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Preface

This text is intended for researchers interested in the application of feedback and
control to biomolecular systems. The material has been designed so that it can be
used in parallel with the textbook Feedback Systems [AMOS] as part of a course
on biomolecular feedback and control systems, or as a stand-alone reference for
readers who have had a basic course in feedback and control theory. The full text for
this book, along with additional supplemental material, is available on a companion
Web site:

http://www.cds.caltech.edu/~murray/BFS

The material in this book is intended to be useful to three overlapping audi-
ences: graduate students in biology and bioengineering interested in understanding
the role of feedback in natural and engineered biomolecular systems; advanced un-
dergraduates and graduate students in engineering disciplines who are interested in
the use of feedback in biological circuit design; and established researchers in the
biological sciences who want to explore the potential application of principles and
tools from control theory to biomolecular systems. We have written the text assum-
ing some familiarity with basic concepts in feedback and control, but have tried to
provide insights and specific results as needed, so that the material can be learned
in parallel. We also assume some familiarity with cell biology, at the level of a first
course for non-majors. The individual chapters in the text indicate the prerequisites
in more detail, most of which are covered either in Astrom and Murray [AMOS] or
in the supplemental information available from the companion Web site.

Acknowledgments. Many colleagues and students provided feedback and advice on
the book. We would particularly like to thank Mustata Khammash, Eric Klavins,
and Eduardo Sontag, who gave detailed comments on some of the early versions
of the text. In addition, we would like to acknowledge Abdullah Amadeh, Andras
Gyorgy, Narmada Herath, Yutaka Hori, Shridhar Jayanthi, Scott Livingston, Rob
Phillips, Phillip Rivera, Vipul Singhal, Anandh Swaminathan, Eric Winfree, and
Enoch Yeung for their support and comments along the way. Finally, we would
like to thank Caltech, MIT and the University of Michigan for providing the many
resources that were necessary to bring this book to fruition.

Domitilla Del Vecchio Richard M. Murray
Cambridge, Massachusetts Pasadena, California
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Chapter 1

Introductory Concepts

This chapter provides a brief introduction to concepts from systems biology, tools
from differential equations and control theory, and approaches to modeling, anal-
ysis and design of biomolecular feedback systems. We begin with a discussion of
the role of modeling, analysis and feedback in biological systems. This is followed
by a short review of key concepts and tools from control and dynamical systems
theory, intended to provide insight into the main methodology described in the text.
Finally, we give a brief introduction to the field of synthetic biology, which is the
primary topic of the latter portion of the text. Readers who are familiar with one or
more of these areas can skip the corresponding sections without loss of continuity.

1.1 Systems biology: Modeling, analysis and role of feedback

At a variety of levels of organization—from molecular to cellular to organismal—
biology is becoming more accessible to approaches that are commonly used in
engineering: mathematical modeling, systems theory, computation and abstract ap-
proaches to synthesis. Conversely, the accelerating pace of discovery in biological
science is suggesting new design principles that may have important practical ap-
plications in human-made systems. This synergy at the interface of biology and
engineering offers many opportunities to meet challenges in both areas. The guid-
ing principles of feedback and control are central to many of the key questions in
biological science and engineering and can play an enabling role in understanding
the complexity of biological systems.

In this section we summarize our view on the role that modeling and analysis
should (eventually) play in the study of biological systems, and discuss some of
the ways in which an understanding of feedback principles in biology can help us
better understand and design complex biomolecular circuits.

There are a wide variety of biological phenomena that provide a rich source of
examples for control, including gene regulation and signal transduction; hormonal,
immunological, and cardiovascular feedback mechanisms; muscular control and
locomotion; active sensing, vision, and proprioception; attention and conscious-
ness; and population dynamics and epidemics. Each of these (and many more) pro-
vide opportunities to figure out what works, how it works, and what can be done to
affect it. Our focus here is at the molecular scale, but the principles and approach
that we describe can also be applied at larger time and length scales.
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Modeling and analysis

Over the past several decades, there have been significant advances in modeling
capabilities for biological systems that have provided new insights into the com-
plex interactions of the molecular-scale processes that implement life. Reduced-
order modeling has become commonplace as a mechanism for describing and doc-
umenting experimental results, and high-dimensional stochastic models can now
be simulated in reasonable periods of time to explore underlying stochastic effects.
Coupled with our ability to collect large amounts of data from flow cytometry,
micro-array analysis, single-cell microscopy, and other modern experimental tech-
niques, our understanding of biomolecular processes is advancing at a rapid pace.

Unfortunately, although models are becoming much more common in biolog-
ical studies, they are still far from playing the central role in explaining complex
biological phenomena. Although there are exceptions, the predominant use of mod-
els is to “document” experimental results: a hypothesis is proposed and tested us-
ing careful experiments, and then a model is developed to match the experimental
results and help demonstrate that the proposed mechanisms can lead to the ob-
served behavior. This necessarily limits our ability to explain complex phenomena
to those for which controlled experimental evidence of the desired phenomena can
be obtained.

This situation is much different than standard practice in the physical sciences
and engineering, as illustrated in Figure 1.1 (in the context of modeling, analysis,
and control design for gas turbine aeroengines). In those disciplines, experiments
are routinely used to help build models for individual components at a variety of
levels of detail, and then these component-level models are interconnected to ob-
tain a system-level model. This system-level model, carefully built to capture the
appropriate level of detail for a given question or hypothesis, is used to explain,
predict, and systematically analyze the behaviors of a system. Because of the ways
in which models are viewed, it becomes possible to prove (or invalidate) a hypoth-
esis through analysis of the model, and the fidelity of the models is such that deci-
sions can be made based on them. Indeed, in many areas of modern engineering—
including electronics, aeronautics, robotics, and chemical processing, to name a
few—models play a primary role in the understanding of the underlying physics
and/or chemistry, and these models are used in predictive ways to explore design
tradeoffs and failure scenarios.

A key element in the successful application of modeling in engineering dis-
ciplines is the use of reduced-order models that capture the underlying dynamics
of the system without necessarily modeling every detail of the underlying mech-
anisms. These reduced-order models are often coupled with schematics diagrams,
such as those shown in Figure 1.2, to provide a high level view of a complex sys-
tem. The generation of these reduced-order models, either directly from data or
through analytical or computational methods, is critical in the effective applica-
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Figure 1.1: Sample modeling, analysis and design framework for an engineering system.
The physical system (in this case a jet engine) is first modeled using a detailed mathemati-
cal description that captures the essential physics that are relevant for the design. Reduced-
order models (typically differential equations and steady state input/output maps) are then
created for use in analysis and design. A list of some typical tools in this domain are shown
in the box on the right. These tools are used to design the system and then combined with
simulations and system identification tools. Finally, a hierarchy of testing environments
are used as the system is built and tested, finally resulting in an implementation of the full
system. Additional details can be found in [EGNS98]

tion of modeling since modeling of the detailed mechanisms produces high fidelity
models that are too complicated to use with existing tools for analysis and design.
One area in which the development of reduced-order models is fairly advanced is
in control theory, where input/output models, such as block diagrams and transfer
functions, are used to capture structured representations of dynamics at the appro-
priate level of fidelity for the task at hand [AMOS].

While developing predictive models and corresponding analysis tools for biol-
ogy is much more difficult, it is perhaps even more important that biology make
use of models, particularly reduced-order models, as a central element of under-
standing. Biological systems are by their nature extremely complex and can be-
have in counterintuitive ways. Only by capturing the many interacting aspects of
the system in a formal model can we ensure that we are reasoning properly about
its behavior, especially in the presence of uncertainty. To do this will require sub-
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Figure 1.2: Schematic diagrams representing models in different disciplines. Each diagram
is used to illustrate the dynamics of a feedback system: (a) electrical schematics for a power
system [Kun93], (b) a biological circuit diagram for a synthetic clock circuit [ASMNO03],
(c) a process diagram for a distillation column [SEMO04] and (d) a Petri net description of
a communication protocol.

stantial effort in building models that capture the relevant dynamics at the proper
scales (depending on the question being asked), as well as building an analytical
framework for answering questions of biological relevance.

The good news is that a variety of new techniques, ranging from experiments to
computation to theory, are enabling us to explore new approaches to modeling that
attempt to address some of these challenges. In this text we focus on the use of rele-
vant classes of reduced-order models that can be used to capture many phenomena
of biological relevance.

Dynamic behavior and phenotype

One of the key needs in developing a more systematic approach to the use of mod-
els in biology is to become more rigorous about the various behaviors that are im-
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Figure 1.3: Conceptual modeling framework for biomolecular feedback systems. The
chemical kinetics block represents reactions between molecular species, resulting in signal-
ing molecules and bound promoters. The DNA layout block accounts for the organization
of the DNA, which may be “rewired” to achieve a desired function. The TX-TL processes
block represents the core transcription and translation processes, which are often much
slower than the reactions between various species. The inputs and outputs of the various
blocks represent interconnections and external interactions.

portant for biological systems. One of the key concepts that needs to be formalized
is the notion of “phenotype.” This term is often associated with the existence of an
equilibrium point in a reduced-order model for a system, but clearly more complex
(non-equilibrium) behaviors can occur and the “phenotypic response” of a system
to an input may not be well-modeled by a steady operating condition. Even more
problematic is determining which regulatory structures are “active” in a given phe-
notype (versus those for which there is a regulatory pathway that is saturated and
hence not active).

Figure 1.3 shows a graphical representation of a class of systems that captures
many of the features we are interested in. The chemical kinetics of the system are
typically modeled using mass action kinetics (reaction rate equations) and repre-
sent the fast dynamics of chemical reactions. The reactions include the binding
of activators and repressors to DNA, as well as the initiation of transcription. The
DNA layout block represents the physical layout of the DNA, which determines
which genes are controlled by which promoters. The core processes of transcrip-
tion (TX) and translation (TL) represent the slow dynamics (relative to the chemical
kinetics) of protein expression (including maturation).

Several other inputs and outputs are represented in the figure. In the chemical
kinetics block, we allow external inputs, such as chemical inducers, and external
parameters (rate parameters, enzyme concentrations, etc.) that will affect the re-
actions that we are trying to capture in our model. We also include a (simplified)
notion of disturbances, represented in the diagram as an external input that affects
the rate of transcription. This disturbance is typically a stochastic input that rep-
resents the fact that gene expression can be noisy. In terms of outputs, we capture
two possibilities in the diagram: small molecule outputs—often used for signaling
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to other subsystems but which could include outputs from metabolic processes—
and protein outputs, such as as fluorescent reporters.

Another feature of the diagram is the block labeled “unmodeled dynamics,”
which represents the fact that our models of the core processes of gene expression
are likely to be simplified models that ignore many details. These dynamics are
modeled as a feedback interconnection with transcription and translation, which
turns out to provide a rich framework for application of tools from control theory
(but unfortunately one that we will not explore in great detail within this text).
Tools for understanding this class of uncertainty are available for both linear and
nonlinear control systems [AMO8] and allow stability and performance analyses in
the presence of uncertainty.

The combination of partially unknown parameters, external disturbances, and
unmodeled dynamics are collectively referred to as model uncertainty and are an
important element of our analysis of biomolecular feedback systems. Often we will
analyze the dynamic behavior of a system assuming that the parameters are known,
disturbances are small and our models are accurate. This analysis can give valuable
insights into the behavior of the system, but it is important to make sure that this
behavior is robust with respect to uncertainty, a topic that we will discuss in some
detail in Chapter 3.

A somewhat common situation is that a system may have multiple equilibrium
points and the “phenotype” of the system is represented by the particular equilib-
rium point that the system converges to. In the simplest case, we can have bistabil-
ity, in which there are two equilibrium points for a fixed set of parameters. Depend-
ing on the initial conditions and external inputs, a given system may end up near
one equilibrium point or the other, providing two distinct phenotypes. A model
with bistability (or multi-stability) provides one method of modeling memory in
a system: the cell or organism remembers its history by virtue of the equilibrium
point to which it has converted.

For more complex phenotypes, where the subsystems are not at a steady op-
erating point, one can consider temporal patterns such as limit cycles (periodic
orbits) or non-equilibrium input/output responses. Analysis of these more compli-
cated behaviors requires more sophisticated tools, but again model-based analysis
of stability and input/output responses can be used to characterize the phenotypic
behavior of a biological system under different conditions or contexts.

Additional types of analysis that can be applied to systems of this form include
sensitivity analysis (dependence of solution properties on selected parameters), un-
certainty analysis (impact of disturbances, unknown parameters and unmodeled dy-
namics), bifurcation analysis (changes in phenotype as a function of input levels,
context or parameters) and probabilistic analysis (distributions of states as a func-
tion of distributions of parameters, initial conditions or inputs). In each of these
cases, there is a need to extend existing tools to exploit the particular structure of
the problems we consider, as well as modify the techniques to provide relevance to
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biological questions.

Stochastic behavior

Another important feature of many biological systems is stochasticity: biological
responses have an element of randomness so that even under carefully controlled
conditions, the response of a system to a given input may vary from experiment to
experiment. This randomness can have many possible sources, including external
perturbations that are modeled as stochastic processes and internal processes such
as molecular binding and unbinding, whose stochasticity stems from the underlying
thermodynamics of molecular reactions.

While for many engineered systems it is common to try to eliminate stochastic
behavior (yielding a “deterministic” response), for biological systems there appear
to be many situations in which stochasticity is important for the way in which or-
ganisms survive. In biology, nothing is 100% and so there is always some chance
that two identical organisms will respond differently. Thus viruses are never com-
pletely contagious and so some organisms will survive, and DNA replication is
never error free, and so mutations and evolution can occur. In studying circuits
where these types of effects are present, it thus becomes important to study the
distribution of responses of a given biomolecular circuit, and to collect data in a
manner that allows us to quantify these distributions.

One important indication of stochastic behavior is bimodality. We say that a cir-
cuit or system is bimodal if the response of the system to a given input or condition
has two or more distinguishable classes of behaviors. An example of bimodal-
ity is shown in Figure 1.4, which shows the response of the galactose metabolic
machinery in yeast. We see from the figure that even though genetically identical
organisms are exposed to the same external environment (a fixed galactose con-
centration), the amount of activity in individual cells can have a large amount of
variability. At some concentrations there are clearly two subpopulations of cells:
those in which the galactose metabolic pathway is turned on (higher reporter fluo-
rescence values on the y axis) and those for which it is off (lower reporter fluores-
cence).

Another characterization of stochasticity in cells is the separation of noisiness
in protein expression into two categories: “intrinsic” noise and “extrinsic” noise.
Roughly speaking, extrinsic noise represents variability in gene expression that
affects all proteins in the cell in a correlated way. Extrinsic noise can be due to
environmental changes that affect the entire cell (temperature, pH, oxygen level) or
global changes in internal factors such as energy or metabolite levels (perhaps due
to metabolic loading). Intrinsic noise, on the other hand, is the variability due to the
inherent randomness of molecular events inside the cell and represents a collection
of independent random processes. One way to attempt to measure the amount of
intrinsic and extrinsic noise is to take two identical copies of a biomolecular circuit
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Figure 1.4: Galactose response in yeast [VESM12]. (a) GAL signaling circuitry showing
a number of different feedback pathways that are used to detect the presence of galactose
and switch on the metabolic pathway. (b) Pathway activity as a function of galactose con-
centration. The points at each galactose concentration represent the activity level of the
galactose metabolic pathway in an individual cell. Black dots indicate the mean of a Gaus-
sian mixture model classification [VESM12]. Small random deviations were added to each
galactose concentration (horizontal axis) to better visualize the distributions.

and compare their responses [ELSS02, SES02]. Correlated variations in the output
of the circuits corresponds (roughly) to extrinsic noise and uncorrelated variations
to intrinsic noise [HP11, SES02].

The types of models that are used to capture stochastic behavior are very dif-
ferent than those used for deterministic responses. Instead of writing differential
equations that track average concentration levels, we must keep track of the indi-
vidual events that can occur with some probability per unit time (or “propensity”).
We will explore the methods for modeling and analysis of stochastic systems in
Chapter 4.

1.2 The cell as a system

The molecular processes inside a cell determine its behavior and are responsible
for metabolizing nutrients, generating motion, enabling procreation and carrying
out the other functions of the organism. In multi-cellular organisms, different types
of cells work together to enable more complex functions. In this section we briefly
describe the role of dynamics and control within a cell and discuss the basic pro-
cesses that govern its behavior and its interactions with its environment. We assume
knowledge of the basics of cell biology at the level found in standard textbooks on
cell biology such as Alberts et al. [ABL*08] or Phillips et al. [PKTO08].

Figure 1.5 shows a schematic of the major components in the cell: sensing,
signaling, regulation, and metabolism. Sensing of environmental signals typically
occurs through membrane receptors that are specific to different molecules. Cells
can also respond to light or pressure, allowing the cell to sense the environment,
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Figure 1.5: The cell as a system. The major subsystems are sensing, signaling, regulation,
and metabolism.

including other cells. There are several types of receptors, some allow the signaling
molecules in the environment to enter the cell wall, such as in the case of ion
channels. Others activate proteins on the internal part of the cell membrane once
they externally bind to the signaling molecule, such as enzyme-linked receptors or
G-protein coupled receptors.

As a consequence of the sensing, a cascade of signal transduction occurs (sig-
naling) in which proteins are sequentially activated by (usually) receiving phos-
phate groups from ATP molecules through the processes of phosphorylation and/or
phosphotransfer. These cascades transmit information to downstream processes,
such as gene expression, by amplifying the information and dynamically filter-
ing signals to select for useful features. The temporal dynamics of environmental
signals and the kinetic properties of the stages in the signaling cascades determine
how a signal is transmitted/filtered. At the bottom stages of signaling cascades, pro-
teins are activated to become transcription factors, which can activate or repress the
expression of other proteins through regulation of gene expression. The temporal
dynamics of this regulation, with timescales in the range of minutes to hours, are
usually much slower than that of the transmission in the signaling pathway, which
has timescales ranging from subseconds to seconds. Metabolic pathways, such as
the glycolysis pathway, also characterized by very fast time scales, are in charge of
producing the necessary resources for all the other processes in the cells. Through
these pathways, nutrients in the environment, such as glucose, are broken down
through a series of enzymatic reactions, producing, among other products, ATP,
which is the energy currency in the cell used for many of the reactions, including
those involved in signaling and gene expression.
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Figure 1.6: A simplified circuit diagram for chemotaxis, showing the biomolecular pro-
cesses involved in regulating flagellar motion. Figure taken from Rao et al. [RKAO4].

Example: Chemotaxis

As an example of a sensing-transmission-actuation process in the cell, we consider
chemotaxis, the process by which micro organisms move in response to chemical
stimuli. Examples of chemotaxis include the ability of organisms to move in the
direction of nutrients or move away from toxins in the environment. Chemotaxis
is called positive chemotaxis if the motion is in the direction of the stimulus and
negative chemotaxis if the motion is away from the stimulus.

The chemotaxis system in E. coli consists of a sensing system that detects the
presence of nutrients, an actuation system that propels the organism in its envi-
ronment, and control circuitry that determines how the cell should move in the
presence of chemicals that stimulate the sensing system. The main components of
the control circuitry are shown in Figure 1.6. The sensing component is responsi-
ble for detecting the presence of ligands in the environment and initiating signaling
cascades. The computation component, realized through a combination of protein
phosphorylation and methylation, implements a feedback (integral) controller that
allows the bacterium to adapt to changes in the environmental ligand concentra-
tion. This adaptation occurs by an actuator that allows the bacterium to ultimately
move in the direction in which the ligand concentration increases.

The actuation system in the E. coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown in
Figure 1.7a. When the flagella all spin in the counterclockwise direction, the indi-



cdstools.tex, v5725 2014-06-12 14:04:147Z (ddv)

1.2. THE CELL AS A SYSTEM 11
Counterclockwise
rotation (run)
me mg;:ﬁ; \/—\ Flagellar
( . motor Ligand
Inner N
membrane :
T ) Flagellar
B )
| Receptor

Flagellar  Flagellum

bundle <>

(a) CheY
Clockwise
Run rotation (tumble)
ed )
No ligand
Tumble N

Tumble P
g -
S e .

Run
(b) ()

Figure 1.7: Bacterial chemotaxis. (a) Flagellar motors are responsible for spinning flagella.
(b) When flagella spin in the clockwise direction, the organism tumbles, while when they
spin in the counter clockwise direction, the organism runs. (¢) The direction in which the
flagella spin is determined by whether the CheY protein is phosphorylated. Figures from
Phillips, Kondev and Theriot [PKT08]; used with permission of Garland Science.

vidual flagella form a bundle and cause the organism to move roughly in a straight
line. This behavior is called a “run” motion. Alternatively, if the flagella spin in
the clockwise direction, the individual flagella do not form a bundle and the organ-
ism “tumbles,” causing it to rotate (Figure 1.7b). The selection of the motor direc-
tion is controlled by the protein CheY: if phosphorylated CheY binds to the motor
complex, the motor spins clockwise (tumble), otherwise it spins counterclockwise
(run). As a consequence, the chemotaxis mechanism is stochastic in nature, with
biased random motions causing the average behavior to be either positive, negative,
or neutral (in the absence of stimuli).
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Figure 1.8: Open and closed loop systems. (a) The output of system 1 is used as the input
of system 2, and the output of system 2 becomes the input of system 1, creating a closed
loop system. (b) The interconnection between system 2 and system 1 is removed, and the
system is said to be open loop.

1.3 Control and dynamical systems tools!

To study the complex dynamics and feedback present in biological systems, we
will make use of mathematical models combined with analytical and computational
tools. In this section we present a brief introduction to some of the key concepts
from control and dynamical systems that are relevant for the study of biomolecular
systems considered in later chapters. More details on the application of specific
concepts listed here to biomolecular systems is provided in the main body of the
text. Readers who are familiar with introductory concepts in dynamical systems
and control, at the level described in Astrom and Murray [AM08], for example,
can skip this section.

Dynamics, feedback and control

A dynamical system is a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The term feedback refers to a situation
in which two (or more) dynamical systems are connected together such that each
system influences the other and their dynamics are thus strongly coupled. Simple
causal reasoning about a feedback system is difficult because the first system in-
fluences the second and the second system influences the first, leading to a circular
argument. This makes reasoning based on cause and effect tricky, and it is neces-
sary to analyze the system as a whole. A consequence of this is that the behavior
of feedback systems is often counterintuitive, and it is therefore often necessary to
resort to formal methods to understand them.

Figure 1.8 illustrates in block diagram form the idea of feedback. We often use
the terms open loop and closed loop when referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a cycle, as
shown in Figure 1.8a. If we break the interconnection, we refer to the configuration
as an open loop system, as shown in Figure 1.8b.

Biological systems make use of feedback in an extraordinary number of ways,
on scales ranging from molecules to cells to organisms to ecosystems. One ex-

The material in this section is adapted from Feedback Systems, Chapter 1 [AMOS].
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ample is the regulation of glucose in the bloodstream through the production of
insulin and glucagon by the pancreas. The body attempts to maintain a constant
concentration of glucose, which is used by the body’s cells to produce energy.
When glucose levels rise (after eating a meal, for example), the hormone insulin
is released and causes the body to store excess glucose in the liver. When glucose
levels are low, the pancreas secretes the hormone glucagon, which has the opposite
effect. Referring to Figure 1.8, we can view the liver as system 1 and the pancreas
as system 2. The output from the liver is the glucose concentration in the blood,
and the output from the pancreas is the amount of insulin or glucagon produced.
The interplay between insulin and glucagon secretions throughout the day helps
to keep the blood-glucose concentration constant, at about 90 mg per 100 mL of
blood.

