we assume that Nns≫ nR then Nns−nR+1 ≈ Nns, and we can write

Pbound(nR) ≈ knR

1+ knR
, where k =

1
Nns

exp
[−(Ebound−Ens)/(kBT )

]

. (4.4)

As we would expect, this says that for very small numbers of repressors, Pbound

is close to zero, while for large numbers of repressors, Pbound → 1. The point at
which we get a binding probability of 0.5 is when nR = 1/k, which depends on the
relative binding energies and the number of non-specific binding sites. ∇

Example 4.2 (Combinatorial promoter). As mentioned in Section 2.3, a combina-
torial promoter is a region of DNA in which multiple transcription factors can bind
and influence the subsequent binding of RNA polymerase (RNAP). Combinatorial
promoters appear in a number of natural and engineered circuits and represent a
mechanism for creating switch-like behavior.
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Figure 4.2: Two possible configurations of a combinatorial promoter where both an activa-
tor and a repressor can bind to specific operator sites. We show configurations S 3 and S 5
referring to Table 4.1.

One method to model a combinatorial promoter is to use the binding energies
of the different combinations of proteins to the operator region, and then compute
the probability of being in a given promoter state given the concentration of each of
the transcription factors. Table 4.1 shows the possible states of a notional promoter
that has two operator regions—one that binds a repressor protein R and another
that binds an activator protein A.

As indicated in the table, the promoter has three (possibly overlapping) regions
of DNA: OR1 and OR2 are binding sites for the repressor and activator proteins,
respectively, and Prom is the location where RNA polymerase binds. (The indi-
vidual labels are primarily for bookkeeping purposes and may not correspond to
physically separate regions of DNA.)

To determine the probabilities of being in a given macrostate, we must com-
pute the individual microstates that occur at given concentrations of repressor, ac-
tivator and RNA polymerase. Each microstate corresponds to an individual set of
molecules binding in a specific configuration. So if we have nR repressor molecules,

Table 4.1: Configurations for a combinatorial promoter with an activator and a repres-
sor. Each row corresponds to a specific macrostate of the promoter in which the listed
molecules are bound to the target region. The relative energy of a state compared with
the ground state provides a measure of the likelihood of that state occurring, with more
negative numbers corresponding to more energetically favorable configurations.

State S q OR1 OR2 Prom Eq (∆G) Comment

S 1 – – – 0 No binding (ground state)
S 2 – – RNAP −5 RNA polymerase bound
S 3 R – – −10 Repressor bound
S 4 – A – −12 Activator bound
S 5 – A RNAP −15 Activator and RNA polymerase
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then there is one microstate corresponding to each different repressor molecule that
is bound, resulting in nR individual microstates. In the case of configuration S 5,
where two different molecules are bound, the number of combinations is given by
the product of the numbers of individual molecules, nA ·nRNAP, reflecting the pos-
sible combinations of molecules that can occupy the promoter sites. The overall
partition function is given by summing up the contributions from each microstate:

Z = e−E1/(kBT )+nRNAP e−E2/(kBT )+nR e−E3/(kBT )

+nA e−E4/(kBT )+nAnRNAP e−E5/(kBT ). (4.5)

The probability of a given macrostate is determined using equation (4.3). For
example, if we define the promoter to be “active” if RNA polymerase is bound
to the DNA, then the probability of being in this macrostate as a function of the
various molecular counts is given by

Pactive(nR,nA,nRNAP) =
1
Z

(

nRNAP e−E2/(kBT )+nA nRNAPe−E5/(kBT )
)

=
k5 nA+ k2

1+ k2+ k3 nR+ (k4+ k5)nA
,

where
kq = e−(Eq−E1)/(kBT ).

From this expression we see that if nR≫ nA then Pactive tends to 0 while if nA≫ nR

then Pactive tends to 1, as expected.
∇

Chemical master equation (CME)

The statistical physics model we have just considered gives a description of the
steady state properties of the system. In many cases, it is clear that the system
reaches this steady state quickly and hence we can reason about the behavior of the
system just by modeling the energy of the system. In other situations, however, we
care about the transient behavior of a system or the dynamics of a system that does
not have an equilibrium configuration. In these instances, we must extend our for-
mulation to keep track of how quickly the system transitions from one microstate
to another, known as the chemical kinetics of the system.

To model these dynamics, we return to our enumeration of all possible mi-
crostates of the system. Let P(q, t) represent the probability that the system is in
microstate q at a given time t. Here q can be any of the very large number of
possible microstates for the system, which for chemical reaction systems we can
represent in terms of a vector consisting of the number of molecules of each species
that is present. We wish to write an explicit expression for how P(q, t) varies as a
function of time, from which we can study the stochastic dynamics of the system.
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We begin by assuming we have a set of M reactions Rj, j = 1, . . . ,M, with ξ j

representing the change in state associated with reaction Rj. Specifically, ξ j is given
by the jth column of the stoichiometry matrix N (Section 2.1). The propensity

function defines the probability that a given reaction occurs in a sufficiently small
time step dt:

a j(q, t)dt = Probability that reaction Rj will occur between time t

and time t+dt given that the microstate is q.

The linear dependence on dt relies on the fact that dt is chosen sufficiently small.
We will typically assume that a j does not depend on the time t and write a j(q)dt

for the probability that reaction j occurs in state q.
Using the propensity function, we can compute the distribution of states at time

t+dt given the distribution at time t:

P(q, t+dt) = P(q, t)
M∏

j=1

(

1−a j(q)dt
)

+

M∑

j=1

P(q− ξ j)a j(q− ξ j)dt

= P(q, t)+
M∑

j=1

(

a j(q− ξ j)P(q− ξ j, t)−a j(q)P(q, t)
)

dt+O(dt2),

(4.6)

where O(dt2) represents higher order terms in dt. Since dt is small, we can take the
limit as dt→ 0 and we obtain the chemical master equation (CME):

∂P

∂t
(q, t) =

M∑

j=1

(

a j(q− ξ j)P(q− ξ j, t)−a j(q)P(q, t)
)

. (4.7)

This equation is also referred to as the forward Kolmogorov equation for a discrete
state, continuous time random process.

Despite its complexity, the master equation does capture many of the important
details of the chemical physics of the system and we shall use it as our basic repre-
sentation of the underlying dynamics. As we shall see, starting from this equation
we can then derive a variety of alternative approximations that allow us to answer
specific questions of interest.

The key element of the master equation is the propensity function a j(q), which
governs the rate of transition between microstates. Although the detailed value of
the propensity function can be quite complex, its functional form is often relatively
simple. In particular, for a unimolecular reaction of the form A→ B, the propensity
function is proportional to the number of molecules of A that are present:

a j(q) = k jnA. (4.8)

This follows from the fact that the reaction associated with each molecule is inde-
pendent and hence the likelihood of a reaction happening depends directly on the
number of copies of A that are present.
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Similarly, for a bimolecular reaction, we have that the likelihood of a reaction
occurring is proportional to the product of the number of molecules of each type
that are present (since this is the number of independent reactions that can occur)
and inversely proportional to the volume Ω. Hence, for a reaction of the form A+
B −−→ C we have

a j(q) =
k j

Ω
nAnB. (4.9)

The rigorous verification of this functional form is beyond the scope of this text, but
roughly we keep track of the likelihood of a single reaction occurring between A
and B and then multiply by the total number of combinations of the two molecules
that can react (nA ·nB).

A special case of a bimolecular reaction occurs when A=B, so that our reaction
is given by A+A → B. In this case we must take into account that a molecule
cannot react with itself and that the molecules are indistinguishable, and so the
propensity function is of the form

a j(q) =
k j

Ω
· nA(nA−1)

2
. (4.10)

Here, nA(nA−1)/2 represents the number of ways that two molecules can be chosen
from a collection of nA identical molecules.

Note that the use of the parameter k j in the propensity functions above is in-
tentional since it corresponds to the reaction rate parameter that is present in the
reaction rate equation models we used in Chapter 2. The factor of Ω for bimolecu-
lar reactions models the fact that the propensity of a bimolecular reaction occurring
depends explicitly on the volume in which the reaction takes place.

Although it is tempting to extend the formula for a bimolecular reaction to the
case of more than two species being involved in a reaction, usually such reactions
actually involve combinations of bimolecular reactions, e.g.:

A+B+C −−→ D =⇒ A+B −−→ AB, AB+C −−→ D.

This more detailed description reflects the fact that it is extremely unlikely that
three molecules will all come together at precisely the same instant. The much
more likely possibility is that two molecules will initially react, followed by a sec-
ond reaction involving the third molecule.

Example 4.3 (Repression of gene expression). We consider a simple model of
repression in which we have a promoter that contains binding sites for RNA poly-
merase and a repressor protein R. RNA polymerase only binds when the repressor
is absent, after which it can undergo an isomerization reaction to form an open
complex and initiate transcription (see Section 2.2). Once the RNA polymerase
begins to create mRNA, we assume the promoter region is uncovered, allowing
another repressor or RNA polymerase to bind.
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The following reactions describe this process:

R1 : R+DNA −−→ R:DNA,

R2 : R:DNA −−→ R+DNA,

R3 : RNAP+DNA −−→ RNAP:DNAc,

R4 : RNAP:DNAc −−→ RNAP+DNA,

R5 : RNAP:DNAc −−→ RNAP:DNAo,

R6 : RNAP:DNAo −−→ RNAP+DNA+mRNA,

where RNAP : DNAc represents the closed complex and RNAP : DNAo represents
the open complex, and reaction R6 lumps together start of transcription, elongation,
mRNA creation, and termination. The states for the system depend on the number
of molecules of each species that are present. If we assume that we start with nR

repressors and nRNAP RNA polymerases, then the possible states (S) for our system
are outlined below.

S DNA R RNAP R : DNA RNAP : DNAc RNAP : DNAo

q1 1 nR nRNAP 0 0 0
q2 0 nR−1 nRNAP 1 0 0
q3 0 nR nRNAP−1 0 1 0
q4 0 nR nRNAP−1 0 0 1

Note that we do not keep track of each individual repressor or RNA polymerase
molecule that binds to the DNA, but simply keep track of whether they are bound
or not.

We can now rewrite the chemical reactions as a set of transitions between the
possible microstates of the system. Assuming that all reactions take place in a vol-
umeΩ, we use the propensity functions for unimolecular and bimolecular reactions
to obtain:

R1 : q1 −−→ q2; a1(q1) = (k1/Ω)nR, R4 : q3 −−→ q1; a4(q3) = k4,

R2 : q2 −−→ q1; a2(q2) = k2, R5 : q3 −−→ q4; a5(q3) = k5,

R3 : q1 −−→ q3; a3(q1) = (k3/Ω)nRNAP, R6 : q4 −−→ q1; a6(q4) = k6.

The chemical master equation can now be written down using the propensity func-
tions for each reaction:

d

dt




P(q1, t)
P(q2, t)
P(q3, t)
P(q4, t)




=




−(k1/Ω)nR− (k3/Ω)nRNAP k2 k4 k6

(k1/Ω)nR −k2 0 0
(k3/Ω)nRNAP 0 −k4− k5 0

0 0 k5 −k6







P(q1, t)
P(q2, t)
P(q3, t)
P(q4, t)




.

The initial condition for the system can be taken as P(q,0)= (1,0,0,0), correspond-
ing to the state q1. A simulation showing the evolution of the probabilities is shown
in Figure 4.3.
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Figure 4.3: Numerical solution of chemical master equation for simple repression model.

The equilibrium solution for the probabilities can be solved by setting Ṗ = 0,
which yields:

Pe(q1) =
k2k6Ω(k4+ k5)

k1k6nR(k4+ k5)+ k2k3nRNAP(k5+ k6)+ k2k6Ω(k4+ k5)
,

Pe(q2) =
k1k6nR(k4+ k5)

k1k6nR(k4+ k5)+ k2k3nRNAP(k5+ k6)+ k2k6Ω(k4+ k5)
,

Pe(q3) =
k2k3k6nRNAP

k1k6nR(k4+ k5)+ k2k3nRNAP(k5+ k6)+ k2k6Ω(k4+ k5)
,

Pe(q4) =
k2k3k5nRNAP

k1k6nR(k4+ k5)+ k2k3nRNAP(k5+ k6)+ k2k6Ω(k4+ k5)
.

We see that the equilibrium distributions depend on the relative strengths of differ-
ent combinations of the rate constants for the individual reactions in the system.
For example, the probability that a repressor molecule is bound to the promoter is
given by

Pbound(nR) = Pe(q2) =
k1k6nR(k4+ k5)

k1k6nR(k4+ k5)+ k2k3nRNAP(k5+ k6)+ k2k6Ω(k4+ k5)
,

which has a functional form similar to equation (4.4). Note that here the probability
depends on the volume Ω because we used a different model for the diffusion of
the repressor R (previously we assumed all repressors were non-specifically bound
to DNA).

∇

Example 4.4 (Transcription of mRNA). Consider the production of mRNA from
a single copy of DNA. We have two basic reactions that can occur: mRNA can
be produced by RNA polymerase transcribing the DNA and producing an mRNA
strand, or mRNA can be degraded. We represent the microstate q of the system in
terms of the number of mRNA’s that are present, which we write as n for ease of
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notation. The reactions can now be represented as ξ1 = +1, corresponding to tran-
scription, and ξ2 = −1, corresponding to degradation. We choose as our propensity
functions

a1(n) = α, a2(n) = δn,

by which we mean that the probability that a gene is transcribed in time dt is αdt

and the probability that a transcript is created in time dt is δndt (proportional to the
number of mRNA’s).

We can now write down the master equation as described above. Equation (4.6)
becomes

P(n, t+dt) = P(n, t)
(

1−
∑

i=1,2

ai(n)dt
)

+
∑

i=1,2

P(n− ξi, t)ai(q− ξi)dt

= P(n, t)−a1(n)P(n, t)−a2(n)P(n, t)

+a1(n−1)P(n−1, t)+a2(n+1)P(n+1, t)

= P(n, t)+αP(n−1, t)dt− (α+δn)P(n, t)dt+δ(n+1)P(n+1, t)dt.

This formula holds for n = 1,2, . . . , with the n = 0 case satisfying

P(0, t+dt) = P(0, t)−αP(0, t)dt+δP(1, t)dt.

Notice that we have an infinite number of equations, since n can be any positive
integer.

We can write the differential equation version of the master equation by sub-
tracting the first term on the right-hand side and dividing by dt:

d

dt
P(n, t) = αP(n−1, t)− (α+δn)P(n, t)+δ(n+1)P(n+1, t), n = 1,2, . . .

d

dt
P(0, t) = −αP(0, t)dt+δP(1, t).

Again, this is an infinite number of differential equations, although we could take
some limit N and simply declare that P(N, t) = 0 to yield a finite number.

One simple type of analysis that can be done on this equation without truncating
it to a finite number is to look for a steady state solution to the equation. In this
case, we set Ṗ(n, t) = 0 and look for a constant solution P(n, t) = pe(n). This yields
an algebraic set of relations

0 = −αpe(0)+δpe(1) αpe(0) = δpe(1)

0 = αpe(0)− (α+δ)pe(1)+2δpe(2) αpe(1) = 2δpe(2)

0 = αpe(1)− (α+2δ)pe(2)+3δpe(3) =⇒ αpe(2) = 3δpe(3)
...

...

0 = αpe(n−1)− (α+δn)pe(n)+δ(n+1)pe(n+1) αp(n−1) = nδp(n).
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Using this recursive expression to obtain p(n) as a function of p(0), we obtain

p(n) =
(
α

δ

)n 1
n!

p(0).

Further, using that
∑∞

n=0 p(n) = 1, we have that

∞∑

n=0

(
α

δ

)n 1
n!

p(0) = 1,

from which, considering that
∑∞

n=0

(
α
δ

)n 1
n! = eα/δ, we obtain p(0) = e−α/δ, which

finally leads to the Poisson distribution

p(n) = eα/δ
(α/δ)n

n!
.

The mean, variance and coefficient of variation (CV), given by the ratio between
the standard deviation and the mean, are thus

µ =
α

δ
, σ2 =

α

δ
, CV =

σ

µ
=

1
√
µ
=

√

δ

α
.

The coefficient of variation is commonly used to quantify how noisy a process is
since it provides a measure of the deviation relative to the mean value. Note that
for fixed variance, the coefficient of variation increases if µ decreases. Thus as we
have a small number of mRNA molecules present, we see higher variability in the
(relative) mRNA concentration. ∇

Chemical Langevin equation (CLE)

The chemical master equation gives a complete description of the evolution of the
probability distribution of a system, but it can often be quite cumbersome to work
with directly. A number of approximations to the master equation are thus used
to provide more tractable formulations of the dynamics. The first of these that we
shall consider is known as the chemical Langevin equation (CLE).

To derive the chemical Langevin equation, we start by assuming that the number
of molecules in the system is large and that we can therefore represent the system
using a vector X ∈ Rn, with Xi representing the (real-valued) number of molecules
of species Si. (Often Xi will be divided by the volume to give a real-valued concen-
tration of species Si.) In addition, we assume that we are interested in the dynamics
on time scales in which individual reactions are not important and so we can look
at how the system state changes over time intervals in which many reactions occur
and hence the system state evolves in a smooth fashion.

Let X(t) be the state vector for the system, where we assume now that the ele-
ments of X are real-valued rather than integer valued. We make the further approx-
imation that we can lump together multiple reactions so that instead of keeping
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track of the individual reactions, we can average across a number of reactions over
a time τ to allow the continuous state to evolve in continuous time. The resulting
dynamics can be described by a stochastic process of the form

Xi(t+τ) = Xi(t)+
M∑

j=1

ξi ja j(X(t))τ+
M∑

j=1

ξi ja
1/2
j

(X(t))N j(0, τ),

where a j are the propensity functions for the individual reactions, ξi j are the corre-
sponding changes in the system states Xi andN j are a set of independent Gaussian
random variables with zero mean and variance τ.

If we assume that τ is small enough that we can use the derivative to approxi-
mate the previous equation (but still large enough that we can average over multiple
reactions), then we can write

dXi(t)
dt
=

M∑

j=1

ξ jia j(X(t))+
M∑

j=1

ξ jia
1/2
j

(X(t))Γ j(t) =: Ai(X(t))+
M∑

j=1

Bi j(X(t))Γ j(t),

(4.11)
where Γ j are white noise processes (see Section 4.3). This equation is called the
chemical Langevin equation (CLE).

Example 4.5 (Protein production). Consider a simplified two-step model of pro-
tein production in which mRNA is produced by DNA and protein by mRNA. We
do not model the detailed processes of isomerization and elongation of the mRNA
and polypeptide chains. We can capture the state of the system by keeping track of
the number of copies of DNA, mRNA, and protein, which we denote by XD, Xm

and XP, respectively, so that X = (XD,Xm,XP).
The simplified reactions with the corresponding propensity functions are given

by

R1 : DNA
α−→mRNA+DNA, ξ1 = (0,1,0), a1(X) = α XD,

R2 : mRNA
δ−→ φ, ξ2 = (0,−1,0), a2(X) = δ Xm,

R3 : mRNA
κ−→mRNA+protein, ξ3 = (0,0,1), a3(X) = κ Xm,

R4 : protein
γ
−→ φ, ξ4 = (0,0,−1), a4(X) = γ XP.

Using these, we can write the Langevin equation as

dXm

dt
= αXD−δXm+

√

αXDΓ1(t)−
√

δXmΓ2(t),

dXP

dt
= κXm−γXP+

√

κXmΓ3(t)−
√

γXpΓ4(t).

We can keep track of the species concentration by dividing the number of molecules
by the volume Ω. Letting m = Xm/Ω, P = XP/Ω, and α0 = αXD/Ω, we obtain the
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final expression

d

dt




m

P



=




−δ 0
κ −γ







m

P



+




α0

0



+

1
√
Ω




(√
α0+δm

)

Γm
(√
κm+γP

)

ΓP



,

where Γm and ΓP are independent Gaussian white noise processes (note that here
we have used that if Γ1 and Γ2 are independent identical Gaussian white noise
processes, then

√
aΓ1 +

√
bΓ2 =

√
a+bΓ with Γ a Gaussian white noise process

identical to Γi). ∇

The Langevin equation formulation is particularly useful as it allows us to study
the stochastic properties of the system by studying how the state responds to a
(stochastic) input. Hence, a few of the tools available for studying input/output
dynamic behavior can be employed (see Section 3.1, Section 3.2, and Section 4.3).

Fokker-Planck equations (FPE)

The chemical Langevin equation provides a stochastic ordinary differential equa-
tion that describes the evolution of the system state. A slightly different (but com-
pletely equivalent) representation of the dynamics is to model how the probabil-
ity distribution P(x, t) evolves in time. As in the case of the chemical Langevin
equation, we will assume that the system state is continuous and write down a for-
mula for the evolution of the density function p(x, t). This formula is known as the
Fokker-Planck equation (FPE) and is essentially an approximation to the chemical
master equation.

Consider first the case of a random process in one dimension. We assume that
the random process is in the same form as in the previous section:

dX(t)
dt
= A(X(t))+B(X(t))Γ(t). (4.12)

The function A(X) is called the drift term and B(X) is the diffusion term. It can
be shown that the probability density function for X, p(x, t), satisfies the partial
differential equation

∂p

∂t
(x, t) = − ∂

∂x

(

A(x, t)p(x, t)
)

+
1
2
∂2

∂x2

(

B2(x, t)p(x, t)
)

. (4.13)

Note that here we have shifted to the probability density function since we are
considering X to be a continuous state random process.

In the multivariate case, more care is required. Using the chemical Langevin
equation (4.11), we define

Di j(x, t) =
1
2

M∑

k=1

Bik(x, t)B jk(x, t), i < j = 1, . . . ,M.
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The Fokker-Planck equation now becomes

∂p

∂t
(x, t) = −

M∑

i=1

∂

∂xi

(

Ai(x, t)p(x, t)
)

+

M∑

i=1

M∑

j=1

∂2

∂xi∂x j

(

Di j(x, t)p(x, t)
)

. (4.14)

Note that the Fokker-Planck equation is very similar to the chemical master
equation: both provide a description of how the probability distribution varies as a
function of time. In the case of the Fokker-Planck equation, we regard the state as
a continuous set of variables and we write a partial differential equation for how
the probability density function evolves in time. In the case of the chemical master
equation, we have a discrete state (microstates) and we write an ordinary differ-
ential equation for how the probability distribution (formally the probability mass
function) evolves in time. Both formulations contain the same basic information,
just using slightly different representations of the system and the probability of
being in a given state.

Reaction rate equations (RRE)

As we already saw in Chapter 2, the reaction rate equations can be used to describe
the dynamics of a chemical system in the case where there are a large number of
molecules whose state can be approximated using just the concentrations of the
molecules. We re-derive the results from Section 2.1 here, being more careful to
point out what approximations are being made.

We start with the chemical Langevin equation (4.11), which has the form

dXi(t)
dt
=

M∑

j=1

ξ jia j(X(t))+
M∑

j=1

ξ jia
1/2
j

(X(t))Γ j(t).

While we have not derived this expression in detail, we note that the first term
simply says that the value of the random variable Xi fluctuates according to possible
reaction vectors ξ ji scaled by the probability that reaction j occurs in time dt.

We are now interested in how the mean of the concentration Xi evolves. Writing
〈Xi〉 for the mean (taken over many different samples of the random process), the
dynamics of the species at each point in time are given by

d〈Xi(t)〉
dt

=

M∑

j=1

ξ ji〈a j(X(t))〉, (4.15)

where the second term in the Langevin equation drops out under the assumption
that the Γ j’s are independent processes with zero mean. We see that the reaction rate
equations follow by defining xi = 〈Xi〉/Ω and assuming that 〈a j(X(t))〉 = a j(〈X(t)〉).
This relationship is true when a j is linear (e.g., in the case of a unimolecular reac-
tion), but is an approximation otherwise.
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The formal derivation of the reaction rate equations from the chemical master
equation and the chemical Langevin equation requires a number of careful assump-
tions (see the original work of Gillespie [33] for a full derivation). In particular,
it requires that the chemical system is well-stirred (no spatial structure), that the
molecular counts are sufficiently high that we can approximate concentrations with
real numbers, and that the time scales of interest are appropriately long so that mul-
tiple individual reactions can be appropriately averaged, and yet at the same time
sufficiently short so that we can approximate the derivative through a finite dif-
ferent approximation. As we have noted previously, most biological systems have
significant spatial structure (thus violating the well-stirred assumption), but models
based on that assumption are still very useful in many settings. The larger molec-
ular count assumption is more critical in using the reaction rate equation and one
must take care when molecular counts are in the single digits, for example.

4.2 Simulation of stochastic systems

Suppose that we want to generate a collection of sample trajectories for a stochastic
system whose evolution is described by the chemical master equation (4.7):

d

dt
P(q, t) =

∑

i

ai(q− ξi)P(q− ξi, t)−
∑

i

ai(q)P(q, t),

where P(q, t) is the probability of being in a microstate q at time t (starting from
q0 at time t0) and ai(q) is the propensity function for a reaction i starting at a
microstate q and ending at microstate q+ ξi. Instead of simulating the distribution
function P(q, t), we wish to simulate a specific instance q(t) starting from some
initial condition q0(t0). If we simulate many such instances of q(t), their distribution
at time t should match P(q, t).

The stochastic simulation algorithm

The stochastic simulation algorithm is a Monte Carlo procedure for numerically
generating time trajectories of the number of molecules of the various species
present in the system in accordance with the chemical master equation.

To illustrate the basic ideas that we will use, consider first a simple birth process
in which the microstate is given by an integer q ∈ {0,1,2, . . . } and we assume that
the propensity function is given by

a(q)dt = λdt, ξ = +1.

Thus the probability of transition increases linearly with the time increment dt (so
birth events occur at rate λ, on average). If we assume that the birth events are
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independent of each other, then it can be shown that the number of arrivals in time
τ is Poisson distributed with parameter λτ:

P
(

q(t+τ)−q(t) = ℓ
)

=
(λτ)ℓ

ℓ!
e−λτ,

where τ is the difference in time and ℓ is the difference in count q. In fact, this
distribution is a joint distribution in time τ and count ℓ. Setting ℓ = 1, it can be
shown that the time to the next reaction, T , follows an exponential distribution and
hence has density function

pT (τ) = λe−λτ.

The exponential distribution has expectation 1/λ and so we see that the average
time between events is inversely proportional to the reaction rate λ.

Consider next a more general case in which we have a countable number of mi-
crostates q ∈ {0,1,2, . . . } and we let k ji represent the transition probability between
a microstate i and microstate j. The birth process is a special case given by ki+1,i = λ

and all other k ji = 0. The chemical master equation describes the joint probability
that we are in state q = i at a particular time t. We would like to know the probabil-
ity that we transition to a new state q = j at time t+ dt. Given this probability, we
can attempt to generate an instance of the variable q(t) by first determining which
reaction occurs and then when the reaction occurs.

Let P( j, τ) := P( j, t+ τ+dτ | i, t+ τ) represent the probability that we transition
from the state i to the state j in the time interval [t+τ, t+τ+dτ]. For simplicity and
ease of notation, we will take t = 0. Let T := T j,i be the time at which the reaction
first occurs. We can write the probability that we transition to state j in the interval
[τ,τ+dτ] as

P( j, τ) = P(T > τ) k ji dτ, (4.16)

where P(T > τ) is the probability that no reaction occurs in the time interval [0, τ]
and k jidτ is the probability that the reaction taking state i to state j occurs in the
next dτ seconds (assumed to be independent events, giving the product of these
probabilities).

To compute P(T > τ), define

k̄i =
∑

j

k ji,

so that (1− k̄i)dτ is the probability that no transition occurs from state i in the next
dτ seconds. Then, the probability that no reaction occurs in the interval [τ,τ+dτ]
can be written as

P(T > τ+dτ) = P(T > τ) (1− k̄i) dτ. (4.17)

It follows that

d

dτ
P(T > τ) = lim

dτ→0

P(T > τ+dτ)−P(T > τ)
dτ

= −P(T > τ) k̄i.
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Solving this differential equation, we obtain

P(T > τ) = e−k̄iτ, (4.18)

so that the probability that no reaction occurs in time τ decreases exponentially with
the amount of time that we wait, with rate given by the sum of all the reactions that
can occur from state i.

We can now combine equation (4.18) with equation (4.16) to obtain

P( j, τ) = P( j, τ+dτ | i,0) = k ji e−k̄iτ dτ.

We see that this has the form of a density function in time and hence the probability
that the next reaction is reaction j, independent of the time in which it occurs, is

P ji =

∫ ∞

0
k jie
−k̄iτ dτ =

k ji

k̄i

. (4.19)

Thus, to choose the next reaction to occur from a state i, we choose between N

possible reactions, with the probability of each reaction weighted by k ji/k̄i.
To determine the time that the next reaction occurs, we sum over all possible

reactions j to get the density function for the reaction time:

pT (τ) =
∑

j

k jie
−k̄iτ = k̄ie

−k̄iτ.

This is the density function associated with an exponential distribution. To compute
a time of reaction ∆t that draws from this distribution, we note that the cumulative
distribution function for T is given by

∫ ∆t

0
fT (τ)dτ =

∫ ∆t

0
k̄ie
−k̄iτ dτ = 1− e−k̄i∆t.

The cumulative distribution function is always in the range [0,1] and hence we can
compute ∆t by choosing a (uniformly distributed) random number r in [0,1] and
then computing

∆t =
1

k̄i

ln
1

1− r
. (4.20)

(This equation can be simplified somewhat by replacing 1− r with r′ and noting
that r′ can also be drawn from a uniform distribution on [0,1].)

Note that in the case of a birth process, this computation agrees with our ear-
lier analysis. Namely, k̄i = λ and hence the (only) reaction occurs according to an
exponential distribution with parameter λ.

This set of calculations gives the following algorithm for computing an instance
of the chemical master equation:

1. Choose an initial condition q at time t = 0.
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2. Calculate the propensity functions ai(q) for each possible reaction i.

3. Choose the time for the reaction according to equation (4.20), where r ∈ [0,1]
is chosen from a uniform distribution.

4. Use a weighted random number generator to identify which reaction will
take place next, using the weights in equation (4.19).

