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Preface

This text serves as a supplemenfaedback Systenty Astrom and Murray {]
(refered to throughout the text as AM08) and is intended for reseesdhterested

in the application of feedback and control to biomolecular systems. The @sxt h
been designed so that it can be used in parallel Rédback Systenas part of a
course on biomolecular feedback and control systems, or as a stamdeflerence
for readers who have had a basic course in feedback and contooy.tfigne full
text for AM08, along with additional supplemental material and a copy ofethes
notes, is available on a companion web site:

http://www.cds.caltech.edu/~murray/amwiki/BFS

The text is intended to be useful to three overlapping audiences: deastua
dents in biology and bioengineering interested in understanding the roéedf f
back in natural and engineered biomolecular systems; advanced radietps
and graduate students in engineering disciplines who are interested thfdersd-
back in biological circuit design; and established researchers in thadlogical
sciences who want to explore the potential application of principles andftoats
control theory to biomolecular systems. We have written the text assuming some
familiarity with basic concepts in feedback and control, but have tried toigeov
insights and specific results as needed, so that the material can be legpaeal-
lel. We also assume some familiarity with cell biology, at the level of a first @urs
for non-majors. The individual chapters in the text indicate the preisggs in
more detail, most of which are covered either in AM08 or in the supplemental
information available from the companion web site.


http://www.cds.caltech.edu/~murray/amwiki/BFS
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Notation

This is an internal chapter that is intended for use by the authors in fixinptiae
tion that is used throughout the text. In the first pass of the book we acgating
several conflicts in notation and the notes here may be useful to earlyafdbe
text.

Protein dynamics

For a gene ‘genX’, we writgenXfor the gene, ., for the mRNA and GenX
for the protein when they appear in text or chemical formulas. We usessuijpgs
to differentiate between isomers, sgem( might be used to refer to mature RNA

or GenX to refer to the folded versions of a protein, if required. Mathematical
formulas use the italic version of the variable name, but roman font for the ge
isomeric state. The concentration of mRNA is written in text or formulasg@sx
(m*g‘enxfor mature) and the concentration of proteirpgsnx (pfgenx for folded). The
same naming conventions are used for common /geoiein combinations: the
mMRNA concentration ofetRis m_,., the concentration of the associated protein is
Pretr @Nd parameters argeir, dtetr, €1tC.

For generic genes and proteins, use X to refer to a protejrtpmefer to the
MRNA associated with that protein ardo refer to the gene that encodes X. The
concentration of X can be written either s py or [X], with that order of pref-
erence. The concentration of,man be written either asy (preferred) or [m].
Parameters that are specific to g@nare written with a subscripted py, Jp, etc.
Note that although the protein is capitalized, the subscripts are lower @ase (s
dexed by the gene, not the protein) and also in roman font (since theyotige
variable).

The dynamics of protein production are given by

dm, dpP
ot = apo —HMp —YpMp, at = BpMp — P —6pP,

whereay is the (basal) rate of productiom, parameterizes the rate of dilution
and degradation of the mRNAJYB; is the kinetic rate of protein productiop,is

the growth rate that leads to dilution of concentrations@hrameterizes the rate

of degradation of the protein P. Since dilution and degradation enter in a similar
fashion, we use =y +u ands = 6 + u to represent the aggregate degradation and
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dilution rate. If we are looking at a single gépeotein, the various subscripts can
be dropped.
When we ignore the mRNA concentration, we write the simplified protein dy-
namics as 4P
gt = Pro— 0P,
Assuming that the mRNA dynamics are fast compared to protein production, the
the constang, o is given by

p
ﬁp,o =ﬁp_-
a’p,o

For regulated production of proteins using Hill functions, we modify the-con
stitutive rate of production to b&(Q) instead ofwp or Bp as appropriate. The
Hill function is written in the form

Fog(Q) = _ %a
p.q - Kp,q + an,q :
The notation fol mirrors that of transfer function&;, 4 represents the inplatutput
relationship between inp@ and outpuP (rate). The comma can be dropped when
the genes in question are single letters:

F _
pq(Q) = qu+ anq.

The subscripts can be dropped completely if there is only one Hill functiosen u

Chemical reactions

We write the symbol for a chemical species A using roman type. The number of
molecules of a species A is written ag The concentration of the species is oc-
casionally written as [A], but we more often use the nota#oras in the case of
proteins, orx,. For a reaction A B «— C, we use the notation

f

RI: A+Bomc 96 k[, AB-K.,C

K, dt
This notation is primarily intended for situations where we have multiple reactions
and need to distinguish between manffatient constants. For a small number of
reactions, the reaction number can be dropped or replaced with a sini\l;l(ek@ig
k], etc).

It will often be the case that two species A and B will form a covalent bond,
in which case we write the resulting species as AB. We will distinguish covalent
bonds from much weaker hydrogen bonding by writing the latter as A:Bllfiima
some situations we will have labeled section of DNA that are connected togethe
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which we write as A-B, where here A represents the first portion of the DNA
strand and B represents the second portion. When describing (sitrgliejls of
DNA, we write A to represent the Watson-Crick complement of the strand A.
Thus A-B:B’—A’ would represent a double stranded length of DNA with domains
A and B.

The choice of representing covalent molecules using the convential cilemic
notation AB can lead to some confusion when writing the reaction dynamics using
A andB to represent the concentrations of those species. Namely, the syBbol
could represent either the concentration of A times the concentration otligor
concentration of AB. To remove this ambiguity, when using this notation we write
[A][B] as A-B.

When working with a system of chemical reactions, we wrijté S 1,...,nfor
the species and;Rj = 1,...,mfor the reactions. We writs; to refer to the molecu-
lar count for speciesandx; = [Si] to refer to the concentration of the species. The
individual equations for a given species are written

Missing. Figure out notation here. BST?
The collection of reactions are written as
X = NwWX,6), X = NijVj(X, 0),

wherex; is the concentration of species 8 € R™™ is the stochiometry matrix;;

is the reaction flux vector for reactign andé is the collection of parameters that
the define the reaction rates. Occassionaly it will be useful to write thesflage
polynomials, in which case we use the notation

Vj(X,0) = Z Ejk l_[ XIEljk
k |

whereEj is the rate constant for thth term of thejth reaction anckljk is the
stochiometry cofficient for the species;.

Generally speaking, céigcients for propensity functions and reation rate con-
stants are written using lower casg, i, etc). Two exceptions are the dissociation
constant, which we write aky, and the Michaelis-Menten constant, which we
write asKp.

Figures

In the public version of the text, certain copyrighted figures are missing fild:
names for these figures are listed and the figures can be looked up itidiagrfg
references:

e Cou®8 - Mechanisms in Transcriptional Regulatibg A. J. Courey 17]


Cou08

X CONTENTS

e GNM93 - J. Greenblatt, J. R. Nodwell and S. W. Mas@a8][

e Mad®7 - From a to alpha: Yeast as a Model for Cellular f&@rentiationby
H. Madhani pQ|

e MBoC - The Molecular Biology of the Celly Alberts et al. 2]
e PKTO8 - Physical Biology of the Ce[b9]

The remainder of the filename lists the chapter and figure number.


GNM93
Mad07
MBoC
PKT08

Chapter 1

Introductory Concepts

This chapter provides a brief introduction to concepts from systems bidioglg

from control theory, and approaches to modeling, analysis and defdigmmeolec-

ular feedback systems. We begin with a discussion of the role of modelialy;an

sis and feedback in biological systems, followed by an overview of basicapts

from cell biology, focusing on the dynamics of protein production androbrT his

is followed by a short review of key concepts and tools from controldymamical
systems theory, intended to provide insight into the main methodology described
in the text. Finally, we give a brief introduction to the field of synthetic biology,
which is the primary topic of the latter half of the text.

1.1 Systems Biology: Modeling, Analysis and the Role of
Feedback

At a variety of levels of organization—from molecular to cellular to organismal—
biology is becoming more accessible to approaches that are commonly used in
engineering: mathematical modeling, systems theory, computation and abptract
proaches to synthesis. Conversely, the accelerating pace of digdoveological
science is suggesting new design principles that may have important praptica
plications in man-made systems. This synergy at the interface of biologyrand e
gineering dfers unprecedented opportunities to meet challenges in both areas. The
guiding principles of feedback and control are central to many of thegkes-
tions in biological engineering and can play a enabling role in understariténg
complexity of biological systems.

In this section we summarize our view on the role that modeling and analysis
should (eventually) play in the study and understanding of biological sstend
discuss some of the ways in which an understanding of feedback primaiddel-
ogy can help us better understand and design complex biomolecular ciftgts.
are a wide variety of biological phenomena that provide a rich sourceamhples
for control, including gene regulation and signal transduction; hormanaiuno-
logical, and cardiovascular feedback mechanisms; muscular contrébeomo-
tion; active sensing, vision, and proprioception; attention and conswsasand
population dynamics and epidemics. Each of these (and many more) pr@vide o
portunities to figure out what works, how it works and what can be dorafect
it. Our focus here is at the molecular scale, but the principles and aptitaiove
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describe can also be applied at larger time and length scales.

Modeling and analysis

Over the past several decades, there have been huge advancelimgcapabil-

ities for biological systems that have provided new insights into the complex inter
actions of the molecular-scale processes that implement life. Reducaedrarde

eling has become commonplace as a mechanism for describing and documenting
experimental results and high-dimensional stochastic models can now betsiinula

in reasonable periods of time to explore underlying stochatcts. Coupled with

our ability to collect large amounts of data from flow cytometry, micro-arra}-an

ysis, single-cell microscopy and other modern experimental techniquiesnder-
standing of biomolecular processes is advancing at a rapid pace.

Unfortunately, although models are becoming much more common in biolog-
ical studies, they are still far from playing the central role in explaining derp
biological phenomena. Although there are exceptions, the predomirexot n®d-
els is to “document” experimental results: a hypothesis is proposed and tesste
ing careful experiments, and then a model is developed to match the expelimen
results and help demonstrate that the proposed mechanisms can lead to the ob-
served behavior. This necessarily limits our ability to explain complex phenmmen
to those for which controlled experimental evidence of the desired phereoocas
be obtained.

This situation is much dierent than what is standard practice in the physi-
cal sciences and engineering. In those disciplines, experiments aireetpused
to help build models for individual components at a variety of levels of detalil,
and then these component-level models are interconnected to obtain a texstem-
model. This system-level model, carefully built to capture the appropriatedéve
detail for a given question or hypothesis, is used to explain, predicsystdmati-
cally analyze the behaviors of a system. Because of the ways in which nzodels
viewed, it becomes possible to prove (or invalidate) a hypothesis throwadfisis
of the model, and the fidelity of the models is such that decisions can be made
based on them. Indeed, in many areas of modern engineering—includitipeiec
ics, aeronautics, robotics and chemical processing, to name a few—nptaiets
primary role in the understanding of the underlying physicg@nchemistry, and
these models are used in predictive ways to explore design ffadaal failure
scenarios.

A key element in the successful application of modeling in engineering dis-
ciplines is the use ofeduced-order modelthat capture the underlying dynamics
of the system without necessarily modeling every detail of the underlyindiimec
anisms. The generation of these reduced-order models, either dirextiydnta
or through analytical or computational methods, is critical in tfieative applica-
tion of modeling since modeling of the detailed mechanisms produces high fidelity
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models that are too complicated to use with existing tools for analysis and design.
One area in which the development of reduced order models is fairly egdasin
control theory, where inpfdutput models such as transfer functiotis flescribing
functions B2], Volterra series42] and behavioral model$[] are used to capture
structured representations of dynamics at the appropriate level of fifialithe

task at hand.

While developing predictive models and corresponding analysis toolsdbr b
ogy is much more diicult, it is perhaps even more important that biology make
use of models, particularly reduced-order models, as a central elefhenter-
standing. Biological systems are by their nature extremely complex and ean be
have in counter-intuitive ways. Only by capturing the many interacting é&spéc
the system in a formal model can we ensure that we are reasoning Igrapeut
its behavior, especially in the presence of uncertainty. To do this will recuuib-
stantial €fort in building models that capture the relevant dynamics at the proper
scales (depending on the question being asked) as well as building aticahaly
framework for answering questions of biological relevance.

The good news is that a variety of new techniques, ranging from expaisme
to computation to theory, are enabling us to explore new approaches to ngodelin
that attempt to address some of these challenges. In this text we focus usethe
of a relevant classes of reduced-order models that can be usedttweca@ny
phenomena of biological relevance.

Input/output formalisms for biomolecular modeling

A key challenge in developing models for any class of problems is the seleftion
an appropriate mathematical framework for the models. Among the featutes tha
we believe are important for a wide variety of biological systems are captthven
temporal response of a biomolecular system to various inputs and umakngta
how the underlying dynamic behavior leads to a given phenotypes. Thelsnode
should reflect the subsystem structure of the underlying dynamicansystel-
low prediction of results, but need not necessarily be mechanisticallyatecat
a detailed biochemical level. We are particularly interested in those probleins tha
include a number of molecular “subsystems” that interact with each othéis@n
our models should support a level of modularity (with the additional advardfg
allowing multiple groups to develop detailed models for each module that can be
combined to form more complex models of the interacting components). Since we
are likely to be building models based on high-throughput experiments, itds als
key that the models capture the measurable outputs of the systems.

For many of the systems that we are interested in, a good starting point is to
use reduced-order models consisting of nonlineffiedintial equations, possible
with some time delay. In this setting, the model of a given compoinierd multi-
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component system might be modeled usingféedential equation of the form
K= AX +N (X, Ly 0)+ B'U + F'w,
y =C'X+Hv  yit)=y(@t-7).

The internal state of the subsystem is captured by the sta&"™, which might
capture the concentrations of various species and complexes as wétkeasne
ternal variables required to describe the dynamics. The “outputs” ofyiiters,
which describe those species (or other quantities) that interact with athsys
tems in the cell is captured by the variaples RP. The internal dynamics consist
of a set of linear dynamicsA{X) as well as nonlinear terms that depend both on
the internal state and the state of other subsyst&(s)}, whered is a set of pa-
rameters that represent the context of the system (described in morebeéiai).

We also allow for the possibility of time delays (due to folding, transport orrothe
processes) and writg' for the “functional” output seen by other subsystems.

The coupling between subsystems is captured using a weighted grapse who
elements are represented by thefioentsL! of an interconnection matrik. In
the simplest version of the model, we simply combin@edent outputs from other
modules in some linear combination to obtain the “inmjts'f*j (summation over
repeated indices is assumed). More general interconnections aitdgaesluding
allowing multiple outputs from dierent subsystems to interact in nonlinear ways
(such as one often sees on combinatorial promoters in gene regulateorke.

Finally, in addition to the internal dynamics and nonlinear coupling, we sepa-
rately keep track of external inputs to the subsystBhd'), stochastic disturbances
(F'w') and measurement noisid'(/). We treat the external inputs as determinis-
tic variables (representing inducer concentrations, nutrient levels, tatops, etc)
and the disturbances and noigeandv' as random processes (representing extrin-
sic and intrinsic stochasticity). If desired, the mappings from the variougsrp
the states an outputs, represented by the matBc€sandH can also depend on
the system state (resulting in additional nonlinearities).

This particular structure is useful because it captures a large humineodf
eling frameworks in a single formalism. In particular, mass action kinetics and
chemical reaction networks can be represented by equating the stoiclyionaetr
trix with the interconnection matrix. and using the nonlinear terms to capture
the fluxes, withd representing the rate constants. We can also represent typical
reduced-order models for transcriptional regulatory networks by letti@gonlin-
ear functiondN' represent various types of Hill functions and including tHeets
of mMRNA/protein production, degradation and dilution through the linear dynam-
ics. These two classes of systems can also be combined, allowing a vezgsxe
set of dynamics that is capable of capturing many relevant phenomenigiesin
in molecular biology.

Figurel.1shows a graphical representation of this structure applied to a set of
M subsystems, where for simplicity, we omit the stochastic disturbances and mea-

(1.1)
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System Dynamics

External inputs Observed outputs
u — Pl(s) O y
0 PM(s)
A
Unmodeled Dynamics N(-) f~— 20
Crosstalk )
Nonlinear
A Couping
(2 L
\Z/

Interconnection Matrix

Figure 1.1: Modeling framework. The dynamics consist of aogdinear dynamics, rep-
resented by the multi-input, multi-output transfer funatP(s), a static nonlinear map
and an interconnection matrix. Uncertainty is represented as unmodeled dynamics
crosstalkA and system context The inputs and outputs to the system are denoted by
andy.

surement noise. The linear dynamics of the system are captured viadghbericy
response (represented in the diagram by its Laplace transR§gh, The intercon-
nection matrixL is a matrix that takes outputs from the individual subsystems as
outputs and provides linear combinations of these variables as potentitd topu
the nonlinear maps represented Wy This graphical representation makes more
evident the role of feedback through the interconnection matrix

In addition to the nominal dynamics described in equatiof)( two other fea-
tures are present in Figuiel The first is the uncertainty operatar attached to
the linear dynamics block. This operator represents both parametrictainter
in the dynamics as well as unmodeled dynamics that have known (timescale de-
pendent) bounds. Tools for understanding this class of uncertaintgvaiable
for both linear and nonlinear control systems and allow stability and perfarena
analyses in the presence of uncertainty. A similar taris included in the inter-
connection matrix and represents “crosstalk” between subsystems. \kisiie @
tools in distributed control systems do not formally handle crosstalk, we keliev
that it will be important to capture itdfects and that it will be possible to use tools
similar to those developed in control theory to analyze them.

One of the appealing features of this particular structure is that variarits of
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are well studied and characterized in the control and dynamical systerasureer

For example, theféect of the nonlinearities can be studied using the method of
harmonic balancedb] or the related technique of describing functions (see Sec-
tion 3.6). Describing function analysis allows prediction of stability boundaries
and the onset of limit cycles, as well as some characterization of robasgies
ilarly, in the absence of the nonlinearities and with simplifying assumptions on
the linear dynamics, thefect of the interconnection topology can be captured by
investigating the location of the eigenvalues of the graph Lapldci@).

Despite being a well-studied class of systems, there are still many open ques-
tions with this framework, especially in the context of biomolecular systems. For
example, a rigorous theory of théfects of crosstalk, the role of context on the
nonlinear elements, and combining thEeets of interconnection, uncertainty and
nonlinearity is just emerging. Adding stochastiteets, either through the distur-
bance and noise terms, initial conditions or in a more fundamental way, is also
largely unexplored. And the critical need for methods for performing moslel
duction in a way that respects of the structure of the subsystems has oahglye
begun to be explored. Nonetheless, many of these research direatohsiag
pursued and we attempt to provide some insights in this text into the underlying
techniques that are available.

Dynamic behavior and phenotype

One of the key needs in developing a more systematic approach to the usd-of mo
els in biology is to become more rigorous about the various behaviors thahar
portant for biological systems. One of the key concepts that needs torbalized
is the notion of “phenotype”. This term is often associated with the existefrare o
equilibrium point in a reduced-order model for a system, but clearly mmrgotex
(non-equilibrium) behaviors can occur and the “phenotypic resparfsg’system
to an input may not be well-modeled by a steady operating condition. Even more
problematic is determining which regulatory structures are “active” in angives-
notype (versus those for which there is a regulatory pathway that isaseduaind
hence not active).

In the context of the modeling framework described in equatiof) @nd Fig-
ure 1.1, it is possible to consider a working definition of phenotype in terms of
the patterns of the dynamics that are present. In the simplest case, cgnsistin
operation near equilibrium points, we can look at tifedive gain of the dferent
nonlinearities as a measure of which regulatory pathways are “activejivea
state. Consider, for example, labeling each nonlinearity in a system asdittfiag
on, off or active A nonlinearity that is on or fb represents one in which changes
of the input produce very small deviations in the output, such as thosecitat at
very high or low concentrations in interactions modeled by a Hill function. &n a
tive nonlinearity is one in which there is a proportional response to clsanghe
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input, with the slope of the nonlinearity giving th&ective gain. In this setting, the
phenotype of the system would consist of both a description of the nononal ¢
centrations of the measurable specisa6 well as the state of each nonlinearity
(on, df, active).

For more complex phenotypes, where the subsystems are not at a speady o
erating point, one can consider the temporal patterns that are exhibitad@tss
points in Figurel.l This could correspond to traditional modal patterns such as
those that are obtained via either principle component analysis or bal&noed-
tion (the latter being a generalization of the former), or temporal patterregaf r
lation represented in the nonlinearities. Extending these ideas to conséheyesh
in context and changes in input combinations is harder still, but the struafttire
proposed representation presents several starting points for digriora

Additional types of analysis that can be applied to systems of this form include
sensitivity analysis (dependence of solution properties on selecteug@ians), un-
certainty analysis (impact of disturbances, unknown parameters andletedaly-
namics), bifurcation analysis (changes in phenotype as a function dof leyals,
context or parameters) and probabilistic analysis (distributions of statefuas-
tion of distributions of parameters, initial conditions or inputs). In each asehe
cases, there is a need to extend existing tools to exploit the particular stroftur
the problems we consider, as well as modify the techniques to providemetet@
biological questions.

Stochastic behavior
The role of feedback

One may view life in a cell as a huge “wireless” network of interactions among
proteins, DNA, and smaller molecules involved in signaling and energy tads
a large system, the external inputs to a cell include physical signals (Uaticad
temperature) as well as chemical signals (drugs, hormones, nutrig¢stsiitputs
include chemicals thatfiect other cells. Each cell can be thought of, in turn, as
composed of a large number of subsystems involved in cell growth, maimggnan
division and death. A typical diagram describing this complex set of inferacis
shown in Figurel.2

The study of cell networks leads to the formulation of a large number of ques
tions, some of which we have already alluded to above. For example, wdyz-is
cial about the information-processing capabilities, or ifgutput behaviors, of
such biological networks? What “modules” appear repeatedly in cellidaals
ing cascades, and what are their system-theoretic properties? loveirsyerse
engineering” issues include the estimation of system parameters (sucttsire
constants) as well as the estimation of state variables (concentration ahprote
RNA, and other chemical substances) from iriputput experiments.

One can also attempt to better understand the temporal properties of thesvario
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Figure 1.2: The wiring diagram of the growth signaling citgu of the mammalian
cell [35].

cascades and feedback loops that appear in cellular signaling net\Ryrksmi-

cal properties such as stability and existence of oscillations in such netaozk

of interest, and techniques from control theory such as the calculaticvbost-
ness margins will likely play a central role in the future. At a more speculative
(but increasingly realistic) level, one wishes to study the possibility of usimg c
trol strategies (both open and closed loop) for therapeutic purpasgsas drug
dosage scheduling.

From a theoretical perspective, feedback serves to minimize uncertaidty a
increase accuracy in the presence of noise. The cellular environmexttésnely
noisy in many ways, while at the same time variations in levels of certain chemi-
cals (such as transcriptional regulators) may be lethal to the cell. Fdeltimps
are omnipresent in the cell and help regulate the appropriate variatioaediti-
mated, for example, that i&. coliabout 40% of transcription factors self-regulate.
One may ask whether the role of these feedback loops is indeed thatucfngd
variability, as expected from principles of feedback theory. Recerit tested this
hypothesis in the context of tetracycline repressor protein (TeitR) An experi-
ment was designed in which feedback loops in TetR production were mobified
genetic engineering techniques, and the increase in variability of gemessign
was correlated with lower feedback “gains,” verifying the role of fesdkbin re-
ducing the &ects of uncertainty. Modern experimental techniques ibra the
opportunity for testing experimentally (and quantitatively) other theoretiealip-
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tions, and this may be expected to be an active area of study at the intersgctio
control theory and molecular biology.

Another illustration of the interface between feedback theory and moddatmo
ular biology is provided by recent work on chemotaxis in bacterial moooli
moves, propelled by flagella, in response to gradients of chemical attisotane-
pellents, performing two basic types of motiotembles(erratic turns, with little
net displacement) anains In this processE. coli carries out a stochastic gradi-
ent search strategy: when sensing increased concentrations it stagmtu(and
keeps running), but when it detects low gradients it resumes tumbling motines (
might say that the bacterium goes into “search mode”).

The chemotactic signaling system, which detects chemicals and directs motor
actions, behaves roughly as follows: after a transient nonzero tgtap tum-
bling, run toward food”), issued in response to a change in concemtyalie sys-
tem adapts and its signal to the motor system converges to zero (“OK, tumble”)
This adaptation happens for any constant nutrient level, even overranges of
scale and system parameters, and may be interpreted as robust (aliyustable)
rejection of constant disturbances. The internal model principle of clothieory
implies (under appropriate technical conditions) that there must be an detbed
integral controller whenever robust constant disturbance rejectiais\eed. Re-
cent models and experiments succeeded in finding, indeed, this embedaded s
ture [10, 76].

This is only one of the many possible uses of control theoretic knowledge in
reverse engineering of cellular behavior. Some of the deepest pédtis tieory
concern the necessary existence of embedded control structudds, this man-
ner one may expect the theory to suggest appropriate mechanisms aradioalid
experiments for them.

1.2 Dynamics and Control in the Cell

The molecular processes inside a cell determine its behavior and aresgdpo
for metabolizing nutrients, generating motion, enabling procreation anglirogrr
out the other functions of the organism. In multi-cellular organisnfieint types
of cells work together to enable more complex functions. In this section wiybrie
describe the role of dynamics and control within a cell and discuss the frasic
cesses that govern its behavior and its interactions with its environmentdjimglu
other cells). We assume knowledge of the basics of cell biology at thepevel
vided in AppendixA; a much more detailed introduction to the biology of the cell
and some of the processes described here can be found in standboiexon
cell biology such as Albertst al. [2] or Phillips et al.[59]. (Readers who are fa-
miliar with the material at the level described in these latter references cathikip
section without any loss of continuity.)
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Figure 1.3: Molecular structure of DNA. (a) Individual bag@ucleotides) that make up
DNA: adenine (A), cytocine (C), guanine (G) and thymine ((B). Double stranded DNA
formed from individual nucleotides, with A binding to T ando@hding to G. Each strand
contains a 5" and 3’ end, determined by the locations of thbares where the next nu-
cleotide binds. Figure from Phillips, Kondev and Therib®]f used with permission of
Garland Science.

The central dogma: production of proteins

The genetic material inside a cell, encoded in its DNA, governs the respbase
cell to various conditions. DNA is organized into collections of genes, with ea
gene encoding a corresponding protein that performs a set of fuadtighe cell.
The activation and repression of genes are determined through acfargaaplex
interactions that give rise to a remarkable set of circuits that perform tiwtiduns
required for life, ranging from basic metabolism to locomotion to procreaGen.
netic circuits that occur in nature are robust to external disturbancksaamnfunc-
tion in a variety of conditions. To understand how these processes @alisome
of the dynamics that govern their behavior), it will be useful to presealatively
detailed description of the underlying biochemistry involved in the production o
proteins.

DNA is double stranded molecule with the “direction” of each strand specified
by looking at the geometry of the sugars that make up its backbone (see Eigu
The complementary strands of DNA are composed of a sequence of tidieteo
that consist of a sugar molecule (deoxyribose) bound to one of 4:badesine
(A), cytocine (C), guanine (G) and thymine (T). The coding strand @wention
the top row of a DNA sequence when it is written in text form) is specified fitwen
5’ end of the DNA to the 3’ end of the DNA. (As described briefly in Apperd,
5" and 3’ refer to carbon locations on the deoxyribose backbone thabheolved
in linking together the nucleotides that make up DNA.) The DNA that encodes
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AGGAGGT ATG [TAA

TCCTCCA TAC IATT]
3 5

Terminator
| RNA ]
5 RBS ALG UAA 3
Start Stop

codon codon

Figure 1.4: Geometric structure of DNA. The layout of the DNAhown at the top. RNA
polymerase binds to the promoter region of the DNA and tnéinss the DNA starting at
the+1 side and continuing to the termination site.

proteins consists of a promoter region, regulator regions (described & dptail
below), a coding region and a termination region (see Figufe

RNA polymerase enzymes are present in the nucleus (for eukaryotegpe
plasm (for prokaryotes) and must localize and bind to the promoter regithre o
DNA template. Once bound, the RNA polymerase “opens” the double stlande
DNA to expose the nucleotides that make up the sequence, as shown i@ ERyur
This reversible reaction, calledomerizationis said to transform the RNA poly-
merase and DNA from elosed completo anopen complexAfter the open com-
plex is formed, RNA polymerase begins to travel down the DNA strand ané co
structs an mRNA sequence that matches the 5’ to 3’ sequence of the DNAdio wh
it is bound. By convention, we number the first base pair that is transcaiba-1’
and the base pair prior to that (which is not transcribed) is labeled asThE
promoter region is often shown with the -10 and -35 regions indicated, giese
regions contain the nucleotide sequences to which the RNA polymerasmenzy
binds (the locations vary in fierent cell types, but these two numbers are typically
used).

The RNA strand that is produced by RNA polymerase is also a sequence of
nucleotides with a sugar backbone. The sugar for RNA is ribose instedé- o
oxyribose and mRNA typically exists as a single stranded molecule. Another dif
ference is that the base thymine (T) is replaced by uracil (U) in RNA sexpse
RNA polymerase produces RNA one base pair at a time, as it moves from5h the
to 3’ direction along the DNA coding strand. RNA polymerase stops transgrib
DNA when it reaches germination region(or terminatoi) on the DNA. This ter-
mination region consists of a sequence that causes the RNA polymeragdsrtd un
from the DNA. The sequence is not conserved across species andyrcelbs the
termination sequence is sometimes “leaky”, so that transcription will occdlsiona
occur across the terminator (we will see examples of this imthbage circuitry
described in Chaptés).

Once the mRNA is produced, it must be translated into a protein. This process
is slightly different in prokaryotes and eukaryotes. In prokaryotes, there isanreg
of the mRNA in which the ribosome (a molecular complex consisting of of both
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Figure 1.5: Production of messenger RNA from DNA. RNA polyass, along with other
accessory factors, binds to the promoter region of the DNd\than “opens” the DNA to
begin transcription (initiation). As RNA polymerase movksvn the DNA, producing an
RNA transcript (elongation), which is later translateaiatprotein. The process ends when
the RNA polymerase reaches the terminator (terminatioajpr&duced from Coureyi[];
permission pending.

proteins and RNA) binds. This region, called titosome binding site (RB)as
some variability between fierent cell species and betweerffelient genes in a
given cell. The Shine-Delgarno sequence, AGGAGG, is the conssesusence
for the RBS. (A consensus sequence is a pattern of nucleotides that inmggeme
a given function across multiple organisms; it is not exactly conservesose
variations in the sequence will be present from one organism to another.)

In eukaryotes, the RNA must undergo several additional steps hefeteans-
lated. The RNA sequence that has been created by RNA polymerassteais
introns that must be spliced out of the RNA (by a molecular complex called the
spliceosome), leaving only thexons which contain the coding sequence for the
protein. The term pre-mRNA is often used to distinguish between the raw tran-
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script and the spliced mRNA sequence, which is calledture RNA In addition
to splicing, the mRNA is also modified to contaipaly(A)(polyadeninejail, con-
sisting of a long sequence of adenine (A) nucleotides on the 3’ end of tiAMR
This processed sequence is then transported out of the nucleus injadpksm,
where the ribosomes can bind to it.

Unlike prokaryotes, eukaryotes do not have a well defined ribosondéigise-
guence and hence the process of the binding of the ribosome to the mRNAes mor
complicated. Th&kozak sequencd/GCCACCAUGEG is the rough equivalent of
the ribosome binding site, where the underlined AUG is the start codorrifgedc
below). However, mRNA lacking the Kozak sequence can also be tratslate

Once the ribosome is bound to the mRNA, it begins the process of translation.
Proteins consist of a sequence of amino acids, with each amino acid spéyifie
a codon that is used by the ribosome in the process of translation. Each cod
consists of three base pairs and corresponds to one of the 20 aminoragidsop”
codon. The genetic code mapping between codons and amino acids is ishown
TableA.1l. The ribosome translates each codon into the corresponding amino acid
using transfer RNA (tRNA) to integrate the appropriate amino acid (whichsbind
to the tRNA) into the polypeptide chain, as shown in Figli@ The start codon
(AUG) specifies the location at which translation begins, as well as codirfyé
amino acid methionine (a modified form is used in prokaryotes). All subsgque
codons are translated by the ribosome into the corresponding amino acid until
reaches one of the stop codons (typically UAA, UAG and UGA).

The sequence of amino acids produced by the ribosome is a polypeptide cha
that folds on itself to form a protein. The process of folding is complicatet an
involves a variety of chemical interactions that are not completely underséab
ditional post-translational processing of the protein can also occur astte,
until a folded and functional protein is produced. It is this molecule thatles tab
bind to other species in the cell and perform the chemical reactions thatlynd
the behavior of the organism.

Each of the processes involved in transcription, translation and folditigeof
protein takes time andizcts the dynamics of the cell. Taldlel shows the rates of
some of the key processes involved in the production of proteins. It is tamtdo
note that each of these steps is highly stochastic, with molecules binding togethe
based on some propensity that depends on the binding energy but alsthéne
molecules present in the cell. In addition, although we have describegtlener
as a sequential process, each of the steps of transcription, transkatidol@ing
are happening simultaneously. In fact, there can be multiple RNA polymeteges
are bound to the DNA, each producing a transcript. In prokaryotespas as
the ribosome binding site has been transcribed, the ribosome can bindgind be
translation. It is also possible to have multiple ribosomes bound to a single ppiece o
MRNA. Hence the overall process can be extremely stochastic and asyauahb.
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Cell

Figure 1.6: Translation is the process of translating trgusace of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protgiihesis. The genetic

code describes the relationship between the sequence®phbas in a gene and the cor-
responding amino acid sequence that it encodes. In theyteplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assehgbfmdtein. Figure and

caption courtesy the National Human Genome Researchutestit

Transcriptional regulation of protein production

There are a variety of mechanisms in the cell to regulate the productiontefro
These regulatory mechanisms can occur at various points in the oveiigsrthat
produces the proteiffranscriptional regulatiorrefers to regulatory mechanisms
that control whether or not a gene is transcribed.

Table 1.1: Rates of core processes involved in the creatiproteins from DNA inE. coli.

Process Characteristic rate Source

MRNA production 10-30 bysec Vogel and Jensen
Protein production 10-30 agsec PKTO8

Protein folding ?2?7?

mMRNA half life ~ 100 sec YMO3

Cell division time ~ 3000 sec ?2??

Protein half life ~5x10* sec YMO03

Protein difusion along DNA| up to 1¢ bp/sec
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Figure 1.7: Repression of gene expression. Figure frontig¥)iKondev and Therio§9);
used with permission of Garland Science.