Feedback has many interesting properties that can be exploited in designing sys-
tems. As in the case of glucose regulation, feedback can make a system resilient
toward external influences. It can also be used to create linear behavior out of non-
linear components, a common approach in electronics. More generally, feedback
allows a system to be insensitive both to external disturbances and to variations in
its individual elements.

Feedback has potential disadvantages as well. It can create dynamic instabilities
in a system, causing oscillations or even runaway behavior. Another drawback,
especially in engineering systems, is that feedback can introduce unwanted sensor
noise into the system, requiring careful filtering of signals. It is for these reasons
that a substantial portion of the study of feedback systems is devoted to developing
an understanding of dynamics and a mastery of techniques in dynamical systems.

Feedback properties

Feedback is a powerful idea that is used extensively in natural and technological
systems. The principle of feedback is simple: implement correcting actions based
on the difference between desired and actual performance. In engineering, feed-
back has been rediscovered and patented many times in many different contexts.
The use of feedback has often resulted in vast improvements in system capability,
and these improvements have sometimes been revolutionary in areas such as power
generation and transmission, aerospace and transportation, materials and process-
ing, instrumentation, robotics and intelligent machines, and networking and com-
munications. The reason for this is that feedback has some truly remarkable prop-
erties, which we discuss briefly here.

Robustness to uncertainty. One of the key uses of feedback is to provide robustness
to uncertainty. By measuring the difference between the sensed value of a regulated
signal and its desired value, we can supply a corrective action. If the system under-
goes some change that affects the regulated signal, then we sense this change and
try to force the system back to the desired operating point.
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Figure 1.9: A feedback system for controlling the speed of a vehicle. (a) In the block
diagram, the speed of the vehicle is measured and compared to the desired speed within
the “Compute” block. Based on the difference in the actual and desired speeds, the throttle
(or brake) is used to modify the force applied to the vehicle by the engine, drivetrain and
wheels. (b) The figure shows the response of the control system to a commanded change
in speed from 25 m/s to 30 m/s. The three different curves correspond to differing masses
of the vehicle, between 1000 and 3000 kg, demonstrating the robustness of the closed loop
system to a very large change in the vehicle characteristics.

As an example of this principle, consider the simple feedback system shown
in Figure 1.9. In this system, the speed of a vehicle is controlled by adjusting the
amount of gas flowing to the engine. Simple proportional-integral (PI) feedback
is used to make the amount of gas depend on both the error between the current
and the desired speed and the integral of that error. The plot in Figure 1.9b shows
the results of this feedback for a step change in the desired speed and a variety of
different masses for the car, which might result from having a different number of
passengers or towing a trailer. Notice that independent of the mass (which varies by
a factor of 3!), the steady-state speed of the vehicle always approaches the desired
speed and achieves that speed within approximately 5 s. Thus the performance of
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide robustness is the neg-
ative feedback amplifier. When telephone communications were developed, ampli-
fiers were used to compensate for signal attenuation in long lines. A vacuum tube
was a component that could be used to build amplifiers. Distortion caused by the
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-
jor breakthrough was the invention of the feedback amplifier in 1927 by Harold S.
Black, an electrical engineer at Bell Telephone Laboratories. Black used negative
feedback, which reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier.

Feedback is also pervasive in biological systems, where transcriptional, trans-
lational and allosteric mechanisms are used to regulate internal concentrations of
various species, and much more complex feedbacks are used to regulate proper-
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ties at the organism level (such as body temperature, blood pressure and circadian
rhythm). One difference in biological systems is that the separation of sensing, ac-
tuation and computation, a common approach in most engineering control systems,
is less evident. Instead, the dynamics of the molecules that sense the environmen-
tal condition and make changes to the operation of internal components may be
integrated together in ways that make it difficult to untangle the operation of the
system. Similarly, the “reference value” to which we wish to regulate a system may
not be an explicit signal, but rather a consequence of many different changes in the
dynamics that are coupled back to the regulatory elements. Hence we do not see
a clear “set point” for the desired ATP concentration, blood oxygen level or body
temperature, for example. These difficulties complicate our analysis of biological
systems, though many important insights can still be obtained.

Design of dynamics. Another use of feedback is to change the dynamics of a sys-
tem. Through feedback, we can alter the behavior of a system to meet the needs of
an application: systems that are unstable can be stabilized, systems that are slug-
gish can be made responsive and systems that have drifting operating points can
be held constant. Control theory provides a rich collection of techniques to analyze
the stability and dynamic response of complex systems and to place bounds on the
behavior of such systems by analyzing the gains of linear and nonlinear operators
that describe their components.

An example of the use of control in the design of dynamics comes from the area
of flight control. The following quote, from a lecture presented by Wilbur Wright
to the Western Society of Engineers in 1901 [McF53], illustrates the role of control
in the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at sufficient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of sufficient lightness and power to drive these planes at sustaining
speed . . . Inability to balance and steer still confronts students of the

flying problem . . . When this one feature has been worked out, the
age of flying will have arrived, for all other difficulties are of minor
importance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
tried to build stable airplanes. These would have been easier to fly, but because
of their poor maneuverability they could not be brought up into the air. By using
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Figure 1.10: Aircraft autopilot system. The Sperry autopilot (left) contained a set of four
gyros coupled to a set of air valves that controlled the wing surfaces. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able to maintain level
flight as a mechanic walked on the wing (right) [Hug93].

their insight and skillful experiments, the Wright brothers made the first successful
flight at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, invented
by Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized
pendulum to provide an indication of the vertical. He then arranged a feedback
mechanism that would pull the stick to make the plane go up if it was pointing
down, and vice versa. The Sperry autopilot was the first use of feedback in aero-
nautical engineering, and Sperry won a prize in a competition for the safest airplane
in Paris in 1914. Figure 1.10 shows the Curtiss seaplane and the Sperry autopilot.
The autopilot is a good example of how feedback can be used to stabilize an unsta-
ble system and hence “design the dynamics” of the aircraft.

One of the other advantages of designing the dynamics of a device is that it
allows for increased modularity in the overall system design. By using feedback to
create a system whose response matches a desired profile, we can hide the com-
plexity and variability that may be present inside a subsystem. This allows us to
create more complex systems by not having to simultaneously tune the responses
of a large number of interacting components. This was one of the advantages of
Black’s use of negative feedback in vacuum tube amplifiers: the resulting device
had a well-defined linear input/output response that did not depend on the individ-
ual characteristics of the vacuum tubes being used.

Drawbacks of feedback. While feedback has many advantages, it also has some
drawbacks. Chief among these is the possibility of instability if the system is not
designed properly. We are all familiar with the undesirable effects of feedback
when the amplification on a microphone is turned up too high in a room. This is an
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example of feedback instability, something that we obviously want to avoid. This
is tricky because we must design the system not only to be stable under nominal
conditions but also to remain stable under all possible perturbations of the dynam-
ics. In biomolecular systems, these types of instabilities may exhibit themselves
as situations in which cells no longer function properly due to over expression of
engineered genetic components, or small fluctuations in parameters may cause the
system to suddenly cease to function properly.

In addition to the potential for instability, feedback inherently couples different
parts of a system. One common problem is that feedback often injects “crosstalk”
into the system. By coupling different parts of a biomolecular circuit, the fluctua-
tions in one part of the circuit affect other parts, which themselves may couple to
the initial source of the fluctuations. If we are designing a biomolecular system, this
crosstalk may affect our ability to design independent “modules” whose behavior
can be described in isolation.

Coupled to the problem of crosstalk is the substantial increase in complexity
that results when embedding multiple feedback loops in a system. An early engi-
neering example of this was the use of microprocessor-based feedback systems in
automobiles. The use of microprocessors in automotive applications began in the
early 1970s and was driven by increasingly strict emissions standards, which could
be met only through electronic controls. Early systems were expensive and failed
more often than desired, leading to frequent customer dissatisfaction. It was only
through aggressive improvements in technology that the performance, reliability
and cost of these systems allowed them to be used in a transparent fashion. Even
today, the complexity of these systems is such that it is difficult for an individual
car owner to fix problems. While nature has evolved many feedback structures that
are robust and reliable, engineered biomolecular systems are still quite rudimen-
tary and we can anticipate that as we increase the use of feedback to compensate
for uncertainty, we will see a similar period in which engineers must overcome a
steep learning curve before we can get robust and reliable behavior as a matter of
course.

Feedforward. Feedback is reactive: there must be an error before corrective actions
are taken. However, in some circumstances it is possible to measure a disturbance
before it enters the system, and this information can then be used to take corrective
action before the disturbance has influenced the system. The effect of the distur-
bance is thus reduced by measuring it and generating a control signal that coun-
teracts it. This way of controlling a system is called feedforward. Feedforward is
particularly useful in shaping the response to command signals because command
signals are always available. Since feedforward attempts to match two signals, it
requires good process models; otherwise the corrections may have the wrong size
or may be badly timed.

The ideas of feedback and feedforward are very general and appear in many dif-
ferent fields. In economics, feedback and feedforward are analogous to a market-
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based economy versus a planned economy. In business, a feedforward strategy
corresponds to running a company based on extensive strategic planning, while a
feedback strategy corresponds to a reactive approach. In biology, feedforward has
been suggested as an essential element for motion control in humans that is tuned
during training. Experience indicates that it is often advantageous to combine feed-
back and feedforward, and the correct balance requires insight and understanding
of their respective properties.

Positive feedback. In most of control theory, the emphasis is on the role of negative
feedback, in which we attempt to regulate the system by reacting to disturbances in
a way that decreases the effect of those disturbances. In some systems, particularly
biological systems, positive feedback can play an important role. In a system with
positive feedback, the increase in some variable or signal leads to a situation in
which that quantity is further increased through its dynamics. This has a destabi-
lizing effect and is usually accompanied by a saturation that limits the growth of
the quantity. Although often considered undesirable, this behavior is used in bio-
logical (and engineering) systems to obtain a very fast response to a condition or
signal.

One example of the use of positive feedback is to create switching behavior,
in which a system maintains a given state until some input crosses a threshold.
Hysteresis is often present so that noisy inputs near the threshold do not cause the
system to jitter. This type of behavior is called bistability and is often associated
with memory devices.

1.4 Input/Output modeling?

A model is a mathematical representation of a physical, biological or information
system. Models allow us to reason about a system and make predictions about
how a system will behave. In this text, we will mainly be interested in models of
dynamical systems describing the input/output behavior of systems, and we will
often work in “state space” form. In the remainder of this section we provide an
overview of some of the key concepts in input/output modeling. The mathematical
details introduced here are explored more fully in Chapter 3.

The heritage of electrical engineering

The approach to modeling that we take builds on the view of models that emerged
from electrical engineering, where the design of electronic led to a focus on in-
put/output behavior. A system was considered a device that transforms inputs to
outputs, as illustrated in Figure 1.11. Conceptually an input/output model can be

2The material in this section is adapted from Feedback Systems, Sections 2.1-2.2 [AMOS].
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Figure 1.11: Illustration of the input/output view of a dynamical system. (a) The figure
shows a detailed circuit diagram for an electronic amplifier; the one in (b) is its represen-
tation as a block diagram.

viewed as a giant table of inputs and outputs. Given an input signal u(¢) over some
interval of time, the model should produce the resulting output y(z).

The input/output framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio or
a television and break it down into manageable pieces such as the receiver, demod-
ulator, amplifier and speakers. Each of these pieces has a set of inputs and outputs
and, through proper design, these components can be interconnected to form the
entire system.

The input/output view is particularly useful for the special class of linear time-
invariant systems. This term will be defined more carefully below, but roughly
speaking a system is linear if the superposition (addition) of two inputs yields an
output that is the sum of the outputs that would correspond to individual inputs be-
ing applied separately. A system is time-invariant if the output response for a given
input does not depend on when that input is applied. While most biomolecular sys-
tems are neither linear nor time-invariant, they can often be approximated by such
models, often by looking at perturbations of the system from its nominal behavior,
in a fixed context.

One of the reasons that linear time-invariant systems are so prevalent in model-
ing of input/output systems is that a large number of tools have been developed to
analyze them. One such tool is the step response, which describes the relationship
between an input that changes from zero to a constant value abruptly (a step input)
and the corresponding output. The step response is very useful in characterizing
the performance of a dynamical system, and it is often used to specify the desired
dynamics. A sample step response is shown in Figure 1.12a.
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Figure 1.12: Input/output response of a linear system. The step response (a) shows the
output of the system due to an input that changes from O to 1 at time t =5 s. The fre-
quency response (b) shows the amplitude gain and phase change due to a sinusoidal input
at different frequencies.

Another way to describe a linear time-invariant system is to represent it by its
response to sinusoidal input signals. This is called the frequency response, and a
rich, powerful theory with many concepts and strong, useful results has emerged
for systems that can be described by their frequency response. The results are based
on the theory of complex variables and Laplace transforms. The basic idea behind
frequency response is that we can completely characterize the behavior of a system
by its steady-state response to sinusoidal inputs. Roughly speaking, this is done
by decomposing any arbitrary signal into a linear combination of sinusoids (e.g.,
by using the Fourier transform) and then using linearity to compute the output by
combining the response to the individual frequencies. A sample frequency response
is shown in Figure 1.12b.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.

The control view

When control theory emerged as a discipline in the 1940s, the approach to dy-
namics was strongly influenced by the electrical engineering (input/output) view.
A second wave of developments in control, starting in the late 1950s, was inspired
by mechanics, where the state space perspective was used. The emergence of space
flight is a typical example, where precise control of the orbit of a spacecraft is es-
sential. These two points of view gradually merged into what is today the state
space representation of input/output systems.

The development of state space models involved modifying the models from
mechanics to include external actuators and sensors and utilizing more general



iomodeling.tex, v5729 2014-06-13 16:31:59Z (ddv)

1.4. INPUT/OUTPUT MODELING 21

forms of equations. In control, models often take the form

dx
E = f(xa M)7 y = h(x’ M), (11)

where x is a vector of state variables, u is a vector of control signals and y is a
vector of measurements. The term dx/dt (sometimes also written as X) represents
the derivative of x with respect to time, now considered a vector, and f and &
are (possibly nonlinear) mappings of their arguments to vectors of the appropriate
dimension.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice of u (reachability) and if the measurement y
contains enough information to reconstruct the state (observability). These topics
are addressed in greater detail in Astrém and Murray [AMOS].

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views of input/output repre-
sentations and state space representations are particularly useful when modeling
uncertainty since state models are convenient to describe a nominal model but un-
certainties are easier to describe using input/output models (often via a frequency
response description).

An interesting observation in the design of control systems is that feedback sys-
tems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system valida-
tion, where one wishes to verify that the detailed response of the system performs
as it was designed. Because of these different uses of models, it is common to use
a hierarchy of models having different complexity and fidelity.

State space systems

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a biochemical system the state
is composed of the variables required to account for the current context of the cell,
including the concentrations of the various species and complexes that are present.
It may also include the spatial locations of the various molecules. A key issue in
modeling is to decide how accurately this information has to be represented. The
state variables are gathered in a vector x € R” called the state vector. The control
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variables are represented by another vector # € R?, and the measured signal by the
vector y € RY. A system can then be represented by the differential equation (1.1),
where f:R"XR? — R" and h : R" XR? — R™ are smooth mappings. We call a
model of this form a state space model.

The dimension of the state vector is called the order of the system. The sys-
tem (1.1) is called time-invariant because the functions f and & do not depend
explicitly on time #; there are more general time-varying systems where the func-
tions do depend on time. The model consists of two functions: the function f gives
the rate of change of the state vector as a function of state x and control «, and the
function 4 gives the measured values as functions of state x and control u.

A system is called a linear state space system if the functions f and / are linear
in x and u. A linear state space system can thus be represented by

%zAx+Bu, y =Cx+Du, (12)
where A, B, C and D are constant matrices. Such a system is said to be linear and
time-invariant, or LTI for short. The matrix A is called the dynamics matrix, the
matrix B is called the control matrix, the matrix C is called the sensor matrix and
the matrix D is called the direct term. Frequently systems will not have a direct
term, indicating that the control signal does not influence the output directly.

1.5 From systems to synthetic biology

The rapidly growing field of synthetic biology seeks to use biological principles
and processes to build useful engineering devices and systems. Applications of
synthetic biology range from materials production (drugs, biofuels) to biological
sensing and diagnostics (chemical detection, medical diagnostics) to biological ma-
chines (bioremediation, nanoscale robotics). Like many other fields at the time of
their infancy (electronics, software, networks), it is not yet clear where synthetic
biology will have its greatest impact. However, recent advances such as the ability
to “boot up” a chemically synthesized genome [GGL*10] demonstrate the ability
to synthesize systems that offer the possibility of creating devices with substantial
functionality. At the same time, the tools and processes available to design systems
of this complexity are much more primitive, and de novo synthetic circuits typi-
cally use a tiny fraction of the number of genetic elements of even the smallest
microorganisms [PW09].

Several scientific and technological developments over the past four decades
have set the stage for the design and fabrication of early synthetic biomolecular
circuits (see Figure 1.13). An early milestone in the history of synthetic biology
can be traced back to the discovery of mathematical logic in gene regulation. In
their 1961 paper, Jacob and Monod introduced for the first time the idea of gene
expression regulation through transcriptional feedback [JM61]. Only a few years
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Figure 1.13: Milestones in the history of synthetic biology.

later (1969), restriction enzymes that cut double-stranded DNA at specific recogni-
tion sites were discovered by Arber and co-workers [AL69]. These enzymes were
a major enabler of recombinant DNA technology, in which genes from one organ-
ism are extracted and spliced into the chromosome of another. One of the most
celebrated products of this technology was the large scale production of insulin by
employing E. coli bacteria as a cell factory [VKEB*78].

Another key innovation was the development of the polymerase chain reac-
tion (PCR), devised in the 1980s, which allows exponential amplification of small
amounts of DNA and can be used to obtain sufficient quantities for use in a variety
of molecular biology laboratory protocols where higher concentrations of DNA are
required. Using PCR, it is possible to “copy” genes and other DNA sequences out
of their host organisms.

The developments of recombinant DNA technology, PCR and artificial synthe-
sis of DNA provided the ability to “cut and paste” natural or synthetic promoters
and genes in almost any fashion. This cut and paste procedure is called cloning and
traditionally consists of four primary steps: fragmentation, ligation, transfection (or
transformation) and screening. The DNA of interest is first isolated using restric-
tion enzymes and/or PCR amplification. Then, a ligation procedure is employed in
which the amplified fragment is inserted into a vector. The vector is often a piece
of circular DNA, called a plasmid, that has been linearized by means of restriction
enzymes that cleave it at appropriate restriction sites. The vector is then incubated
with the fragment of interest with an enzyme called DNA ligase, producing a single
piece of DNA with the target DNA inserted. The next step is to transfect (or trans-
form) the DNA into living cells, where the natural replication mechanisms of the
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Figure 1.14: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well
as the circuit diagram (center). The flat headed arrow between the protein names represents
repression. (b) A simulation of a simple model for the repressilator, showing the oscillation
of the individual protein concentrations. (Figure courtesy M. Elowitz.)

cell will duplicate the DNA when the cell divides. This process does not transfect
all cells, and so a selection procedure is required to isolate those cells that have
the desired DNA inserted in them. This is typically done by using a plasmid that
gives the cell resistance to a specific antibiotic; cells grown in the presence of that
antibiotic will only live if they contain the plasmid. Further selection can be done
to ensure that the inserted DNA is also present.

Once a circuit has been constructed, its performance must be verified and, if
necessary, debugged. This is often done with the help of fluorescent reporters. The
most famous of these is GFP, which was isolated from the jellyfish Aequorea vic-
toria in 1978 by Shimomura [SJS62]. Further work by Chalfie and others in the
1990s enabled the use of GFP in E. coli as a fluorescent reporter by inserting it
into an appropriate point in an artificial circuit [CTE*94]. By using spectrofluo-
rometry, fluorescent microscopy or flow cytometry, it is possible to measure the
amount of fluorescence in individual cells or collections of cells and characterize
the performance of a circuit in the presence of inducers or other factors. Two early
examples of the application of these technologies were the repressilator [ELOO]
and a synthetic genetic switch [GCCOO].

The repressilator is a synthetic circuit in which three proteins each repress an-
other in a cycle. This is shown schematically in Figure 1.14a, where the three pro-
teins are TetR, Acl and Lacl. The basic idea of the repressilator is that if TetR is
present, then it represses the production of Acl. If Acl is absent, then Lacl is pro-
duced (at the unregulated transcription rate), which in turn represses TetR. Once
TetR is repressed, then Acl is no longer repressed, and so on. If the dynamics of
the circuit are designed properly, the resulting protein concentrations will oscillate,
as shown in Figure 1.14b.
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Figure 1.15: Stability of a genetic switch. The circuit diagram in (a) represents two proteins
that are each repressing the production of the other. The inputs u; and u, interfere with this
repression, allowing the circuit dynamics to be modified. The simulation in (b) shows the
time response of the system starting from two different initial conditions. The initial portion
of the curve corresponds to protein B having higher concentration than A, and converges to
an equilibrium where A is off and B is on. At time 7 = 10, the concentrations are perturbed,
moving the concentrations into a region of the state space where solutions converge to the
equilibrium point with the A on and B off.

The repressilator can be constructed using the techniques described above. We
can make copies of the individual promoters and genes that form our circuit by
using PCR to amplify the selected sequences out of the original organisms in which
they were found. TetR is the tetracycline resistance repressor protein that is found
in gram-negative bacteria (such as E. coli) and is part of the circuitry that provides
resistance to tetracycline. Lacl is the gene that produces /ac repressor, responsible
for turning off the lac operon in the lactose metabolic pathway in E. coli. And Acl
comes from A phage, where it is part of the regulatory circuitry that regulates lysis
and lysogeny.

By using restriction enzymes and related techniques, we can separate the nat-
ural promoters from their associated genes, and then ligate (reassemble) them in
a new order and insert them into a “backbone” vector (the rest of the plasmid, in-
cluding the origin of replication and appropriate antibiotic resistance). This DNA
is then transformed into cells that are grown in the presence of an antibiotic, so
that only those cells that contain the repressilator can replicate. Finally, we can
take individual cells containing our circuit and let them grow under a microscope
to image fluorescent reporters coupled to the oscillator.

Another early circuit in the synthetic biology toolkit is a genetic switch built by
Gardner et al. [GCCO00]. The genetic switch consists of two repressors connected
together in a cycle, as shown in Figure 1.15a. The intuition behind this circuit is
that if the gene A is being expressed, it will repress production of B and maintain
its expression level (since the protein corresponding to B will not be present to
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repress A). Similarly, if B is being expressed, it will repress the production of A
and maintain its expression level. This circuit thus implements a type of bistability
that can be used as a simple form of memory. Figure 1.15b shows the time traces
for the system, illustrating the bistable nature of the circuit. When the initial con-
dition starts with a concentration of protein B greater than that of A, the solution
converges to the equilibrium point where B is on and A is off. If A is greater than
B, then the opposite situation results.

These seemingly simple circuits took years of effort to get to work, but showed
that it was possible to synthesize a biological circuit that performed a desired func-
tion that was not originally present in a natural system. Today, commercial synthe-
sis of DNA sequences and genes has become cheaper and faster, with a price often
below $0.20 per base pair.> The combination of inexpensive synthesis technolo-
gies, new advances in cloning techniques, and improved devices for imaging and
measurement has vastly simplified the process of producing a sequence of DNA
that encodes a given set of genes, operator sites, promoters and other functions.
These techniques are a routine part of undergraduate courses in molecular and syn-
thetic biology.