5. Update q by implementing the reaction ξ and update the time t by ∆t

6. If T < Tstop, go to step 2.

This method is sometimes called “Gillespie’s direct method” [31, 32], but we shall
refer to it here as the “stochastic simulation algorithm” (SSA). We note that the
reaction number in step 4 can be computed by calculating a uniform random num-
ber on [0,1], scaling this by the total propensity

∑

i ai(q), and then finding the first
reaction i such that

∑i
j=0 a j(q) is larger than this scaled random number.

4.3 Input/output linear stochastic systems

In many situations, we wish to know how noise propagates through a biomolecular
system. For example, we may wish to understand how stochastic variations in RNA
polymerase concentration affect gene expression. In order to analyze these cases,
it is useful to make use of tools from stochastic control theory that allow analysis
of noise propagation around a fixed operating point.

We begin with the chemical Langevin equation (4.11), which we can write as

dX(t)
dt
= A(X(t))+B(X(t))Γ(t).

The vector X(t) consists of the individual random variables Xi(t) representing the
concentration of species Si, the functions A(X(t)) and B(X(t)) are computed from
the reaction vectors and propensity functions for the system, and Γ is a set of “white
noise” processes. For the remainder of this chapter, we will assume that the func-
tion A(X) is linear in X and that B(X) is constant (by appropriately linearizing
around the mean state, if needed). We will also rewrite Γ as W, to be more consis-
tent with the literature of stochastic control systems.

Random processes

It will be useful in characterizing the properties of the vector X(t) to treat it as a
random process. We briefly review the basic definitions here, primarily to fix the
terminology we will use in the rest of the section.

A continuous-time random process is a stochastic system characterized by the
evolution of a random variable X(t), t ∈ [0,T ]. We are interested in understanding
how the (random) state of the system is related at separate times, i.e., how the two
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random variables X(t1) and X(t2) are related. We characterize the state of a random
process using a (joint) time-varying probability density function p:

P({xi,l ≤ Xi(t) ≤ xi,u}) =
∫ x1,u

x1,l

. . .

∫ xn,u

xn,l

pX1,...,Xn
(x; t)dxn . . .dx1.

Note that the state of a random process is not enough to determine the exact next
state, but only the distribution of next states (otherwise it would be a deterministic
process). We typically omit indexing of the individual states unless the meaning is
not clear from context.

In general, the distributions used to describe a random process depend on the
specific time or times that we evaluate the random variables. However, in some
cases the relationship only depends on the difference in time and not the abso-
lute times (similar to the notion of time invariance in deterministic systems, as
described in Åström and Murray [1]). A process is stationary if the distribution is
not changing and joint density functions only depend on the differences in times.
More formally, p(x, t+ τ) = p(x, t) for all τ, p(xi, x j; t1 + τ, t2 + τ) = p(xi, x j; t1, t2),
etc. In this case we can write p(xi, x j;τ) for the joint probability distribution. Sta-
tionary distributions roughly correspond to the steady state properties of a random
process and we will often restrict our attention to this case.

Since each X(t) is a random variable, we can define the mean and variance as
µ(t) and σ2(t) at each time t:

µ(t) := E(X(t)) =
∫ ∞

−∞
x p(x, t)dx,

σ2(t) := E((X(t)−µ(t))2) =
∫ ∞

−∞
(x−µ(t))2 p(x, t)dx,

where E( · ) is the expected value. To capture the relationship between the current
state and the future state, we define the correlation function for a random process
as

ρ(t1, t2) := E(X[t1]X[t2]) =
∫ ∞

−∞
x1x2 p(x1, x2; t1, t2)dx1dx2.
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These definitions can be extended to the vector case as well:

E(X(t)) =




E(X1(t))
...

E(Xn(t))




=: µ(t)

E((X(t)−µ(t))(X(t)−µ(t))T ) =



E((X1(t)−µ1(t))(X1(t)−µ1(t))) . . . E((X1(t)−µ1(t))(Xn(t)−µn(t)))
. . .

...

E((Xn(t)−µn(t))(Xn(t)−µn(t)))




=: Σ(t)

E(X(t)XT (s)) =




E(X1(t)X1(s)) . . . E(X1(t)Xn(s))
. . .

...

E(Xn(t)Xn(s))




=: R(t, s).

Note that the random variables and their statistical properties are all indexed by the
time t (and s). The matrix R(t, s) is called the correlation matrix for X(t) ∈ Rn. If
t = s then R(t, t) describes how the elements of x are correlated at time t (with each
other) and in the case that the processes have zero mean, R(t, t)=Σ(t). The elements
on the diagonal of Σ(t) are the variances of the corresponding scalar variables. A
random process is uncorrelated if R(t, s) = 0 for all t , s. This implies that X(t) and
X(s) are uncorrelated random events and is equivalent to pX,Y (x,y) = pX(x)pY (y).

If a random process is stationary, then it can be shown that R(t+τ, s+τ)= R(t, s)
and it follows that the correlation matrix depends only on t− s. In this case we will
often write R(t, s) = R(s− t) or simply R(τ) where τ is the correlation time. The
covariance matrix in this case is simply R(0).

In the case where X is a scalar random process, the correlation matrix is also
a scalar and we will write r(τ), which we refer to as the (scalar) correlation func-
tion. Furthermore, for stationary scalar random processes, the correlation function
depends only on the absolute value of the correlation time, so r(τ) = r(−τ) = r(|τ|).
This property also holds for the diagonal entries of the correlation matrix since
Rii(s, t) = Rii(t, s) from the definition.

Example 4.6 (Ornstein-Uhlenbeck process). Consider a scalar random process de-
fined by a Gaussian probability density function with µ = 0,

p(x, t) =
1

√
2πσ2

e
− 1

2
x2

σ2 ,

and a correlation function given by

r(t1, t2) =
Q

2ω0
e−ω0 |t2−t1 |.

The correlation function is illustrated in Figure 4.4. This process is known as an
Ornstein-Uhlenbeck process and it is a stationary process. ∇
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ρ(t1− t2)

τ = t1− t2

Figure 4.4: Correlation function for a first-order Markov process.

Note on terminology. The terminology and notation for covariance and correlation
varies between disciplines. The term covariance is often used to refer to both the re-
lationship between different variables X and Y and the relationship between a single
variable at different times, X(t) and X(s). The term “cross-covariance” is used to re-
fer to the covariance between two random vectors X and Y , to distinguish this from
the covariance of the elements of X with each other. The term “cross-correlation”
is sometimes also used. Finally, the term “correlation coefficient” refers to the nor-
malized correlation r̄(t, s) = E(X(t)X(s))/E(X(t)X(t)).

We will also make use of a special type of random process referred to as “white
noise.” A white noise process X(t) satisfies E(X(t)) = 0 and R(t, s) = Wδ(s − t),
where δ(τ) is the impulse function and W is called the noise intensity. White noise
is an idealized process, similar to the impulse function or Heaviside (step) function
in deterministic systems. In particular, we note that r(0) = E(X2(t)) = ∞, so the
covariance is infinite and we never see this signal in practice. However, like the
step and impulse functions, it is very useful for characterizing the response of a
linear system, as described in the following proposition.

Linear stochastic systems with Gaussian noise

We now consider the problem of how to compute the response of a linear system
to a random process. We assume we have a linear system described in state space
as

dX

dt
= AX+FW, Y =CX. (4.21)

For simplicity, we take W and Y to be scalar random variables. Given an “input”
W, which is itself a random process with mean µ(t), variance σ2(t) and correlation
r(t, t+τ), what is the description of the random process Y?

Let W be a white noise process, with zero mean and noise intensity Q:

r(τ) = Qδ(τ).

We can write the output of the system in terms of the convolution integral

Y(t) =
∫ t

0
h(t−τ)W(τ)dτ,
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where h(t−τ) is the impulse response for the system

h(t−τ) =CeA(t−τ)F.

We now compute the statistics of the output, starting with the mean:

E(Y(t)) = E(
∫ t

0
h(t−η)W(η)dη )

=

∫ t

0
h(t−η)E(W(η))dη = 0.

Note here that we have relied on the linearity of the convolution integral to pull the
expectation inside the integral.

We can compute the covariance of the output by computing the correlation rY (τ)
and setting σ2

Y
= rY (0). The correlation function for y is

rY (t, s) = E(Y(t)Y(s)) = E(
∫ t

0
h(t−η)W(η)dη ·

∫ s

0
h(s− ξ)W(ξ)dξ )

= E(
∫ t

0

∫ s

0
h(t−η)W(η)W(ξ)h(s− ξ)dηdξ ),

where we assume W is a scalar (otherwise W(ξ) and h(s− ξ) must be transposed).
Once again linearity allows us to exchange expectation with the integral and

rY (t, s) =
∫ t

0

∫ s

0
h(t−η)E(W(η)W(ξ))h(s− ξ)dηdξ

=

∫ t

0

∫ s

0
h(t−η)Qδ(η− ξ)h(s− ξ)dηdξ

=

∫ t

0
h(t−η)Qh(s−η)dη.

Now let τ = s− t and write

rY (τ) = rY (t, t+τ) =
∫ t

0
h(t−η)Qh(t+τ−η)dη

=

∫ t

0
h(ξ)Qh(ξ+τ)dξ (setting ξ = t−η).

Finally, we let t→∞ (steady state)

lim
t→∞

rY (t, t+τ) = r̄Y (τ) =
∫ ∞

0
h(ξ)Qh(ξ+τ)dξ. (4.22)

If this integral exists, then we can compute the second-order statistics for the output
Y .
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We can provide a more explicit formula for the correlation function r in terms of
the matrices A, F and C by expanding equation (4.22). We will consider the general
case where W ∈ Rp and Y ∈ Rq and use the correlation matrix R(t, s) instead of the
correlation function r(t, s). Define the state transition matrix Φ(t, t0) = eA(t−t0) so
that the solution of system (4.21) is given by

x(t) = Φ(t, t0)x(t0)+
∫ t

t0

Φ(t,λ)FW(λ)dλ.

Proposition 4.1 (Stochastic response to white noise). Let E(X(t0)XT (t0)) = P(t0)
and W be white noise with E(W(λ)WT (ξ)) = RWδ(λ− ξ). Then the correlation ma-

trix for X is given by

RX(t, s) = P(t)ΦT (s, t)

where P(t) satisfies the linear matrix differential equation

Ṗ(t) = AP+PAT +FRW F, P(0) = P0.

The correlation matrix for the output Y can be computed using the fact that
Y = CX and hence RY = CRXCT . We will often be interested in the steady state
properties of the output, which are given by the following proposition.

Proposition 4.2 (Steady state response to white noise). For a time-invariant linear

system driven by white noise, the correlation matrices for the state and output

converge in steady state to

RX(τ) = RX(t, t+τ) = PeAT τ, RY (τ) =CRX(τ)CT

where P satisfies the algebraic equation

AP+PAT +FRW FT = 0 P > 0. (4.23)

Equation (4.23) is called the Lyapunov equation and can be solved in MATLAB
using the function lyap.

Example 4.7 (First-order system). Consider a scalar linear process

Ẋ = −aX+W, Y = cX,

where W is a white, Gaussian random process with noise intensity σ2. Using the
results of Proposition 4.1, the correlation function for X is given by

RX(t, t+τ) = p(t)e−aτ

where p(t) > 0 satisfies
dp(t)

dt
= −2ap(t)+σ2.
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We can solve explicitly for p(t) since it is a (non-homogeneous) linear differential
equation:

p(t) = e−2at p(0)+ (1− e−2at)
σ2

2a
.

Finally, making use of the fact that Y = cX we have

r(t, t+τ) = c2(e−2at p(0)+ (1− e−2at)
σ2

2a
)e−aτ.

In steady state, the correlation function for the output becomes

r(τ) =
c2σ2

2a
e−aτ.

Note that the correlation function has the same form as the Ornstein-Uhlenbeck
process in Example 4.6 (with Q = c2σ2). ∇

Random processes in the frequency domain

As in the case of deterministic linear systems, we can analyze a stochastic linear
system either in the state space or the frequency domain. The frequency domain ap-
proach provides a very rich set of tools for modeling and analysis of interconnected
systems, relying on the frequency response and transfer functions to represent the
flow of signals around the system.

Given a random process X(t), we can look at the frequency content of the prop-
erties of the response. In particular, if we let ρ(τ) be the correlation function for a
(scalar) random process, then we define the power spectral density function as the
Fourier transform of ρ:

S (ω) =
∫ ∞

−∞
ρ(τ)e− jωτ dτ, ρ(τ) =

1
2π

∫ ∞

−∞
S (ω)e jωτ dτ.

The power spectral density provides an indication of how quickly the values of
a random process can change through the frequency content: if there is high fre-
quency content in the power spectral density, the values of the random variable can
change quickly in time.

Example 4.8 (Ornstein-Uhlenbeck process). To illustrate the use of these mea-
sures, consider the Ornstein-Uhlenbeck process whose correlation function we
computed in Example 4.7:

ρ(τ) =
Q

2ω0
e−ω0(τ).
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Figure 4.5: Spectral power density for a first-order Markov process.
.

The power spectral density becomes

S (ω) =
∫ ∞

−∞

Q

2ω0
e−ω|τ|e− jωτ dτ

=

∫ 0

−∞

Q

2ω0
e(ω− jω)τ dτ+

∫ ∞

0

Q

2ω0
e(−ω− jω)τ dτ =

Q

ω2+ω2
0

.

We see that the power spectral density is similar to a transfer function and we
can plot S (ω) as a function of ω in a manner similar to a Bode plot, as shown in
Figure 4.5. Note that although S (ω) has a form similar to a transfer function, it is a
real-valued function and is not defined for complex ω. ∇

Using the power spectral density, we can give a more intuitive definition of
“white noise” as a zero-mean, random process with power spectral density S (ω) =
constant for all ω. If X(t) ∈ Rn (a random vector), then S (ω) ∈ Rn×n. We see that
a random process is white if all frequencies are equally represented in its power
spectral density; this spectral property is the reason for the terminology “white.”

Given a linear system

Ẋ = AX+FW, Y =CX,

with W given by white noise, we can compute the spectral density function corre-
sponding to the output Y . Let H(s) =C(sI−A)−1B be the transfer function from W

to Y . We start by computing the Fourier transform of the steady state correlation
function (4.22):

S Y (ω) =
∫ ∞

−∞

[∫ ∞

0
h(ξ)Qh(ξ+τ)dξ

]

e− jωτ dτ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

−∞
h(ξ+τ)e− jωτ dτ

]

dξ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

0
h(λ)e− jω(λ−ξ) dλ

]

dξ

=

∫ ∞

0
h(ξ)e jωξ dξ ·QH( jω) = H(− jω)QH( jω).
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This is then the (steady state) response of a linear system to white noise.
As with transfer functions, one of the advantages of computations in the fre-

quency domain is that the composition of two linear systems can be represented
by multiplication. In the case of the power spectral density, if we pass white noise
through a system with transfer function H1(s) followed by transfer function H2(s),
the resulting power spectral density of the output is given by

S Y (ω) = H1(− jω)H2(− jω)QuH2( jω)H1( jω).

Exercises

4.1 Consider a standard model of transcription and translation with probabilistic
creation and degradation of discrete mRNA and protein molecules. The propensity

functions for each reaction are as follows:

• Probability of transcribing 1 mRNA molecule: 0.2dt

• Probability of degrading 1 mRNA molecule: 0.5dt and is proportional to the
number of mRNA molecules.

• Probability of translating 1 protein: 5dt and is proportional to the number of
mRNA molecules.

• Probability of degrading 1 protein molecule: 0.5dt and is proportional to the
number of protein molecules.

In each case, dt will be the time step chosen for your simulation, which we take as
dt = 0.05 sec.

(i) Simulate the stochastic system above until time T = 100. Plot the resulting
number of mRNA and protein over time.

(ii) Now assume that the proteins are degraded much more slowly than mRNA
and the propensity function of protein degradation is now 0.05dt. To main-
tain similar protein levels, the translation probability is now 0.5dt (and still
proportional to the number of mRNA molecules). Simulate this system as
above. What difference do you see in protein level? Comment on the effect
of protein degradation rates on noise.

4.2 Compare a simple model of negative autoregulation to one without autoregu-
lation:

dX

dt
= β0−γX

and
dX

dt
=

β

1+X/K
−γX.
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(i) Assume that the basal transcription rates β and β0 vary between cells, fol-
lowing a Gaussian distribution with σ/µ = 0.1. Simulate time courses of
both models for 100 different “cells” using the following parameters: β =
2,β0 = 1,γ = 1,K = 1. Plot the nonregulated and autoregulated systems in
two separate plots. Comment on the variation you see in the time courses.

(ii) Calculate the deterministic steady state for both models above. How does
variation in the basal transcription rate β or β0 enter into the steady state?
Relate it to what you see in part (i).

4.3 Consider a simple model for gene expression with reactions

φ
α−→m, m

κ−→m+P, m
δ−→ φ, P

γ
−→ ∅.

Let α = 1/2, κ = 20log(2)/120, δ = log(2)/120 and γ = log(2)/600, and answer the
following questions:

(i) Use the stochastic simulation algorithm (SSA) to obtain realizations of the
stochastic process of gene expression and numerically compare with the de-
terministic ODE solution. Explore how the realizations become close to or
apart from the ODE solution when the volume is changed. Determine the
stationary probability distribution for the protein (you can do this numeri-
cally).

(ii) Now consider the additional binding reaction of protein P with downstream
DNA binding sites D:

P+D
a−⇀↽−
d

C.

Note that the system is no longer linear due to the presence of a bimolecular
reaction. Use the SSA algorithm to obtain sample realizations and numeri-
cally compute the probability distribution of the protein. Compare it to what
you obtained in part (i). Explore how this probability distribution and the
one of C change as the rate constants a and d become larger with respect to
γ,α,κ,δ. Do you think we can use a QSS approximation similar to what we
have done for ODE models?

(iii) Determine the Langevin equation for the system in part (ii) and obtain sam-
ple realizations. Explore numerically how good this approximation is when
the volume decreases/increases.

4.4 Consider the bimolecular reaction

A+B
a−⇀↽−
d

C,

in which A and B are in total amounts Atot and Btot, respectively. Compare the
steady state value of C obtained from the deterministic model to the mean value of
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C obtained from the stochastic model as the volume is changed in the stochastic
model. What do you observe? You can perform this investigation through numeri-
cal simulation.

4.5 Consider the simple birth and death process:

Z
k2G
−−−⇀↽−−−

k1G
∅,

in which G is a “gain.” Assume that the reactions are catalyzed by enzymes and that
the gain G can be tuned by changing the amounts of these enzymes. A determin-
istic ODE model for this system incorporating disturbances due to environmental
perturbations is given by

dZ

dt
= k1G− k2GZ+d(t).

Determine the Langevin equation for this birth and death process and compare its
form to the deterministic one. Also, determine the frequency response of Z to noise
for both the deterministic model and for the Langevin model. Does increasing the
gain G have the same effect in both models? Explain.

4.6 Consider a second-order system with dynamics

d

dt




X1

X2



=




−a 0
0 −b







X1

X2



+




1
1




w, Y =

1 1







X1

X2




that is forced by Gaussian white noise w with zero mean and variance σ2. Assume
a,b > 0.

(i) Compute the correlation function ρ(τ) for the output of the system. Your
answer should be an explicit formula in terms of a, b and σ.

(ii) Assuming that the input transients have died out, compute the mean and
variance of the output.
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Chapter 5

Biological Circuit Components

In this chapter, we describe some simple circuit components that have been con-
structed in E. coli cells using the technology of synthetic biology and then consider
a more complicated circuit that already appears in natural systems to implement
adaptation. We will analyze the behavior of these circuits employing mainly the
tools from Chapter 3 and some of the tools from Chapter 4. The basic knowledge
of Chapter 2 will be assumed.

5.1 Introduction to biological circuit design

In Chapter 2 we introduced a number of core processes and models for those pro-
cesses, including gene expression, transcriptional regulation, post-translational reg-
ulation such as covalent modification of proteins, allosteric regulation of enzymes,
and activity regulation of transcription factors through inducers. These core pro-
cesses provide a rich set of functional building blocks, which can be combined
together to create circuits with prescribed functionalities.

For example, if we want to create an inverter, a device that returns high output
when the input is low and vice versa, we can use a gene regulated by a transcrip-
tional repressor. If we want to create a signal amplifier, we can employ a cas-
cade of covalent modification cycles. Specifically, if we want the amplifier to be
linear, we should tune the amounts of protein substrates to be smaller than the
Michaelis-Menten constants. Alternatively, we could employ a phosphotransfer
system, which provides a fairly linear input/output relationship for an extended
range of the input stimulation. If instead we are looking for an almost digital re-
sponse, we could employ a covalent modification cycle with high amounts of sub-
strates compared to the Michaelis-Menten constants. Furthermore, if we are look-
ing for a fast input/output response, phosphorylation cycles are better candidates
than transcriptional systems.

In this chapter and the next we illustrate how one can build circuits with pre-
scribed functionality using some of the building blocks of Chapter 2 and the design
techniques illustrated in Chapter 3. We will focus on two types of circuits: gene cir-
cuits and signal transduction circuits. In some cases, we will illustrate designs that
incorporate both.

A gene circuit is usually depicted by a set of nodes, each representing a gene,
connected by unidirectional edges, representing a transcriptional activation or a re-
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A

Figure 5.1: Early gene circuits that have been fabricated in bacteria E. coli: the negatively
autoregulated gene [10], the toggle switch [29], the activator-repressor clock [6], and the
repressilator [25].

pression. If gene z represses the expression of gene x, the interaction is represented
by Z −⊣X. If instead gene z activates the expression of gene x, the interaction is rep-
resented by Z→ X. Inducers will often appear as additional nodes, which activate
or inhibit a specific edge. Early examples of such circuits include an autoregulated
circuit [10], a toggle switch obtained by connecting two inverters in a ring fashion
[29], an activator-repressor system that can display toggle switch or clock behav-
ior [6], and a loop oscillator called the repressilator obtained by connecting three
inverters in a ring topology [25] (Figure 5.1).

Basic synthetic biology technology

Simple synthetic gene circuits can be constituted from a set of (connected) tran-
scriptional components, which are made up by the DNA base pair sequences that
compose the desired promoters, ribosome binding sites, gene coding region, and
terminators. We can choose these components from a library of basic parts, which
are classified based on biochemical properties such as affinity (of promoter, op-
erator, or ribosome binding sites), strength (of a promoter), and efficiency (of a
terminator).

The desired sequence of parts is usually assembled on plasmids, which are cir-
cular pieces of DNA, separate from the host cell chromosome, with their own origin
of replication. These plasmids are then inserted, through a process called transfor-
mation in bacteria and transfection in yeast, in the host cell. Once in the host cell,
they express the proteins they code for by using the transcription and translation
machinery of the cell. There are three main types of plasmids: low copy number
(5-10 copies), medium copy number (15-20 copies), and high copy number (up to
hundreds). The copy number reflects the average number of copies of the plasmid
inside the host cell. The higher the copy number, the more efficient the plasmid is
at replicating itself. The exact number of plasmids in each cell fluctuates stochas-
tically and cannot be exactly controlled.

In order to measure the amounts of proteins of interest, we make use of reporter

genes. A reporter gene codes for a protein that fluoresces in a specific color (red,
blue, green, or yellow, for example) when it is exposed to light of the appropriate
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wavelength. For instance, green fluorescent protein (GFP) is a protein with the
property that it fluoresces in green when exposed to UV light. It is produced by the
jellyfish Aequoria victoria and its gene has been isolated so that it can be used as a
reporter. Other fluorescent proteins, such as yellow fluorescent protein (YFP) and
red fluorescent protein (RFP), are genetic variations of GFP.

A reporter gene is usually inserted downstream of the gene expressing the pro-
tein whose concentration we want to measure. In this case, both genes are under
the control of the same promoter and are transcribed into a single mRNA molecule.
The mRNA is then translated to protein and the two proteins will be fused together.
This technique provides a direct way to measure the concentration of the protein
of interest but can affect the functionality of this protein because some of its regu-
latory sites may be occluded by the fluorescent protein. Another viable technique
is one in which the reporter gene is placed under the control of the same promoter
that is also controlling the expression of the protein of interest. In this case, the
production rates of the reporter and of the protein of interest are the same and,
as a consequence, the respective concentrations should mirror each other. The re-
porter thus provides an indirect measurement of the concentration of the protein of
interest.

Just as fluorescent proteins can be used as a readout of a circuit, inducers func-
tion as external inputs that can be used to probe the system. Two commonly used
negative inducers are IPTG and aTc, as explained in Section 2.3, while two com-
mon positive inducers are arabinose and AHL. Arabinose activates the transcrip-
tional activator AraC, which activates the pBAD promoter. Similarly, AHL is a
signaling molecule that activates the LuxR transcription factor, which activates the
pLux promoter.

Protein dynamics can usually be altered by the addition of a degradation tag
at the end of the corresponding coding region. A degradation tag is a sequence
of base pairs that adds an amino acid sequence to the functional protein that is
recognized by proteases. Proteases then bind to the protein, degrading it into a
non-functional molecule. As a consequence, the half-life of the protein decreases,
resulting in an increased decay rate. Degradation tags are often employed to obtain
a faster response of the protein concentration to input stimulation and to prevent
protein accumulation.

5.2 Negative autoregulation

In this section, we analyze the negatively autoregulated gene of Figure 5.1 and
focus on analyzing how the presence of the negative feedback affects the dynamics
and the noise properties of the system. This system was introduced in Example 2.2.

Let A be a transcription factor repressing its own production. Assuming that
the mRNA dynamics are at the quasi-steady state, the ODE model describing the



circuits.tex, v5739 2014-06-14 22:50:32Z (murray)

172 CHAPTER 5. BIOLOGICAL CIRCUIT COMPONENTS

negatively autoregulated system is given by

dA

dt
=

β

1+ (A/K)n
−γA. (5.1)

We seek to compare the behavior of this autoregulated system, which we also refer
to as the closed loop system, to the behavior of the unregulated one:

dA

dt
= β0−γA,

in which β0 is the unrepressed production rate. We refer to this second system as
the open loop system.

Dynamic effects of negative autoregulation

As we showed via simulation in Example 2.2, negative autoregulation speeds up
the response to perturbations. Hence, the time the system takes to reach its equi-
librium decreases with negative feedback. In this section, we illustrate how this
result can be analytically demonstrated by employing linearization. Specifically,
we linearize the system about its equilibrium point and calculate the time response
resulting from initializing the linearized system at an initial condition close to the
equilibrium point.

Let Ae = β0/γ be the equilibrium of the unregulated system and let z = A−Ae

denote the perturbation with respect to such an equilibrium. The dynamics of z are
given by

dz

dt
= −γz.

Given a small initial perturbation z0, the response of z is given by the exponential

z(t) = z0e−γt.

The “half-life” of the signal z(t) is the time z(t) takes to reach half of z0 and we
denote it by thalf. This is a common measure for the speed of response of a system to
an initial perturbation. Simple mathematical calculation shows that thalf = ln(2)/γ.
Note that the half-life does not depend on the production rate β0 and only depends
on the protein decay rate constant γ.

Now let Ae be the steady state of the negatively autoregulated system (5.1).
Assuming that the perturbation z with respect to the equilibrium is small enough,
we can employ linearization to describe the dynamics of z. These dynamics are
given by

dz

dt
= −γ̄z,

where

γ̄ = γ+β
nAn−1

e /K
n

(1+ (Ae/K)n)2
.
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In this case, we have that thalf = ln(2)/γ̄.
Since γ̄ > γ (for any positive value of Ae), we have that the dynamic response

to a perturbation is faster in the system with negative autoregulation. This confirms
the simulation findings of Example 2.2.

Noise filtering

We next investigate the effect of the negative autoregulation on the noisiness of
the system. In order to do this, we employ the Langevin modeling framework and
determine the frequency response to the intrinsic noise on the various reactions.
In particular, in the analysis that follows we treat Langevin equations as regular
ordinary differential equations with inputs, allowing us to apply the tools described
in Chapter 3.

We perform two different studies. In the first one, we assume that the decay
rate of the protein is much slower than that of the mRNA. As a consequence, the
mRNA concentration can be well approximated by its quasi-steady state value and
we focus on the dynamics of the protein only. In the second study, we investigate
the consequence of having the mRNA and protein decay rates in the same range
so that the quasi-steady state assumption cannot be made. This can be the case,
for example, when degradation tags are added to the protein to make its decay
rate larger. In either case, we study both the open loop system and the closed loop
system (the system with negative autoregulation) and compare the corresponding
frequency responses to noise.

Assuming that mRNA is at its quasi-steady state

In this case, the reactions for the open loop system are given by

R1 : p
β0−−→ A+p, R2 : A

γ
−→ ∅,

in which β0 is the constitutive production rate, p is the DNA promoter, and γ is
the decay rate of the protein. Since the concentration of DNA promoter p is not
changed by these reactions, it is a constant, which we call ptot.

Employing the Langevin equation (4.11) of Section 4.1 and letting nA de-
note the real-valued number of molecules of A and np the real-valued number of
molecules of p, we obtain

dnA

dt
= β0np−γnA+

√

β0np Γ1−
√
γnA Γ2,

in which Γ1 and Γ2 depend on the noise on the production reaction and on the
decay reaction, respectively. By letting A = nA/Ω denote the concentration of A
and p = np/Ω = ptot denote the concentration of p, we have that

dA

dt
= β0 ptot−γA+

1
√
Ω

(
√

β0 ptot Γ1−
√

γA Γ2). (5.2)
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This is a linear system and therefore we can calculate the frequency response to
any of the two inputs Γ1 and Γ2. In particular, the frequency response to input Γ1

has magnitude given by

Mo(ω) =

√

β0 ptot/Ω
√

ω2+γ2
. (5.3)

We now consider the autoregulated system. The reactions are given by

R1 : p
β
−→ A+p, R2 : A

γ
−→ ∅,

R3 : A+p
a−→ C, R4 : C

d−→ A+p.