The simplest forms of transcriptional regulation are repression and @atiya
which are controlled througtranscription factors In the case of repression, the
presence of a transcription factor (often a protein that binds near tmeagper)
turns df the transcription of the gene and this type of regulation is often called
negative regulation or “down regulation”. In the case of activation ¢@itjve reg-
ulation), transcription is enhanced when an activator protein binds to theopeo
site (facilitating binding of the RNA polymerase).

A common mechanism for repression is that a protein binds to a region of DNA
near the promoter and blocks RNA polymerase from binding. The regitriNaf
in which the repressor protein binds is calledogerator region(see Figurel.73.

If the operator region overlaps the promoter, then the presence ofeirpad the
promoter “blocks” the DNA at that location and transcription cannot initiase, a
illustrated in Figurel.7a Repressor proteins often bind to DNA as dimers or pairs
of dimers (dfectively tetramers). Figurk.7bshows some examples of repressors
bound to DNA.

A related mechanism for repressiorbBlA looping In this setting, two repres-
sor complexes (often dimers) bind irfiidirent locations on the DNA and then bind
to each other. This can create a loop in the DNA and block the ability of RNA:-poly
merase to bind to the promoter, thus inhibiting transcription. Figuehows an
example of this type of repression, in tlae operon. (Anoperonis a set of genes
that is under control of a single promoter; this is discussed in more detailhelo
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(a) DNA looping (b) lac repressor

Figure 1.8: Repression via DNA looping. Figure from Phsligkondev and Theriot59];
used with permission of Garland Science.

A feature that is present in some types of repressor proteins is the edgien
aninducer moleculehat combines with the protein to either activate or inactivate
its repression function. Avositive inducelis a molecule that must be present in
order for repression to occur. Aegative induceis one in which the presence of
the inducer molecule blocks repression, either by changing the shaperepites-
sor protein or by blocking active sites on the repressor protein that vimouidally
bind to the DNA. Figurel.%a summarizes the various possibilities. Common ex-
amples of repressor-inducer pairs incllae and lactose (or IPTG)etRand ATc,
and tryptophan repressor and tryptophan. La¢iB3e&s and ATc are both negative
inducers, so their presence causes the otherwise repressed genexjoréssed,
while tryptophan is a positive inducer.

The process of activation of a gene requires that an activator pragirelsent
in order for transcription to occur. In this case, the protein must work t@eith
recruit or enable RNA polymerase to begin transcription.

The simplest form of activation involves a protein binding to the DNA near
the promoter in such a way that the combination of the activator and the pro-
moter sequence bind RNA polymerase. One of the most well-studied examples
is thecatabolite activator protein (CAR}-also sometimes called tledAMP recep-
tor protein (CRP}—shown in Figurel.10 Like repressors, many activators have
inducers, which can act in either a positive or negative fashion (seseFigh).

For example, cyclic AMP (CAMP) acts as a positive inducer for CAP.

Another mechanism for activation of transcription, specific to prokasydse
the use ofsigma factors Sigma factors are part of a modular set of proteins that
bind to RNA polymerase and form the molecular complex that performs tigascr
tion. Different sigma factors enable RNA polymerase to bind fi@aint promot-
ers, so the sigma factor acts as a type of activating signal for transcripéblel.2
lists some of the common sigma factors in bacteria. One of the uses of sigma fac-
tors is to produce certain proteins only under special conditions, sushesthe
cell undergoeseat shockdiscussed in more detail in Chap&r Another use is to
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Figure 1.9: Hects of inducers. Reproduced from Alberts et 2], permission pending.

control the timing of the expression of certain genes, as illustrated in Figlite

In addition to repressors and activators, many genetic circuits also mek# us
combinatorial promotershat can act as either repressors or activators for genes.
This allows genes to be switched on arffl lmased on more complex conditions,
represented by the concentrations of two or more activators or repsess

Figure1.12shows one of the classic examples, a promoter fotadbesystem.

In thelac system, the expression of genes for metabolizing lactose are under the
control of a single (combinatorial) promoter. CAP, which is positively induicg
cAMP, acts as an activator and Lacl (also called “lac repressor’ictwis neg-
atively induced by lactose, acts as a repressor. In addition, the indAd&P is

Table 1.2: Sigma factors iB. coli[2].

Sigma factor Promoters recognized
a0 most genes
o2 genes associated with heat shock
o8 genes involved in stationary phase and stress response
o8 genes involved in motility and chemotaxis
o4 genes dealing with misfolded proteins in the periplasm
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Figure 1.10: Activation of gene expression. Figure fromllipisi Kondev and Theriot§9);
used with permission of Garland Science.

expressed only when glucose levels are low. The resulting behaviot théharo-
teins for metabolizing lactose are expressed only in conditions where theoe is
glucose (so CAP is activa@ndlactose is present.

More complicated combinatorial promoters can also be used to control tran-
scription in two diferent directions, a example that is found in some viruses.

A final method of activation in prokaryotes is the useaotitermination The
basic mechanism involves a protein that binds to DNA and deactivates a site tha
would normally serve as a termination site for RNA polymerase. Additionalgyene
are located downstream from the termination site, but without a promotemnregio
Thus, in the presence of the anti-terminator protein, these genes argnessed
(or expressed with low probability). However, when the antitermination jprote
is present, the RNA polymerase maintains (or regains) its contact with the DNA

./intro/figures/MBoC09_07_43.eps

Figure 1.11: Use of sigma factors to controlling the timifigxpression. Reproduced from
Alberts et al. B]; permission pending.
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Figure 1.12: Combinatorial logic for thiac operator. Figure from Phillips, Kondev and
Theriot [59]; used with permission of Garland Science.

and expression of the downstream genes is enhanced. In this way;naimi#ion

allows downstream genes to be regulated by repressing “premature” &ionin
An example of an antitermination protein is the protein N in phagehich binds

to a region of DNA labeled Nut (for N utilization), as shown in Figuré3and

discussed in more detail in Sectibr8.

./intro/figures/GNM93-antitermination.eps

Figure 1.13: Antitermination. Reproduced froB¥]; permission pending.



1-20 CHAPTER 1. INTRODUCTORY CONCEPTS

./intro/figures/Mad07_05_04a.leps

Figure 1.14: Phosphorylation of a protein via a kinase. Bépced from Madhanig0];
permission pending

Post-transcriptional regulation of protein production

In addition to regulation that controls transcription of DNA into mRNA, a variety
of mechanisms are available for controlling expression after mRNA is peatiuc
These include control of splicing and transport from the nucleus (iaryokes),

the use of various secondary structure patterns in mRNA that can ietevfdr
ribosomal binding or cleave the mRNA into multiple pieces, and targeted degrada
tion of MRNA. Once the polypeptide chain is formed, additional mechanisms are
available that regulate the folding of the protein as well as its shape andtyactiv
level. We briefly describe some of the major mechanisms here.

Material to be written.

One of the most common types of post-transcriptional regulation is through the
phosphorylatiorof proteins. Phosphorylation is an enzymatic process in which a
phosphate group is added to a protein and the resulting conformation abtieap
changes, usually from an inactive configuration to an active one. ithgwe that
adds the phosphate group is callekimase(or sometimes @hosphotransferade
and it operates by transferring a phosphate group from a bound Al ateto the
protein, leaving behind ADP and the phosphorylated proteaphosphorylation
is a complementary enzymatic process that can remove a phosphate gnoup fr
a protein. The enzyme that performs dephosphorylation is call@ibaphatase
Figurel.14shows the process of phosphorylation in more detail.

Phosphorylation is often used as a regulatory mechanism, with the phgsphor
lated version of the protein being the active conformation. Since phogation
and dephosphorylation can occur much more quickly than protein produantic
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degradation, it is used in my biological circuits in which a rapid response-is re
quired. One common motif is that a signaling protein will bind to a ligand and the
resulting allosteric change allows the signaling protein to serve as a kinhse. T
newly active kinase then phosphorylates a second protein, which mozlotatr
functions in the cell. Phosphorylation cascades can also be used to amplify th
effect of the original signal; we will describe this in more detail in Sec8dn
Kinases in cells are usually very specific to a given protein, allowing detailed
signaling networks to be constructed. Phosphatases, on the otheranamadych
less specific, and a given phosphatase species may desphosphoayigtiterent
types of proteins. The combined action of kinases and phosphatases itaintjfo
signaling since the only way to deactivate a phosphorylated protein is byegno
the phosphate group. Thus phosphatases are constantly “tuffiimateins, and
the protein is activated only whenfSigient kinase activity is present.
Phosphorylation of a protein occurs by the addition of a charged phtsph
(PQ,) group to the serine (Ser), threonine (Thr) or tyrosine (Tyr) amincsa8am-
ilar covalent modifications can occur by the attachment of other chemicapgro
to select amino aciddviethylationoccurs when a methyl group (GHis added
to lysine (Lys) and is used for modulation of receptor activity and in modifying
histones that are used in chromatin structubagtylationoccurs when an acetyl
group (COCH) is added to lysine and is also used to modify histohdsquitina-
tion refers to the addition of a small protein, ubiquitin, to lysine; the addition of a
polyubiquitin chain to a protein targets it for degradation.

1.3 Control and Dynamical Systems Tools [AMO08]

In this section we present a brief introduction to some of the key concepts fr
control and dynamical systems that are relevant for the study of biolayisgems.
More details on the application of specific concepts listed here to biomolecular
systems is provided in the main body of the text. Readers who are familiar with
introductory concepts in dynamical systems and control, at the levelibeddn
Astro and Murray {] for example, can skip this section.

Dynamics, feedback and control

A dynamical systens a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The tefeadbackefers to a situation

in which two (or more) dynamical systems are connected together such dhat ea
system influences the other and their dynamics are thus strongly couptgale S
causal reasoning about a feedback systemfizdit because the first system in-
fluences the second and the second system influences the first, leaaicigcidar
argument. This makes reasoning based on causeftaul ficky, and it is neces-
sary to analyze the system as a whole. A consequence of this is that #nedveh
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Figure 1.15: Open and closed loop systems. (a) The outpystér® 1 is used as the input
of system 2, and the output of system 2 becomes the input térays, creating a closed
loop system. (b) The interconnection between system 2 astérsyl is removed, and the
system is said to be open loop.

of feedback systems is often counterintuitive, and it is therefore regetssresort
to formal methods to understand them.

Figure 1.15illustrates in block diagram form the idea of feedback. We often
use the termspen loopandclosed loopvhen referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a sycle, a
shown in Figurel.15a If we break the interconnection, we refer to the configura-
tion as an open loop system, as shown in Figuiéh

A major source of examples of feedback systems is biology. Biological sys-
tems make use of feedback in an extraordinary number of ways, on saatgsg
from molecules to cells to organisms to ecosystems. One example is the regulation
of glucose in the bloodstream through the production of insulin and glucbgo
the pancreas. The body attempts to maintain a constant concentration afegluco
which is used by the body'’s cells to produce energy. When glucose lise(@fter
eating a meal, for example), the hormone insulin is released and causesytie bo
store excess glucose in the liver. When glucose levels are low, thesgarsacretes
the hormone glucagon, which has the oppodifect. Referring to Figuré.15 we
can view the liver as system 1 and the pancreas as system 2. The satpuhé
liver is the glucose concentration in the blood, and the output from thergasc
is the amount of insulin or glucagon produced. The interplay between iresudin
glucagon secretions throughout the day helps to keep the blood-gltmosentra-
tion constant, at about 90 mg per 100 mL of blood.

Feedback has many interesting properties that can be exploited in desgsing
tems. As in the case of glucose regulation, feedback can make a systéentres
toward external influences. It can also be used to create linear bebaviof non-
linear components, a common approach in electronics. More generatipdele
allows a system to be insensitive both to external disturbances and to vesigtio
its individual elements.

Feedback has potential disadvantages as well. It can create dynantditiesa
in a system, causing oscillations or even runaway behavior. Anotherécdy
especially in engineering systems, is that feedback can introduce umhgansor
noise into the system, requiring careful filtering of signals. It is for thessons
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that a substantial portion of the study of feedback systems is devotedeiodieg
an understanding of dynamics and a mastery of techniques in dynamitahsys

Feedback systems are ubiquitous in both natural and engineered syStems.
trol systems maintain the environment, lighting and power in our buildings and
factories; they regulate the operation of our cars, consumer electamicsianu-
facturing processes; they enable our transportation and communicatgiems;
and they are critical elements in our military and space systems. For the most par
they are hidden from view, buried within the code of embedded micropsoces
executing their functions accurately and reliably. Feedback has also itrzaie
sible to increase dramatically the precision of instruments such as atomic force
microscopes (AFMs) and telescopes.

In nature, homeostasis in biological systems maintains thermal, chemical and
biological conditions through feedback. At the other end of the size ,sglaleal
climate dynamics depend on the feedback interactions between the atmotmhere
oceans, the land and the sun. Ecosystems are filled with examples ofdkelliza
to the complex interactions between animal and plant life. Even the dynamics of
economies are based on the feedback between individuals and ¢mmpethrough
markets and the exchange of goods and services.

The mathematical study of the behavior of feedback systems is an area know
ascontrol theory The term control has many meanings and often varies between
communities. In engineering applications, we typical define control to besée u
of algorithms and feedback in engineered systems. Thus, control isctuda ex-
amples as feedback loops in electronic amplifiers, setpoint controllers imicile
and materials processing, “fly-by-wire” systems on aircraft and eveter proto-
cols that control triiic flow on the Internet. Emerging applications include high-
confidence software systems, autonomous vehicles and robots, reabioueae
management systems and biologically engineered systems. At its core) oaitro
informationscience and includes the use of information in both analog and digital
representations.

A modern engineering control system senses the operation of a system, co
pares it against the desired behavior, computes corrective acticets @as model
of the system’s response to external inputs and actuates the systéiactotlee
desired change. This badmedback loomf sensing, computation and actuation is
the central concept in control. The key issues in designing control logierssur-
ing that the dynamics of the closed loop system are stable (bounded dmstesba
give bounded errors) and that they have additional desired beHgaod distur-
bance attenuation, fast responsiveness to changes in operatinggboinfhese
properties are established using a variety of modeling and analysis teehica
capture the essential dynamics of the system and permit the exploratiossiflgo
behaviors in the presence of uncertainty, noise and component failure.

A typical example of a control system is shown in Figdr&6 The basic el-
ements of sensing, computation and actuation are clearly seen. In modémwl co
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Figure 1.16: Components of a computer-controlled systelne. Opper dashed box rep-
resents the process dynamics, which include the sensoracandtors in addition to the
dynamical system being controlled. Noise and externaudisinces can perturb the dy-
namics of the process. The controller is shown in the lowshdd box. It consists of a
filter and analog-to-digital (A) and digital-to-analog ([A) converters, as well as a com-
puter that implements the control algorithm. A system clogktrols the operation of the
controller, synchronizing the /®, D/A and computing processes. The operator input is
also fed to the computer as an external input.

systems, computation is typically implemented on a digital computer, requiring the
use of analog-to-digital (&) and digital-to-analog ([A) converters. Uncertainty
enters the system through noise in sensing and actuation subsystenmlediser
turbances thatfeect the underlying system operation and uncertain dynamics in the
system (parameter errors, unmodel&e@s, etc). The algorithm that computes the
control action as a function of the sensor values is often callmmh&ol law. The
system can be influenced externally by an operator who introdtaresnand sig-
nalsto the system.

Control engineering relies on and shares tools from physics (dynamits a
modeling), computer science (information and software) and operatisgarah
(optimization, probability theory and game theory), but it is alsibedént from
these subjects in both insights and approach.

Perhaps the strongest area of overlap between control and othiplidésis in
the modeling of physical systems, which is common across all areas of erigme
and science. One of the fundamentdfetiences between control-oriented model-
ing and modeling in other disciplines is the way in which interactions between
subsystems are represented. Control relies on a type of iyppitit modeling that
allows many new insights into the behavior of systems, such as disturbarmue atte
ation and stable interconnection. Model reduction, where a simpler (lchadity)
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Figure 1.17: A feedback system for controlling the speedwatacle. In the block diagram

on the left, the speed of the vehicle is measured and compaibd desired speed within
the “Compute” block. Based on theffirence in the actual and desired speeds, the throttle
(or brake) is used to modify the force applied to the vehiglehe engine, drivetrain and
wheels. The figure on the right shows the response of theal@ystem to a commanded
change in speed from 25/mto 30 njis. The three dierent curves correspond tof@iring
masses of the vehicle, between 1000 and 3000 kg, demongtitag robustness of the
closed loop system to a very large change in the vehicle ctaistics.

description of the dynamics is derived from a high-fidelity model, is also atyur
described in an inpgutput framework. Perhaps most importantly, modeling in a
control context allows the design afbustinterconnections between subsystems,
a feature that is crucial in the operation of all large engineered systems.

Feedback properties

Feedback is a powerful idea that is used extensively in natural anddiedical
systems. The principle of feedback is simple: implement correcting actioes bas
on the diference between desired and actual performance. In engineeruag, fe
back has been rediscovered and patented many times in m@eredt contexts.
The use of feedback has often resulted in vast improvements in systeubildsp
and these improvements have sometimes been revolutionary, as discuseed ab
The reason for this is that feedback has some truly remarkable propertieh

we discuss briefly here.

Robustness to Uncertaintfone of the key uses of feedback is to provide robust-
ness to uncertainty. By measuring thdéfelience between the sensed value of a
regulated signal and its desired value, we can supply a corrective dttioa sys-

tem undergoes some change théieets the regulated signal, then we sense this
change and try to force the system back to the desired operating points Pphés
cisely the €ect that Watt exploited in his use of the centrifugal governor on steam
engines.

As an example of this principle, consider the simple feedback system shown in
Figure1l.17. In this system, the speed of a vehicle is controlled by adjusting the
amount of gas flowing to the engine. Simglmportional-integral(Pl) feedback
is used to make the amount of gas depend on both the error between et curr
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and the desired speed and the integral of that error. The plot on theshigtvs
the results of this feedback for a step change in the desired speed aridtg of
different masses for the car, which might result from havingtem@int number of
passengers or towing a trailer. Notice that independent of the mass (veniek by
a factor of 3!), the steady-state speed of the vehicle always ap@eduoh desired
speed and achieves that speed within approximately 5 s. Thus the parteriofa
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide robustnessneghe
ative feedback amplifier. When telephone communications were devekmped;
fiers were used to compensate for signal attenuation in long lines. A vaitinenm
was a component that could be used to build amplifiers. Distortion causea@ by th
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-
jor breakthrough was the invention of the feedback amplifier in 1927 byplH&.
Black, an electrical engineer at Bell Telephone Laboratories. Blagk negative
feedbackwhich reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier

Design of DynamicsAnother use of feedback is to change the dynamics of a sys-
tem. Through feedback, we can alter the behavior of a system to meetettis ofe
an application: systems that are unstable can be stabilized, systems tHagare s
gish can be made responsive and systems that have drifting operating qamn
be held constant. Control theory provides a rich collection of techniquessatiyze
the stability and dynamic response of complex systems and to place bounds on th
behavior of such systems by analyzing the gains of linear and nonlineeaitops
that describe their components.

An example of the use of control in the design of dynamics comes from the are
of flight control. The following quote, from a lecture presented by Wilbuigit
to the Western Society of Engineers in 1968][ illustrates the role of control in
the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at $lucient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of suficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the age
of flying will have arrived, for all other diiculties are of minor impor-
tance.

The Wright brothers thus realized that control was a key issue to enaie fl
They resolved the compromise between stability and maneuverability by building
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Figure 1.18: Aircraft autopilot system. The Sperry autoipfleft) contained a set of four
gyros coupled to a set of air valves that controlled the winfgees. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aiftand was able to maintain level
flight as a mechanic walked on the wing (rightp)].

an airplane, the Wright Flyer, that was unstable but maneuverable.|yéetfad

a rudder in the front of the airplane, which made the plane very mandigera
disadvantage was the necessity for the pilot to keep adjusting the ruddettie fl
plane: if the pilot let go of the stick, the plane would crash. Other early agiato
tried to build stable airplanes. These would have been easier to fly, batdeeof
their poor maneuverability they could not be brought up into the air. By ubigig
insight and skillful experiments the Wright brothers made the first suftddkght

at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, im’ente
by Sperry, was based on the concept of feedback. Sperry usg-atgbilized
pendulum to provide an indication of the vertical. He then arranged a de&db
mechanism that would pull the stick to make the plane go up if it was pointing
down, and vice versa. The Sperry autopilot was the first use of &&dh aero-
nautical engineering, and Sperry won a prize in a competition for thetsafelane
in Paris in 1914. Figur&.18shows the Curtiss seaplane and the Sperry autopilot.
The autopilot is a good example of how feedback can be used to stabilizestna u
ble system and hence “design the dynamics” of the aircraft.

One of the other advantages of designing the dynamics of a device is that it
allows for increased modularity in the overall system design. By usind&esdo
create a system whose response matches a desired profile, we carehidenth
plexity and variability that may be present inside a subsystem. This allows us to
create more complex systems by not having to simultaneously tune the response
of a large number of interacting components. This was one of the advarhge
Black’s use of negative feedback in vacuum tube amplifiers: the resulévige
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had a well-defined linear inptoutput response that did not depend on the individ-
ual characteristics of the vacuum tubes being used.

Drawbacks of FeedbackVhile feedback has many advantages, it also has some
drawbacks. Chief among these is the possibility of instability if the system is not
designed properly. We are all familiar with the undesirealffects of feedback
when the amplification on a microphone is turned up too high in aroom. This is an
example of feedback instability, something that we obviously want to avoid. Th

is tricky because we must design the system not only to be stable under homina
conditions but also to remain stable under all possible perturbations of tiaerdy

ics.

In addition to the potential for instability, feedback inherently couplé&edint
parts of a system. One common problem is that feedback often injects nmeastire
noise into the system. Measurements must be carefully filtered so that thearctua
and process dynamics do not respond to them, while at the same time ensating th
the measurement signal from the sensor is properly coupled into the dtaged
dynamics (so that the proper levels of performance are achieved).

Another potential drawback of control is the complexity of embedding aabntr
system in a product. While the cost of sensing, computation and actuatialehas
creased dramatically in the past few decades, the fact remains thatl aysteons
are often complicated, and hence one must carefully balance the co$tsreefis.

An early engineering example of this is the use of microprocessor-basdtdck
systems in automobiles.The use of microprocessors in automotive applicaions b
gan in the early 1970s and was driven by increasingly strict emissionsgastis)
which could be met only through electronic controls. Early systems weensiye

and failed more often than desired, leading to frequent customer disstdisfdt

was only through aggressive improvements in technology that the perfoena
reliability and cost of these systems allowed them to be used in a transpsknt f
ion. Even today, the complexity of these systems is such that itfiswlt for an
individual car owner to fix problems.

Feedforward Feedback is reactive: there must be an error before correctivasctio
are taken. However, in some circumstances it is possible to measure aatistirb
before it enters the system, and this information can then be used to tagetiverr
action before the disturbance has influenced the system. ffdéwt ef the distur-
bance is thus reduced by measuring it and generating a control sighabthra
teracts it. This way of controlling a system is calliegdforward Feedforward is
particularly useful in shaping the response to command signals becaussacal
signals are always available. Since feedforward attempts to match two signals
requires good process models; otherwise the corrections may haveahg size
or may be badly timed.

The ideas of feedback and feedforward are very general arghappmany dif-
ferent fields. In economics, feedback and feedforward are amadoip a market-
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based economy versus a planned economy. In business, a feedf@tnategy
corresponds to running a company based on extensive strategic jgjawhiile a
feedback strategy corresponds to a reactive approach. In bidésgiforward has
been suggested as an essential element for motion control in humans timeiis tu
during training. Experience indicates that it is often advantageous to cerfd&d-
back and feedforward, and the correct balance requires insightirzsherstanding
of their respective properties.

Positive Feedbackn most of control theory, the emphasis is on the rolaegative
feedbackin which we attempt to regulate the system by reacting to disturbances in
a way that decreases thiext of those disturbances. In some systems, particularly
biological systemspositive feedbackan play an important role. In a system with
positive feedback, the increase in some variable or signal leads to a sitiratio
which that quantity is further increased through its dynamics. This hastabiles
lizing effect and is usually accompanied by a saturation that limits the growth of
the quantity. Although often considered undesirable, this behavior isindsd-
logical (and engineering) systems to obtain a very fast response tadéicoror
signal.

One example of the use of positive feedback is to create switching behavior
in which a system maintains a given state until some input crosses a threshold.
Hysteresis is often present so that noisy inputs near the threshold daus# the
system to jitter. This type of behavior is callbitability and is often associated
with memory devices.

Simple forms of feedback

The idea of feedback to make corrective actions based on ffezatice between
the desired and the actual values of a quantity can be implemented in nff@ngati
ways. The benefits of feedback can be obtained by very simple fdetitves such
as on-df control, proportional control and proportional-integral-derivatigatcol.
In this section we provide a brief preview of some of these topics to providsia
of understanding for their use in the chapters that follows.

On-Of Control. A simple feedback mechanism can be described as follows:
Umin |f e< O,

where thecontrol error e=r —y is the diference between the reference signal (or
command signal) and the output of the systeyrandu is the actuation command.
Figurel.19ashows the relation between error and control. This control law implies
that maximum corrective action is always used.

The feedback in equatiod ) is calledon-gf control. One of its chief advan-
tages is that it is simple and there are no parameters to choosdf Gmtvol often
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Figure 1.19: Inpybutput characteristics of orfficontrollers. Each plot shows the input on
the horizontal axis and the corresponding output on thécatixis. Ideal on-fi control is
shown in (a), with modifications for a dead zone (b) or hystisréc). Note that for on4{®
control with hysteresis, the output depends on the valuasff ipputs.

succeeds in keeping the process variable close to the referencesstighuse of

a simple thermostat to maintain the temperature of a room. It typically results in
a system where the controlled variables oscillate, which is often acceptdbée if
oscillation is stficiently small.

Notice that in equationl(2) the control variable is not defined when the error
is zero. It is common to make modifications by introducing either a dead zone or
hysteresis (see Figuel9band1.199.

PID Control. The reason why onfbcontrol often gives rise to oscillations is that
the system overreacts since a small change in the error makes the actuabliv
change over the full range. Thiffect is avoided iproportional contro] where the
characteristic of the controller is proportional to the control error forlkseneors.
This can be achieved with the control law

Unax If €> Emax
u=1<kpe if €min < €< emax (1.3)
Unin  If €< enin,

wherek, is the controller gaingmin = Umin/Kp and émax = Umax/Kp. The interval
(emin, €max) is called theproportional bandbecause the behavior of the controller
is linear when the error is in this interval:

u=Kkp(r-y)=kpe  if emin < €< emax (1.4)

While a vast improvement over orffacontrol, proportional control has the
drawback that the process variable often deviates from its referahge \n partic-
ular, if some level of control signal is required for the system to maintairsimete
value, then we must hawee 0 in order to generate the requisite input.

This can be avoided by making the control action proportional to the intefral
the error:

t
u(t) = k fo e(r)dr. (1.5)
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Figure 1.20: Action of a PID controller. At timg the proportional term depends on the
instantaneous value of the error. The integral portioneféiedback is based on the integral
of the error up to time (shaded portion). The derivative term provides an estirobthe
growth or decay of the error over time by looking at the ratelwinge of the erroiy
represents the approximate amount of time in which the ésrprojected forward (see
text).

This control form is calledntegral control andk; is the integral gain. It can be
shown through simple arguments that a controller with integral action has zero
steady-state error. The catch is that there may not always be a steedyestause
the system may be oscillating.

An additional refinement is to provide the controller with an anticipative abil-
ity by using a prediction of the error. A simple prediction is given by the linear
extrapolation

det
ot +To) ~ &) + Ty .
which predicts the errdfy time units ahead. Combining proportional, integral and
derivative control, we obtain a controller that can be expressed mathattyatis

de(t)

= (1.6)

t
u(t) = kpe(t) + ki fo‘ e(7)dr + Ky

The control action is thus a sum of three terms: the past as representbd by
integral of the error, the present as represented by the proportemmaland the
future as represented by a linear extrapolation of the error (the thegeitarm).
This form of feedback is called@oportional-integral-derivative (PID) controller
and its action is illustrated in Figude20

A PID controller is very useful and is capable of solving a wide rangeoof ¢
trol problems. More than 95% of all industrial control problems are sobyedID
control, although many of these controllers are actuailbportional-integral(P1)
controllersbecause derivative action is often not includ2g | There are also more
advanced controllers, whichftér from PID controllers by using more sophisti-
cated methods for prediction.
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Figure 1.21: Milestones in the history of synthetic biology

1.4 From Systems to Synthetic Biology

The rapidly growing field of synthetic biology seeks to use biological priesip
and processes to build useful engineering devices and systems. Aippkcaf
synthetic biology range from materials production (drugs, biofuels) to Qicéd
sensing and diagnostics (chemical detection, medical diagnostics) to ballogie
chines (bioremediation, nanoscale robotics). Like many other fields at thetime
their infancy (electronics, software, networks), it is not yet clearr@tsynthetic
biology will have its greatest impact. However, recent advances suttte abil-

ity to “boot up” a chemically synthesized genon@8]demonstrate the ability to
synthesize systems thaffer the possibility of creating devices with substantial
functionality. At the same time, the tools and processes available to desigmsyste
of this complexity are much more primitive, awnié@ novosynthetic circuits typi-
cally use a tiny fraction of the number of genetic elements of even the smallest
microorganisms.

Several scientific and technological developments over the past focades
have set the stage for the design and fabrication of early synthetic biamarlec
circuits (see Figurd..21). An early milestone in the history of synthetic biology
can be traced back to the discovery of mathematical logic in gene regulation. |
their 1961 paper, Jacob and Monod introduced for the first time the idgans
expression regulation through transcriptional feedbd&k Only a few years later
(1969), restriction enzymethat cut double-stranded DNA at specific recognition
sites were discovered by Arber and co-workels These enzymes were a major
enabler of recombinant DNA technology, in which genes from one dsgaare
extracted and spliced into the chromosome of another. One of the mostatetebr
products of this technology was the large scale production of insulin by ginglo
E. colibacteria as a cell factory’§)].
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Another key innovation was the development of the polymerase chain reac-
tion (PCR), devised in the 1980s, which allows exponential amplification ofl sma
amounts of DNA and can be used to obtaiffisient quantities for use in a variety
of molecular biology laboratory protocols where higher concentratiobs\Zf are
required. Using PCR, it is possible to “copy” genes and other DNA sempgeout
of their host organisms.

The developments of recombinant DNA technology, PCR and artificial synth
sis of DNA provided the ability to “cut and paste” natural or synthetic pronsote
and genes in almost any fashion. This cut and paste procedure isdathétyand
consists of four primary stepBagmentationligation, transfectiorandscreening
The DNA of interest is first isolated using restriction enzymeg@ndlCR amplifi-
cation. Then, a ligation procedure is employed in which the amplified fragment is
inserted into a vector. The vector is often a piece of circular DNA, callddsapd,
that has been linearized by means of restriction enzymes that cleave firapap
ate restriction sites. The vector is then incubated with the fragment of inteitbst
an enzyme calle@®NA ligase producing a single piece of DNA with the target
DNA inserted. The next step is to transfect (or transform) the DNA into divin
cells, where the natural replication mechanisms of the cell will duplicate the DNA
when the cell divides. This process does not transfect all cells, aadsslection
procedure if required to isolate those cells that have the desired DNAegdser
them. This is typically done by using a plasmid that gives the cell resistance to a
specific antibiotic; cells grown in the presence of that antibiotic will only live if
they contain the plasmid. Further selection can be done to insure that thedser
DNA is also present.

Once a circuit has been constructed, its performance must be verifiedf an
necessary, debugged. This is often done with the hefijofescent reportersThe
most famous of these is GFP, which was isolated from the jellyistuorea vic-
toria in 1978 by Shimomura?]. Further work by Chalfie, Tsujii and others in the
1990s enabled the use of GFFENcoli as a fluorescent reporter by inserting it into
an appropriate pointin an artificial circuit. By using spectrofluorometngréscent
microscopy or flow cytometry, it is possible to measure the amount of fluaresce
in individual cells or collections of cells and characterize the performafee
circuit in the presence of inducers or other factors.

Two early examples of the application of these technologies wenegressi-
lator [24] and a synthetic genetic switch [].

The repressilator is a synthetic circuit in which three proteins each epres
other in a cycle. This is shown schematically in Figlir22g where the three pro-
teins are TetRa cl and Lacl. The basic idea of the repressilator is that if TetR is
present, then it represses the production off. If Acl is absent, then Lacl is pro-
duced (at the unregulated transcription rate), which in turn represtBs Once
TetR is repressed, thercl is no longer repressed, and so on. If the dynamics of
the circuit are designed properly, the resulting protein concentrationesxillate,
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Figure 1.22: The repressilator genetic regulatory netw@kA schematic diagram of the
repressilator, showing the layout of the genes in the pldshgit holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simpledrbfor the repressilator, show-
ing the oscillation of the individual protein concentraiso (Figure courtesy M. Elowitz.)

as shown in Figuré&.22h

The genetic switch consists of two repressors connected together iteaayc
shown in Figurel.23a The intuition behind this circuit is that if the gene A is being
expressed, it will repress production of B and maintain its expressioh(&uee
the protein corresponding to B will not be present to repress A). Similérby,
is being expressed, it will repress the production of A and maintain its ssiore
level. This circuit thus implements a typelubtability that can be used as a simple
form of memory. Figurel.23bshows the time traces for a system, illustrating the
bistable nature of the circuit. When the initial condition starts with a concentration
of protein B greater than that of A, the solution converges to the equilibriint p
where B is on and A isfd. If A is greater than B, then the opposite situation results.

These seemingly simple circuits took years to get to work, but showed that it
was possible to synthesize a biological circuit that performed a desiredidn
that was not originally present in a natural system. Today, commercigiesis
of DNA sequences and genes has become cheaper and faster, witle affgn
below $0.30 per base pailThe combination of inexpensive synthesis technolo-
gies, new advances in cloning technigues, and improved devices for ignagih
measurement has vastly simplified the process of producing a sequebB®&Aof
that encodes a given set of genes, operator sites, promoters anduoitiéons,
and these techniques are a routine part of undergraduate courseeaulaoand
synthetic biology.