As illustrated by the examples above, current techniques in synthetic biology
have demonstrated the ability to program biological function by designing DNA
sequences that implement simple circuits. Most current devices make use of tran-
scriptional or post-transcriptional processing, resulting in very slow timescales (re-
sponse times typically measured in tens of minutes to hours). This restricts their
use in systems where faster response to environmental signals is needed, such as
rapid detection of a chemical signal or fast response to changes in the internal envi-
ronment of the cell. In addition, existing methods for biological circuit design have
limited modularity (reuse of circuit elements requires substantial redesign or tun-
ing) and typically operate in very narrow operating regimes (e.g., a single species
grown in a single type of media under carefully controlled conditions). Further-
more, engineered circuits inserted into cells can interact with the host organism
and have other unintended interactions.

As an illustration of the dynamics of synthetic devices, Figure 1.16 shows a
typical response of a genetic element to an inducer molecule [CLEO8]. In this cir-
cuit, an external signal of homoserine lactone (HSL) is applied at time zero and the
system reaches 10% of the steady state value in approximately 15 minutes. This
response is limited in part by the time required to synthesize the output protein
(GFP), including delays due to transcription, translation and folding. Since this
is the response time for the underlying “actuator,” circuits that are composed of
feedback interconnections of such genetic elements will typically operate at 5-10
times slower speeds. While these speeds are appropriate in many applications (e.g.,
regulation of steady state enzyme levels for materials production), in the context
of biochemical sensors or systems that must maintain a steady operating point in

3 As of this writing; divide by a factor of two for every two years after the publication date.
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Figure 1.16: Expression of a protein using an inducible promoter [CLEO8]. (a) The circuit
diagram indicates the DNA sequences that are used to construct the part (chosen from the
BioBrick library). (b) The measured response of the system to a step change in the inducer
level (HSL).

more rapidly changing thermal or chemical environments, this response time is too
slow to be used as an effective engineering approach.

By comparison, the input/output response for the signaling component in E.
coli chemotaxis is shown in Figure 1.17 [STB10]. Here the response of the kinase
CheA is plotted in response to an exponential ramp in the ligand concentration.
The response is extremely rapid, with the timescale measured in seconds. This
rapid response is implemented by conformational changes in the proteins involved
in the circuit, rather than regulation of transcription or other slower processes.

The field of synthetic biology has the opportunity to provide new approaches
to solving engineering and scientific problems. Sample engineering applications
include the development of synthetic circuits for producing biofuels, ultrasensitive
chemical sensors, or production of materials with specific properties that are tuned
to commercial needs. In addition to the potential impact on new biologically engi-
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Figure 1.17: Responses of E. coli chemotaxis signaling network to exponential ramps in
ligand concentration. Time responses of the “sensing” subsystem (from Shimizu, Tu and
Berg; Molecular Systems Biology, 2010), showing the response to exponential inputs.
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neered devices, there is also the potential for impact in improved understanding of
biological processes. For example, many diseases such as cancer and Parkinson’s
disease are closely tied to kinase dysfunction. The analysis of robust systems of
kinases and the ability to synthesize systems that support or invalidate biological
hypotheses may lead to a better systems understanding of failure modes that lead
to such diseases.

1.6 Further reading

There are numerous survey articles and textbooks that provide more detailed intro-
ductions to the topics introduced in this chapter. In the field of systems biology, the
textbook by Alon [Alo07] provides a broad view of some of the key elements of
modern systems biology. A more comprehensive set of topics is covered in the text-
book by Klipp [KLW*09], while a more engineering-oriented treatment of mod-
eling of biological circuits can be found in the text by Myers [Mye09]. Two other
books that are particularly noteworthy are Ptashne’s book on the phage A [Pta92]
and Madhani’s book on yeast [Mad07], both of which use well-studied model sys-
tems to describe a general set of mechanisms and principles that are present in
many different types of organisms.

Several textbooks and research monographs provide excellent resources for
modeling and analysis of biomolecular dynamics and regulation. J. D. Murray’s
two-volume text [Mur04] on biological modeling is an excellent reference with
many examples of biomolecular dynamics. The textbook by Phillips, Kondev and
Theriot [PKTO8] provides a quantitative approach to understanding biological sys-
tems, including many of the concepts discussed in this chapter. Courey [Cou08]
gives a detailed description of mechanisms transcriptional regulation. The topics
in dynamical systems and control theory that are briefly introduced here are cov-
ered in more detail in Astrdm and Murray [AMOS] and can also be found in the
text by Ellner and Guckenheimer [EG05].

Synthetic biology is a rapidly evolving field that includes many different sub-
areas of research, but few textbooks are currently available. In the specific area
of biological circuit design that we focus on here, there are a number of good
survey and review articles. The article by Baker et al. [BCC*06] provides a high
level description of the basic approach and opportunities. Additional survey and
review papers include Voigt [Voi06], Purnick and Weiss [PW09], and Khalil and
Collins [KC10].
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Chapter 2

Dynamic Modeling of Core Processes

The goal of this chapter is to describe basic biological mechanisms in a way that
can be represented by simple dynamical models. We begin the chapter with a dis-
cussion of the basic modeling formalisms that we will utilize to model biomolecu-
lar feedback systems. We then proceed to study a number of core processes within
the cell, providing different model-based descriptions of the dynamics that will
be used in later chapters to analyze and design biomolecular systems. The focus
in this chapter and the next is on deterministic models using ordinary differential
equations; Chapter 4 describes how to model the stochastic nature of biomolecular
systems.

2.1 Modeling chemical reactions

In order to develop models for some of the core processes of the cell, we will need
to build up a basic description of the biochemical reactions that take place, includ-
ing production and degradation of proteins, regulation of transcription and trans-
lation, and intracellular sensing, action and computation. As in other disciplines,
biomolecular systems can be modeled in a variety of different ways, at many dif-
ferent levels of resolution, as illustrated in Figure 2.1. The choice of which model
to use depends on the questions that we want to answer, and good modeling takes
practice, experience, and iteration. We must properly capture the aspects of the
system that are important, reason about the appropriate temporal and spatial scales
to be included, and take into account the types of simulation and analysis tools
to be applied. Models that are to be used for analyzing existing systems should
make testable predictions and provide insight into the underlying dynamics. De-
sign models must additionally capture enough of the important behavior to allow
decisions to be made regarding how to interconnect subsystems, choose parameters
and design regulatory elements.

In this section we describe some of the basic modeling frameworks that we will
build on throughout the rest of the text. We begin with brief descriptions of the
relevant physics and chemistry of the system, and then quickly move to models
that focus on capturing the behavior using reaction rate equations. In this chapter
our emphasis will be on dynamics with time scales measured in seconds to hours
and mean behavior averaged across a large number of molecules. We touch only
briefly on modeling in the case where stochastic behavior dominates and defer a
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Figure 2.1: Different methods of modeling biomolecular systems.

more detailed treatment until Chapter 4.

Reaction kinetics

At the fine end of the modeling scale, we can attempt to model the molecular
dynamics of the cell, in which we attempt to model the individual proteins and other
species and their interactions via molecular-scale forces and motions. At this scale,
the individual interactions between protein domains, DNA and RNA are resolved,
resulting in a highly detailed model of the dynamics of the cell.

For our purposes in this text, we will not require the use of such a detailed
scale and we will consider the main modeling formalisms depicted in Figure 2.1.
We start with the abstraction of molecules that interact with each other through
stochastic events that are guided by the laws of thermodynamics. We begin with
an equilibrium point of view, commonly referred to as statistical mechanics, and
then briefly describe how to model the (statistical) dynamics of the system using
chemical kinetics. We cover both of these points of view very briefly here, primarily
as a stepping stone to deterministic models.

The underlying representation for both statistical mechanics and chemical ki-
netics is to identify the appropriate microstates of the system. A microstate cor-
responds to a given configuration of the components (species) in the system rela-
tive to each other and we must enumerate all possible configurations between the
molecules that are being modeled.

As an example, consider the distribution of RNA polymerase in the cell. It is
known that most RNA polymerases are bound to the DNA in a cell, either as they
produce RNA or as they diffuse along the DNA in search of a promoter site. Hence
we can model the microstates of the RNA polymerase system as all possible lo-
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Figure 2.2: Microstates for RNA polymerase. Each microstate of the system corresponds
to the RNA polymerase being located at some position in the cell. If we discretize the
possible locations on the DNA and in the cell, the microstate corresponds to all possi-
ble non-overlapping locations of the RNA polymerases. Figure from Phillips, Kondev and
Theriot [PKTO08]; used with permission of Garland Science.

cations of the RNA polymerase in the cell, with the vast majority of these corre-
sponding to the RNA polymerase at some location on the DNA. This is illustrated
in Figure 2.2. In statistical mechanics, we model the configuration of the cell by
the probability that the system is in a given microstate. This probability can be
calculated based on the energy levels of the different microstates. The laws of sta-
tistical mechanics state that if we have a set of microstates Q, then the steady state
probability that the system is in a particular microstate g is given by

1
P(g) = e B/, 2.1)

where E, is the energy associated with the microstate g € Q, kp is the Boltzmann
constant, 7" is the temperature in degrees Kelvin, and Z is a normalizing factor,
known as the partition function,

7 = Z e EalksT)

q€Q
By keeping track of those microstates that correspond to a given system state
(also called a macrostate), we can compute the overall probability that a given
macrostate is reached. Thus, if we have a set of states S C Q that corresponds to a
given macrostate, then the probability of being in the set S is given by

> ¢~ Eql(ksT)
— 1 § ~E,/(kgT) _ ~4€S ’
P(S)=— e "

S gege FIT) 22
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This can be used, for example, to compute the probability that some RNA poly-
merase is bound to a given promoter, averaged over many independent samples,
and from this we can reason about the rate of expression of the corresponding
gene.

Statistical mechanics describes the steady state distribution of microstates, but
does not tell us how the microstates evolve in time. To include the dynamics, we
must consider the chemical kinetics of the system and model the probability that
we transition from one microstate to another in a given period of time. Let g rep-
resent the microstate of the system, which we shall take as a vector of integers that
represents the number of molecules of a specific type (species) in given configura-
tions or locations. Assume we have a set of m chemical reactions Rj, j=1,...,M,
in which a chemical reaction is a process that leads to the transformation of one
set of chemical species to another one. We use &; to represent the change in state g
associated with reaction Rj. We describe the kinetics of the system by making use
of the propensity function aj(q,t) associated with reaction Rj, which captures the
instantaneous probability that at time 7 a system will transition between state g and
state g +&;.

More specifically, the propensity function is defined such that

aj(q,)dt = Probability that reaction Rj will occur between time ¢
and time 7 + dt given that the microstate is g.

We will give more detail in Chapter 4 regarding the validity of this functional form,
but for now we simply assume that such a function can be defined for our system.

Using the propensity function, we can keep track of the probability distribu-
tion for the state by looking at all possible transitions into and out of the current
state. Specifically, given P(q,1), the probability of being in state g at time ¢, we can
compute the time derivative dP(q,1)/dt as

dP 4
—r@n= ;(a {a—&DP(g =€), —aj(g,DP(g,1)). (2.3)

This equation (and its variants) is called the chemical master equation (CME). The
first sum on the right-hand side represents the transitions into the state g from some
other state ¢ — & and the second sum represents the transitions out of the state g.

The dynamics of the distribution P(g,?) depend on the form of the propensity
functions a(q,t). Consider a simple reversible reaction of the form

A+B = AB, (2.4)

in which a molecule of A and a molecule of B come together to form the complex
AB, in which A and B are bound to each other, and this complex can, in turn,
dissociate back into the A and B species. In the sequel, to make notation easier,
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we will sometimes represent the complex AB as A : B. It is often useful to write
reversible reactions by splitting the forward reaction from the backward reaction:

Rf: A+B— AB,

(2.5)
Rr: AB— A+B.

We assume that the reaction takes place in a well-stirred volume Q and let the
configurations g be represented by the number of each species that is present. The
forward reaction Rf is a bimolecular reaction and we will see in Chapter 4 that it
has a propensity function

(@) ul
a = —
g Q”A”B,

where k¢ is a parameter that depends on the forward reaction, and na and np are
the number of molecules of each species. The reverse reaction Rr is a unimolecular
reaction and we will see that it has a propensity function

ac(q) = kcnag,

where k; is a parameter that depends on the reverse reaction and nap is the number
of molecules of AB that are present.

If we now let ¢ = (na,np,nap) represent the microstate of the system, then we
can write the chemical master equation as

dP ke
E(nA,nBanAB) = kmnapP(na—1,ng—1,nag +1)— ) nangP(na,ng,nap).
The first term on the right-hand side represents the transitions into the microstate
q = (na,np,nap) and the second term represents the transitions out of that state.
The number of differential equations depends on the number of molecules of

A, B and AB that are present. For example, if we start with one molecule of A, one
molecule of B, and three molecules of AB, then the possible states and dynamics
are

q0:(1’0’4)’ dPO/dt:3krP1’

q1=(2,1,3),  dPy/dt =4kPo—2(ks/Q)Py,

g2 =(3,2,2), dP;/dt = 3k, Py —6(k¢/Q)P>,

q3=4,3,1),  dP3/dt=2kPr—12(ki/Q)P3,

q4 = (5,4,0), dP4/dl‘ = 1krP3 —2O(kf/Q)P4,

where P; = P(g;,t). Note that the states of the chemical master equation are the
probabilities that we are in a specific microstate, and the chemical master equation
is a linear differential equation (we see from equation (2.3) that this is true in
general).

The primary difference between the statistical mechanics description given by
equation (2.1) and the chemical kinetics description in equation (2.3) is that the
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master equation formulation describes how the probability of being in a given mi-
crostate evolves over time. Of course, if the propensity functions and energy levels
are modeled properly, the steady state, average probabilities of being in a given
microstate, should be the same for both formulations.

Reaction rate equations

Although very general in form, the chemical master equation suffers from being a
very high-dimensional representation of the dynamics of the system. We shall see
in Chapter 4 how to implement simulations that obey the master equation, but in
many instances we will not need this level of detail in our modeling. In particular,
there are many situations in which the number of molecules of a given species
is such that we can reason about the behavior of a chemically reacting system
by keeping track of the concentration of each species as a real number. This is
of course an approximation, but if the number of molecules is sufficiently large,
then the approximation will generally be valid and our models can be dramatically
simplified.

To go from the chemical master equation to a simplified form of the dynam-
ics, we begin by making a number of assumptions. First, we assume that we can
represent the state of a given species by its concentration np /Q, where ny is the
number of molecules of A in a given volume Q. We also treat this concentration
as a real number, ignoring the fact that the real concentration is quantized. Finally,
we assume that our reactions take place in a well-stirred volume, so that the rate of
interactions between two species is solely determined by the concentrations of the
species.

Before proceeding, we should recall that in many (and perhaps most) situations
inside of cells, these assumptions are not particularly good ones. Biomolecular
systems often have very small molecular counts and are anything but well mixed.
Hence, we should not expect that models based on these assumptions should per-
form well at all. However, experience indicates that in many cases the basic form
of the equations provides a good model for the underlying dynamics and hence we
often find it convenient to proceed in this manner.

Putting aside our potential concerns, we can now create a model for the dy-
namics of a system consisting of a set of species S;, i = 1,...,n, undergoing a set
of reactions Rj, j=1,...,M. We write x; = [S;] = ng,/€Q for the concentration of
species i (viewed as a real number). Because we are interested in the case where
the number of molecules is large, we no longer attempt to keep track of every pos-
sible configuration, but rather simply assume that the state of the system at any
given time is given by the concentrations x;. Hence the state space for our system
is given by x € R"” and we seek to write our dynamics in the form of an ordinary
differential equation (ODE)

dx
7 f(x,0),
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where 0 € R? represents the vector of parameters that govern dynamic behavior and
f:R"xXRP — R" describes the rate of change of the concentrations as a function
of the instantaneous concentrations and parameter values.
To illustrate the general form of the dynamics, we consider again the case of a
basic bimolecular reaction
A+B = AB.

Each time the forward reaction occurs, we decrease the number of molecules of A
and B by one and increase the number of molecules of AB (a separate species) by
one. Similarly, each time the reverse reaction occurs, we decrease the number of
molecules of AB by one and increase the number of molecules of A and B.

Using our discussion of the chemical master equation, we know that the likeli-
hood that the forward reaction occurs in a given interval dt is given by a¢(q)dt =
(ks/Q)nanpdt and the reverse reaction has likelihood a(q) = knap. If we assume
that napg is a real number instead of an integer and ignore some of the formalities
of random variables, we can describe the evolution of nap using the equation

nag(t +dt) = nag(t) + ap(q—&p)dt — a(q)dt.

Here we let g be the state of the system with the number of molecules of AB equal
to nap and &y represents the change in state from the forward reaction (na and ng
are decreased by one and nap is increased by one). Roughly speaking, this equation
states that the (approximate) number of molecules of AB at time ¢+ dt compared
with time ¢ increases by the probability that the forward reaction occurs in time dt
and decreases by the probability that the reverse reaction occurs in that period.

To convert this expression into an equivalent one for the concentration of the
species AB, we write [AB] = nag/Q, [A] = na/Q, [B] = ng/€, and substitute the
expressions for ar(g) and a,(q):

[AB](+d1) ~ [ABI() = (at(q—£r.1) —ax(q)) /Q-dt
= (kannB JO2 —kinap /Q) dt
= (kf[A] [B] - kr[AB])dt.

Taking the limit as dt approaches zero, we obtain

%[AB] = k¢[A][B] - k:[AB].

Our derivation here has skipped many important steps, including a careful deriva-
tion using random variables and some assumptions regarding the way in which dt
approaches zero. These are described in more detail when we derive the chemi-
cal Langevin equation (CLE) in Chapter 4, but the basic form of the equations are
correct under the assumptions that the reactions are well-stirred and the molecular
counts are sufficiently large.
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In a similar fashion we can write equations to describe the dynamics of A and
B and the entire system of equations is given by

A A
A2 - k. (ABI - kAB) )
B B
W kiaB-kiamsl, o D oke-kas
AB
OB AIBI -k 1AB) & —kaB-kC,

where C = [AB], A = [A], and B = [B]. These equations are known as the mass
action kinetics or the reaction rate equations for the system. The parameters kr and
k. are called the rate constants and they match the parameters that were used in the
underlying propensity functions.

Note that the same rate constants appear in each term, since the rate of pro-
duction of AB must match the rate of depletion of A and B and vice versa. We
adopt the standard notation for chemical reactions with specified rates and write
the individual reactions as

A+B5AB,  AB5A+B,

where k¢ and k; are the reaction rate constants. For bidirectional reactions we can
also write

kg
A+B = AB.

r

It is easy to generalize these dynamics to more complex reactions. For example,
if we have a reversible reaction of the form

k
A+2B=—2C+D,
ke

where A, B, C and D are appropriate species and complexes, then the dynamics for
the species concentrations can be written as

d d
—A=kC* D-kiA-B?, —C =2kiA- B> - 2k,C*- D,
dt dt (2.6)
d d '
— B =2k.C?-D-2kiA- B, —D=kiA B>~ k.C*-D.
dt dt
Rearranging this equation, we can write the dynamics as
A -1 1
d|B 2 2| (kA-B?
a|c| |2 -2 [er2 -D] ' 7)
D I -1
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We see that in this decomposition, the first term on the right-hand side is a matrix
of integers reflecting the stoichiometry of the reactions and the second term is a
vector of rates of the individual reactions.

More generally, given a chemical reaction consisting of a set of species S,
i=1,...,n and a set of reactions Rj, j=1,...,M, we can write the mass action

kinetics in the form
dx M)
== = Nv(x),
dt

where N € R™M is the stoichiometry matrix for the system and v(x) € RM is the
reaction flux vector. Each row of v(x) corresponds to the rate at which a given
reaction occurs and the corresponding column of the stoichiometry matrix corre-
sponds to the changes in concentration of the relevant species. For example, for the
system in equation (2.7) we have

-1 1

~ |2 2 _ (keA-B?

x=(ABCD), N=| "I, v(X)—{erz.D]
-1

The conservation of species is at the basis of reaction rate models since species are
usually transformed, but are not created from nothing or destroyed. Even the basic
process of protein degradation transforms a protein of interest A into a product X
that is not used in any other reaction. Specifically, the degradation rate of a protein
is determined by the amounts of proteases present, which bind to recognition sites
(degradation tags) and then degrade the protein. Degradation of a protein A by a
protease P can then be modeled by the following two-step reaction:

A+P % APS P+X.
As aresult of the reaction, protein A has “disappeared,” so that this reaction is often
simplified to A — (. Similarly, the birth of a molecule is a complicated process
that involves many reactions and species, as we will see later in this chapter. When
the process that creates a species of interest A is not relevant for the problem under
study, we will use the shorter description of a birth reaction given by

k
05 A

and describe its dynamics using the differential equation

dA
ety
dr '

Example 2.1 (Covalent modification of a protein). Consider the set of reactions
involved in the phosphorylation of a protein by a kinase, as shown in Figure 2.3.
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Figure 2.3: Phosphorylation of a protein via a kinase. In the process of phosphorylation, a
protein called a kinase binds to ATP (adenosine triphosphate) and transfers one of the phos-
phate groups (P) from ATP to a substrate, hence producing a phosphorylated substrate and
ADP (adenosine diphosphate). Reproduced from Madhani [Mad07]; used with permission

of .

Let S represent the substrate, K represent the kinase and S” represent the phospho-
rylated (activated) substrate. The sets of reactions illustrated in Figure 2.3 are

R1: K+ ATP — K:ATP,
R2: K:ATP — K+ ATP,
R3: S+ K:ATP — S:K:ATP,
R4: S:K:ATP — S+ K:ATP,

‘We now write the kinetics for each reaction:

vi = ki [K][ATP],
vy = ko [K:ATP],

v3 = k3 [S][K:ATP],
v4 = k4 [S:K:ATP],

R5:
R6:
R7:
R8:

S:K:ATP — S*:K:ADP,
S*:K:ADP — S*+ K:ADP,
K:ADP — K + ADP,

K+ ADP — K:ADP.

vs = ks [S:K:ATP],
ve = ke [S™:K:ADP],
v7 = k7 [K:ADP],

vg = kg [K][ADP].

We treat [ATP] as a constant (regulated by the cell) and hence do not directly
track its concentration. (If desired, we could similarly ignore the concentration of
ADP since we have chosen not to include the many additional reactions in which

it participates.)
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The kinetics for each species are thus given by

K= vty vy —vg, %[S*]=V6,
%[K:ATP] =V —Vy—V3+4, %[S*:K:ADP] = V5 — Vg,
C1S1=vs v, C(ADPI = v7 -,
%[S:K:ATP] =V3—V4—Vs, %[K:ADP] =vg—V7+Vvg.

Collecting these equations together and writing the state as a vector, we obtain

K] -1 1 0 0 0 0 1 =1\ (v
[K:ATP] 1 -1 -1 1 0 0 0 0] |wn
[S] 0O 0 -1 1 0 0 0 O0]]vs
d|[SKWATP] [ [0 O 1 -1 -1 0 O Of]|v

dt [S*] “lo o 0o 0o 0 1 0 o0]]|vs|
[S*:K:ADP] O 0 O O 1 -1 0 Of]ve
[ADP] O 0 O O o0 0 1 -1f]|w
[K:ADP] o 0 O o o 1 -1 1 Vg

——

X N v(x)
which is in standard stoichiometric form. \Y%

Reduced-order mechanisms

In this section, we look at the dynamics of some common reactions that occur in
biomolecular systems. Under some assumptions on the relative rates of reactions
and concentrations of species, it is possible to derive reduced-order expressions for
the dynamics of the system. We focus here on an informal derivation of the relevant
results, but return to these examples in the next chapter to illustrate that the same
results can be derived using a more formal and rigorous approach.