Defining ptot = p+C and employing the Langevin equation (4.11) of Section 4.1,
we obtain

dp

dt
= −aAp+d(ptot− p)+

1
√
Ω

(−
√

aAp Γ3+
√

d(ptot− p) Γ4),

dA

dt
= βp−γA−aAp+d(ptot− p)+

1
√
Ω

(
√

βp Γ1−
√

γA Γ2−
√

aAp Γ3

+
√

d(ptot− p) Γ4),

in which Γ3 and Γ4 are the noises corresponding to the association and dissociation
reactions, respectively. Letting Kd = d/a,

N1 =
1
√
Ω

(−
√

Ap/Kd Γ3+
√

(ptot− p) Γ4), N2 =
1
√
Ω

(
√

βp Γ1−
√

γA Γ2),

we can rewrite the above system in the following form:

dp

dt
= −aAp+d(ptot− p)+

√
dN1(t),

dA

dt
= βp−γA−aAp+d(ptot− p)+N2(t)+

√
dN1(t).

Since d≫ γ,β, this system displays two time scales. Letting ǫ := γ/d and defining
y := A− p, the system can be rewritten in standard singular perturbation form (3.24):

ǫ
dp

dt
= −γAp/Kd+γ(ptot− p)+

√
ǫ
√
γN1(t),

dy

dt
= βp−γ(y+ p)+N2(t).

By setting ǫ = 0, we obtain the quasi-steady state value p= ptot/(1+A/Kd). Writing
Ȧ = ẏ+ ṗ, using the chain rule for ṗ, and assuming that ptot/Kd is sufficiently small,
we obtain the reduced system describing the dynamics of A as

dA

dt
= β

ptot

1+A/Kd
−γA+ 1

√
Ω

(√

β
ptot

1+A/Kd
Γ1−

√

γA Γ2

)

=: f (A,Γ1,Γ2). (5.4)
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The equilibrium point for this system corresponding to the mean values Γ1 = 0
and Γ2 = 0 of the inputs is given by

Ae =
1
2

(√

K2
d +4βptotKd/γ−Kd

)

.

The linearization of the system about this equilibrium point is given by

∂ f

∂A

∣
∣
∣
∣
∣
Ae,Γ1=0,Γ2=0

= −β ptot/Kd

(1+Ae/Kd)2
−γ =: −γ̄,

b1 =
∂ f

∂Γ1

∣
∣
∣
∣
∣
Ae,Γ1=0,Γ2=0

=
1
√
Ω

√

βptot

1+Ae/Kd
, b2 =

∂ f

∂Γ2

∣
∣
∣
∣
∣
Ae,Γ1=0,Γ2=0

= − 1
√
Ω

√

γAe.

Hence, the frequency response to Γ1 has magnitude given by

Mc(ω) =
b1

√

ω2+ γ̄2
. (5.5)

In order to make a fair comparison between this response and that of the open
loop system, we need the equilibrium points of both systems to be the same. In
order to guarantee this, we set β such that

β

1+Ae/Kd
= β0.

This can be attained, for example, by properly adjusting the strength of the pro-
moter and of the ribosome binding site. As a consequence, we have that b1 =√

β0 ptot/Ω. Since we also have that γ̄ > γ, comparing expressions (5.3) and (5.5)
it follows that Mc(ω) < Mo(ω) for all ω. That is, the magnitude of the frequency
response of the closed loop system is smaller than that of the open loop system at
all frequencies. Hence, negative autoregulation attenuates noise at all frequencies.
The two frequency responses are plotted in Figure 5.2a. A similar result could be
obtained for the frequency response with respect to the input Γ2 (see Exercise 5.1).

mRNA decay close to protein decay

In the case in which mRNA and protein decay rates are comparable, we need to
model both the processes of transcription and translation. Letting mA denote the
mRNA of A, the reactions describing the open loop system modify to

R1 : mA
κ−→mA+A, R2 : A

γ
−→ ∅,

R5 : p
α0−−→mA+p, R6 : mA

δ−→ ∅,
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Figure 5.2: Effect of negative autoregulation on noise propagation. (a) Magnitude of the
frequency response to noise Γ1(t) for both open loop and closed loop systems for the model
in which mRNA is assumed at its quasi-steady state. The parameters are ptot = 10 nM,
Kd = 10 nM, β = 0.001 min−1, γ = 0.001 min−1, and β0 = 0.00092 min−1, and we assume
unit volume Ω. (b) Frequency response to noise Γ6(t) for both open loop and closed loop
for the model in which mRNA decay is close to protein decay. The parameters are ptot = 10
nM, Kd = 10 nM, α = 0.001 min−1, β = 0.01 min−1, δ = 0.01 min−1, γ = 0.01 min−1, and
α0 = 0.0618 min−1.

while those describing the closed loop system become

R1 : mA
κ−→mA+A, R2 : A

γ
−→ ∅,

R3 : A+p
a−→ C, R4 : C

d−→ A+p,

R5 : p
α−→mA+p, R6 : mA

δ−→ ∅.

Defining ptot = p+C, employing the Langevin equation, and applying singular
perturbation as performed before, we obtain the dynamics of the system as

dmA

dt
= F(A)−δmA+

1
√
Ω

(
√

F(A) Γ5−
√

δmA Γ6),

dA

dt
= κmA−γA+

1
√
Ω

(
√
κmA Γ1−

√

γA Γ2),

in which Γ5 and Γ6 model the noise on the production reaction and decay reaction
of mRNA, respectively. For the open loop system we have F(A) = α0 ptot, while for
the closed loop system we have the Hill function

F(A) =
αptot

1+A/Kd
.

The equilibrium point for the open loop system is given by

mo
e =
α0 ptot

δ
, Ao

e =
κα0 ptot

δγ
.
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Considering Γ6 as the input of interest, the linearization of the system at this equi-
librium is given by

Ao =

(

−δ 0
κ −γ

)

, Bo =

( √

δmo
e/Ω

0

)

.

Letting K = κ/(γKd), the equilibrium for the closed loop system is given by

Ac
e =
κmc

e

γ
, mc

e =
1
2

(

−1/K +
√

(1/K)2+4αptot/(Kδ)
)

.

The linearization of the closed loop system at this equilibrium point is given by

Ac =

(

−δ −g

κ −γ

)

, Bc =

( √

δmc
e/Ω

0

)

, (5.6)

in which g = (αptot/Kd)/(1+ Ac
e/Kd)2 represents the contribution of the negative

autoregulation. The larger the value of g—obtained, for example, by making Kd

smaller (see Exercise 5.2)—the stronger the negative autoregulation.
In order to make a fair comparison between the open loop and closed loop

system, we again set the equilibrium points to be the same. To do this, we choose α
such that α/(1+Ac

e/Kd)= α0, which can be done by suitably changing the strengths
of the promoter and ribosome binding site.

The open loop and closed loop transfer functions are thus given by

Go
AΓ6

(s) =
κ
√
δme/Ω

(s+δ)(s+γ)
, Gc

AΓ6
(s) =

κ
√
δme/Ω

s2+ s(δ+γ)+δγ+ κg
.

From these expressions, it follows that the open loop transfer function has two
real poles, while the closed loop transfer function can have complex conjugate
poles when g is sufficiently large. As a consequence, noise Γ6 can be amplified at
sufficiently high frequencies. Figure 5.2b shows the magnitude M(ω) of the corre-
sponding frequency responses for both the open loop and the closed loop systems.

It follows that the presence of negative autoregulation attenuates noise with
respect to the open loop system at low frequency, but it can amplify noise at higher
frequency. This is a very well-studied phenomenon known as the “waterbed effect,”
according to which negative feedback decreases the effect of disturbances at low
frequency, but it can amplify it at higher frequency. This effect is not found in first-
order models, as demonstrated by the derivations performed when mRNA is at the
quasi-steady state. This illustrates the spectral shift of the frequency response to
intrinsic noise towards the high frequency, as also experimentally reported [7].

5.3 The toggle switch

The toggle switch is composed of two genes that mutually repress each other, as
shown in the diagram of Figure 5.1. We start by describing a simple model with no
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Figure 5.3: Genetic toggle switch. (a) Nullclines for the toggle switch. By analyzing the
direction of the vector field in the proximity of the equilibria, one can deduce their stability
as described in Section 3.1. (b) Time traces for A(t) and B(t) when inducer concentrations
u1(t) and u2(t) are changed. The plots show a scaled version of these signals, whose ab-
solute values are u1 = u2 = 1 in the indicated intervals of time. In the simulation, we have
n = 2, Kd,1 = Kd,2 = 1 nM, K =

√
0.1 nM, β = 1 hrs−1, and γ = 1 hrs−1.

inducers. By assuming that the mRNA dynamics are at the quasi-steady state, we
obtain a two-dimensional differential equation model given by

dA

dt
=

β

1+ (B/K)n
−γA, dB

dt
=

β

1+ (A/K)n
−γB,

in which we have assumed for simplicity that the parameters of the repression
functions are the same for A and B.

Since the system is two-dimensional, both the number and stability of equilibria
can be analyzed by performing nullcline analysis (see Section 3.1). Specifically, by
setting dA/dt = 0 and dB/dt = 0 and letting n ≥ 2, we obtain the nullclines shown
in Figure 5.3a. The nullclines intersect at three points, which determine the equi-
librium points of this system. The stability of these equilibria can be determined
by the following graphical reasoning.

The nullclines partition the plane into six regions. By determining the sign of
dA/dt and dB/dt in each of these six regions, we can determine the direction in
which the vector field is pointing in each of these regions. From these directions,
we can deduce that the equilibrium occurring for intermediate values of A and B

(at which A = B) is unstable while the other two are stable (see the arrows in Figure
5.3a). Hence, the toggle switch is a bistable system.

The system trajectories converge to one equilibrium or the other depending on
whether the initial condition is in the region of attraction of the first or the second
equilibrium. The 45-degree line divides the plane into the two regions of attraction
of the stable equilibrium points. Once the system’s trajectory has converged to
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Figure 5.4: Genetic toggle switch with inducers. (a) Nullclines for the toggle switch (solid
line) and how the nullcline Ḃ = 0 changes when inducer u1 is added (dotted line). (b)
Nullclines for the toggle switch (solid line) and how the nullcline Ȧ = 0 changes when
inducer u2 is added (dotted line). Parameter values are as in Figure 5.3.

one of the two equilibrium points, it cannot switch to the other unless an external
(transient) stimulation is applied.

In the genetic toggle switch developed by Gardner et al. [29], external stimu-
lations were added in the form of negative inducers for A and B. Specifically, let
u1 be the negative inducer for A and u2 be the negative inducer for B. Then, as we
have seen in Section 2.3, the expressions of the Hill functions need to be modified
to replace A by A(1/(1+u1/Kd,1)) and B by B(1/(1+u2/Kd,2)), in which Kd,1 and
Kd,2 are the dissociation constants of u1 with A and of u2 with B, respectively.
Hence, the system dynamics become

dA

dt
=

β

1+ (B/KB(u2))n
−γA, dB

dt
=

β

1+ (A/KA(u1))n
−γB,

in which we have let KA(u1) = K(1+u1/Kd,1) and KB(u2) = K(1+u2/Kd,2) denote
the effective K values of the Hill functions. We show in Figure 5.3b time traces
for A(t) and B(t) when the inducer concentrations are changed. The system starts
from initial conditions in which B is high and A is low without inducers. Then, at
time 50 the system is presented with a short pulse in u2, which causes A to rise
since it prevents B to repress A. As A rises, B is repressed and hence B decreases
to the low value and the system state switches to the other stable steady state. The
system remains in this steady state also after the inducer u2 is removed until another
transient stimulus is presented at time 150. At this time, there is a pulse in u1, which
inhibits the ability of A to repress B and, as a consequence, B rises, thus repressing
A, and the system returns to its original steady state.

Note that the effect of the inducers in this model is that of temporarily changing
the shape of the nullclines by increasing the values of KA and KB. Specifically, high
values of u1 with u2 = 0 will lead to increased values of KA, which will shift the
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point of half-maximal value of the Hill function β/(1+ (A/KA)n) to the right. As a
consequence, the nullclines will intersect at one point only, in which the value of B

is high and the value of A is low (Figure 5.4a). The opposite will occur when u2 is
high and u1 = 0, leading to only one intersection point in which B is low and A is
high (Figure 5.4b).

5.4 The repressilator

Elowitz and Leibler constructed an oscillatory genetic circuit consisting of three
repressors arranged in a ring fashion and called it the “repressilator” [25] (Fig-
ure 5.1). The repressilator exhibits sinusoidal, limit cycle oscillations in periods of
hours, slower than the cell-division time. Therefore, the state of the oscillator is
transmitted between generations from mother to daughter cells.

A dynamical model of the repressilator can be obtained by composing three
transcriptional modules in a loop fashion. The dynamics can be written as

dmA

dt
= F1(C)−δmA,

dA

dt
= κmA−γA,

dmB

dt
= F2(A)−δmB,

dB

dt
= κmB−γB,

dmC

dt
= F3(B)−δmC,

dC

dt
= κmC−γC,

(5.7)

where we take

F1(P) = F2(P) = F3(P) = F(P) =
α

1+ (P/K)n
,

and assume initially that the parameters are the same for all the three repressor
modules. The structure of system (5.7) belongs to the class of cyclic feedback
systems that we have studied in Section 3.3. In particular, the Mallet-Paret and
Smith Theorem 3.5 and Hastings et al. Theorem 3.4 can be applied to infer that if
the system has a unique equilibrium point and this equilibrium is unstable, then the
system admits a periodic solution. Therefore, to apply these results, we determine
the number of equilibria and their stability.

The equilibria of the system can be found by setting the time derivatives to zero.
Letting β = (κ/δ), we obtain

Aeq =
βF1(Ceq)

γ
, Beq =

βF2(Aeq)

γ
, Ceq =

βF3(Beq)

γ
,

which combined together yield

Aeq =
β

γ
F1

(

β

γ
F3

(

β

γ
F2(Aeq)

))

=: g(Aeq).

The solution to this equation determines the set of equilibria of the system. The
number of equilibria is given by the number of crossings of the two functions
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h1(A) = g(A) and h2(A) = A. Since h2 is strictly monotonically increasing, we ob-
tain a unique equilibrium if h1 is monotonically decreasing. This is the case when
g′(A) = dg(A)/dA < 0, otherwise there could be multiple equilibrium points. Since
we have that

sign(g′(A)) =
3∏

i=1

sign(F′i (A)),

it follows that if Π3
i=1sign(F′

i
(A)) < 0 the system has a unique equilibrium. We call

the product Π3
i=1sign(F′

i
(A)) the loop sign.

It follows that any cyclic feedback system with negative loop sign will have a
unique equilibrium. In the present case, system (5.7) is such that F′

i
< 0, so that the

loop sign is negative and there is a unique equilibrium. We next study the stability
of this equilibrium by studying the linearization of the system.

Letting P denote the equilibrium value of the protein concentrations for A, B,
and C, the Jacobian matrix of the system is given by

J =




−δ 0 0 0 0 F′1(P)
κ −γ 0 0 0 0
0 F′2(P) −δ 0 0 0
0 0 κ −γ 0 0
0 0 0 F′3(P) −δ 0
0 0 0 0 κ −γ




,

whose characteristic polynomial is given by

det(sI− J) = (s+γ)3(s+δ)3− κ3
3∏

i=1

F′i (P). (5.8)

The roots of this characteristic polynomial are given by

(s+γ)(s+δ) = r,

in which r ∈ {κF′(P),−(κF′(P)/2)(1− i
√

3),−(κF′(P)/2)(1+ i
√

3)} and i =
√
−1

represents the imaginary unit. In order to invoke Hastings et al. Theorem 3.4 to
infer the existence of a periodic orbit, it is sufficient that one of the roots of the
characteristic polynomial has positive real part. This is the case if

κ|F′(P)| > 2γδ, |F′(P)| = α n(Pn−1/Kn)
(1+ (P/K)n)2

,

in which P is the equilibrium value satisfying the equilibrium condition

P =
β

γ

α

1+ (P/K)n
.
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Figure 5.5: Parameter space for the repressilator. (a) Repressilator diagram. (b) Space of
parameters that give rise to oscillations. Here, we have set K = 1 for simplicity.

One can plot the pair of values (n,β/γ) for which the above two conditions are
satisfied. This leads to the plot of Figure 5.5b. When n increases, the existence of
an unstable equilibrium point is guaranteed for larger ranges of β/γ. Of course,
this “behavioral” robustness does not guarantee that other important features of the
oscillator, such as the period, are not changed when parameters vary.

A similar result for the existence of a periodic solution can be obtained when
two of the Hill functions are monotonically increasing and only one is monotoni-
cally decreasing:

F1(P) =
α

1+ (P/K)n
, F2(P) =

α(P/K)n

1+ (P/K)n
, F3(P) =

α(P/K)n

1+ (P/K)n
.

That is, two interactions are activations and one is a repression. We refer to this
as the “non-symmetric” design. Since the loop sign is still negative, there is only
one equilibrium point. We can thus obtain the condition for oscillations again by
establishing conditions on the parameters that guarantee that at least one root of
the characteristic polynomial (5.8) has positive real part, that is,

κ(|F′1(P3)F′2(P1)F′3(P2)|)(1/3) > 2γδ, (5.9)

in which P1,P2,P3 are the equilibrium values of A, B, and C, respectively. These
equilibrium values satisfy:

P2 =
β

γ

(P1/K)n

1+ (P1/K)n
, P3 =

β

γ

(P2/K)n

1+ (P2/K)n
, P1(1+ (P3/K)n) =

β

γ
.
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Figure 5.6: Parameter space for a loop oscillator. (a) Oscillator diagram. (b) Space of pa-
rameters that give rise to oscillations. As the value of n is increased, the range of the other
parameter for which a periodic cycle exists becomes larger. Here, we have set K = 1.

Using these expressions numerically and checking for each combination of the
parameters (n,β/γ) whether (5.9) is satisfied, we can plot the combinations of n

and β/γ values that lead to an unstable equilibrium. This is shown in Figure 5.6b.
From this figure, we can deduce that the qualitative shape of the parameter space
that leads to a limit cycle is the same in the repressilator and in the non-symmetric
design. One can conclude that it is then possible to design the circuit such that the
parameters land in the filled region of the plots.

In practice, values of the Hill coefficient n between one and two can be obtained
by employing repressors that have cooperativity higher than or equal to two. There
are plenty of such repressors, including those originally used in the repressilator
design [25]. However, values of n greater than two may be hard to reach in practice.
To overcome this problem, one can include more elements in the loop. In fact, it is
possible to show that the value of n sufficient for obtaining an unstable equilibrium
decreases when the number of elements in the loop is increased (see Exercise 5.6).
Figure 5.7a shows a simulation of the repressilator.

In addition to determining the space of parameters that lead to periodic trajec-
tories, it is also relevant to determine the parameters to which the system behavior
is the most sensitive. To address this question, we can use the parameter sensitivity
analysis tools of Section 3.2. In this case, we model the repressilator Hill functions
adding the basal expression rate as it was originally done in [25]:

F1(P) = F2(P) = F3(P) =
α

1+ (P/K)n
+α0.
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Figure 5.7: Repressilator parameter sensitivity analysis. (a) Protein concentrations as func-
tions of time. (b) Sensitivity plots. The most important parameters are the protein and
mRNA decay rates γ and δ. Parameter values used in the simulations are α = 800 nM/s,
α0 = 5× 10−4 nM/s, δ = 5.78× 10−3 s−1, γ = 1.16× 10−3 s−1, κ = 0.116 s−1, n = 2, and
K = 1600 nM.

Letting x = (mA,A,mB,B,mC,C) and θ = (α0, δ, κ,γ,α,K), we can compute the sen-
sitivity S x,θ along the limit cycle corresponding to nominal parameter vector θ0 as
illustrated in Section 3.2:

dS x,θ

dt
= M(t, θ0)S x,θ +N(t, θ0),

where M(t, θ0) and N(t, θ0) are both periodic in time. If the dynamics of S x,θ are
stable then the resulting solutions will be periodic, showing how the dynamics
around the limit cycle depend on the parameter values. The results are shown in
Figure 5.7, where we plot the steady state sensitivity of A as a function of time. We
see, for example, that the limit cycle depends strongly on the protein degradation
and dilution rate δ, indicating that changes in this value can lead to (relatively)
large variations in the magnitude of the limit cycle.

5.5 Activator-repressor clock

Consider the activator-repressor clock diagram shown in Figure 5.1. The activator
A takes two inputs: the activator A itself and the repressor B. The repressor B
has the activator A as the only input. Let mA and mB represent the mRNA of the
activator and of the repressor, respectively. Then, we consider the following four-
dimensional model describing the rate of change of the species concentrations:

dmA

dt
= F1(A,B)−δAmA,

dA

dt
= κAmA−γAA,

dmB

dt
= F2(A)−δBmB,

dB

dt
= κBmB−γBB,

(5.10)
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Figure 5.8: Nullclines for the two-dimensional system (5.11). (a) shows the only possi-
ble configuration of the nullclines when n = 1. (b) shows a possible configuration of the
nullclines when n = 2. In this configuration, there is a unique equilibrium, which can be
unstable.

in which the functions F1 and F2 are Hill functions and given by

F1(A,B) =
αA(A/KA)n+αA0

1+ (A/KA)n+ (B/KB)m
, F2(A) =

αB(A/KA)n+αB0

1+ (A/KA)n
.

The Hill function F1 can be obtained through a combinatorial promoter, where
there are sites both for an activator and for a repressor. The Hill function F2 has the
form considered for an activator when transcription can still occur at a basal level
even in the absence of an activator (see Section 2.3).

We first assume the mRNA dynamics to be at the quasi-steady state so that we
can perform two-dimensional analysis and invoke the Poincaré-Bendixson theo-
rem (Section 3.3). Then, we analyze the four-dimensional system and perform a
bifurcation study.

Two-dimensional analysis

We let f1(A,B) := (κA/δA)F1(A,B) and f2(A) := (κB/δB)F2(A). For simplicity, we
also define f (A,B) := −γAA+ f1(A,B) and g(A,B) := −γBB+ f2(A) so that the two-
dimensional system is given by

dA

dt
= f (A,B),

dB

dt
= g(A,B). (5.11)

To simplify notation, we set KA = KB = 1 and take m = 1, without loss of generality
as similar results can be obtained when m > 1 (see Exercise 5.7).

We first study whether the system admits a periodic solution for n = 1. To do so,
we analyze the nullclines to determine the number and location of steady states. Let
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ᾱA = αA(κA/δA), ᾱB = αB(κB/δB), ᾱA0 = αA0(κA/δA), and ᾱB0 = αB0(κB/δB). Then,
g(A,B) = 0 leads to

B =
ᾱBA+ ᾱB0

(1+A)γB

,

which is an increasing function of A. Setting f (A,B) = 0, we obtain that

B =
ᾱAA+ ᾱA0−γAA(1+A)

γAA
,

which is a monotonically decreasing function of A. These nullclines are displayed
in Figure 5.8a.

We see that we have only one equilibrium point. To determine the stability of
the equilibrium, we calculate the linearization of the system at such an equilibrium.
This is given by the Jacobian matrix

J =





∂ f

∂A

∂ f

∂B

∂g

∂A

∂g

∂B





.

In order for the equilibrium to be unstable and not a saddle, it is necessary and
sufficient that tr(J) > 0 and det(J) > 0. Graphical inspection of the nullclines at the
equilibrium (see Figure 5.8a) shows that

dB

dA

∣
∣
∣
∣
∣
f (A,B)=0

< 0.

By the implicit function theorem (Section 3.5), we further have that

dB

dA

∣
∣
∣
∣
∣
f (A,B)=0

= −∂ f /∂A

∂ f /∂B
,

so that ∂ f /∂A < 0 because ∂ f /∂B < 0. As a consequence, we have that tr(J) < 0
and hence the equilibrium point is either stable or a saddle.

To determine the sign of det(J), we further inspect the nullclines and find that

dB

dA

∣
∣
∣
∣
∣
g(A,B)=0

>
dB

dA

∣
∣
∣
∣
∣
f (A,B)=0

.

Again using the implicit function theorem we have that

dB

dA

∣
∣
∣
∣
∣
g(A,B)=0

= −∂g/∂A
∂g/∂B

,

so that det(J) > 0. Hence, the ω-limit set (Section 3.3) of any point in the plane is
necessarily not part of a periodic orbit. It follows that to guarantee that any initial
condition converges to a periodic orbit, we need to require that n > 1.
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Figure 5.9: Effect of the trace of the Jacobian on the stability of the equilibrium. The above
plots illustrate the trajectories of system (5.11) for both a functional (tr(J) > 0) and a non-
functional (tr(J) < 0) clock. The parameters in the simulation are δA = 1 = δB = 1 hrs−1,
αA = 250 nM/hrs, αB = 30 nM/hrs, αA0 = .04 nM/hrs, αB0 = .004 nM/hrs, γA = 1 hrs−1,
κA = κB = 1 hrs−1, KA = KB = 1 nM, n = 2 and m = 4. In the functional clock, γB = 0.5
hrs−1, whereas in the non-functional clock, γB = 1.5 hrs−1.

We now study the case n = 2. In this case, the nullcline f (A,B) = 0 changes
and can have the shape shown in Figure 5.8b. In the case in which, as in the figure,
there is only one equilibrium point and the nullclines both have positive slope at the
intersection (equivalent to det(J) > 0), the equilibrium is unstable and not a saddle
if tr(J) > 0. This is the case when

γB

∂ f1/∂A−γA

< 1.

This condition reveals the crucial design requirement for the functioning of the
clock. Specifically, the repressor B time scale must be sufficiently slower than the
activator A time scale. This point is illustrated in the simulations of Figure 5.9, in
which we see that if γB is too large, the trace becomes negative and oscillations
disappear.

Four-dimensional analysis

In order to deepen our understanding of the role of time scale separation between
activator and repressor dynamics, we perform a time scale analysis employing the
bifurcation tools described in Section 3.4. To this end, we consider the following
four-dimensional model describing the rate of change of the species concentrations:

dmA

dt
= F1(A,B)− (δA/ǫ) mA,

dA

dt
= ν

(

(κA/ǫ) mA−γAA
)

,

dmB

dt
= F2(A)− (δB/ǫ) mB,

dB

dt
= (κB/ǫ) mB−γBB.

(5.12)
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This system is the same as system (5.10), where we have explicitly introduced
two parameters ν and ǫ that model time scale differences, as follows. The param-
eter ν determines the relative time scale between the activator and the repressor
dynamics. As ν increases, the activator dynamics become faster compared to the
repressor dynamics. The parameter ǫ determines the relative time scale between
the protein and mRNA dynamics. As ǫ becomes smaller, the mRNA dynamics be-
come faster compared to protein dynamics and model (5.12) becomes close to the
two-dimensional model (5.11), in which the mRNA dynamics are considered at
the quasi-steady state. Thus, ǫ is a singular perturbation parameter. In particular,
equations (5.12) can be taken to standard singular perturbation form by consider-
ing the change of variables m̄A = mA/ǫ and m̄B = mB/ǫ. The details on singular
perturbation can be found in Section 3.5.

The values of ǫ and of ν do not affect the number of equilibria of the system
but they do determine the stability of the equilibrium points. We thus perform bi-
furcation analysis with ǫ and ν as the two bifurcation parameters. The bifurcation
analysis results are summarized by Figure 5.10. In terms of the ǫ and ν parameters,
it is thus possible to design the system as follows: if the activator dynamics are
sufficiently sped up with respect to the repressor dynamics, the system undergoes
a Hopf bifurcation (Hopf bifurcation was introduced in Section 3.3) and a stable
periodic orbit arises. The chart illustrates that for intermediate values of 1/ǫ, more
complicated dynamic behaviors can arise in which a stable equilibrium coexists
with a stable limit cycle. This situation corresponds to the hard excitation condi-
tion [58] and occurs for realistic values of the separation of time scales between
protein and mRNA dynamics. Therefore, this simple oscillator motif described by
a four-dimensional model can capture interesting dynamic behaviors, including
features that lead to the long-term suppression of a rhythm by external inputs.

From a fabrication point of view, the activator dynamics can be sped up by
adding suitable degradation tags to the activator protein. Similarly, the repressor
dynamics can be slowed down by adding repressor DNA binding sites (see Chapter
6 and the effects of retroactivity on dynamic behavior).

5.6 An incoherent feedforward loop (IFFL)

In Section 3.2, we described various mechanisms to obtain robustness to external
perturbations. In particular, one such mechanism is provided by incoherent feed-
forward loops. Here, we describe an implementation that was proposed for mak-
ing the equilibrium values of protein expression robust to perturbations in DNA
plasmid copy number [14]. In this implementation, the input u is the amount of
DNA plasmid coding for both the intermediate regulator A and the output protein
B. The intermediate regulator A represses the expression of the output protein B
through transcriptional repression (Figure 5.11). The expectation is that the equi-
librium value of B is independent of the concentration u of the plasmid. That is, the
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Figure 5.10: Design chart for the activator-repressor clock. We obtain sustained oscilla-
tions past the Hopf bifurcation point for values of ν sufficiently large independent of the
difference of time scales between the protein and the mRNA dynamics. We also notice that
there are values of ν for which a stable equilibrium point and a stable limit cycle coex-
ist and values of ν for which two stable limit cycles coexist. The interval of ν values for
which two stable limit cycles coexist is too small to be able to numerically set ν in such an
interval. Thus, this interval is not practically relevant. The values of ν for which a stable
equilibrium and a stable periodic orbit coexist are instead relevant.

u A B

u

A B

Figure 5.11: The incoherent feedforward motif with a possible implementation. The circuit
is integrated on a DNA plasmid denoted u. Protein A is under the control of a constitutive
promoter in the DNA plasmid u, while B is repressed by A. Protein B, in turn, is also
expressed by a gene in the plasmid u. Hence B is also “activated” by u.
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Figure 5.12: Behavior of the equilibrium value of B as a function of the input u. Concen-
tration is in µM.

concentration of B should adapt to the copy number of its own plasmid.
In order to analyze whether the adaptation property holds, we write the differ-

ential equation model describing the system, assuming that the mRNA dynamics
are at the quasi-steady state. This model is given by

dA

dt
= k0u−γA, dB

dt
=

k1u

1+ (A/Kd)
−γB, (5.13)

in which k0 is the constitutive rate at which A is expressed and Kd is the disso-
ciation constant of the binding of A with the promoter. This implementation has
been called the sniffer in Section 3.2. The equilibrium of the system is obtained by
setting the time derivatives to zero and gives

A =
k0

γ
u, B =

k1u

γ+ k0u/Kd
.