As illustrated by the examples above, current techniques in synthetic biology
have demonstrated the ability to program biological function by designing DNA
sequences that implement simple circuits. Most current devices make tra@-of

1As of this writing; divide by a factor of two for every two years after thélxation date.
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Figure 1.23: Stability of a genetic switch. The circuit diaig in () represents two proteins
that are each repressing the production of the other. Thesnop andu, interfere with this
repression, allowing the circuit dynamics to be modifiede Eihmulation in (b) shows the
time response of the system starting from twidedient initial conditions. The initial portion
of the curve corresponds to protein B having higher conaéintr than A, and converges to
an equilibrium where Alisfdand B is on. Attime = 10, the concentrations are perturbed,
moving the concentrations into a region of the state spa@evolutions converge to the
equilibrium point with the A on and Bf&,

scriptional or post-transcriptional processing, resulting in very slow tiales (re-
sponse times typically measured in tens of minutes to hours). This restricts their
use in systems where faster response to environmental signals is neaceads
rapid detection of a chemical signal or fast response to changes in thresirgavi-
ronment of the cell. In addition, existing methods for biological circuit debimyre
limited modularity (reuse of circuit elements requires substantial redesigm-or tu
ing) and typically operate in very narrow operating regimes (e.g., a singlgesp
grown in a single type of media under carefully controlled conditions).

As an illustration of the dynamics of typical synthetic devices in use today, Fig-
urel.24shows a typical response of a genetic element to an inducer molé&lile |
In this circuit, an external signal of homoserine lactone (HSL) is applieohat
zero and the system reaches 10% of the steady state value in approxirbatety 1
utes. This response is limited in part by the time required to synthesize the output
protein (GFP), including delays due to transcription, translation and fal&iimge
this is the response time for the underlying “actuator”, circuits that are ceetjaf
feedback interconnections of such genetic elements will typically oper&teléit
times slower speeds. While these speeds are appropriate in many appli@tions
regulation of steady state enzyme levels for materials production), in the tontex
of biochemical sensors or systems that must maintain a steady operatingnpoint
more rapidly changing thermal or chemical environments, this response tinme is to
slow to be used as arifective engineering approach.



1-36 CHAPTER 1. INTRODUCTORY CONCEPTS

. ] ./intro/figures/ptet-response.eps
./intro/figures/BBa_F2620.eps 9 P y P

@) (b)

Figure 1.24: Expression of a protein using an inducible miem[15]. (a) The circuit
diagram indicates the DNA sequences that are used to congirupart (chosen from the
BioBrick library). (b) The measured response of the systemgtep change in the inducer
level (HSL).

By comparison, the frequency response for the signaling componé&ntdoli
chemotaxis is shown in Figure.25[?]. Here the response of the kinase CheA
is plotted in response to an exponential ramp in the ligand concentrationeThe r
sponse is extremely rapid, with the timescale measured in seconds. Thisaapid r
sponse is implemented by conformational changes in the proteins involved in the
circuit, rather than regulation of transcription or other slower processes

The field of synthetic biology has the opportunity to provide new appra&ache
to solving engineering and scientific problems. Sample engineering appl&ation
include the development of synthetic circuits for producing biofuels, @irsive
chemical sensors, or production of materials with specific propertiesrénairzed
to commercial needs. In addition to the potential impact on new biologically engi-
neered devices, there is also the potential for impact in improved unddirsjasf
biological processes. For example, many diseases such as cand&r&imson’s
disease are closely tied to kinase dysfunction. Our analysis of robsteinsy of
kinases and the ability to synthesize systems that support or invalidate badlogic
hypotheses may lead to a better systems understanding of failure modesdthat le
to such diseases.

1.5 Further Reading

There are numerous survey articles and textbooks that provide more di@téice
ductions to the topics introduced in this chapter. In the are of systems bitthagy,
textbook by Alon B] provides a broad view of some of the key elements of mod-
ern systems biology. A more comprehensive set of topics is covered ied¢katr
textbook by Klipp [?], while a more engineering-oriented treatment of modeling
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Figure 1.25: Responses Bf coli signaling network to exponential ramps in ligand con-
centration. (a) A simplified circuit diagram for chemotaxsbowing the biomolecular pro-
cesses involved in regulating flagellar motion. (b) Timeoeses of the “sensing” subsys-
tem (from Shimizu, Tu and Berg; Molecular Systems Biolo@4 @), showing the response
to exponential inputs.

of biological circuits can be found in the text by Myef8.[Two other books that
are particularly noteworthy are Ptashne’s book on the piid§d] and Madhani’s
book on yeastq(], both of which use well-studied model systems to describe a
general set of mechanisms and principles that are present in méensedt types

of organisms.

The topics in dynamical systems and control theory that are briefly inteatluc
here are covered in more detail in AMOS]|[to which this text is a supplement.
Other books that introduce tools for modeling and analysis of dynamictdrags
with applications in biology include the two-volume text by J. D. Murra§j[and
the recent text by and Ellner and Guckenhein23}.[

Synthetic biology is a rapidly evolving field that includes manffetent sub-
areas of research, but few textbooks are currently available. Irptwfie area of
biological circuit design that we focus on here, there are a numberaaf garvey
and review articles. The article by Baketral [9] provides a high level description
of the basic approach and opportunities. Recent survey and revgraclude
Voigt [?] and Khalil and Collins P].
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Chapter 2

Dynamic Modeling of Core Processes

The goal of this chapter is to describe basic biological mechanisms in a way tha
can be represented by simple dynamic models. We begin the chapter aidiscuss
of the basic modeling formalisms that we will utilize to model biomolecular feed-
back systems. We then proceed to study a number of core processeghatbdgtl,
providing diferent model-based descriptions of the dynamics that will be used in
later chapters to analyze and design biomolecular systems. The focus ihahis ¢
ter and the next is on deterministic models using ordinaffedintial equations;
Chapterd describes how to model the stochastic nature of biomolecular systems.

PrerequisitesReaders should have some basic familiarity with cell biology, at the
level of the description in Sectioh.2 (see also AppendiR), and a basic under-
standing of ordinary diierential equations, at the level of Chapter 2 of AMOS8 (see
also AppendixB).

2.1 Modeling Techniques

In order to develop models for some of the core processes of the cellilwead

to build up a basic description of the biochemical reactions that take platgginc
ing production and degradation of proteins, regulation of transcriptidntrams-
lation, intracellular sensing, action and computation, and intercellular signaling
As in other disciplines, biomolecular systems can be modeled in a variety of dif-
ferent ways, at many fferent levels of resolution, as illustrated in Fig@ré& The
choice of which model to use depends on the questions that we want teransg
good modeling takes practice, experience and iteration. We must propetlyre

the aspects of the system that are important, reason about the apprtpripte

ral and spatial scales to be included, and take into account the types dditsomu
and analysis tools be be applied. Models that are to be used for analyistige
systems should make testable predictions and provide insight into the underlyin
dynamics. Design models must additionally capture enough of the important be-
havior to allow decisions to be made regarding how to interconnect subsgste
choose parameters and design regulatory elements.

In this section we describe some of the basic modeling frameworks that we will
build on throughout the rest of the text. We begin with brief descriptions ef th
relevant physics and chemistry of the system, and then quickly move to models
that focus on capturing the behavior using reaction rate equations. Irhiqitec
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Figure 2.1: Diferent methods of modeling biomolecular systems.

our emphasis will be on dynamics with time scales measured in seconds to hours
and mean behavior averaged across a large number of molecules. \Weotdyc
briefly on modeling in the case where stochastic behavior dominates andadefe
more detailed treatment until Chapter

Statistical mechanics and chemical kinetics

At the fine end of the modeling scale depicted in Figlrg we can attempt to
model themolecular dynamicsf the cell, in which we attempt to model the indi-
vidual proteins and other species and their interactions via molecularfeceds

and motions. At this scale, the individual interactions between protein domains
DNA and RNA are resolved, resulting in a highly detailed model of the dynamics
of the cell.

For our purposes in this text, we will not require the use of such a detaildel. s
Instead, we will start with the abstraction of molecules that interact with ethehn o
through stochastic events that are guided by the laws of thermodynamicggide b
with an equilibrium point of view, commonly referred to statistical mechanics
and then briefly describe how to model the (statistical) dynamics of the system
using chemical kinetics. We cover both of these points of view very briefte,h
primarily as a stepping stone to more deterministic models, and present a more
detailed description in Chaptdr

The underlying representation for both statistical mechanics and cheniical k
netics is to identify the appropriataicrostatesof the system. A microstate cor-
responds to a given configuration of the components (species) in ttearsysla-
tive to each other and we must enumerate all possible configurations betvece
molecules that are being modeled. As an example, consider the distributidtof R
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Figure 2.2: Microstates for RNA polymerase. Each micrestdtthe system corresponds
to the RNA polymerase being located at some position in tiie IEeve discretize the
possible locations on the DNA and in the cell, the microstaigrresponds to all possi-
ble non-overlapping locations of the RNA polymerases. fégtom Phillips, Kondev and
Theriot [59]; used with permission of Garland Science.

polymerase in the cell. It is known that most RNA polymerases are bound to the
DNA in a cell, either as they produce RNA or as theffue along the DNA in
search of a promoter site. Hence we can model the microstates of the RNA poly
merase system as all possible locations of the RNA polymerase in the cell, with the
vast majority of these corresponding to the RNA polymerase at some location o
the DNA. This is illustrated in Figurg.2

In statistical mechanics, we model the configuration of the cell by the proba-
bility that system is in a given microstate. This probability can be calculatedibase
on the energy levels of theftlerent microstates. The laws of statistical mechanics
state that if we have a set of microstat@sthen the steady state probability that
the system is in a particular microstatés given by

1
P(q) = Se=/tel), (2.1)

whereEg is the energy associated with the microsigteQ, kg is the Boltzmann
constant,T is the temperature in degrees Kelvin, afids a normalizing factor,
known as theartition function

7 = Z g Ea/(keT)
geQ

(These formulas are described in more detail in Chap)er
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Table 2.1: Configurations for a combinatorial promoter wvath activator and a repres-
sor. Each row corresponds to a specific macrostate of theqteornim which the listed
molecules are bound to the target region. The relative gnafrgtate compared with the
ground state provides a measure of the likelihood of tha¢ stecurring, with more nega-
tive numbers corresponding to more energetically faverabhfigurations.

State OR1 OR2 Prom AG Comment
S - - - Eo=0 No binding (ground state)
S, - - RNAP Egrnap=-5 RNA polymerase bound
S3 the R - - Er=-10 Repressor bound
Su - A - Er=-12 Activator bound
S45 - A RNAP Earnap =—-15 Activator and RNA polymerase

By keeping track of those microstates that correspond to a given sy&iéem s
(also called amacrostat® we can compute the overall probability that a given
macrostate is reached. Thus, if we have a set of sgte that correspond to a
given macrostate, then the probability of being in theSsit given by

qus e Eq/(kBT)

1
P(S)==3 » efatel o 22—
Z Z ZQEQ @ Eq/(keT)

geS

2.2)

This can be used, for example, to compute the probability that some RNA poly-
merase is bound to a given promoter, averaged over many indeperdeples,

and from this we can reason about the rate of expression of the pgondiag
gene.

Example 2.1(Combinatorial promoter)A combinatorial promoter is a region of
DNA in which multiple transcription factors can bind and influence the sulesgqu
binding of RNA polymerase. Combinatorial promoters appear in a numbeatof n
ural and engineered circuits and represent a mechanism for creatfitotp-tike
behavior, for example by having a gene that controls expression of iistran-
scription factors.

One method to model a combinatorial promoter is to use the binding energies
of the diferent combinations of proteins to the operator region, and then compute
the probability of being in a given promoter state given the concentratiogobf ef
the transcription factors. TabR1 shows the possible states of a notional promoter
that has two operator regions—one that binds a repressor protein Rnaiiger
that binds an activator protein A. As indicated in the table, the promoter hees thr
(possibly overlapping) regions of DNA: OR1 and OR2 are binding siteshfer
repressor and activator proteins, and Prom is the location where RNApmse
binds. (The individual labels are primarily for bookkeeping purposesmay not
correspond to physically separate regions of DNA.)
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To determine the probabilities of being in a given macrostate, we must compute
the individual microstates that occur at a given concentrations of sepreac-
tivator and RNA polymerase. Each microstate corresponds to an indiwduaf
molecules binding in a specific configuration. So if we hayeepressor molecules,
then there is one microstate correspondinggohdifferent repressor molecule that
is bound, resulting img individual microstates. In the case of configurati®s
where two diferent molecules are bound, the number of combinations is given by
the product of the numbers of individual molecules; nrnap, reflecting the pos-
sible combinations of molecules that can occupy the promoter sites. Thdlovera
partition function is given by summing up the contributions from each microstate:

7 — g Eo/(keT) | NRNAP g Ernap/(ksT) NR g Er/(keT)

+Np g Ea/keT) 4 NANRNAP g Earnap/(keT) (2.3)

The probability of a given macrostate is determined using equa®@ or
example, if we define the promoter to be “active” if RNA polymerase is bound
to the DNA, then the probability of being in this macrostate as a function of the
various molecular counts is given by

1 _E keT _Ena keT
Pactive(NR, NA, NRNAP) = > (nRNAPe rNaP/(KBT) | 1 noyape EARNAP/ (K ))

B Ka:RnAP NA + KrRNAP
1+ krnap + KrNR + (Ka + Ka:rnaP)NA

where
ky = e (Ex—Eo)/(keT)

From this expression we see thahif > na thenPgyciive tends to 0 while iha > ng
thenPggive tends to 1, as expected. Y

Statistical mechanics describes the steady state distribution of microstates, but
does not tell us how the microstates evolve in time. To include the dynamics, we
must consider thehemical kineticof the system and model the probability that
we transition from one microstate to another in a given period of timeqlcep-
resent the microstate of the system, which we shall take as a vector of mtbger
represents the number of molecules of a specific types in given confangar
locations. We describe the kinetics of the system by making use girtipeensity
function g¢; g,t), which captures the instantaneous probability that at timeys-
tem will transition between statg and stateg+ &, whereé is the change in the
vector of integers representing the microstate.

More specifically, the propensity function is defined such that

a(¢;q,t)dt = Probability that the microstate will transition from
stateq to stateq+ & between timé and timet + dt.
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We will give more detail in Chaptefregarding the validity of this functional form,
but for now we simply assume that such a function can be defined foystars.

Using the propensity function, we can keep track of the probability distribu-
tion for the state by looking at all possible transitions into and out of the curre
state. Specifically, giveR(g,t), the probability of being in statgat timet, we can
compute the time derivativié(q, t) as

ELCOE Deia-60Pa-60- LaEapan. (24

This equation (and its many variants) is called¢hemical master equatiq€ME).
The first sum on the right hand side represents the transitions into thej $tate
some other statg— £ and the second sum represents that transitions out of the state
ginto some other staig+¢. The variable in the sum ranges over all possible tran-
sitions between microstates.

Clearly the dynamics of the distributioR(g,t) depends on the form of the
propensity functiora(¢). Consider a simple reaction of the form

Rf: A+B— AB
A+B=AB = (2.5)
Rr: AB— A+B.

We assume that the reaction takes place in a well-stirred volQnaed let the
configurationgy be represented by the number of each species that is present. The
forward reactiorRs is a bimolecular reaction and we will see in Chaptehat it

has a propensity function

a(¢";q) = (k/Q)nans,

where¢' represents the forward reactiam, andng are the number of molecules
of each species arkg is a constant cdicient that depends on the properties of the
specific molecules involved. The reverse reacBpis a unimolecular reaction and
we will see that it has a propensity function

a(¢",a) = king,

whereé' represents the reverse reactibpis a constant cdiicient andnag is the
number of molecules of AB that are present.

Example 2.2 (Repression of gene expressioWye consider a simple model of
repression in which we have a promoter that contains binding sites for RINA p
merase and a repressor protein R. RNA polymerase only binds whemtiesser

is absent, after which it can undergo an isomerization reaction to form am op
complex and initiate transcription. Once the RNA polymerase begins to create
MRNA, we assume the promoter region is uncovered, allowing anothessgpre

or RNA polymerase to bind.
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The following reactions describe this process:

R1: R+DNA == R:DNA

R2: RNAP+DNA — RNAP:DNA®

R3: RNAP:DNA® — RNAP:DNA°

R4: RNAP:DNA° — RNAP+DNA (+mRNA),

where RNAP:DNA' represents the closed complex and RNAP:DNAapresents

the open complex. The states for the system depend on the number of m®lecule
of each species and complex that are present. If we assume that weistang
repressors anaknap RNA polymerases, then the possible states for our system are
given by

State DNA R RNAP R:DNA RNAP:DNA RNAP:DNA°
a1 1 NR NRNAP 0 0 0
g2 0 nr-1 nrnae 1 0 0
(0 0 NR Nrnap— 1 0 1 0
04 0 R Nrnap—1 0 0 1

Note that we do not keep of each individual repressor or RNA polyreeradecule
that binds to the DNA, but simply keep track of whether they are boundtor no

We can now rewrite the chemical reactions as a set of transitions between the
possible microstates of the system. Assuming that all reactions take placelin a vo
umeQ, we use the propensity functions for unimolecular and bimolecular reactions
to obtain:

& o — 0y al]) = (kl/Q)ns & g—a; aE) =K
& g —ay aE)=/Omuar & g—ay; &)=k
&30 O3— 0y a(é3) =ks &: 0,—0q; alEy) =k

The chemical master equation can now be written down using the propensity fu
tions for each reaction:

P(ant)) [~k /Qnr—(K/Qnrnap K K k) (P(awt)
d [P t)| _ (ki /Q)ng -« 0  0||P@D
dt P(C]g,t) (k;/Q)nRNAp 0 —k&—k3 0 P(Q3,t) '

P(0a4, 1) 0 0 ks —ky) \P(da.1)

The initial condition for the system can be takerPég, 0) = (1,0,0,0), correspond-
ing to the state);. A simulation showing the evolution of the probabilities is shown
in Figure2.3.
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Figure 2.3: Numerical solution of chemical master equafiwrsimple repression model.

The equilibrium solution for the probabilities can be solved by setiing 0,
which yields:

Pe(0) = — krlfhg(k; o

ky kanr (K, + k3) + K ko nrnap(ks + Ka) + K kaQ(K, + k3)
Pe(02) = — kI:Q il

ky kanR(K; +Ks) +Kik; Nrnap(Ks +ka) + K kaQ(K, + k)
Pe(ds) = — Iflk;MnRNAP

Ky Kanr(K;, + k) + K K, Nrap(Ks + Kg) + K KaQ(K; + k3)
Pe(ck) = glores

ky kanr (K, +ka) + K K Nrnap(ks + Ka) + Kt kaQ(K, + k)

We see that the functional dependencies are similar to the case of the ctariaina
promoter of Exampl&.1, but with the binding energies replaced by kinetic rate
constants. v

The primary diference between the statistical mechanics description given by equa-
tion (2.1) and the chemical kinetics description in equatidry is that the master
equation formulation describes how the probability of being in a given midemsta
evolves over time. Of course, if the propensity functions and energislave mod-

eled properly, the steady state, average probabilities of being in a giveostaite
should be the same for both formulations.

Mass action kinetics

Although very general in form, the chemical master equatidfessifrom being a
very high dimensional representation of the dynamics of the system. Wesskall

in Chapter4 how to implement simulations that obey the master equation, but in
many instances we will not need this level of detail in our modeling. In particula
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there are many situations in which the number of molecules of a given species
is such that we can reason about the behavior of a chemically reactitegnsys
by keeping track of theoncentrationof each species as a real number. This is
of course an approximation, but if the number of molecules fBcsently large,

then the approximation will generally be valid and our models can be dramatically
simplified.

To go from the chemical master equation to a simplified form of the dynamics,
we begin by making a number of assumptions. First, we assume that we ean rep
resent the state of a given species by its concentrationna /Q, wherena is the
number of molecules of A in a given volungg We also treat this concentration
as a real number, ignoring the fact that the real concentration is quaurfreally,
we assume that our reactions take place in a well-stirred volume, so thatdlod ra
interactions between two species is solely determined by the concentratithes of
species.

Before proceeding, we should recall that in many (and perhaps mostaits
inside of cells, these assumptions a@ particularly good ones. Biomolecular
systems often have very small molecular counts and are anything but wetl.mixe
Hence, we should not expect that models based on these assumptiolispse
form well at all. However, experience indicates that in many cases tlie foas
of the equations provides a good model for the underlying dynamics aue lnee
often find it convenient to proceed in this manner.

Putting aside our potential concerns, we can now proceed to write thendyna
ics of a system consisting of a set of specigs S 1,...,N undergoing a set of
reactionsR;j, j = 1,...,M. We write x; = [S;] for the concentration of specias
(viewed as a real number). Because we are interested in the casethdrtenber
of molecules is large, we no longer attempt to keep track of every possibie co
figuration, but rather simply assume that the state of the system at anytignesn
is given by the concentrations. Hence the state space for our system is given by
x € RN and we seek to write our dynamics in the form of figtiential equation

%= f(x,0)

wheref : RN — RN describes the rate of change of the concentrations as a function
of the instantaneous concentrations dmdpresents the parameters that govern the
dynamic behavior.
To illustrate the general form of the dynamics, we consider again the €ase o
basic bimolecular reaction
A+B=AB.

Each time the forward reaction occurs, we decrease the number of maledule
A and B by 1 and increase the number of molecules of AB (a separate specie
by 1. Similarly, each time the reverse reaction occurs, we decrease thenafmb
molecules of AB by one and increase the number of molecules of A and B.
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Using our discussion of the chemical master equation, we know that the likeli-
hood that the forward reaction occurs in a given intedtas given bya(¢'; x, t)dt =
(k;/Q)nAant and the reverse reaction has likelihcag"; g,t) = kfrnAB. It follows
that the concentration of the complex AB satisfies

[AB](t+dt) - [AB](t) = E{nap (t +dt)/Q - nag (t)/Q2}
= (a(¢"sa-¢".0 - 0.0)/Q-dt
= (k;nArlB/Q2 ~kinag /Q)dt
= (KI[AIIB] - K{[AB] )dt

Taking the limit asdt approaches zero (but remains large enough that we can still
average across multiple reactions, as described in more detail in Cjptes
obtain

d r
5/ABI = k{[A[B] - K{[AB].

In a similar fashion we can write equations to describe the dynamics of A and
B and the entire system of equations is given by

d —Lf f

GilAl = ke[AB] -~ k[AI[B] A=KC-KA-B

) _ ‘

i[Bl = K[AB] - K[AIB]  or |§ =kiC-KkIA-B
C =k{A-B-Kk(C,

d r
G/AB] = K[AI[B] - k[AB]

whereC = [AB]. These equations are known as thrass action kineticsr the
reaction rate equationsor the system. The parametek} and k§r are called the
rate constantsand they match the parameters that were used in the underlying
propensity functions.

Note that the same rate constants appear in each term, since the rate of pro-
duction of AB must match the rate of depletion of A and B and vice versa. We
adopt the standard notation for chemical reactions with specified ratesréed
the individual reactions as

ke ki
A+B— AB, AB — A +B,

Wherekg andkg are the reaction rates. For bidirectional reactions we can also write

ke
A+B = AB.
k

Itis easy to generalize these dynamics to more complex reactions. For example
if we have a reversible reaction of the form
kf

A+2B=2C+D,
kr



2.1. MODELING TECHNIQUES 2-11

where A, B, C and D are appropriate species and complexes, then tamigrfor
the species concentrations can be written as

%A =k'C?.D-k'A-B?, dﬂtc =2k'A.B?-2k'C?.D, -
d%Bzzkfcz-D—zka-BZ, %D:ka-Bz—erZ-D. |
Rearranging this equation, we can write the dynamics as
A -1 1 -
dgt 5 - 22 —22 [lk(féZ -B D] ' 2.7)

D 1 -1
We see that in this decomposition, the first term on the right hand side is a matrix
of integers reflecting the stoichiometry of the reactions and the second texrm is
vector of rates of the individual reactions.
More generally, given a chemical reaction consisting of a set of sp&gies
i=1,...,nand a set of reactiong;, j = 1,...,M, we can write the mass action

kinetics in the form dx

ar = NMX),
whereN e R™™ is the stoichiometry matrixor the system ana(x) € RM is the
reaction flux vectarEach row ofv(x) corresponds to the rate at which a given
reaction occurs and the corresponding column of the stoichiometry matre-cor
sponds to the changes in concentration of the relevant species. Asalveeshin
the next chapter, the structured form of this equation will allow us to exgiomnge

of the properties of the dynamics of chemically reacting systems.

Example 2.3(Covalent modification of a protein)Consider the set of reactions
involved in the phosphorylation of a protein by a kinase, as shown in Figare
Let S represent the substrate, K represent the kinase farepgsent the phospho-
rylated (activated) substrate. The sets of reactions illustrated in Flgidare

R1: K+ATP=KATP
R2: S+KATP = S:KIATP
R3: S:K:ATP— SP:K:ADP
R4: $:K:ADP — SP+K:ADP
R5: K:ADP==K+ADP
We now write the kinetics for each reaction:
vi = k! [K][ATP] V] = k! [K:ATP]
Vi =K [SIIK:ATP] Vb = Kb [S:K:ATP]
vz = k3[S:K:ATP] V4 = k4 [SP:K:ADP]
vi = kI [K:ADP] Vi = k! [K][K:ADP]
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A A C
B 2

B D

A+B=—=AB A—B A+2B=—=C+D

Figure 2.4: Diagrams for chemical reactions.

We treat [ATP] as a constant (regulated by the cell) and hence do remtlglir
track its concentration. (If desired, we could similarly ignore the conceoiraf
ADP since we have chosen not to include the many additional reactions ih whic
it participates.)

The kinetics for each species are thus given by

[K] ~Vi v v v [K ATP] = Vi —vi -V} +V}

[S] —Vh+ —[S K:ATP] = Vi -V —v3
—[Sp] =V a[Sp:K:ADP] =V3—Vy

[ADP] vE-vi %[K:ADP] = Vs —Vi+ VL

In standard stochiometric form, we write

[K] -1 1. 0 0 0 0 1 -1y
[K:ATP] 1 -1 1 -1 0 0 0 of]v

[S] 0O 0 -1 1 0 0 0 O vi
d|[SKATP]| |0 0O 1 -1 -1 0 0 Of|v
dt [SP] “lo o o o 0o 1 0 O]|wn
[SP:K:ADP] 0 0 0 0 1 -1 0 O0f|w
[ADP] 0o 0 0 0 0 0 1 -1|v
[K:ADP] 0 0 0 0 0 1 -1 1)1V
~——

X N V(X)

We will often find it convenient to represent collections of chemical reastio
using simple diagrams, so that we can see the basic interconnection betwieen v
ous chemical species and properties. A set of diagrams for standardozt reac-
tions is shown in Figur@.4.
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(a) Enzymatic reaction (b) Permease-modulated transport

Figure 2.5: Diagrams for enzymatic reactions.

Reduced order mechanisms

In this section, we look at dynamics of some common reactions that occur in
biomolecular systems. Under some assumptions on the relative rates ornmgactio
and concentrations of species, it is possible to derive reduced oquiessions for

the dynamics of the system. We focus here on an informal derivation céléneant
results, but return to these examples in the next chapter to illustrate thaintke sa
results can derived using a more formal and rigorous approach.

Simple binding reactiorConsider the reaction

kf

A+B=C (2.8)

where C is the complex AB. Assume that B is a species that is controlled by other
reactions in the cell and that the total concentration of A is conserved,a$o th
A+C =[A] +[AB] = A If the dynamics of this reaction are fast compared to
other reactions in the cell, then the amount of A and C present can be cahgzute
a (steady state) function of B.

To compute how A and C depend on the concentration of B, we must solve for
the equilibrium concentrations of A and C. The rate equation for C is giyen b

Z—f =k'B- (At—C) - k'C.

By settingC = 0 and lettingKy := k'/kf, we obtain the expressions

_ BAtot A= Atoth
B+ Kd’ B+ Kd.

The constanKy is the inverse of thefinity of A to B. The steady state value ©f
increases withB while the steady state value Afdecreases witB as more of A is
found in the complex C.
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Cooperative binding reactiorAssume now that B binds to A only after dimeriza-
tion, that is, only after binding another molecule of B. Then, we have tlzatre
tions (2.8) become

ke K
B+B=B;, By+tA=C, A+C=Aq,
kr

ko
in which B, denotes the dimer of B. The corresponding ODE model is given by

dd;Btd=lez—szd, ?j_ct::kad‘(Atot—C)_er-

By settingBy = 0, C = 0, and by definind<m, := ky/ko, we we obtain that

BdAtot Atoth
By = KmB? C= A=
d m=e Bg+Kqg’ Bqg+Kg’

so that
C= KmAtoth A= AwotKyg

KmB2+Kg’ KmB2+Kqg
As an exercise, the reader can verify that if B binds to A only as a complex o
copies of B, that is,
ke k!
B+B+..+B=B8,, B,+A=C, A+C = Ao,
k kr

2
then we have that

C= KmAtotBn A= Atoth
KmB"+ Ky’ KmB"+ Ky

In this case, one says that the binding of B to Aa®perativevith cooperativityn.
Figure2.6shows the above functions, which are often referred tdikhéunctions

Competitive binding reactiorkinally, consider the case in which two specigs B
and B both bind to A competitively, that is, they cannot be bound to A at the same
time. Let C be the complex formed betweep &d A and letC be the complex
formed between Band A. Then, we have the following reactions
Kkf Ef _ _
Ba+Ak¢C, B,+A=C, A+C+C = Apt,
r kl’
for which we can write the ODE system as

dC = dC NS
—¢ =KBa (At—-C-C)-k'C, == =K'B(At—C-C)-K'C.
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Figure 2.6: Steady state concentrations of the complex Coérf as functions of the
concentration of B.
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By setting the derivatives to zero, we obtain that
Ck'Ba+k) =k'Ba(Act—C),  C(k'Br+k") = k'Br(Awr—C),

and definingKq := k/k' leads to

— Br(Awt- B.B K,
c=BlaC) (g k- o r):B( : )Am
from which we finally obtain that
BaAwotKd o Bk

= KBa+ KgB; + KgKy' KyBr + KgBa + KgKg'

Note that in this derivation, we have assumed that boithaBd B bind A as
monomers. If they were binding as dimers, the reader should verify thaivied
appear in the final expressions with a power of two. Note also that in thigaeer
tion we have assumed thag Bnd B cannot simultaneously bind to A. If they were
binding simultaneously to A, we would have included another complex comprising
B, and B and A. Denoting this new complex 1§/, we would have added also the
two additional reactions

k’f , _ I f ,

C+B,=C, C+B,=C

KT KT
and we would have modified the conservation law for AAtg = A+C+C +C’.
The reader can verify that in this case a mixed t&yB, would appear in the
equilibrium expressions.

Enzymatic reactionA general enzymatic reaction can be written as

K keat
E+S=C—>E+P,
kr
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in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the substrate
S due to the binding with the enzyme E. The riltés referred to as association
constantk" as dissociation constant, akgh; as the catalytic rate. Enzymatic re-
actions are very common and we will see specific instances of them in thel sequ
e.g., phosphorylation and dephosphorylation reactions. The congisigoODE
system is given by

dd—lf:—ka-S+er+kcaIC, ?j_(t::ka'S_(kr'i'kcat)C’
ds : dP _
G- kK'E-S+K'C, dt—kcatc-

The total enzyme concentration is usually constant and denotég,fgo that
E + C = Eor. Substituting in the above equatioBs= E;o;— C, we obtain

ciTltE = —k'(Etot—C) - S +K'C +kealC, ?j—? = K'(Eiot=C) S - (K" + kealC,
5= —k'(Etot—C)-S+kK'C, ot = KeaC.

This system cannot be solved analytically, therefore assumptions hemeubed

in order to reduce it to a simpler form. Michaelis and Menten assumed that the
conversion of E and S to C anite versas much faster than the decomposition of

C into E and P. This approximation is called tipgasi-equilibriumapproximation
between the enzyme and the complex. This assumption can be translated into the
condition

k' K™ > Keat

on the rate constants. Under this assumption and assuming theE (at least at
time 0),C immediately reaches its steady state value (wRilis still changing).
The steady state value 6fis given by solvingk'(Eiot — C)S — (k" + kea)C = O for

C, which gives

K"+ Keat
kf~°

_ EwS

= ith Kmn=
S+Ky wit m

in which the constanky, is called theMichaelis constantLetting Vimax = KeatEtot,
the resulting kinetics
dP  VmaxS

dt  S+Kp

is calledMichaelis-Menten kineticsThe constanVax is called the maximal ve-
locity (or maximal flux) and it represents the maximal rate that can be obtained
when the enzyme is completely saturated by the substrate.



2.2. TRANSCRIPTION AND TRANSLATION 2-17

Chemical reaction networks (TBD)

2.2 Transcription and Translation

In this section we consider the processes of transcription and transladiag,the
modeling techniques described in the previous section to capture the fum@dame
dynamic behavior. Models of transcription and translation can be doneaaitedy

of levels of detail and which model to use depends on the questions thatone w

to consider. We present several levels of modeling here, starting withhada-
tailed set of reactions and ending with highly simplified models that can be used
when we are only interested in average production rate of proteins titegldong

time scales.

The basic reactions that underly transcription include thusion of RNA
polymerase from one part of the cell to the promoter region, binding offf R
polymerase to the promoter, isomerization from the closed complex to the open
complex and finally the production of mMRNA, one base pair at a time. To capture
this set of reactions, we keep track of the various forms of RNA polyreexesord-
ing to its location and state: RNARepresents RNA polymerase in the cytoplasm
and RNAP! is non-specific binding of RNA polymerase to the DNA. We must sim-
ilarly keep track of the state of the DNA, to insure that multiple RNA polymerases
do not bind to the same section of DNA. Thus we can write DNi#x the promoter
region, DNA?' for theith section of a geng (whose length can depend on the de-
sired resolution) and DNAfor the termination sequence. We write RNAP:DNA to
represent RNA polymerase bound to DNA (assumed closed) and RNA® BN
indicate the open complex. Finally, we must keep track of the mRNA that is pro-
duced by transcription: we write mRNAo represent an mRNA strand of length
and assume that the length of the gene of interast is

Using these various states of the RNA polymerase and locations on the DNA,
we can write a set of reactions modeling the basic elements of transcription as

Binding to DNA: RNAFF = RNAPY

Diffusion along DNA: RNAP = RNAPP

Binding to promoter: RNAP+DNAP — RNAP:DNAP

Isomerization: RNAP:DNA == RNAP:DNA°
Start of transcription: RNAP:DNA—s RNAP:DNA%! + DNAP
mRNA creation (index)::  RNAP:DNA%! —; RNAP:DNA%2 + mRNA}
Elongationj=1,...,N:  RNAP:DNA%*+ mRNA — RNAP:DNA%*2 1 mRNA/ ™
Binding to terminator:  RNAP:DNAN + mRNAY ' — RNAP:DNA'+ mRNAY
Termination: RNAP:DNA — RNAP®

Degradation: mRNA — 0
(2.9)
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This reaction has been written for prokaryotes, but a similar set of resatiauld

be written for eukaryotes: the mainfidirences would be that the RNA polymerase
remains in the nucleus and the mRNA must be spliced and transported to the cy-
tosol. Note that at the start of transcription we “release” the promotermeyjitne

DNA, thus allowing a second RNA polymerase to bind to the promoter while the
first RNA polymerase is still transcribing the gene.