Simple binding reaction. Consider the reaction in which two species A and B bind
reversibly to form a complex C = AB:

A+B=C, (2.8)
d

where a is the association rate constant and d is the dissociation rate constant.
Assume that B is a species that is controlled by other reactions in the cell and that

the total concentration of A is conserved, so that A+ C = [A] + [AB] = Ay. If the
dynamics of this reaction are fast compared to other reactions in the cell, then the
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amount of A and C present can be computed as a (steady state) function of the
amount of B.

To compute how A and C depend on the concentration of B at the steady state,
we must solve for the equilibrium concentrations of A and C. The rate equation for
C is given by

dc
i aB-A—-dC =aB- (A —C)—dC.
By setting dC/dt = 0 and letting K4 := d/a, we obtain the expressions

_ Atot(B/Kd) A= Aot
T 1+(B/Ky)’ ~ 1+(B/Kq)

The constant Ky is called the dissociation constant of the reaction. Its inverse mea-
sures the affinity of A binding to B. The steady state value of C increases with B
while the steady state value of A decreases with B as more of A is found in the
complex C.

Note that when B = K4, A and C have equal concentration. Thus the higher the
value of Ky, the more B is required for A to form the complex C. Ky has the units
of concentration and it can be interpreted as the concentration of B at which half
of the total number of molecules of A are associated with B. Therefore a high K4
represents a weak affinity between A and B, while a low Ky represents a strong
affinity.

Cooperative binding reaction. Assume now that B binds to A only after dimeriza-
tion, that is, only after binding another molecule of B. Then, we have that reac-
tions (2.8) become

k
B+B=B,  B,+A=C, A+C=A.
ko d

in which B, = B : B represents the dimer of B, that is, the complex of two molecules
of B bound to each other. The corresponding ODE model is given by

dB dcC

d_tz =k B> - koBy —aB; - (Awr —C) +dC, ar =aBy (A —C)—dC.
By setting dB,/dt =0, dC/dt = 0, and by defining K, := k»/k;, we obtain that

Awor(B2/Kq) Aot
B,=B*/K,, C=—"7—"2= A=—>2
2= B/ K 1+(B2/Kq) 1+(B2/Ky)
so that )
— AtotB /(KmKd) A= Atot
1+B?/(KnKa)’ 1+B?/(KnKa)

As an exercise (Exercise 2.2), the reader can verify that if B binds to A as a complex
of n copies of B, that is,

k
B+B+"'+B\—\—1Bn’ Bn+AéC, A+C:At0t7
ka d
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Figure 2.4: Steady state concentrations of the complex C and of A as functions of the
concentration of B.

then we have that the expressions of C and A change to

_AuBKK) A
1+B"/(K,Kq)’ 1+B"/(K,Kq)

In this case, we say that the binding of B to A is cooperative with cooperativity n.
Figure 2.4 shows the above functions, which are often referred to as Hill functions
and n is called the Hill coeflicient.

Another type of cooperative binding is when a species R can bind A only after
another species B has bound A. In this case, the reactions are given by

B+A—=C, R+C—=C, A+C+C =Ay.
d d’

Proceeding as above by writing the ODE model and equating the time derivatives

to zero to obtain the equilibrium, we obtain the equilibrium relations

1 ’ ’ 1 ’
C = FdB(Atot—C—C ), C = mR(AtOt_C_C )

By solving this system of two equations for the unknowns C’ and C, we obtain

_ Aw(B/K9(R/KY) B Ai(B/Kq)
 1+(B/Ka)+(B/Ka)(R/K)’  1+(B/Ka)+(B/Ka)(R/K))

’

In the case in which B would bind cooperatively with other copies of B with coop-
erativity n, the above expressions become

_ Awo(B"/ K Ka)(R/K})

~ 1+(B"/KuKo)(R/K)) +(B"|KnKq)’
_ Awot(B"/KmKq)
1+ (B"/KnKa)(R/K)) +(B"|KnKa)

’

C
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Competitive binding reaction. Finally, consider the case in which two species B,
and B, both bind to A competitively, that is, they cannot be bound to A at the same
time. Let C, be the complex formed between B, and A and let C, be the complex
formed between B, and A. Then, we have the following reactions

’

B,+A=C, B+A=C A+C,+Cr = Ay,
d

r & s

for which we can write the differential equation model as

dc, dc,

dr =aB, (A —Cy—C,)—dC,, dr =d'B, (A —Cy—Cp)—d'C,.

By setting the time derivatives to zero, we obtain
Cu(aBy+d) = aB,(Aw — C)), Cr(a,Br + d,) = a,Br(Atot -Co),

so that

B, (At — C B.,B K’
Cr:w, Ca(Ba+Kd_ ar ):Ba( d )Atot,

Br+Ké B,+K{’1 Br+K(’i

from which we finally determine that

_ Awot(Ba/Ka) B Awot(B,/KY)
‘" 1+ (Ba/Ka)+(B,/K})’ " 1+(Ba/Ka)+(B,/K})’

In this derivation, we have assumed that both B, and B, bind A as monomers.
If they were binding as dimers, the reader should verify that they would appear in
the final expressions with a power of two (see Exercise 2.3).

Note also that in this derivation we have assumed that the binding is competi-
tive, that is, B, and B, cannot simultaneously bind to A. If they can bind simultane-
ously to A, we have to include another complex comprising B,, B, and A. Denoting
this new complex by C', we must add the two additional reactions

P —7

C,+B,=C, C+B,=C,

a T -
ad

and we should modify the conservation law for A to Ayt = A+ Cy+ C,+C’. The
reader can verify that in this case a mixed term B,B, appears in the equilibrium
expressions (see Exercise 2.4).

Enzymatic reaction. A general enzymatic reaction can be written as

a k
E+S=C—-E+P,
d
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in which E is an enzyme, S is the substrate to which the enzyme binds to form
the complex C = ES, and P is the product resulting from the modification of the
substrate S due to the binding with the enzyme E. Here, a and d are the association
and dissociation rate constants as before, and k is the catalytic rate constant. En-
zymatic reactions are very common and include phosphorylation as we have seen
in Example 2.1 and as we will see in more detail in the sequel. The corresponding
ODE model is given by

ds ac

E:_QE-S +dC, I =aE-S —(d+k)C,
d—E:—aE-S +dC +kC, d—P:kC.
dt dt

The total enzyme concentration is usually constant and denoted by Ey, so that
E + C = Ey. Substituting £ = E — C in the above equations, we obtain

ds dCc

- = —a(Eioi—C)-S +dC, 5 a(Ew—C)-S = (d+k)C,
dE dP

E = —a(Etot—C)-S +dC+kC, E =kC.

This system cannot be solved analytically, therefore, assumptions must be used
in order to reduce it to a simpler form. Michaelis and Menten assumed that the
conversion of E and S to C and vice versa is much faster than the decomposition
of C into E and P. Under this assumption and letting the initial concentration § (0)
be sufficiently large (see Example 3.12), C immediately reaches its steady state
value (while P is still changing). This approximation is called the quasi-steady
state approximation and the mathematical conditions on the parameters that justify
it will be dealt with in Section 3.5. The steady state value of C is given by solving
a(Ew—C)S —(d+k)C =0 for C, which gives

EioS d+k
="  with K,=—,
S +K, a

in which the constant K, is called the Michaelis-Menten constant. Letting Viyax =
kEo, the resulting kinetics

dP _ EwS S

- = = Vipax ——— 2.9
dt  S+K, "™S+K, 29

are called Michaelis-Menten kinetics.

The constant V,,,, is called the maximal velocity (or maximal flux) of modifi-
cation and it represents the maximal rate that can be obtained when the enzyme is
completely saturated by the substrate. The value of K, corresponds to the value of
S that leads to a half-maximal value of the production rate of P. When the enzyme
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Figure 2.5: Enzymatic reactions. (a) Transfer curve showing the production rate for P as a
function of substrate concentration for K, = 1. (b) Time plots of product P(¢) for different
values of the K,,,. In the plots S, = 1 and V0, = 1.

complex can be neglected with respect to the total substrate amount S, we have
that St =S + P+C = S + P, so that the above equation can be also rewritten as

@ — Vmax(S tot — P)
dt (Stot_P)"'Km.

When K, < S and the substrate has not yet been all converted to product,
that is, S > K,,,, we have that the rate of product formation becomes approximately
dP/dt = V,,,x, which is the maximal speed of reaction. Since this rate is constant
and does not depend on the reactant concentrations, it is usually referred to as zero-
order kinetics. In this case, the system is said to operate in the zero-order regime. If
instead S < K, the rate of product formation becomes dP/dt = V,./ K;,S , which
is linear with the substrate concentration S. This production rate is referred to as
first-order kinetics and the system is said to operate in the first-order regime (see
Figure 2.5).

2.2 Transcription and translation

In this section we consider the processes of transcription and translation, using the
modeling techniques described in the previous section to capture the fundamental
dynamic behavior. Models of transcription and translation can be done at a variety
of levels of detail and which model to use depends on the questions that one wants
to consider. We present several levels of modeling here, starting with a fairly de-
tailed set of reactions and ending with highly simplified models that can be used
when we are only interested in average production rate of proteins at relatively long
time scales.
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Figure 2.6: Geometric structure of DNA. The layout of the DNA is shown at the top. RNA
polymerase binds to the promoter region of the DNA and transcribes the DNA starting at
the +1 site and continuing to the termination site. The transcribed mRNA strand has the
ribosome binding site (RBS) where the ribosomes bind, the start codon where translation
starts and the stop codon where translation ends.

The central dogma: Production of proteins

The genetic material inside a cell, encoded in its DNA, governs the response of a
cell to various conditions. DNA is organized into collections of genes, with each
gene encoding a corresponding protein that performs a set of functions in the cell.
The activation and repression of genes are determined through a series of complex
interactions that give rise to a remarkable set of circuits that perform the functions
required for life, ranging from basic metabolism to locomotion to procreation. Ge-
netic circuits that occur in nature are robust to external disturbances and can func-
tion in a variety of conditions. To understand how these processes occur (and some
of the dynamics that govern their behavior), it will be useful to present a relatively
detailed description of the underlying biochemistry involved in the production of
proteins.

DNA is a double stranded molecule with the “direction” of each strand specified
by looking at the geometry of the sugars that make up its backbone. The comple-
mentary strands of DNA are composed of a sequence of nucleotides that consist of
a sugar molecule (deoxyribose) bound to one of four bases: adenine (A), cytocine
(C), guanine (G) and thymine (T). The coding region (by convention the top row of
a DNA sequence when it is written in text form) is specified from the 5’ end of the
DNA to the 3’ end of the DNA. (The 5" and 3’ refer to carbon locations on the de-
oxyribose backbone that are involved in linking together the nucleotides that make
up DNA.) The DNA that encodes proteins consists of a promoter region, regulator
regions (described in more detail below), a coding region and a termination region
(see Figure 2.6). We informally refer to this entire sequence of DNA as a gene.

Expression of a gene begins with the transcription of DNA into mRNA by RNA
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Figure 2.7: Production of messenger RNA from DNA. RNA polymerase, along with other
accessory factors, binds to the promoter region of the DNA and then “opens” the DNA
to begin transcription (initiation). As RNA polymerase moves down the DNA in the tran-
scription elongation complex (TEC), it produces an RNA transcript (elongation), which
is later translated into a protein. The process ends when the RNA polymerase reaches the
terminator (termination). Reproduced from Courey [Cou08].

polymerase, as illustrated in Figure 2.7. RNA polymerase enzymes are present in
the nucleus (for eukaryotes) or cytoplasm (for prokaryotes) and must localize and
bind to the promoter region of the DNA template. Once bound, the RNA poly-
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merase “opens’” the double stranded DNA to expose the nucleotides that make up
the sequence. This reaction, called isomerization, is said to transform the RNA
polymerase and DNA from a closed complex to an open complex. After the open
complex is formed, RNA polymerase begins to travel down the DNA strand and
constructs an mRNA sequence that matches the 5" to 3’ sequence of the DNA to
which it is bound. By convention, we number the first base pair that is transcribed
as +1 and the base pair prior to that (which is not transcribed) is labeled as -1. The
promoter region is often shown with the -10 and -35 regions indicated, since these
regions contain the nucleotide sequences to which the RNA polymerase enzyme
binds (the locations vary in different cell types, but these two numbers are typically
used).

The RNA strand that is produced by RNA polymerase is also a sequence of nu-
cleotides with a sugar backbone. The sugar for RNA is ribose instead of deoxyri-
bose and mRNA typically exists as a single stranded molecule. Another difference
is that the base thymine (T) is replaced by uracil (U) in RNA sequences. RNA
polymerase produces RNA one base pair at a time, as it moves from in the 5’ to 3’
direction along the DNA coding region. RNA polymerase stops transcribing DNA
when it reaches a termination region (or terminator) on the DNA. This termination
region consists of a sequence that causes the RNA polymerase to unbind from the
DNA. The sequence is not conserved across species and in many cells the termi-
nation sequence is sometimes “leaky,” so that transcription will occasionally occur
across the terminator.

Once the mRNA is produced, it must be translated into a protein. This process is
slightly different in prokaryotes and eukaryotes. In prokaryotes, there is a region of
the mRNA in which the ribosome (a molecular complex consisting of both proteins
and RNA) binds. This region, called the ribosome binding site (RBS), has some
variability between different cell species and between different genes in a given
cell. The Shine-Dalgarno sequence, AGGAGG, is the consensus sequence for the
RBS. (A consensus sequence is a pattern of nucleotides that implements a given
function across multiple organisms; it is not exactly conserved, so some variations
in the sequence will be present from one organism to another.)

In eukaryotes, the RNA must undergo several additional steps before it is trans-
lated. The RNA sequence that has been created by RNA polymerase consists of
introns that must be spliced out of the RNA (by a molecular complex called the
spliceosome), leaving only the exons, which contain the coding region for the pro-
tein. The term pre-mRNA is often used to distinguish between the raw transcript
and the spliced mRNA sequence, which is called mature mRNA. In addition to
splicing, the mRNA is also modified to contain a poly(A) (polyadenine) tail, con-
sisting of a long sequence of adenine (A) nucleotides on the 3’ end of the mRNA.
This processed sequence is then transported out of the nucleus into the cytoplasm,
where the ribosomes can bind to it.

Unlike prokaryotes, eukaryotes do not have a well-defined ribosome binding se-
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Figure 2.8: Translation is the process of translating the sequence of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protein synthesis. The genetic
code describes the relationship between the sequence of base pairs in a gene and the cor-
responding amino acid sequence that it encodes. In the cell cytoplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assemble the protein. Figure and
caption courtesy the National Human Genome Research Institute.

quence and hence the process of the binding of the ribosome to the mRNA is more
complicated. The Kozak sequence, AIGCCACCAUGG, is the rough equivalent of
the ribosome binding site, where the underlined AUG is the start codon (described
below). However, mRNA lacking the Kozak sequence can also be translated.

Once the ribosome is bound to the mRNA, it begins the process of translation.
Proteins consist of a sequence of amino acids, with each amino acid specified by
a codon that is used by the ribosome in the process of translation. Each codon
consists of three base-pairs and corresponds to one of the twenty amino acids or
a “stop” codon. The ribosome translates each codon into the corresponding amino
acid using transfer RNA (tRNA) to integrate the appropriate amino acid (which
binds to the tRNA) into the polypeptide chain, as shown in Figure 2.8. The start
codon (AUG) specifies the location at which translation begins, as well as coding
for the amino acid methionine (a modified form is used in prokaryotes). All sub-
sequent codons are translated by the ribosome into the corresponding amino acid
until it reaches one of the stop codons (typically UAA, UAG and UGA).

The sequence of amino acids produced by the ribosome is a polypeptide chain
that folds on itself to form a protein. The process of folding is complicated and
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Table 2.1: Rates of core processes involved in the creation of proteins from DNA in E. coli.

Process Characteristic rate | Source
mRNA transcription rate 24-29 bp/s [Biol2]
Protein translation rate 12-21 aa/s [Biol2]
Maturation time (fluorescent proteins) 6—60 min [Biol2]
mRNA half-life ~100s [YMO3]
E. coli cell division time 20-40 min [Biol2]
Yeast cell division time 70-140 min [Biol2]
Protein half-life ~5%x10%s [YMO3]
Protein diffusion along DNA up to 10* bp/s [PKTOS]
RNA polymerase dissociation constant ~ 0.3-10,000 nM [Bio12]
Open complex formation kinetic rate ~0.0257! [Bio12]
Transcription factor dissociation constant | ~ 0.02-10,000 nM | [Biol2]

involves a variety of chemical interactions that are not completely understood. Ad-
ditional post-translational processing of the protein can also occur at this stage,
until a folded and functional protein is produced. It is this molecule that is able to
bind to other species in the cell and perform the chemical reactions that underlie
the behavior of the organism. The maturation time of a protein is the time required
for the polypeptide chain to fold into a functional protein.

Each of the processes involved in transcription, translation and folding of the
protein takes time and affects the dynamics of the cell. Table 2.1 shows represen-
tative rates of some of the key processes involved in the production of proteins.
In particular, the dissociation constant of RNA polymerase from the DNA pro-
moter has a wide range of values depending on whether the binding is enhanced
by activators (as we will see in the sequel), in which case it can take very low val-
ues. Similarly, the dissociation constant of transcription factors with DNA can be
very low in the case of specific binding and substantially larger for non-specific
binding. It is important to note that each of these steps is highly stochastic, with
molecules binding together based on some propensity that depends on the bind-
ing energy but also the other molecules present in the cell. In addition, although
we have described everything as a sequential process, each of the steps of tran-
scription, translation and folding are happening simultaneously. In fact, there can
be multiple RNA polymerases that are bound to the DNA, each producing a tran-
script. In prokaryotes, as soon as the ribosome binding site has been transcribed,
the ribosome can bind and begin translation. It is also possible to have multiple
ribosomes bound to a single piece of mRNA. Hence the overall process can be
extremely stochastic and asynchronous.
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Reaction models

The basic reactions that underlie transcription include the diffusion of RNA poly-
merase from one part of the cell to the promoter region, binding of an RNA poly-
merase to the promoter, isomerization from the closed complex to the open com-
plex, and finally the production of mRNA, one base-pair at a time. To capture this
set of reactions, we keep track of the various forms of RNA polymerase accord-
ing to its location and state: RNAP® represents RNA polymerase in the cytoplasm,
RNAPP represents RNA polymerase in the promoter region, and RNAPY is RNA
polymerase non-specifically bound to DNA. We must similarly keep track of the
state of the DNA, to ensure that multiple RNA polymerases do not bind to the same
section of DNA. Thus we can write DNAP for the promoter region, DNA' for the
ith section of the gene of interest and DNA' for the termination sequence. We write
RNAP : DNA to represent RNA polymerase bound to DNA (assumed closed) and
RNAP : DNA® to indicate the open complex. Finally, we must keep track of the
mRNA that is produced by transcription: we write mRNA! to represent an mRNA
strand of length i and assume that the length of the gene of interest is N.

Using these various states of the RNA polymerase and locations on the DNA,
we can write a set of reactions modeling the basic elements of transcription as

Binding to DNA: RNAP® = RNAP,
Diffusion along DNA: RNAP! = RNAPP,
Binding to promoter: RNAPP + DNAP == RNAP : DNAP,
Isomerization: RNAP : DNAP — RNAP : DNA®,
Start of transcription: RNAP : DNA® — RNAP : DNA! + DNAP,
mRNA creation: RNAP:DNA! —s RNAP: DNA? : mRNA!,
Elongation: RNAP:DNA*!: mRNA!
— RNAP : DNA™2 : mRNAI*!,|
Binding to terminator: RNAP:DNAN : mRNAN"!
— RNAP : DNA'+ mRNAN,
Termination: RNAP : DNA' — RNAPS,

Degradation: mRNAN — 0.

(2.10)
Note that at the start of transcription we “release” the promoter region of the DNA,
thus allowing a second RNA polymerase to bind to the promoter while the first
RNA polymerase is still transcribing the gene. This allows the same DNA strand
to be transcribed by multiple RNA polymerase at the same time. The species
RNAP : DNA™! : mRNA! represents RNA polymerases bound at the (i + 1)th sec-
tion of DNA with an elongating mRNA strand of length i attached to it. Upon bind-
ing to the terminator region, the RNA polymerase releases the full mRNA strand
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mRNAN. This mRNA has the ribosome binding site at which ribosomes can bind
to start translation. The main difference between prokaryotes and eukaryotes is that
in eukaryotes the RNA polymerase remains in the nucleus and the mRNAN must
be spliced and transported to the cytoplasm before ribosomes can start translation.
As a consequence, the start of translation can occur only after mRNAN has been
produced. For simplicity of notation, we assume here that the entire mRNA strand
should be produced before ribosomes can start translation. In the procaryotic case,
instead, translation can start even for an mRNA strand that is still elongating (see
Exercise 2.6).

A similar set of reactions can be written to model the process of translation.
Here we must keep track of the binding of the ribosome to the ribosome binding
site (RBS) of mRNAN, translation of the mRNA sequence into a polypeptide chain,
and folding of the polypeptide chain into a functional protein. Specifically, we
must keep track of the various states of the ribosome bound to different codons
on the mRNA strand. We thus let Ribo : mRNARBS denote the ribosome bound
to the ribosome binding site of mMRNAN, Ribo : mRNAAA! the ribosome bound to
the ith codon (corresponding to an amino acid, indicated by the superscript AA),
Ribo : mRNA®®" and Ribo : mRNA™°P the ribosome bound to the start and stop
codon, respectively. We also let PPC! denote the polypeptide chain consisting of i
amino acids. Here, we assume that the protein of interest has M amino acids. The
reactions describing translation can then be written as

Binding to RBS: Ribo+mRNAN == Ribo : mRNARBS,
Start of translation: Ribo : mRNARBS — Ribo : mRNAS® 4+ mRNAN,
Polypeptide chain creation: Ribo : mMRNA®*" — Ribo : mRNA*A? : PPC!,
Elongation, i = 1,...,M: Ribo : mRNAAAG+D . ppCi
— Ribo : mMRNAAAGF2) : ppCi+l|
Stop codon:  Ribo : mRNAAAM . ppcM-1
— Ribo : mRNA™P + PPCM,
Release of mRNA: Ribo : mMRNA*P —s Ribo,
Folding: PPCM — protein,
Degradation: protein — 0.
(2.11)
As in the case of transcription, we see that these reactions allow multiple ribosomes
to translate the same piece of mRNA by freeing up mRNAN. After M amino acids
have been chained together, the M-long polypeptide chain PPCM is released, which
then folds into a protein. As complex as these reactions are, they do not directly
capture a number of physical phenomena such as ribosome queuing, wherein ri-
bosomes cannot pass other ribosomes that are ahead of them on the mRNA chain.
Additionally, we have not accounted for the existence and effects of the 5’ and
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3’ untranslated regions (UTRs) of a gene and we have also left out various error
correction mechanisms in which ribosomes can step back and release an incorrect
amino acid that has been incorporated into the polypeptide chain. We have also
left out the many chemical species that must be present in order for a variety of
the reactions to happen (NTPs for mRNA production, amino acids for protein pro-
duction, etc.). Incorporation of these effects requires additional reactions that track
the many possible states of the molecular machinery that underlies transcription
and translation. For more detailed models of translation, the reader is referred to
[AES13].