From this expression, we can see that as Kd decreases, the denominator of
the right-hand side expression tends to k0u/Kd resulting in the equilibrium value
B = k1Kd/k0, which does not depend on the input u. Hence, in this case, adaptation
would be reached. This is the case if the affinity of A to its operator sites is ex-
tremely high, resulting also in a strong repression and hence a lower value of B. In
practice, however, the value of Kd is nonzero, hence the adaptation is not perfect.
We show in Figure 5.12 the equilibrium value of B as a function of the input u for
different values of Kd. As expected, lower values of Kd lead to weaker dependence
of B on the u variable.

In this analysis, we have not modeled the cooperativity of the binding of protein
A to the promoter. We leave as an exercise to show that the adaptation behavior
persists in the case cooperativity is included (see Exercise 5.8).

For engineering a system with prescribed behavior, one has to be able to change
the physical features so as to change the values of the parameters of the model.
This is often possible. For example, the binding affinity (1/Kd in the Hill function)
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Figure 5.13: Examples of chemotaxis. In the absence of attractant or repellent, the bac-
terium follows a random walk. In the presence of an attractant, the random walk is biased
in the direction in which the concentration of attractant increases (positive chemotaxis),
while in the presence of a repellent the random walk is biased in the direction in which
the concentration of the repellent decreases (negative chemotaxis). Figure from Phillips,
Kondev and Theriot [76]; used with permission of Garland Science.

of a transcription factor to its site on the promoter can be weakened by single or
multiple base-pair substitutions. The protein decay rate can be increased by adding
degradation tags at the end of the gene expressing protein B. Promoters that can
accept multiple transcription factors (combinatorial promoters) can be realized by
combining the operator sites of several simple promoters [45]. Finally, the overall
protein production rate can be tuned by controlling a number of different system
properties, including promoter’s and the ribosome binding site’s strength.

5.7 Bacterial chemotaxis

Chemotaxis refers to the process by which microorganisms move in response to
chemical stimuli. Examples of chemotaxis include the ability of organisms to move
in the direction of nutrients or move away from toxins in the environment. Chemo-
taxis is called positive chemotaxis if the motion is in the direction of the stimulus
and negative chemotaxis if the motion is away from the stimulant, as shown in
Figure 5.13. Many chemotaxis mechanisms are stochastic in nature, with biased
random motions causing the average behavior to be either positive, negative or
neutral (in the absence of stimuli).

In this section we look in some detail at bacterial chemotaxis, which E. coli use
to move in the direction of increasing nutrients. The material in this section is based
primarily on the work of Barkai and Leibler [9] and Rao, Kirby and Arkin [81].

Control system overview

The chemotaxis system in E. coli consists of a sensing system that detects the pres-
ence of nutrients, an actuation system that propels the organism in its environment,
and control circuitry that determines how the cell should move in the presence of
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Figure 5.14: Bacterial chemotaxis. (a) Flagellar motors are responsible for spinning flag-
ella. (b) When flagella spin in the clockwise direction, the organism tumbles, while when
they spin in the counterclockwise direction, the organism runs. (c) The direction in which
the flagella spin is determined by whether the CheY protein is phosphorylated. Figures
from Phillips, Kondev and Theriot [76]; used with permission of Garland Science.

chemicals that stimulate the sensing system.

The actuation system in E. coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown in
Figure 5.14a. When the flagella all spin in the counterclockwise direction, the indi-
vidual flagella form a bundle and cause the organism to move roughly in a straight
line. This behavior is called a “run” motion. Alternatively, if the flagella spin in the
clockwise direction, the individual flagella do not form a bundle and the organism
“tumbles,” causing it to rotate (Figure 5.14b). The selection of the motor direc-
tion is controlled by the protein CheY: if phosphorylated CheY binds to the motor
complex, the motor spins clockwise (tumble), otherwise it spins counterclockwise
(run) (Figure 5.14c).

A question that we address here is how the bacterium moves in the direction in
which the attractant concentration increases. Because of the small size of the organ-
ism, it is not possible for a bacterium to sense gradients across its length. Hence,
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Figure 5.15: Control system for chemotaxis. (a) The sensing system is implemented by the
receptor complex, which detects the presence of a ligand in the cell’s outer environment.
The computation part is implemented by a combined phosphorylation/methylation process,
which realizes a form of integral feedback. The actuation component is realized by the
CheY phosphorylated protein controlling directly the direction in which the motor spins.
Figure from Rao et al. [81] (Figure 1A). (b) Receptor complex states. The probability of a
given state being in an active configuration is given by p. ∆E represents the difference in
energy levels from a reference state. Figure obtained from [70].

a more sophisticated strategy is used, in which the temporal gradient, as opposed
to the spatial gradient, guides the organism motion through suitable combination
of run and tumble motions. To sense temporal gradients, E. coli compares the cur-
rent concentration of attractant to the past concentration of attractant and if the
concentration increases, then the concentration of phosphorylated CheY protein is
reduced. As a consequence, less phosphorylated CheY will bind to the motor com-
plex and the tumbling frequency is reduced. The net result is a biased random walk
in which the bacterium tends to move toward the direction in which the gradient of
attractant concentration increases.

A simple model for the molecular control system that regulates chemotaxis is
shown in Figure 5.15a. We start with the basic sensing and actuation mechanisms.
A membrane-bound protein MCP (methyl-accepting chemotaxis protein) that is
capable of binding to the external ligand serves as a signal transducing element
from the cell exterior to the cytoplasm. Two other proteins, CheW and CheA, form
a complex with MCP. This complex can either be in an active or inactive state. In
the active state, CheA is autophosphorylated and serves as a phosphotransferase for
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two additional proteins, CheB and CheY. The phosphorylated form of CheY then
binds to the motor complex, causing clockwise rotation of the motor (tumble).

The activity of the receptor complex is governed by two primary factors: the
binding of a ligand molecule to the MCP protein and the presence or absence of
up to four methyl groups on the MCP protein. The specific dependence on each
of these factors is somewhat complicated. Roughly speaking, when the ligand L
is bound to the receptor then the complex is less likely to be active. Furthermore,
as more methyl groups are present, the ligand binding probability increases, al-
lowing the gain of the sensor to be adjusted through methylation. Finally, even in
the absence of ligand the receptor complex can be active, with the probability of it
being active increasing with increased methylation. Figure 5.15b summarizes the
possible states, their free energies and the probability of activity.

Several other elements are contained in the chemotaxis control circuit. The most
important of these are implemented by the proteins CheR and CheB, both of which
affect the receptor complex. CheR, which is constitutively produced in the cell,
methylates the receptor complex at one of the four different methylation sites. Con-
versely, the phosphorylated form of CheB demethylates the receptor complex. As
described above, the methylation patterns of the receptor complex affect its activ-
ity, which affects the phosphorylation of CheA and, in turn, phosphorylation of
CheY and CheB. The combination of CheA, CheB and the methylation of the re-
ceptor complex forms a negative feedback loop: if the receptor is active, then CheA
phosphorylates CheB, which in turn demethylates the receptor complex, making it
less active. As we shall see when we investigate the detailed dynamics below, this
feedback loop corresponds to a type of integral feedback law. This integral action
allows the cell to adjust to different levels of ligand concentration, so that the be-
havior of the system is invariant to the absolute ligand levels.

Modeling

From a high level, we can view the chemotaxis as a dynamical system that takes the
ligand L concentration as an input and produces the phosphorylated CheY bound
to the motor complex as an output, which determines the tumbling frequency. We
let T represent the receptor complex and we write A, B, Y and Z for CheA, CheB,
CheY and CheZ, respectively. As in previous chapters, for a protein X we let X*

represent its phosphorylated form.
Each receptor complex can have multiple methyl groups attached and the ac-

tivity of the receptor complex depends on both the amount of methylation and
whether a ligand is attached to the receptor site (Figure 5.15b). Furthermore, the
binding probabilities for the receptor also depend on the methylation pattern. We
let Tx

i represent a receptor that has i methylation sites filled and ligand state x
(which can be either u if unoccupied or o if occupied). We let m represent the
maximum number of methylation sites (m = 4 for E. coli). Using this notation, the
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Figure 5.16: Methylation model for chemotaxis. Figure from Barkai and Leibler [9] (Box
1).

transitions between the states correspond to the following reactions (also shown in
Figure 5.16):

Tu
i +L −−−⇀↽−−− To

i ,

Tx
i +B∗ −−−⇀↽−−− Tx

i :B∗ −−→ Tx
i−1+B∗, i > 0, x ∈ {u,o},

Tx
i +R −−−⇀↽−−− Tx

i :R −−→ Tx
i+1+R, i < m, x ∈ {u,o},

in which the first reaction models the binding of the ligand L to the receptor com-
plex, the second reaction models the demethylation of methylated receptor com-
plex by B*, and the third reaction models the methylation of the receptor complex
by R.

We now must write reactions for each of the receptor complexes with CheA.
Each form of the receptor complex has a different activity level that determines
the extent to which CheA can be phosphorylated. Therefore, we write a separate
reaction for each form, which for simplicity we assume to be a one-step process
for each To

i and Tu
i species:

Tx
i +A

kx
i−→ Tx

i +A∗,

where x ∈ {o,u} and i = 0, . . . ,m. As a consequence, the production rate of A* by all
the above reactions is given by

A

4∑

i=1

(

ko
i T o

i + ku
i T u

i

)

.

Considering that the ligand-receptor binding reaction is at its quasi-steady state be-
cause it is very fast, and letting Ti = T u

i
+T o

i
represent the total amount of receptors

with i sites methylated, we further have that

T u
i =

1
1+L/KL

Ti, T o
i =

L/KL

1+L/KL

Ti,
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Figure 5.17: Probability of activity αi(L) as a function of the ligand concentration L.

in which KL is the dissociation constant of the receptor complex-ligand binding. It
follows that if we let T A

i
denote the “effective” concentration of Ti that phosphory-

lates A, we have

ka
i T A

i = ko
i T o

i + ku
i T u

i = Ti

(
ku

i
+ ko

i
(L/KL)

1+L/KL

)

,

for a suitably defined constant ka
i
. Hence, we can write

T A
i = αi(L)Ti, with αi(L) =

αo
i
(L/KL)

1+L/KL

+
α1

i

1+L/KL

,

and T I
i
= Ti − T A

i
, for suitable constants α1

i
and αo

i
. The coefficients αo

i
and α1

i

capture the effect of presence or absence of the ligand on the activity level of the
complex and αi(L) can be interpreted as the probability of activity. Following [81],
we take the coefficients to be

α1
0 = 0, α1

1 = 0.1, α1
2 = 0.5, α1

3 = 0.75, α1
4 = 1,

αo
0 = 0, αo

1 = 0, αo
2 = 0.1, αo

3 = 0.5, αo
4 = 1,

and choose KL = 10 µM. Figure 5.17 shows how each αi(L) varies with L.
The total concentration of active receptors can now be written in terms of the

receptor complex concentrations Ti and the activity probabilities αi(L). We write
the concentration of activated complex TA and inactivated complex TI as

T A =

4∑

i=0

αi(L)Ti, T I =

4∑

i=0

(1−αi(L))Ti.

These formulas can now be used in our dynamics as an effective concentration of
active or inactive receptors. In particular, letting k0 represent a lumped reaction
rate constant for the phosphorylation of A by TA, for which we employ a one-step
reaction model, we have

TA+A
k0−→ TA+A∗. (5.14)
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We next model the transition between the methylation patterns on the receptor.
For this, we assume that CheR binds only inactive receptors and phosphorylated
CheB binds only to active receptors [81, 70]. This leads to the following reactions:

TA
i +B∗

aB−−⇀↽−−
dB

TA
i :B∗

kB−−→ TA
i−1+B∗, i ∈ {2,3,4},

TA
1 +B∗

aB−−⇀↽−−
dB

TA
1 :B∗,

TI
i +R

aR−−⇀↽−−
dR

TI
i :R

kR−−→ TI
i+1+R, i ∈ {1,2,3},

TI
4+R

aR−−⇀↽−−
dR

TI
4:R,

in which we accounted for the fact that R can still bind to TI
4 even without methy-

lating it and B* can still bind TA
1 even without demethylating it. Assuming the

complexes’ concentrations are at their quasi-steady state values, and letting KR =

(dR + kR)/aR and KB = (dB+ kB)/aB denote the Michaelis-Menten constant for the
above enzymatic reactions, we have the following relations:

[TR
i :R] =

T I
i
R

KR

, [TA
i :B∗] =

T A
i

B∗

KB

,

in which we have approximated dR/aR (dB/aB) by KR (KB) accounting for the
fact that kR ≪ dR (kB ≪ dB). We can now write the differential equation for Ti

considering the fact that
dTi

dt
=

dT I
i

dt
+

dT A
i

dt
.

Specifically, we have that

dT I
i

dt
= −kR

T I
i
R

KR

+ kR

T I
i−1R

KR

,

dT A
i

dt
= −kB

T A
i

B∗

KB

+ kB

T A
i+1B∗

KB

,

with the conservation laws Rtot = R+
∑4

i=1[TI
i :R] and B∗tot = B∗ +

∑4
i=1[Ti:B

∗], in
which B∗tot represents the total amount of phosphorylated CheB protein. Consider-
ing the quasi-steady state expressions for the complexes and the fact that

∑4
i=1 T A

i
=

T A and
∑4

i=1 T I
i
= T I , these conservation laws lead to

R =
Rtot

1+T I/KR

, B∗ =
B∗tot

1+T A/KB

.

Defining

rR = kR

Rtot

KR+T I
, rB = kB

B∗tot

KB+T A
,
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which represent the effective rates of the methylation and demethylation reactions,
we finally obtain that

d

dt
Ti = rR

(

1−αi−1(L)
)

Ti−1 + rBαi+1(L)Ti+1 − rR

(

1−αi(L)
)

Ti − rBαi(L)Ti,

where the first and second terms represent transitions into this state via methylation
or demethylation of neighboring states (see Figure 5.16) and the last two terms
represent transitions out of the current state by methylation and demethylation,
respectively. Note that the equations for T0 and T4 are slightly different since the
demethylation and methylation reactions are not present, respectively.

Finally, we write the phosphotransfer and dephosphorylation reactions among
CheA, CheB, and CheY, and the binding of CheY* to the motor complex M:

A∗+Y
k1−→ A+Y∗, Y∗

k2−→ Y,

A∗+B
k3−→ A+B∗, B∗

k4−→ B,

TA
i :B∗

k4−→ TA
i :B, i ∈ {1,2,3,4},

Y∗+M
a−⇀↽−
d

Y∗:M,

in which the first reaction is the phosphotransfer from CheA* to CheY*, the sec-
ond reaction is the dephosphorylation of CheY* by CheZ, the third reaction is the
phosphotransfer from CheA* to CheB, the fourth and fifth reactions are the de-
phosphorylation of CheB*, which can be dephosphorylated also when bound to the
receptor, and the last reaction is the binding of CheY* with the motor complex M
to form the complex Y* : M, which increases the probability that the motor will
rotate clockwise. The resulting ODE model is given by

d

dt
A∗ = k0T AA− k1A∗Y − k3A∗B,

d

dt
Y∗ = k1A∗Y − k2Y∗−aMY∗+d[M:Y∗],

d

dt
B∗tot = k3A∗B− k4B∗tot,

d

dt
[M:Y∗] = aMY∗−d[M:Y∗],

with conservation laws

A+A∗ = Atot, B+B∗tot = Btot,

Y +Y∗+ [M:Y∗] = Ytot, M+ [M:Y∗] = Mtot.

Figure 5.18a shows the concentration of the phosphorylated proteins based on
a simulation of the model. Initially, all species are started in their unphosphory-
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Figure 5.18: Simulation and analysis of reduced-order chemotaxis model. The parame-
ters are taken from Rao et al. [81] and given by k0 = 50 s−1nM−1, k1 = 100 s−1nM−1,
k3 = 30 s−1nM−1, k2 = 30 s−1nM−1, a = 50 s−1nM−1, d = 19 s−1, and k4 = 1 s−1. The con-
centrations are Rtot = 0.2 nM,

∑4
i=0 Ti = 5 nM, Atot = 5 nM, Btot = 2 nM, and Ytot = 17.9 nM.

Also, we have kB = 0.5 s−1, KB = 5.5 nM, kR = 0.255 s−1, and KR = 0.251 nM.

lated and demethylated states. At time 500 s the ligand concentration is increased
to L= 10 µM and at time 1000 s it is returned to zero. We see that immediately after
the ligand is added, the CheY* concentration drops, allowing longer runs between
tumble motions. After a short period, however, the CheY* concentration adapts to
the higher concentration and the nominal run versus tumble behavior is restored.
Similarly, after the ligand concentration is decreased the concentration of CheY*

increases, causing a larger fraction of tumbles (and subsequent changes in direc-
tion). Again, adaptation over a longer time scale returns the CheY concentration to
its nominal value. The chemotaxis circuit pathway from T to CheY (to the motor)
explains the sudden drop of CheY* when the ligand L is added. The slower methy-
lation of the receptor complex catalyzed by CheR and removed by CheB slowly
takes the value of CheY* to the pre-stimulus level.

Figure 5.18b helps explain the adaptation response. We see that the average
amount of methylation of the receptor proteins increases when the ligand concen-
tration is high, which decreases the activity of CheA (and hence decreases the
phosphorylation of CheY).

Integral action

The perfect adaptation mechanism in the chemotaxis control circuitry has the same
function as the use of integral action in control system design: by including a feed-
back on the integral of the error, it is possible to provide exact cancellation to
constant disturbances. In this section we demonstrate that a simplified version of
the dynamics can indeed be regarded as integral action of an appropriate signal.
This interpretation was first pointed out by Yi et al. [100].
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Figure 5.19: Reduced-order model of receptor activity. Star indicates activated complex
and “m” indicates methylated complex. Obtained from [4], Figure 7.9.

We begin by formulating an even simpler model for the system dynamics that
captures the basic features required to understand the integral action. We consider
the receptor complex T and the kinase CheA as a single entity denoted by X, which
can be either methylated or not. We ignore the number of methylated sites and sim-
ply group all the methylated forms into a lumped stated called Xm. Also, we assume
that only the methylated state can be activated and the activity is determined by the
ligand L concentration (through the functions αi(L)). We let X*

m represent this ac-
tive state and ignore the additional phosphorylation dynamics of CheY, so that we
take the concentration X∗m as our measure of overall activity.

We take the ligand into account by assuming that the transition between the
active form X*

m and the inactive form Xm depends on the ligand concentration:
higher ligand concentration will increase the rate of transition to the inactive state.
The activation/deactivation reactions are then written as

R0 : X∗m
k f (L)
−−−−⇀↽−−−−

kr
Xm activation/deactivation,

in which the deactivation rate k f (L) is an increasing function of L. As before, CheR
methylates the receptor and CheB* demethylates it. We simplify the picture by only
allowing CheB* to act on the active state X*

m and CheR to act on the inactive state.
Figure 5.19 shows the transitions between the various forms X.

This model is a considerable simplification from the ligand binding model that
is illustrated in Figures 5.15b and 5.16. In the previous models, there is some prob-
ability of activity with or without methylation and with or without ligand. In this
simplified model, we assume that only three states are of interest: demethylated,
methylated/inactive and methylated/active. We also modify the way that ligand
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binding is captured and instead of keeping track of all of the possibilities in Fig-
ure 5.15b, we assume that the ligand transitions us from an active state X*

m to an
inactive Xm. These states and transitions are roughly consistent with the different
energy levels and probabilities in Figure 5.15b, but it is clearly a much coarser
model.

Accepting these approximations, the model illustrated in Figure 5.19 results in
the methylation and demethylation reactions

R1 : X+R −−−⇀↽−−− X:R −−→ Xm+R methylation,

R2 : X∗m+B∗ −−−⇀↽−−− X∗m:B∗ −−→ X+B∗ demethylation.

For simplicity we take both R and B* to have constant concentration.
We can further approximate the first and second reactions by their Michaelis-

Menten forms, which yield net methylation and demethylation rates (for those re-
actions)

v+ = kRR
X

KX +X
, v− = kBB∗

X∗m
KX∗m +X∗m

.

If we further assume that X ≫ KX > 1, then the methylation rate can be further
simplified:

v+ = kRR
X

KX +X
≈ KRR.

Using these approximations, we can write the resulting dynamics for the overall
system as

d

dt
Xm = kRR+ k f (L)X∗m− krXm,

d

dt
X∗m = −kBB∗

X∗m
KX∗m +X∗m

− k f (L)X∗m+ krXm.

We wish to use this model to understand how the steady state activity level X∗m
depends on the ligand concentration L (which enters through the deactivation rate
k f (L)).

It will be useful to rewrite the dynamics in terms of the activated complex con-
centration X∗m and the total methylated complex concentration Xm,tot = Xm+X∗m. A
simple set of algebraic manipulations yields

dX∗m
dt
= kr(Xm,tot−X∗m)− kBB∗

X∗m
KX∗m +X∗m

− k f (L)X∗m,

dXm,tot

dt
= kRR− kBB∗

X∗m
KX∗m +X∗m

.

From the second equation, we see that the the concentration of methylated complex
Xm,tot is a balance between the action of the methylation reaction (R1, at rate v+)
and the demethylation reaction (R2, at rate v−). Since the action of a ligand binding
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to the receptor complex increases the rate of deactivation of the complex (R0),
in the presence of a ligand we will increase the amount of methylated complex
and, (via reaction R1) eventually restore the amount of the activated complex. This
represents the adaptation mechanism in this simplified model.

To further explore the effect of adaptation, we compute the equilibrium points
for the system. Setting the time derivatives to zero, we obtain

X∗m,e =
KX∗mkRR

kBB∗− kRR
,

Xm,tot,e =
1
kr

(

krX∗m+ kBB∗
X∗m

KX∗m +X∗m
+ k f (L)X∗m

)

.

Note that the solution for the active complex X∗m,e in the first equation does not
depend on k f (L) (or kr) and hence the steady state solution is independent of the
ligand concentration. Thus, in steady state, the concentration of activated complex
adapts to the steady state value of the ligand that is present, making it insensitive
to the steady state value of this input.

In order to demonstrate that after a perturbation due to addition of the ligand the
value of X∗m returns to its equilibrium, we need to prove that the equilibrium point
(Xm,tot,e,X

∗
m,e) is asymptotically stable. To do so, let x = Xm,tot, y = X∗m and rewrite

the system model as

dx

dt
= kRR− kBB∗

y

KX∗m + y
,

dy

dt
= kr(x− y)− kBB∗

y

KX∗m + y
− k f (L)y,

which is in the standard integral feedback form introduced in Section 3.2. The
stability of the equilibrium point (xe,ye) = (Xm,tot,e,X

∗
m,e) can be determined by cal-

culating the Jacobian matrix J of this system at the equilibrium. This gives

J =





0 −kBB∗
KX∗m

(ye+KX∗m )2

kr −kBB∗
KX∗m

(ye+KX∗m )2 − k f (L)− kr





,

for which
tr(J) < 0 and det(J) > 0,

implying that the equilibrium point is asymptotically stable.
The dynamics for Xm,tot can be viewed as an integral action: when the concen-

tration of X∗m matches its reference value (with no ligand present), the quantity of
methylated complex Xm,tot remains constant. But if Xm,tot does not match this ref-
erence value, then Xm,tot increases at a rate proportional to the methylation “error”
(measured here by difference in the nominal reaction rates v+ and v−). It can be
shown that this type of integral action is necessary to achieve perfect adaptation in
a robust manner [100].
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Exercises

5.1 Consider the negatively autoregulated system given in equation (5.4). Deter-
mine the frequency response with respect to noise input Γ2 and compare its mag-
nitude to that of the open loop system in equation (5.2).

5.2 Consider the contribution of the negative autoregulation given by the param-
eter g in equation (5.6). Study how g changes when the value of the dissociation
constant Kd is changed.

5.3 Consider the negatively autoregulated system

dA

dt
=

β

1+ (A/K)n
−γA.

Explore through linearization how increasing the Hill coefficient affects the re-
sponse time of the system. Also, compare the results of the linearization analysis
to the behavior of the nonlinear system obtained through simulation.

5.4 Consider the toggle switch model

dA

dt
=

βA

1+ (B/K)n
−γA, dB

dt
=

βB

1+ (A/K)m
−γB.

Here, we are going to explore the parameter space that makes the system work as
a toggle switch. To do so, answer the following questions:

(i) Consider m = n = 1. Determine the number and stability of the equilibria as
the values of βA and βB are changed.

(ii) Consider m = 1 and n > 1 and determine the number and stability of the
equilibria (as other parameters change).

(iii) Consider m= n= 2. Determine parameter conditions on βA,βB,γ,K for which
the system is bistable, i.e., there are two stable steady states.

5.5 Consider the repressilator model and the parameter space for oscillations pro-
vided in Figure 5.5. Determine how this parameter space changes if the value of K

in the Hill function is changed.

5.6 Consider the “generalized” model of the repressilator in which we have m

repressors (with m an odd number) in the loop. Explore via simulation the fact that
when m is increased, the system oscillates for smaller values of the Hill coefficient
n.

5.7 Consider the activator-repressor clock model given in equations (5.11). Deter-
mine the number and stability of the equilibria as performed in the text for the case
in which m > 1.
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5.8 Consider the feedforward circuit shown in Figure 5.11. Assume that we ac-
count for cooperativity such that the model becomes

dA

dt
= k0u−γA, dB

dt
=

k1u

1+ (A/Kd)n
−γB.

Show that the adaptation property still holds under suitable parameter conditions.
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Chapter 6

Interconnecting Components

In Chapter 2 and Chapter 5 we studied the behavior of simple biomolecular mod-
ules, such as oscillators, toggles, self-repressing circuits, signal transduction and
amplification systems, based on reduced-order models. One natural step forward
is to create larger and more complex systems by composing these modules to-
gether. In this chapter, we illustrate problems that need to be overcome when in-
terconnecting components and propose a number of engineering solutions based
on the feedback principles introduced in Chapter 3. Specifically, we explain how
loading effects arise at the interconnection between modules, which change the ex-
pected circuit behavior. These loading problems appear in several other engineering
domains, including electrical, mechanical, and hydraulic systems, and have been
largely addressed by the respective engineering communities. In this chapter, we
explain how similar engineering solutions can be employed in biomolecular sys-
tems to defeat loading effects and guarantee “modular” interconnection of circuits.
In Chapter 7, we further study loading of the cellular environment by synthetic
circuits employing the same framework developed in this chapter.

6.1 Input/output modeling and the modularity assumption

The input/output modeling introduced in Chapter 1 and further developed in Chap-
ter 3 has been employed so far to describe the behavior of various modules and
subsystems. This input/output description of a system allows us to connect sys-
tems together by setting the input u2 of a downstream system equal to the output y1

of the upstream system (Figure 6.1) and has been extensively used in the previous

u1 u2 = y1 y2

u1 y1 y2u2

Figure 6.1: In the input/output modeling framework, systems are interconnected by stati-
cally assigning the value of the output of the upstream system to the input of the down-
stream system.
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chapters.
Each node of a gene circuit (see Figure 5.1, for example) of the previous chap-

ter, has been modeled as an input/output system taking the concentrations of tran-
scription factors as input and giving, through the processes of transcription and
translation, the concentration of another transcription factor as an output. For ex-
ample, node C in the repressilator has been modeled as a second-order system that
takes the concentration of transcription factor B as an input through the Hill func-
tion and gives transcription factor C as an output. This is of course not the only
possible choice for decomposing the system. We could in fact let the mRNA or the
RNA polymerase flowing along the DNA, called PoPS (polymerase per second)
[27], play the role of input and output signals. Similarly, a signal transduction net-
work is usually composed of protein covalent modification modules, which take a
modifying enzyme (a kinase in the case of phosphorylation) as an input and gives
the modified protein as an output.

This input/output modeling framework is extremely useful because it allows us
to predict the behavior of an interconnected system from the behavior of the iso-
lated modules. For example, the location and number of equilibria in the toggle
switch of Section 5.3 were predicted by intersecting the steady state input/output
characteristics, determined by the Hill functions, of the isolated modules A and B.
Similarly, the number of equilibria in the repressilator of Section 5.4 was predicted
by modularly composing the input/output steady state characteristics, again deter-
mined by the Hill functions, of the three modules composing the circuit. Finally,
criteria for the existence of a limit cycle in the activator-repressor clock of Section
5.5 were based on comparing the speed of the activator module’s dynamics to that
of the repressor module’s dynamics.

For this input/output interconnection framework to reliably predict the behav-
ior of connected modules, it is necessary that the input/output (dynamic) behavior
of a system does not change upon interconnection to another system. We refer to
the property by which a system input/output behavior does not change upon in-
terconnection as modularity. All the designs and models described in the previous
chapter assume that the modularity property holds. In this chapter, we question
this assumption and investigate when modularity holds in gene and in signal trans-
duction circuits. Further, we illustrate design methods, based on the techniques of
Chapter 3, to create functionally modular systems.

6.2 Introduction to retroactivity

The modularity assumption implies that when two modules are connected together,
their behavior does not change because of the interconnection. However, a funda-
mental systems engineering issue that arises when interconnecting subsystems is
how the process of transmitting a signal to a “downstream” component affects the
dynamic state of the upstream sending component. This issue, the effect of “loads”
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Figure 6.2: Interconnection of an activator-repressor clock to a downstream system. (a) The
activator-repressor clock is isolated. (b) The clock is connected to a downstream system.
(c) When the clock is connected, periodic behavior of the protein’s concentration is lost and
oscillations are quenched. The clock hence fails to transmit the desired periodic stimulation
to the downstream system. In all simulations, we have chosen the parameters of the clock
as in Figure 5.9. For the system in (b), we added the reversible binding reaction of A with
sites p in the downstream system: nA+ p −−−⇀↽−−− C with conservation law ptot = p+C, with
ptot = 5nM, association rate constant kon = 50 min−1 nM−n, and dissociation rate constant
koff = 50 min−1 (see Exercise 6.12).

on the output of a system, is well-understood in many engineering fields such as
electrical engineering. It has often been pointed out that similar issues may arise
for biological systems. These questions are especially delicate in design problems,
such as those described in Chapter 5.