A similar set of reactions can be written to model the process of translation.
Here we must keep track of the binding of the ribosome to the mRNA, translation
of the mRNA sequence into a polypeptide chain and folding of the polypeptide
chain into a functional protein. Let Ribo:mRN&S indicate the ribosome bound
to the ribosome binding site, Ribo:mRMA' the ribosome bound to théh codon,
Ribo:mRNAS®"and Ribo:mRNAPfor the start and stop codons, and PR a
polypeptide chain consisting omino acids. The reactions describing translation
can then be written as

Binding to RBS:  Ribor MRNARPS = Ribo:mRNAT®S
Start of translation:  Ribo:mRNAPS — Ribo:mRNAY™"+ mRNAR®S
Polypeptide chain creation:  Ribo:mRNA"'— Ribo:mRNA? + PPCt
Elongationj =1,...,M:  Ribo:mRNA(*Y + PPC —; Ribo:mRNAM(*2) 1 ppCi+t

Stop codon:  Ribo:mRNM + PPC"~1 —; Ribo:mRNA™ P+ ppc"

Release of MRNA:  Ribo:mRNA”® — Ribo

Folding: PPC' —s protein

Degradation:  proteir— 0

As in the case of transcription, we see that these reactions allow multiple ribssome
to translate the same piece of MRNA by freeing up the ribosome binding site (RBS)
when translation begins.

As complex as these reactions are, they are still missing many important ef-
fects. For example, we have not accounted for the existencefBeudseof the 5’
and 3’ untranslated regions (UTRs) of a gene and we have also lefanatis error
correction mechanisms in which ribosomes can step back and release madhco
amino acid that has been incorporated into the polypeptide chain. We haveftals
out the many chemical species that must be present in order for a vafitty o
reactions to happen (NTPs for mRNA production, amino acids for proteiuyar
tion, etc). Incorporation of thesdfects requires additional reactions that track the
many possible states of the molecular machinery that underlies transcription an
translation.

Given a set of reactions, the various stochastic processes thatyudeliled
models of transcription and translation can be specified using the stochadétmo
ing framework described briefly in the previous section. In particulangusither
models of binding energy or measured rates, we can construct pitydenstions
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for each of the many reactions that lead to production of proteins, inclutimg
motion of RNA polymerase and the ribosome along DNA and RNA. For many
problems in which the detailed stochastic nature of the molecular dynamics of the
cell are important, these models are the most relevant and they are covsoede
detail in Chapted.

Alternatively, we can move to the reaction rate formalism and model the reac-
tions using diferential equations. To do so, we must compute the various reaction
rates, which can be obtained from the propensity functions or measyvedraen-
tally. In moving to this formalism, we approximate the concentrations of various
species as real numbers, which may not be accurate since some sp&ties e
low molecular counts in the cell. Despite all of these approximations, in many sit-
uations the reaction rate equations are perfectfficgent, particularly if we are
interested in the average behavior of a large number of cells.

In some situations, an even simpler model of the transcription, translation and
folding processes can be utilized. If we assume that RNA polymerase binds to
DNA at some average rate (which includes both the binding and isomerization
reactions) and that transcription takes some fixed time (depending on tth leng
of the gene), then the process of transcription can be described usirtgly
differential equation

d o

wherem, is the concentration of mRNA for protein Ry, is the concentration of
“active” mRNA, ap is the rate of production of the mRNA for proteinPis the
growth rate of the cell (which results in dilution of the concentration) anis the

rate of degradation of the mRNA. Since the dilution and degradation termg are o
the same form, we will often combine these terms in the mRNA dynamics and use
a single cofficientyp.

The active mRNA is the mRNA that is available for translation by the ribo-
some. We model its concentration through a simple time delay of Iewrﬁ;that
accounts for the transcription of the ribosome binding site in prokaryotsglior
ing and transport from the nucleus in eukaryotes. The exponenttal faccounts
for dilution due to the change in volume of the cell, wheiie the cell growth rate.
The constanta o andy,, capture the average rates of production and degradation,
which in turn depend on the more detailed biochemical reactions that undanlie tr
scription.

Once the active mRNA is produced, the process of translation can bebdesc
via a similar ordinary dterential equation the describes the production of a func-
tional protein:

dP

o =Bromy—5P. P'()=e¥P(t-ry). (2.11)
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Here P represents the concentration of the polypeptide chain for the prdt&in,
represents the concentration of functional protein (after folding). gdrameters
that govern the dynamics apy o, the rate of translation of mMRNA(j, the rate
of degradation and dilution of P; and,, the time delay associated with folding
and other processes required to make the protein functional. The eXj@bterm
again accounts for dilution due to cell growth. The degradation and dilutiam te
parameterized byp, captures both rate at which the polypeptide chain is degraded
and the rate at which the concentration is diluted due to cell growth.

It will often be convenient to write the dynamics for transcription and transla
tion in terms of the functional MRNA and functional proteinflBrentiating the
expression fomj, we see that

e
—ar M=) (2.12)

_ M — m — —
=€ (apo—ypMp(t—1p)) = apo—ypMy(V),
whereapo = e‘“T?;ap,o. A similar expansion for the active protein dynamics yields

dPi() _~ 5
O _Fuamy- -0 213

whereﬁpp = e‘l”gﬂp,o. We shall typically use equationg.02 and .13 as our
(reduced) description of protein folding, dropping the supersdrighd overbars
when there is no risk of confusion.

In many situations the time delays described in the dynamics of protein pro-
duction are small compared with the time scales at which the protein concentration
changes (depending on the values of the other parameters in the systsumghl
cases, we can simplify our model of the dynamics of protein production aitel w

dmp _ dP
ot~ ¥p0o~YpMp, at
Note that we here have dropped the superscriad f since we are assuming
that all mMRNA is active and proteins are functional and dropped the averiy
andg since we are assuming the time delays are negligible. We retain the overbars
ony ands since dilution due to cell growth is still a potentially important factor.
Finally, the simplest model for protein production is one in which we only keep
track of the basal rate of production of the protein, without including the mRNA
dynamics. This essentially amounts to assuming the mRNA dynamics reach steady
state quickly and replacing the firstfidirential equation in equatiog.(4) with its
equilibrium value. Thus we obtain

dP apo
ot = Bp,omMy —3pP = fpo—— —6pP =: Bp— 5pP.
p
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Figure 2.7: Simplified diagrams for protein production. Thagram on the left shows a
section of DNA with RNA polymerase as an input, protein caricaion as an output and
degradation of MRNA and protein. The figure on the right isnapsified view in which
only the protein output is indicated.

This model represents a simple first order, lineiiedéntial equation for the rate of
production of a protein. In many cases this will be &isiently good approximate
model, although we will see that in many cases it is too simple to capture the
observed behavior of a biological circuit.

We will often find it convenient to represent protein production using algimp
diagram that hides the details of the particular model that we decide to use. Fig
ure2.7shows the symbol that we will use through the text. The diagram is intended
to resemble a section of double stranded DNA, with a promoter and terminator at
the ends, and then a list of the gene and protein in the middle. The boxegllalgele
the gene and protein schematically represent the mRNA and protein catimantr
with the line at the left of the DNA represent the input of RNA polymerase and
the line on the top representing the the (folded) protein. The symbols at thenbotto
represent the degradation and dilution of mMRNA and protein.

2.3 Transcriptional Regulation

The operation of a cell is governed by the selective expression ofgeitiee DNA
of the organism, which control the various functions the cell is able to paréd
any given time. Regulation of protein activity is a major component of the molecu-
lar activities in a cell. By turning genes on anidl, and modulating their activity in
more fine-grained ways, the cell controls the many metabolic pathways inlthe ce
responds to external stimuli,féirentiates into dierent cell types as it divides, and
maintains the internal state of the cell required to sustain life.

The regulation of gene expression and protein activity is accomplisheagtro
a variety of molecular mechanisms, as illustrated in Figu8We see that at each
stage of the processing from a gene to a protein, there are potential menha
for regulating the production processes. The remainder of this sectiofoauls
on transcriptional control, the next section on control between traniscripnd
translation, and the third section on post-translational control mechaniserse W
gin with a description of regulation mechanisms in prokaryotes (bacteriathand
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Figure 2.8: Regulation of proteins. Figure from Phillipgridev and Theriotq9]; used
with permission of Garland Science.

describe the additional mechanisms that are specific to eukaryotes.

Prokaryotic mechanisms

Transcriptional regulation refers to the selective expression of ggnastivating
or repressing the transcription of DNA into mRNA. The simplest such regulatio
occurs in prokaryotes, where proteins can bind to “operator regionb&iwicinity
of the promoter region of a gene anfiext the binding of RNA polymerase and
the subsequent initiation of transcription. A protein is calledmessoiif it blocks
the transcription of a given gene, most commonly by binding to the DNA and
blocking the access of RNA polymerase to the promoteragéiivator operates in
the opposite fashion: it recruits RNA polymerase to the promoter regionemzkh
transcription only occurs when the activator (protein) is present.

We can capture this set of molecular interactions by modifying the RNA poly-
merase binding reactions in equati@9). For a repressor (Rep), we simply have
to add a reaction that represents the repressor bound to the promoter:

Repressor binding: DNA+ Rep== DNA:Rep

This reaction acts to “sequester” the DNA promoter site so that it is no longer
available for binding by RNA polymerase (which requires DNAThe strength
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of the repressor is reflected in the reaction rate constants for the septesding
reaction and the equilibrium concentrations of DRAversus DNA:Rep model the
“leakiness” of the repressor.

The modifications for an activator (Act) are a bit more complicated, since we
have to modify the reactions to require the presence of the activatorebRfdhA
polymerase can bind. One possible mechanism is

Activator binding: DNAP + Act == DNA:Act
Diffusion along DNA: RNAP = RNAPP
Binding to promoter wactivator: RNAP + DNA:Act = RNAP:DNA° + DNA:Act
Binding to promoter viout activator:  RNAP + DNAP = RNAP:DNAP

Here we model both the enhanced binding of the RNA polymerase to the promote
in the presence of the activator, as well as the possibility of binding without a
activator. The relative reaction rates determine how strong the activaiodithe
“leakiness” of transcription in the absence of the activator.

As indicated earlier, many activators and repressors operate in thenpeesf
inducers. To incorporate these dynamics in our description, we simplytbagkl
the reactions that correspond to the interaction of the inducer with the méleva
protein. For a negative inducer, we can simply add a reaction in which theend
binds the regulator protein andfectively sequesters it so that it cannot interact
with the DNA. For example, a negative inducer operating on a represstd be
modeled by adding the reaction

Rep+Ind = Rep:Ind

Positive inducers can be handled similarly, except now we have to modibjride
ing reactions to only work in the presence of a regulatory protein bound io-a
ducer. For example, a positive inducer on an activator would have théietbd
reactions

Inducer binding:  Ac# Ind = Act:Ind
Activator binding: DNAP + Act:Ind == DNA:Act:Ind
Diffusion along DNA:  RNAP = RNAPP
Binding to promoter wactivator:  RNAP + DNA:Act:Ind = RNAP:DNA° + DNA:Act:Ind

A simplified version of the dynamics can be obtained by assuming that tran-
scription factors bind to the DNA rapidly, so that they are in steady stategzonfi
urations. In this case, we can make use of the steady state statistical mechanic
techniques described in Secti@rl and relate the expression of the gene to the
probability that the activator or repressor is bound to the DRy (ng. This can
be done at the level of the reaction rate equation by replacing fiezatitial equa-
tions for activator or repressor binding with their steady state valueg iHstead
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we demonstrate how to account for this rapid binding in the simplifiéeéraintial
equation models presented at the end of Se@i@n

Recall that given the relative energies of théetient microstates of the system,
we can compute the probability of a given configuration using equaidi (

1
P [ —Eq/(kBT)‘
(a) €

Consider the regulation of a geaewith a protein concentration given ks and

a corresponding mRNA concentration,. Let b be a second gene with protein
concentratiorpy, that represses the production of protein A through transcriptional
regulation. If we letpoungrepresent the microstate corresponding to the appropri-
ate activator or repressor bound to the DNA, then we can coniigigung as a
function of the concentratiopy,, which we write adpoundPp)- FOr a repressor, the
resulting mMRNA dynamics can be written as

ddlth = (1~ Ppound Pb))@a0 — YaMa. (2.15)
We see that theffect of the repression is modeled by a modification of the rate of
transcription depending on the probability that the repressor is bound NAe
In the case of an activator, we proceed similarly. The modified mRNA dynamics
are given by
dmy

ar = Poound Pb)@a0 — YaMa, (2.16)

where now we see that B must be bound to the DNA in order for transcrifaion
occur.

As we shall see in Chapter (see also Exercisg.], the functional form of
PpoundCan be nicely approximated by a monotonic rational function, callddia
function[18, 55]. For a repressor, the Hill function is given by

fa(Po) = 1= Ppound Pb) = kabci—at;)gab +Qa,

where the subscripts correspond to a protein B repressing produét#oprotein

A, and the parametets,,, Kap andngy, describe how B represses A. The maximum
transcription rate occurs whep, = 0 and is given bywap/Kap + @go. The mini-
mum rate of transcription occurs whemg — oo, giving aso, Which describes the
“leakiness” of the promoter. The parametgy, is called theHill coefficient and
determines how close the Hill function is to a step function. The Hillficcient

is often called thadegree of cooperativitpf the reaction, as it often arises from
molecular reactions that involve multiple (“cooperating”) copies of the profein

Example 2.4(Repressilator) As an example of how these models can be used, we
consider the model of a “repressilator,” originally due to Elowitz and Leif2d}.
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Figure 2.9: The repressilator genetic regulatory netw@kA schematic diagram of the
repressilator, showing the layout of the genes in the pldshait holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simpledrbfor the repressilator, show-
ing the oscillation of the individual protein concentraiso (Figure courtesy M. Elowitz.)

The repressilator is a synthetic circuit in which three proteins each sepnegher
in a cycle. This is shown schematically in Fig@®a where the three proteins are
TetR,Acl and Lacl.

The basic idea of the repressilator is that if TetR is present, then it regrtss
production ofacl. If Acl is absent, then Lacl is produced (at the unregulated tran-
scription rate), which in turn represses TetR. Once TetR is repressed) this
no longer repressed, and so on. If the dynamics of the circuit arerdespyoperly,
the resulting protein concentrations will oscillate.

We can model this system using three copies of equafadkby, with A and
B replaced by the appropriate combination of TetR, cl and Lacl. The stdle o
system is then given by = (Myetr, Pretr, Mel> Pel> Miacl, PLacl)- Figure2.9b shows
the traces of the three protein concentrations for paramaterg, « = 0.5, k=
6.25x 1074, ap=5x10"%,y=58x1073,5=0.12 ands = 1.2x 10~2 with initial
conditionsx(0) = (1,0,0,200Q 0, 0) (following [24]). v

For an activator the Hill function is given by

n
@abKab pbab

f2(Po) = Pbound Po) = g T Qa0
? Kab + Py

where the variables are the same as described previously. Note that esthefc
the activator, ifp, is zero, then the production rateagy (versusaap + ago for the
repressor). Agy, gets large, the first term in the Hill function approachgsand
the transcription rate becomeg, + ayo (versusuyg for the repressor). Thus we see
that the activator and repressor act in opposite fashion from each Bitpere2.10
shows the standard Hill functions for activation and repression.
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Figure 2.10: Hill function for an activator (left) and for epressor (right).

In the case where there are inducers present, we can modify our mpdel b

adding the appropriate additional reactions. For example, if we haveresssp
B with a negative inducer (such as Lacl and IPTG), we can add a raeactio

kf

B+l =Bzl

kl’
If we assume that this reaction is fast relative to the other dynamics in the sys-
tem, we can solve for the equilibrium concentration of the inducer bound to the
repressor,

kf
[B:1] = [BIlT .

wherek! andk" are the forward and reverse reaction rates. We can now attempt to
solve forPpoundl) by computing the amount of repressor that is still free to bind to
the DNA.

A simplified case occurs when we assume that most of the repressor is either
bound to the inducer or free, so that the amount of B bound to the DNA is small.
In this case we can solve fgx, in terms ofl and then combine the expression for
Ppoung With the modified value ofy,. If we let Br represent the total amount Bf
present and assume this is constant, we can write

Br =[B:l] +[B]
(ignoring any contributions from B:DNA) and solve fpg as
AT
1+ (kf/kNI
The resulting expression f@&houndl) is complicated, but easily computed.
We will often find it convenient to represent the process of regulatiomgiajph-
ical fashion that hides the specific details of the model that we choose.tBigse

ure2.11shows the notation that we will use in this text to represent the process of
transcription, translation and regulation.

Po=[B] =
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Figure 2.11: Circuit diagrams for transcriptional regigdatof a gene. The first two figures
represent repression and activation. If desired, additiomechanisms can also be indi-
cated, as shown in the diagram on the right.

We have described how the Hill function can model the regulation of a gene
by a single transcription factor. However, genes can also be regulatedltiple
transcription factors, some of which may be activators and some may les+epr
sors. The input function can thus take several forms depending oalédsactiva-
tors versus repressors) of the various transcription facgréngeneral, the input
function of a transcriptional module that takes as input transcription &gtdor
i €{1,...,N} will be denotedf (pa, ..., Pn)-

Consider a transcriptional module with input functidps, ..., pn). The inter-
nal dynamics of the transcriptional module usually models mRNA and protein dy-
namics through the processes of transcription and translation. Proteingpiom
is balanced by decay, which can occur through degradation or dilutlors, The
dynamics of a transcriptional module is often well captured by the ordiri&igrd
ential equations

d d
d—?=f(p1,...,pn)—yymy, d—‘:’ = Bym, — Sy Py, (2.17)

wherem, denotes the concentration of mMRNA translated by geree constants
Yy andéy incorporate the dilution and degradation processespamsla constant
that establishes the rate at which the mRNA is translated.

Several other methods of transcriptional regulation can exist in cells.

Antitermination.Antitermination can also be used as a transcriptional regulatory
mechanism. To model itsfects, assume that we have a coding region labeled
that occurs after an antitermination site. We modify the termination reactions from
equation 2.9):

Termination (unchanged): RNAP:DNA— RNAP°

Binding to utilization site:  DNA 4+ N = DNAN'tN

Antitermination: ~ RNAP:DNA + DNAN"
Termination (unchanged): RNAP:DNA— RNAP:DNAM!
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Regulation in eukaryotes

Transcriptional regulation in eukaryotes is more complex than in prokaybie
many situations the transcription of a given gendlis@ed by many dierent tran-
scription factors, with multiple molecules being required to initiate/ansuippress
transcription.

2.4 Post-Transcriptional Regulation

In addition to regulation of expression through modifications of the praufesan-
scription, cells can also regulate the production and activity of proteins etda
lection of other post-transcriptional modifications. These include methouedf
ulating the translation of proteins, as well deating the activity of a protein via
changes in its conformation, as shown in Fig2re

RNA-based regulation (TBD)
Allosteric modifications to proteins

Enzymes activity can often be altered by small signaling molecules called altoster
effectors, which can either be activators or inhibitors. Inhibition can eitheobe
petitive or not competitive and activation can be absolute or not (see Kdipk)b
Here, we derive the expression for the production rate of the actteipiin an en-
zymatic reaction in the two most common cases: when we have a (non-competitive
inhibitor | or an (absolute) activator A of the enzyme.

Inhibition by Allosteric Inhibitor |

Consider the standard enzymatic reaction
a _ k
W+E=C->W"+E
d

in which enzyme E activates protein W and transforms it to the active fofm W
Let | be a (non-competitive) inhibitor of enzyme E, then we have that whien E
bound to I, the complex EIl can still bind to inactive protein W (here the name
non-competitive), however, the complex formed EIW is non-producthat, is, it
does not produce the active proteiri VWhen, we have the following additional
reactions:

ks
E+l=EIl
k-

C+IéEIW
ko

E|+w% EIW]]
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with the conservation laws (assumiw¢ is in much greater amounts th&s)
Er=E+C+EI+EIW, Wy =W+W"'+C+EIW~W+W",

Hence, the production rate ¥f* is given bydd—V‘f =KkC. Since we have th&t, ,k_,a,b>
k, we can assume all the complexes to be at the quasi steady state. This gives
a K, W-E
EIW=-EI‘'W El=—E:I, C= ——,
d ko Km
in whichKp, = (d+Kk)/ais the Michaelis-Menten constant. Using these expressions,
the conservation law for the enzyme, and the fact éidt~ 1/K,, we obtain that

Er

E = o D wiky Wih ko =k/k:,

- _W _Er
so thatC = w1 1;7k; and, as a consequence,

W e (1) W
dt T\ 1x1/ke \WH K )

which, using the conservation law f@V is also equivalent to

dt S T+ 1/ko )\ (Wr = W) + K]
Since, we had called befokg := ki Et the maximal speed of modification, which

occurs at the initial time whew"* = 0, the dfect of a non-competitive inhibitor is
to decrease by a factq+|1/|'—kD the maximal speed of modification.

Exercise As an exercise, one can derive the expression of the productiorfrate o
W* when the inhibitor is competitive, that is, when | is bound to E, the complex El
cannot bind to protein W. Since E can either bind to | or W (not both), | cdegpe
against W for binding to E. From this, we have the name “competitive”.

Activation by Allosteric Activator A

In this case, the enzyme E can transform W to its active form only when itisdo
to A. Also, we assume that E cannot bind W unless E is bound to A (from tiere
name absolute activator). The reactions therefore modify to

E+A == EA
ko
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and

W+EA < EAW - W* + EA
d

with conservation laws
Et = E+EA+EAW Wy = W+W".

The production rate ofV* is given by% =k EAW. Assuming as above that the
complexes are at the quasi steady state, we have that
_E-A W-EA

, EAW= ,
kD m

EA

which, using the conservation law for E, lead to

) Er (A W
E= T WKnsAky 2 EAW_(A+kD)(W+ Km)ET‘

aw' e (A W
dt  (A+kp /\W+Kp,

which, using the conservation law f@v is also equivalent to
dw* KE A (Wr —W¥)
dt ~ \A+ko /\(Wr —W*) +Km )’

The dfect of an absolute activator is the one of modulating the maximal speed of
modification by a factog/.

Hence, we have that

Exercise. As an exercise, one can derive the expression of the production rate
when the activator is not absolute, that is, when E can bind to W directlgalouriot
activate W unless the complex EW first binds A.

Covalent modifications to proteins

Covalent modification is a post-translational protein modification ttatts the
activity of the protein. It plays a great role both in the control of metabolischia
signal transduction. Here, we focus mversiblecycles of modification, in which
a protein is interconverted between two forms th#fiediin activity either because
of effects on the kinetics relative to substrates or for altered sensitivitfjeoters.
At high level, any covalent modification cycle involves a target proteinsay
an enzyme for modifying it, say Z, and one for reversing the modificationyYsay
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i input
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Figure 2.12: Diagram representing a covalent modificatyahec

(see Figure.12. We call X* the activated protein. There are often allosteffe@

tors or further covalent modification systems that regulate the activity of tlte mo
ifying enzymes, but we do not consider here this added level of compl&kigre

are several types of covalent modification, depending on the type gétati of

the proteinPhosphorylatioris a covalent modification that takes place mainly in
eukaryotes and involves activation of the inactive protein X by additionpbfcs-
phate group. In this case, the enzyme Z is called a kinase while the enzyme Y is
called phosphatase. Another type of covalent modification, which is \@myron

in both procaryotes and eukaryotes nmgthylation Here, the inactive protein is
activated by the addition of a methyl group.

The reactions describing this system are given by the following two enzymatic
reactions, also called two step reaction model,

k Keat
Z+X?C——>X*+Z

LN K
Y+X"=C — X+Y.
ki
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The corresponding ODE model is given by

‘i_f = —KkiZ-X+ (Kear+ k)C
‘;%( = —kiZ-X+kC+KyC'
‘jj_(t: = KiZ-X— (K +kea)C

d;f = kaC-KiY-X"+KC
dg = KY-X = (K +K)C'
B X (K K

Furthermore, we have that the total amounts of enzymes Z and Y are wedser
Denote the total concentrations of Z and Y By, Yior, respectively. Then, we
have also the conservation la&s C = Ziot andY + C’ = Yior. We can thus reduce
the above system of ODE to the following one, in which we have substiited
Ziot—C andY = Yot — C'.

dcC

G = KilZot=C)-X—(k +kea)C
dx*

dt = kcatC - k,f (Ytot - C,) SXE k;C'
dac’ ’ ’ * ’ ’ ’

dt kf(Ytot_C)‘X _(kr"'kcat)c'

As for the case of the enzymatic reaction, this system cannot be analytically in
tegrated. To simplify it, we can perform a similar approximation as done for the
enzymatic reaction. In particular, the complexes C and C’ are often assiamed
reach their steady state values very fast becluse, k., ki > Keat, kio. Therefore,

we can approximate the above system by substitutingCfand C’ their steady
state values given by the solutions to

K (Ztot—C)- X = (K + kea)C =0

and
k/f (Ytot - C/) X - (k; + kéa‘)C’ =0.

By solving these equations, we obtain that

YtotX* . k; + k{:at
' = th K/ =
XK M T
and that
ke +Keat

ZigtX .
C=—— th Kip = .
X+ Ky i m = e
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F
(a) Full reaction (b) Reduced reaction

Figure 2.13: Circuit diagram for phosphorylation and degttaoylation of a proteirX via
a kinasek and phosphatade. The diagram on the left shows the full set of reactions. A
simplified diagram is shown on the right.

As a consequence, the ODE model of the phosphorylation system carlbe w
approximated by

axt _ Ko ZiotX ,f Y*totKr'r: XF K Y*totx*’ ’
dt X+Km X*+ K, X+ K
which, considering that} Kf, — ki = ki, leads finally to

dl L U ZiotX K YiotX*

X+ Ky X Ky

We will come back to the modeling of this system after we have introduced singu-
lar perturbation theory, through which we will be able to perform a formalysis
of this system and mathematically characterize the assumptions neededtapp
imating the original system by the first order ODE mod&L§).

The full process for phosphorylation and dephosphorylation is actaaliit
more complicated than we have shown here and is illustrated in circuit diagram
form in Figure2.13

(2.18)

Phosphotransfer systems

2.5 Cellular subsystems (TBD)
Intercellular Signaling:MAPK cascades

The MAPK cascade is a recurrent structural motif in several signasdiastion
pathways. It has been extensively studied and modeled. Here, wid@tao dif-
ferent models. First, we build a model modularly by viewing the system as the
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INPUT
(E1)

MAPKKK %__> MAPKKK*

b
E2
v '
MAPKK 5> MAPKK-P %> MAPKK-PP
MAPKK P'ase i ,L
#F ik F

MAPK »__~ MAPK-P »__- MAPK-PP

! !

|
MAPK P'ase

ouTPUT

Figure 2.14: Schematic representing the MAPK cascade (iraiken PLoS Comput Biol.
2007 Sep;3(9):1819-26). It has three levels: the first oreéhaingle phosphorylation,
while the second and the third ones have a double phosplioryla

composition of single phosphorylation cycle modules (whose ODE model gvas d
rived earlier) and double phosphorylation cycle modules, whose ODElnvezl
derive here. Then, we provide the full list of reactions describing éseade and
construct a mechanistic ODE model from scratch. We will then highlight the dif
ference between the two derived models.

Double phosphorylation model

Consider the double phosphorylation motif in Fig@r&5 The reactions describing
the system are given by

a k]_ *
E,L+W=C, —-W"+E;
d;
a k2 *
2
ag
W+ E, o= Cy S W +E,
ds

aq
E,+W™ ‘=‘C4E>W”‘+E2
d4
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E. (Input)

l l
NN
KT/ H/ (Output)

|
=

Figure 2.15: Schematic representing a double phosphamwlaycle.E; is the input and
W** is the output.

with conservation laws
E1+C1+C3=E11, Eo+Co+Cyq=Eor, Wy =W+W* +W"*+C1+Co+C3+Csy =~ W+W* +W**,

in which we have assumed the the total amounts of enzymes are small compared
to the total amount of substrate so that the complexes can be neglected imthe co
servation law for W (this is the standard assumption in Goldbeter-Koshlged-ty
models). Since;, d; > k;, we can assume that the complexes are at the quasi steady
state (i.e.C; =~ 0), which gives the Michaelis-Menten form for the amount of
formed complexes:

Ks W
C = Eir 3
KsW + Ki W+ + K1K3
K1 W*
Cs Eir ! -
K3W+ KiW* + K1K3
Kg W*
KaW* + KoW + KoKy
Ko W**
C4 = E2T % ’ %
K4W + KzW + K2K4

in which K; = (di + k;)/a; is the Michaelis-Menten constant for the enzymatic reac-
tion. Since the complexes are at the quasi steady state, it follows that

K1C1—koCo —ksC3 + ksCy
kaCz —kaCy

W*
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from which, substituting the expressions of the complexes, we obtain that

- kiW Kz — ksW*K1 kaW* Ko — koW K4
W = Eg7 » +Eor - —
K3W+ K1W + K3K1 K4W + K2W + K2K4
o KW+ Ko W
W™ = kE -k4E (2.19
3T KW+ KyW* + K1 K3 kaEar KaW* + KoW* + KoKy, (2.19)

in whichW = Wy — W* —W**,

Modular model of MAPK cascades

In a modular composition framework, the output of a stage becomes an irtpet to
next stage downstream of it. Hené&{K* becomes the input enzyme that activates
the phosphorylation oKK and KK** becomes the input enzyme that activates
the phosphorylation oK. Let ki, k, be the phosphorylation and dephosphoryla-
tion rates (the catalytic rates of phosphorylation and dephosphorylataymetic
reactions) olKKK, respectivelyks, ks be the phoshorylation and dephosphoryla-
tion rates olKK, respectivelyks, ks be the phosphorylation and dephosphorylation
rates ofKK*, respectivelyk; andkg be the phosphorylation and dephosphorylation
rates ofK, respectively; andlg, kyo be the phsophorylation and dephosphorylation
rates ofK*, respectively. Similarly, leK.,; be the Miechaelis-Menten constants of
the corresponding enzymatic reactions, thatig; = (a + d;)/ki, in which &, d;

are the association and dissociation rates.KI€p, K, 1 be the total amounts of
the KK and K phosphatases, respectively. Then, the modular ODE mbtiet o
MAPK cascade is given by

: KKK KKK*
KKK = KEiT———— koEpr——
T RKK Ky, 2 2T KKK + K
: ks KKK Kpg — ks KK* Kirg ke Koy KK* — kg KK* Kg
KK* = KKK* KK
Kis KK + Kig KK + KngKos - PTR 2 KK* + Kog KK*™ + KgKorg
: KK* K KK* K
KK* = ks KKK* ms —ks KKpT m

Kms KK + Kng KK* + KinsKims Kme KK* + Ky KK** + KiuKimg
k7K Kmg — kg K* K7 LK Kio Kmg K™ —kg K* Ko

Ko K + K7 K* + Kg Kz P Kinzo K* + Kig K™ + Kig Ko

K.** - kg KK** K Km? _ k8 KpT K ng

Kmo K+ Kz K* + King Kiz " Kmio K* 4+ Kimg K** + King Kmao

K* = KK*

(2.20)

in which, lettingK KK, KK+, Kt represent the total amounts of each stage protein,
we haveK KK = KKKt —KKK*, KK = KKt —KK*-KK**, andK = Kt —K* - K**,
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Mechanistic model of the MPAK cascade

We now give the entire set of reactions for the MAPK cascade of FigLiréas
they are found in standard references (Huang-Ferrell model):

E1+KKK cl 8, KKK E,
EZ+KK|<*OI:(:Z—>KKK*+E2

KKK *+KK = C —>KK + KKK *

ds

. 2k
KK +KKp\—C4—>KK+KKp

KKK * +KK*—‘C —)KK**+KKK*
ds

* RN k6 *
KK +KKp\—CG—>KK +KK,

KK*X+K C7—>K + KK ™
d7

% % ke
K +KF,\¥C8—>K+Kp

KK ** + K*—‘Cg 2K KK *
do
aio k1o

K** +Kp\KC10—>K +K

(2.21)

with conservation laws

KKKt
KKt
Kt
Eir
KKp
Kot

KKK +KKK*+Cq+Cy+C3+Cs
KK+KK*+C3+KK™+Cs4+Cs5+Cg+C7+Cqg
K+K*+ K™ +C7+Cg+Cg+Cig

E1+Cl, E2T = E2+C2

KKp+C4+C6

Kp+Cg+Cio.
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The corresponding ODE model is given by

C1 = aE1 KKK —(dy+ki)Cy
KKK* = Ky Ci+0y Co—ap Ep KKK* + (d3+ kg) C3—ag KK KKK* + (ds + ks) Cs —as KKK* KK*
Cz = abk KKK* —(d2+k2) C,
Cs; = agKKKKK*=(d3+ks)Cs
KK* = k3Cz+0dsCs—ay KK* KKp+dsCs — a5 KK* KKK* + ks Cg
Cs = asKK* KKp—(ds+ks) Cq
Cs = as KKK* KK* = (ds+ks) Cs
KK* = ks Cs—ag KK* KKp+ds Co—ay KK K+ (d7 + k7) C7—ag KK** K* + (dg + ko) Cg
Co = as KK™ KKp—(ds+ke) Cs
C; = a7 KK"K-(d7+k7) Cy
K* = —agK*Kp+dgCg—ag K* K™ +dg Cg+CyoKio
Cs = agK' Kp—(dg+ks)Cs
K* = koCg—ay K™ Kp+dioCio
Cg = dg KK*™ K* - (d9+ kg) Co
Cio = ai0 K™ Kp—(dio+kio) Cro.
Simulation results with the code and parameters from Ventura et al., PLoS 2008
are reported in Figur2.16
In this model, if we assume as performed in the standard Goldbeter-Koshland
model of covalent modification that the total amounts of enzymes are much smaller

than the total amounts of substrates, theis, Eor, KKy 1, Kp 1 < KKKT, KKT, KT,
we can approximate the conservation laws as

KKKt ~ KKK +KKK*+C3+Cs, KKt~ KK+KK*+C3+KK* +C5+C7+Co, Ky » K+K*+K* +C7+Co.