When the details of the isomerization, start of transcription (translation), elon-
gation, and termination are not relevant for the phenomenon to be studied, the tran-
scription and translation reactions are lumped into much simpler reduced reactions.
For transcription, these reduced reactions take the form:

RNAP + DNAP — RNAP:DNAP,
RNAP:DNAP — mRNA + RNAP + DNAP, (2.12)
mRNA — 0,

in which the second reaction lumps together isomerization, start of transcription,
elongation, mRNA creation, and termination. Similarly, for the translation process,
the reduced reactions take the form:

Ribo + mRNA — Ribo:mRNA,

Ribo:mRNA — protein + mRNA + Ribo,

Ribo:mRNA — Ribo,

protein — 0,

(2.13)

in which the second reaction lumps the start of translation, elongation, folding, and
termination. The third reaction models the fact that mRNA can also be degraded
when bound to ribosomes when the ribosome binding site is left free. The process
of mRNA degradation occurs through RNase enzymes binding to the ribosome
binding site and cleaving the mRNA strand. It is known that the ribosome binding
site cannot be both bound to the ribosome and to the RNase [MA97]. However, the
species Ribo : mRNA is a lumped species encompassing configurations in which
ribosomes are bound on the mRNA strand but not on the ribosome binding site.
Hence, we also allow this species to be degraded by RNase.

Reaction rate equations

Given a set of reactions, the various stochastic processes that underlie detailed
models of transcription and translation can be specified using the stochastic mod-
eling framework described briefly in the previous section. In particular, using either
models of binding energy or measured rates, we can construct propensity functions
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for each of the many reactions that lead to production of proteins, including the
motion of RNA polymerase and the ribosome along DNA and RNA. For many
problems in which the detailed stochastic nature of the molecular dynamics of the
cell are important, these models are the most relevant and they are covered in some
detail in Chapter 4.

Alternatively, we can move to the reaction rate formalism and model the reac-
tions using differential equations. To do so, we must compute the various reaction
rates, which can be obtained from the propensity functions or measured experimen-
tally. In moving to this formalism, we approximate the concentrations of various
species as real numbers (though this may not be accurate for some species that
exist at low molecular counts in the cell). Despite these approximations, in many
situations the reaction rate equations are sufficient, particularly if we are interested
in the average behavior of a large number of cells.

In some situations, an even simpler model of the transcription, translation and
folding processes can be utilized. Let the “active” mRNA be the mRNA that is
available for translation by the ribosome. We model its concentration through a
simple time delay of length 7" that accounts for the transcription of the ribosome
binding site in prokaryotes or splicing and transport from the nucleus in eukary-
otes. If we assume that RNA polymerase binds to DNA at some average rate (which
includes both the binding and isomerization reactions) and that transcription takes
some fixed time (depending on the length of the gene), then the process of tran-
scription can be described using the delay differential equation

de
dr
where mp is the concentration of mRNA for protein P, mj, is the concentration of
active mRNA, « is the rate of production of the mRNA for protein P, u is the growth
rate of the cell (which results in dilution of the concentration) and § is the rate of
degradation of the mRNA. Since the dilution and degradation terms are of the same
form, we will often combine these terms in the mRNA dynamics and use a single
coefficient 6 = u + 0. The exponential factor in the second expression in equation
(2.14) accounts for dilution due to the change in volume of the cell, where u is
the cell growth rate. The constants @ and § capture the average rates of production
and decay, which in turn depend on the more detailed biochemical reactions that
underlie transcription.
Once the active mRNA is produced, the process of translation can be described
via a similar ordinary differential equation that describes the production of a func-
tional protein:

=a—pmp—Smp,  mp(t)=e M mp(t—1"), (2.14)

dP

—=xmp—yP. Pl(n)= e P(t—10). (2.15)
Here P represents the concentration of the polypeptide chain for the protein, and
P/ represents the concentration of functional protein (after folding). The parame-

ters that govern the dynamics are «, the rate of translation of mRNA; vy, the rate of
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degradation and dilution of P; and 7/, the time delay associated with folding and
other processes required to make the protein functional. The exponential term again
accounts for dilution due to cell growth. The degradation and dilution term, param-
eterized by vy, captures both the rate at which the polypeptide chain is degraded and
the rate at which the concentration is diluted due to cell growth.

It will often be convenient to write the dynamics for transcription and transla-
tion in terms of the functional mRNA and functional protein. Differentiating the
expression for m;, we see that

— TP m
a ¢ ) (2.16)

= e M (@ — Smp(t— ™)) = & — Smi(t),

- — m . . . . . . .
where @ = ¢ . A similar expansion for the active protein dynamics yields

f
d[;t([) _ I_(mik)(t_ Tf) —fo(t), 2.17)

where & = ¢ k. We shall typically use equations (2.16) and (2.17) as our (re-
duced) description of protein folding, dropping the superscript f and overbars
when there is no risk of confusion. Also, in the presence of different proteins, we
will attach subscripts to the parameters to denote the protein to which they refer.

In many situations the time delays described in the dynamics of protein pro-
duction are small compared with the time scales at which the protein concentration
changes (depending on the values of the other parameters in the system). In such
cases, we can simplify our model of the dynamics of protein production even fur-
ther and write

dpP
bk S - = —vP. 2.18
- omp, o7 = kme =y (2.18)

Note that we here have dropped the superscripts * and f since we are assuming that
all mRNA is active and proteins are functional and dropped the overbar on @ and
k since we are assuming the time delays are negligible. The value of @ increases
with the strength of the promoter while the value of « increases with the strength of
the ribosome binding site. These strengths, in turn, can be affected by changing the
specific base-pair sequences that constitute the promoter RNA polymerase binding
region and the ribosome binding site.

Finally, the simplest model for protein production is one in which we only keep
track of the basal rate of production of the protein, without including the mRNA
dynamics. This essentially amounts to assuming the mRNA dynamics reach steady
state quickly and replacing the first differential equation in (2.18) with its equilib-
rium value. This is often a good assumption as mRNA degration is usually about
100 times faster than protein degradation (see Table 2.1). Thus we obtain

dP

B-yP,  Bi=k~
— =B-vP, =K.
dr Y s
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This model represents a simple first-order, linear differential equation for the rate
of production of a protein. In many cases this will be a sufficiently good approxi-
mate model, although we will see that in some cases it is too simple to capture the
observed behavior of a biological circuit.

2.3 Transcriptional regulation

The operation of a cell is governed in part by the selective expression of genes in
the DNA of the organism, which control the various functions the cell is able to
perform at any given time. Regulation of protein activity is a major component of
the molecular activities in a cell. By turning genes on and off, and modulating their
activity in more fine-grained ways, the cell controls its many metabolic pathways,
responds to external stimuli, differentiates into different cell types as it divides, and
maintains the internal state of the cell required to sustain life.

The regulation of gene expression and protein activity is accomplished through
a variety of molecular mechanisms, as discussed in Section 1.2 and illustrated in
Figure 2.9. At each stage of the processing from a gene to a protein, there are po-
tential mechanisms for regulating the production processes. The remainder of this
section will focus on transcriptional control and the next section on selected mech-
anisms for controlling protein activity. We will focus on prokaryotic mechanisms.

Transcriptional regulation of protein production

The simplest forms of transcriptional regulation are repression and activation, both
controlled through proteins called transcription factors. In the case of repression,
the presence of a transcription factor (often a protein that binds near the promoter)
turns off the transcription of the gene and this type of regulation is often called
negative regulation or “down regulation.” In the case of activation (or positive reg-
ulation), transcription is enhanced when an activator protein binds to the promoter
site (facilitating binding of the RNA polymerase).

Repression. A common mechanism for repression is that a protein binds to a region
of DNA near the promoter and blocks RNA polymerase from binding. The region
of DNA to which the repressor protein binds is called an operator region (see
Figure 2.10a). If the operator region overlaps the promoter, then the presence of
a protein at the promoter can “block” the DNA at that location and transcription
cannot initiate. Repressor proteins often bind to DNA as dimers or pairs of dimers
(effectively tetramers). Figure 2.10b shows some examples of repressors bound to
DNA.

A related mechanism for repression is DNA looping. In this setting, two repres-
sor complexes (often dimers) bind in different locations on the DNA and then bind
to each other. This can create a loop in the DNA and block the ability of RNA poly-
merase to bind to the promoter, thus inhibiting transcription. Figure 2.11 shows an
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Figure 2.9: Regulation of proteins. Transcriptional control includes mechanisms to tune
the rate at which mRNA is produced from DNA, while translation control includes mech-
anisms to tune the rate at which the protein polypeptide chain is produced from mRNA.
Protein activity control encompasses many processes, such as phosphorylation, methyla-
tion, and allosteric modification . Figure from Phillips, Kondev and Theriot [PKTO08]; used
with permission of Garland Science.

example of this type of repression, in the /ac operon. (An operon is a set of genes
that is under control of a single promoter.)

Activation. The process of activation of a gene requires that an activator protein be
present in order for transcription to occur. In this case, the protein must work to
either recruit or enable RNA polymerase to begin transcription.

The simplest form of activation involves a protein binding to the DNA near
the promoter in such a way that the combination of the activator and the promoter
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Figure 2.10: Repression of gene expression. A repressor protein binds to operator sites on
the gene promoter and blocks the binding of RNA polymerase to the promoter, so that the
gene is off. Figure from Phillips, Kondev and Theriot [PKTO08]; used with permission of
Garland Science.

sequence bind RNA polymerase. Figure 2.12 illustrates the basic concept.
Another mechanism for activation of transcription, specific to prokaryotes, is

the use of sigma factors. Sigma factors are part of a modular set of proteins that

bind to RNA polymerase and form the molecular complex that performs transcrip-

(a) DNA looping (b) lac repressor

Figure 2.11: Repression via DNA looping. A repressor protein can bind simultaneously
to two DNA sites downstream of the start of transcription, thus creating a loop that pre-
vents RNA polymerase from transcribing the gene. Figure from Phillips, Kondev and The-
riot [PKTO8]; used with permission of Garland Science.
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Figure 2.12: Activation of gene expression. (a) Conceptual operation of an activator. The
activator binds to DNA upstream of the gene and attracts RNA polymerase to the DNA
strand. (b) Examples of activators: catabolite activator protein (CAP), p53 tumor suppres-
sor, zinc finger DNA binding domain and leucine zipper DAN binding domain. Figure
from Phillips, Kondev and Theriot [PKTO08]; used with permission of Garland Science.

tion. Different sigma factors enable RNA polymerase to bind to different promot-
ers, so the sigma factor acts as a type of activating signal for transcription. Table 2.2
lists some of the common sigma factors in bacteria. One of the uses of sigma fac-
tors is to produce certain proteins only under special conditions, such as when the
cell undergoes heat shock. Another use is to control the timing of the expression of
certain genes, as illustrated in Figure 2.13.

Inducers. A feature that is present in some types of transcription factors is the ex-
istence of an inducer molecule that combines with the protein to either activate
or inactivate its function. A positive inducer is a molecule that must be present in
order for repression or activation to occur. A negative inducer is one in which the

Table 2.2: Sigma factors in E. coli [ABL*08].

Sigma factor Promoters recognized
a0 most genes
032 genes associated with heat shock
o8 genes involved in stationary phase and stress response
o8 genes involved in motility and chemotaxis
ot genes dealing with misfolded proteins in the periplasm
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Figure 2.13: Use of sigma factors to control the timing of gene expression in a bacterial
virus. Early genes are transcribed by RNA polymerase bound to bacterial sigma factors.
One of the early genes, called 28, encodes a sigma-like factor that binds to RNA poly-
merase and allow it to transcribe middle genes, which in turn produce another sigma-like
factor that allows RNA polymerase to transcribe late genes. These late genes produce pro-
teins that form a coat for the viral DNA and lyse the cell. Reproduced from Alberts et
al. [ABL*08].

presence of the inducer molecule blocks repression or activation, either by chang-
ing the shape of the transcription factor protein or by blocking active sites on the
protein that would normally bind to the DNA. Figure 2.14a summarizes the various
possibilities. Common examples of repressor-inducer pairs include lacl and lactose
(or IPTG), and tetR and aTc. Lactose/IPTG and aTc are both negative inducers, so
their presence causes the otherwise repressed gene to be expressed. An example of
a positive inducer is cyclic AMP (cAMP), which acts as a positive inducer for the
CAP activator.

Combinatorial promoters. In addition to promoters that can take either a repressor
or an activator as the sole input transcription factor, there are combinatorial pro-
moters that can take both repressors and activators as input transcription factors.
This allows genes to be switched on and off based on more complex conditions,
represented by the concentrations of two or more activators or repressors.

Figure 2.15 shows one of the classic examples, a promoter for the lac system.
In the /ac system, the expression of genes for metabolizing lactose are under the
control of a single (combinatorial) promoter. CAP, which is positively induced by
cAMP, acts as an activator and Lacl (also called “Lac repressor”), which is neg-
atively induced by lactose, acts as a repressor. In addition, the inducer cAMP is
expressed only when glucose levels are low. The resulting behavior is that the pro-
teins for metabolizing lactose are expressed only in conditions where there is no
glucose (so CAP is active) and lactose is present.

More complicated combinatorial promoters can also be used to control tran-
scription in two different directions, an example that is found in some viruses.

Antitermination. A final method of activation in prokaryotes is the use of antiter-
mination. The basic mechanism involves a protein that binds to DNA and deacti-
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Figure 2.14: Effects of inducers. (a) In the case of repressors, a negative inducer binds to
the repressor making it unbind DNA, thus enabling transcription. A positive inducer, by
contrast, activates the repressor allowing it to bind DNA. (b) In the case of activators, a
negative inducer binds to the activator making it unbind DNA, thus preventing transcrip-
tion. A positive inducer instead enables the activator to bind DNA, allowing transcription.
Reproduced from Alberts et al. [ABL*08].

vates a site that would normally serve as a termination site for RNA polymerase.
Additional genes are located downstream from the termination site, but without a
promoter region. Thus, in the absence of the antiterminator protein, these genes are
not expressed (or expressed with low probability). However, when the antitermina-
tion protein is present, the RNA polymerase maintains (or regains) its contact with
the DNA and expression of the downstream genes is enhanced. In this way, an-
titermination allows downstream genes to be regulated by repressing “premature”
termination. An example of an antitermination protein is the protein N in phage
A, which binds to a region of DNA labeled nut (for N utilization), as shown in
Figure 2.16 [GNM93].

Reaction models

We can capture the molecular interactions responsible for transcriptional regula-
tion by modifying the RNA polymerase binding reactions in equation (2.10). For
a repressor (Rep), we simply have to add a reaction that represents the repressor
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Figure 2.15: Combinatorial logic for the lac operator. The CAP-binding site and the oper-
ator in the promoter can be both bound by CAP (activator) and by Lacl (Lac repressor),
respectively. The only configuration in which RNA polymerase can bind the promoter and
start transcription is where CAP is bound but Lacl is not bound. Figure from Phillips,
Kondev and Theriot [PKTO08]; used with permission of Garland Science.

bound to the promoter DNAP:

Repressor binding:  DNAP + Rep == DNA:Rep.
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Figure 2.16: Antitermination. Protein N binds to DNA regions labeled nut, enabling tran-
scription of longer DNA sequences. Reproduced from [GNM93].
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This reaction acts to “sequester”’ the DNA promoter site so that it is no longer avail-
able for binding by RNA polymerase. The strength of the repressor is reflected
in the reaction rate constants for the repressor binding reaction. Sometimes, the
RNA polymerase can bind to the promoter even when the repressor is bound, usu-
ally with lower association rate constant. In this case, the repressor still allows
some transcription even when bound to the promoter and the repressor is said to be
“leaky.”

The modifications for an activator (Act) are a bit more complicated, since we
have to modify the reactions to require the presence of the activator before RNA
polymerase can bind the promoter. One possible mechanism, known as the recruit-
ment model, is given by

Activator binding: DNAP + Act == DNAP:Act,
RNAP binding w/ activator: RNAPP + DNAP:Act = RNAP:DNAP:Act,
Isomerization: RNAP:DNAP:Act — RNAP:DNA®:Act,

Start of transcription: RNAP:DNA°:Act —s RNAP:DNA! + DNAP: Act.

(2.19)
In this model, RNA polymerase cannot bind to the promoter unless the activator
is already bound to it. More generally, one can model both the enhanced binding
of the RNA polymerase to the promoter in the presence of the activator, as well as
the possibility of binding without an activator. This translates into the additional
reaction RNAPP + DNAP —= RNAP:DNAP. The relative reaction rates determine
how strong the activator is and the “leakiness” of transcription in the absence of
the activator. A different model of activation, called allosteric activation, is one in
which the RNA polymerase binding rate to DNA is not enhanced by the presence
of the activator bound to the promoter, but the open complex (and hence start of
transcription) formation can occur only (is enhanced) in the presence of the activa-
tor.

A simplified ordinary differential equation model of transcription in the pres-
ence of activators or repressors can be obtained by accounting for the fact that
transcription factors and RNAP bind to the DNA rapidly when compared to other
reactions, such as isomerization and elongation. As a consequence, we can make
use of the reduced-order models that describe the quasi-steady state concentrations
of proteins bound to DNA as described in Section 2.1. We can consider the com-
petitive binding case to model a strong repressor that prevents RNA polymerase
from binding to the DNA. In the sequel, we remove the superscripts “p”” and “d”
from RNA polymerase to simplify notation. The quasi-steady state concentration
of the complex of DNA promoter bound to the repressor will have the expression

[DNAJioi([Repl/Kq)

p. =

and the steady state amount of DNA promoter bound to the RNA polymerase will
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be given by
DNA RNAP]/K’
[RNAP:DNAP] = [ Teor([ /K, |
1 +[RNAPI/K} +[Repl/Kq

in which K, is the dissociation constant of RNA polymerase from the promoter,
while Ky is the dissociation constant of Rep from the promoter, and [DNA ] rep-
resents the total concentration of DNA. The free DNA promoter with RNA poly-
merase bound will allow transcription, while the complex DNAP : Rep will not
allow transcription as it is not bound to RNA polymerase. Using the lumped reac-
tions (2.12) with reaction rate constant k¢, this can be modeled as

d[mRNA]

o~ F(Rep])— 6[mRNA],

in which the production rate is given by

[DNA o ([RNAP]/KY})

F(IRep]) = k¢ — [RNAP]/K/, + [Repl/Kq’

If the repressor binds to the promoter with cooperativity n, the above expression
becomes (see Section 2.1)

[DNA]io (IRNAP]/KY)
1+[RNAP]/K/ +[Rep]"/(KmKq)’

F([Rep]) = kg

in which Ky, is the dissociation constant of the reaction of n molecules of Rep
binding together. The function F is usually represented in the standard Hill function
form

a
F([Rep]) = WI’]/K)",

in which @ and K are given by

_ ki[DNAJo(([RNAP]/KY)
~ 1+([RNAPJ/K]

. K=(KnKa(1+(RNAPI/K) ",

Finally, if the repressor allows RNA polymerase to still bind to the promoter at a
small rate (leaky repressor), the above expression can be modified to take the form

F([Rep]) = g, (2.20)

@
[+ (Repl/K)"
in which «y is the basal expression rate when the promoter is fully repressed, usu-
ally referred to as leakiness (see Exercise 2.8).

To model the production rate of mRNA in the case in which an activator Act
is required for transcription, we can consider the case in which RNA polymerase
binds only when the activator is already bound to the promoter (recruitment model).
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To simplify the mathematical derivation, we rewrite the reactions (2.19) involving
the activator with the lumped transcription reaction (2.12) into the following:

DNAP + Act = DNAP:Act,
RNAP + DNAP:Act = RNAP:DNAP:Act, (2.21)

k .
RNAP:DNAP:Act —> mRNA + RNAP + DNAP: Act,

in which the third reaction lumps together isomerization, start of transcription,
elongation and termination. The first and second reactions fit the structure of the
cooperative binding model illustrated in Section 2.1. Also, since the third reaction
is much slower than the first two, the complex RNAP : DNAP : Act concentration
can be well approximated at its quasi-steady state value. The expression of the
quasi-steady state concentration was given in Section 2.1 in correspondence to the
cooperative binding model and takes the form

[DNA o ([RNAP]/K})([Act])/ Kq)

. p. =
[RNAP:DNAP: Act] = —— e e Ky

in which K7} is the dissociation constant of RNA polymerase with the complex of
DNA bound to Act and Kj is the dissociation constant of Act with DNA. When
the activator Act binds to the promoter with cooperativity n, the above expression
becomes

[DNAJ o ([RNAP][Act]")/(KaK{Kin)
1+ ([Act]"/KgKm)(1 + [RNAP]/K))

[RNAP:DNAP:Act] =

in which K, is the dissociation constant of the reaction of n molecules of Act
binding together.

In order to write the differential equation for the mRNA concentration, we con-
sider the third reaction in (2.21) along with the above quasi-steady state expressions
of [RNAP : DNAP : Act] to obtain

@ = F([Act]) - 6[mRNA],
in which
DNAJio(([RNAP][Act]")/(KqK K n
F([Act]) = k[ hol A"/ (KaKiKm) - a([Act]/K)

1 +([Act]"/KqKm)(1 + [RNAP]/K)) 1 +([Act]/ K"’

where @ and K are implicitly defined. The right-hand side of this expression is in
standard Hill function form.

If we assume that RNA polymerase can still bind to DNA even when the acti-
vator is not bound, we have an additional basal expression rate aq so that the new
form of the production rate is given by (see Exercise 2.9)

a([Act]/K)"

F([ACt]) = W + . (222)



regulation.tex, v5732 2014-06-14 01:16:58Z (murray)

2.3. TRANSCRIPTIONAL REGULATION 65

As indicated earlier, many activators and repressors operate in the presence of
inducers. To incorporate these dynamics in our description, we simply have to add
the reactions that correspond to the interaction of the inducer with the relevant
protein. For a negative inducer, we can add a reaction in which the inducer binds
the regulator protein and effectively sequesters it so that it cannot interact with the
DNA. For example, a negative inducer operating on a repressor could be modeled
by adding the reaction

Rep +Ind == Rep:Ind.

Since the above reactions are very fast compared to transcription, they can be as-
sumed at the quasi-steady state. Hence, the free amount of repressor that can still
bind to the promoter can be calculated by writing the ODE model corresponding
to the above reactions and by setting the time derivatives to zero. This yields

_ [Repliot
Rep) = T ay &y

in which [Rep]t = [Rep] + [Rep:Ind] is the total amount of repressor (bound and
unbound to the inducer) and Ky is the dissociation constant of Ind binding to Rep.
This expression of the repressor concentration needs to be substituted in the ex-
pression of the production rate F([Rep]).

Positive inducers can be handled similarly, except now we have to modify the
binding reactions to only work in the presence of a regulatory protein bound to an
inducer. For example, a positive inducer on an activator would have the modified
reactions

Inducer binding: Act+Ind = Act:Ind,
Activator binding: DNAP + Act:Ind == DNAP:Act:Ind,
RNAP binding w/ activator: RNAP + DNAP:Act:Ind == RNAP:DNAP:Act:Ind,
Isomerization: RNAP:DNAP:Act:Ind — RNAP:DNA®:Act:Ind,
Start of transcription: RNAP:DNA®:Act:Ind —s RNAP:DNA'
+DNAP: Act:Ind.

Hence, in the expression of the production rate F([Act]), we should substitute the
concentration [Act:Ind] in place of [Act]. This concentration, in turn, is well ap-
proximated by its quasi-steady state value since binding reactions are much faster
than isomerization and transcription, and can be obtained as in the negative inducer
case.

Example 2.2 (Autoregulation of gene expression). Consider the circuits shown in
Figure 2.17, representing an unregulated gene, a negatively autoregulated gene and
a positively autoregulated gene. We want to model the dynamics of the protein A
starting from zero initial conditions for the three different cases to understand how
the three different circuit topologies affect dynamics.
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Figure 2.17: Autoregulation of gene expression. In (a) the circuit is unregulated, while (b)
shows negative autoregulation and (c) shows positive autoregulation.