For example, consider a biomolecular clock, such as the activator-repressor
clock introduced in Section 5.5 and shown in Figure 6.2a. Assume that the acti-
vator protein concentration A(t) is now used as a communicating species to syn-
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S

u x

r s

Figure 6.3: A system S input and output signals. The r and s signals denote signals origi-
nating by retroactivity upon interconnection [21].

chronize or provide the timing to a downstream system D (Figure 6.2b). From a
systems/signals point of view, A(t) becomes an input to the downstream system D.
The terms “upstream” and “downstream” reflect the direction in which we think of
signals as traveling, from the clock to the systems being synchronized. However,
this is only an idealization because when A is taken as an input by the downstream
system it binds to (and unbinds from) the promoter that controls the expression
of D. These additional binding/unbinding reactions compete with the biochemical
interactions that constitute the upstream clock and may therefore disrupt the opera-
tion of the clock itself (Figure 6.2c). We call this back-effect retroactivity to extend
the notion of impedance or loading to non-electrical systems and in particular to
biomolecular systems. This phenomenon, which in principle may be used in an
advantageous way by natural systems, can be deleterious when designing synthetic
systems.

One possible approach to avoid disrupting the behavior of the clock is to in-
troduce a gene coding for a new protein X, placed under the control of the same
promoter as the gene for A, and using the concentration of X, which presumably
mirrors that of A, to drive the downstream system. However, this approach still has
the problem that the concentration of X may be altered and even disrupted by the
addition of downstream systems that drain X, as we shall see in the next section.
The net result is that the downstream systems are not properly timed as X does not
transmit the desired signal.

To model a system with retroactivity, we add to the input/output modeling
framework used so far an additional input, called s, to account for any change
that may occur upon interconnection with a downstream system (Figure 6.3). That
is, s models the fact that whenever y is taken as an input to a downstream sys-
tem the value of y may change, because of the physics of the interconnection. This
phenomenon is also called in the physics literature “the observer effect,” implying
that no physical quantity can be measured without being altered by the measure-
ment device. Similarly, we add a signal r as an additional output to model the fact
that when a system is connected downstream of another one, it will send a signal
upstream that will alter the dynamics of that system. More generally, we define a
system S to have internal state x, two types of inputs, and two types of outputs: an
input “u,” an output “y” (as before), a retroactivity to the input “r,” and a retroac-



modules.tex, v5735 2014-06-14 20:28:34Z (murray)

6.3. RETROACTIVITY IN GENE CRCUITS 209

tivity to the output “s.” We will thus represent a system S by the equations

dx

dt
= f (x,u, s), y = h(x,u, s), r = R(x,u, s), (6.1)

where f , g, and R are arbitrary functions and the signals x, u, s, r, and y may be
scalars or vectors. In such a formalism, we define the input/output model of the
isolated system as the one in equation (6.1) without r in which we have also set
s = 0.

Let S i be a system with inputs ui and si and with outputs yi and ri. Let S 1 and S 2

be two systems with disjoint sets of internal states. We define the interconnection
of an upstream system S 1 with a downstream system S 2 by simply setting y1 = u2

and s1 = r2. For interconnecting two systems, we require that the two systems do
not have internal states in common.

It is important to note that while retroactivity s is a back action from the down-
stream system to the upstream one, it is conceptually different from feedback. In
fact, retroactivity s is nonzero any time y is transmitted to the downstream system.
That is, it is not possible to send signal y to the downstream system without retroac-
tivity s. By contrast, feedback from the downstream system can be removed even
when the upstream system sends signal y.

6.3 Retroactivity in gene crcuits

In the previous section, we have introduced retroactivity as a general concept mod-
eling the fact that when an upstream system is input/output connected to a down-
stream one, its behavior can change. In this section, we focus on gene circuits and
show what form retroactivity takes and what its effects are.

Consider the interconnection of two transcriptional components illustrated in
Figure 6.4. A transcriptional component is an input/output system that takes the
transcription factor concentration Z as input and gives the transcription factor con-
centration X as output. The activity of the promoter controlling gene x depends
on the amount of Z bound to the promoter. If Z = Z(t), such an activity changes
with time and, to simplify notation, we denote it by k(t). We assume here that the
mRNA dynamics are at their quasi-steady state. The reader can verify that all the
results hold unchanged when the mRNA dynamics are included (see Exercise 6.1).
We write the dynamics of X as

dX

dt
= k(t)−γX, (6.2)

in which γ is the decay rate constant of the protein. We refer to equation (6.2) as
the isolated system dynamics.
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Figure 6.4: A transcriptional component takes protein concentration Z as input u and gives
protein concentration X as output y. The downstream transcriptional component takes pro-
tein concentration X as its input.

Now, assume that X drives a downstream transcriptional module by binding to
a promoter p (Figure 6.4). The reversible binding reaction of X with p is given by

X+p
kon−−−⇀↽−−−
koff

C,

in which C is the complex protein-promoter and kon and koff are the association and
dissociation rate constants of protein X to promoter site p. Since the promoter is
not subject to decay, its total concentration ptot is conserved so that we can write
p+C = ptot. Therefore, the new dynamics of X are governed by the equations

dX

dt
= k(t)−γX+ [koffC−kon(ptot−C)X],

dC

dt
= −koffC+kon(ptot−C)X. (6.3)

We refer to this system as the connected system. Comparing the rate of change of X

in the connected system to that in the isolated system (6.2), we notice the additional
rate of change [koffC−kon(ptot−C)X] of X in the connected system. Hence, we have

s = [koffC− kon(ptot−C)X],

and s = 0 when the system is isolated. We can interpret s as a mass flow between
the upstream and the downstream system, similar to a current in electrical circuits.

How large is the effect of retroactivity s on the dynamics of X and what are the
biological parameters that affect it? We focus on the retroactivity to the output s as
we can analyze the effect of the retroactivity to the input r on the upstream system
by simply analyzing the dynamics of Z in the presence of the promoter regulating
the expression of gene x.

The effect of retroactivity s on the behavior of X can be very large (Figure 6.5).
By looking at Figure 6.5, we notice that the effect of retroactivity is to “slow down”
the dynamics of X(t) as the response time to a step input increases and the response
to a periodic signal appears attenuated and phase-shifted. We will come back to this
more precisely in the next section.
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Figure 6.5: The effect of retroactivity. The solid line represents X(t) originating by equation
(6.2), while the dashed line represents X(t) obtained by equations (6.3). Both transient and
permanent behaviors are different. Here, k(t)= 0.18 in (a) and k(t)= 0.01(8+8sin(ωt)) with
ω = 0.01 min−1 in (b). The parameter values are given by kon = 10 min−1nM−1, koff = 10
min−1, γ = 0.01 min−1, and ptot = 100 nM. The frequency of oscillations is chosen to have a
period of about 11 hours in accordance to what is experimentally observed in the synthetic
clock of [6].

These effects are undesirable in a number of situations in which we would like
an upstream system to “drive” a downstream one, for example, when a biological
oscillator has to time a number of downstream processes. If, due to the retroactivity,
the output signal of the upstream process becomes too low and/or out of phase with
the output signal of the isolated system (as in Figure 6.5), the desired coordination
between the oscillator and the downstream processes will be lost. We next provide
a procedure to quantify the effect of retroactivity on the dynamics of the upstream
system.

Quantification of the retroactivity to the output

In this section, we provide a general approach to quantify the retroactivity to the
output. To do so, we quantify the difference between the dynamics of X in the iso-
lated system (6.2) and the dynamics of X in the connected system (6.3) by estab-
lishing conditions on the biological parameters that make the two dynamics close
to each other. This is achieved by exploiting the difference of time scales between
the protein production and decay processes and binding/unbinding reactions, math-
ematically described by koff≫ γ. By virtue of this separation of time scales, we can
approximate system (6.3) by a one-dimensional system describing the evolution of
X on the slow manifold (see Section 3.5).

To this end, note that equations (6.3) are not in standard singular perturbation
form: while C is a fast variable, X is neither fast nor slow since its differential
equation includes both fast and slow terms. To explicitly model the difference of
time scales, we let z = X+C be the total amount of protein X (bound and free) and
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rewrite system (6.3) in the new variables (z,C). Letting ǫ = γ/koff, Kd = koff/kon,
and kon = γ/(ǫKd), system (6.3) can be rewritten as

dz

dt
= k(t)−γ(z−C), ǫ

dC

dt
= −γC+ γ

Kd
(ptot−C)(z−C), (6.4)

in which z is a slow variable. The reader can check that the slow manifold of system
(6.4) is locally exponentially stable (see Exercise 6.2).

We can obtain an approximation of the dynamics of X in the limit in which ǫ is
very small by setting ǫ = 0. This leads to

−γC+ γ
Kd

(ptot−C)X = 0 =⇒ C = g(X) with g(X) =
ptotX

X+Kd
.

Since ż = Ẋ+ Ċ, we have that ż = Ẋ+ (dg/dX)Ẋ. This along with ż = k(t)−γX lead
to

dX

dt
= (k(t)−γX)

(

1
1+dg/dX

)

. (6.5)

The difference between the dynamics in equation (6.5) (the connected system
after a fast transient) and the dynamics in equation (6.2) (the isolated system) is
zero when the term dg(X)/dX in equation (6.5) is zero. We thus consider the term
dg(X)/dX as a quantification of the retroactivity s after a fast transient in the ap-
proximation in which ǫ ≈ 0. We can also interpret the term dg(X)/dX as a percent-
age variation of the dynamics of the connected system with respect to the dynam-
ics of the isolated system at the quasi-steady state. We next determine the physical
meaning of such a term by calculating a more useful expression that is a function
of key biochemical parameters. Specifically, we have that

dg(X)
dX

=
ptot/Kd

(X/Kd+1)2
=: R(X). (6.6)

The retroactivity measure R is low whenever the ratio ptot/Kd, which can be seen
as an effective load, is low. This is the case if the affinity of the binding sites p is
small (Kd large) or if ptot is low. Also, the retroactivity measure is dependent on
X in a nonlinear fashion and it is such that it is maximal when X is the smallest.
The expression of R(X) provides an operative quantification of retroactivity: such
an expression can be evaluated once the dissociation constant of X is known, the
concentration of the binding sites ptot is known, and X is also measured. From
equations (6.5) and (6.6), it follows that the rate of change of X in the connected
system is smaller than that in the isolated system, that is, retroactivity slows down
the dynamics of the transcriptional system. This has also been experimentally re-
ported in [49].

Summarizing, the modularity assumption introduced in Section 6.1 holds only
when the value of R(X) is small enough. Thus, the design of a simple circuit can
assume modularity if the interconnections among the composing modules can be
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designed so that the value of R(X) is low. When designing the system, this can be
guaranteed by placing the promoter sites p on low copy number plasmids or even
on the chromosome (with copy number equal to 1). High copy number plasmids
are expected to lead to non-negligible retroactivity effects on X.

Note however that in the presence of very low affinity and/or very low amount
of promoter sites, the amount of complex C will be very low. As a consequence, the
amplitude of the transmitted signal to downstream systems may also be very small
so that noise may become a bottleneck. A better approach may be to design insula-
tion devices (as opposed to designing the interconnection for low retroactivity) to
buffer systems from possibly large retroactivity as explained later in the chapter.

Effects of retroactivity on the frequency response

In order to explain the amplitude attenuation and phase lag due to retroactivity
observed in Figure 6.5, we linearize the system about its equilibrium and determine
the effect of retroactivity on the frequency response. To this end, consider the input
in the form k(t) = k̄ + A0 sin(ωt). Let Xe = k̄/γ and Ce = ptotXe/(Xe + Kd) be the
equilibrium values corresponding to k̄. The isolated system is already linear, so
there is no need to perform linearization and the transfer function from k to X is
given by

Gi
Xk(s) =

1
s+γ
.

For the connected system (6.5), let (k̄,Xe) denote the equilibrium, which is the same
as for the isolated system, and let k̃= k− k̄ and x= X−Xe denote small perturbations
about this equilibrium. Then, the linearization of system (6.5) about (k̄,Xe) is given
by

dx

dt
= (k̃(t)−γx)

1
1+ (ptot/Kd)/(Xe/Kd+1)2

.

Letting R̄ := (ptot/Kd)/(Xe/Kd+1)2, we obtain the transfer function from k̃ to x of
the connected system linearization as

Gc
Xk =

1

1+ R̄

1

s+γ/(1+ R̄)
.

Hence, we have the following result for the frequency response magnitude and
phase:

Mi(ω) =
1

√

ω2+γ2
, φi(ω) = tan−1(−ω/γ),

Mc(ω) =
1

1+ R̄

1
√

ω2+γ2/(1+ R̄)2
, φc(ω) = tan−1(−ω(1+ R̄)/γ),

from which one obtains that Mi(0) = Mc(0) and, since R̄ > 0, the bandwidth of
the connected system γ/(1+ R̄) is lower than that of the isolated system γ. As a
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Figure 6.6: Covalent modification cycle with its input, output, and downstream system.

consequence, we have that Mi(ω) > Mc(ω) for all ω > 0. Also, the phase shift of
the connected system is larger than that of the isolated system since φc(ω) < φi(ω).
This explains why the plots of Figure 6.5 show attenuation and phase shift in the
response of the connected system.

When the frequency of the input stimulation k(t) is sufficiently lower than the
bandwidth of the connected system γ/(1+ R̄), then the connected and isolated sys-
tems will respond similarly. Hence, the effects of retroactivity are tightly related to
the time scale properties of the input signals and of the system, and mitigation of
retroactivity is required only when the frequency range of the signals of interest is
larger than the connected system bandwidth γ/(1+ R̄) (see Exercise 6.4).

6.4 Retroactivity in signaling systems

Signaling systems are circuits that take external stimuli as inputs and, through a se-
quence of biomolecular reactions, transform them to signals that control how cells
respond to their environment. These systems are usually composed of covalent
modification cycles such as phosphorylation, methylation, and uridylylation, and
connected in cascade fashion, in which each cycle has multiple downstream tar-
gets or substrates (refer to Figure 6.6). An example is the MAPK cascade, which
we have analyzed in Section 2.5. Since covalent modification cycles always have
downstream targets, such as DNA binding sites or other substrates, it is particularly
important to understand whether and how retroactivity from these downstream sys-
tems affects the response of the upstream cycles to input stimulation. In this section,
we study this question both for the steady state and transient response.
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Steady state effects of retroactivity

We have seen in Section 2.4 that one important characteristic of signaling systems
and, in particular, of covalent modification cycles, is the steady state input/output
characteristic curve. We showed in Section 2.4 that when the Michaelis-Menten
constants are sufficiently small compared to the amount of total protein, the steady
state characteristic curve of the cycle becomes ultrasensitive, a condition called
zero-order ultrasensitivity. When the cycle is connected to its downstream tar-
gets, this steady state characteristic curve changes. In order to understand how
this happens, we rewrite the reaction rates and the corresponding differential equa-
tion model for the covalent modification cycle of Section 2.4, adding the binding
of X∗ to its downstream target S. Referring to Figure 6.6, we have the following
reactions:

Z+X
a1−−⇀↽−−
d1

C1
k1−→ X∗+Z, Y+X∗

a2−−⇀↽−−
d2

C2
k2−→ X+Y,

to which we add the binding reaction of X* with its substrate S:

X∗+S
kon−−−⇀↽−−−
koff

C,

in which C is the complex of X* with S. In addition to this, we have the conserva-
tion laws Xtot = X∗+X+C1+C2+C, Ztot = Z+C1, and Ytot = Y +C2.

The ordinary differential equations governing the system are given by

dC1

dt
= a1XZ− (d1+ k1)C1,

dX∗

dt
= −a2X∗Y +d2C2+ k1C1− konS X∗+ koffC,

dC2

dt
= a2X∗Y − (d2+ k2)C2,

dC

dt
= konX∗S − koffC.

The input/output steady state characteristic curve is found by solving this system
for the equilibrium. In particular, by setting Ċ1 = 0, Ċ2 = 0, using that Z = Ztot−C1

and that Y = Ytot−C2, we obtain the familiar expressions for the complexes:

C1 =
ZtotX

X+K1
, C2 =

YtotX
∗

X∗+K2
,

with

K1 =
d1+ k1

a1
, K2 =

d2+ k2

a2
.

By setting Ẋ∗+ Ċ2+ Ċ = 0, we obtain k1C1 = k2C2, which leads to

V1
X

X+K1
= V2

X∗

X∗+K2
, V1 = k1Ztot and V2 = k2Ytot. (6.7)
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Figure 6.7: Effect of retroactivity on the steady state input/output characteristic curve
of a covalent modification cycle. The addition of downstream target sites makes the in-
put/output characteristic curve more linear-like, that is, retroactivity makes a switch-like
response into a more graded response. The plot is obtained for K1/Xtot = K2/Xtot = 0.01
and the value of X∗ is normalized to its maximum given by Xtot/(1+λ).

By assuming that the substrate Xtot is in excess compared to the enzymes, we have
that C1,C2 ≪ Xtot so that X ≈ Xtot − X∗ −C, in which (from setting Ċ = 0) C =

X∗S/Kd with Kd = koff/kon, leading to X ≈ Xtot−X∗(1+S/Kd). Calling

λ =
S

Kd
,

equation (6.7) finally leads to

y :=
V1

V2
=

X∗ ((K1/(1+λ))+ ((Xtot/(1+λ))−X∗))
(K2+X∗) ((Xtot/(1+λ))−X∗)

. (6.8)

Here, we can interpret λ as an effective load, which increases with the amount of
targets of X∗ but also with the affinity of these targets (1/Kd).

We are interested in how the shape of the steady state input/output characteristic
curve of X∗ changes as a function of y when the effective load λ is changed. As seen
in Section 2.4, a way to quantify the sensitivity of the steady state characteristic
curve is to calculate the response coefficient R = y90/y10. The maximal value of X∗

obtained as y→∞ is given by Xtot/(1+ λ). Hence, from equation (6.8), we have
that

y90 =
(K̄1+0.1)0.9

(K̄2(1+λ)+0.9)0.1
, y10 =

(K̄1+0.9)0.1

(K̄2(1+λ)+0.1)0.9
,

with

K̄1 :=
K1

Xtot
, K̄2 =

K2

Xtot
,

so that

R = 81
(K̄1+0.1)(K̄2(1+λ)+0.1)

(K̄2(1+λ)+0.9)(K̄1+0.9)
.
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Comparing this expression with the one obtained in equation (2.31) for the isolated
covalent modification cycle, we see that the net effect of the downstream target S is
that of increasing the Michaelis-Menten constant K2 by the factor (1+λ). Hence,
we should expect that with increasing load, the steady state characteristic curve
should be more linear-like. This is confirmed by the simulations shown in Fig-
ure 6.7 and it was also experimentally demonstrated in signal transduction circuits
reconstituted in vitro [93].

One can check that R is a monotonically increasing function of λ. In particular,
as λ increases, the value of R tends to 81(K̄1+0.1)/(K̄2+0.9), which, in turn, tends
to 81 for K̄1, K̄2→∞. When λ = 0, we recover the results of Section 2.4.

Dynamic effects of retroactivity

In order to understand the effects of retroactivity on the temporal response of a
covalent modification cycle, we consider changes in Ztot and analyze the temporal
response of the cycle to these changes. To perform this analysis more easily, we
seek a one-dimensional approximation of the X∗ dynamics by exploiting time scale
separation.

Specifically, we have that di,koff ≫ k1,k2, so we can choose ǫ = k1/koff as a
small parameter and w = X∗+C+C2 as a slow variable. By setting ǫ = 0, we obtain
C1 = ZtotX/(X +K1), C2 = YtotX

∗/(X∗ +K2) =: g(X∗), and C = λX∗, where Ztot is
now a time-varying input signal. Hence, the dynamics of the slow variable w on
the slow manifold are given by

dw

dt
= k1

Ztot(t)X
X+K1

− k2Ytot
X∗

X∗+K2
.

Using

dw

dt
=

dX∗

dt
+

dC

dt
+

dC2

dt
,

dC

dt
= λ

dX∗

dt
,

dC2

dt
=
∂g

∂X∗
dX∗

dt
,

and the conservation law X = Xtot −X∗(1+λ), we finally obtain the approximated
X∗ dynamics as

dX∗

dt
=

1
1+λ

(

k1
Ztot(t)(Xtot−X∗(1+λ))
(Xtot−X∗(1+λ))+K1

− k2Ytot
X∗

X∗+K2

)

, (6.9)

where we have assumed that Ytot/K2 ≪ S/Kd, so that the effect of the binding
dynamics of X* with Y (modeled by ∂g/∂X∗) is negligible with respect to λ. The
reader can verify this derivation as an exercise (see Exercise 6.7).

From this expression, we can understand the effect of the load λ on the rise time
and decay time in response to large step input stimuli Ztot. For the decay time, we
can assume an initial condition X∗(0) , 0 and Ztot(t) = 0 for all t. In this case, we
have that

dX∗

dt
= −k2Ytot

X∗

X∗+K2

1
1+λ

,
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(b) Positive step input

Figure 6.8: Effect of retroactivity on the temporal response of a covalent modification cycle.
(a) Response to a negative step. The presence of the load makes the response slower. (b)
Step response of the cycle in the presence of a positive step. The response time is not
affected by the load. Here, K1/Xtot = K2/Xtot = 0.1, k1 = k2 = 1 min−1, and λ = 5. In the
plots, the concentration X∗ is normalized by Xtot.

from which, since λ > 0, it follows that the transient will be slower than when λ = 0
and hence that the system will have an increased decay time due to retroactivity. For
the rise time, one can assume Ztot , 0 and X∗(0) = 0. In this case, at least initially
we have that

(1+λ)
dX∗

dt
=

(

k1
Ztot(Xtot−X∗(1+λ))

(Xtot−X∗(1+λ))+K1

)

,

which is the same expression for the isolated system in which X∗ is scaled by
(1+λ). So, the rise time is not affected. The response of the cycle to positive and
negative step changes of the input stimulus Ztot are shown in Figure 6.8.

In order to understand how the bandwidth of the system is affected by retroac-
tivity, we consider Ztot(t) = Z̄ +A0 sin(ωt). Let X∗e be the equilibrium of X∗ corre-
sponding to Z̄. Let z = Ztot− Z̄ and x = X∗−X∗e denote small perturbations about the
equilibrium. The linearization of system (6.9) is given by

dx

dt
= −a(λ)x+b(λ)z(t),

in which

a(λ) =
1

1+λ

(

k1Z̄
K1(1+λ)

((Xtot−X∗e (1+λ))+K1)2
+ k2Ytot

K2

(X∗e +K2)2

)

and

b(λ) =
k1

1+λ

(

Xtot−X∗e (1+λ)
(Xtot−X∗e (1+λ))+K1

)

,

so that the bandwidth of the system is given by ωB = a(λ).
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Figure 6.9: Behavior of the bandwidth as a function of the effective load λ for different
values of the constants K̄1, K̄2.

Figure 6.9 shows the behavior of the bandwidth as a function of the load. When
the isolated system steady state input/output characteristic curves are linear-like
(K1,K2≫ Xtot), the bandwidth monotonically decreases with the load. By contrast,
when the isolated system static characteristics are ultrasensitive (K1,K2≪ Xtot), the
bandwidth of the connected system can be larger than that of the isolated system
for sufficiently large amounts of loads. In these conditions, one should expect that
the response of the connected system becomes faster than that of the isolated sys-
tem. These theoretical predictions have been experimentally validated in a covalent
modification cycle reconstituted in vitro [50].

6.5 Insulation devices: Retroactivity attenuation

As explained in the previous section, it is not always possible or advantageous to
design the downstream system, which we here call module B, such that it applies
low retroactivity to the upstream system, here called module A. In fact, module
B may already have been designed and optimized for other purposes. A different
approach, in analogy to what is performed in electrical circuits, is to design a device

Insulation
device

Module BModule A

u y

r s

Figure 6.10: An insulation device is placed between an upstream module A and a down-
stream module B in order to protect these systems from retroactivity. An insulation device
should have r ≈ 0 and the dynamic response of y to u should be practically independent of
s.
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to be placed between module A and module B (Figure 6.10) such that the device can
transmit the output signal of module A to module B even in the presence of large
retroactivity s. That is, the output y of the device should follow the behavior of the
output of module A independent of a potentially large load applied by module B.
This way module B will receive the desired input signal.

Specifically, consider a system S such as the one shown in Figure 6.3. We would
like to design such a system such that

(i) the retroactivity r to the input is very small;

(ii) the effect of the retroactivity s on the system is very small (retroactivity
attenuation); and

(iii) when s = 0, we have that y ≈ Ku for some K > 0.

Such a system is said to have the insulation property and will be called an insu-
lation device. Indeed, such a system does not affect an upstream system because
r ≈ 0 (requirement (i)), it keeps the same output signal y(t) independently of any
connected downstream system (requirement (ii)), and the output is a linear func-
tion of the input in the absence of retroactivity to the output (requirement (iii)).
This requirement rules out trivial cases in which y is saturated to a maximal level
for all values of the input, leading to no signal transmission. Of course, other re-
quirements may be important, such as the stability of the device and especially the
speed of response.

Equation (6.6) quantifies the effect of retroactivity on the dynamics of X as a
function of biochemical parameters. These parameters are the affinity of the bind-
ing site 1/Kd, the total concentration of such binding site ptot, and the level of the
signal X(t). Therefore, to reduce retroactivity, we can choose parameters such that
R(X) in equation (6.6) is small. A sufficient condition is to choose Kd large (low
affinity) and ptot small, for example. Having a small value of ptot and/or low affinity
implies that there is a small “flow” of protein X toward its target sites. Thus, we
can say that a low retroactivity to the input is obtained when the “input flow” to the
system is small. In the next sections, we focus on the retroactivity to the output,
that is, on the retroactivity attenuation problem, and illustrate how the problem
of designing a device that is robust to s can be formulated as a classical distur-
bance attenuation problem (Section 3.2). We provide two main design techniques
to attenuate retroactivity: the first one is based on the idea of high gain feedback,
while the second one uses time scale separation and leverages the structure of the
interconnection.

Attenuation of retroactivity to the output using high gain feedback

The basic mechanism for retroactivity attenuation is based on the concept of dis-
turbance attenuation through high gain feedback presented in Section 3.2. In its
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Figure 6.11: The block diagram in (a) shows the basic high gain feedback mechanism to
attenuate the contribution of disturbance s to the output y. The diagram in (b) shows an
alternative representation, which will be employed to design biological insulation devices.

simplest form, it can be illustrated by the diagram of Figure 6.11a, in which the
retroactivity to the output s plays the same role as an additive disturbance. For
large gains G, the effect of the retroactivity s to the output is negligible as the
following simple computation shows. The output y is given by

y =G(u−Ky)+ s,

which leads to

y = u
G

1+KG
+

s

1+KG
.

As G grows, y tends to u/K, which is independent of the retroactivity s.
Figure 6.11b illustrates an alternative representation of the diagram depicting

high gain feedback. This alternative depiction is particularly useful as it highlights
that to attenuate retroactivity we need to (1) amplify the input of the system through
a large gain and (2) apply a similarly large negative feedback on the output. The
question of how to realize a large input amplification and a similarly large nega-
tive feedback on the output through biomolecular interactions is the subject of the
next section. In what follows, we first illustrate how this strategy also works for a
dynamical system of the form of equation (6.5).

Consider the dynamics of the connected transcriptional system given by

dX

dt
= (k(t)−γX)

(

1
1+R(X)

)

.

Assume that we can apply a gain G to the input k(t) and a negative feedback gain
G′ to X with G′ = KG. This leads to the new differential equation for the connected
system given by

dX

dt
=

(

Gk(t)− (G′+γ)X
)

(1−d(t)), (6.10)

in which we have defined d(t) = R(X)/(1+R(X)). Since d(t) < 1, we can verify
(see Exercise 6.8) that as G grows X(t) tends to k(t)/K for both the connected
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system (6.10) and the isolated system

dX

dt
=Gk(t)− (G′+γ)X. (6.11)

Specifically, we have the following fact:

Proposition 6.1. Consider the scalar system ẋ =G(t)(k(t)−Kx) with G(t) ≥G0 > 0
and k̇(t) bounded. Then, there are positive constants C0 and C1 such that

∣
∣
∣
∣
∣
x(t)− k(t)

K

∣
∣
∣
∣
∣
≤C0e−G0Kt +

C1

G0
.

To derive this result, we can explicitly integrate the system since it is linear
(time-varying). For details, the reader is referred to [21]. The solutions X(t) of the
connected and isolated systems thus tend to each other as G increases, implying
that the presence of the disturbance d(t) will not significantly affect the time be-
havior of X(t). It follows that the effect of retroactivity can be arbitrarily attenuated
by increasing gains G and G′.

The next question we address is how we can implement such amplification and
feedback gains in a biomolecular system.

Biomolecular realizations of high gain feedback

In this section, we illustrate two possible biomolecular implementations to obtain a
large input amplification gain and a similarly large negative feedback on the output.
Both implementations realize the negative feedback through enhanced degradation.
The first design realizes amplification through transcriptional activation, while the
second design uses phosphorylation.

Design 1: Amplification through transcriptional activation

This design is depicted in Figure 6.12. We implement a large amplification of the
input signal Z(t) by having Z be a transcriptional activator for protein X, such that
the promoter p0 controlling the expression of X is a strong, non-leaky promoter
activated by Z. The signal Z(t) can be further amplified by increasing the strength
of the ribosome binding site of gene x. The negative feedback mechanism on X
relies on enhanced degradation of X. Since this must be large, one possible way to
obtain an enhanced degradation for X is to have a specific protease, called Y, be
expressed by a strong constitutive promoter.

To investigate whether such a design realizes a large amplification and a large
negative feedback on X as needed to attenuate retroactivity to the output, we con-
struct a model. The reaction of the protease Y with protein X is modeled as the
two-step reaction

X+Y
a−⇀↽−
d

W
k̄−→ Y.
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XY

Z

xy p0 p

Insulation device

Figure 6.12: Implementation of high gain feedback (Design 1). The input Z(t) is amplified
by virtue of a strong promoter p0. The negative feedback on the output X is obtained by
enhancing its degradation through the protease Y.