Using these and assuming that the complexes are at the quasi steady state, w
obtain the following functional dependencies:

C1 = fi(KKK*, KK*, KK*™*, K*,K*™), Cp= fo(KKK*), Cg= fa(KKK*, KK*, KK**, K*,K**),
Cs = f5(KKK*,KK*), C7 = f2(KK*,KK*™,K*,K*), Cq= fo(KK**,K").

The fact thaC; depends ofK* andK** illustrates that the dynamics of the second
stage is influenced by the one of the third stage. Similarly, the facCthdépends

on KK*, KK** K*, K** indicates that the dynamics of the first stage is influenced
by the one of the second stage and by that of the third stage. The phemoinen
which the behavior of a “module” is influenced by that of its downstream tdien
is calledretroactivity, which is a phenomenon similar to impedance in electrical
systems or backffect in mechanical systems. It will be studied at length in future
chapters.



EXERCISES 2-39

0.9
o — KKK’ |
08 - kK™
/ "k
, K
0.7
/
I
0.6 |
EQ
g osf
3 |
o |
g 04}
]
0.3
0.2
0.1
o ‘ ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 5000

time (a.u.)

Figure 2.16: Simulation of the MAPK cascade (code and parersidrom Ventura et al.,
PLoS 2008).

This fact is in clear contrast with the ODE model obtained by modular compo-
sition, in which each stage dynamics depended upon the variables of theamps
stages and not upon those of the downstream stages. Indeed modulasitmmp
is not considering that the proteins of each stage are “used-up” in teegs of
transmitting information to the downstream stages. This backw&edtdas been
shown to lead to sustained oscillations in the MAPK cascade (Qiao et al., PLoS
Comput Biol. 2007 Sep;3(9):1819-26). By contrast, the modular ODE nmidel
MAPK cascades cannot give rise to sustained oscillations.

Adaptation

Exercises

2.1 (Hill function for a cooperative repressor) Consider a repressaibiimds to an
operator site as a dimer:

Rl: R+tR=R,
R2: R,+DNAP==R,:DNA
R3: RNAP+DNAP = RNAP:DNAP
Assume that the reactions are at equilibrium and that the RNA polymerase con

centration is large (so that [RNAP] is roughly constant). Show that the otioe
concentration of RNA:DNR to the total amount of DNAD+, can be written as a
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Hill function
[RNAP:DNA]  «

DT _K+R2

f(R) =
and give expressions farandK.

2.2 (Switch-like behavior in cooperative binding) For a cooperative bindeag-
tion

k ks
B+B—=0B, By,+A=0C, and A+C=Ag,
ko K

the steady state values GfandA are

C- ki Avot B>

_ MMAaB” g A AwotKp
kMBZ+KD

B kMBZ+KD'

Derive the expressions @f andA at the steady state when you modify these reac-
tions to

k]_ kf

B+B+..+B ? B,, B,+A ?\ C, and A+C=Anm

2

Make MATLAB plots of the expressions that you obtain and verify thah &%
creases the functions become more switch-like.

2.3 Consider the following modification of the competitive binding reactions:

Kt Kt
B.+A=C.B+A=C,

ke
and B
ke _ ko
C+B,=C,andC+B,=C
kt k

with At = A+C +C +C’. What are the steady state expressionsXand C?
What information do you deduce from these expressions if A is a pronidéer,
is an activator protein, and C is the activalXA complex that makes the gene
transcriptionally active?

2.4 Assume that we have an activatof &1d a repressor protein. BMe want to
obtain an input function such that when a lot of B present, the gene is tran-
scriptionally active only if there is no Bwhen low amounts of Bare present, the
gene is transcriptionally inactive (with or without)BWrite down the reactions
among B, B,, and complexes with the DNA (A) that lead to such an input func-
tion. Demonstrate that indeed the set of reactions you picked leads to theddes
input function.
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2.5 Consider the phosphorylation reactions described in Se2ti§rbut suppose

that the kinase concentrati@ns not constant, but is produced and decays accord-
o

ing to the reaction Z (. How should the system in equatidh 18 be modified?

K(®)
Use a MATLAB simulation to apply a periodic input stimulk&) using parame-

ter valueskcar = kior = 10, ks =k =k =k = 1,6 = 0.01. Is the cycle capable of
“tracking” the input stimulus? If yes, to what extent? What are the trackinp-p
erties depending on?

2.6 Another model for the phosphorylation reactions, referred to as opaate
action model, is given by ZX = X*+Z and Y+ X* = X +Y, in which the
complex formations are neglected. Write down the ODE model and comparing the
differential equation oK* to that of equationZ.18), list the assumptions under
which the one step reaction model is a good approximation of the two step reactio
model.

2.7 (Transcriptional regulation with delay) Consider a repressor or dotiBi
modeled by a Hill functior-(B). Show that in the presence of transcriptional delay
™, the dynamics of the active mRNA can be written as

dn (1) _

_m My e
a0t e’ F(B(t-7")—ym".



2-42 CHAPTER 2. DYNAMIC MODELING OF CORE PROCESSES



Chapter 3
Analysis of Dynamic Behavior

In this chapter, we describe some of the tools from dynamical systems aatd fe
back control theory that will be used in the rest of the text to analyze asidjd
biological circuits, building on tools already described in AM08. We foceigion
deterministic models and the associated analyses; stochastic methods aiia given
Chapterd.

PrerequisitesReaders should have a understanding of the tools for analyzing sta-
bility of solutions to ordinary dterential equations, at the level of Chapter 4 of
AMO08. We will also make use of linearized inpotitput models in state space,
based on the techniques described in Chapter 5 of AM08, and sensitimittidn
methods, described in Chapters 11 and 12 of AM08 and building on theefiney
domain techniques described in Chapters 8-10.

3.1 Input/Output Modeling [AMO08]

In the previous chapter we constructed a variety of models to capture tiaenity
behavior of a biomolecular subsystem. In this chapter we expand on thhé&et
by including external inputs and measured outputs as a part of the descop
the system (or a portion of the system).

The Heritage of Electrical Engineering

The approach to modeling that we take builds on the view of models that emerged
from electrical engineering, where the design of electronic amplifiers laddous
on inpufoutput behavior. A system was considered a device that transfornts inpu
to outputs, as illustrated in FiguBel Conceptually an inpgmutput model can be
viewed as a giant table of inputs and outputs. Given an input sigt)aver some
interval of time, the model should produce the resulting ouyftit

The inputoutput framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connectedlihrou
their inputs and outputs. Thus, we can take a complicated system sucldas@rra
a television and break it down into manageable pieces such as the redeimed-
ulator, amplifier and speakers. Each of these pieces has a set of indudstputs
and, through proper design, these components can be interconnefbech tine
entire system.
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Figure 3.1: lllustration of the inpfdutput view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic dfigy| the one on the right is its
representation as a block diagram.

The inputoutput view is particularly useful for the special clasdiogar time-
invariant systemsThis term will be defined more carefully below, but roughly
speaking a system is linear if the superposition (addition) of two inputs yields a
output that is the sum of the outputs that would correspond to individuatsriye-
ing applied separately. A system is time-invariant if the output responsegiwen
input does not depend on when that input is applied. While most biomolesydar
tems are neither linear nor time-invariant, they can often be approximateahby su
models, often by looking at perturbations of the system from its nominaMimha
in a fixed context.

One of the reasons that linear time-invariant systems are so prevalent&rmod
ing of inpufoutput systems is that a large number of tools have been developed to
analyze them. One such tool is tsiep responsevhich describes the relationship
between an input that changes from zero to a constant value abruptgp(anput)
and the corresponding output. The step response is very useful riactér@zing
the performance of a dynamical system, and it is often used to specify shredie
dynamics. A sample step response is shown in Fig.2a

Another way to describe a linear time-invariant system is to represent it by its
response to sinusoidal input signals. This is calledfthguency responsand a
rich, powerful theory with many concepts and strong, useful resuieheerged.
The results are based on the theory of complex variables and Laplastotras.
The basic idea behind frequency response is that we can completehcterare
the behavior of a system by its steady-state response to sinusoidal Rputgly
speaking, this is done by decomposing any arbitrary signal into a linearicomb
nation of sinusoids (e.g., by using the Fourier transform) and then usirayityne
to compute the output by combining the response to the individual frequeAcies
sample frequency response is shown in Figli&h
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Figure 3.2: Inpybutput response of a linear system. The step response (@} sheoutput
of the system due to an input that changes from O to 1 at timb s. The frequency re-
sponse (b) shows the amplitude gain and phase change duatseidal input at dierent
frequencies.

The inputoutput view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording itsisesfin
particular inputs, e.g., a step or a set of sinusoids over a range oéfreigs.

The Control View

When control theory emerged as a discipline in the 1940s, the approagh to d
namics was strongly influenced by the electrical engineering (lopygut) view.

A second wave of developments in control, starting in the late 1950s, waseithsp

by mechanics, where the state space perspective was used. Therera@iggpace
flight is a typical example, where precise control of the orbit of a spaftes es-
sential. These two points of view gradually merged into what is today the state
space representation of inpatitput systems.

The development of state space models involved modifying the models from
mechanics to include external actuators and sensors and utilizing morelgene
forms of equations. In control, the model given by equati®?) (vas replaced by

%( = f(x,u), y =h(x,u), (3.1)
wherex is a vector of state variables,is a vector of control signals andis a
vector of measurements. The tedx/dt represents the derivative gfwvith respect
to time, now considered a vector, ah@ndh are (possibly nonlinear) mappings of
their arguments to vectors of the appropriate dimension. For mechanitafrsys
the state consists of the position and velocity of the system, soxthdy,q) in
the case of a damped spring—mass system. Note that in the control formulation w
model dynamics as first-orderfiirential equations, but we will see that this can
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capture the dynamics of higher-ordeffdrential equations by appropriate defini-
tion of the state and the magpsandh.

Adding inputs and outputs has increased the richness of the classib&me
and led to many new concepts. For example, it is natural to ask if possible state
can be reached with the proper choicaugfeachability) and if the measuremant
contains enough information to reconstruct the state (observability) eTthpgs
will be addressed in greater detail in ChaptePsand??.

A final development in building the control point of view was the emergefice o
disturbances and model uncertainty as critical elements in the theory. Thie simp
way of modeling disturbances as deterministic signals like steps and sinuasids h
the drawback that such signals cannot be predicted precisely. A naigticeap-
proach is to model disturbances as random signals. This viewpoint givatsiial
connection between prediction and control. The dual views of joptgut repre-
sentations and state space representations are particularly usefuhwiefing
uncertainty since state models are convenient to describe a nominal modal bu
certainties are easier to describe using ifgutput models (often via a frequency
response description). Uncertainty will be a constant theme throughetettand
will be studied in particular detail in Chapte®.

An interesting observation in the design of control systems is that feedlyack
tems can often be analyzed and designed based on comparatively simpls.mode
The reason for this is the inherent robustness of feedback systemsvelp other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precothguitgouts
that cause the system to respond in a certain way. Another area is s\atda v
tion, where one wishes to verify that the detailed response of the systéonmps
as it was designed. Because of thesedént uses of models, it is common to use
a hierarchy of models havingftierent complexity and fidelity.

State space systems

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a biochemical sytbtestate

is composed of the variables required to account for the current daftdhe cell,
including the concentrations of the various species and complexes thmtasst.

It may also include the spatial locations of the various molecules. A key issue in
modeling is to decide how accurately this information has to be represented. Th
state variables are gathered in a vectarR" called thestate vectorThe control
variables are represented by another veg®oRP, and the measured signal by the
vectory € RY. A system can then be represented by thiedkntial equation

dx
= few.y =hxu). (3.2)
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wheref : R"xRP - R" andh : R"xRP — RY are smooth mappings. We call a
model of this form astate space model

The dimension of the state vector is called tdrder of the system. The sys-
tem @.2) is calledtime-invariantbecause the functions and h do not depend
explicitly on timet; there are more general time-varying systems where the func-
tions do depend on time. The model consists of two functions: the funttives
the rate of change of the state vector as a function of statel controlu, and the
functionh gives the measured values as functions of stated controlu.

A system is called &near state space system if the functiohandh are linear
in x andu. A linear state space system can thus be represented by

%( = Ax+ Bu, y =Cx+Du, (3.3)

whereA, B, C andD are constant matrices. Such a system is said {obar and
time-invariant or LTI for short. The matrixA is called thedynamics matrixthe
matrix B is called thecontrol matrix the matrixC is called thesensor matrixand
the matrixD is called thedirect term Frequently systems will not have a direct
term, indicating that the control signal does not influence the output directly.

3.2 Analysis Near Equilibria

As in the case of many other classes of dynamical systems, a great desibbt
into the behavior of a biological system can be obtained by analyzing tredgs
of the system subject to small perturbations around a known solution. yif e
considering the dynamics of the system near an equilibrium point, which isfone
the simplest cases and provides a rich set of methods and tools.

In this section we will model the dynamics of our system using a nonlinear
ordinary diferential equation of the form

x = f(x,0,w), y = h(x,6) (3.4)

wherex € R" is the system staté,e R¥ are the system parameters amd RP is a

set of external inputs. The outpybf the system represents quantities that can be
measured or that are used to interconnect subsystem models to fornmeds.
Note that we have chosen to explicitly model the system paramgtedsich can

be thought of as an additional set of (mainly constant) inputs to the system.

Equilibrium points and stability [AMO8]

We begin by considering the case where the ingwtnd parameter§ in equa-
tion (3.4) are fixed and hence we can write the dynamics of the system as
dx

i F(X).
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Figure 3.3: Phase portrait and time domain simulation foysiesn with a single stable
equilibrium point. The equilibrium point at the origin is stable since all trajectories that
start nearxe stay neare.

An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a statds an equilibrium point for a dynamical system

if F(xe) = 0. If a dynamical system has an initial conditi&(®) = xe, then it will

stay at the equilibrium poin(t) = x for all t > 0, where we have takeg = O.

Equilibrium points are one of the most important features of a dynamical sys-
tem since they define the states corresponding to constant operatiritjioctsndh
dynamical system can have zero, one or more equilibrium points.

Thestability of an equilibrium point determines whether or not solutions nearby
the equilibrium point remain close, get closer or move further away. Aitiequm
point X, is stableif solutions that start neax. stay close tax.. Formally, we say
that the equilibrium poinke is stable if for alle > O, there exists & > 0 such that

IX(0)—Xel| <6 = |IX(t)—Xel|<e forallt>0,

wherex(t) represents the solution the thétdrential equation®?) with initial con-
dition x(0). Note that this definition does not imply thgt) approaches. as time
increases but just that it stays nearby. Furthermore, the valumay depend oa,
so that if we wish to stay very close to the solution, we may have to start \amy, v
close § < €). This type of stability, which is illustrated in FiguR®, is also called
stability in the sense of Lyapunol an equilibrium point is stable in this sense
and the trajectories do not converge, we say that the equilibrium paietisally
stable

An example of a neutrally stable equilibrium point is shown in FigliB2From
the phase portrait, we see that if we start near the equilibrium point, thetaywe s
near the equilibrium point. Indeed, for this example, given atlyat defines the
range of possible initial conditions, we can simply chodsee to satisfy the defi-
nition of stability since the trajectories are perfect circles.

An equilibrium pointxe is asymptotically stabléf it is stable in the sense of
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Figure 3.4: Phase portrait and time domain simulation foysdesn with a single asymp-
totically stable equilibrium point. The equilibrium poirg at the origin is asymptotically
stable since the trajectories converge to this poirt-asx.

Lyapunov and alsa(t) — xe ast — oo for x(0) suficiently close toxe. This corre-
sponds to the case where all nearby trajectories converge to the staitilensior
large time. Figure8.4 shows an example of an asymptotically stable equilibrium
point. Note from the phase portraits that not only do all trajectories staythea
equilibrium point at the origin, but that they also all approach the origingets
large (the directions of the arrows on the phase portrait show the diréctiamch
the trajectories move).

An equilibrium pointxe is unstablef it is not stable. More specifically, we say
that an equilibrium poinke is unstable if given some> 0, there doesot exist a
6 > 0 such that ifi|x(0) — x¢|| < 8, then||x(t) — Xe|| < € for all t. An example of an
unstable equilibrium point is shown in FiguBeb.

The definitions above are given without careful description of their domi
applicability. More formally, we define an equilibrium point to lmeally stable
(or locally asymptotically stabeif it is stable for all initial conditionsx € B (a),
where

Br(a) = {x: x—all <r}

is a ball of radiug arounda andr > 0. A system igylobally stableif it is stable for
all r > 0. Systems whose equilibrium points are only locally stable can have inter-
esting behavior away from equilibrium points, as we explore in the nekibsec

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called theegion of attractionfor the equilibrium point. In general,
computing regions of attraction isfilcult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable gguilib
that are attracting. This gives partial information about the behavior cfytbem.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
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Figure 3.5: Phase portrait and time domain simulation forséesn with a single unstable
equilibrium point. The equilibrium points at the origin is unstable since not all trajectories
that start neaxe stay neawe. The sample trajectory on the right shows that the trajezgor
very quickly depart from zero.

a sink or sometimes amttractor. An unstable equilibrium point can be either a
source if all trajectories lead away from the equilibrium point, ssaddle if some
trajectories lead to the equilibrium point and others move away (this is the situ-
ation pictured in Figure.5). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as the one in F&8rés called
acenter

Stability analysis via linearization
A linear dynamical system has the form

dx
t
where A €e R™" is a square matrix, corresponding to the dynamics matrix of a
linear control system??). For a linear system, the stability of the equilibrium at
the origin can be determined from the eigenvalues of the mAtrix

A(A) = {se C: det(sl- A) =0}.

The polynomial del — A) is the characteristic polynomiaénd the eigenvalues
are its roots. We use the notatianfor the jth eigenvalue ofA, so thatij € A(A).

In generald can be complex-valued, althoughAf is real-valued, then for any
eigenvaluel, its complex conjugatd® will also be an eigenvalue. The origin is
always an equilibrium for a linear system. Since the stability of a linear system
depends only on the matri, we find that stability is a property of the system. For

a linear system we can therefore talk about the stability of the system ra#mer th
the stability of a particular solution or equilibrium point.
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The easiest class of linear systems to analyze are those whose systerasmatric
are in diagonal form. In this case, the dynamics have the form

A1 0
dx A2
— = X. 3.6
dt - (36)
0 An
It is easy to see that the state trajectories for this system are indepeifdaacho
other, so that we can write the solution in termsiafidividual systems; = 2x;.
Each of these scalar solutions is of the form

Xj(t) = e/”txj (0).

We see that the equilibrium poirg = 0 is stable if1; < 0 and asymptotically stable
if 1j<0.
Another simple case is when the dynamics are in the block diagonal form

o1 w1 0 0
—w1 O 0 0
dx B 1 1 )
dt - 0 O
0 0 Om wWm
0 0 —Wm Om

In this case, the eigenvalues can be shown tajbec; +iwj. We once again can
separate the state trajectories into independent solutions for each patesf and
the solutions are of the form

%2j-1(t) = €11 (X2j-1(0) coswjt + Xj (0) sinwit),
X0j(t) = €11 (=X2j-1(0) Sinwjt + X§(0) cosw;t),

wherej =1,2,...,m. We see that this system is asymptotically stable if and only
if oy = Redj < 0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some syst@ms
be transformed into these forms via coordinate transformations. One kRssh ¢
of systems is those for which the dynamics matrix has distinct (non-repeating)
eigenvalues. In this case there is a mafrixk R™" such that the matrif AT 1 is
in (block) diagonal form, with the block diagonal elements correspondirigeo
eigenvalues of the original matrik (see Exercis@?). If we choose new coordi-

natesz =T x, then q
d—f:T)’(:TAx:TAT‘lz
and the linear system has a (block) diagonal dynamics matrix. Furtherthere,

eigenvalues of the transformed system are the same as the original system s
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if v is an eigenvector oA, thenw = Tv can be shown to be an eigenvector of
TAT-L. We can reason about the stability of the original system by noting that
x(t) = T~1z(t), and so if the transformed system is stable (or asymptotically stable),
then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, thk stab
ity of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we makktlise o
following theorem, proved in the next chapter:

Theorem 3.1(Stability of a linear system)The system

dx
a = AX
is asymptotically stable if and only if all eigenvalues of A all have a strictly trega

real part and is unstable if any eigenvalue of A has a strictly positive ragl p

An important feature of dierential equations is that it is often possible to de-
termine the local stability of an equilibrium point by approximating the system by
a linear system. Suppose that we have a nonlinear system

dx
Z-F
=™
that has an equilibrium point a&. Computing the Taylor series expansion of the

vector field, we can write

F : .
% =F(Xe) + oF (X— Xg) + higher-order terms inx— Xg).
dt OX I
SinceF(xg) = 0, we can approximate the system by choosing a new state variable
Z= X— Xe and writing

dz oF

i Az where A= I " (3.7)
We call the system3(7) thelinear approximatiorof the original nonlinear system
or thelinearizationat Xe.

The fact that a linear model can be used to study the behavior of a nanlinea
system near an equilibrium point is a powerful one. Indeed, we carthékeven
further and use a local linear approximation of a nonlinear system to de $&gul-
back law that keeps the system near its equilibrium point (design of dynamics
Thus, feedback can be used to make sure that solutions remain closedaithe e
rium point, which in turn ensures that the linear approximation used to stabilize it
is valid.
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Input/output transfer curves (TBD)
Frequency domain analysis

Another way to look at the sensitivity of the solutions near equilibria to cheinge
in parameters and inputs is to use frequency domain techniques. Recalig¢hat
frequency respongsf a linear system

X=Ax+Bu
y=Cx+Du

is the response of the system to a sinusoidal inpaiasinwt with input amplitude
a and frequencw. The transfer function for a linear system is given by

Gyu(s) =C(sl-A)*B+D

and represents the response of a system to an exponential signafahthgt) =
et wheres e C. In particular, the response to a sinusaie asinwt is given by
y = Masin(wt + 6) where the gairM and phase shift can be determined from the
transfer function evaluated at iw:

Gyu(iw) = M€".

For finite dimensional linear (or linearized) systems, the transfer functobeb
written as a ratio of polynomials is
G(9) = @
a(s)

The values ok at which the numerator vanishes are called the zeros of the transfer
function and the values afat which the denominator vanishes are called the poles.

The transfer function representation of an ifiputput linear system is essen-
tially equivalent to the state space description, but we reason about rilaendhs
by looking at the transfer function instead of the state space matricesxaropke,
it can be shown that the poles of a transfer function correspond to teewveilgies
of the matrixA, and hence the poles determine the stability of the system.

Interconnections between subsystems often have simple representatesnssin
of transfer functions. Two systen@ andG; in series (with the output of the first
connected to the input of the second) have a combined transfer fuBgigs(s) =
G1(9)G2(s) and two systems in parallel (a single input goes to both systems and the
outputs are summed) has the transfer func@ggaie(s) = Gi(s) + Go(s). A com-
mon interconnection is two put two systems in feedback form for which thefean
function is given by

Gu() _ n(s)da(s)
G1(9)+G2(s)  ny(s)da(9) + di(s)n2(9)’

Gyr(9) =
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wheren;(s) andd;(s) are the numerator and denominator of the individual transfer
function. The ease in which the inpotitput response for interconnected systems

can be computed with transfer functions is one of the main motivations for their
widespread use in engineering.

Transfer functions are useful representations of linear systemadeetiee prop-
erties of the transfer function can be related to the properties of the dysmamic
particular, the shape of the frequency response describes howstieensyesponse
to inputs and disturbances, as well as allows us to reason about the stdliiligr-o
connected systems. The Bode plot of a transfer function gives the mdgritd
phase of the frequency response as a function of frequency aridythést plot
can be used to reason about stability of a closed loop system from thdamgen
frequency response. The transfer function for a system can berile¢el from
experiments by measuring the frequency response and fitting a transtdioh
to the data. Formally, the transfer function corresponds to the ratio of thlade
transforms of the output to the input.

Returning to our analysis of biomolecular systems, suppose we have msyste
whose dynamics can be written as

x = f(x6,w)

and we wish to understand how the solutions of the system depend on the pa-
rametersy and disturbances. We focus on the case of an equilibrium solution
X(t; X0,00) = Xe. L€t Z= X— Xo, W=W—W andf =6 - 0o represent the deviation

of the state, input and parameters from their nominal values. We can writlythe
namics of the perturbed system using its linearization:

) B (B
dt X (Xe.t0.Wo) 96 (Xe:6o0.Wo) ow (Xe:60.Wo)

This linear system describes small deviations fouéo, wo) but allowsd andvi to
be time-varying instead of the constant case considered earlier.

To analyze the resulting deviations, it is convenient to look at the system in the
frequency domain. Let = Cx be a set of values of interest. The transfer functions
betweer, W andy are given by

Hyi(9) =C(sI-A) "By,  Hya(s) = C(sl-A) "By,
where
f f f
A = a_ . Bg = 6— s — a_ .
OX | (xe,00,0) 96 | (xe,00.w0) OW | (xe,00,W0)

Note that if we lets = 0, we get the response to small, constant changes in
parameters. For example, the change in the outpws a function of constant
changes in the parameters is given by

Hyé(o) = CA_lBH = CSyy,
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Figure 3.6: Noise attenuation in a genetic circuit.

which matches our previous parametric analysis.

Example 3.1(Transcriptional regulation)Consider again the case of transcrip-
tional regulation described in Exampe2 Suppose that the mRNA degradation
ratey can change as a function of time and that we wish to understand the sensitiv-
ity with respect to this (time-varying) parameter. Linearizing the dynamicsarou

an equilibrium point

S

For the case of no feedback we ha/@) = ag, and the system has an equilibrium
point atme = ag/y, Pe = Bao/(dy). The transfer function frony to p is given by

—BMe

ol _
Cp 9= Grysro)

For the case of negative regulation, we have

a
F(P) = K+pn + o,

and the resulting transfer function is given by

, na Pyt
o=F (Pe) = —(K+ ;2)2

Bme

cl _
9= sry)(s+ o)+ oo

Figure 3.6 shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbaiticdevw
frequency content but slightly amplifies disturbances at high frequeacydared
to the open loop system). \%
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3.3 Robustness
In this section we study the robustness of the system
x = f(x,0,w), y = h(x,6)

to various perturbations in the paramet@rdisturbances and dynamics.

Parametric uncertainty

In addition to studying the inpfdutput transfer curve and the stability of a given
equilibrium points, we can also study how these features change withctaspe
changes in the system paramet@rset ye(0o, Wp) represent the output correspond-
ing to an equilibrium poinke with fixed parametergy and external inputvp, So
that f (Xe, 60, Wo) = 0. We assume that the equilibrium point is stable and focus here
on understanding how the value of the output, the location of the equilibriimb po
and the dynamics near the equilibrium point vary as a function of changas in
parameters and external inpute.

We start by assuming that= 0 and investigating how, andye depend org.
The simplest approach is to analytically solve the equatiog, 6p) = O for xe and
then selye = h(Xe, 6p). However, this is often dicult to do in closed form and so
as an alternative we instead look at the linearized response given by

dx. _dve

Sypi= —| , Sy =
00 g, Y0~ 460

90,
which the (infinitesimal) change in the equilibrium state and the output due to a

change in the parameter. To determiigy we begin by diferentiating the rela-
tionship f(xe(6), 8) = 0 with respect t@:

0 — Sw- (3.8)

0" oxdo a6 do — \ox) a6
Similarly, we can compute the change in the output sensitivity as

_dye _hdx. a_h__[a_h(ﬂ)‘laf ah]

df _9fdx of dxe__(af)‘laf

(xedo)

Y= 49 “axdo o0 |ax\ox] 96 ae

(xebo)

These quantities can be computed numerically and hence we can evaludiedhe e
of small (but constant) changes in the parametens the equilibrium statg; and
corresponding output valug.

A similar analysis can be performed to determine thieats of small (but con-
stant) changes in the external input Suppose that, depends on both andw,
with f(Xe, 80, Wp) = 0 andfy andwg representing the nominal values. Then

de __(of)™of de __(of) " of
do  \0x) 06| xesome) dw  \ox) ow

(x&60,wo)
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Figure 3.7: Parameter sensitivity in a genetic circuit. Dipen loop system (a) consists
of a constitutive promoter, while the closed loop circuit igself-regulated with negative
feedback (repressor).

We see that the vectdrf /ow describes how the specific inputs vary afdl(x)*
indicates how the perturbations are reflected in the equilibrium states. fdtens
is close to instability then some eigenvalue® ®fox may be near zero and hence
the inverse could be large, resulting in significant changes in the equililpriumb
due to variations in the disturbances (or parameters).

The sensitivity matrix can be normalized by dividing the parameters by their
nominal values and rescaling the outputs (or states) by their equilibriumsvadfue
we define the scaling matrices

D’ = diag{Xe}, DYe = diag(Ye), DY = diag6),
Then the scaled sensitivity matrices can be written as
S_x,e = (Dxe)—lsnge’ S_y,e = (Dye)_lSyGDg-

The entries in this matrix describe how a fractional change in a paramegs giv
a fractional change in the output, relative to the nominal values of the pteeme
and outputs.

Example 3.2 (Transcriptional regulation)Consider a genetic circuit consisting
of a single gene. We wish to study the response of the protein concenttation
fluctuations in its parameters in two casespastitutive promote¢no regulation)
and self-repression (negative feedback), illustrated in Figuterhe dynamics of
the system are given by

dm dP

wheremis the mMRNA concentration arfélis the protein concentration.

For the case of no feedback we havép) = ag, and the system has an equi-
librium point atme = ag/y, Pe = Bao/(6y). The parameter vector can be taken as
0 = (ao,v,B,6). Since we have a simple expression for the equilibrium concentra-
tions, we can compute the sensitivity to the parameters directly:

o [y -% 0 0
50 = | B _Pag e ool
oy 5y2 oy y62
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where the parameters are evaluated at their nominal values, but we Edlie o
subscript 0 on the individual parameters for simplicity. If we choose thanpe-
ters ag)p = (0.001380.005780.1150.00116), then the resulting sensitivity matrix

evaluates to
170 -41 0 0
open

SXeﬂ - [17000 -4100 210 —2100()' (3.9)

If we look instead at the scaled sensitivity matrix, then the open loop nattine of
system yields a particularly simple form:

= 1 -10 0
open _
SH _[1 11 _1]. (3.10)

In other words, a 10% change in any of the parameters will lead to a cobipara
positive or negative change in the equilibrium values.
For the case of negative regulation, we have

04
and the equilibrium points satisfy
0 a vo
Me = 5Pe. Ky pn a0~ M= 5 Pe (3.11)

In order to make a proper comparison with the previous case, we needaodfel
to choose the parameters so that the equilibrium concentrBtiomtches that of
the open loop system. We can do this by modifying the promoter strength
the RBS strengtl so that the second formula in equatid1()) is satisfied or,
equivalently, choose the parameters for the open loop case so that ttetythe
closed loop steady state protein concentration.

Rather than attempt to solve for the equilibrium point in closed form, we in-
stead investigate the sensitivity using the computations in equ&ign The state,
dynamics and parameters are given by

F(P)—ym

x=(m 9. f(x,@):[ﬁm_ép], b=(a0 y B 6 a n K).

Note that the parameters are ordered such that the first four paramettets the
open loop system. The linearizations are given by

’ 1 P"log(P)
ﬂ — =Y F (Pe) , ﬂ — 1 -m O 0 K+pn (Y(K+Pn)2 (K+a/Pn)2 ,
X B -0 06 |0 0 m -P O
where again the parameters are taken to be their nominal values. From taswe
compute the sensitivity matrix as

OF 9
6 sm_ __mF Pr Y _ 0% %
S g = oy—BF’ oy—BF’ oy—pF’ oy—LF’ oy—BF’ oy—pF’ oy—PF’
X0 — s

SF oF
__B Am __ym yP _ Biag Bon _ Bx
BF 5B T HBF &P oy BF oypF T aypF
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whereF’ = 9F /0P and all other derivatives df are evaluated at the nominal pa-
rameter values.

We can now evaluate the sensitivity at the same protein concentration ag we us
in the open loop case. The equilibrium point is given by

ao
_[me) (5] _(0.239
“‘[Pe]‘[g_(f]‘[zag
and the sensitivity matrix is
gelosed | 761 -182 -116 116 0.134 -0.212 -0.00011
X6 T |761Q -182Q 908 -908Q 134 -212 -0.0117|°

The scaled sensitivity matrix becomes

Selosed [0.16 -044 -056 056 028 -178 -3.08x 107] . (312)
Xe.0 0.16 -044 044 -044 028 -178 -3.08x10’

Comparing this equation with equatio. 10, we see that there is reduction in the

sensitivity with respect to most parameters. In particular, we become lesitivee

to those parameters that are not part of the feedback (columns 2+4hebe is

higher sensitivity with respect to some of the parameters that are part fefatie

back mechanisms (particulanhy. \%

More generally, we may wish to evaluate the sensitivity of a (hon-constant) s
lution to parameter changes. This can be done by computing the fule{ihndo,
which describes how the state changes at each instant in time as a function of
(small) changes in the parametérsVe assumev = 0 for simplicity of exposition.

Let x(t; xo,00) be a solution of the dynamics with initial conditiog and pa-
rameters)y. To computedx/do, we write down a dferential equation for how it

evolves in time:
dt\dg/ do\dt) do* 7

_ofdx of
~ oxdo 90
This is a diferential equation withx m statesS;; = dx /d#; and with initial condi-
tion Sj;(0) = 0 (since changes to the parameters to fi@cathe initial conditions).
To solve these equations, we must simultaneously solve for thexstaie the
sensitivity S (whose dynamics depend of. Thus, we must solve the set nf+
nmcoupled diferential equations

dx dSX0
—C_f ZOX0
(%,6,w), at

of of
at = &(x, 0,W)Sxg + %(x, 0,W). (3.13)
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Figure 3.8: Repressilator sensitivity plots

This differential equation generalizes our previous results by allowing us to
evaluate the sensitivity around a (non-constant) trajectory. Note that iapthe
cial case that we are at an equilibrium point and the dynamicSjgrare stable,
the steady state solution of equatid1d is identical to that obtained in equa-
tion (3.8). However, equation3.13 is much more general, allowing us to deter-
mine the change in the state of the system at a fixed Timfor example. This
eqguation also does not require that our solution stay near an equilibriunmg o
only requires that our perturbations in the parameters dheismtly small.