The dynamics of the three circuits can be written in a common form,

dmp dA
— =FA)-6 — = —vA 2.23
7 (A) —omp, 7 Kkmp — YA, (2.23)

where F(A) is in one of the following forms:

ar(A/K)"
o, Faald)= 2AAK"

Funreg(A) = ap, Frepress(A) = 1+(A/K)"

ap
—+
1+(A/K)"
We choose the parameters to be

a4 = 0.375 nMs, ap =0.5nM/s, @y =5x%107* nMs,
k=0.116s"", 6=578x102s"!,  y=1.16x107s7",
K =10* nM, n=>2,

corresponding to biologically plausible values. Note that the parameters are chosen
so that F(0) ~ ag for each circuit.

Figure 2.18a shows the results of simulations comparing the response of the
three circuits. We see that initial increase in protein concentration is identical for
each circuit, consistent with our choice of Hill functions and parameters. As the
expression level increases, the effects of positive and negative regulation are seen,
leading to different steady state expression levels. In particular, the negative feed-
back circuit reaches a lower steady state expression level while the positive feed-
back circuit settles to a higher value.

In some situations, it makes sense to ask whether different circuit topologies
have different properties that might lead us to choose one over another. In the case
where the circuit is going to be used as part of a more complex pathway, it may
make the most sense to compare circuits that produce the same steady state concen-
tration of the protein A. To do this, we must modify the parameters of the individual
circuits, which can be done in a number of different ways: we can modify the pro-
moter strengths, degradation rates, or other molecular mechanisms reflected in the
parameters.
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Figure 2.18: Simulations for autoregulated gene expression. (a) Non-adjusted expression
levels. (b) Equalized expression levels.

The steady state expression level for the negative autoregulation case can be
adjusted by using a stronger promoter (modeled by ap) or ribosome binding site
(modeled by «). The equilibrium point for the negative autoregulation case is given
by the solution of the equations

aK" K

= —mA,e.

-2 A=
e = Sk + AL ‘

These coupled equations can be solved for ma . and A,, but in this case we simply
need to find values a; and «” that give the same values as the unregulated case. For
example, if we equate the mRNA levels of the unregulated system with that of the
negatively autoregulated system, we have

! pn
ap 1 CL’BK

ap _1( @k K"+ Al
5 O6\Kr+A!

Clo) == 01}; = (ap —QO)T, Sy
where A, is the desired equilibrium value (which we choose using the unregulated
case as a guide).

A similar calculation can be done for the case of positive autoregulation, in
this case decreasing the promoter parameters @4 and apg so that the steady state
values match. A simple way to do this is to leave @4 unchanged and decrease ap
to account for the positive feedback. Solving for a; to give the same mRNA levels
as the unregulated case yields

A

’
Ap=AB— VA .
B K"+ Al

Figure 2.18b shows simulations of the expression levels over time for the mod-
ified circuits. We see now that the expression levels all reach the same steady state
value. The negative autoregulated circuit has the property that it reaches the steady
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state more quickly, due to the increased rate of protein expression when A is small
(ay > ap). Conversely, the positive autoregulated circuit has a slower rate of ex-
pression than the constitutive case, since we have lowered the rate of protein ex-
pression when A is small. The initial higher and lower expression rates are com-
pensated for via the autoregulation, resulting in the same expression level in steady
state. \Y

We have described how a Hill function can model the regulation of a gene
by a single transcription factor. However, genes can also be regulated by multiple
transcription factors, some of which may be activators and some may be repressors,
as in the case of combinatorial promoters. The mRNA production rate can thus take
several forms depending on the roles (activators versus repressors) of the various
transcription factors. In general, the production rate resulting from a promoter that
takes as input transcription factors P, for i € {1,..., N} will be denoted F(P4, ..., Py).

The dynamics of a transcriptional module are often well captured by the ordi-
nary differential equations

dmp dP;

7 :F(Pl9~'~aPN)_6P,‘mPi’ E =Kpl,l’f’l1:'i —’)/piPi. (224)

For a combinatorial promoter with two input proteins, an activator P, and a repres-
sor P, in which, for example, the activator cannot bind if the repressor is bound
to the promoter, the function F(P,, P,) can be obtained by employing the competi-
tive binding in the reduced-order models of Section 2.1. In this case, assuming the
activator has cooperativity n and the repressor has cooperativity m, we obtain the
expression
(Pa/Ka)"

1+ (Pa/Ka)" + (Pr/ K )™
where K, = (Km,aKd,a)(l/ m K, = (Km,,Kd,r)(l/ ™ in which K4 and Ky are the dis-
sociation constants of the activator and repressor, respectively, from the DNA pro-
moter site, while K, , and K, are the dissociation constants for the cooperative
binding reactions for the activator and repressor, respectively. In these expressions,
RNA polymerase does not explicitly appear as it affects the values of the disso-
ciation constants and of . In the case in which the activator is “leaky,” that is,
some transcription still occurs even when there is no activator, the above expres-
sion should be modified to

F(Py,Py)=«a (2.25)

i (PulKL)"
R PN AT TN ST (2:20)

where « is the basal transcription rate when no activator is present. If the basal rate

can still be repressed by the repressor, the above expression should be modified to
(see Exercise 2.10)

a(Po/Ko)" +ag

F P = TP Ky + (PR

(2.27)
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Figure 2.19: The incoherent feedforward loop (type I). (a) A schematic diagram of the
circuit. (b) A simulation of the model in equation (2.28) with 8o = 0.01 uM/min, y = 0.01
min‘l,,BB =1 uM/min, B¢ = 100 uM/min, Kg = 0.001 uM , and Kp = 1 uM.

Example 2.3 (Incoherent feedforward loops). Combinatorial promoters with two
inputs are often used in systems where a logical “and” is required. As an example,
we illustrate here an incoherent feedforward loop (type I) [Alo07]. Such a circuit is
composed of three transcription factors A, B, and C, in which A directly activates C
and B while B represses C. This is illustrated in Figure 2.19a. This is different from
a coherent feedforward loop in which both A and B activate C. In the incoherent
feedforward loop, if we would like C to be high only when A is high and B is low
(“and” gate), we can consider a combinatorial promoter in which the activator A
and the repressor B competitively bind to the promoter of C. The resulting Hill
function is given by the expression in equation (2.25). Depending on the values
of the constants, the expression of C is low unless A is high and B is low. The
resulting ODE model, neglecting the mRNA dynamics, is given by the system

dA

2 Ba—vA
7 Ba—vA,

DB _ gy AIKr 2.28
a PPira/ky T (2.28)
dC A/K

a P TTaK Bk 7O
in which we have assumed no cooperativity of binding for both the activator and
the repressor. If we view 4 as an input to the system and C as an output, we can
investigate how this output responds to a sudden increase of S5. Upon a sudden
increase of 54, protein A builds up and binds to the promoter of C initiating tran-
scription, so that protein C starts getting produced. At the same time, protein B
is produced and accumulates until it reaches a large enough value to repress C.



allostery.tex, v5728 2014-06-13 06:20:45Z (murray)

70 CHAPTER 2. DYNAMIC MODELING OF CORE PROCESSES
Catalytic
site
Allosteric
site ; ~ Q
= Substrate
Regulatory
molecule Conformational
change

e

Figure 2.20: In allosteric regulation, a regulatory molecule binds to a site separate from
the catalytic site (active site) of an enzyme. This binding causes a change in the three-
dimensional conformation of the protein, turning off (or turning on) the catalytic site.

Hence, we can expect a pulse of C production for suitable parameter values. This
is shown in Figure 2.19b. Note that if the production rate constant B¢ is very large,
a little amount of A will cause C to immediately tend to a very high concentration.
This explains the large initial slope of the C signal in Figure 2.19b. \Y

2.4 Post-transcriptional regulation

In addition to regulation of expression through modifications of the process of tran-
scription, cells can also regulate the production and activity of proteins via a col-
lection of other post-transcriptional modifications. These include methods of mod-
ulating the translation of proteins, as well as affecting the activity of a protein via
changes in its conformation.

Allosteric modifications to proteins

In allosteric regulation, a regulatory molecule, called allosteric effector, binds to a
site separate from the catalytic site (active site) of an enzyme. This binding causes
a change in the conformation of the protein, turning off (or turning on) the catalytic
site (Figure 2.20).

An allosteric effector can either be an activator or an inhibitor, just like inducers
work for activation or inhibition of transcription factors. Inhibition can either be
competitive or not competitive. In the case of competitive inhibition, the inhibitor
competes with the substrate for binding the enzyme, that is, the substrate can bind
to the enzyme only if the inhibitor is not bound. In the case of non-competitive
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inhibition, the substrate can be bound to the enzyme even if the latter is bound to
the inhibitor. In this case, however, the product may not be able to form or may
form at a lower rate, in which case, we have partial inhibition.

Activation can be absolute or not. Specifically, an allosteric effector is an abso-
lute activator when the enzyme can bind to the substrate only when the enzyme is
bound to the allosteric effector. Otherwise, the allosteric effector is a non-absolute
activator. In this section, we derive the expressions for the production rate of the
active protein in an enzymatic reaction in the two most common cases: when we
have a (non-competitive) inhibitor I or an (absolute) activator A of the enzyme.

Allosteric inhibition

Consider the standard enzymatic reaction

E+S—ESSE+P,
d
in which enzyme E binds to substrate S and transforms it into the product P. Let I be
a (non-competitive) inhibitor of enzyme E so that when E is bound to I, the complex
EI can still bind to substrate S, however, the complex EIS is non-productive, that
is, it does not produce P. Then, we have the following additional reactions:

ky ks
E+1 = EI, ES+I==FEIS, EI+S = EIS,
k_ k_ d

in which, for simplicity of notation, we have assumed that the dissociation constant
between E and I does not depend on whether E is bound to the substrate S. Simi-
larly, we have assumed that the dissociation constant of E from S does not depend
on whether the inhibitor I is bound to E. Additionally, we have the conservation
laws:

Eio = E+[ES]+[EI] + [EIS], St =8 + P+ [ES]+[EIS].

The production rate of P is given by dP/dt = k[ES]. Since binding reactions are
very fast, we can assume that all the complexes’ concentrations are at the quasi-
steady state. This gives
a k+ S N E

EIS] = —[EI]-S, El] = —E-I, ES]= —,

[EIS] d[ ] [EI] a [ES] X,
where K, = (d + k)/a is the Michaelis-Menten constant. Using these expressions,
the conservation law for the enzyme, and the fact that a/d = 1/K,,, we obtain

E tot

E = , with Kg=k_/k,,
U/Ka+ D1 +S Ky it Ka=k-The
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so that
S Etot

ES] = —_—
[ES] S+K,1+1/Ky4

and, as a consequence,

P )
dt ~ "1+ /K \S +K, )

In our earlier derivations of the Michaelis-Menten kinetics V,,,, = kEo was called
the maximal velocity, which occurs when the enzyme is completely saturated by
the substrate (Section 2.1, equation (2.9)). Hence, the effect of a non-competitive
inhibitor is to decrease the maximal velocity Vi,ux to Vi /(1 +1/Ky).

Another type of inhibition occurs when the inhibitor is competitive, that is,
when I is bound to E, the complex EI cannot bind to protein S. Since E can either
bind to I or S (not both), I competes against S for binding to E (see Exercise 2.13).

Allosteric activation

In this case, the enzyme E can transform S to its active form only when it is bound
to A. Also, we assume that E cannot bind S unless E is bound to A (from here, the
name absolute activator). The reactions should be modified to

k+
E+A==FEA, FEA+S—EAS-P+EA,
k_ d

with conservation laws
E. = E+[EA] +[EAS], Swt =S +P+[EAS].

The production rate of P is given by dP/dt = k[EAS]. Assuming as above that the
complexes are at the quasi-steady state, we have that

Eal=Z4  pag)= SEAL
K4 K,

which, using the conservation law for E, leads to

_ Etot _ A S
E=aesikya+akg ™ [EAS]_(MKd)( m)E“’“

dP A S
- = kEtOt .
dt A+KyqJ\S +K,

The effect of an absolute activator is to modulate the maximal speed of modification
by a factor A/(A + Ky).

Hence, we have that
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Figure 2.21: Maximal velocity in the presence of allosteric effectors (inhibitors or acti-
vators). The plots in (a) show the maximal velocity V,,,/(1 +1/Kq) as a function of the
inhibitor concentration /. The plots in (b) show the maximal velocity V,,,,A/(A+ Kq) as a
function of the activator concentration A. The different plots show the effect of the disso-
ciation constant for V,,,, = 1.

Figure 2.21 shows the behavior of the maximal velocity as a function of the
allosteric effector concentration. As the dissociation constant decreases, that is, the
affinity of the effector increases, a very small amount of effector will cause the
maximal velocity to reach V,,,, in the case of the activator and O in the case of the
inhibitor.

Another type of activation occurs when the activator is not absolute, that is,
when E can bind to S directly, but cannot activate S unless the complex ES first
binds A (see Exercise 2.14).

Covalent modifications to proteins

In addition to regulation that controls transcription of DNA into mRNA, a variety
of mechanisms are available for controlling expression after mRINA is produced.
These include control of splicing and transport from the nucleus (in eukaryotes),
the use of various secondary structure patterns in mRNA that can interfere with
ribosomal binding or cleave the mRNA into multiple pieces, and targeted degrada-
tion of mRNA. Once the polypeptide chain is formed, additional mechanisms are
available that regulate the folding of the protein as well as its shape and activity
level.

One of the most common types of post-transcriptional regulation is through the
covalent modification of proteins, such as through the process of phosphorylation.
Phosphorylation is an enzymatic process in which a phosphate group is added to
a protein and the resulting conformation of the protein changes, usually from an
inactive configuration to an active one. The enzyme that adds the phosphate group
is called a kinase and it operates by transferring a phosphate group from a bound
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ATP molecule to the protein, leaving behind ADP and the phosphorylated protein.
Dephosphorylation is a complementary enzymatic process that can remove a phos-
phate group from a protein. The enzyme that performs dephosphorylation is called
a phosphatase. Figure 2.3 shows the process of phosphorylation in more detail.

Since phosphorylation and dephosphorylation can occur much more quickly
than protein production and degradation, it is used in biological circuits in which
a rapid response is required. One common pattern is that a signaling protein will
bind to a ligand and the resulting allosteric change allows the signaling protein to
serve as a kinase. The newly active kinase then phosphorylates a second protein,
which modulates other functions in the cell. Phosphorylation cascades can also be
used to amplify the effect of the original signal; we will describe this in more detail
in Section 2.5.

Kinases in cells are usually very specific to a given protein, allowing detailed
signaling networks to be constructed. Phosphatases, on the other hand, are much
less specific, and a given phosphatase species may dephosphorylate many different
types of proteins. The combined action of kinases and phosphatases is important in
signaling since the only way to deactivate a phosphorylated protein is by removing
the phosphate group. Thus phosphatases are constantly “turning off”” proteins, and
the protein is activated only when sufficient kinase activity is present.

Phosphorylation of a protein occurs by the addition of a charged phosphate
(PO,) group to the serine (Ser), threonine (Thr) or tyrosine (Tyr) amino acids. Sim-
ilar covalent modifications can occur by the attachment of other chemical groups
to select amino acids. Methylation occurs when a methyl group (CH;) is added
to lysine (Lys) and is used for modulation of receptor activity and in modifying
histones that are used in chromatin structures. Acetylation occurs when an acetyl
group (COCH,) is added to lysine and is also used to modify histones. Ubiquitina-
tion refers to the addition of a small protein, ubiquitin, to lysine; the addition of a
polyubiquitin chain to a protein targets it for degradation.

Here, we focus on reversible cycles of modification, in which a protein is in-
terconverted between two forms that differ in activity. At a high level, a covalent
modification cycle involves a target protein X, an enzyme Z for modifying it, and
a second enzyme Y for reversing the modification (see Figure 2.22). We call X*
the activated protein. There are often allosteric effectors or further covalent modi-
fication systems that regulate the activity of the modifying enzymes, but we do not
consider this added level of complexity here. The reactions describing this system
are given by the following two enzymatic reactions, also called a two-step reaction
model:

aj ki « ) ko
Z+X=C —>X"+7Z, Y+X'=C, > X+Y,
d] d2

in which we have let C, be the kinase/protein complex and C, be the active pro-
tein/phosphatase complex. The corresponding differential equation model is given
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Figure 2.22: (a) General diagram representing a covalent modification cycle. (b) Detailed
view of a phosphorylation cycle including ATP, ADP, and the exchange of the phosphate
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group “p.

by
Ccll_fz—a1Z~X+(k1+d1)C1, dj[i* =kiCi—arY - X" +drC,
%:—a1Z~X+d1C1+k2C2, %=a2Y'X*—(d2+k2)C2’
dd% =aZ-X—(dy +ki)Cy, il—f =-—a Y- X" +(d2 +k2)Ca.

Furthermore, we have that the total amounts of enzymes Z and Y are conserved.
Denote the total concentrations of Z, Y, and X by Z, Yior, and Xiot, respectively.
Then, we have also the conservation laws

Z+C1:Zt0t, Y+C2:Yt0t’ X+X*+C1+C2:Xt0t.

Using the first two conservation laws, we can reduce the above system of differen-
tial equations to the following one:

dC
d—t‘=a1(zm—cl>-X—<d1+k1>cl,
ax* "

I =k1Ci —ay(Yiot —C2)- X" +drCy,
dc .

d—f = ay(Yii — C2)- X* = (da + k2)C.

As in the case of the enzymatic reaction, this system cannot be analytically
integrated. To simplify it, we can perform a similar approximation as done for the
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enzymatic reaction. In particular, the complexes’ concentrations C; and C, reach
their steady state values very quickly under the assumption a|Zt, a2 Yior, d1, do >
ki1, ky. Therefore, we can approximate the above system by substituting for C; and
C, their steady state values, given by the solutions to

a1(Zion—C1)-X—(d1 +k1)C1 =0

and
ay(Yiot—C2)- X" = (dr + k2)C2 = 0.

By solving these equations, we obtain that

Yo X* dr +k
Cr=—2" with K= > "2,
X"+ K2 ’ ap
and Zio X dy+k
+
Cp= % with K= ———L
X-l-Km’] ’ ay

As a consequence, the model of the phosphorylation system can be well approxi-

mated by

ax* X ZiotX i YiorKim2 Yiot X"
dt X+ Kp X+ Ko X+ Ko

which, considering that a2 K, » —da = k», leads finally to

*

ax* ZinX YiorX*
=k —ky— .
dt X+ K1 X"+ K2

(2.29)

We will come back to the modeling of this system after we have introduced sin-
gular perturbation theory, through which we will be able to perform a formal analy-
sis and mathematically characterize the assumptions needed for approximating the
original system by the first-order model (2.29). Also, note that X should be replaced
by using the conservation law by X = Xio; — X* — C| — C,, which can be solved for X
using the expressions of Cy and C;. Under the common assumption that the amount
of enzyme is much smaller than the amount of substrate (Zy, Yiot < Xior) [GK81],
we have that X = Xio — X* [GKS81], leading to a form of the differential equation
(2.29) that is simple enough to be analyzed mathematically.

Simpler models of phosphorylation cycles can be considered, which often-times
are instructive as a first step to study a specific question of interest. In particular, the
one-step reaction model!in phosphorylation neglects the complex formation in the
two enzymatic reactions and simply models them as a single irreversible reaction
(see Exercise 2.12).

It is important to note that the speed of enzymatic reactions, such as phospho-
rylation and dephosphorylation, is usually much faster than the speed of protein
production and protein decay. In particular, the values of the catalytic rate con-
stants k; and kp, even if changing greatly from organism to organism, are typically
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Figure 2.23: Steady state characteristic curve showing the relevance of the response coef-
ficient for ultrasensitivity. As R — 1, the points yj9 and ygg tend to each other.

several orders of magnitude larger than protein decay and can be on the order of
10° min~! in bacteria where typical rates of protein decay are about 0.01 min~!
(http://bionumbers.hms.harvard.eduy).

Ultrasensitivity

One relevant aspect of the response of the covalent modification cycle to its input
is the sensitivity of the steady state characteristic curve, that is, the map that deter-
mines the equilibrium value of the output X* corresponding to a value of the input
Ziot- Specifically, which parameters affect the shape of the steady state characteris-
tic is a crucial question. To study this, we set dX*/dt = 0 in equation (2.29). Using
the approximation X ~ Xo — X*, defining K; := K,.1 / Xior and K3 := Ky 2/ Xior, We
obtain
iz XX (K (=X X))
T Ve T Rt X X (- X Xig)

(2.30)

Since y is proportional to the input Z, we study the equilibrium value of X* as
a function of y. This function is usually characterized by two key parameters: the
response coeflicient, denoted R, and the point of half maximal induction, denoted
vs0. Let y, denote the value of y corresponding to having X* equal a% of the
maximum value of X* obtained for y = co, which is equal to Xo;. Then, the response

coeflicient is defined as

Rzzw,

Y10
and measures how switch-like the response of X* is to changes in y (Figure 2.23).
When R — 1 the response becomes switch-like. In the case in which the steady
state characteristic is a Hill function, we have that X* = (y/K)"/(1 + (y/K)"), so
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Figure 2.24: Steady state characteristic curve of a covalent modification cycle as a function
of the Michaelis-Menten constants K, | and K >.

that y, = (@/(100 —))""/® and as a consequence

log(81)
log(R) -

Hence, when n = 1, that is, the characteristic is of the Michaelis-Menten type, we

have that R = 81, while when n increases, R decreases. Usually, when n > 1 the

response is referred to as ultrasensitive and the formula n = log(81)/log(R) is often

employed to estimate the apparent Hill coefficient of an experimentally obtained

steady state characteristic since R can be calculated directly from the data points.
In the case of the current system, from equation (2.30), we have that

3 (K1 +0.1)0.9 B (K1 +0.9)0.1

R=@D"" orequivalently n =

Y0 K 10901 ¢ 0T R 50009
so that _ 1R |
&1 +0.1)(Ry +0.
R=g K FODE+0.D) 2.31)
(K2 + O9)(K1 + 09)

As a consequence, when K,,K> > 1, we have that R — 81, which gives a Michaelis-
Menten type of response. If instead K, K> < 0.1, we have that R — 1, which corre-
sponds to a theoretical Hill coefficient n > 1, that is, a switch-like response (Figure
2.24). In particular, if we have, for example, K; = K, = 1072, we obtain an apparent
Hill coefficient greater than 13. This type of ultrasensitivity is usually referred to
as zero-order ultrasensitivity. The reason for this name is due to the fact that when
K1 1s much smaller than the total amount of protein substrate X;,;, we have that
Ziot X[ (K1 + X) = Z4r. Hence, the forward modification rate is “zero order” in the
substrate concentration (no free enzyme is left, all is bound to the substrate).
One can study the behavior also of the point of half maximal induction

Y= R 05’

to find that as K, increases, yso decreases and that as K| increases, ysq increases.
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Input Z z*

Output
(a) General diagram (b) Detailed view

Figure 2.25: (a) Diagram of a phosphotransfer system. (b) Proteins X and Z are transferring
the phosphate group p to each other.

Phosphotransfer systems

Phosphotransfer systems are also a common motif in cellular signal transduction.
These structures are composed of proteins that can phosphorylate each other. In
contrast to kinase-mediated phosphorylation, where the phosphate donor is usually
ATP, in phosphotransfer the phosphate group comes from the donor protein itself
(Figure 2.25). Each protein carrying a phosphate group can donate it to the next
protein in the system through a reversible reaction.