The input/output system model of the insulation device that takes Z as an input and
gives X as an output is given by the following equations:

dZ

dt
=k(t)−γZZ+

[

k′off C̄− k′on Z(p0,tot− C̄)
]

, (6.12)

dC̄

dt
=k′onZ(p0,tot− C̄)− k′offC̄, (6.13)

dmX

dt
=GC̄−δmX, (6.14)

dW

dt
=aXY −dW − k̄W, (6.15)

dY

dt
=−aYX+ k̄W +αG−γYY +dW, (6.16)

dX

dt
=κmX−aYX+dW −γXX+

[

koffC− konX(ptot−C)
]

, (6.17)

dC

dt
=− koffC+ konX(ptot−C), (6.18)

in which we have assumed that the expression of gene z is controlled by a promoter
with activity k(t). In this system, we have denoted by k′on and k′off the association
and dissociation rate constants of Z with its promoter site p0 in total concentration
p0,tot. Also, C̄ is the complex of Z with such a promoter site. Here, mX is the
mRNA of X, and C is the complex of X bound to the downstream binding sites
p with total concentration ptot. The promoter controlling gene y has strength αG,
for some constant α, and it has about the same strength as the promoter controlling
gene x.

The terms in the square brackets in equation (6.12) represent the retroactivity r

to the input of the insulation device in Figure 6.12. The terms in the square brackets
in equation (6.17) represent the retroactivity s to the output of the insulation device.
The dynamics of equations (6.12)–(6.18) without s describe the dynamics of X with
no downstream system (isolated system).
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Equations (6.12) and (6.13) determine the signal C̄(t) that is the input to equa-
tions (6.14)–(6.18). For the discussion regarding the attenuation of the effect of s, it
is not relevant what the specific form of signal C̄(t) is. Let then C̄(t) be any bounded
signal. Since equation (6.14) takes C̄(t) as an input, we will have that mX(t)=Gv(t),
for a suitable signal v(t). Let us assume for the sake of simplifying the analysis that
the protease reaction is a one-step reaction. Therefore, equation (6.16) simplifies
to

dY

dt
= αG−γYY

and equation (6.17) simplifies to

dX

dt
= κmX− k̄′YX−γXX+ koffC− konX(ptot−C),

for a suitable positive constant k̄′. If we further consider the protease to be at its
equilibrium, we have that Y(t) = αG/γY .

As a consequence, the X dynamics become

dX

dt
= κGv(t)− (k̄′αG/γY +γX)X+ koffC− konX(ptot−C),

with C determined by equation (6.18). By using the same singular perturbation
argument employed in the previous section, the dynamics of X can be reduced to

dX

dt
= (κGv(t)− (k̄′αG/γY +γX)X)(1−d(t)), (6.19)

in which 0 < d(t) < 1 is the retroactivity term given by R(X)/(1+R(X)). Then, as
G increases, X(t) becomes closer to the solution of the isolated system

dX

dt
= κGv(t)− (k̄′αG/γY +γX)X,

as explained in the previous section by virtue of Proposition 6.1.
We now turn to the question of minimizing the retroactivity to the input r be-

cause its effect can alter the input signal Z(t). In order to decrease r, we must
guarantee that the retroactivity measure given in equation (6.6), in which we sub-
stitute Z in place of X, p0,tot in place of ptot, and K′d = k′on/k

′
off in place of Kd, is

small. This is the case if K′d≫ Z and p0,tot/K
′
d≪ 1.

Simulation results for the system described by equations (6.12)–(6.18) are
shown in Figure 6.13. For large gains (G = 1000, G = 100), the performance con-
siderably improves compared to the case in which X was generated by a transcrip-
tional component accepting Z as an input (Figure 6.5). For lower gains (G = 10,
G = 1), the performance starts to degrade for G = 10 and becomes poor for G = 1.
Since we can view G as the number of transcripts produced per unit of time (one
minute) per complex of protein Z bound to promoter p0, values G = 100,1000
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Figure 6.13: Results for different gains G (Design 1). In all plots, k(t) = 0.01(1+ sin(ωt)),
ptot = 100 nM, koff = 10 min−1, kon = 10 min−1 nM−1, γZ = 0.01 = γY min−1, and ω =
0.005 rad/min. Also, we have set δ = 0.01 min−1, p0,tot = 1 nM, a = 0.01 min−1 nM−1,
d = k̄′ = 0.01 min−1, k′off = 200 min−1, k′on = 10 min−1 nM−1, α = 0.1 nM/min, γX = 0.1
min−1, κ = 0.1 min−1, and G = 1000,100,10,1. The retroactivity to the output is not well
attenuated for values of the gain G = 1 and the attenuation capability begins to worsen for
G = 10.

may be difficult to realize in vivo, while the values G = 10,1 could be more easily
realized. However, the value of κ increases with the strength of the ribosome bind-
ing site and therefore the gain may be further increased by picking strong ribosme
binding sites for x. The values of the parameters chosen in Figure 6.13 are such that
K′d≫ Z and p0,tot≪ K′d. This is enough to guarantee that there is small retroactiv-
ity r to the input of the insulation device independently of the value of the gain G.
The poorer performance of the device for G = 1 is therefore entirely due to poor
attenuation of the retroactivity s to the output. To obtain a large negative feedback
gain, we also require high expression of the protease. It is therefore important that
the protease is highly specific to its target X.
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Z

Y

Figure 6.14: Implementation of high gain feedback (Design 2). Amplification of Z occurs
through the phosphorylation of substrate X. Negative feedback occurs through a phos-
phatase Y that converts the active form X∗ back to its inactive form X.

Design 2: Amplification through phosphorylation

In this design, the amplification gain G of Z is obtained by having Z be a kinase
that phosphorylates a substrate X, which is available in abundance. The negative
feedback gain G′ on the phosphorylated protein X∗ is obtained by having a phos-
phatase Y dephosphorylate the active protein X∗. Protein Y should also be available
in abundance in the system. This implementation is depicted in Figure 6.14.

To illustrate what key parameters enable retroactivity attenuation, we first con-
sider a simplified model for the phosphorylation and dephosphorylation processes.
This model will help in obtaining a conceptual understanding of what reactions are
responsible in realizing the desired gains G and G′. The one-step model that we
consider is the same as considered in Chapter 2 (Exercise 2.12):

Z+X
k1−→ Z+X∗, Y+X∗

k2−→ Y+X.

We assume that there is an abundance of protein X and of phosphatase Y in the
system and that these quantities are conserved. The conservation of X gives X +

X∗ +C = Xtot, in which X is the inactive protein, X∗ is the phosphorylated protein
that binds to the downstream sites p, and C is the complex of the phosphorylated
protein X∗ bound to the promoter p. The X∗ dynamics can be described by the
following model:

dX∗

dt
= k1XtotZ(t)

(

1− X∗

Xtot
−

[

C

Xtot

])

− k2YX∗+ [koffC− konX∗(ptot−C)],

dC

dt
= −koffC+ konX∗(ptot−C).

(6.20)

The two terms in the square brackets represent the retroactivity s to the output of
the insulation device of Figure 6.14. For a weakly activated pathway [40], X∗ ≪
Xtot. Also, if we assume that the total concentration of X is large compared to the
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concentration of the downstream binding sites, that is, Xtot ≫ ptot, equation (6.20)
is approximatively equal to

dX∗

dt
= k1XtotZ(t)− k2YX∗+ koffC− konX∗(ptot−C).

Let G = k1Xtot and G′ = k2Y . Exploiting again the difference of time scales
between the X∗ dynamics and the C dynamics, the dynamics of X∗ can be finally
reduced to

dX∗

dt
= (GZ(t)−G′X∗)(1−d(t)),

in which 0< d(t)< 1 is the retroactivity term. Therefore, for G and G′ large enough,
X∗(t) tends to the solution X∗(t) of the isolated system

dX∗

dt
=GZ(t)−G′X∗,

as explained before by virtue of Proposition 6.1. It follows that the effect of the
retroactivity to the output s is attenuated by increasing the effective rates k1Xtot and
k2Y . That is, to obtain large input and negative feedback gains, one should have
large phosphorylation/dephosphorylation rates and/or a large amount of protein
X and phosphatase Y in the system. This reveals that the values of the phospho-
rylation/dephosphorylation rates cover an important role toward the retroactivity
attenuation property of the insulation device of Figure 6.14. From a practical point
of view, the effective rates can be increased by increasing the total amounts of X
and Y. These amounts can be tuned, for example, by placing the x and y genes
under the control of inducible promoters. The reader can verify through simulation
how the effect of retroactivity can be attenuated by increasing the phosphatase and
substrate amounts (see Exercise 6.9). Experiments performed on a covalent modi-
fication cycle reconstituted in vitro confirmed that increasing the effective rates of
modification is an effective means to attain retroactivity attenuation [50].

A design similar to the one illustrated here can be proposed in which a phos-
phorylation cascade, such as the MAPK cascade, realizes the input amplification
and an explicit feedback loop is added from the product of the cascade to its input
[82]. The design presented here is simpler as it involves only one phosphorylation
cycle and does not require any explicit feedback loop. In fact, a strong negative
feedback can be realized by the action of the phosphatase that converts the active
protein form X∗ back to its inactive form X.

Attenuation of retroactivity to the output using time scale separation

In this section, we present a more general mechanism for retroactivity attenuation,
which can be applied to systems of differential equations of arbitrary dimension.
This will allow us to consider more complex and realistic models of the phospho-
rylation reactions as well as more complicated systems.
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Figure 6.15: Interconnection of a device with input u and output x to a downstream system
with internal state v applying retroactivity s.

For this purpose, consider Figure 6.15. We illustrate next how system S can
attenuate retroactivity s by employing time scale separation. Specifically, when the
internal dynamics of the system are much faster compared to those of the input u,
the system immediately reaches its quasi-steady state with respect to the input. Any
load-induced delays occur at the faster time scale of system S and thus are negligi-
ble in the slower time scale of the input. Therefore, as long as the quasi-steady state
is independent of retroactivity s, the system has the retroactivity attenuation prop-
erty. We show here that the quasi-steady state can be made basically independent
of s by virtue of the interconnection structure between the systems.

To illustrate this idea mathematically, consider the following simple structure
in which (for simplicity) we assume that all variables are scalar:

du

dt
= f0(u, t)+ r(u, x),

dx

dt
=G f1(x,u)+ Ḡs(x,v),

dv

dt
= −Ḡs(x,v). (6.21)

Here let G≫ 1 model the fact that the internal dynamics of the system are much
faster than that of the input. Similarly, Ḡ≫ 1 models the fact that the dynamics of
the interconnection with downstream systems are also very fast. This is usually the
case since the reactions contributing to s are binding/unbinding reactions, which
are much faster than most other biochemical processes, including gene expression
and phosphorylation. We make the following informal claim:

If G ≫ 1 and the Jacobian ∂ f1(x,u)/∂x has all eigenvalues with neg-
ative real part, then x(t) is not affected by retroactivity s after a short
initial transient, independently of the value of Ḡ.

A formal statement of this result can be found in [48]. This result states that inde-
pendently of the characteristics of the downstream system, system S can be tuned
(by making G large enough) such that it attenuates the retroactivity to the output.
To clarify why this would be the case, it is useful to rewrite system (6.21) in stan-
dard singular perturbation form by employing ǫ := 1/G as a small parameter and
x̃ := x+ v as the slow variable. Hence, the dynamics can be rewritten as

du

dt
= f0(u, t)+ r(u, x), ǫ

dx̃

dt
= f1(x̃− v,u),

dv

dt
= −Ḡs(x̃− v,v). (6.22)

Since ∂ f1/∂x̃ has eigenvalues with negative real part, one can apply standard singu-
lar perturbation to show that after a very fast transient, the trajectories are attracted
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to the slow manifold given by f1(x̃− v,u) = 0. This is locally given by x = g(u)
solving f1(x,u) = 0. Hence, on the slow manifold we have that x(t) = g(u(t)), which
is independent of the downstream system, that is, it is not affected by retroactivity.

The same result holds for a more general class of systems in which the variables
u, x,v are vectors:

du

dt
= f0(u, t)+ r(u, x),

dx

dt
=G f1(x,u)+ ḠAs(x,v),

dv

dt
= −ḠBs(x,v),

(6.23)
as long as there are matrices T and M such that T A−MB = 0 and T is invertible.
In fact, one can take the system to new coordinates u, x̃,v with x̃ = T x+Mv, in
which the system will have the singular perturbation form (6.22), where the state
variables are vectors. Note that matrices A and B are stoichiometry matrices and
s represents a vector of reactions, usually modeling binding and unbinding pro-
cesses. The existence of T and M such that T A−MB = 0 models the fact that in
these binding reactions species do not get destroyed or created, but simply trans-
formed between species that belong to the upstream system and species that belong
to the downstream system.

Biomolecular realizations of time scale separation

We next consider possible biomolecular structures that realize the time scale sep-
aration required for insulation. Since this principle is based on a fast time scale
of the device dynamics when compared to that of the device input, we focus on
signaling systems, which are known to evolve on faster time scales than those of
protein production and decay.

Design 1: Implementation through phosphorylation

We consider now a more realistic model for the phosphorylation and dephosphory-
lation reactions in a phosphorylation cycle than those considered in Section 6.5. In
particular, we consider a two-step reaction model as seen in Section 2.4. Accord-
ing to this model, we have the following two reactions for phosphorylation and
dephosphorylation:

Z+X
a1−−⇀↽−−
d1

C1
k1−→ X∗+Z, Y+X∗

a2−−⇀↽−−
d2

C2
k2−→ X+Y. (6.24)

Additionally, we have the conservation equations Ytot = Y +C2, Xtot = X + X∗ +
C1+C2+C, because proteins X and Y are not degraded. Therefore, the differential
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equations modeling the system of Figure 6.14 become

dZ

dt
= k(t)−γZ

[

−a1ZXtot

(

1− X∗

Xtot
− C1

Xtot
− C2

Xtot
−

[

C

Xtot

])

+ (d1+ k1)C1

]

, (6.25)

dC1

dt
= −(d1+ k1)C1+a1ZXtot

(

1− X∗

Xtot
− C1

Xtot
− C2

Xtot
−

[

C

Xtot

])

, (6.26)

dC2

dt
= −(k2+d2)C2+a2YtotX

∗
(

1− C2

Ytot

)

, (6.27)

dX∗

dt
= k1C1+d2C2−a2YtotX

∗
(

1− C2

Ytot

)

+
[

koffC− konX∗(ptot−C)
]

, (6.28)

dC

dt
= −koffC+ konX∗(ptot−C), (6.29)

in which the production of Z is controlled by a promoter with activity k(t). The
terms in the large square bracket in equation (6.25) represent the retroactivity r

to the input, while the terms in the square brackets of equations (6.26) and (6.28)
represent the retroactivity s to the output.

We assume that Xtot ≫ ptot so that in equations (6.25) and (6.26) we can ne-
glect the term C/Xtot since C < ptot. Choose Xtot to be sufficiently large so that
G = a1Xtot/γ≫ 1. Also, let Ḡ = koff/γ, which is also much larger than 1 since bind-
ing reactions are much faster than protein production and decay rates (koff ≫ γ)
and write kon = koff/Kd. Choosing Ytot to also be sufficiently large, we can guar-
antee that a2Ytot is of the same order as a1Xtot and we can let α1 = a1Xtot/(γG),
α2 = a2Ytot/(γG), δ1 = d1/(γG), and δ2 = d2/(γG). Finally, since the catalytic rate
constants k1,k2 are much larger than protein decay, we can assume that they are of
the same order of magnitude as a1Xtot and a2Ytot, so that we define ci = ki/(γG).
With these, letting z = Z+C1 we obtain the system in the form

dz

dt
= k(t)−γ(z−C1),

dC1

dt
=G

(

−γ(δ1+ c1)C1+γα1(z−C1)
(

1− X∗

Xtot
− C1

Xtot
− C2

Xtot

))

,

dC2

dt
=G

(

−γ(δ2+ c2)C2+γα2X∗
(

1− C2

Ytot

))

, (6.30)

dX∗

dt
=G

(

γc1C1+γδ2C2−γα2X∗
(

1− C2

Ytot

))

+ Ḡ
(

γC−γ/Kd(ptot−C)X∗
)

,

dC

dt
= −Ḡ

(

γC−γ/Kd(ptot−C)X∗
)

,

which is in the form of system (6.23) with u = z, x = (C1,C2,X
∗), and v = C, in

which we can choose T as the 3×3 identity matrix and

M =





0
0
1




.
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It is also possible to show that the Jacobian of f1 has all eigenvalues with negative
real part (see Exercise 6.11). Hence, for G sufficiently larger than one, this system
attenuates the effect of the retroactivity to the output s. For G to be large, one has
to require that a1Xtot is sufficiently large and that a2Ytot is also comparatively large.
These are compatible with the design requirements obtained in the previous section
based on the one-step reaction model of the enzymatic reactions.

In order to understand the effect of retroactivity to the input on the Z dynamics,
one can consider the reduced system describing the dynamics on the time scale
of Z. To this end, let Km,1 = (d1 + k1)/a1 and Km,2 = (d2 + k2)/a2 represent the
Michaelis-Menten constants of the forward and backward enzymatic reactions, let
G = 1/ǫ in equations (6.30), and take ǫ to the left-hand side. Setting ǫ = 0, the
following relationships can be obtained:

C1 = g1(X∗) =
(X∗Ytotk2)/(Km,2k1)

1+X∗/Km,2
, C2 = g2(X∗) =

(X∗Ytot)/Km,2

1+X∗/Km,2
. (6.31)

Using expressions (6.31) in the second of equations (6.30) with ǫ = 0 leads to

g1(X∗)
(

δ1+ c1+
α1Z

Xtot

)

= α1Z

(

1− X∗

Xtot
− g2(X∗)

Xtot

)

. (6.32)

Assuming for simplicity that X∗≪ Km,2, we obtain that

g1(X∗) ≈ (X∗Ytotk2)/(Km,2k1)

and that
g2(X∗) ≈ X∗/Km,2Ytot.

As a consequence of these simplifications, equation (6.32) leads to

X∗(Z) =
α1Z

(α1Z/Xtot)(1+Ytot/Km,2+ (Ytotk2)/(Km,2k1))+ (Ytotk2)/(Km,2k1)(δ1+ c1)
.

In order not to have distortion from Z to X∗, we require that

Z≪
Ytot(k2/k1)(Km/Km,2)

1+Ytot/Km,2+ (Ytot/Km,2)(k2/k1)
, (6.33)

so that X∗(Z) ≈ Z(XtotKm,2k1)/(YtotKm,1k2) and therefore we have a linear relation-
ship between X∗ and Z with gain from Z to X∗ given by (XtotKm,2k1)/(YtotKm,1k2).
In order not to have attenuation from Z to X∗ we require that the gain is greater
than or equal to one, that is,

input/output gain ≈
XtotKm,2k1

YtotKm,1k2
≥ 1. (6.34)

Requirements (6.33), (6.34) and X∗≪ Km,2 are enough to guarantee that we do
not have nonlinear distortion between Z and X∗ and that X∗ is not attenuated with
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respect to Z. In order to guarantee that the retroactivity r to the input is sufficiently
small, we need to quantify the retroactivity effect on the Z dynamics due to the
binding of Z with X. To achieve this, we proceed as in Section 6.3 by computing
the Z dynamics on the slow manifold, which gives a good approximation of the
dynamics of Z if ǫ ≈ 0. These dynamics are given by

dZ

dt
= (k(t)−γZ)

(

1− dg1

dX∗
dX∗

dz

)

,

in which (dg1/dX∗)(dX∗/dz) measures the effect of the retroactivity r to the input
on the Z dynamics. Direct computation of dg1/dX∗ and of dX∗/dz along with X∗≪
Km,2 and with (6.33) leads to (dg1/dX∗)(dX∗/dz) ≈ Xtot/Km,1, so that in order to
have small retroactivity to the input, we require that

Xtot

Km,1
≪ 1. (6.35)

Hence, a design tradeoff appears: Xtot should be sufficiently large to provide a gain
G large enough to attenuate the retroactivity to the output. Yet, Xtot should be small
enough compared to Km,1 to apply minimal retroactivity to the input.

In conclusion, in order to have attenuation of the effect of the retroactivity to the
output s, we require that the time scale of the phosphorylation/dephosphorylation
reactions is much faster than the production and decay processes of Z (the input
to the insulation device) and that Xtot ≫ ptot, that is, the total amount of protein
X is in abundance compared to the downstream binding sites p. To also obtain a
small effect of the retroactivity to the input, we require that Km,1 ≫ Xtot. This is
satisfied if, for example, kinase Z has low affinity to binding with X. To keep the
input/output gain between Z and X∗ close to one (from equation (6.34)), one can
choose Xtot = Ytot, and equal coefficients for the phosphorylation and dephospho-
rylation reactions, that is, Km,1 = Km,2 and k1 = k2.

The system in equations (6.25)–(6.29) was simulated with and without the
downstream binding sites p, that is, with and without, respectively, the terms in
the small box of equation (6.25) and in the boxes in equations (6.28) and (6.26).
This is performed to highlight the effect of the retroactivity to the output s on
the dynamics of X∗. The simulations validate our theoretical study that indicates
that when Xtot ≫ ptot and the time scales of phosphorylation/dephosphorylation
are much faster than the time scale of decay and production of the protein Z, the
retroactivity to the output s is very well attenuated (Figure 6.16a). Similarly, the
time behavior of Z was simulated with and without the terms in the square brack-
ets in equation (6.25), which represent the retroactivity to the input r, to verify
whether the insulation device exhibits small retroactivity to the input r. The simi-
larity of the behaviors of Z(t) with and without its downstream binding sites on X
(Figure 6.16a) indicates that there is no substantial retroactivity to the input r gen-
erated by the insulation device. This is obtained because Xtot ≪ Km,1 as indicated
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Figure 6.16: Time scale separation mechanism for insulation: Implementation through
phosphorylation. Simulation results for system in equations (6.25)–(6.29). In all plots,
ptot = 100 nM, koff = 10 min−1, kon = 10 min−1 nM−1, γ = 0.01 min−1, k(t) = 0.01(1+
sin(ωt)) min−1, and ω = 0.005 rad/min. (a) Performance with fast phosphorylation cy-
cle. Here, k1 = k2 = 50 min−1, a2 = a1 = 0.01 min−1 nM−1, d1 = d2 = 10 min−1, and
Ytot = Xtot = 1500 nM. The small error shows that the effect of the retroactivity to the
output s is attenuated very well. In the Z plot, the isolated system stands for the case in
which Z does not have X to bind to, while the connected system stands for the case in
which Z binds to substrate X. The small error confirms a small retroactivity to the input
r. (b) Performance with a slow phosphorylation cycle. Here, we set k1 = k2 = 0.01 min−1,
while the other parameters are left the same.

in equation (6.35), in which 1/Km can be interpreted as the affinity of the binding
of X to Z.

Our simulation study also indicates that a faster time scale of the phosphory-
lation/dephosphorylation reactions is necessary, even for high values of Xtot and
Ytot, to maintain perfect attenuation of the retroactivity to the output s and small
retroactivity to the output r. In fact, slowing down the time scale of phosphoryla-
tion and dephosphorylation, the system loses its insulation property (Figure 6.16b).
In particular, the attenuation of the effect of the retroactivity to the output s is lost
because there is not enough separation of time scales between the Z dynamics and
the internal device dynamics. The device also displays a non-negligible amount of
retroactivity to the input because the condition Km≪ Xtot is not satisfied anymore.

Design 2: Realization through phosphotransfer

Here we illustrate that another possible implementation of the mechanism for in-
sulation based on time scale separation is provided by phosphotransfer systems.
These systems, just like phosphorylation cycles, have a very fast dynamics when
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Figure 6.17: The insulation device is a phosphotransfer system. The output X∗ activates
transcription through the reversible binding of X∗ to downstream DNA promoter sites p.

compared to gene expression. Specifically, we consider the realization shown in
Figure 6.17, in which the input is a phosphate donor Z and the output is the active
transcription factor X∗. We let X be the transcription factor in its inactive form and
let Z∗ be the active phosphate donor, that is, a protein that can transfer its phosphate
group to the acceptor X. The standard phosphotransfer reactions can be modeled
according to the two-step reaction model

Z∗+X
k1−−⇀↽−−
k2

C1
k3−−⇀↽−−
k4

X∗+Z,

in which C1 is the complex of Z bound to X bound to the phosphate group. Addi-
tionally, we assume that protein Z can be phosphorylated and protein X∗ dephos-
phorylated by other phosphotransfer interactions. These reactions are modeled as
one-step reactions depending only on the concentrations of Z and X∗, that is,

Z
π1−−→ Z∗, X∗

π2−−→ X.

Protein X is assumed to be conserved in the system, that is, Xtot = X+C1+X∗+C.
We assume that protein Z is produced with time-varying production rate k(t) and
decays with rate γ. The active transcription factor X∗ binds to downstream DNA
binding sites p with total concentration ptot to activate transcription through the
reversible reaction

X∗+p
kon−−−⇀↽−−−
koff

C.
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Since the total amount of p is conserved, we also have that C+ p = ptot. The ODE
model corresponding to this system is thus given by the equations

dZ

dt
= k(t)−γZ+ k3C1− k4X∗Z−π1Z,

dC1

dt
= k1Xtot

(

1− X∗

Xtot
− C1

Xtot
−

[

C

Xtot

])

Z∗− k3C1− k2C1+ k4X∗Z,

dZ∗

dt
= π1Z+ k2C1− k1Xtot

(

1− X∗

Xtot
− C1

Xtot
−

[

C

Xtot

])

Z∗,

dX∗

dt
= k3C1− k4X∗Z+

[

koffC− konX∗(ptot−C)
]−π2X∗,

dC

dt
= konX∗(ptot−C)− koffC.

(6.36)

Just like phosphorylation, phosphotransfer reactions are much faster than pro-
tein production and decay. Hence, as performed before, define G = Xtotk1/γ so that
k̄1 = Xtotk1/G, k̄2 = k2/G, k̄3 = k3/G, k̄4 = Xtotk4/G, π̄1 = π1/G, and π̄2 = π2/G are
of the same order of k(t) and γ. Similarly, the process of protein binding and un-
binding to promoter sites is much faster than protein production and decay. We let
Ḡ = koff/γ and Kd = koff/kon. Assuming also that ptot≪ Xtot, we have that C≪ Xtot

so that system (6.36) can be rewritten as

dZ

dt
= k(t)−γZ−Gπ̄1Z+G

(

k̄3C1− k̄4

(

X∗

Xtot

)

Z

)

,

dC1

dt
=G

(

k̄1

(

1− X∗

Xtot
− C1

Xtot

)

Z∗− k̄3C1− k̄2C1+ k̄4

(

X∗

Xtot

)

Z

)

,

dZ∗

dt
=G

(

π̄1Z+ k̄2C1− k̄1

(

1− X∗

Xtot
− C1

Xtot

)

Z∗
)

,

dX∗

dt
=G

(

k̄3C1− k̄4

(

X∗

Xtot

)

Z− π̄2X∗
)

+ Ḡ

(

γC− γ
Kd

X∗(ptot−C)
)

,

dC

dt
= −Ḡ

(

γC− γ
Kd

X∗(ptot−C)
)

.

(6.37)

This system is in the form of system (6.23) with u = Z, x = (C1,Z
∗,X∗), and v =C,

so that we can choose T as the 3×3 identity matrix and

M =





0
0
1




.

The reader can verify that the Jacobian of f1(x,u) has all eigenvalues with negative
real part (Exercise 6.10).

Figure 6.18a shows that, for a periodic input k(t), the system with low value for
G suffers from retroactivity to the output. However, for a large value of G (Figure
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Figure 6.18: Output response of the phosphotransfer system with a periodic signal k(t) =
γ(1+ sinωt). The parameters are given by γ = 0.01 min−1, Xtot = 5000 nM, k1 = k2 = k3 =

k4 = 0.01 min−1 nM−1, π1 = π2 = 0.01G min−1 in which G = 1 in (a), and G = 100 in (b).
The downstream system parameters are given by Kd = 1 nM and koff = 0.01Ḡ min−1, in
which Ḡ takes the values indicated in the legend. The isolated system (s = 0) corresponds
to ptot = 0 while the connected system (s , 0) corresponds to ptot = 100 nM.

6.18b), the permanent behavior of the connected system becomes similar to that of
the isolated system, whether G≫ Ḡ, G = Ḡ or G≪ Ḡ. This confirms the theoretical
result that, independently of the order of magnitude of Ḡ, the system can arbitrarily
attenuate retroactivity for large enough G. Note that this robustness to the load
applied on X∗ is achieved even if the concentration of X∗ is about 100 times smaller
than the concentration of the load applied to it. This allows us to design the system
such that it can output any desired value while being robust to retroactivity.

6.6 A case study on the use of insulation devices

In this section, we consider again the problem illustrated at the beginning of the
chapter in which we would like to transmit the periodic stimulation of the activator-
repressor clock to a downstream system (Figure 6.2b). We showed before that con-
necting the clock directly to the downstream system causes the oscillations to be
attenuated and even quenched (Figure 6.2c), so that we fail to transmit the de-
sired periodic stimulation to the downstream system. Here, we describe a solution
to this problem that implements an insulation device to connect the clock to the
downstream system. This way, the downstream system receives the desired peri-
odic input stimulation despite the potentially large retroactivity s that this system
applies to the insulation device. In particular, we employ the insulation device re-
alized by a phosphorylation cycle in the configuration shown in Figure 6.19. The
top diagram illustrates a simplified genetic layout of the clock. The activator A
is expressed from a gene under the control of a promoter activated by A and re-
pressed by B, while the repressor is expressed from a gene under the control of a
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Figure 6.19: The activator-repressor clock connected to its downstream system through the
insulation device of Figure 6.14. The top diagram illustrates a simplified genetic layout of
the activator-repressor clock of Figure 6.2a. The bottom diagram illustrates how the genetic
layout of the clock should be modified such that it can connect to the phosphorylation cycle
that takes as input the kinase Z. In this case, the downstream system still expresses protein
D, but its expression is controlled by a different promoter that is activated by X∗ as opposed
to being activated by A.

promoter activated by A. Protein A, in turn, activates the expression of protein D
in the downstream system. In this case, the promoter p controlling the expression
of D contains operator regions that A recognizes, so that A can bind to it.