Example 3.3(Repressilator)Consider the example of the repressilator, which was
described in Exampl2.4. The dynamics of this system can be written as

dmy dP;
ar = Frep(P3) —ymy ot =pm— 0Py
dmz _ sz .
il Frep(P1) —yme o =pmp —6P>
dmg, _ dP3 .
ar o Frep(P2) —yme ot =pmg—0P>,
where the repressor is modeled using a Hill function
04
Frep(P) = m +ao.

The dynamics of this system lead to a limit cycle in the protein concentrations, as
shown in Figure8.8a

We can analyze the sensitivity of the protein concentrations to changes in the
parameters using the sensitivityférential equation. Since our solution is periodic,
the sensitivity dynamics will satisfy an equation of the form

d Sx,9
dt

whereA(t) and B(t) are both periodic in time. Letting = (my, P1, mp, P2, Mg, P3)
andd = (ao,v,B,9, @, K), we can comput8y 4 along the limit cycle. If the dynamics

= A()Sxe + B(1),
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Figure 3.9: Analysis of dynamic uncertainty in a reactiostsyn.

for Sy are stable then the resulting solutions will be periodic, showing how the
dynamics around the limit cycle depend on the parameter values. The results a
shown in Figure8.8h where we plot the steady state sensitivityPafas a function
of time. We see, for example, that the limit cycle depends strongly on the protein
degradation and dilution ratg indicating that changes in this value can lead to
(relatively) large variations in the magnitude of the limit cycle.

\%

Several simulation tools include the ability to do sensitivity analysis of this sort,
including COPAST.

Disturbance rejection (TBD)
Unmodeled dynamics @

A slightly more general analysis of sensitivity can be accomplished usingtiie ¢
trol theoretic notions of sensitivity described in AM08, Chapter 12. Rattaerjust
considering static changes to parameter values, we can instead consicieselof
unmodeled dynamics which we allow bounded inp(dutput uncertainties to en-
ter the system dynamics. This can be used to model parameters whoseavelues
unknown and also time-varying, as well as capturing uncertain dynamicartha
being ignored or approximated.

To illustrate the basic approach, consider the problem of determining thie sen
tivity of a set of reactions to a set of additional unmodeled reactions,evietsiled
effects are unknown but assumed to be bounded. We set this problem gphesin
general framework shown in Figu8e9.

3.4 Analysis of Reaction Rate Equations

The previous section considered analysis techniques for generainityal sys-
tems with small perturbations. In this section, we specialize to the case where the
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dynamics have the form of a reaction rate equation:
X = NVX,6), (3.14)

wherex is the vector of species concentratiofiss the vector of reaction parame-
ters,N is the stoichiometry matrix ane(x, 6) is the reaction rate (or flux) vector.

Reduced reaction dynamics

When analyzing reaction rate equations, it is often the case that theresereed
guantities in the dynamics. For example, conservation of mass will imply that if all
compounds containing a given species are captured by the model, the tetal ma
of that species will be constant. This type of constraint will then give semed
qguantity of the formc; = Hjx whereH; represents that combinations of species in
which the given element appears. Sirgges constant, it follows that; = 0 and,
aggregating the set of all conserved species, we have

O0=Cc=Hx=HNwVx6) forallx.

If we assume that the vector of fluxes sp&is(the range of/: R"xRP — R™M),
then this implies that the conserved quantities correspond to the left nué spac
the stoichiometry matri.

It is often useful to remove the conserved quantities from the descrigitibie o
dynamics and write the dynamics for a set of independent species. Tisdwéh
transform the state of the system into two sets of variables:

)-10)

The vectorx; = Px is the set of independent species and is typically chosen as
a subset of the original species of the model (so that the Pwsnsists of all
zeros and a single 1 in the column corresponding to the selected spedies). T
matrix H should span the left null space b, so thatxy represents the set of
dependent concentrations. These dependent species do naanidggesrrespond
to individual species, but instead are often combinations of speciesxX&nple,
the total concentration of a given element that appears in a number of rneslecu
that participate in the reaction).

Given the decompositior8(15, we can rewrite the dynamics of the system in
terms of the independent variablgs We start by noting that giver andxgy, we
can reconstruct the full set of species

x:[,ﬁ]_l[z]ﬂm% L=[5]l[(|3] % =[EJ1[2]
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wherecy represents the conserved quantities. We now write the dynamigsder
Xi = Px=PNMLX + Co,6) = Ny v (X, Co, ), (3.16)

whereN; is thereduced stoichiometry matriand v, is the rate vector with the
conserved gquantities separated out as constant parameters.

The reduced order dynamics in equati®@il@ represent the evolution of the
independent species in the reaction. Gixgrwe can “lift” the dynamics from the
independent species to the full set of species by wrixisg_X; + co. The vectorcy
represents the values of the conserved quantities, which must be specdieer
to compute the values of the full set of species. In addition, sined.x; + cg, we
have that

X=LX = LNrVv; (X, Co, P) = LNy V(X,6),

which implies that
N = LN;.

Thus,L also "lifts” the reduced stoichiometry matrix from the reduced space to the
full space.

Example 3.4(Enzyme kinetics) Consider an enzymatic reaction

S+E2 skt ELp
Koft
whose full dynamics can be written as
S -1 1 0
d|E|_|-1 1 0 ﬁgig
dt|ES| " |1 -1 1|2
P 0 o 1) KaES

The conserved quantities are given by

01 10
H‘[1-4 0 J'

The first of these is the total enzyme concentrafign= E + ES, while the second
asserts that the concentration of prod@ et equal to the free enzyme concentration
E minus the substrate concentratiSnlf we assume that we start with substrate
concentratiorsg, enzyme concentratidgr and no product or bound enzyme, then
the conserved quantities are given by

c_ [E+ES)_( Er
- S-E+P - So—ET ’
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There are many possible choices for the set of independent speei®x, but
since we are interested in the substrate and the product, we cR@sse

1000
P‘[0001}‘

OnceP is chosen then we can compute

1 O 0
I R A G R
H 0 -1 -1’ H c So |’
0 1 0

The resulting reduced order dynamics can be computed to be

_ kon(P+S+ Er —So)S
252 5 [ s
Kea(—P — S+ So)
_ [—kon(P+S+ Et —S0)S — ko (P + S—So)]
- kea(So—S—P) '

A simulation of the dynamics is shown in FigudelQ We see that the dynamics
are very well approximated as being a constant rate of production unékinaust
the substrate (consistent with the Michaelis-Menten approximation).

\Y

Metabolic control analysis

Metabolic control analysis (MCA) focuses on the study of the sensitivisteddy
state concentrations and fluxes to changes in various system parafie¢sbsisic
concepts are equivalent to the sensitivity analysis tools described in 158cjo
specialized to the case of reaction rate equations. In this section we padlvidk
introduction to the key ideas, emphasizing the mapping between the general co
cepts and MCA terminology (as originally done by Inga#i4]).

Consider the reduced set of chemical reactions

).(i = NrVr(Xi,g) = NI'V(LXI +COa0)'

We wish to compute the sensitivity of the equilibrium concentratixyesnd equi-
librium fluxesve to the parameter& We start by linearizing the dynamics around
an equilibrium pointxe. Definingz= X—Xe, U=60—0g and f(z u) = NyV(Xe+ Z 6 +

u), we can write the linearized dynamics as

x= Ax+ By, A:(Nrg—\le), B:(Nr@), (3.17)
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Figure 3.10: Enzyme dynamics. The simulations were caoigty, = Kog = 10, kear= 1,
So =500 andet =5,1020. The top plot shows the concentration of subsBatad product
P, with the fastest case correspondinggp = 20. The figures on the lower left zoom in
on the substrate and product concentrations at the initi@ &nd the figures on the lower
right at one of the transition times.

which has the form of a linear fierential equation with stateand inputu.
In metabolic control analysis, the following terms are defined:

o dv €9 = flux control codficients
"7 dblies, R =
R = 6818 —C¥,  C*=concentration control cdcients
0 =V
—~V _ aVe _ C_v— R_g - .
Ri=73g =C %  C'=rate control cofficients

These relationships describe how the equilibrium concentration and emumibr
rates change as a function of the perturbations in the parameters. Thertol c
matrices provide a mapping between the variation in the flux vector evaluated at

equilibl‘iUI n,
(l)V)
Xeﬁo,

and the corresponding fiiérential changes in the equilibrium poidtx./00 and
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Ne (G_V)

90~ \00)y_ g,
The left side is the relative change in the equilibrium rates, while the rightiside
the change in the rate functiax, ) evaluated at an equilibrium point.

To derive the cofficient matrice<C* andCY, we simply take the linear equa-
tion (3.17) and choose outputs correspondingt@ndyv:

0Ve/06. Note that

yx = IX, yvza—VLx+—u.

Using these relationships, we can compute the transfer functions

ov ov
(el AR = et n Y y-in 19V
Hx(9) = (sI-A)'B = (sl N L) Nr]ag,
ov 1, OV oV ov, .1 ov
HY(8) = 5 L(sI-A) B+%=[&L(sl—Nr&L) Nr+I]a—9.

Classical metabolic control analysis considers only the equilibrium coratimts,
and so these transfer functions would be evaluated-dl to obtain the equilibrium
equations.

These equations are often normalized by the equilibrium concentrations and
parameter values, so that all quantities are expressed as fractionttigaalf we
define

D* = diag X}, DY = diag{V(Xe, 6o)}, DY = diag6p},

the the normalized cdigcient matrices (without the overbar) are given by

CX = (DX)—lngv’ cV= (DV)_lc_VDV,
R;( — (DX)—lﬁgDé)’ R;/ — (DV)_lﬁng.
Example 3.5(Enzyme kinetics) TBA \%

Flux balance analysis

Flux balance analysis is a technique for studying the relative ratdfefeint reac-
tions in a complex reaction system. We are most interested in the case where ther
may be multiple pathways in a system, so that the number of reacticngreater

than the number of speciesThe dynamics

X = NW(X,6)

thus have the property that the mathkhas more columns that rows and hence
there are multiple reactions that can produce a given set of speciehdtance is
often applied to pathway analysis in metabolic systems to understand the limiting
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Figure 3.11: Flux balance analysis.

pathways for a given species and the tifie@s of changes in the network (e.g.,
through gene deletions) to the production capacity.

To perform a flux balance analysis, we begin by separating the reactfons
the pathway into internal fluxes versus exchanges fluk, as illustrated in Fig-
ure3.11 The dynamics of the resulting system now be written as

%= NV(x,60) = N [\‘/"] = NVi(x,6) — b,

wherebe = — NV, represents thefkects of external fluxes on the species dynamics.
Since the matriN has more columns that rows, it hagght null space and hence
there are many flierent internal fluxes that can produce a given change in species.

In particular, we are interested studying the steady state properties gofsthe s
tem. In this case, we have thhat 0 and we are left with an algebraic system

NV| = be.

Power law formalism

Chemical reaction rate equations are nonlinefieteéntial equations whenever two

or more species interact. However, the nonlinearities are very structhesdcan

be decomposed into a stoichiometry matrix and flux rates, and the flux rates typ-
ically consist of either polynomial terms or simple ratios of polynomials (e.g.,
Michaelis-Menten kinetics or Hill functions). In this section we considergdaw
representations that exploit these properties and attempt to provide singtler te
niques for understand the relationships between species concentraticarseter
values and flux rates. This formalism was developed by Savagéharid is also
called biochemical systems theory (BST).
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The general power law formalism describes a set of reaction dynamiacsals
set of diferential equations of the form

n+m n+m

%:ZErHXﬁ_ZESHXf, i=1..n (3.18)
r j=1 S =1

Here, x; is the concentration for speciéswith i = 1,...,n representing internal
species and = n+1,...,m representing external species, and the dynamics are
broken into two summations. The first sum is over the set of reactions thduiqe

the species; and the second is over the reactions that utikzéand so decrease

its concentration). The linear cfieientsE, andEs are the activity levels and cor-
respond to the rate constants (for metabolic networks the rate constaofteare
proportional to a fixed enzyme level, hence the use of the sym@polhe expo-
nentSGJf ande’® are thekinetic ordersof the production and utilization reactions.

In this general form, the power law formalism is able to exactly capture mass
action kinetics, but it does not provide any additional structure. If wesicter a
general rate equation of the fow{x, ..., Xn+m), We can approximate this function
in a number of ways. The first is through its linearization,

ov .
Vi(X1, ..o Xnem = Vi(XLe, - - - » Xneme) + Z %(Xj — Xj,e) + higher order terms
i
We have used exactly this approximation in previous sections.

A different approximation can be obtained by taking a Taylor series expansion
for logvi:

8||09Vi (logx; —logx; ¢) + higher order terms

I0GVi(X1. ... Xnem ~ 10V (XL .. Xneme) + ) 5 0%,

If we define
ologu _ X v

- dlogx; Y 0X;

Oi,j
and collect terms, we have
logvi(x) ~ logai + i1 10gX1 + -+ + Gi nemlOY Xnm.

Converting this back from log coordinates, we can thus right

n+m

Vi(X) ~ l_[ X?i’j.
j=1

Using this approximation on the sums in equati8rig), we can approximate
the resulting dynamics as
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wherea; andg; j are the rate constant and kinetic orders for the production terms
andg; andh; j are the rate constant and kineeetic orders for reactions that utilize
x;. While this is only an approximation, its form is convenientt for performing
equilibrium analyses. In particular,Xf = 0 then we can equate the production rate
to the utilization rate adn take the log of this expression to obtain

loga;i + Z 0i,jlogx; = logpg; + Z hi jlogXx;.

This is now a linear equation for the logs of the concentrations in terms of the
various parameters that enter the system.

3.5 Oscillatory Behavior

In addition to equilibrium behavior and ingatitput transfer curves, a variety of
cellular procesess involve oscillatory behavior in which the system statenis co
stantly changing, butin a repeating pattern. Two examples of biologicdbtisns

are the cell cycle and circadian rhythm. Both of these dynamic behaviarkénv
repeating changes in the concentrations of various proteins, complectexthaer
molecular species in the cell, though they are veffedent in their operation. In
this section we discuss some of the underlying ideas for how to model thisftype o
oscillatory behavior, focusing on those types of oscillations that are masihon

in biomolecular systems.

Biomolecular oscillators

Biological systems have a number of natural oscillatory processes thatgihe
behavior of subsystems and whole organisms. These range from Iraenilta-
tions within cells to the oscillatory nature of the beating heart to various tremors
and other undesirable oscillations in the neuro-muscular system. At the bmmole
ular level, two of the most studied classes of oscillations are the cell cycle and
circadian rhythm.

The cell cycle consists of a set “phases” that govern the duplicatiodigistbn
of cells into two new cells:

G1 phase - gap phase, terminated by “G1 checkpoint”

S phase - synthesis phase (DNA replication)

G2 phase - gap phase, terminated by “G2 checkpoint”

M - mitosis (cell division)

The cell goes through these stages in a cyclical fashion, with ffereit enzymes
and pathways active in filerent phases. The cell cycle is regulated by many dif-
ferent proteins, often divided into two major classégclinscyclinsare a class of
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./dynamics/figures/LSMO7_Figl| @p¢dynamics/figures/LSMO7_Fig2| eps

(a) Overview of cell cycle (b) Molecular mechanisms

Figure 3.12: TheCaulobacter crescentusell cycle. (a)Caulobactercells divide asym-
metrically into a stalked cell, which is attached to a sugfaand a swarmmer cell, that is
motile. The swarmer cells can become stalked cells in a neatiln and begin the cell
cycle anew. The transcriptional regulators CtrA, DnaA ami/Gare the primary factors
that control the various phases of the cell cycle. (b) Theegerircuitry controlling the
cell cycle consists of a large variety of regulatory mechans, described in more detail in
the text. Figure obtained frord§] (permission TBD).

proteins that sense environmental conditions internal and external telthrend
are also used to implement various logical operations that control transittaf o
the G1 and G2 phaseSyclin dependent kinas¢€DKs)are proteins that serve as
“actuators” by turning on various pathways duringfelient cell cycles.

An example of the control circuitry of the cell cycle for the bacteri@aulobac-
ter crescentughenceforthCaulobactey is shown in Figure3.12 [48]. This or-
ganism uses a variety offtéierent biomolecular mechanisms, including transcrip-
tional activation and represssion, positive autoregulation (CtrA), gimisansfer
and methlylation of DNA.

The cell cycle is an example of an oscillator that does not have a fixed pe-
riod. Instead, the length of the individual phases and the transitioning diftiee-
ent phases are determined by the environmental conditions. As one exdémeple
cell division time forE. coli can vary between 20 minutes and 90 minutes due to
changes in nutrient concentrations, temperature or other externaifacto

A different type of oscillation is the highly regular pattern encoding in circa-
dian rhythm, which repeat with a period of roughly 24 hours. The olasierv of
circadian rhythms dates as far back as 400 BCE, when Androsthesesbael
observations of daily leaf movements of the tamirind trg8g.[ There are three
defining characteristics associated with circadian rhythm: (1) the time to complete
one cycle is approximately 24 hours, (2) the rhythm is endogenouslyajedeand
self-sustaning and (3) the period remains relatively constant undegeban am-
bient temperature. Oscillations that have these properties appaer in nii@ngrdi
organisms, including micro-organisms, plants, insects and mammals. Some com-
mon features of the circuitry implementing circadian rhythms in these organisms is
the combination of postive and negative feedback loops, often with thitvpade-
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Figure 3.13Caption omitted pending permissidifrigure and caption fromif3])

ments activating the expression of clock genes and the negative elenmeatsieg
the positive elementslB]. Figure 3.13shows some of the fierent organisms in
which circadian oscillations can be found and the primary genes respoisib
different postive and negative factors.

Clocks, oscillators and limit cycles

To begin our study of oscillators, we consider a nonlinear model of themsyste
described by the tlierential equation

dx
a - f(X, u,6)$ y_ h(xae)

wherex € R" represents the state of the system (typically concentrations of various
proteins and other species and complexes)RY represents the external inpws,
RP represents the (measured) outputs @adk® represents the model parameters.
We say that a solutiorx(t), u(t)) is oscillatory with period Tif y(t+T) = y(t). For
simplicity, we will often assume thgt = q = 1, so that we have a single input
and single output, but most of the results can be generalized to the multi-input,
multi-output case.

There are multiple ways in which a solution can be oscillatory. One of the sim-
plest is that the inpui(t) is oscillatory, in which case we say that we haveraed
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oscillation In the case of a linear system, an input of the faii) = Asinwt then

we now already the output will be of the forgft) = M- Asin(wt + ¢) whereM
and¢ represent the gain and phase of the system (at frequendy the case of a
nonlinear system, if the output is periodic then we can write it in terms of a set of
harmonics,

y(t) = Bp + By Sin(wt + ¢1) + Basin(2wt + ¢2) + - -«

The termBg represents the average value of the output (also called the bias), the
termsB; are the magnitudes of theéh harmonic and; are the phases of the har-
monics (relative to the input). Thescillation frequencyw is given byw = 21/T
whereT is the oscillation period.

A different situation occurs when we have no input (or a constant input}ifind s
obtain an oscillatory output. In this case we say that the systemdessustained
oscillation This type of behavior is what is required for oscillations such as the
cell cycle and circadian rhythm, where there is either no obvious forcingtion
or the forcing function is removed by the oscillation persists. If we assunéhiba
input is constant,(t) = Ao, then we are particularly interested in how the peffod
(or equivalently frequency), amplitudesB; and phaseg; depend on the inpug
and system parametets

To simplify our notation slightly, we consider a system of the form

% =F(x,0), y = h(x,6) (3.19)
whereF(x,0) = f(x,u,0) reflects the fact that the input is ignored (or taken to be
one of the constant parameters) in the analysis that follows. We havsefdaun
the oscillatory nature of the outpwft) thus far, but we note that if the state@)
are periodic then the output is as well, as this is the most common case. Hence we
will often talk about thesystenbeing oscillatory, by which we mean that there is a
solution for the dynamics in which the state satiskfis- T) = x(t).

More formally, we say that a closed curles R" is anorbit if trajectories that
start onl” remain orl” for all time and ifT" is not an equilibrium point of the system.
As in the case of equilibrium points, we say that the orb#tableif trajectories
that start near stay neal’, asymptotically stabld in addition nearby trajectories
approacH" ast — oo andunstableif it is not stable. The orbiT" is periodic with
periodT if for any x(t) e I', x(t+ T) = x(t).

There are many lierent types of periodic orbits that can occur in a system
whose dynamics are modeled as in equat®id9. A harmonic oscillatorrefer-
ences to a system that oscillates around an equilibrium point, but doassnoatly)
get near the equilibrium point. The classical harmonic oscillator is a lineterays

of the form
E 0 w X1
dt {—w O] X ’
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Figure 3.14: Examples of harmonic oscillators.

whose solutions are given by

[xl(t)] B [COSwt sinwt] [xl(O)]

Xo(t)] ~ |=sinwt coswt| | x2(0)

The frequency of this oscillation is fixed, but the amplitude depends on thesva
of the initial conditions, as shown in FiguBel4 Note that this system has a single
equilibrium point atx = (0,0) and the eigenvalues of the equilibrium point have
zero real part, so trajectories neither expand nor contract, but simpliatesc

An example of a nonlinear harmonic oscillator is given by the equation

da _ X2 + Xq (1 -5 — X3), de —Xg +X(1- X2 - X). (3.20)
dt dt
This system has an equilibrium pointet (0,0), but the linearization of this equi-
librium point can be shown to be unstable. The phase portrait in Figishiows
that the solutions in the phase plane converge to a circular trajectory. tirthe
domain this corresponds to an oscillatory solution. Mathematically the circle is
called alimit cycle Note that in this case, the solution for any initial condition ap-
proaches the limit cycle and the amplitude and frequency of oscillation “inytead
state” (once we have reached the limit cycle) are independent of the irmtidi-
tion.

A different type of oscillation can occur in nonlinear systems in which the
equlibrium points are saddle points, having both stable and unstable digesiva
Of particular interest is the case where the stable and unstable orbits @f moee
equilibrium points join together. Two such sitautions are shown in FigLirg The
figure on the left is an example offreomoclinic orbit In this system, trajectories
that start near the equilibrium point quickly diverge away (in the directmors
responding to the unstable eigenvalues) and then slowly return to the eguailibr
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(a) ' (b)

Figure 3.15: Homoclinic and heteroclinic orbits

point along the stable directions. If the initial conditions are chosen to loésphe
on the homoclinic orbif” then the system slowly converges to the equilibrium
point, but in practice there are often disturbances present that willrpefte sys-
tem df of the orbit and trigger a “burst” in which the system rapidly escapes from
the equilibrium point and then slowly converges again.

A somewhat similar type of orbit is heteroclinic orbit in which the orbit
connects two dferent equilibrium points, as shown in Figu8d 5b

An example of a system with a homoclinic orbit is given by the system

% = X2, d_Xz =X1— Xi (321)

dt

The phase portrait and time domain solutions are shown in Figue In this
system, there are periodic orbits both inside and outside the two homoclinic cy-
cles (left and right). Note that the trajectory we have chosen to plot in the time
domain has the property that it rapidly moves away from the equilibrium point
and then slowly re-converges to the equilibrium point, before begin daaiey
again. This type of oscillation, in which one slowly returns to an equilibriumtpoin
before rapidly diverging is often calledralaxation oscillation Note that for this
system, there are also oscillations that look more like the harmonic oscillator case
described above, in which we oscillate around the unstable equilibirum gints
x=(+1,0).

Limit cycles in the plane

Before studying periodic behavior of system&it we study the behavior of sys-
tems inR? as several high dimensional systems can be often well approximated by
systems in two dimensions by, for example, employing quasi-steady stateiappro
mations. For systems iR?, we will see that there are only two types of solutions:
those converging (diverging) from steady states and periodic solufidra is,
chaos can be ruled out in two-dimensional systems.



3.5. OSCILLATORY BEHAVIOR 3-33
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Figure 3.16: Example of a homoclinic orbit.

Consider the system= F(x), in which F(x) is often referred to as vector field,
and letx(t, Xp) denote its solution starting ag at timet = 0, that is,x{t, %) =
F(x(t, x0)) and x(0, xg) = Xg. We say thaix(t, Xp) is a periodic solutionif there is
T > 0 such thatx(t, xg) = X(t + T,xp) for all t € R. Here, we seek to answer two
questions: (a) when does a system F(x) admit periodic solutions? (b) When are
these periodic solutions stable or asymptotically stable?

We first tackle these questions for the caseR?. The first result that we next
give provides a simple check to rule out periodic solutions for systeétA.iSpecif-
ically, let x e R? and consider

X1=F1(X1, %) X =Fa(x1,%2), (3.22)
in which the functiong : R? — R? is smooth. Then, we have the following result:

Theorem 3.2(Bendixson’s Criterion)If on a simply connected region ®R? (i.e.,
there are no holes in it) the expression

oF1  0G;
0X1 0%

is not identically zero and does not change sign, then sy&e2d has no closed
orbits that lie entirely in D.

Example 3.6. Consider the system
X=X +0%, X =X,

with 6 > 0. We can computét + 522 = 362, which is positive in allk? if 6 # 0. If
6 # 0, we can thus conclude from Bendixson’s criterion that there are nodie
solutions. Investigate as an exercise what happens wheh v
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In order to provide the main result to state the existence of a stable periodic
solution, we need the concept of omega-limit set of a ppjmtenotedu(p). Basi-
cally, the omega-limit seb(p) denotes the set of all points to which the trajectory
of the system starting frorp tends as time approaches infinity. This is formally
defined in the following definition.

Definition 3.1. A point x € R" is called aromega-limit poinbf p € R" if there is a
sequence of timef;} with tj — oo for i — oo such thatx(tj, p) — X asi — . The
omega limit sebf p, denotedu(p), is the set of all omega-limit points qf

The omega-limit set of a system has several relevant properties, antocly w
the fact that it cannot be empty and that it must be a connected set.

The following theorem, completely characterizes the omega limit set of any
point for a system iR,

Theorem 3.3(Poincae-Bendixson) Let M be a positively invariant region for the
systenk = F(x) with xe R? (i.e., any trajectory that starts in M stays in M for all
t > 0). Let pe M, then one of the following possibilities holds tofp):

() w(p)is a steady state;
(i) w(p) is a closed orbit;

(i) w(p) consists of a finite number of steady states and orbits, each starting (for
t = 0) and ending (for t> o) at one of the fixed points.

This theorem has two important consequences:

1. If the system does not have steady statelsljrsincew(p) is not empty, it
must be a periodic solution;

2. If there is only one steady statehhand it is unstable and not a saddle (i.e.,
the eigenvalues of the linearization at the steady state are both positive), the
w(p) is a periodic solution.

Example 3.7. Consider the following system iR?:
: 2,2 : 2,2
X1 = X1 — X — (X] + X5) X1, Xo = X1+ Xo— (X + X5)Xo.

Verify as an exercise that this system admits one equilibrium point only (ithe or
gin), which is unstable. Also, show that its trajectories are globally bou(fded
example, take a se«% + xg = c for c large enough and demonstrate that the vec-
tor field of the system always points inside the cirxfek xg = C). Therefore, by
Poincae-Bendixson Theorem, we can conclude that the omega-limit set of any
point inR? different from the origin is a non-zero periodic orbit. \%
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Limit cyclesin R"

The results above holds only for systems in two dimensions. However, libeee
been recent extensions of this theorem to systems with special strucifelm
particular, we have the following result due to Hastings et al. (1977).

Theorem 3.4(Hastings et al. 1977)Consider a system = F(x), which is of the
form

X1 = F1(Xn, X1)

Xj = Fj(Xj_l,Xj), 2<j<n
on the set M defined by x O for all i with the following inequalities holding in
M:

() G <Oandp- >0, for2<i<n, andf <0
(i) Fi(0,0)>0and Fi(x,,0)> Oforall x, >0;

(iii) The system has a unique steady stdte kx, ..., X;) in M such that k(x,, X1) <
0if Xn > X3 and » > Xj, while F1(xn, X)) > 0if X < Xj and x < Xj;

(iv) 52 is bounded above in M.

Then, if the Jacobian of f athas no repeated eigenvalues and has any eigenvalue
with positive real part, then the system has a non-constant periodic solatidn

This theorem states that for a system with cyclic structure in which the cy-
cle “has negative gain”, the instability of the steady state (under some tathnic
assumption) is equivalent to the existence of a periodic solution. This&heor
however, does not provide information about whether the orbit is atteagtinot,
that is, of whether it is an omega-limit set of any pointMn This stability result is
implied by a more recent theorem due to Mallet-Paret and Smith (1990), fohwh
we provide a simplified statement as follows.

Theorem 3.5(Mallet-Paret and Smith, 1990 onsider the system= F(x) with
the following cyclic feedback structure

X1 = F1(Xn, X1)
Xj =Fj(Xj-1.Xj), 2<j<n

on a set M defined by; % O for all i with all trajectories starting in M bounded
for t > 0. Then, the omega-limit sei(p) of any point pc M can be one of the
following:

(a) A steady state;

(b) A non-constant periodic orbit;



3-36 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR
(c) A set of steady states connected by homoclinic or heteroclinic orbits.

A heteroclinic orbit is an orbit that starts (for 0) at a steady state and ends (for
t — o) into a diferent steady state. A homoclinic orbit is an orbit that starts and
ends at the same steady state. It is thus clear that a steady state whosmtioear
has eigenvalues with all positive or all negative real parts cannoténagenoclinic
orbit. As a consequence of the theorem, then we have that for a systeryalith
feedback structure that admits one steady state only and at which the litieariz
has all eigenvalues with positive real part, the omega limit set must be aigeriod
orbit.

Let for somes; € {1,-1} be 6i%ﬁ*) >0 for all 0<i < n and defineA :=
61-...-0n . One can show that the sig'ﬁ@ﬁs related to whether the system has one
or multiple steady states.

Therefore, a system with a cyclic feedback structure and a unique euiiib
point at which the linearization has all eigenvalues with positive real jpianita a
stable periodic orbit.

3.6 Analysis Using Describing Functions

Unlike the case of linear systems, where it is possible to full characterizothe
tions of a model and there are a wide variety of analysis techniques avaitable,
behavior of nonlinear systems is harder to analyze, especially awayefoitib-
rium points (where the linearization gives a good approximation). One ahtre
useful techniques for studying the behavior of nonlinear systems is thedeth
harmonic balance, of which a special case is the method of describintioiusic
This section explores the use of harmonic balance and describing fustdicen-
alyzing nonlinear systems, including the detection and analysis of limit cyctes an
the propagation of noise through nonlinear systems.

Describing functions (AMO08)

For special nonlinear systems like the one shown in Figut&a which consists
of a feedback connection between a linear system and a static nonlingasity,
possible to obtain a generalization of Nyquist’s stability criterion based on ¢ze id
of describing functionsFollowing the approach of the Nyquist stability condition,
we will investigate the conditions for maintaining an oscillation in the system. If
the linear subsystem has low-pass character, its output is approximatepisial
even if its input is highly irregular. The condition for oscillation can then hetb
by exploring the propagation of a sinusoid that corresponds to the dinstdnic.

To carry out this analysis, we have to analyze how a sinusoidal sigophpr
gates through a static nonlinear system. In particular we investigate howghe fir
harmonic of the output of the nonlinearity is related to its (sinusoidal) input. lgettin



3.6. ANALYSIS USING DESCRIBING FUNCTIONS 3-37

i D e

—-1/N(a) ]
G(iw)

(a) Block diagram (b) Nyquist plot
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A

Figure 3.17: Describing function analysis. A feedback @mtion between a static nonlin-
earity and a linear system is shown in (a). The linear syssecharacterized by its transfer
functionL(s), which depends on frequency, and the nonlinearity by isedeing function
N(a), which depends on the amplitudef its input. The Nyquist plot oE(iw) and the plot
of the—1/N(a) are shown in (b). The intersection of the curves represeptsssible limit
cycle.

F represent the nonlinear function, we exp&r(@“!) in terms of its harmonics:
F(aéwt) — Z Mn(a)ei(nwt+¢n(a))’
n=0

whereMp(a) and ¢n(a) represent the gain and phase of tile harmonic, which
depend on the input amplitude since the functiors nonlinear. We define the
describing function to be the complex gain of the first harmonic:

N(a) = M1 (a)e"®. (3.23)

The function can also be computed by assuming that the input is a sinusoid and
using the first term in the Fourier series of the resulting output.

Arguing as we did when deriving Nyquist's stability criterion, we find that an
oscillation can be maintained if

L(iw)N(a) = 1. (3.24)

This equation means that if we inject a sinusoid at A in FigBirk7, the same
signal will appear at B and an oscillation can be maintained by connecting the
points. Equation 3.24) gives two conditions for finding the frequeney of the
oscillation and its amplituda: the phase must be 18Gnd the magnitude must be
unity. A convenient way to solve the equation is to fdl¢iw) and—1/N(a) on the
same diagram as shown in Figudd 7. The diagram is similar to the Nyquist plot
where the critical point-1 is replaced by the curvel/N(a) anda ranges from 0

{0 co.



3-38 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR

. ~
(Aot 54) _
; ‘_ e _f"\__
v/ / A s
ot SRR ’_j _:;_,WW gy b / >
/ S \d‘\“— /
w \'),

€Y (b)

Figure 3.18: Heuristic stability of limit cycles using deibing functions. (a) To check if a
perturbation from amplitudey to amplitudeag + da is stabilizing, we check to see if the
Nyquist criterion is satisfied for the original frequencgpense and the perturbed critical
point P; = 1/N(ap + 6a). (b) An example of a nonlinear system with multiple limitcbys.
Stable limit cycles are labeled 's’ and unstable limit cgchee labeled 'u’.

It is possible to define describing functions for types of inputs other than si-
nusoids. Describing function analysis is a simple method, but it is approximate
because it assumes that higher harmonics can be neglected. Exceliemetrts
of describing function techniques can be found in the texts by Athe@pard
Graham and McRuegp).

Example 3.8(Repressilator) \%

Stability of limit cycles using describing functions

In order to check the stability of a limit cycle, we must reason about how sokutio
that have initial conditions near the limit cycle evolve in time and whether they
move closer to the limit cycle (asymptotic stability) or diverge from the limit cycle
(instability).