Let X be a protein in its inactive form and let X* be the same protein once it
has been activated by the addition of a phosphate group. Let Z* be a phosphate
donor, that is, a protein that can transfer its phosphate group to the acceptor X.
The standard phosphotransfer reactions can be modeled according to the two-step
reaction model

ki k3

Z'+X=C =X"+Z,

ko ks
in which Cj is the complex of Z bound to X bound to the phosphate group. Addi-
tionally, we assume that protein Z can be phosphorylated and protein X* dephos-
phorylated by other phosphorylation reactions by which the phosphate group is
taken to and removed from the system. These reactions are modeled as one-step
reactions depending only on the concentrations of Z and X*, that is:

z5 7, x5Bx
Proteins X and Z are conserved in the system, that is, X;ot = X + C; + X" and
Ziot = Z+ C1 +Z". We view the total amount of Z, Z, as the input to our system
and the amount of phosphorylated form of X, X*, as the output. We are interested
in the steady state characteristic curve describing how the steady state value of X*
depends on the value of Z.
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Figure 2.26: Steady state characteristic curve of the phosphotransfer system. Here, we have
setkp =k3 =011 ksy=01nM"' s, 1y =1 =3.1 57!, and Xior = 100 nM.

The differential equation model corresponding to this system is given by the
equations

dC * * * *
d—tl=k1(th—X —C1)-Z* —k3C1 —kaoC + ks X* - (Zioy— C1 = Z*),

dz* .

7 =11 (Zit—C1 —Z")+ k2 C — k1 Xiot — X" = C1) - Z7, (2.32)
ax* N " "

ar =k3Cy—k4X -(th—Cl—Z )—m X",

The steady state transfer curve is shown in Figure 2.26 and it is obtained by sim-
ulating system (2.32) and recording the equilibrium values of X* corresponding
to different values of Z. The transfer curve is linear for a large range of values
of Zi,¢ and can be rendered fairly close to a linear relationship for values of Z
smaller than Xy by increasing k. The slope of this linear relationship can be fur-
ther tuned by changing the values of k3 and k4 (see Exercise 2.15). Hence, this
system can function as an approximately linear anplifier. Its use in the realization
of insulation devices that attenuate the effects of loading from interconnections will
be illustrated in Chapter 6.

2.5 Cellular subsystems

In the previous section we have studied how to model a variety of core processes
that occur in cells. In this section we consider a few common “subsystems” in
which these processes are combined for specific purposes.

Intercellular signaling: MAPK cascades

The mitogen activated protein kinase (MAPK) cascade is a recurrent structural mo-
tif in several signal transduction pathways (Figure 2.27). The cascade consists of
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Figure 2.27: Schematic representation of the MAPK cascade. It has three levels: the first
one has a single phosphorylation, while the second and the third ones have a double phos-
phorylation.

a MAPK kinase (MAPKKK), denoted X, a MAPK kinase (MAPKK), denoted
X, and a MAPK, denoted X,. MAPKKKSs activate MAPKKs by phosphorylation
at two conserved sites and MAPKKSs activate MAPKSs by phosphorylation at con-
served sites. The cascade relays signals from the cell membrane to targets in the
cytoplasm and nucleus. It has been extensively studied and modeled. Here, we pro-
vide a model for double phosphorylation, which is one of the main building blocks
of the MAPK cascade. Then, we construct a detailed model of the MAPK cascade,
including the reactions describing each stage and the corresponding rate equations.

Double phosphorylation model. Consider the double phosphorylation motif in Fig-
ure 2.28. The reactions describing the system are given by

ap ki " r ® ko
E,+X=C - X" +E|, E,+X"=C, — X+E,,
d 1)
* aT k’{ *% *% a; k; *
X*+E, = C;, —» X" +E,, E,+ X" —=C, —» X" +E,,
13 1 2 P 2
1 2

in which C, is the complex of E; with X, C, is the complex of E, with X, C, is the
complex of E; with X", and C, is the complex of E, with X*". The conservation
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Figure 2.28: Schematic representation of a double phosphorylation cycle. E; is the input
and X** is the output.

laws are given by

Ey+Ci1+C3=Ej o Er+Cy+C4 = Epfors
Xt = X+ X"+ X" +C1 +Co +C3 +Cy4.
As performed earlier, we assume that the complexes are at the quasi-steady state

since binding reactions are very fast compared to the catalytic reactions. This gives
the Michaelis-Menten form for the amount of formed complexes:

K X K X"
C = El’tOtKTX+K1X* +K1KT’ C3= El’tOtKTX+K1X*+K1KT’
Cr = Ep o X , Cs = Es ot s X-** ’
X+ KoX + KoK, KX+ KX + KoK

in which K; = (d; +k;)/a; and K = (d} +k7)/a; are the Michaelis-Menten constants
for the enzymatic reactions. Since the complexes are at the quasi-steady state, it
follows that

d
EX* = k1C1 —k2C2 —kTCg; +k§C4,
d kk * *
d_tX =k;C3—k,Cy,
from which, substituting the expressions of the complexes, we obtain that
d _, ki XK} -k X" K, KX Ky =k X" K3
— X =El 73 " — T E2ot s = o
dt KiX+ K X*+K{K; K3 X* + K2 X** + Ko K
d _.. g K X" K> X**
—X k 1,tot

~IE
dr KX+ KX+ KK 2 KX+ KX+ KK,

Detailed model of the MAPK cascade. We now give the entire set of reactions for
the MAPK cascade of Figure 2.27 as they are found in standard references (Huang-
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Ferrell model [HF96]):

aip kio . . 220 k2,0
E +X,=—=C, — X, +E, Py+Xy=—=C, — X, +P,,
dl,() d2,0
« ai,i ki1 w w « as i ka1
X+ X, = C; — X + X, X|+P,=—=C, — X, +P,
di dy,1
* * aT’] kil k% * k% az’] ké’l *
Xyt X — C; — X + X, X"+P,—=—=C, — X +P,,
di, 4
s aip kip . - . azp koo
X+ X,=—C — X5+ X7, X5+P, =—=Cy — X, +P,,
dip drp
*k * a}k’z kT,z *% *k *k a;’z k;l *
X7+ X —C, — XJ7+ X}, X5+P,—=—C,, — X5 +P,,
1 25 2 1 2 25— ™10 21T
12 22

with conservation laws

Xo,i0t = X0+ Xy +C1+C2+C3+Cs,

Xiot =X1+X] +C3+X{"+C4+C5+Cs+C7+Co,
Xojot = X2+ X5+ X5+ C7+Cs +Co + Ci,

Eyjot = E1+Cy, Pogor = Po+Co,

Py ot = P1+C4+Ce,

P ot = P2+ Cs +Cyp.

The corresponding ODE model is given by

dditl =a1pEy Xo—(d1p+kip) Cy,

‘%8 =ki0 C1+dyo Cr—azo Po Xg+(dr1+ki1) C3—ain X1 Xg
+(d} | +k} ) Cs—aj | X5 X7,

% = axp Po Xy —(doo +ka) C2,

‘%3 =ai1 X1 X5 —(d11 +ki 1) Cs,

% =ki1 C3+doy Ca—azy Xy Pr+dy,Cs—ayy Xy Xg +ky, Co,

% =as1 X| P1—(do,1 +ka1) Ca,

dditﬁ' =a} | X} X]—(d} ,+K],) Cs,

axy

7 = kT,l Cs —a;l XT Py +d’2:"1 C(,—al’z XT* Xo

83
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Figure 2.29: Steady state characteristic curve of the MAPK cascade for every stage. The
x-axis shows concentration of £ o; between 10715 and 10° as indicated. Simulations from
the model of [QNKSO07].

+(d12+ki12) C7—aj, X7™ X5 +(d 5 +k ) Co,

% =, X P — (3, +K5 ) Co,

dd% =, X] Xa—(d],+K],) C7,

% =—a2 X5 Py+dyp Cs—aj, X; Xy" +dj, Co+ky, Cio,
% =0y, X5 Py = (dap +k22) Cs,

dj_f* =kj, Co—ay, X5" Py+d;, Cho,

dd% =aj, X|" X5 —(d{,+ki,) Co,

dz‘% =d;, X5" Py~ (d;, +k35) Cio.

The steady state characteristic curve obtained with the mechanistic model pre-
dicts that the response of the MAPKKK to the stimulus Ej ;o is of the Michaelis-
Menten type. By contrast, the stimulus-response curve obtained for the MAPKK
and MAPK are sigmoidal and show high Hill coefficients, which increase from
the MAPKK response to the MAPK response. That is, an increased ultrasensitivity
is observed moving down in the cascade (Figure 2.29). These model observations
persist when key parameters, such as the Michaelis-Menten constants are changed
[HF96]. Furthermore, zero-order ultrasensitivity effects can be observed. Specifi-
cally, if the amounts of MAPKK were increased, one would observe a higher ap-
parent Hill coefficient for the response of MAPK. Similarly, if the values of the
K, for the reactions in which the MAPKK takes place were decreased, one would
also observe a higher apparent Hill coefficient for the response of MAPK. Dou-
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ble phosphorylation is also key to obtain a high apparent Hill coefficient. In fact,
a cascade in which the double phosphorylation was assumed to occur through a
one-step model (similar to single phosphorylation) predicted substantially lower
apparent Hill coefficients.

Notice that while phosphorylation cascades, such as the MAPK cascade, are
usually viewed as unidirectional signal transmission systems, they actually allow
information to travel backward (from downstream to upstream). This can be qual-
itatively seen as follows. Assuming as before that the total amounts of enzymes
are much smaller than the total amounts of substrates (E7 iot, Po.tot> P1 101> P2.10t <K
X0,10t> X1 tot> X2.101), WE can approximate the conservation laws as

XO,tot %X() +XS+C3+C5,
Xl,tot ~ X +X1F +C3 +XT* +Cs5+C7+ Co,
Xojot * X0+ X5+ X5+ C7+ Co.

Using these and assuming that the complexes are at the quasi-steady state, we ob-
tain the following functional dependencies:

C1 = X X{, X{" X5 X5"), C2 = 12X,
C3 = f3(X5. X1, X1, X5, X57), Cs = fs(Xg, X}),
C7 = (X, X1, %5, X57), Co = fo(X;*, X5).

The fact that C7 depends on X3 and X7* illustrates the counterintuitive fact that
the dynamics of the second stage are influenced by those of the third stage. Sim-
ilarly, the fact that C3 depends on X*,X}‘*,X’;,X;* indicates that the dynamics of
the first stage are influenced by those of the second stage and by that of the third
stage. The phenomenon by which the behavior of a “module” is influenced by that
of its downstream clients is called retroactivity, which is a phenomenon similar to
loading in electrical and mechanical systems, studied at length in Chapter 6. This
phenomenon in signaling cascades can allow perturbations to travel from down-
stream to upstream [OVMV11] and can lead to interesting dynamic behaviors such
as sustained oscillations in the MAPK cascade [QNKSO07].

Exercises

2.1 Consider a cascade of three activators X—Y— Z. Protein X is initially present
in the cell in its inactive form. The input signal of X, S, appears at time ¢ = 0.
As a result, X rapidly becomes active and binds the promoter of gene Y, so that
protein Y starts to be produced at rate 5. When Y levels exceed a threshold K,
gene Z begins to be transcribed and translated at rate 5. All proteins have the same
degradation/dilution rate y.

(1) What are the concentrations of proteins Y and Z as a function of time?
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(i) What is the minimum duration of the pulse S . such that Z will be produced?

(iii)) What is the response time of protein Z with respect to the time of addition of
Si?

2.2 (Switch-like behavior in cooperative binding) Derive the expressions of C and
A as a function of B at the steady state when you have the cooperative binding
reactions

k
B+B+..+B=8B, B,+A=C, and A+C=Agq.
ko d
Make MATLAB plots of the expressions that you obtain and verify that as n in-
creases the functions become more switch-like.

2.3 Consider the case of a competitive binding of an activator A and a repressor R
with D and assume that before they can bind to D they have to cooperatively bind
according to the following reactions:

K ;
A+A+..+A=A,  R+R+.+R=R

m?
k2 kz

in which the complex A, contains n molecules of A and the complex R, contains
m molecules of R. The competitive binding reactions with A are given by

A, +D=C, R, +D=C,
d d
and Dy = D+ C + C’. What are the steady state expressions for C and D as func-
tions of A and R?

2.4 Consider the following modification of the competitive binding reactions:

Ba+AéC, Br+AéC’, C+Br\aﬁ ’,
d a d
with A = A+ C + C +C’. What are the steady state expressions for A and C?
What information do you deduce from these expressions if A is a promoter, B,
is an activator protein, and C is the activator/DNA complex that makes the gene
transcriptionally active?

2.5 Assume that we have an activator B, and a repressor protein B,. We want to
obtain an input function such that when a large quantity of B, is present, the gene
is transcriptionally active only if there is no B,, and when low amounts of B, are
present, the gene is transcriptionally inactive (with or without B,). Write down the
reactions among B,, B,, and the complexes formed with DNA (D) that lead to such
an input function. Demonstrate that indeed the set of reactions you picked leads to
the desired input function.
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2.6 Consider the transcription and translation reactions incorporating the elonga-
tion process as considered in this chapter in equations (2.10)—(2.11). Modify them
to the case in which an mRNA molecule can be translated to a polypeptide chain
even while it is still elongating.

2.7 (Transcriptional regulation with delay) Consider a repressor or activator B mod-
eled by a Hill function F(B). Show that in the presence of transcriptional delay 7",
the dynamics of the active mRNA can be written as

d * t m -
"Zh( ) Bt — ") — "

2.8 Derive the expression of the parameters «, a¢ and K for the Hill function given
in equation (2.20), which is the form obtained for transcriptional repression with a
leaky repressor.

2.9 Consider the form of the Hill function in the presence of an activator with
some basal level of expression given in equation (2.22). Derive the expressions of
a, K and «ay,

2.10 Derive the form of the Hill functions for combinatorial promoters with leak-
iness given in expressions (2.26)—(2.27).

2.11 Consider the phosphorylation reactions described in Section 2.4, but suppose
that the kinase concentration Z is not constant, but is instead produced and decays

y
according to the reaction Z == (). How should the system in equation (2.29) be
k(1)

modified? Use a MATLAB simulation to apply a periodic input stimulus k(#) using
parameter values: k; =kp =1 min~', g =a, =10nM ! min™!, d; =d> = 10 min~!,
vy =0.01 min~!. Is the cycle capable of “tracking” the input stimulus? If yes, to what
extent when the frequency of k(7) is increased? What are the tracking properties
depending on?

2.12 Another model for the phosphorylation reactions, referred to as one-step re-
action model, is given by Z+X — X*+Z and Y + X* — X +Y, in which the
complex formations are neglected. Write down the differential equation model and
compare the differential equation of X* to that of equation (2.29). List the assump-
tions under which the one-step reaction model is a good approximation of the two-
step reaction model.

2.13 (Competitive inhibition) Derive the expression of the production rate of X* in
a phosphorylation cycle in the presence of a competitive inhibitor I for Z.

2.14 (Non-absolute activator) Derive the expression of the production rate of X* in
a phosphorylation cycle in the presence of a non-absolute activator A for Z.
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2.15 Consider the model of phosphotransfer systems of equation (2.32) and deter-
mine how the steady state transfer curve changes when the values of k3 and k4 are
changed.
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Chapter 3

Analysis of Dynamic Behavior

In this chapter, we describe some of the tools from dynamical systems and feed-
back control theory that will be used in the rest of the text to analyze and design
biological circuits. We focus here on deterministic models and the associated anal-
yses; stochastic methods are given in Chapter 4.

3.1 Analysis near equilibria

As in the case of many other classes of dynamical systems, a great deal of insight
into the behavior of a biological system can be obtained by analyzing the dynamics
of the system subject to small perturbations around a known solution. We begin by
considering the dynamics of the system near an equilibrium point, which is one of
the simplest cases and provides a rich set of methods and tools.

In this section we will model the dynamics of our system using the input/output
modeling formalism described in Chapter 1:

dx
E = f(x’ 9’ M), y= h(xa 9)’ (31)

where x € R" is the system state, 0 € R” are the system parameters and u € R is
a set of external inputs (including disturbances and noise). The system state x is
a vector whose components will represent concentration of species, such as tran-
scription factors, enzymes, substrates and DNA promoter sites. The system param-
eters 6 are also represented as a vector, whose components will represent biochem-
ical parameters such as association and dissociation rate constants, production rate
constants, decay rate constants and dissociation constants. The input u is a vector
whose components will represent concentration of a number of possible physical
entities, including kinases, allosteric effectors and some transcription factors. The
output y € R” of the system represents quantities that can be measured or that are
of interest for the specific problem under study.

Example 3.1 (Transcriptional component). Consider a promoter controlling a gene
g that can be regulated by a transcription factor Z. Let m and G represent the
mRNA and protein expressed by gene g. We can view this as a system in which
u = Z is the concentration of transcription factor regulating the promoter, the state
x = (x1,x2) is such that x; = m is the concentration of mRNA and x, = G is the
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concentration of protein, which we can take as the output of interest, thatis, y=G =
Xx>. Assuming that the transcription factor regulating the promoter is a repressor, the
system dynamics can be described by the following system:

dx; a

2
- _ — = — = 2
dt  1+u/K)y YR, Y= 32)

dx
—-0x1,

! dt

in which 6 = (o, K, ,k,y,n) is the vector of system parameters. In this case, we

have that
a

-5
f(x,0,u)= | 1 +@/K)" xl, h(x,6) = x.

KX1 =YX

\%

Note that we have chosen to explicitly model the system parameters 6, which
can be thought of as an additional set of (mainly constant) inputs to the system.

Equilibrium points and stability !

We begin by considering the case where the input u and parameters 6 in equa-
tion (3.1) are fixed and hence we can write the dynamics of the system as

d
=< fw). (3.3)

dt
An equilibrium point of the dynamical system represents a stationary condition for
the dynamics. We say that a state x, is an equilibrium point for a dynamical system
if f(x.) = 0. If a dynamical system has an initial condition x(0) = x,, then it will
stay at the equilibrium point: x(¢) = x, for all £ > 0.

Equilibrium points are one of the most important features of a dynamical sys-
tem since they define the states corresponding to constant operating conditions. A
dynamical system can have zero, one or more equilibrium points.

The stability of an equilibrium point determines whether or not solutions nearby
the equilibrium point remain close, get closer or move further away. An equilibrium
point x, is stable if solutions that start near x, stay close to x.. Formally, we say
that the equilibrium point x, is stable if for all € > 0, there exists a ¢ > 0 such that

[[X(0) = x|l <6 = ||x(#)—x.||<e forallt>0,

where x(f) represents the solution to the differential equation (3.3) with initial con-
dition x(0). Note that this definition does not imply that x(¢) approaches x, as time
increases but just that it stays nearby. Furthermore, the value of 6 may depend on €,
so that if we wish to stay very close to the solution, we may have to start very, very

' The material of this section is adopted from Astrom and Murray [AMO8]
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Figure 3.1: Phase portrait (trajectories in the state space) on the left and time domain sim-
ulation on the right for a system with a single stable equilibrium point. The equilibrium
point x, at the origin is stable since all trajectories that start near x, stay near x,.

close (0 < €). This type of stability is also called stability in the sense of Lyapunov.
If an equilibrium point is stable in this sense and the trajectories do not converge,
we say that the equilibrium point is neutrally stable.

An example of a neutrally stable equilibrium point is shown in Figure 3.1. The
figure shows the set of state trajectories starting at different initial conditions in the
two-dimensional state space, also called the phase plane. From this set, called the
phase portrait, we see that if we start near the equilibrium point, then we stay near
the equilibrium point. Indeed, for this example, given any e that defines the range
of possible initial conditions, we can simply choose 6 = € to satisfy the definition
of stability since the trajectories are perfect circles.

An equilibrium point x, is asymptotically stable if it is stable in the sense of
Lyapunov and also x() — x, as t — co for x(0) sufficiently close to x,. This corre-
sponds to the case where all nearby trajectories converge to the stable solution for
large time. Figure 3.2 shows an example of an asymptotically stable equilibrium
point. Note from the phase portraits that not only do all trajectories stay near the
equilibrium point at the origin, but that they also all approach the origin as ¢ gets
large (the directions of the arrows on the phase portrait show the direction in which
the trajectories move).

An equilibrium point x, is unstable if it is not stable. More specifically, we say
that an equilibrium point x, is unstable if given some € > 0, there does not exist a
6 > 0 such that if ||x(0) — x|| < d, then ||x(7) — x.|| < € for all £. An example of an
unstable equilibrium point is shown in Figure 3.3.

The definitions above are given without careful description of their domain of
applicability. More formally, we define an equilibrium point to be locally stable
(or locally asymptotically stable) if it is stable for all initial conditions x € B,(a),
where

B.(a)={x:|lx—all <r}
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Figure 3.2: Phase portrait and time domain simulation for a system with a single asymp-
totically stable equilibrium point. The equilibrium point x, at the origin is asymptotically
stable since the trajectories converge to this point as t — oo.

is a ball of radius r around a and r > 0. A system is globally stable if it is stable
for all » > 0. Systems whose equilibrium points are only locally stable can have
interesting behavior away from equilibrium points (see [AMO8], Section 4.4).

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called the region of attraction for the equilibrium point. In general,
computing regions of attraction is difficult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable equilibria
that are attracting. This gives partial information about the behavior of the system.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes an attractor. An unstable equilibrium point can be either a
source, if all trajectories lead away from the equilibrium point, or a saddle, if some
trajectories lead to the equilibrium point and others move away (this is the situ-
ation pictured in Figure 3.3). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as the one in Figure 3.1) is called
a center.

Example 3.2 (Bistable gene circuit). Consider a system composed of two genes
that express transcription factors repressing each other as shown in Figure 3.4a.
Denoting the concentration of protein A by x; and that of protein B by x;, and
neglecting the mRNA dynamics, the system can be modeled by the following dif-
ferential equations:

dx Bi dx; B2

At 1+ /Ky 0 a1+ /Ky

Figure 3.4b shows the phase portrait of the system. This system is bistable be-
cause there are two (asymptotically) stable equilibria. Specifically, the trajectories
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Figure 3.3: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium point x, at the origin is unstable since not all trajectories
that start near x, stay near x,. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

converge to either of two possible equilibria: one where x; is high and x, is low
and the other where x| is low and x» is high. A trajectory will approach the first
equilibrium point if the initial condition is below the dashed line, called the sep-
aratrix, while it will approach the second one if the initial condition is above the
separatrix. Hence, the region of attraction of the first equilibrium is the region of
the plane below the separatrix and the region of attraction of the second one is the
portion of the plane above the separatrix. \Y

Nulicline analysis

Nullcline analysis is a simple and intuitive way to determine the stability of an
equilibrium point for systems in R?. Consider the system with x = (x1,x,) € R?
described by the differential equations
% = filx1,x2), % = fo(x1,x2).

The nullclines of this system are given by the two curves in the xj,x> plane in
which fi(x1,x2) =0 and f>(x1,x2) = 0. The nullclines intersect at the equilibria of
the system x,. Figure 3.5 shows an example in which there is a unique equilibrium.

The stability of the equilibrium is deduced by inspecting the direction of the
trajectory of the system starting at initial conditions x close to the equilibrium x,.
The direction of the trajectory can be obtained by determining the signs of f; and
Jf> in each of the regions in which the nullclines partition the plane around the
equilibrium x,. If fj <0 (f; > 0), we have that x; is going to decrease (increase)
and similarly if f> <0 (f> > 0), we have that x; is going to decrease (increase). In
Figure 3.5, we show a case in which f; < 0 on the right-hand side of the nullcline
fi =0and f; > 0 on the left-hand side of the same nullcline. Similarly, we have
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Figure 3.4: (a) Diagram of a bistable gene circuit composed of two genes. (b) Phase por-
trait showing the trajectories converging to either one of the two possible stable equilibria
depending on the initial condition. The parameters are 81 =8> = | uM/min, K| = K> = 0.1
uM, and y = 1 min~!.

chosen a case in which f; < 0 above the nullcline f; = 0 and f; > 0 below the same
nullcline. Given these signs, it is clear from the figure that starting from any point
x close to x, the vector field will always point toward the equilibrium x, and hence
the trajectory will tend toward such equilibrium. In this case, it then follows that
the equilibrium x, is asymptotically stable.