When the insulation device of Figure 6.14 is employed to interconnect the clock
to the downstream system, two modifications need to be made to enable the con-
nections. Since A is not a kinase, we need to insert downstream of the gene ex-
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Figure 6.20: Simulation results for the concentration of protein Z in Figure 6.19 in the case
in which this were used directly as an input to the downstream system, thus binding sites
p′ (dashed plot). The clock parameters are the same as those in Figure 6.2c and γK = γA.
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pressing A another gene expressing the kinase Z (bottom diagram of Figure 6.19).
Since both A and Z are under the control of the same promoter, they will be pro-
duced at the same rates and hence the concentration of Z should mirror that of A
if the decay rates are the same for both proteins. Note that a solution in which we
insert downstream of the gene expressing A a transcription factor Z that directly
binds to downstream promoter sites p′ to produce D (without the insulation device
in between) would not solve the problem. In fact, while the clock behavior would
be preserved in this case, the behavior of the concentration of Z would not mirror
that of A since protein Z would be loaded by the downstream promoter sites p′

(Figure 6.20). As a consequence, we would still fail to transmit the clock signal
A(t) to protein D. The second modification that needs to be made is to change the
promoter p to a new promoter p′ that has an operator that protein X* recognizes
(bottom diagram of Figure 6.19).

In the case of the bottom diagram of Figure 6.19, the dynamics of the clock
proteins remain the same as that of model (5.11) and given by

dA

dt
=
κA

δA

αA(A/KA)n+αA0

1+ (A/KA)n+ (B/KB)m
−γAA,

dB

dt
=
κB

δB

αB(A/KA)n+αB0

1+ (A/KA)n
−γBB.

To these equations, we need to add the dynamics of the kinase Z(t), which, when
the phosphorylation cycle is not present, will be given by

dZ

dt
=
κA

δA

αA(A/KA)n+αA0

1+ (A/KA)n+ (B/KB)m
−γZZ. (6.38)

Note that we are using for simplicity the two-dimensional model of the activator-
repressor clock. A similar result would be obtained using the four-dimensional
model that incorporates the mRNA dynamics (see Exercise 6.13).

When the phosphorylation cycle is present, the differential equation for Z given
by (6.38) changes to

dZ

dt
=
κA

δA

αA(A/KA)n+αA0

1+ (A/KA)n+ (B/KB)m
−γZZ

−
[

a1XtotZ

(

1− X∗

Xtot
− C1

Xtot
− C2

Xtot
− C

Xtot

)

− (d1+ k1)C1

]

,

(6.39)

in which the term in the square brackets is the retroactivity to the input r of the
insulation device. The model of the insulation device with the downstream system
remains the same as before and given by equations (6.26)–(6.29).

Figure 6.21 shows the trajectories of Z(t), and X∗(t) for the system of Figure
6.19. As desired, the signal X∗(t), which drives the downstream system, closely
tracks A(t) plotted in Figure 6.20 despite the retroactivity due to load applied by the
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Figure 6.21: Simulation results for the system of Figure 6.19. Panel (a) shows the concen-
tration of the kinase Z with and without (r = 0 in equation (6.25)) the insulation device.
Panel (b) shows the behavior of the output of the insulation device X∗ without (s = 0) and
with the downstream system. The clock parameters are the same as those in Figure 6.2c and
γK = γA. The phosphorylation cycle parameters are as in Figure 6.16a. The load parameters
are given by kon = 50 min−1 nM−1, koff = 50 min−1, and ptot = 100 nM.

downstream sites p′. Note that the trajectory of Z(t) is essentially the same whether
the insulation device is present or not, indicating a low retroactivity to the input r.
The retroactivity to the output s only slightly affects the output of the insulation
device (Figure 6.21b). The plot of Figure 6.21b, showing the signal that drives the
downstream system, can be directly compared to the signal that would drive the
downstream system in the case in which the insulation device would not be used
(Figure 6.20, dashed plot). In the latter case, the downstream system would not be
properly driven, while with the insulation device it is driven as expected even in
the face of a large load.

Exercises

6.1 Include in the study of retroactivity in transcriptional systems the mRNA dy-
namics and demonstrate how/whether the results change. Specifically, consider the
following model of a connected transcriptional system:

dmX

dt
= k(t)−δmX,

dX

dt
= κmX−γX+ [koffC− kon(ptot−C)X],

dC

dt
= −koffC+ kon(ptot−C)X.

6.2 Consider the connected transcriptional system model in standard singular per-
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turbation form with ǫ ≪ 1:

dz

dt
= k(t)−γ(z−C), ǫ

dC

dt
= −γC+ γ

kd

(ptot−C)(z−C).

Demonstrate that the slow manifold is locally asymptotically stable.

6.3 The characterization of retroactivity effects in a transcriptional module was
based on the following model of the interconnection:

dX

dt
= k(t)−γX+ [koffC− kon(ptot−C)X],

dC

dt
= −koffC+ kon(ptot−C)X,

in which the dilution of the complex C was neglected. This is often a fair assump-
tion, but depending on the experimental conditions, a more appropriate model may
include dilution for the complex C. In this case, the model modifies to

dX

dt
= k(t)− (µ+ γ̄)X+ [koffC− kon(ptot−C)X],

dC

dt
= −koffC+ kon(ptot−C)X−µC,

in which µ represents decay due to dilution and γ̄ represents protein degradation.
Employ singular perturbation to determine the reduced X dynamics and the effects
of retroactivity in this case. Is the steady state characteristic curve of the transcrip-
tion module affected by retroactivity? Determine the extent of this effect as µ/γ̄
decreases.

6.4 In this problem, we study the frequency dependent effects of retroactivity in
gene circuits through simulation to validate the findings obtained through lineariza-
tion in Section 6.3. In particular, consider the model of a connected transcriptional
component (6.3). Consider the parameters provided in Figure 6.5 and simulate the
system with input k(t) = γ(1+ sin(ωt)) with ω = 0.005. Then, decrease and in-
crease the frequency progressively and make a frequency/amplitude plot for both
connected and isolated systems. Increase γ and redo the frequency/amplitude plot.
Comment on the retroactivity effects that you observe.

6.5 Consider the negatively autoregulated gene illustrated in Section 5.2. Instead
of modeling negative autoregulation using the Hill function, explicitly model the
binding of A with its own promoter. In this case, the formed complex C will be
transcriptionally inactive (see Section 2.3). Explore through simulation how the
response of the system without negative regulation compares to that with negative
regulation when the copy number of the A gene is increased and the unrepressed
expression rate β is decreased.
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6.6 We have illustrated that the expression of the point of half-maximal induction
in a covalent modification cycle is affected by the effective load λ as follows:

y50 =
K̄1+0.5

K̄2(1+λ)+0.5
.

Study the behavior of this quantity when the effective load λ is changed.

6.7 Show how equation (6.9) is derived in Section 6.4.

6.8 Demonstrate through a mathematical proof that in the following system

dX

dt
=G (k(t)−KX) (1−d(t)),

in which 0 < d(t) < 1 and |k̇(t)| is bounded, we have that X(t)− k(t)/K becomes
smaller as G is increased.

6.9 Consider the one-step reaction model of the phosphorylation cycle with down-
stream binding sites given in equation (6.20). Simulate the system and determine
how the behavior of the connected system compares to that of the isolated system
when the amounts of substrate and phosphatase Xtot and Ytot are increased.

6.10 Demonstrate that the Jacobian ∂ f1(x,u)/∂x for the system in equations (6.30)
has eigenvalues with negative real part. You can demonstrate this by using symbolic
computation, or you can use the parameter values of Figure 6.16.

6.11 Demonstrate that the Jacobian ∂ f1(x,u)/∂x for the system in equations (6.37)
has eigenvalues with negative real part. You can demonstrate this by using symbolic
computation, or you can use the parameter values of Figure 6.18.

6.12 Consider the activator-repressor clock described in Section 5.5 and take the
parameter values of Figure 5.9 that result in a limit cycle. Then, assume that the ac-
tivator A connects to another transcriptional circuit through the cooperative binding
of n copies of A with operator sites p to form the complex C:

nA+p
kon−−−⇀↽−−−
koff

C

with conservation law p+C = ptot (connected clock). Answer the following ques-
tions:

(i) Simulate the connected clock and vary the total amount of p, that is, ptot.
Explore how this affects the behavior of the clock.

(ii) Give a mathematical explanation of the phenomenon you saw in (i). To do
so, use singular perturbation to approximate the dynamics of the clock with
downstream binding on the slow manifold (here, koff≫ γA,γB).
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(iii) Assume now that A does not bind to sites p, while the repressor B does. Take
the parameter values of Figure 5.9 that result in a stable equilibrium. Explore
how increasing ptot affects the clock trajectories.

6.13 Consider the system depicted in Figure 6.19 and model the activator-repressor
clock including the mRNA dynamics as shown in Section 5.5. Demonstrate through
simulation that the same results obtained in Section 6.6 with a two-dimensional
model of the clock still hold.
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Chapter 7

Design Tradeoffs

In this chapter we describe some of the design tradeoffs arising from the interac-
tion between synthetic circuits and the host organism. We specifically focus on two
issues. The first issue is concerned with the effects of competition for shared cellu-
lar resources on circuits’ behavior. In particular, circuits (endogenous and exoge-
nous) share a number of cellular resources, such as RNA polymerase, ribosomes,
ATP, enzymes, and nucleotides. The insertion or induction of synthetic circuits in
the cellular environment changes the for these resources, with possibly undesired
repercussions on the functioning of the circuits. Independent circuits may become
coupled when they share common resources that are not in overabundance. This
fact leads to constraints among the concentrations of proteins in synthetic circuits,
which should be accounted for in the design phase. The second issue we consider is
the effect of biological noise on the design of devices requiring high gains. Specif-
ically, we illustrate possible design tradeoffs between retroactivity attenuation and
noise amplification that emerge due to the intrinsic noise of biomolecular reactions.

7.1 Competition for shared cellular resources

Exogenous circuits, just like endogenous ones, use cellular resources—such as ri-
bosomes, RNA polymerase (RNAP), enzymes and ATP—that are shared among
all the circuitry of the cell. From a signals and systems point of view, these in-
teractions can be depicted as in Figure 7.1. The cell’s endogenous circuitry pro-
duces resources as output and exogenous synthetic circuits take these resources
as inputs. As a consequence, as seen in Chapter 6, there is retroactivity from the
exogenous circuits to the cellular resources. This retroactivity creates indirect cou-
pling between the exogenous circuits and can lead to undesired crosstalk. In this
chapter, we study the effect of the retroactivity from the synthetic circuits to shared
resources in the cellular environment by focusing on the effect on availability of
RNA polymerase and ribosomes, for simplicity. We then study the consequence
of this retroactivity, illustrating how the behavior of individual circuits becomes
coupled. These effects are significant for any resource whose availability is not in
substantial excess compared to the demand by exogenous circuits.

In order to illustrate the problem, we consider the simple system shown in Fig-
ure 7.2, in which two modules, a constitutively expressed gene (Module 1) and a
gene activated by a transcriptional activator A (Module 2), are present in the cel-
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Circuit 1 Circuit 2 Circuit n

r1 r2 rn

Shared resources

ATP, ribosomes,
RNAP, etc.

Figure 7.1: The cellular environment provides resources to synthetic circuits, such as RNA
polymerase, ribosomes, ATP, nucleotides, proteases, etc. These resources can be viewed
as an “output” of the cell’s endogenous circuitry and an input to the exogenous circuits.
Circuit i takes these resources as input and, as a consequence, it causes a retroactivity
ri to its input. Hence, the endogenous circuitry has a retroactivity to the output s that
encompasses all the retroactivities applied by the exogenous circuits.

lular environment. In theory, Module 2 should respond to changes in the activator
A concentration, while Module 1, having a constitutively active promoter, should
display a constant expression level that is independent of the activator A concen-
tration. Experimental results, however, indicate that this is not the case: Module
1’s output protein concentration P1 also responds to changes in the activator A
concentration. In particular, as the activator A concentration is increased, the con-
centration of protein P1 can substantially decrease. This fact can be qualitatively
explained by the following reasoning. When A is added, RNA polymerase can bind
to DNA promoter D2 and start transcription, so that the free available RNA poly-
merase decreases as some is bound to the promoter D2. Transcription of Module
2 generates mRNA and hence ribosomes will have more ribosome binding sites
to which they can bind, so that less ribosomes will be free and available for other
reactions. It follows that the addition of activator A leads to an overall decrease of
the free RNA polymerase and ribosomes that can take part in the transcription and
translation reactions of Module 1. The net effect is that less of P1 protein will be
produced.

The extent of this effect will depend on the overall availability of the shared
resources, on the biochemical parameters, and on whether the resources are regu-
lated. For example, it is known that ribosomes are internally regulated by a com-
bination of feedback interactions [59]. This, of course, may help compensate for
changes in the demand of these resources, though experiments demonstrate that the
coupling effects are indeed noticeable [96].

In this chapter, we illustrate how this effect can be mathematically explained
by explicitly accounting for the usage of RNA polymerase and ribosomes in the
transcription and translation models of the circuits. To simplify the mathematical
analysis and to gather analytical understanding of the key parameters at the basis of
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P1 P2

D1

Module 1

D2

Module 2
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RNA
polymerase

Ribosome

X

Y

Figure 7.2: Module 1 has a constitutively active promoter that controls the expression of
protein P1, while Module 2 has a promoter activated by activator A, which controls the
expression of protein P2. The two modules do not share any transcription factors, so they
are not “connected.” Both of them use RNA polymerase (X) and ribosomes (Y) for the
transcription and translation processes.

this phenomenon, we first focus on the usage of RNA polymerase, neglecting the
usage of ribosomes. We then provide a computational model that accounts for both
RNA polymerase and ribosome utilization and illustrate quantitative simulation
results.

Analytical study

To illustrate the essence of the problem, we assume that gene expression is a one-
step process, in which the RNA polymerase binds to the promoter region of a gene
resulting in a transcriptionally active complex that, in turn, produces the protein.
That is, we will be using the lumped reactions (2.12), in which on the right-hand
side of the reaction we have the protein instead of the mRNA.

By virtue of this simplification, we can write the reactions describing Module
1 as

X+D1

a1−−⇀↽−−
d1

X:D1
k1−→ P1+X+D1, P1

γ
−→ ∅.

The reactions describing Module 2 can be written similarly, recalling that in the
presence of an activator they should be modified according to equation (2.21). Tak-
ing this into account, the reactions of Module 2 are given by

D2+A
a0−−⇀↽−−
d0

D2:A, X+D2:A
a2−−⇀↽−−
d2

X:D2:A
k2−→ P2+X+D2:A, P2

γ
−→ ∅.

We let Dtot,1 and Dtot,2 denote the total concentration of DNA for Module 1 and
Module 2, respectively, and we let K0 = d0/a0, K1 = d1/a1, and K2 = d2/a2. By
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approximating the complexes’ concentrations by their quasi-steady state values,
we obtain the expressions

[X:D1] = Dtot,1
X/K1

1+X/K1
, [X:D2:A] = Dtot,2

(A/K0)(X/K2)
1+ (A/K0)(1+X/K2)

. (7.1)

As a consequence, the differential equation model for the system is given by

dP1

dt
= k1Dtot,1

X/K1

1+X/K1
−γP1,

dP2

dt
= k2Dtot,2

(A/K0)(X/K2)
1+ (A/K0)(1+X/K2)

−γP2,

so that the steady state values of P1 and P2 are given by

P1 =
k1Dtot,1

γ

X/K1

1+X/K1
, P2 =

k2Dtot,2

γ

(A/K0)(X/K2)
1+ (A/K0)(1+X/K2)

.

These values are indirectly coupled through the conservation law of RNA poly-
merase. Specifically, we let Xtot denote the total concentration of RNA polymerase.
This value is mainly determined by the cell growth rate and for a given growth rate
it is about constant [15]. Then, we have that Xtot = X + [X:D1]+ [X:D2:A], which,
considering the expressions of the quasi-steady state values of the complexes’ con-
centrations in equation (7.1), leads to

Xtot = X+Dtot,1
X/K1

1+X/K1
+Dtot,2

(A/K0)(X/K2)
1+ (A/K0)(1+X/K2)

. (7.2)

We next study how the steady state value of X is affected by the activator concen-
tration A and how this effect is reflected in a dependency of P1 on A. To perform
this study, it is useful to write α := (A/K0) and note that for α sufficiently small
(sufficiently small amounts of activator A), we have that

α(X/K2)
1+α(1+X/K2)

≈ α(X/K2).

Also, to simplify the derivations, we assume that the binding of X to D1 is suf-
ficiently weak, that is, X ≪ K1. In light of this, we can rewrite the conservation
law (7.2) as

Xtot = X+Dtot,1
X

K1
+Dtot,2α

X

K2
.

This equation can be explicitly solved for X to yield

X =
Xtot

1+ (Dtot,1/K1)+α(Dtot,2/K2)
.
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This expression depends on α, and hence on the activator concentration A. Specifi-
cally, as the activator is increased, the value of the free X concentration monotoni-
cally decreases. As a consequence, the equilibrium value P1 will also depend on A

according to

P1 =
k1Dtot,1

γ

Xtot/K1

1+ (Dtot,1/K1)+α(Dtot,2/K2)
,

so that P1 monotonically decreases as A is increased. That is, Module 1 responds to
changes in the activator of Module 2. From these expressions, we can also deduce
that if Dtot,1/K1≫ αDtot,2/K2, that is, the demand for RNA polymerase in Module
1 is much larger than that of Module 2, then changes in the activator concentration
will lead to small changes in the free amount of RNA polymerase and in P1.

This analysis illustrates that forcing an increase in the expression of any protein
causes an overall decrease in available resources, which leads to a decrease in the
expression of other proteins. As a consequence, there is a tradeoff between the
amount of protein produced by one circuit and the amount of proteins produced
by different circuits. In addition to a design tradeoff, this analysis illustrates that
“unconnected” circuits can affect each other because they share common resources.
This can, in principle, lead to a dramatic departure of a circuit’s behavior from
its nominal one. As an exercise, the reader can verify that similar results hold in
the case in which Module 2 has a repressible promoter instead of one that can be
activated (see Exercise 7.2).

The model that we have presented here contains many simplifications. In addi-
tion to the mathematical approximations performed and to the fact that we did not
account for ribosomes, the model neglects the transcription of endogenous genes.
In fact, RNA polymerase is also used for transcription of chromosomal genes.
While the qualitative behavior of the coupling between Module 1 and Module 2
is not going to be affected by including endogenous transcription, the extent of this
coupling may be substantially impacted. In the next section, we illustrate how the
presence of endogenous genes may affect the extent to which the availability of
RNA polymerase decreases upon addition of exogenous genes.

Estimates of RNA polymerase perturbations by exogenous plasmids

In the previous section, we illustrated the mechanism by which the change in the
availability of a shared resource, due to the addition of synthetic circuits, can cause
crosstalk between unconnected circuits. The extent of this crosstalk depends on the
amount by which the shared resource changes. This amount, in turn, depends on
the specific values of the dissociation constants, the total resource amounts, and
the fraction of resource that is used already by natural circuits. Here, we consider
how the addition of an external plasmid affects the availability of RNA polymerase,
considering a simplified model of the interaction of RNA polymerase with the ex-
ogenous and natural DNA.
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In E. coli, the amount of RNA polymerase and its partitioning mainly depends
on the growth rate of the cell [15]: with 0.6 doublings/hour there are only 1500
molecules/cell, while with 2.5 doublings/hour this number is 11400. The fraction
of active RNA polymerase molecules also increases with the growth rate. For il-
lustration purposes, we assume here that the growth rate is the highest considered
in [15], so that 1 molecule/cell corresponds to approximately 1nM concentration.
In this case, a reasonable partitioning of the total pool of RNA polymerase of con-
centration Xtot = 12 µM is the following [55]:

(i) specifically DNA-bound (at promoter) Xs: 30% (4000 molecules/cell, that
is, Xs = 4 µM),

(ii) non-specifically DNA-bound Xn: 60% (7000 molecules/cell, that is, Xn =

7 µM),

(iii) free X: 10% (1000 molecules/cell, that is, X = 1 µM).

By [16], the number of initiations per promoter can be as high as 30/minute in
the case of constitutive promoters, and 1-3/minute for regulated promoters. Here,
we choose an effective value of 5 initiations/minute per promoter, so that on av-
erage, 5 molecules of RNA polymerase can be simultaneously transcribing each
gene, as transcribing a gene takes approximately a minute [4]. There are about
1000 genes expressed in exponential growth phase [46], hence we approximate
the number of promoter binding sites for X to 5000, or Dtot = 5 µM. The binding
reaction for specific binding is of the form

D+X
a−⇀↽−
d

D:X,

in which D represents DNA promoter binding sites DNAp in total concentration
Dtot. Consequently, we have Dtot =D+ [D:X]. At the equilibrium, we have [D:X] =
Xs = 4 µM and D = Dtot − [D:X] = Dtot − Xs = 1 µM. With dissociation constant
Kd = d/a the equilibrium is given by 0 = DX − Kd[D:X], hence we have that
Kd = DX/[D:X] = 0.25 µM, which can be interpreted as an “effective” dissociation
constant. This is in the range 1 nM−1 µM suggested by [37] for specific binding of
RNA polymerase to DNA. Therefore, we are going to model the specific binding
of RNA polymerase to the chromosome of E. coli in exponential growth phase as
one site with concentration Dtot and effective dissociation constant Kd.

Furthermore, we have to take into account the rather significant amount of RNA
polymerase bound to the DNA other than at the promoter region (Xn = 7 µM). To
do so, we follow a similar path as in the case of specific binding. In particular, we
model the non-specific binding of RNA polymerase to DNA as

D̄+X
ā−⇀↽−̄
d

D̄:X,



tradeoffs.tex, v5729 2014-06-13 16:31:59Z (ddv)

7.1. COMPETITION FOR SHARED CELLULAR RESOURCES 249

in which D̄ represents DNA binding sites with concentration D̄tot and effective
dissociation constant K̄d = d̄/ā. At the equilibrium, we have that the concentration
of RNA polymerase non-specifically bound to DNA is given by

Xn = [D̄:X] =
D̄totX

X+ K̄d

.

As the dissociation constant K̄d of non-specific binding of RNA polymerase to
DNA is in the range 1− 1000 µM [37], we have X ≪ K̄d, yielding Xn = [D̄:X] ≈
XD̄tot/K̄d. Consequently, we obtain D̄tot/K̄d = Xn/X = 7. Here, we did not model
the reaction in which the non-specifically bound RNA polymerase Xn slides to the
promoter binding sites D. This would not substantially affect the results of our cal-
culations because the RNA polymerase non-specifically bound on the chromosome
cannot bind the plasmid promoter sites without first unbinding and becoming free.

Now, we can consider the addition of synthetic plasmids. Specifically, we con-
sider high-copy number plasmids (copy number 100− 300) with one copy of a
gene under the control of a constitutive promoter. We abstract it by a binding site
for RNA polymerase D′ to which X can bind according to the following reaction:

D′+X
a′−−⇀↽−−
d′

D′:X,

where D′ is the RNA polymerase-free binding site and D′ : X is the site bound to
RNA polymerase. Consequently, we have D′tot = D′ + [D′:X], where D′tot = 1 µM,
considering 200 copies of plasmid per cell and 5 RNA polymerase molecules per
gene. The dissociation constant corresponding to the above reaction is given by
K′ = d′/a′. At the steady state we have

[D′:X] = D′tot
X

K′
d
+X
,

together with the conservation law for RNA polymerase given by

X+ [D:X]+ [D̄:X]+ [D′:X] = Xtot. (7.3)

In this model, we did not account for RNA polymerase molecules paused or queu-
ing on the chromosome; moreover, we also neglected the resistance genes on the
plasmid and all additional sites (specific or not) to which RNA polymerase can also
bind. Hence, we are underestimating the effect of load presented by the plasmid.

Solving equation (7.3) for the free RNA polymerase amount X gives the fol-
lowing results. These results depend on the ratio between the effective dissociation
constant Kd of RNA polymerase binding with the natural DNA promoters and the
dissociation constant K′

d
of binding with the plasmid promoter:

(i) K′
d
= 0.1Kd (RNA polymerase binds stronger to the plasmid promoter) re-

sults in X = 0.89 µM, that is, the concentration of free RNA polymerase
decreases by about 11%;



tradeoffs.tex, v5729 2014-06-13 16:31:59Z (ddv)

250 CHAPTER 7. DESIGN TRADEOFFS

(ii) K′
d
= Kd (binding is the same) results in X = 0.91 µM, consequently, the

concentration of free RNA polymerase decreases by about 9%;

(iii) K′
d
= 10Kd (RNA polymerase binds stronger to the chromosome) results in

X = 0.97 µM, which means that the concentration of free RNA polymerase
decreases by about 3%.

Note that the decrease in the concentration of free RNA polymerase is greatly re-
duced by the significant amount of RNA polymerase being non-specifically bound
to the DNA. For instance, in the second case when K′

d
= Kd, the RNA polymerase

molecules sequestered by the synthetic plasmid can be partitioned as follows: about
10% is taken from the pool of free RNA polymerase molecules X, another 10%
comes from the RNA polymerase molecules specifically bound, and the over-
whelming majority (80%) decreases the concentration of RNA polymerase non-
specifically bound to DNA. That is, this weak binding of RNA polymerase to DNA
acts as a buffer against changes in the concentration of free RNA polymerase.

We conclude that if the promoter on the synthetic plasmid has a dissociation
constant for RNA polymerase that is in the range of the dissociation constant of
specific binding, the perturbation on the available free RNA polymerase is about
9%. This perturbation, even if fairly small, may in practice result in large effects on
the protein concentration. This is because it may cause a large perturbation in the
concentration of free ribosomes. In fact, one added copy of an exogenous plasmid
will lead to transcription of several mRNA molecules, which will demand ribo-
somes for translation. Hence, a small increase in the demand for RNA polymerase
may be associated with a dramatically larger increase in the demand for ribosomes.
This is illustrated in the next section through a computational model including ri-
bosome sharing.

Computational model and numerical study

In this section, we introduce a model of the system in Figure 7.2, in which we con-
sider both the RNA polymerase and the ribosome usage. We let the concentration
of RNA polymerase be denoted by X and the concentration of ribosomes be de-
noted by Y . We let m1 and P1 denote the concentrations of the mRNA and protein
in Module 1 and let m2 and P2 denote the concentrations of the mRNA and protein
in Module 2. The reactions of the transcription process in Module 1 are given by
(see Section 2.2)

X+D1

a1−−⇀↽−−
d1

X:D1
k1−→m1+X+D1, m1

δ−→ ∅,

while the translation reactions are given by

Y+m1

a′1−−⇀↽−−
d′1

Y:m1

k′1−→ P1+m1+Y, Y:m1
δ−→ Y, P1

γ
−→ ∅.
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The resulting system of differential equations is given by

d

dt
[X:D1] = a1 X D1− (d1+ k1) [X:D1],

dm1

dt
= k1 [X:D1]−a′1 Y m1+d′1 [Y:m1]−δ m1+ k′1 [Y:m1], (7.4)

d

dt
[Y:m1] = a′1 Y m1− (d′1+ k1; ) [Y:m1],

dP1

dt
= k′1 [Y:m1]−γ P1,

in which D1 = Dtot,1− [X:D1] from the conservation law of DNA in Module 1.
The reactions of the transcription process in Module 2 are given by (see Sec-

tion 2.3)

D2+A
a0−−⇀↽−−
d0

D2:A, X+D2:A
a2−−⇀↽−−
d2

X:D2:A
k2−→m2+X+D2:A, m2

δ−→ ∅,

while the translation reactions are given by

Y+m2

a′2−−⇀↽−−
d′2

Y:m2

k′2−→ P2+m2+Y, Y:m2
δ−→ Y, P2

γ
−→ ∅.

The resulting system of differential equations is given by

d

dt
[D2:A] = a0 D2 A−d0 [D2:A]−a2 X [D2:A]+ (d2+ k2)[X:D2:A],

d

dt
[X:D2:A] = a2 X [D2:A]− (d2+ k2) [X:D2:A],

dm2

dt
= k2 [X:D2:A]−a′2 Y m2+d′2 [Y:m2]−δ m2+ k′2 [Y:m2], (7.5)

d

dt
[Y:m2] = a′2 Y m2− (d′2+ k′2) [Y:m2]−δ[Y:m2],

dP2

dt
= k′2 [Y:m2]−γ P2,

in which we have that D2 = Dtot,2 − [D2:A]− [X:D2:A] by the conservation law of
DNA in Module 2.

The two modules are coupled by the conservation laws for RNA polymerase
and ribosomes given by

Xtot = X+ [X:D1]+ [X:D2:A], Ytot = Y + [Y:m1]+ [Y:m2],

which we employ in systems (7.4)–(7.5) by writing

X = Xtot− [X:D1]− [X:D2:A], Y = Ytot− [Y:m1]− [Y:m2].
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Figure 7.3: Simulation results for the ordinary differential equation model (7.4)–(7.5).
When A is increased, X slightly decreases (a) while Y decreases substantially (b). So, as
P2 increases (c), we have that P1 decreases substantially (d). For this model, the parameter
values were taken from http://bionumbers.hms.harvard.edu as follows. For the concentra-
tions, we have set Xtot = 1 µM, Ytot = 10 µM, and Dtot,1 = Dtot,2 = 0.2 µM. The values
of the association and dissociation rate constants were chosen such that the correspond-
ing dissociation constants were in the range of dissociation constants for specific binding.
Specifically, we have a0 = 10 µM−1min−1, d0 = 1 min−1, a2 = 10 µM−1min−1, d2 = 1 min−1,
a′2 = 100 µM−1min−1, d′2 = 1 min−1, a1 = 10 µM−1min−1, d1 = 1 min−1, a′1 = 10 µM−1min−1,
and d′1 = 1 min−1. The transcription and translation rate constants were chosen to give a
few thousands of protein copies per cell and calculated considering the elongation speeds,
the average length of a gene, and the average number of RNA polymerase per gene and of
ribosomes per transcript. The resulting values chosen are given by k1 = k2 = 40 min−1 and
k′1 = k′2 = 0.006 min−1. Finally, the decay rates are given by γ = 0.01 min−1 corresponding
to a protein half life of about 70 minutes and δ = 0.1 min−1 corresponding to an mRNA
half life of about 7 minutes.

Simulation results are shown in Figure 7.3a–7.3d, in which we consider cells
growing at high rate. In the simulations, we have chosen Xtot = 1 µM to account for
the fact that the total amount of RNA polymerase in wild type cells at fast division
rate is given by about 10 µM of which only 1 µM is free, while the rest is bound
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to the endogenous DNA. Since in the simulations we did not account for endoge-
nous DNA, we assumed that only 1 µM is available in total to the two exogenous
modules. A similar reasoning was employed to set Ytot = 10 µM. Specifically, in
exponential growth, we have about 34 µM of total ribosomes’ concentration, but
only about 30% of this is free, resulting in about 10 µM concentration of ribosomes
available to the exogenous modules (http://bionumbers.hms.harvard.edu).