We begin by arguing heuristically, using the Nyquist plot in FigBiErh Sup-
pose that we were to consider a perturbed limit cycle with ampliggdesa, where
ag is the amplitude of the limit cycle predicted by the describing function method.
If we did so, then the point of intersection of the describing function andréie
quency response would move frd?g= —1/N(ap) to P1 = —1/N(ag + da), as shown
in Figure3.18a Now evaluate the Nyquist criterion for the frequency response with
critical pointP;. If the criterion indicates that the perturbed system is stable (i.e.,
no net encirclements d#; for a stable process), then intuitively the amplitude of
the perturbed solution would decrease and we would return to our oreyimali-
tude limit cycle. Conversely, if the Nyquist criterion with critical poRit indicates
instability, then the oscillation would grow and hence we can infer that the limit cy-
cle is unstable. Figurg.18bshows a situation with multiple limit cycles with some
stable and some unstable.
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While this heuristic method is intuitively appealing, it does not always give the
correct answer. Indeed, even the prediction of the existence of a liclé aging
describing functions can be incorrect unless the system satisfies salitiersd
conditions. We present here one such set of conditions, due to Mees [

Suppose thatdp, ap) satisfies the describing function balance equafitm,) =
—1/N(ap) and that the the frequency response curve and the describing futwtio
cus are transverse (not tangent) at their intersection. Define

p(w)? = Z IP(ikwo)|4, “gain of harmonics”
k=3,5,9....
p(a)? = [In(asint)|3 - [aN(@)I?, “first harmonic error”
q(a €) = [Im(asint, €)|l2, “slope bound”

mM(x, €) = max|N(x+€) = N(X)I. IN(x - €) = N(x)I}.

Now find ane such that for all ,a) near (v, ap),

p(w)(p(a) +q(a.€)) < e

+

Theorem 3.6. Suppos&? is bounded and there exists a unigiue ag) € Q sat-
isfying the balance equation. Then there exists a periodic solution of the form
y(t) = asin(wt) + y*(t) with remnanfly*||. < €.

Sketch of proofReduced to the contraction mapping theorem, which genesates
p andg. O

The basic idea behind this theorem is that if the harmonics around the loop de-
cay stficiently quickly (determined by the frequency response), then we careinsu
that there is truly a periodic solution and bound the error of the higher hacso
There is also a graphical version of the stability theorem that checksdonplete
intersections” between the describing function locus and the Nyquise ¢ejrv

Mathematically, the stability of a limit cycle can be analyzed by taking the }
earization of the system around the (non-equilibrium) solution. To see ligust
done, consider a nonlinear system of the form

%= f(X)

that has a solutiory(t) that is periodic with period . To compute the linearization
of the dynamics around the equilibrium point, we compute the dynamics of the
errore = X— Xq:

e= f(x) - f(xa) = F(e xi(t)) ~ A(the



3-40 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR

Figure 3.19: Random input describing function analysis.

whereA(t) is the time-varying linearization given by

oF
AD) = (& Xa) .
The dynamics matrid(t) is periodic and so the dynamics of the linearization are
a given by a periodic, linear ordinaryftérential equation.

The dynamics of periodic linear systems can be studied Usimguettheory,
which we briefly review here. Leb(t,0) be the T-periodic) fundamental matrix
for € = A(t)e, so that the solution is given by(t) = ®(t,0)x(0). It can be show
that®(t,0) has the formp(t,0) = P(t)e™ whereP(t) = P(t+ T) e R™" is a periodic
matrix andF € R™" is a constant matrix. We can now check stability by examining
the eigenvalues of the matré&k T, which corresponds to the “first return” map for
the system.

Random input describing functions

In addition to allowing prediction and analysis of limit cycles, describing fumnstio
can also be used to analyze the propagation of noise through nonlieekdafk
systems. This approach is known as taedom input describing functiomethod.
As in the single input describing function method, we begin with a system in

the form of a linear system with a nonlinear feedback, as shown in FRjt8a

To analyze this system, we construct an input that contains both a sinumbal a
random input (t):

y=b+asin(wt+¢) +r(t),

whereb is the bias terma is the amplitude of the sinusoidal tergnjs a uniform
random variable and(t) is a stationary Gaussian random process with variance
o2 and correlationp(r).! We approximate the response of the system through the
nonlinearity by

N(y(t)) ~ Npb+ Naasin(wt + ¢) + Ny r(t),

1These are described in more detail in Chagter
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whereNy, is called thebias gain N, is the sinusoidal gain an; is the stochastic
gain. These functions are given by

1 1 21 oo _ 2
Np(b,a,0) = BE{f(y)}: m)fo wa(b+asm9+r(t))e 202 drdo
b 20 2 n °°f 5 2
N =-E ing} = ————— in@+r(t)) sinfe 22 0
a(b.a,0) = —E(f(y)sin6} (2n)3/20af0 Lo (b+asing+r(t))sinde 22 dr

1 1 27 00 - —r—22
Nr(b,a,cr):;E{f(y)r}z(Zﬂ)gTo_gfO j:wf(b+asm0+r(t))re 2 drc(lz -

The random input describing function method has a number of specied.cas
If we takeo = 0, then it can be shown that we recover the standard describing
function method. If we instead take= 0, we can study how noise propagates
through the system. Recall that in the linear case, where the feedbadi @ik@an
by a constant gaiiN, the spectral density of the outpyis given by

Sy(w) = Hyd(—iw)Sq(w)Hyq(iw), oy = %j_‘ Sy(w) dw.

In the nonlinear case, we replace the feedback Nawith N, (o) so that

P(s)

Hya(9) = 7 PN (o)’

oy = % [ : Hyd(~iw)Sa(w)Hyq(iw).  (3.26)

Note that this equation gives an algebraic relationship-fahat can be solved and
then used to computs, (o) andSy(w).
Consider next the case of both a limit cycle and random noise,

y(t) = asin(wt + ¢) +r(t).
We now look for solutions of the coupled equations

~ B P(s)
Hya(s) = m,

Na(a, oy)P(iwo) = —1.

L (™ Ay
oy=5 f_ _ Hya(-i)Sa(w)Hya(ic). (3.27)

If we can finda, oy andwq that satisfy all of the equations, then we get a description
of y(t).

Itis interesting to note that it can sometimes happen$héb) can cause an un-
stable (noiseless) system to be stable. Similarly, we can get a system\@thry)
that destabilizes and otherwise stable system.
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Figure 3.20: Hopf Bifurcation.

3.7 Bifurcations

Hopf bifurcation is a technique that is often used to understand whetlystens
admits a periodic orbit when some parameter is varied. Usually, such ansoabit
small amplitude periodic orbit that is present in the close vicinity of an unstable
steady state.

Consider the system dependent on a parameter

X=g(x,a),XxeR", a €R,

and assume that at the steady statorresponding tar = « (i.e., g(x,@) = 0),

the Iinearizationg—?((icﬂ has a pair of (non zero) imaginary eigenvalues with the
remaining eigenvalues having negative real parts. Define the new garame

a —a and re-define the system as

x=f(xu) == g(Xu+a),

so that the Iinearizatio%%(i, 0) has a pair of (non zero) imaginary eigenvalues with
the remaining eigenvalues having negative real parts. Denot@dy: B(u) +iw(u)
the eigenvalue such thaf0) = 0. Then, ifg—fj(/u = 0) # 0 the system admits a small
amplitude almost sinusoidal periodic orbit fersmall enough and the system is
said to go through a Hopf bifurcation @t 0. If the small amplitude periodic orbit
is stable, the Hopf bifurcation is sagipercritical while if it is unstable it is said
subcritical Figure3.20shows diagrams corresponding to these bifurcations.

In order to determine whether a Hopf bifurcation is supercritical or stidel;
it is necessary to calculate a “curvature” fio®ent, for which there are formu-
las (Marsden and McCrocken, 1976) and available bifurcation saftvearch as
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AUTO. In practice, it is often enough to calculate the vatuef the parameter at
which Hopf bifurcation occurs and simulate the system for values of trenpeter
a close toa. If a small amplitude limit cycle appears, then the bifurcation must be
supercritical.

The Hopf bifurcation result is based on the center manifold theory falimmear
dynamical systems. For a rigorous treatment of Hopf bifurcation is thusssacy
to study center manifold theory first, which is outside the scope of this text. For
details, the reader is referred to Wiggins book on dynamical systems and.ch

3.8 Model Reduction Techniques

The techniques that we have developed in this chapter can be applied te a wid
variety of dynamical systems. However, many of the methods require sagtific
computation and hence we would like to reduce the complexity of the models as
much as possible before applying them. In this section we review methods-for d
ing such a reduction in the complexity of the models. Most of the techniques are
based on the common idea that if we are interested in the slower time scale dynam-
ics of a system, the fast time scale dynamics can be approximated by their equi-
librium solutions. This idea was introduced in Cha®én the context of reduced
order mechanisms; we present a more mathematical analysis of such systems h

Singular perturbation analysis

Let (x,y) € D := Dyx Dy c R"xR™and consider the vector field

x=1(xy), ey=g(xy), (x(0),y(0)) = (xo,Yo)

in which 0< € < 1 is a small parameter. Sineex 1, the absolute value of the
time derivative ofy can be much larger than the time derivativexpfesulting iny
dynamics that are much faster than sheéynamics. That is, this system has a slow
time scale evolution (ix) and a fast time-scale evolution {fin If we are interested

only in the slower time scale, then the above system can be approximated (unde
suitable conditions) by theeduced system

x=f(xy), 0=g(xy), X0) = X.

Lettingy = y(x) (called theslow manifold be the locally unique solution gfx,y) =
0, we can approximate the dynamicsxas

x= f(X (%), X(0) = Xo.

We seek to determine under what conditions the solutighis “close” to the
solution x(t) of the reduced system. This problem can be addressed by analyzing



3-44 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR

the fast dynamics. Letting= t/e be the fast time scale, we have that

Doeiten. ooty XOYO)= (030

T

so that where < 1, x(r) does not appreciably change. Therefore, the above system
in thet time scale can be approximated by
dy

e 9(Xo.Y) y(0) = Yo,
-

in which x is “frozen” at the initial condition. This system is usually referred to as
theboundary layesystem. If for allxg, we have thay(r) converges ta/(xp), then

for t > 0 we will have that the solutior(t) is well approximated by the solution
X(t) to the reduced system. This qualitative explanation is more precisely cdpture
by the following theorem (originally due to Tikonov).

Theorem 3.7. Assume that
0
——9(x.y) <0
ay y=r()

uniformly for xe Dy. Let the solution of the reduced system be uniquely defined for
te[0,t¢]. Then, for all € (0,t¢] there is a constant” > 0 and setQ C D such that

X(t) — x(t) = O(e) uniformly for te [0, t¢],
y(t) — ¥(X(t)) = O(e) uniformly for te [tp, 7],
providede < €* and(Xp, Yo) € Q.
Example 3.9(Linear system) Consider the following linear system
5(]_ = —X1
Xz = —}X2+ 1-Xl, e>0, (3.28)
€ €
in which € is very small. This system has two eigenvalues equallt@nd-1/e
with corresponding eigenvectors{%,1) and (Q1), respectively. The slow man-
ifold, obtained by multiplying both sides of the second equation in sys8e28)(

by € and setting: = 0, is given byx, = x; and the boundary layer system is expo-
nentially stable. The reduced system is just given by

X1 = —X1, andxa(t) = Xa(t).

The trajectories of the system along with the slow manifold are representegtin F
ure3.21 The initial conditions that are not on the slow manifold quickly converge
to the slow manifold and then they converge to the origin. \%
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Figure 3.21: Simulation results for the system in equat{8r9). Trajectories in theq, xo
plane.

Example 3.10(Enzymatic reaction)Let’s go back to the enzymatic reaction

k
E+S—C % Eyp,

ke

in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the sub&rate
due to the binding with the enzyme E. The rktés referred to as association con-
stant,k, as dissociation constant, akgy as the catalytic rate. The corresponding
ODE system is given by

%_ItE = —k{E-S+kC+KkeC
ds

i -k{E-S+kC

dC

i kiE-S—(k +Kea)C
dP

a = kcatC~

By assuming thak;,k; > k.4, We obtained that approximative%% =0 and thus

thatC = 32, with Ky, = S5t and 92 = 25 with Vinax= KeatEtor. From this, it

also follows that

dE ds dP

How good is this approximation? By applying the singular perturbation method,
we will obtain a clear answer to this question. Specifically, dedire ks /k; and
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take the system to standard singular perturbation form by defining the saall p
rameter ag := % so thatks = ata kr = Kear , and the system becomes

K
dE
Ea = _aK;atE . S + kcatC + EkcatC
fcclj_? = —akatE-S+kealC
dC
Ea = akeatE- S —keatlC — ekeatlC
dP
a = kcatC-

One cannot directly apply singular perturbation theory on this systenubeme
can verify from the linearization of the first three equations that the banyridyer
dynamics are not locally exponentially stable as there are two zero eigesvalu
This is because the three variablEsS,C are not independent. Specifically,=
Eiot — C andS + C+ P = S(0) = Siot, assuming that initially we have S in amount
S(0) and no amount of P and C in the system. Given these conservationtaws,
system can be re-written as

dC

“at - akeat(Etot — C) - (Stot — C = P) — keatC — ekealC
dpP
qt T e

Under the assumption made in the analysis of the enzymatic reactio8ghat
Eiot, Wwe have tha€ <« Syt S0 that the equations finally become

dC
€ a = akcat(Etot - C) ’ (Stot - P) —KeatC — ekcatC
dP
a = kcatC-
One can verify (show as an exercise) that in this system, the boundaryi;a}am-
ics is locally exponentially stable, so that setting0 one obtain€ = %P‘;‘;}Z =
(P) and thus that the slow dynamics of the system are given by
dP _ (Stot—P)
dt ~ "(Stot—P) +Km'
From the conservation la® + C + P = S(0) = Sior, We obtain thatf,—?_ = —%‘f— dd—f
in which nowd< = 2(p). ¢° Therefore
dS dP, 4g,=. = - -
T =gt 55 S0) = Swoi-g(P(0)) - P(O) (3:30)
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Figure 3.22: Simulation results for the enzymatic reactiomparing the approximations
from singular perturbation and from the quasi-steady stpfgroximation. Here, we have
Stot = 100, Etot = 1, ky = ks = 10, andkeat = 0.1

and _
dE _ dC
dt ~ dt

which are diterent from expressione‘s(z&b Specifically, these expressions are
close to those in3.29 only When (P) is small enough. In the plots of Fig-
ure 3.22, we show the time trajectorles of the original system, of the Michaelis-
Menten quasi-steady state approximation, and of the singular perturbpfiooxa
imation. The trajectories dE(t) and ofS(t) for the quasi-steady state approxima-
tion have been obtained from the conservation laws é{teandC(t) are deter-
mined. The trajectories of these variables for the singular perturbationxapa-

tion have been obtained directly integrating equati®@3d and @.31). Notice that

the quasi-steady state approximatidfys~ 0 and4E ~ 0 are well representing the

(P) E(0) Etot - 9(P(0)), (3.31)
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Figure 3.23: The slow manifold of the syst&n= g(P) is shown in red. In black, we show
the trajectories of the the full system. These trajectar@gpse into ar-neighbor of the
slow manifold. Here, we hav8;ot = 100, Eior = 1, ky = ki = 10, andkeas = 0.1.

dynamics of theC and E variables only whileS(t) is large enough. By contrast,
equations 3.30-3.31) well represent the system even when the substrate goes to
zero. In Figure8.23 we show the curv€ = g(P) (in red) and the trajectories of the

full system in black. All of the trajectories of the system immediately collapse into
ane-neighbor of the curv€ = g(P). \%

Balanced truncation

Principle component analysis (PCA)

Exercises

3.1 (Frequency response of a phosphorylation cycle) Consider the robdedo-
valent modification cycle as illustrated in Chapgein which the kinase Z is not

o
constant, but it is produced and decays according to the reactiem:Z Let u(t)
u(t)

be the input stimulus of the cycle and ¥t be the output. Determine the fre-
guency response of* to u, determine its bandwidth, and make plots of it. What
parameters can be used to tune the bandwidth?

3.2 (Two gene oscillator) Consider the feedback system composed of tvas gen
expressing proteins A (activator) and R (repressor), in which wetddoy A, R,

ma, andmg, the concentrations of the activator protein, the repressor protein, the
mMRNA for the activator protein, and the mRNA for the repressor protegpee
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tively. The ODE model corresponding to this system is given by

dmy  ao dmg A"

dt _K1+Rn YA T_K2+Am_’yrrh
dA dR

_—= —6A —_— = - R

dr M ar ~PmR=o

Determine parameter conditions under which this system admits a stable limit cy-
cle. Validate your finding through simulation.

3.3(Goodwin oscillator) Consider the simple set of reactions
k k k
Xi—= Xo—= Xz.... = X,

Assume further that Xis a transcription factor that represses the production of pro-
tein Xz through transcriptional regulation (assume simple binding ofdaXDNA).
Neglecting the mRNA dynamics of X write down the ODE model of this sys-
tem and determine conditions on the length n of the cascade for which thensyste
admits a stable limit cycle. Validate your finding through simulation.

3.4 (Activator-repressor clock) A well known oscillating motif is given by the
activator-repressor clock by Atkinson et aP] in which an activator protein A
activates its own production and the one of a repressor protein R, whithinn
acts as a repressor for A. The ODE model corresponding to this clodkeis gy

dmy  aA"+ao m dng A" m
dt  Ki+R +Am VA dt  Ky+Am V'R
dA dR

= (B — A = Bmg—6

Ot H(BMA ) at BMr—6R,

in whichu > 0 models the dference of speeds between the dynamics of the activa-
tor and that of the repressor. Indeed a key requirement for this systestillate

is that the dynamics of the activator ardfmiently faster than that of the repressor.
Demonstrate that this system goes through a Hopf Bifurcation with bifurcagien
rameteru. Validate your findings with simulation by showing the small amplitude
periodic orbit.

3.5(Model reduction via singular perturbation) Consider again the modetof a
valent modification cycle as illustrated in Chapgein which the kinase Z is not

0
constant, but it is produced and decays according to the reacti@(?m. Consider

u(t
thatks, k- > keat, 6, U(t) and employ singular perturbation with small parameter, for
examplee = §/k; to obtain the approximated dynamics&(t) and X*(t). How is
this different from the result obtained in ExercB&? Explain.
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Chapter 4
Stochastic Modeling and Analysis

In this chapter we explore stochastic behavior in biomolecular systems, lguildin
on our preliminary discussion of stochastic modeling in Sec2dnWe begin by
reviewing the various methods for modeling stochastic processes, incltiging
chemical master equation (CME), the chemical Langevin equation (CLE}&nd
Fokker-Planck equation (FPE). Given a stochastic description, wehesmana-
lyze the behavior of the system using a variety of stochastic simulation and analy
sis tools. In many cases, we must simplify the dynamics of the system in order to
obtain a tractable model, and we describe several methods for doing Isljmgc
finite state projection, linearization and Markov chain representations|s&éna
vestigate how to use data to identify some the structure and parameters aksioch
models.

PrerequisitesThis chapter makes use of a variety of topics in stochastic processes
that are not covered in AM08. Readers should have a good workiogl&dge of
basic probability and some exposure to simple stochastic processes (@wnidr
motion), at the level of the material presented in Apper@lixrawn from [6]).

4.1 Stochastic Modeling of Biochemical Systems

Chemical reactions in the cell can be modeled as a collection of stochastts even
corresponding to chemical reactions between species, including bindihgra
binding of molecules (such as RNA polymerase and DNA), conversiomefet

of species into another, and enzymatically controlled covalent modificatiats s
as phosphorylation. In this section we will briefly survey some of thedint
representations that can be used for stochastic models of biochemieshsy#®l-
lowing the material in the textbooks by Philligs al. [59], Gillespie 29 and Van
Kampen g4].

Statistical physics

At the core of many of the reactions and multi-molecular interactions that take
place inside of cells is the chemical physics associated with binding between two
molecules. One way to capture some of the properties of these interactions is
through the use of statistical mechanics and thermodynamics.
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As described briefly already in Chapt2y the underlying representation for
both statistical mechanics and chemical kinetics is to identify the appropriate mi-
crostates of the system. A microstate corresponds to a given configuohtioe
components (species) in the system relative to each other and we mustateume
all possible configurations between the molecules that are being modeled.

In statistical mechanics, we model the configuration of the cell by the proba-
bility that system is in a given microstate. This probability can be calculatedlbase
on the energy levels of the fegrent microstates. Consider a setting in which our
system is contained within a reservoir. The total (conserved) energydn by
Eiot and we letE; represent the energy in the reservoir. Eé]t) and Eg) represent
two different energy levels for the system of interest andNgtE,) be the num-
ber of possible microstates of the reservoir with endtgyThe laws of statistical
mechanics state that the ratio of probabilities of being at the energy Egébxnd
E(sz) is given by the ratio of number of possible states of the reservoir:

PEY) W (Ei—EL)

= . (4.1)
PEY) W (Ewi—EP)

Defining the entropy of the system &s= kg In W, we can rewrite equatiod(1) as

W (B~ EY) €S (ForE)ke
Wi (Etot — E(SZ)) eSr (Eo—EL) ke

We now approximat&, (Eq: — Es) in a Taylor series expansion arouBgy, under
the assumption thd, > Eg:

0S
Sr(Eto'[ - Es) ~ Sr(Etot) - G_Er Es.

From the properties of thermodynamics, if we hold the volume and number of
molecules constant, then we can define the temperature as

0S 1

9ElN T

and we obtain
P(E(sl)) e—E(sl)/kBT

PEP) o T

This implies that
PED) o e E/(kaT)

and hence the probability of being in a microstqis given by

1
P(q) = Se=/tel), (4.2)



4.1. STOCHASTIC MODELING OF BIOCHEMICAL SYSTEMS 4-3

where we have writte for the energy of the microstate adds a normalizing
factor, known as theartition function defined by

Z - e—Eq/(kBT)'

By keeping track of those microstates that correspond to a given sy&én s
(also called a macrostate), we can compute the overall probability that a give
macrostate is reached.

In order to determine the energy levels associated wiferdint microstates,
we will often make use of théee energyof the system. Consider an elementary
reaction A+ B = AB. Let E be the energy of the system, taken to be operating
at pressuré in a volumeV. Theenthalpyof the system is defined &= E + PV
and theGibbs free energis defined a$&s = H — T S whereT is the temperature of
the system an@ is its entropy (defined above). The change in bond energy due to
the reaction is given by

AH = AG+TAS,

where theA represents the change in the respective quantityd represents the
amount of heat that is absorbed from the reservoir, which tlffesta the entropy
of the reservoir.

The resulting formula for the probability of being in a microstais given by

1_
P(q) — ze AG/kBT.

Example 4.1(Ligand-receptor binding)To illustrate how these ideas can be ap-
plied in a cellular setting, consider the problem of determining the probability that
a ligand binds to a receptor protein, as illustrated in FiguteWe model the sys-
tem by breaking up the cell intQ different locations, each of the size of a ligand
molecule, and keeping track of the locations of thégand molecules. The mi-
crostates of the system consist of all possible locations of the ligand maecule
including those in which one of the ligand molecules is bound to the receptor
molecule.

To compute the probability that the ligand is bound to the receptor, we must
compute the energy associated with each possible microstate and then corapute th
weighted sum of the microstates corresponding to the ligand being boumaglro
ized by the partition function. We |5, represent the free energy associated with
a ligand in free solution an&young represent the free energy associated with the
ligand being bound to the receptor. Thus, the energy associated with tateom
which the ligand is not bound to the receptor is given by

AGsol = I—Esol

and the energy associated with microstates in which one ligand is bound to the
receptor is given by
AGpound= (L — 1)Esol+ Epound
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Figure 4.1: Statistical physics description of ligandeggtor binding. The cell is modeled
as a compartment witf sites, one of which contains a receptor protein. Ligand moés
can occupy any of the sites (first column) and we can compuweGibbs free energy
associated with each configuration (second column). Thierfive represents all possible
microstates in which the receptor protein is not bound, evttile second represents all
configurations in which one of the ligands binds to the reme@y accounting for the
multiplicity of each microstate (third column), we can camg the weight of the given
collection of microstates (fourth column). Figure from IRps, Kondev and Theriotg9).

Next, we compute the number of possible ways in which each of these two
situations can occur. For the unbound ligand, we Haweolecules that can be in
any one ofQ locations, and hence the total number of combinations is given by

Q) Ql (o

N = = X —
sol (L Q-0 L

where the final approximation is valid in the case wheg Q. Similarly, the num-
ber of microstates in which the ligand is bound to the receptor is

Q Q! Q-1
L—l) TL-D(Q-L+D) (L-D)

Nsol = (

Using these two counts, the partition function for the system is given by

QL _ LEgq QL_l _ (L=DEso1+Epound
Zx~-—e 8T + e ka1
LI (L-1)!

Finally, we can compute the steady state probability that the ligand is bound by
computing the ratio of the weights for the desired states divided by the partition

I SzL 1 G 1)Esol Ebound
— e

Pbound= 7 me 8
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While the previous example was carried out for the special case of a ligand
molecule binding to a receptor protein, in fact this same type of computation can
be used to compute the probability that a transcription factor is attached toea piec
of DNA or that two freely moving molecules bind to each other. Each of thesesc
simply comes down to enumerating all possible microstates, computing the energy
associated with each, and then computing the ratio of the sum of the weights for
the desired states to the complete partition function.

Example 4.2(Transcription factor binding)Suppose that we have a transcription
factor R that binds to a specific target region on a DNA strand (such gxrthe
moter region upstream of a gene). We wish to find the probalilitynqthat the
transcription factor will be bound to this location as a function of the number of
transcription factor moleculess in the system. If the transcription factor is a re-
pressor, for example, knowir,oundnr) will allow us to calculate the likelihood

of transcription occurring.

To compute the probability of binding, we assume that the transcription factor
can bind non-specifically to other sections of the DNA (or other locationsen th
cell) and we letN,s represent the number of such sites. WeHg§ung represent
the free energy associated with R bound to its specified target regioBanelp-
resent the free energy fétin any other non-specific location, where we assume
that E;extbound< Ens. The microstates of the system consist of all possible as-
signments of thag transcription factors to either a non-specific location or the
target region of the DNA. Since there is only one target site, there cahrhest
one transcription factor attached there and hence we must count all wafsein
which either zero or one molecule of R are attached to the target site.

If none of theng copies of R are bound to the target region then these must be
distributed between thays non-specific locations. Each bound protein has energy
Ens, SO the total energy for any such configuratiomggEns. The number of such
combinations is(ﬂ;S) and so the contribution to the partition function from these
microstates is

7 Nns g "REns/(kaT) _ Nis! g MREns/(keT)
ns NR NR!(Nns—NR)!

For the microstates in which one molecule of R is bound at a target site and the
otherng — 1 molecules are at the non-specific locations, we have a total energy of
Epound+ (NR — 1)Ens and((n';'”_sl)) possible such states. The resulting contribution to

the partition function is

Ning! o (Evound-("r-1)Eng)/(keT)

Zbound=

The probability that the target site is occupied is now computed by looking at
the ratio of theZpoungto Z = Zns+ Zpound After some basic algebraic manipulations,
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it can be shown that

(ﬁﬁwl) eXP—(Enound+ Ens)/(ksT)]

PooundNR) = .
1+ (ﬁﬁ,ﬁl) exXp{—(Ebound+ Ens)/(ksT)]

If we assume thall,s > ng, then we can write

1
ns

R
1+ knR
As we would expect, this says that for very small numbers of repreSBgiisd
is close to zero, while for large numbers of repressBgsung— 1. The point at
which we get a binding probability of 0.5 is wher = 1/k, which depends on the
relative binding energies and the number of non-specific binding sites. V

Chemical Master Equation (CME)

The statistical physics model we have just considered gives a descrigtibe
steady statgroperties of the system. In many cases, it is clear that the system
reaches this steady state quickly and hence we can reason about éh@beh

the system just by modeling the free energy of the system. In other situations,
however, we care about the transient behavior of a system or theniysaf a
system that does not have an equilibrium configuration. In these instameenust
extend our formulation to keep track of how quickly the system transitioma fro
one microstate to another, known as ghemical kinetic®f the system.

To model these dynamics, we return to our enumeration of all possible mi-
crostates of the system. LE(q,t) represent the probability that the system is in
microstateq at a given time. Hereq can be any of the very large number of pos-
sible microstates for the system. We wish to write an explicit expression for how
P(q,t) varies as a function of time, from which we can study the stochastic dynam-
ics of the system.

We begin by assuming we have a setMfreactions R j=1,...,M, with
¢ representing the change in state associated with reac}ionTﬁe propensity
functiondefines the probability that a given reaction occurs infd@antly small
time stepdt:

aj(g,t)dt = Probability that reaction J.F!Nill occur between time
and timet + dt given thatX(t) = g.

The linear dependence att relies on the fact thalt is chosen sfiiciently small.
We will typically assume thaa; does not depend on the timend writea;(g)dt
for the probability that reactiofjoccurs in state.



4.1. STOCHASTIC MODELING OF BIOCHEMICAL SYSTEMS 4-7

Using the propensity function, we can compute the distribution of states at time
t+ dt given the distribution at time

M M
P(qt+dt| do,to) = P(a,t | do, to)(1— > aj(@dt)+ »_ P(q-£ | do, to)aj(q - &)dlt
j=1 j=1

M
= P(q,t] o, o) + Z(aj (@-¢&))P(q—£j,t| do,to) —aj(Q)P(q.t | QO,to))dt-

j=1
(4.3)
Sincedtis small, we can take the limit @& — 0 and we obtain thehemical master
equation(CME):

M
é;—lj(q,t | do, to) = Z(aj (@-£)P(a-£j,t qo.to) ~aj(@P(@ t I do.to))  (4.4)

=1

This equation is also referred to as foeward Kolmogorov equatiofor a discrete
state, continuous time random process.

We will sometimes find it convenient to use a slightlffdirent notation in which
we leté represent any transition in the system state (without enumerating the reac-
tions). In this case, we write the propensity functiora@s q,t), which represents
the incremental probability that we will transition from stgtt® stateq+ £ at time
t. When the propensities are not explicitly dependent on time, we simply write
a(¢; ). In this notation, the chemical master equation becomes

oP
57 (@1 do.to) = ;(a(f; 0-£)P(A—&j,t] do,to) — & PGt o, o)), (4.5)

where the sum is understood to be over all allowable transitions.
Under some additional assumptions, we can rewrite the master equation in dif-
ferential form as

Py = DaEia-0ra-E0-Yacaran. (0

where we have dropped the dependence on the initial condition for natbtion-
venience. We see that the master equatiorireear differential equation with state
P(g,t). However, it is important to note that the size of the state vector can be very
large: we must keep track of the probability of every possible microstateeof th
system. For example, in the case of the ligand-receptor problem discemsdied,

this has a factorial number of states based on the number of possible sites in th
model. Hence, even for very simple systems, the master equation cannatlyypic
be solved either analytically or in a numericalljieient fashion.
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Despite its complexity, the master equation does capture many of the important
details of the chemical physics of the system and we shall use it as ouréjpisae
sentation of the underlying dynamics. As we shall see, starting from thatiequ
we can then derive a variety of alternative approximations that allow usstwean
specific equations of interest.

The key element of the master equation is the propensity funeii&nm,t),
which governs the rate of transition between microstates. Although the detailed
value of the propensity function can be quite complex, its functional fornténo
relatively simple. In particular, for a unimolecular reactivof the form A— B,
the propensity function is proportional to the number of molecules of A theat ar
present:

a(é;q,t) = cena. 4.7)

This follows from the fact that each reaction is independent and herdékéti-
hood of a reaction happening depends directly on the number of copfeshaft
are present.

Similarly, for a bimolecular reaction, we have that the likelihood of a reaction
occurring is proportional to the product of the number of molecules df égme
that are present (since this is the number of independent reactionsithatcur).
Hence, for a reactio# of the form A+ B — C we have

a(&;q,t) = c:nang. (4.8)

The rigorous verification of this functional form is beyond the scopeisftéxt, but
roughly we keep track of the likelihood of a single reaction occurring betwe
and B and then multiply by the total number of combinations of the two molecules
that can reactrx - ng).

A special case of a bimolecular reaction occurs whenBj\ so that our reaction
is given by 2 A— B. In this case we must take into account that a molecule cannot
react with itself, and so the propensity function is of the form

a(é;q,t) = ccna(na—1). (4.9)

Although it is tempting to extend this formula to the case of more than two
species being involved in a reaction, usually such reactions actually ingotve
binations of bimolecular reactions, e.g.:

A+B+C—D = A+B—AB AB+C—D

This more detailed description reflects that fact that it is extremely unlikely that
three molecules will all come together at precisely the same instant, versus the
much more likely possibility that two molecules will initially react, followed be a
second reaction involving the third molecule.

The propensity functions for these cases and some others are giveléd L
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Table 4.1: Examples of propensity functions for some comoases 30]. Here we take
andrp to be the &ective radii of the moleculesy® = mymy/(my + my) is the reduced mass
of the two molecules is the volume over which the reaction occurds temperaturesg

is Boltzmann’s constant ang, n, are the numbers of molecules AfandB present.

Reaction type Propensity function cdicient,c,
. ) 172
Reaction occurs if molecules “touch” Q‘l(ik—r‘fg) ! a(ra+rp)?

. . o 12
Reaction occurs if molecules collide with energy Q~*(2eT) P p(ratrp)2-ee/keT
Steady state transcription factor PboundkocNrRNAP

Example 4.3(Transcription of mMRNA) Consider the production of mMRNA from
a single copy of DNA. We have two basic reactions that can occur: mMRMA ca
be produced by RNA polymerase transcribing the DNA and producing adAnR
strand, or mRNA can be degraded. We represent the micraptdtdhe system in
terms of the number of MRNA's that are present, which we writa 8 ease of
notation. The reactions can now be representefi-as-1, corresponding to tran-
scription and¢ = —1, corresponding to degradation. We choose as our propensity
functions

a(+1;nt) = «, a(-1;n,t) =yn,

by which we mean that the probability of that a gene is transcribed indinserdt
and the probability that a transcript in tindéis yndt (proportional to the number
of MRNA).

We can now write down the master equation as described above. Equa8pn (
becomes

P(t+d) =PM(1- > aEnd)+ > Ph-£vaEq-£dt
&=+1,-1 &=+1-1
= P(n,t) —a(+1;n,t)P(n,t) —a(-1;n,t)P(n,t)
+a(+L,n-1Lt)P(n-Lt)+a(-1L;n+ Lt)P(n+1)
= P(n,t) + aP(n-1,t)dt— (@ — yn)P(n,t)dt+y(n+ 1)P(n+ 1,t)dt.
This formula holds fon > 0, with then = 0 case satisfying
P(0,t+dt) = P(O,t) — aP(0,t)dt+ yP(1, t)dt.