Example 3.3 (Negative autoregulation). As an example, consider expression of
a gene with negative feedback. Let x; represent the mRNA concentration and x»
represent the protein concentration. Then, a simple model (in which for simplicity
we have assumed all parameters to be 1) is given by

dx1 1 dXQ
— = - X1, — =X — X2,
dr  1+x, ! dar T2

so that f1(x1,x2) = 1/(1+x2)—x1 and f>(x1,x2) = x; — x». Figure 3.5a exactly rep-
resents the situation for this example. In fact, we have that

fl(X1,)C2)<0 (=4 X > s fz(xl,X2)<0 [——=4 X2 > X1,

1+xo

which provides the direction of the vector field as shown in Figure 3.5a. As a
consequence, the equilibrium point is stable. The phase portrait of Figure 3.5b
confirms the fact since the trajectories all converge to the unique equilibrium point.

\%
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Figure 3.5: (a) Example of nullclines for a system with a single equilibrium point x,. To
understand the stability of the equilibrium point x,, one traces the direction of the vec-
tor field (fi, f>) in each of the four regions in which the nullclines partition the plane. If
in each region the vector field points toward the equilibrium point, then such a point is
asymptotically stable. (b) Phase portrait for the negative autoregulation example.

Stability analysis via linearization

For systems with more than two states, the graphical technique of nullcline analysis
cannot be used. Hence, we must resort to other techniques to determine stability.
Consider a linear dynamical system of the form

— =Ax, x(0) = xo, (34

where A € R™", For a linear system, the stability of the equilibrium at the origin
can be determined from the eigenvalues of the matrix A:

A(A) ={s € C:det(s] —A) =0}.

The polynomial det(s/ — A) is the characteristic polynomial and the eigenvalues
are its roots. We use the notation A; for the jth eigenvalue of A and A(A) for the
set of all eigenvalues of A, so that A; € A(A). For each eigenvalue A; there is a
corresponding eigenvector v; € C", which satisfies the equation Av; = 4;v;.

In general A can be complex-valued, although if A is real-valued, then for any
eigenvalue 4, its complex conjugate A* will also be an eigenvalue. The origin is al-
ways an equilibrium point for a linear system. Since the stability of a linear system
depends only on the matrix A, we find that stability is a property of the system. For
a linear system we can therefore talk about the stability of the system rather than
the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose system matrices
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are in diagonal form. In this case, the dynamics have the form

A 0
dx A2
— = X. 3.5
7 N (3.5)
0 An
It is easy to see that the state trajectories for this system are independent of each
other, so that we can write the solution in terms of n individual systems x; = 4;x;.
Each of these scalar solutions is of the form

x;(1) = e’l-/'txj(O).

We see that the equilibrium point x, = 0 is stable if 1; < 0 and asymptotically stable
if1;<0.
Another simple case is when the dynamics are in the block diagonal form

g1 w1 0 0
—Ww1 0 0 0
dx ) . )
ar 0 o . : RS
0 0 Om W
0 0 —Wy, On

In this case, the eigenvalues can be shown to be A; = o +iw;. We once again can
separate the state trajectories into independent solutions for each pair of states, and
the solutions are of the form

x2j-1(1) = €77 (x2j-1(0) cos wjt + x2(0) sinw1),

ij(l) = eo—jt(—)Qj_](O) sinwjt+ XZJ'(O) cos wjt),

where j =1,2,...,m. We see that this system is asymptotically stable if and only
if o; =Red; <0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some systems can
be transformed into these forms via coordinate transformations. One such class of
systems is those for which the A matrix has distinct (non-repeating) eigenvalues.
In this case there is a matrix 7 € R™" such that the matrix TAT ! is in (block)
diagonal form, with the block diagonal elements corresponding to the eigenvalues
of the original matrix A. If we choose new coordinates z = T'x, then

L o ri-TAx=TAT™:

dt
and the linear system has a (block) diagonal A matrix. Furthermore, the eigenval-
ues of the transformed system are the same as the original system since if v is an
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eigenvector of A, then w = T'v can be shown to be an eigenvector of TAT~!. We can
reason about the stability of the original system by noting that x(¢) = T~'z(#), and
so if the transformed system is stable (or asymptotically stable), then the original
system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the stabil-
ity of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we make use of the
following theorem, proved in [AMO8]:

Theorem 3.1 (Stability of a linear system). The system

dx

— =Ax
dt

is asymptotically stable if and only if all eigenvalues of A all have a strictly negative

real part and is unstable if any eigenvalue of A has a strictly positive real part.

In the case in which the system state is two-dimensional, that is, x € R2, we have
a simple way of determining the eigenvalues of a matrix A. Specifically, denote by
tr(A) the trace of A, that is, the sum of the diagonal terms, and let det(A) be the
determinant of A. Then, we have that the two eigenvalues are given by

Ao = %(tr(A) = Vir(A2 - 4det(A)).

Both eigenvalues have negative real parts when (i) tr(A) < 0 and (ii) det(A) > 0.

An important feature of differential equations is that it is often possible to de-
termine the local stability of an equilibrium point by approximating the system by
a linear system. Suppose that we have a nonlinear system

dx
o =f(x)

that has an equilibrium point at x,. Computing the Taylor series expansion of the
vector field, we can write

d 0
&< fxe)+ —f (x — x,) + higher-order terms in (x — x,).
dt Oxly,
Since f(x.) =0, we can approximate the system by choosing a new state variable
7= x—Xx, and writing
dz of

— = Az, where A= —

. 3.6
dt O0xly, (3.6)

We call the system (3.6) the linear approximation of the original nonlinear system
or the linearization at x,. We also refer to matrix A as the Jacobian matrix of the
original nonlinear system.
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The fact that a linear model can be used to study the behavior of a nonlinear
system near an equilibrium point is a powerful one. Indeed, we can take this even
further and use a local linear approximation of a nonlinear system to design a feed-
back law that keeps the system near its equilibrium point (design of dynamics).
Thus, feedback can be used to make sure that solutions remain close to the equilib-
rium point, which in turn ensures that the linear approximation used to stabilize it
is valid.

Example 3.4 (Negative autoregulation). Consider again the negatively autoregu-
lated gene modeled by the equations
dx 1 dxy

= —X1, - =x-Xx.
dt  1+x dt

In this case,

X1 —X2

1
f(x)=( EEa )

so that, letting x, = (x1 ., X2.), the Jacobian matrix is given by
1
A= of| _[ 1 ~mrar .
Xe 1 _1

© Ox
It follows that tr(A) = —=2 < 0 and that det(A) = 1+ 1/(1 + xz,e)2 > (. Hence, inde-
pendently of the value of the equilibrium point, the eigenvalues both have negative
real parts, which implies that the equilibrium point x, is asymptotically stable. V

Frequency domain analysis

Frequency domain analysis is a way to understand how well a system can respond
to rapidly changing input stimuli. As a general rule, most physical systems display
an increased difficulty in responding to input stimuli as the frequency of variation
increases: when the input stimulus changes faster than the natural time scales of
the system, the system becomes incapable of responding. If instead the input is
changing much more slowly than the natural time scales of the system, the system
will have enough time to respond to the input. That is, the system behaves like
a “low-pass filter.” The cut-off frequency at which the system does not display a
significant response is called the bandwidth and quantifies the dominant time scale.
To identify this dominant time scale, we can perform input/output experiments in
which the system is excited with periodic inputs at various frequencies. Then, we
can plot the amplitude of response of the output as a function of the frequency of
the input stimulation to obtain the “frequency response” of the system.

Example 3.5 (Phosphorylation cycle). To illustrate the basic ideas, we consider
the frequency response of a phosphorylation cycle, in which enzymatic reactions
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Figure 3.6: (a) Diagram of a phosphorylation cycle, in which Z is the kinase, X is the
substrate, and Y is the phosphatase. (b) Bode plot showing the magnitude M and phase lag

¢ for the frequency response of a one-step reaction model of the phosphorylation system

on the left. The parameters are 8 =y = 0.01 min~!.

are each modeled by a one-step reaction. Referring to Figure 3.6a, we have that the
one-step reactions involved are given by

74X 74X Y+X 2 v+x

with conservation law X + X* = Xj.. Let Yo be the total amount of phosphatase.
We assume that the kinase Z has a time-varying concentration, which we view as
the input to the system, while X™ is the output of the system.

The differential equation model for the dynamics is given by

*

dt

=k Z(t)(Xiot = X*) = ko Vi X~

If we assume that the cycle is weakly activated (X* < Xio), the above equation is

well approximated by
ax* .
o = PZO=yX (3.7
t

where 8 = k1 Xiot and y = kYior. To determine the frequency response, we set the

input Z(#) to a periodic function. It is customary to take sinusoidal functions as the

input signal as they lead to an easy way to calculate the frequency response. Let
then Z(t) = Agpsin(wt).

Since equation (3.7) is linear in the state X* and input Z, it can be directly
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integrated to yield
A ) _ ApBw
X*(t) = _AB sin(wr —tan™ N (w/y)) - %e v
w?+y? (W +y%)

The second term dies out for ¢ large enough. Hence, the steady state response
is given by the first term. In particular, the amplitude of response is given by
Ao B/ \Jw?* +72, in which the gain 8/ \/w? +y? depends both on the system param-
eters and on the frequency of the input stimulation. As the frequency of the input
stimulation w increases, the amplitude of the response decreases and approaches
zero for very high frequencies. Also, the argument of the sine function shows a
negative phase shift of tan~!(w/y), which indicates that there is an increased lag
in responding to the input when the frequency increases. Hence, the key quantities
in the frequency response are the magnitude M(w), also called gain of the system,
and phase lag ¢(w) given by

B

These are plotted in Figure 3.6b, a type of figure known as a Bode plot.

The bandwidth of the system, denoted wp, is the frequency at which the gain
drops below M(0)/ V2. In this case, the bandwidth is given by wp =y = k2 Yiots
which implies that the bandwidth of the system can be made larger by increasing
the amount of phosphatase. However, note that since M(0) = 5/y = k1 Xtot/ (k2 Yiot)s
increased phosphatase will also result in decreased amplitude of response. Hence,
if we want to increase the bandwidth of the system while keeping the value of
M (0) (also called the zero frequency gain) unchanged, one should increase the total
amounts of substrate and phosphatase in comparable proportions. Fixing the value
of the zero frequency gain, the bandwidth of the system increases with increased
amounts of phosphatase and substrate. \Y

M(w) = P(w) = —tan”! (%)

More generally, the frequency response of a linear system with one input and
one output

X =Ax+ Bu, y =Cx+Du

is the response of the system to a sinusoidal input # = a sin wt with input amplitude
a and frequency w. The transfer function for a linear system is given by

Gyu(s) = C(sI-A)'B+D

and represents the steady state response of a system to an exponential signal of the
form u(t) = e*" where s € C. In particular, the response to a sinusoid u = asinwt is
given by y = Masin(wt + ¢) where the gain M and phase lag ¢ can be determined



equilibria.tex, v5732 2014-06-14 01:16:58Z (murray)

3.1. ANALYSIS NEAR EQUILIBRIA 101

from the transfer function evaluated at s = iw:

M(w) = |Gy, (iw)] = \/ Im(Gyu(iw))* + Re(Gyu(iw))?,

(G, (iw))
Re(Gy,(iw)) ) ’

Gyu(iw) = Mei¢,
P(w) = tan™! (

where Re(-) and Im(-) represent the real and imaginary parts of a complex number.
For finite dimensional linear (or linearized) systems, the transfer function can be
written as a ratio of polynomials in s:

The values of s at which the numerator vanishes are called the zeros of the transfer
function and the values of s at which the denominator vanishes are called the poles.

The transfer function representation of an input/output linear system is essen-
tially equivalent to the state space description, but we reason about the dynamics
by looking at the transfer function instead of the state space matrices. For example,
it can be shown that the poles of a transfer function correspond to the eigenval-
ues of the matrix A, and hence the poles determine the stability of the system.
In addition, interconnections between subsystems often have simple representa-
tions in terms of transfer functions. For example, two systems G| and G, in series
(with the output of the first connected to the input of the second) have a combined
transfer function Geies(s) = G1(5)Ga(s), and two systems in parallel (a single in-
put goes to both systems and the outputs are summed) has the transfer function
Gparallel(s) = G1(s) +Gas).

Transfer functions are useful representations of linear systems because the prop-
erties of the transfer function can be related to the properties of the dynamics. In
particular, the shape of the frequency response describes how the system responds
to inputs and disturbances, as well as allows us to reason about the stability of
interconnected systems. The Bode plot of a transfer function gives the magnitude
and phase of the frequency response as a function of frequency and the Nyquist
plot can be used to reason about stability of a closed loop system from the open
loop frequency response ([AMO8], Section 9.2).

Returning to our analysis of biomolecular systems, suppose we have a system
whose dynamics can be written as

X = f(x,0,u)

and we wish to understand how the solutions of the system depend on the param-
eters 6 and input disturbances u. We focus on the case of an equilibrium solution
x(t;x0,600) = Xx,. Let z = x— x,, it = u—up and 6 = @ — 6 represent the deviation of
the state, input and parameters from their nominal values. Linearization can be per-
formed in a way similar to the way it was performed for a system with no inputs.
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Specifically, we can write the dynamics of the perturbed system using its lineariza-
tion as

dt - \0x )y, o) ) s, 0.0

This linear system describes small deviations from x, (6, uo) but allows @ and ii to
be time-varying instead of the constant case considered earlier.

To analyze the resulting deviations, it is convenient to look at the system in the
frequency domain. Let y = Cx be a set of values of interest. The transfer functions
between @, ii and y are given by

(%]
90 (xe,00,10)

G,j(s)=C(sI-A) "By, Gya(s)=C(sI-A)"'B,

where

_of

- b
0x | (x,.00.u0)

_of
00 l(x,.00.0)

_ U

A = .
Y ou (xe,00,t0)

By B
Note that if we let s = 0, we get the response to small, constant changes in
parameters. For example, the change in the outputs y as a function of constant

changes in the parameters is given by
G,5(0) = —CA™'By.

Example 3.6 (Transcriptional regulation). Consider a genetic circuit consisting of
a single gene. The dynamics of the system are given by

dm dP

E:F(P)—ém, E:Km—yP,

where m is the mRNA concentration and P is the protein concentration. Suppose
that the mRNA degradation rate ¢ can change as a function of time and that we
wish to understand the sensitivity with respect to this (time-varying) parameter.
Linearizing the dynamics around the equilibrium point (m,, P,) corresponding to a
nominal value ¢y of the mRNA degradation rate, we obtain

_ _50 F/(Pe) | —me
a5 T ] 5

For the case of no feedback we have F(P) = @ and F’(P) = 0, and the system has
the equilibrium point at m, = a@/dy, P. = ka/(ydp). The transfer function from ¢ to
P, after linearization about the steady state, is given by

—KM,

ol _
Or) = s+
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Figure 3.7: Attenuation of perturbations in a genetic circuit with linearization given by
equation (3.8). The parameters of the closed loop system are given by a = 800 uM/s,
ap = 5x 107 uMys, y = 0.001 s~!, 6o = 0.005 s, k =0.02 s™!, n =2, and K = 0.025
uM. For the open loop system, we have set @ = P,d¢/(«/y) to make the steady state values
of open loop and closed loop systems the same.

where “ol” stands for open loop. For the case of negative regulation, we have

o
F(P)= ———+
B = gy T
and the resulting transfer function is given by
Pn—l K"
Giols) = e o ppy = ol T
(s+60)(s+7y)+ko (1+ PI/K™)?

where “cl”” stands for closed loop.

Figure 3.7 shows the frequency response for the two circuits. To make a mean-
ingful comparison between open loop and closed loop systems, we select the pa-
rameters of the open loop system such that the equilibrium point for both open loop
and closed loop systems are the same. This can be guaranteed if in the open loop
system we choose, for example, @ = P.6y/(k/y), in which P, is the equilibrium
value of P in the closed loop system. We see that the feedback circuit attenuates
the response of the system to perturbations with low-frequency content but slightly
amplifies perturbations at high frequency (compared to the open loop system). V

3.2 Robustness

The term “robustness” refers to the general ability of a system to continue to func-
tion in the presence of uncertainty. In the context of this text, we will want to be
more precise. We say that a given function (of the circuit) is robust with respect
to a set of specified perturbations if the sensitivity of that function to perturba-
tions is small. Thus, to study robustness, we must specify both the function we are
interested in and the set of perturbations that we wish to consider.
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In this section we study the robustness of the system

d
?); = f(x,6,u0),  y=h(x6)

to various perturbations in the parameters 6 and disturbance inputs «. The function
we are interested in is modeled by the outputs y and hence we seek to understand
how y changes if the parameters 6 are changed by a small amount or if external
disturbances u are present. We say that a system is robust with respect to these
perturbations if y undergoes little change as these perturbations are introduced.

Parametric uncertainty

In addition to studying the input/output transfer curve and the stability of a given
equilibrium point, we can also study how these features change with respect to
changes in the system parameters 6. Let y. (6, ug) represent the output correspond-
ing to an equilibrium point x, with fixed parameters 6p and external input ug, so
that f(x.,6p,up) = 0. We assume that the equilibrium point is stable and focus here
on understanding how the value of the output, the location of the equilibrium point,
and the dynamics near the equilibrium point vary as a function of changes in the
parameters 6 and external inputs u.

We start by assuming that # = 0 and investigate how x, and y, depend on 6; we
will write f(x,6) instead of f(x,6,0) to simplify notation. The simplest approach
is to analytically solve the equation f(x,,6y) = O for x, and then set y, = h(x.,6p).
However, this is often difficult to do in closed form and so as an alternative we
instead look at the linearized response given by

dxe = e

N , 9=
040 g, T

b
0o

which are the (infinitesimal) changes in the equilibrium state and the output due
to a change in the parameter. To determine S,y we begin by differentiating the
relationship f(x.(0),0) = 0 with respect to 6:

df _ofdx. of _dxe __(0f\" of
do Ox do 09 T do - \ox] oo

S x,0

(3.9)

(xe,6p) .

Similarly, we can compute the output sensitivity as
_dye _Ohdx, 0h__(0h(of\" o oh
T ap " oxde 90~ |ox\ox) a6 96
(xe,00)

These quantities can be computed numerically and hence we can evaluate the effect
of small (but constant) changes in the parameters 6 on the equilibrium state x, and
corresponding output value y,.
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A similar analysis can be performed to determine the effects of small (but con-
stant) changes in the external input u. Suppose that x, depends on both 6 and u,
with f(xe,6p,up) = 0 and 0y and u( representing the nominal values. Then

dx,
de

dx,

9
(xe.b0,u0) du

_ _(af)‘l of _ _(af)‘l of
(6.0 dx) 96 (Bo.10) ox] Ou
The sensitivity matrix can be normalized by dividing the parameters by their

nominal values and rescaling the outputs (or states) by their equilibrium values. If
we define the scaling matrices

(xe,00,u0)

D* =diaglx,}, D’ =diagly.},  D’=diag{6},
then the scaled sensitivity matrices can be written as
Sro=D*)"'S oD, §y0=(D")"'S,D’. (3.10)

The entries in these matrices describe how a fractional change in a parameter gives
a fractional change in the state or output, relative to the nominal values of the
parameters and state or output.

Example 3.7 (Transcriptional regulation). Consider again the case of transcrip-
tional regulation described in Example 3.6. We wish to study the response of the
protein concentration to fluctuations in its parameters in two cases: a constitutive
promoter (open loop) and self-repression (closed loop).

For the case of open loop we have F(P) = a, and the system has the equilibrium
point at m, = @ /9, P, = ka/(yd). The parameter vector can be taken as 6 = (a, , «,y)
and the state as x = (m, P). Since we have a simple expression for the equilibrium
concentrations, we can compute the sensitivity to the parameters directly:

o _(4 -5 0 0
9 3 —w % Top)

where the parameters are evaluated at their nominal values, but we leave off the
subscript 0 on the individual parameters for simplicity. If we choose the parame-
ters as 6y = (0.00138,0.00578,0.115,0.00116), then the resulting sensitivity matrix
evaluates to

(3.11)

open _ 173 —42 0 0
%0 17300 —4200 211 -21100])°

If we look instead at the scaled sensitivity matrix, then the open loop nature of the
system yields a particularly simple form:

copen _ (1 =1 0 0
Sif;:[l 0 _1]. (3.12)
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In other words, a 10% change in any of the parameters will lead to a comparable
positive or negative change in the equilibrium values.
For the case of negative regulation, we have

F(P)= @o,

o
—_—+
1+ (P/K)"
and the equilibrium points satisfy

oy

Y a0 =6m, = Lp,. (3.13)
K

o
me=le TrpR T
In order to make a proper comparison with the previous case, we need to choose the
parameters so that the equilibrium concentrations m,, P, match those of the open
loop system. We can do this by modifying the promoter strength « and/or the RBS
strength, which is proportional to «, so that the second formula in equation (3.13)
is satisfied or, equivalently, choose the parameters for the open loop case so that
they match the closed loop steady state protein concentration (see Example 2.2).

Rather than attempt to solve for the equilibrium point in closed form, we instead
investigate the sensitivity using the computations in equation (3.13). The state,
dynamics and parameters are given by

F(P)—om

x:(m P), f(x’g):[Km—yP]’ 9:(&0 O K v a n K).
Note that the parameters are ordered such that the first four parameters match the

open loop system. The linearizations are given by

of _ (-6 F'(P.) of (1 -me O O OF/da OF/on OF/0K
ox | B -y |’ M |0 0 m, -P, 0 0 0o |’

where again the parameters are taken to be at their nominal values and the deriva-
tives are evaluated at the equilibrium point. From this we can compute the sensi-
tivity matrix as

Y ym __mF’ PF’ _ yOF[da _ yOF|on _ yOF|dK

S _ y6—«kF’'  y6—kF’ yo—kF’'  yo—kF’ yo—kF’ y6—kF’ yo—kF’
X0 = K Km __bm 6P __kOF[day  _kdF[On  _ kdF/OK |’

y6—«kF'  y6—«kF’ yo—kF’'  yo—kF’ yo—kF’ yo—kF’ yo—kF’

where F/ = 0F/0P and all other derivatives of F' are evaluated at the nominal
parameter values and the corresponding equilibrium point. In particular, we take
nominal parameters as 6 = (5- 1074,0.005,0.115,0.001, 800, 2,0.025).

We can now evaluate the sensitivity at the same protein concentration as we use
in the open loop case. The equilibrium point is given by

o [me) _ (0239
¢ \p.) T | 239
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and the sensitivity matrix is
gelosed 76 -18 -1.15 115 0.00008 -0.45 5.34
Xe 0 7611 —-1816 90  -9080. 0.008 —-45 534"

The scaled sensitivity matrix becomes

X,

scloed  [0-159 044 —0.56 0.56 028 -3.84 056
0.159 —044 044 -044 028 -3.84 0.56

] . (3.14)

Comparing this equation with equation (3.12), we see that there is reduction in the
sensitivity with respect to most parameters. In particular, we become less sensitive
to those parameters that are not part of the feedback (columns 2—4), but there is
higher sensitivity with respect to some of the parameters that are part of the feed