Figure 7.3a illustrates that as the activator concentration A increases, there is
no substantial perturbation on the free amount of RNA polymerase. However, be-
cause the resulting perturbation on the free amount of ribosomes (Figure 7.3b) is
significant, the resulting decrease of P1 is substantial (Figure 7.3d).

7.2 Stochastic effects: Design tradeoffs in systems with large

gains

As we have seen in Chapter 6, a biomolecular system can be rendered insensitive
to retroactivity by implementing a large input amplification gain in a negative feed-
back loop. However, relying on high gains, this type of design may have undesired
effects in the presence of noise, as seen in a different context in Section 5.2. Here,
we employ the Langevin equation introduced in Chapter 4 to analyze this problem.
Here, we treat the Langevin equation as a regular ordinary differential equation
with inputs, allowing us to apply the tools described in Chapter 3.

Consider a system, such as the transcriptional component of Figure 6.4, in
which a protein X is produced, degraded, and is an input to a downstream system,
such as a transcriptional component. Here, we assume that both the production and
the degradation of protein X can be tuned through a gain G, something that can be
realized through the designs illustrated in Chapter 6. Hence, the production rate of
X is given by a time-varying function Gk(t) while the degradation rate is given by
Gγ.

The system can be simply modeled by the chemical reactions

0
G k(t)
−−−−⇀↽−−−−

Gγ
X, X+p

kon−−−⇀↽−−−
koff

C,

in which we assume that the binding sites p are in total constant amount denoted
ptot, so that p+C = ptot.

We have shown in Section 6.5 that increasing the gain G is beneficial for at-
tenuating the effects of retroactivity on the upstream component applied by the
connected downstream system. However, as shown in Figure 7.4, increasing the
gain G impacts the frequency content of the noise in a single realization. In partic-
ular, as G increases, the realization shows perturbations (with respect to the mean
value) with higher frequency content.

To study this problem, we employ the Langevin equation (Section 4.1). For
our system, we obtain (assuming unit volume for simplifying the mathematical
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Figure 7.4: Stochastic simulations illustrating that increasing the value of G produces per-
turbations of higher frequency. Two realizations are shown with different values of G with-
out load. The parameters used in the simulations are γ = 0.01 min−1 and the frequency of
the input is ω = 0.005 rad/min with input signal given by k(t) = γ(1+0.8sin(ωt)) nM/min.
The mean of the signal is given as reference.

derivations):

dX

dt
=Gk(t)−GγX− kon(ptot−C)X+ koffC+

√

Gk(t) Γ1(t)−
√

GγX Γ2(t)

−
√

kon(ptot−C)X Γ3(t)+
√

koffC Γ4(t),
dC

dt
= kon(ptot−C)X− koffC+

√

kon(ptot−C)X Γ3(t)−
√

koffC Γ4(t).

(7.6)

The above system can be viewed as a nonlinear system with five inputs, k(t) and
Γi(t) for i = 1,2,3,4. Let k(t) = k̄, and Γ1(t) = Γ2(t) = Γ3(t) = Γ4(t) = 0 be constant
inputs and let X̄ and C̄ be the corresponding equilibrium points. Then for small
amplitude signals k̃(t) = k(t)− k̄ the linearization of the system (7.6) leads, with
abuse of notation, to

dX

dt
=Gk̃(t)−GγX− kon(ptot− C̄)X+ konX̄C+ koffC

+
√

Gk̄ Γ1(t)−
√

GγX̄ Γ2(t)+
√

koffC̄ Γ4(t)−
√

kon(ptot− C̄)X̄ Γ3(t),

dC

dt
= kon(ptot− C̄)X− konX̄C− koffC−

√

koffC̄ Γ4(t)+
√

kon(ptot− C̄)X̄ Γ3(t).

We can further simplify the above expressions by noting that γX̄ = k̄ and kon(ptot−
C̄)X̄ = koffC̄. Also, since Γ j are independent identical Gaussian white noise pro-
cesses, we can write Γ1(t)−Γ2(t) =

√
2N1(t) and Γ3(t)−Γ4(t) =

√
2N2(t), in which

N1(t) and N2(t) are independent Gaussian white noise processes identical to Γ j(t).
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This simplification leads to the system

dX

dt
=Gk̃(t)−GγX− kon(ptot− C̄)X+ konX̄C+ koffC+

√

2Gk̄N1(t)−
√

2koffC̄N2(t),

dC

dt
= kon(ptot− C̄)X− konX̄C− koffC+

√

2koffC̄N2(t). (7.7)

This is a system with three inputs: the deterministic input k̃(t) and two inde-
pendent white noise sources N1(t) and N2(t). One can interpret N1 as the source of
the fluctuations caused by the production and degradation reactions while N2 is the
source of fluctuations caused by binding and unbinding reactions. Since the system
is linear, we can analyze the different contributions of each noise source separately
and independent from the signal k̃(t).

We can simplify this system by taking advantage once more of the separation
of time scales between protein production and degradation and the reversible bind-
ing reactions, defining a small parameter ǫ = γ/koff and letting Kd = koff/kon. By
applying singular perturbation theory, we can set ǫ = 0 and obtain the reduced sys-
tem on the slow time scale as performed in Section 6.3. In this system, the transfer
function from N1 to X is given by

HXN1(s) =

√
2Gk̄

s(1+ R̄)+Gγ
, R̄ =

ptot/Kd

((k̄/γ)/Kd+1)2
. (7.8)

The zero frequency gain of this transfer function is equal to

HXN1(0) =

√
2k̄
√

Gγ
.

Thus, as G increases, the zero frequency gain decreases. But for large enough fre-
quencies ω, jω(1+ R̄)+Gγ ≈ jω(1+ R̄), and the amplitude is approximately given
by

|HXN1( jω)| ≈
√

2k̄G

ω(1+ R̄)
,

which is a monotonically increasing function of G. This effect is illustrated in Fig-
ure 7.5. The frequency at which the amplitude of |HXN1( jω)| computed with G = 1
intersects the amplitude |HXN1( jω)| computed with G > 1 is given by the expression

ωe =
γ
√

G

(1+ R̄)
.

Thus, when increasing the gain from 1 to G > 1, we reduce the noise at frequencies
lower than ωe but we increase it at frequencies larger than ωe.

While retroactivity contributes to filtering noise in the upstream system as it de-
creases the bandwidth of the noise transfer function (expression (7.8)), high gains
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Figure 7.5: Magnitude of the transfer function HXN1 (s) as a function of the input frequency
ω. The parameters used in this plot are γ = 0.01 min−1, Kd = 1 nM, koff = 50 min−1, ω =
0.005 rad/min, ptot = 100 nM. When G increases, the contribution from N1 decreases at
low frequency but it spreads to a higher range of the frequency.

contribute to increasing noise at frequencies higher than ωe. In particular, when
increasing the gain from 1 to G > 1 we reduce the noise in the frequency ranges
below ωe, but the noise at frequencies above ωe increases. If we were able to indef-
initely increase G, we could send G to infinity attenuating the deterministic effects
of retroactivity while amplifying noise only at very high, hence not relevant, fre-
quencies.

In practice, however, the value of G is limited. For example, in the insulation
device based on phosphorylation, G is limited by the amounts of substrate and
phosphatase that we can have in the system. Hence, a design tradeoff needs to be
considered when designing insulation devices: placing the largest possible G atten-
uates retroactivity but it may increase noise in a possibly relevant frequency range.

In this chapter, we have presented some of the tradeoffs that need to be ac-
counted for when designing biomolecular circuits in living cells and focused on the
problem of competition for shared resources and on noise. Problems of resource
sharing, noise, and retroactivity are encompassed in a more general problem faced
when engineering biological circuits, which is referred to as “context-dependence.”
That is, the functionality of a module depends on its context. Context-dependence
is due to a number of different factors. These include unknown regulatory inter-
actions between the module and its surrounding systems; various effects that the
module has on the cell network, such as metabolic burden [12] and effects on cell
growth [83]; and the dependence of the module’s parameters on the specific bio-
physical properties of the cell and its environment, including temperature and the
presence of nutrients. Future biological circuit design techniques will have to ad-
dress all these additional problems in order to ensure that circuits perform robustly
once interacting in the cellular environment.
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Exercises

7.1 Assume that both Module 1 and Module 2 considered in Section 7.1 can be
activated. Extend the analytical derivations of the text to this case.

7.2 A similar derivation to what was performed in Section 7.1 can be carried if R
were a repressor of Module 2. Using a one-step reaction model for gene expres-
sion, write down the reaction equations for this case and the ordinary differential
equations describing the rate of change of P1 and P2. Then, determine how the
free concentration of RNA polymerase is affected by changes in R and how P1 is
affected by changes in R.

7.3 Consider again the case of a repressor as considered in the previous exercise.
Now, consider a two-step reaction model for transcription and build a simulation
model with parameter values as indicated in the text and determine the extent of
coupling between Module 1 and Module 2 when the repressor is increased.

7.4 Consider the system (7.7) and calculate the transfer function from the noise
source N2 to X.

7.5 Consider the insulation device based on phosphorylation illustrated in Sec-
tion 6.5. Perform stochastic simulations to investigate the tradeoff between retroac-
tivity attenuation and noise amplification when key parameters are changed. In
particular, you can perform one study in which the time scale of the cycle changes
and a different study in which the total amounts of substrate and phosphatase are
changed.
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absolute activator, 71, 72
acceptor, 79, 234
acetylation, 74
activation, 45, 55–59, 71, 73, 87, 110, 115,

136, 169, 171, 182, 222, 243, 245,
252

allosteric activation, 70–73
in activator-repressor clock, 136, 184–

188, 203, 207, 237, 241
in combinatorial promoters, 143
reaction model, 62–65

actuators, 20
adaptation, 10, 108–110, 135, 169, 190, 199,

204
adenine, 45, 47
adenosine triphosphate, see also ATP
adenosine triphosphate (ATP), 38
aequorea victoria, 24
aerospace systems, 15
affinity, 40, 73, 170, 190, 212, 232
AHL, 171
allosteric regulation, 56, 62, 70–74
amino acid, 48, 51–52, 74, 171
amplification, 205, 221–227, 243, 253, 257
amplifier, 14, 18–19, 169
amplitude of response, 98–101, 213, 255
antibiotic, 24–25
antitermination, 59–60
arabinose, 171
association rate constant, 39, 62, 207
asymptotic stability, 91, 92, 96, 97
asynchronous, 49
aTc, 59, 171
ATP, 9, 15, 38, 74, 79, 110
attenuation, 103, 213
attractant, 191–193
attractor (equilibrium point), 92
autocatalysis, 121

autophosphorylated, 193
autopilot, 16
autoregulation, 65–68, 94, 98, 165, 171–177,

203, 240

back-effect
retroactivity, 208

bacteria, 23, 58, 191
bandwidth, 98–100, 255

effect of retroactivity, 213, 218–219
in a covalent modification cycle, 134

basal expression rate, 63–68, 87, 183
base, 26, 45
base pair, 170
base-pair, 48, 50, 54, 191
Bell Labs, 14
Bendixson’s criterion, 122, 136
bifurcation, 124–128

Hopf, see Hopf bifurcation
Hopf bifurcation, 187–188

bifurcation diagram, 125
bimodality, 7
binding

competitive, 42, 68, 86
cooperative, 40, 68, 86, 241
of RNA polymerase, 60–65, 142
raction, 215
reaction, 39, 248
reactions, 71, 130, 208
receptor-ligand, 193–202
site, 188, 248

biobrick, 26
biofuels, 22
biological circuits, 4, 22–28, 169–191, 206,

243
repressilator, 24

birth process, 154
bistability, 6, 26

bistable system, 26, 92, 126, 178, 203
bistable, 126
Black, H. S., 14, 16
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block diagonal systems, 96
Bode plot, 100, 103
Boltzmann constant, 31
buffer, 213, 250
burst, 120

CAP, 58
cascade, 137

MAPK, 80–85, 227
of covalent modification cycles, 169
of phosphorylation cycles, 74
of transcriptional activators, 85
signaling cascade, 9, 10

catalytic rate constant, 43, 76, 230
catalytic site, 70
CDKs, see cyclin dependent kinases
center (equilibrium point), 92
center manifold, 128
central dogma, 45–49
characteristic curve, 77, 215–217, 240
characteristic polynomial, 95, 181
CheA kinase, 27, 193, 200
CheB protein, 194
chemical kinetics, 30, 32–33, 144
chemical Langevin equation, 35, 150–152,

167, 173, 253
chemotaxis, 10, 191
CheW protein, 193
circadian rhythm, 114–118
circuit motifs, 110, 170
circuits

activator-repressor clock, 184–188
chemotaxis, 191–202
incoherent feedforward loop, 188
insulation device, 222–227, 229–236
interconnection of, 236–239
repressilator, 180–184
toggle switch, 177–180

clock
activator-repressor, 184–188, 203, 207,

236, 242
repressilator, 180–184

cloning, 23
closed complex, 47, 147
closed loop, 12, 14, 101, 103, 105, 172

versus open loop, 12
coding region, 45, 47, 170
coefficient

Hill, 41, 183, 203
of variation, 150
response, 77, 216

coherent feedforward loop, 69
combinatorial promoter, 59, 68, 86, 142, 185,

191
competitive

binding, see binding
inhibition, 70, 87
inhibitor, 87

complexity, of control systems, 17
concentration, 34
conservation, 229, 241

of DNA, 63, 251
of enzyme, 71, 82
of protein, 83, 99, 197, 215
of RNA polymerase, 246
of species, 37, 42

context-dependence, 256
contracting, 112
contracting system, 112
control, 12, 20, 108

early examples, 14
in chemotaxis, 191
in post-transcriptional regulation, 73

control matrix, 22
control signal, 21
cooperative, 41

binding, see binding
cooperativity, 41, 68, 183, 204
coordinate transformations, 96
COPASI, 108
copy number

of plasmid, 170, 188, 249
covalent modification, 37, 73, 134

in insulation devices, 227
model, 73–78
retroactivity effects, 214

crosstalk, 17, 134, 243
cruise control, 14

robustness, 14
Curtiss seaplane, 16
cut-off frequency, 98
cycle

cell cycle, 114–115
covalent modification, see covalent mod-

ification
limit, see limit cycle
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phosphorylation, see phosphorylation
cyclic AMP, 59
cyclic feedback system, 124, 180–184
cyclin dependent kinases, 115
cyclins, 115
cytoplasm, 46

decay
rate, 171
of a protein, 53, 130, 134
rate, 172

degradation, 74, 222, 253
effect on repressilator, 184
model, 37, 53–55
of mRNA, 52, 102
tag, 37, 171, 173, 188, 191

delay
in protein production, 53–54, 87
in transcriptional regulation, 87
load-induced, 228

demand for resources, 243
density

probability, 152, 155
dephosphorylation, see phosphorylation
design

of dynamics, 15–16
of circuits, see biological circuits
of dynamics, 98
of insulation devices, see insulation de-

vice
device, see insulation device
diagonal systems, 96

transforming to, 96
differential equation, see ordinary differen-

tial equation
diffusion

of protein along DNA, 49
of RNA polymerase along DNA, 50
term, 152

dilution, 53–55, 240
model, 53–55
rate, 184

dimer, 40, 55, 86
dimerization, 40, 130
direct term, 22
dissociation constant, 40, 71, 73, 179, 190,

196, 203
of inducer, 65

of RNA polymerase, 49, 63
of transcription factor, 49, 68, 212, 248,

249, 252
dissociation rate constant, 39, 43, 210, 252
distribution

Poisson, 150, 155
probability, 148, 150, 152, 154

disturbance, 5, 17, 21, 134, 167
adaptation to, 199
limitations, 135
response to, 101

disturbance attenuation, 112
in biological systems, 103
in retroactivity, 220

disturbance rejection, 108, 111
DNA, 45–47

ligase, 23
looping, 55

donor
of phosphate, see phosphate donor

doubling time, 248
drift term, 152
duplication, 114
dynamical systems, 12, 89

linear, 95
dynamics matrix, 22, 97

E. coli

as a cell chassis, 169
cell division time, 115
characteristic concentrations, 248
characteristic rates, 49
chemotaxis, 191
sigma factors, 58

economic systems, 18
effective load, 212, 216, 241
eigenvalues, 95, 96
eigenvector, 95, 97
electrical circuits, 4
electrical engineering, 18–20
elongation

in transcription, 50
in translation, 51
TEC, 46

energy level
in receptor complex, 193
of microstates, 31, 140–144

engineered circuits, 26
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entropy, 140
enzymatic reaction, 42–44, 71, 131
enzyme, 43, 131, 137

kinase, see kinase
phosphatase, see phosphatase
RNA polymerase, see RNA polymerase
RNase, see RNase

equilibrium point, 90–93, 95
bifurcations of, 125
for planar systems, 92
region of attraction, 92

eukaryotes, 46, 51, 73
exons, 47
expected value, 158
expression, see gene expression
extrinsic noise, 7

factor, see transcription factor
feedback, 12–18, 22, 66, 94, 98, 103, 107,

115, 171, 177
as technology enabler, 16
drawbacks of, 13, 16
high gain, 111–113, 220
in biomolecular systems, 5, 8
in cruise control, 14
in oscillator, see cyclic feedback sys-

tem
integral, see integral feedback
limitations of, 135
robustness through, 13
versus feedforward, 17
versus retroactivity, 209

feedforward, 17
feedforward loop, 69, 109–111

circuit, 188, 204
filter

low-pass, 98
noise filtering, 173, 255

first-order kinetics, 44
flagella, 10, 192–193
flagellar motor, 192
flight control, 15
fluorescent reporters, 24, 171
Fokker-Planck equation, 152–153
fold-change detection, 113–114
folding of a protein, 48, 51
forward Kolmogorov equation, 145
Fourier transform, 163, 164

fragmentation of DNA, 23
frequency response, 20–21, 98–101, 134, 135,

173–177, 203
effects of retroactivity, 213–214

fusion of proteins, 171

gain, 100
in high gain feedback, see feedback
in integral feedback, 109
loop, 124
of a frequency response, 100
zero frequency, 100

Gaussian distribution, 166
Gaussian random variable, 151
Gaussian white noise, 152, 167, 254
gene, 45–47
genetic circuits, see biological circuits
genetic switch, 25
genome, 22
GFP, 24, 171
Gillespie algorithm, 157
global behavior, 92
globally stable system, 92
glucose, 59
glycolitic oscillations, 120, 127
glycolysis, see glycolytic oscillations
green fluorescent protein, see GFP
growth rate, 53, 246, 248

half-life, 49, 172
harmonic oscillator, 118–120
heat shock, 58
heteroclinic orbit, 120, 124
high-copy plasmid, see plasmid
Hill coefficient

in MAPKKK cascade, 84
Hill function, 41, 86, 130

for a repressor, 63
for an activator, 64
response coefficient, 77

homeostasis, 110
homoclinic orbit, 119
Hopf bifurcation, 126–128, 189
hysteresis, 18

impedance in biomolecular systems, 208
implicit function theorem, 129
impulse response, 161
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independent random variables, 151
inducers, 58–59, 64–65
inducible promoter, 227
inhibition

allosteric inhibition, 71–72
input/output models, 18, 20, 21
inputs, 21
insulation devices, 219–236
insulin production, 23
integral feedback, 109–110, 135, 193
interconnection of systems, 205
intrinsic noise, 7, 177
invariant region, 123
IPTG, 59, 171
irreversible reaction, 76
isolated system, 209
isomerization, 47, 50, 62, 65

Jacobian matrix, 97, 181, 186, 202
jellyfish, 24, 171

Kelvin degrees, 31
kinase, 38, 73, 74, 80, 87, 134, 226, 237
Kolmogorov equation, 145
Kozak sequence, 48

LacI (Lac repressor), 59
lactose, 59
Langevin equation, see chemical Langevin

equation
Laplace transforms, 20
leakiness of transcription, 62, 63, 87
leucine, 58
ligand, 10, 27, 74, 193
ligation, 23
limit cycle, 116–124, 126, 136, 180, 184,

189, 241
limitations in design, 135
linear time-invariant systems, 19, 22, 95
linearization, 95–98, 106–112, 124, 126, 135,

172, 181, 186, 203, 213, 218, 254
load, 206, 217, 249

robustness to, 236
load-induced delay, see delay
loading in biological circuits, 205
local behavior, 91, 97
locally asymptotically stable, 91
low-pass filter, see filter

lysine, 74
lysis/lysogeny, 25

macrostate, 31, 141, 143
magnitude (of frequency response), 99, 100
MAPK cascade, 80–85
maturation time, 49
mature mRNA, 47
mean, 150, 153, 160, 166
measured signals, 21, 22
mechanics, 20
membrane-bound protein, 193
memory, 6
messenger RNA (mRNA), 46, 48
metabolic burden, 256
metabolic network, 120
metabolism, 8
methylation, 74

in bacterial chemotaxis, 194
methylation reaction rates, 198, 201
methylation reactions, 195, 201
Michaelis-Menten constant, 43, 71

and ultrasensitivity, 78
Michaelis-Menten kinetics, 43, 72

and quasi-steady state approximation,
133

in double phosphorylation, 82
in methylation, 201

micro-RNA, 110
microstate, 30, 140–144, 154
mitogen activated protein kinase (MAPK),

80
mitosis, 115
model reduction, see reduction of models

in retroactivity analysis, 240
model uncertainty, 6
modeling

chemotaxis, 194
chemical reactions, 29
input/output modeling, 205
stochastic systems, 139

modeling simplified models, use of, 21
modification

allosteric, see allosteric regulation
covalent, see covalent modification

modular interconnection, 205
modularity, 16, 26, 206
modularity assumption
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in circuit design, 206
validity, 212

molecular dynamics, 30
motor, see flagellar motor
mRNA

degradation, see degradation
production, 50
translation, 51

multistable, 126
mutations, 7

negative autoregulation, see autoregulation
negative chemotaxis, 10, 191
negative inducer, 58, 64, 171, 179
networking, 4
neutral stability, 91, 92
neutrophil, 110
noise

extrinsic, see extrinsic noise
intrinsic, see intrinsic noise

noise filtering, see filter
noise intensity, 160
non-absolute activator, 71, 87
nonlinear systems, 21, 97, 124

linear approximation, 97, 98
nucleotides, 45
nullcline analysis, 93–94

of the activator-repressor clock, 185
of the toggle switch, 177

nut region, 60
Nyquist plot, 101

observability, 21
one-step reaction model

in enzymatic rections, 231
in gene expression, 257
in phosphorylation, 76, 87, 196, 241

open complex, 47, 50, 62, 146
open loop, 12
operator, 61, 237
operator region, 55
operator sites, 191, 241
operon, 56

lac, 25, 56
orbit, 118

heteroclinic, see heteroclinic orbit
homoclinic, see homoclinic orbit
periodic, 118, 126, 181, 186, 188

order, of a system, 22
ordinary differential equation (ODE), 34
Ornstein-Uhlenbeck process, 159, 163
oscillations, see limit cycle
oscillator

activator-repressor clock, 188
harmonic, see harmonic oscillator
in glycolysis, 127
loaded, 211
loop, 183
natural, 114
repressilator, 170
with two genes, 136

p53, 58
parametric stability, see bifurcation
parametric uncertainty, 104–108
partition function, 31, 141, 144
pathway

chemotaxis, 199
metabolic, 9
signal transduction, 80
signaling, 9
weakly activated, 226

PCR amplification, 23
periodic orbit, see orbit
perturbation

attenuation, see attenuation
sensitivity to, see sensitivity
singular, see singular perturbation

phage λ, 60
phase lag, 99, 100, 213
phase portrait, 91, 119, 125
phenotype, 4
phosphatase, 74, 99, 226, 241, 257
phosphate donor, 79, 234
phosphate group, 9, 38, 73, 75, 79
phosphorylation, 73, 87, 98, 134, 241, 257

double, 81
in chemotaxis, 194
in insulation devices, 226, 229
in MAPKKK cascade, 81
reactions, 37
system model, 76

phosphotransfer
in chemotaxis, 198
in insulation devices, 233
model, 79–80, 88
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PI control, 14
pitchfork bifurcation, 126, see bifurcation
planar dynamical systems, 92
plasmid, 23, 170, 189, 213, 247
Poincaré-Bendixson theorem, 123, 185
Poisson distribution, 266
poles, 101
PoPS, 206
portrait, see phase portrait
positive autoregulation, 66, 115
positive chemotaxis, 10, 191
positive feedback, 18, see also positive au-

toregulation
positive inducer, 58, 65, 171
post-transcriptional regulation, 70–80
power spectral density function, 163
pre-mRNA, 47
probability density function, 152
probability of a microstate, 31, 140, 154
probability of a reaction, 35
process control, 4
product of enzymatic reaction, 71
production of proteins, see central dogma
promoter, 45
propensity function, 32, 145
protease, 37

in isnulation devices, 222
pyruvate, 120

quasi-steady state, 62, 65, 71, 82, 85, 130,
171, 174, 185, 190, 195, 212, 228,
246

quasi-steady state approximation, 43, 133
queuing, 51, 249

random, see Gaussian random variable
rate, see reaction rate
reachability, 21
reaction

bimolecular, 33, 35, 146, 166
unimolecular, 33, 145, 153

reaction kinetics, 30
reaction models

enzymatic reaction, see two-step reac-
tion model

gene expression, 50–52
transcriptional regulation, 60–70

reaction rate equations, 34–39

receptor, 193
recombinant DNA, 23
recruitment model, 62
reduction of models, 128–134, 174

in clocks, 188
in phosphorylation, 137
in retroactivity analysis, 211, 224, 241
in the design of insulation devices, 228

regulation
in post-transcriptional regulation, see post-

transcriptional regulation
in transcriptional regulation, see tran-

scriptional regulation
rejection, see disturbance rejection
repellent, 191
reporter genes, 170
repressilator, 24, see clock
repression, 55–56, 86, 87, 115, 136, 141, 143,

146, 170, see LacI (Lac repressor)
in activator-repressor clock, 237, 242
in combinatorial promoters, 143
in repressilator, 180
leaky, 87
model, 62

resource, 243
restriction enzymes, 23
retroactivity, 206–209

in gene circuits, 209–214
in signaling systems, 214–219

retroactivity attenuation, 219–236, 243, 257
rhythm, see circadian rhythm
ribosome, 47
ribosome binding site, 47–49, 51–54, 66, 170,

175, 191
ribosome binding site (RBS), 47
RNA polymerase, 30, 46, 55, 141, 148

and repressor, 146
competition for, 243–253
in transcription reactions, 50
in transcriptional regulation, 60–64

RNase, 52
robustness, 13–14, 103–114, 134, 135, 236

saddle (equilibrium point), 92, 119, 123, 186,
187

saddle node bifurcation, 126
scale invariance, 113–114
screening, 23
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self-repression, 105
sensing system, 8

in chemotaxis, 191, 193
sensitivity

in covalent modification, 77–78
in covalent modification cycles, 215
in the MAPKKK cascade, 84
in the repressilator, 183
in transcriptional regulation, 102
to perturbations, 104–108, 135

sensor matrix, 22
separation

of time scales, 187, 211, 229
separatrix, 93
serine, 74
Shine-Dalgarno, 47
sigma factors, 57
sigmoidal stimulus response, 84
signaling

intracellular, 80
signaling cascades, 85
signaling molecule, 5, 74, 171
signaling system, 8

retroactivity in, see retroactivity
simulation of stochastic systems, 154–157
single-cell microscopy, 2
singular perturbation, see reduction of mod-

els
sink (equilibrium point), 92
slow manifold, 129, 134, 137, 211, 217, 229,

241
sniffer, 110, 135, 190
source (equilibrium point), 92
specific binding, 248
spectral shift, 177
stability, 15, 90

of equilibrium points, 90–98
asymptotic stability, 91, 97
in the sense of Lyapunov, 91
local versus global, 91
neutrally stable, 91, 92
of a system, 95
of equilibrium points, 92
of linear systems, 95–97
of solutions, 91
unstable solutions, 91
using linear approximation, 97

start codon, 45, 48

start of transcription
see transcription, 266

state, of a dynamical system, 21
state space, 18, 22, 34
state vector, 21
statistical mechanics, 30–32, 139–144
steady state characteristic, see characteristic

curve
steady state response, 100, 162
step input, 19
step response, 19, 20

in transcriptional components, 211
of a covalent modification cycle, 218

stochastic linear systems, 157–165
stochastic simulation algorithm, 157
stochastic systems models, see modeling
stoichiometry matrix, 37, 145, 229
stop codon, 45, 48, 51
subcritical Hopf bifurcation, see bifurcation
substrate, 38, 43, 70, 85, 131
supercritical Hopf bifurcation, see bifurca-

tion
superposition, 19
switch-like response, 77
switching behavior, 18
synthesis of proteins, see central dogma
synthetic biology, 22–28, 170–171
system state, 141
systems biology, 1–8

termination of transcription, 45, 50
termination region, 47
terminator, 47
tetracycline, 25
thermodynamics, 30, 139
theronine, 74
time-invariant systems, 22
toggle switch, see circuits
tradeoffs in design, 232, 243–257
transcription, 44–55
transcriptional regulation, 55–60, 70, 105,

137
transcritical bifurcation, 126, see bifurcation
transfection, 23, 170
transfer function, 100
transformation, 23, 170
translation, 44–55
tRNA, 48
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tryptophan, 110
tumor suppressor, 58
two-step reaction model, 74
tyrosine, 74

ubiquitination, 74
ultrasensitive response, 78

effects of retroactivity, 215
uncertainty, 13–14, 21, see parametric un-

certainty
disturbances and noise, 21

unidirectional transmission, 85
unmodeled dynamics, 6, 108
unstable solution, for a dynamical system,

91, 92, 97
uracil, 47
uridylylation, 214
uzero-order ultrasensitivity, 78

viral DNA, 59
virus, 7

waterbed effect, 177
white noise, 160, 164
Wright, W., 15

yeast, 7, 28

zero frequency gain, 100
zero-order kinetics, 44
zero-order ultrasensitivity, 84
zeros, 101
zinc finger, 58
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