Notice that we have an infinite number of equations, simcan be any positive
integer.

We can write the dferential equation version of the master equation by sub-
tracting the first term on the right hand side and dividingltly

dEtP(n, t) = aP(n—-1,t) — (@ + yn)P(n,t) + y(n+ 1)P(n+ 1,t), n>0

dEtP(O, t) = —aP(0, t)dt+yP(1,1).
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Again, this is an infinite number of filerential equations, although we could take
some limitN and simply declare th&(N,t) = 0 to yield a finite number.

One simple type of analysis that can be done on this equation without truncating
it to a finite number is to look for a steady state solution to the equation. In this
case, we se®(n,t) = 0 and look for a constant solutid®(n,t) = pe(n). This yields
an algebraic set of relations

0= —ape(0)+ype(1) = ape(0)=ype(1)
0= ape(0) - (a+7¥)pe(1) + 2y pe(2) ape(1) = 2ype(2)
0= ape(1) - (a+ 2y)pe(2) + 3y pe(3) ape(1) = 3ype(3)

ap(n—1) =nyp(n).

It follows that the distribution of steady state probabilities is given by the Boiss

distribution (@/y)"
_ ey \ &Y
p(n) = &7

and the mean, variance and fiogent of variation are thus

>

lJ:

Chemical Langevin equation (CLE)

The chemical master equation gives a complete description of the evolutioa of th
distribution of a system, but it can often be quite cumbersome to work with directly
A number of approximations to the master equation are thus used to provide more
tractable formulations of the dynamics. The first of these that we shalldemoris
known as thehemical Langevin equatiqiCLE).

To derive the chemical Langevin equation, we start by assuming that theenumb
of species in the system is large and that we can therefore represeysteen
using a vector of real numbeb§, with X; representing the (real-valued) number
of molecules in § (Often X; will be divided by the volume to give a real-valued
concentration of species.pIn addition, we assume that we are interested in the
dynamics on time scales in which individual reactions are not important and so
we can look at how the system state changes over time intervals in which many
reactions occur and hence the system state evolves in a smooth fashion.

Let X(t) be the state vector for the system, where we assume now that the ele-
ments ofX are real-valued rather than integer valued. We make the further approx-
imation that we can lump together multiple reactions so that instead of keeping
track of the individual reactions, we can average across a numbeactiaons over
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a timer to allow the continuous state to evolve in continuous time. The resulting
dynamics can be described by a stochastic process of the form

M M
Xi(t+7) = X0+ > &iai(XO)r+ > &ja2(XOIN (0, V7,
j=1 j=1

wherea; are the propensity functions for the individual reactiafisare the corre-
sponding changes in the system staeand Nj are a set of independent Gaussian
random variables with zero mean and variance
If we assume that is small enough that we can use the derivative to approxi-

mate the previous equation (but still large enough that we can averagmoliple
reactions), then we can write

dX() < S 1/2 . <

Tt = 20O GO0 = AXO)+ ), BXOI0.

J J J (4.10)

wherel'; are white noise processes. This equation is calledltieenical Langevin
equation(CLE).

Example 4.4(Protein production)Consider a simplified model of protein produc-
tion in which mRNAs are produced by transcription and proteins by translation
We also include degradation of both mRNAs and proteins, but we do notlitihede
detailed processes of elongation of the mRNA and polypeptide chains.

We can capture the state of the system by keeping track of the numberie$ cop
of mMRNA and proteins. We further approximate this by assuming that the number
of each of these is sficiently large that we can keep track of its concentration,
and henceX = (nm,np) whereny, € R is the amount of mMRNA and, € R is the
concentration of protein. Lettin@ represent the volume, the reactions that govern
the dynamics of the system are given by:

Ri: ¢ — mRNA & =(1,0) a1(X) = a/Q
Ro: MRNA L ¢ &£=(-1,0) a(X)=y/Qnny
Rs: MRNAS mRNA<protein ~ &=(0,1)  as(X) = B/Q N

Ry: proteini é & =(0,-1) ay(X) =/Qnp.
Substituting these expressions into equatibri @, we obtain a stochastic fier-

ential equation of the form

d (M) (7@ 0 (M| [0/, (Va7Q+ \ynm/Q) T

dt{np) [ B/Q -6/Q) |np 0 (VBNm/Q+ fone/Q) Ty’
wherel'y, andI'p are independent white noise processes with unit variance. (Note

that in deriving this equation we have used the fact that the sum of twoendept
Gaussian processes is a Gaussian process.) \%
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Fokker-Planck equations (FPE)

The chemical Langevin equation provides a stochastic ordindigretial equa-
tion that describes the evolution of the system state. A slighffermdint (but com-
pletely equivalent) representation of the dynamics is to model how the pkobab
ity distribution P(q,t) evolves in time. As in the case of the chemical Langevin
equation, we will assume that the system state is continuous and write down a
formula for the evolution of the density functigo(x,t). This formula is known
as theFokker-Planck equationdPE) and is essentially an approximation on the
chemical master equation.

Consider first the case of a random process in one dimension. We astme
the random process is in the same form as the previous section:

% = A(X(t)) + B(X(t))I'(t). (4.11)
The functionA(X) is called thedrift term and B(X) is thediffusion term It can be
shown that the probability density function f&r p(x,t | Xo, o), satisfies the partial
differential equation

1 62

TP (Xt H0.t0) =~ 2 (A OPOX L1 X0, 1)) + 5 25 (BAX PO 30.t0) (4.12)

Note that here we have shifted to the probability density function since we are
consideringX to be a continuous state random process.

In the multivariate case, a bit more care is required. Using the chemica¢izeing
equation 4.10, we define

M M
Di(xt)= ) Bi(xD.  Cij(x= ) Biu(xBi(x1.i<j=1...M.
j=1 k=1

The Fokker-Planck equation now becomes

d S
FO0.10) == D A GOPOX b))

1h 8 &
"3 ; ax% 2 DI DRt X0, o))
M 62
. '21 a%0%; (Cij (X P(X.t | Xo. to)).
I,]=

i<

(4.13)
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Linear noise approximation (LNA)

The chemical Langevin equation and the Fokker-Planck equation prapji®x-
imations to the chemical master equation. A slightlffatient approximation can
be obtained by expanding the density function in terms of a size parafhetdis
approximation is know as thHeear noise approximatiofLNA) or the Q expan-
sion[44)].

We begin with a master equation for a continuous random varkbidich we
take to be of the form

k0= [ (@a(Ex-px-£0 - an(EPx D) e

where we have dropped the dependence on the initial condition for natbsiom
plicity. As before, the propensity functican, (¢; X) represents the transition prob-
ability between a statg and a statex+ & and we assume that it is a function of
a parametef that represents the size of the system (typically the volume). Since
we are working with continuous variables, we now have an integral in jpliacer
previous sum.

We assume that the meanXtan be written a®¢(t) whereg(t) is a continuous
function of time that represents the evolution of the meak 2. To understand
the fluctuations of the system about this mean, we write

X =Qp+Q1Z,

whereZ is a new variable representing the perturbations of the system about its
mean. We can write the distribution fdras

Pz(z.t) = Px(Qa(t) + Q22 1)

and it follows that the derivatives @fz can be written as

anZ =Q%Vavpx

il XY

opz _dpx  ~dpdpx dpx = 1dpdpz
ot ot +th ox ot +det oz’

We further assume that tiie dependence of the propensity function is such that

an(¢.Q9) = F(Q)a(¢; ¢).

whered’is not dependent of2. From these relations, we can now derive the master
equation forpz in terms of powers of2 (derivation omitted).
The Q2 term in the expansion turns out to yield

d
%= [eaconce  wo=-T3,
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which is precisely the equation for the mean of the concentration. It ctirefuve
shown that the terms i2° are given by

. 2
L G ROV LN VR

where

av(X) = f £aExde, =0

Notice that in the case thai(t) = ¢o, this equation becomes the Fokker-Planck
equation derived previously.

Higher order approximations to this equation can also be carried out pynkee
track of the expansion terms in higher order powergofn the case wher€
represents the volume of the system, the next term in the expangion &nd this
represents fluctuations that are on the order of a single molecule, wiictsaally
be ignored.

Rate reaction equations (RRE)

As we already saw in Chapt&rthe reaction rate equations can be used to describe
the dynamics of a chemical system in the case where there are a large rafmber
molecules whose state can be approximated using just the concentratiomes of th
molecules. We re-derive the results from Secthhere, being more careful to
point out what approximations are being made.

We start with the chemical Langevin equatioAslQ), from which we can write
the dynamics for the average quantity of the each species at each point:in time

doG(M) <
Ot =jz:;§ji<aj(x(t))>,

where the second order term drops out under the assumption thiatstee in-
dependent processes. We see that the reaction rate equations follbsviting

X = (X)/Q andassuminghat(a;(X(t))) = a;((X(t))). This relationship is true when

a; is linear (e.g., in the case of a unimolecular reaction), but is an approximation
otherwise.
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4.2 Simulation of Stochastic sections

4.3 Analysis of Stochastic Systems

4.4 Linearized Modeling and Analysis

4.5 Markov chain modeling and analysis

4.6 System identification techniques

4.7 Model Reduction

Exercises

4.1 Consider gene expressio;n:i m, mi m+P, m> ¢, and SN ¢. Answer the
following questions:

(a) Use the stochastic simulation algorithm (SSA) to obtain realizations of the
stochastic process of gene expression and numerically compare witheneice

istic ODE solution. Explore how the realizations become close to or aparttfrem
ODE solution when the volume is changed. Determine the stationary probability
distribution for the protein (you can do this numerically, but note that thisga®s
linear, so you can compute the probability distribution analytically in closed form)

(b) Now consider the additional binding reaction of protein P with downstrea

- . Kon .
DNA binding sites D: B-D == C. Note that the system no longer linear due to
Kot f

the presence of a bi-molecular reaction. Use the SSA algorithm to obtain sample
realizations and numerically compute the probability distribution of the protein and
compare it to what you obtained in part (a). Explore how this probabilityidistr

tion and the one of C change as the rdtgsandk,s; become larger and larger
with respect ta, k,3,y. Do you think we can use a QSS approximation similar to
what we have done for ODE models?

(c) Determine the Langevin equation for the system in part (b) and obtaiplea
realizations. Explore numerically how good this approximation is when the volume
decreaségmicreases.
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Chapter 5

Feedback Examples
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Figure 5.1: Schematic diagram for tlee system.

5.1 The lac Operon
Modeling

The lac operon is one of the most studied regulatory networks in molecular bi-
ology. Its function is to determine when the cell should produce the proteihs a
enzymes necessary to import and metabolize lactose from its externalreneint
Since glucose is a mordfeient source of carbon, the lactose machinery is not pro-
duced unless lactose is present and glucose is not presentacltmentrol system
implements this computation.

In constructing a model for tHac system, we need to decide what questions we
wish to answer. Here we will attempt to develop a model that allows us to under-
stand what levels of lactose are required forldesystem to become active in the
absence of glucose. We will focus on the so-called “bi-stability” oflfteoperon:
there are two steady operating conditions—at low lactose levels the machinery
is off and at high lactose levels the machinery is on. The system has hysteresis,
S0 once the operon is actived, it remains active even if the lactose ¢oato@m
descreases. We will construct afdrential equation model of the system, with
various simplifying assumptions along the way.

A schematic diagram of thlac control system is shown in Figutel Starting
at the bottom of the figure, lactose permease is an integral membrane protein tha
helps transport lactose into the cell. Once in the cell, lactose is convertediézallo
tose, and allolactose is then broken down into glucose and galactose,itiothev
assistance of the enzyrgegalactosidases¢gal for short). From here, the glucose
is processed using the usual glucose metabolic pathway and the galactose.

The control circuitry is implemented via the reactions and transcriptional reg-
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ulation shown in the top portion of the diagram. Tiae operon, consisting of the
genedacZ (coding forg-gal),lacY (coding for lactose permease) dadA (coding

for a transacetylase), has a combinatorial promoter. Normally, lac sepréecl)

is present and the operon iff.oThe activator for the operon is CAP, which has
a positive inducer cAMP. The concentration of CAMP is controlled by gdaco
when glucose is present, there is very little CAMP available in the cell (ancehen
CAP is not active).

The bistable switching behavior in thee control system is implemented with a
feedback circuit involving théac repressor. Allolactose bindac repressor and so
when lactose is being metabolized, then the repressor is sequesteredanycai
and thelac operon is no longer repressed.

To model this circuit, we need to write down the dynamics of all of the reac-
tions and protein production for the circuitry shown in Figbrgé We will denote
the concentration of thg-gal mMRNA and protein asy, and B. We assume that
the internal concentration of lactose is givenlhyignoring the dynamics of lac-
tose permease and transport of lactose into the cell. Similarly, we assumeethat th
concentration of repressor protein, dend® s constant.

We start by keeping track of the concentration of free allolacfoS3éne relevant
reactions are given by the transport of lactose into the cell, the conmerdiactose
into allolactose and then into glucose and lactose and finally the sequestiation o
repressoR by allolactose:

L°*+P=L%P==L+P Transport
L+B==L:B— A+B Conversion
A+B=AB — Glu+Gal+B Conversion
A+R=A:R Sequestration
We see that the dynamics involve a number of enzymatic reactions and hence w

can use Michaelis-Menten kinetics to model the response at a slightly reléweéd
of detail. The diferential equation for the internal lactose concentratitwecomes

dL Le L
— =q eP————apB— - B
at - TR e T PR AL A PR AL

—6L, (5.1)

where the first two terms arise from the transport of lactose into and ol akll,

the third term is the conversion of lactose to allolactose and the final term is due to
degradation and dilution. Similarly, the dynamics for the allolactose concentration
can be modeled as

dA L A
—=aa B —apgB——— + KL [AR] — K G[AIIR] — 0 AA.
gr = AL Ko L @AB KA+A+ ARIAR] —Kag[A][R] =6

The dynamics of the production gfgal and lactose permease are given by
the transcription and translational dynamics of protein production. Thesesg
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are both part of the same operon (along wahA) and hence the use a single
MRNA strand for translation. To determine the production rate of mMRNA, we nee
to determine the amount of repression that is present as a function of theeofio
repressor, which in turn depends on the amount of allolactose that Bnpr&ge
make the simplifying assumption that the sequestration reaction is fast, so that it is
in equilibrium and hence

[AR] =kar[Al[R],  Kar = Kir/Kig-

We also assume that the total repressor concentration is constantgwadnatches
degradation and dilution). LettinBr = [R] + [A:R] represent the total repressor
concentration, we can write

Ry

RI=Rr-kalARl = [Rl=

(5.2)

The simplification that the sequestration reaction is in equilibrium also simplifies
the reaction dynamics for allolactose, which becomes

dA L

A
2 oALB —anB _SAA. 5.3
dt = PR+ L PPKaeA A (5.3)

We next need to compute th&ect of the repressor on the productiongegal
and lactose permease. It will be useful to express the promoter state inderms
the allolactose concentratighrather tharR, using equation.2). We model this
using a Hill function of the form

ar  ar(l+KarA)"
Kr+R"  Kgr(1l+KarA)"+Rr

Fea(A) =

Letting M represent the concentration of the (common) mRNA, the resulting form
of the protein production dynamics becomes

amM _
EZ HMEBA(A(t—Tm)) —ymM,

‘c’j_'? = B P M(t - ) — 5B, (5.4)
dP

gt = Bpe MM PIM(t— Ty — ) — GpP.

This model includes the degradation and dilution of mRN#y); the transcrip-
tional delayss-gal mRNA (ry), the degradation and dilution of the proteidg,(
6p) and the delays in the translation and folding of the final proteigsp).
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Table 5.1: Parameter values tac dynamics (from ).

Parameter Value Description
n 3.03x102mint  dilution rate
awm 997 nMmirtt production rate oB-gal mMRNA
Bs 1.66x102mint  production rate oB-galactosidase
Bp 2?22 mint production rate of lactose permease
an 1.76x 10* min't production rate of allolactose
™ 0.411 mint degradation and dilution gi-gal mMRNA
s 8.33x10“*min!  degradation and dilution ¢gf-gal
op 2?2 mint degradation and dilution of lactose permease
SA 1.35x 1072 mint degradation and dilution of allolactose
n 2 Hill coefficient for repressor
K 7200
K1 2.52x 1072 (uM)~?
KL 0.97uM
Ka 1.95uM
Ba 2.15x 10* mint
™ 0.10 min
™ 2.00 min

Bifurcation analysis
Sensitivity analysis

Consider the model of thiac operon introduced in Sectid??. For the gendacZ
(which encodes the protejgrgalactosidase), we & represent the protein con-
centration andvl represent the mRNA concentration. We also consider the con-
centration of the lactosk inside the cell, which we will treat as an external input,
and the concentration of allolactoge,Assuming that the time delays considered
previously can be ignored, the dynamics in terms of these variables are

dM 1+kA"

A Fea(A0) —yM Faa(A 6) = apgo—

gr = FealA0) - 7M. BA(A.6) WG ey

dB L

— =M -06gB FaL(L,0) =apn—— 5.5
gr —PeM-deB, AL(L.6) A D (5.5)
dA A

ddt BFAL(L,0) - BFAA(A.0) —vaA, Faa(A6) =B

k/_\+A.

Here the state is = (M, B, A) € R, the input isw = L € R and the parameters are
0= (aB,BB, @A, YB,0B, YA, N, K K1, K, Ka,Ba) € R12. The values for the parameters are
listed in Table??.

We investigate the dynamics around one of the equilibrium points, corrdspon
ing to an intermediate input df = 40uM. There are three equilibrium points at
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this value of the input:
X1.e=(0.0003930.0002103.17), X2.e=(0.003280.0017419.4), x3e=(0.01420.0075842.1).

We choose the third equilibrium point, corresponding to the lactose metabolic ma-
chinery being activitated and study the sensitivity of the steady state doatbems
of allolactose Q) andg-galactosidaseR) to changes in the parameter values.

The dynamics of the system can be represented in thexerm(x, 6, L) with

Fea(A)—yeM —uM
f(x,0,L) = LM —-o6gB—uB .
FaL(L)B—Faa(A)B-0aA-uA

To compute the sensitivity with respect to the parameters, we compute tha-deriv
tives of f with respect to the state

JF
PP et 0 R
ox | Ps —0B—U 0
0 Fa—Fan -BZ2

and the parametets

of

oF oF oF
%=(FBAOO—M006—?‘6—EAW‘?OOO).

Carrying out the relevant computations and evaluating the resulting siqmesu-
merically, we obtain

ﬁ[Be] [—1.21 00243 -3.35x10% 0935 146 ... 0.001lj

96 \Ae) ~ |-2720 477 —-0.00656 1830 2860 ... 3.27

We can also normalize the sensitivity computation:

= _axe/xe_ 1 1
o= S D ()SD ™)

which yields

S - -485 32 -318 311 32 63 -605 -41 402 605
Y6~ 1-1.96 113 -1.12 11 113 324 -311 -211 207 311

where
9=(,U av K Ki B aa KL Ba Ka L)'

We see from this computation that increasing the growth rate decreaseglilite e
rium concentation oB andA, while increasing the lactose concentration by 2-fold
increases the equilibriugrgal concentration 12-fold (6X) and the allolactose con-
centration by 6-fold (3X).
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5.2 Heat Shock Response in Bacteria
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5.3 Bacteriophage 4

Bacteriophaga (also calledl phage or phagsg) is a virus that infect&. coliand
propogates itself by integrating its DNA into the genome of the infected cell. The
virus includes a decision “switch” that determines whether the virus shauold p
pogate itself by DNA integration (thgsogenigohase) or whether it should destroy
the host cell and spread to other nearby bacteridytieephase). In this section we
describe what is known about the modeling of the |§ys®geny decision-making
circuitry and explore some of the properties of its dynamics.

The material in this section is based on the work of Ptaskdg Arkin et
al. [5] and St. Pierre et al.7@]. The models used to create the plots in this section
are available on the companion web site for the text.

Phage A lifecycle

A detailed model for A
Reduced order models for A
Dynamic analysis

Open issues
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. /fbkexamps/figures/lambda-growth.eps

Figure 5.2: Growth cycle of phage From Ptashne.
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./fbkexamps/figures/lambda-detail.eps

Figure 5.3: A detailed circuit diagram for thedecision-making circuit. From Arkin, Ross
and McAdams (1998).
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Figure 5.4: Simulation results using the detailed model.
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attractant repellent
- increasing decreasing
concentration concentration
NO ATTRACTANT POSITIVE NEGATIVE
OR REPELLENT CHEMOTAXIS CHEMOTAXIS

Figure 4.16d Physical Biology of the Cell (© Garland Science 2009)

Figure 5.5: Examples of chemotaxis. Figure from Phillipendev and Theriotd9]; used
with permission of Garland Science.

5.4 Bacterial Chemotaxis

Chemotaxigefers to the process by which micro-organisms move in response to
chemical stimuli. Examples of chemotaxis include the ability of organisms to move
in the direction of nutrients or move away from toxins in the environment. Chemo-
taxis is calledpositive chemotaxig the motion is in the direction of the stimulus
andnegative chemotaxigthe motion is away from the stimulant, as shown in Fig-
ure5.5. Many chemotaxis mechanisms are stochastic in nature, with biased random
motions causing the average behavior to be either positive, negativeitoaln@n
the absence of stimuli).

In this section we look in some detail at bacterial chemotaxis, whiatoli use
to move in the direction of increasing nutrients. The material in this section islbase
primarily on the work of Barkai and Leibled )] and Rao, Kirby and Arkin§2].

Control system overview

The chemotaxis system iB. coli consists of a sensing system that detects the
presence of nutrients, and actuation system that propels the organisnemviits
ronment, and control circuitry that determines how the cell should move in the
presence of chemicals that stimulate the sensing system. The approximatalocatio
of these elements are shown in Fig@fe

The actuation system in th& coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown
in Figure5.6a When the flagella all spin in the counter clockwise direction, the
individual flagella form a bundle and cause the organism to move roughdy in
straight line. This behavior is called a “run” motion. Alternatively, if the fléae
spin in the clockwise direction, the individual flagella do not form a bundbkthe
organism “tumbles”, causing it to rotate (Figuséh). The selection of the motor
direction is controlled by the protein CheY: if phosphorylated CheY bindséo th
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Figure 5.6: Bacterial chemotaxis. Figures from Phillipgnidev and Theriotq9]; used
with permission of Garland Science.

Figure 4.16¢ Physical Biology of the Cell (0 Garland Science 2009)

motor complex, the motor spins clockwise (tumble), otherwise it spins counter-
clockwise (run).

Because of the size of the organism, it is not possible for a bacterium $e sen
gradients across its length. Hence, a more sophisticated strategy is uaéa;hn
the organism undergoes a combination of run and tumble motions. The basic ide
is illustrated in Figuré.6¢ when high concentration of ligand (nutrient) is present,
the CheY protein is left unphosphorylated and does not bind to the actueation
plex, resulting in a counter-clockwise rotation of the flagellar motor (ruon-C
versely, if the ligand is present then the molecular machinery of the celesaus
CheY to be phosphorylated and this modifies the flagellar motor dynamics so that
clockwise rotation occurs (tumble). The néfieet of this combination of behaviors
is that when the organism is traveling through regions of higher nutriettere
tration, it continues to move in a straight line for a longer period before tumbling
causing it to move in directions of increasing nutrient concentration.

A simple model for the molecular control system that regulates chemotaxis is
shown in Figuré.7. We start with the basic sensing and and actuation mechanisms.
A membrane bound protein MCP (methyl-accepting chemotaxis protein) that is
capable of binding to the external ligand serves as a signal transdueimgre
from the cell exterior to the cytoplasm. Two other proteins, CheW and Cloer,

a complex with MCP. This complex can either be in an active or inactive state. In
the active state, CheA is autophosphorylated and serves as a phaspfertise
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Figure 5.7: Control system for chemotaxis. Figure from Real.[62] (Figure 1A).

for two additional proteins, CheB and CheY. The phosphorylated fdr@heY
then binds to the motor complex, causing clockwise rotation of the motor.

The activity of the receptor complex is governed by two primary factors: the
binding of a ligand molecule to the MCP protein and the presence or absence o
up to 4 methyl groups on the MCP protein. The specific dependence broéac
these factors is somewhat complicated. Roughly speaking, when the ligend
bound to the receptor then the complex is less likely to be active. Furthera®ore,
more methyl groups are present, the ligand binding probability incredkesira
the gain of the sensor to be adjusted through methylation. Finally, even inthe ab
sence of ligand the receptor complex can be active, with the probabilityaisioge
with increased methylation. Figu&8 summarizes the possible states, their free
energies and the probability of activity.

Several other elements are contained in the chemotaxis control circuit. T¥te mo
important of these are implemented by the proteins CheR and CheB, both &f whic
affect the receptor complex. CheR, which is constitutively produced in the cell,
methylates the receptor complex at one of the foffedént methylation sites. Con-
versely, the phosphorylated form of CheB demethylates the receptor corigle
described above, the methylation patterns of the receptor comfiéet #s activ-
ity, which afects the phosphorylation of CheA and, in turn, phosphorylation of
CheY and CheB. The combination of CheA, CheB and the methylation of the re-
ceptor complex forms a negative feedback loop: if the receptor is attime CheA
phosphorylates CheB, which in turn demethylates the receptor complex,gntkin
less active. As we shall see when we investigate the detailed dynamics thétow,
feedback loop corresponds to a type of integral feedback law. Thigraitaction
allows the cell to adjust to ffierent levels of ligand concentration, so that the be-
havior of the system is invariant to the absolute nutrient levels.
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Figure 5.8: Receptor complex states. The probability ofv@ryistate being in an active
configuration is given by. Figure obtained from34].

Modeling

The detailed reactions that implement chemotaxis are illustrated in Fig@re
Letting T represent the receptor complex anfi fepresent an active form, the
basic reactions can be written as

TA+A=TAA — AP+ TA
AP+B=—AP.B— A+BP BP+P=—BP.P— B+P (5.6)
AP+Y = APY — A+YP YP+Z=YPZ—>Y+Z

where CheA, CheB, CheY and CheZ are written simply as A, B, Y and Z for
simplicity and P is a non-specific phosphatase. We see that these are basically
three linked sets of phosphorylation and dephosphorylation reactidthsCive A
serving as a phosphotransferase and P and CheZ serving as giasssh

The description of the methylation of the receptor complex is a bit more com-
plicated. Each receptor complex can have multiple methyl groups attachéideand
activity of the receptor complex depends on both the amount of methylation and
whether a ligand is attached to the receptor site. Furthermore, the bindibag-pro
bilities for the receptor also depend on the methylation pattern. To capturaéhis,
use the set of reactions that are illustrated in Fig&r&and5.9. In this diagram,
T represents a receptor that hiasethylation sites filled and ligand state s (which
can be either u if unoccupied or o if occupied). WeNetrepresent the maximum
number of methylation sited = 4 for E. coli).

Using this notation, the transitions between the states correspond to the reac-
tions shown in Figur®.10

TX+BP = TXBP — T*, +BP i>0
T*+R=TXR— T* +R i<M

TU4L =T



5.4. BACTERIAL CHEMOTAXIS 5.4-5

'*\@i‘_:i@—q Tom bl
)

Figure 5.9: Circuit diagram for chemotaxis.

We now must write reactions for each of the receptor complexes with Chezh E
form of the receptor complex has dférent activity level and so the most complete
description is to write a separate reaction for eaftaiid T" species:

f.o Kc,o
T'+A=TA — AP+T,

lﬁlﬂ,o
where xe {o,u} and i=0,...,M. This set of reactions replaces the placeholder
reaction ' + A = TA:A — AP+ T4 used earlier.

Approximate model

The detailed model described above iffisiently complicated that it can be dif-
ficult to analyze. In this section we develop a slightly simpler model that can be
used to explore the adaptation properties of the circuit, which happenlowers
time-scale.

./fbkexamps/figures/chemotaxis-methylation.eps

Figure 5.10: Methylation model for chemotaxis. Figure frBarkai and Leibler10] (Box
1). Note: the figure uses the notatiofi #r the receptor complex instead of.T
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L (uMm)

Figure 5.11: Probability of activity.

We begin by simplifying the representation of the receptor complex and its
methylation pattern. Lek(t) represent the ligand concentration ahdrepresent
the concentration of the receptor complex witsides methylated. If we assume
that the binding reaction of the ligand L to the complex is fast, we can write the
probability that a receptor complex wittsites methylated is in its active state as a
static function;(L), which we take to be of the form
Q’IOL a’iKL

+

(L) = .
aill) = T koL

The codficientse anda; capture the ffect of presence or absence of the ligand on
the activity level of the complex. Note that has the form of a Michaelis-Menten
function, reflecting our assumption that ligand binding is fast compared t@he
of the dynamics in the model. Following2], we take the cofcients to be

ap =0, a; =01, a» =0.5, az =0.75, as=1,
aj=0, aj=0, ay=0.1, a3=0.5, ag=1
and choos&| = 10uM. Figure5.11shows how each; varies withL.
The total concentration of active receptors can now be written in terms of the
receptor complex concentratiofis and the activity probabilitieg;(L). We write
the concentration of activated complef &nd inactivated complex'Tas

4 4
=Y aT. T'= ) A-aU)T.
i=0 =0

These formulas can now be used in our dynamics agtant&e concentration of
active or inactive receptors, justifying the notation that we used in equiién

We next model the transition between the methylation patterns on the receptor.
We assume that the rate of methylation depends on the activity of the receptor
complex, with active receptors less likely to be demethylated and inactivetoese
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less likely to be methylated®p, 54]. Let

BP R

s R= T, =
Kg+TA R = KT

re =ks

represent rates of the methylation and demethylation reactions. We chease th
efficients as

ke=0.5 Kg=55 kr=0.255 Kr=0.251

We can now write the methylation dynamics as

%Ti = rR(1-@is1(L))Ti—t + reaic1(L) Tiva — rr(1—ai(L)Ti - reai(L)T;,

where the first and second terms represent transitions into this state vidatiethy

or demethylation of neighboring states (see FigbuH) and the last two terms
represent transitions out of the current state by methylation and demethylatio
respectively. Note that the equations Ty and T4 are slightly diferent since the
demethylation and methylation reactions are not present, respectively.

Finally, we write the dynamics of the phosphorylation and dephosphorylation
reactions, and the binding of Ché&Yo the motor complex. Under the assumption
that the concentrations of the phosphorylated proteins are small relative timtal
protein concentrations, we can approximate the reaction dynamics as

d

A= 50TAA— 100APY — 30APB,

d

i7" = 100APY —0.1YP — 5[M] YP+ 19[M:Y *] - 30Y",

EBID = 30APB-BP,
dt
d
d—t[M:Y Pl = 5[M] YP - 19[M:Y P].
The total concentrations of the species are given by

A+AP=5nM, B+BP=2nM, Y+YP+[M:YP]=17.9nM
[M] +[M:Y P] =5.8 nM, R=0.2nM St oTi=5nM.

The reaction ca@cients and concentrations are taken from Rgal.[62].
Figure5.12ashows a the concentration of the phosphorylated proteins based on
a simulation of the model. Initially, all species are started in their unphosphedyla
and demethylated states. At tifie= 500 s the ligand concentration is increased to
L=10uM and at timeT = 1000 it is returned to zero. We see thatimmediately after
the ligand is added, the Ché\oncentration drops, allowing longer runs between
tumble motions. After a short period, however, the CR@¥ncentration adapts to
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Figure 5.12: Simulation and analysis of reduced-order dtaris model.

the higher concentration and the nominal run versus tumble behavior isesto
Similarly, after the ligand concentration is decreased the concentrationedfCh
increases, causing a larger fraction of tumbles (and subsequemgeshendirec-
tion). Again, adaptation over a longer time scale returns that CheY coatentr
to its nominal value.

Figure 5.12bhelps explain the adaptation response. We see that the average
amount of methylation of the receptor proteins increases when the ligaodrcon
tration is high, which decreases the activity of CheA (and hence desrd¢hs
phosphorylation of CheY).

Integral action

The perfect adaptation mechanism in the chemotaxis control circuitry haartie
function as the use of integral action in control system design: by includfagd-
back on the integral of the error, it is possible to provide exact cancellabio
constant disturbances. In this section we demonstrate that a simplified vefsion
the dynamics can indeed be regarded as integral action of an apprcigiadd
This interpretation was first pointed out by & al[76].

We begin by formulating an even simpler model for the system dynamics that
captures the basic features required to understand the integral aatoxrépre-
sent the receptor complex and assume that it is either methylated or not. We let X
represent the methylated state and we further assume that this methylatedrstate c
be activated, which we write as X This simplified description replaces the multi-
ple stated; and probabilitiesy;(L). We also ignore the additional phosphorylation
dynamics of CheY and simply take the activated receptor concentidij@s our
measure of overall activity.

Figure5.13shows the transitions between the various foKnas before, CheR
methylates the receptor and Che@emethylates it. We simplify the picture by only
allowing CheP’ to act on the active statexand CheR to act on the inactive state.
We take the ligand into account by assuming that the transition between the activ
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Figure 5.13: Reduced order model of receptor activity. @lethfrom [B], Figure 7.9.

form X, and the inactive form X depends on the ligand concentration: higher
ligand concentration will increase the rate of transition to the inactive state.

This model is a considerable simplification from the ligand binding model that
is illustrated in Figure®.8 and5.10Q In the previous models, there is some prob-
ability of activity with or without methylation and with or without ligand. In this
simplified model, we assume that only three states are of interest: demethylated,
methylateginactive and methylatgdctive. We also modify the way that that lig-
and binding is captured and instead of keeping track of all of the possibilities
Figure5.8, we assume that the ligand transitions us from an active stat®Xn
inactive X,,. These states and transitions are roughly consistent with flezetht
energy levels and probabilities in Figuse3, but it is clearly a much coarser model.

Accepting these approximations, the model illustrated in FigLt8results in
a set of chemical reactions of the form

X+R=XR— X, ,+R methylation
Xp+BP =X :BP — X+BP  demethylation

Xm T Xm activatiorideactivation

For simplicity we take both R and™Bto have constant concentration.
Approximating the first two reactions by their Michaelis-Menten forms and
assuming thak > 1, we can write the resulting dynamics for the system as

dEtXm = kgR+ k' (L)X — K Xm

d X

xR — p__™m . f * r
5 =—keB . kf(L)XE + K X,

We wish to use this model to understand how the steady state activityXgvel
depends on the ligand concentratiofwhich enters through the deactivation rate
kf(L)). Starting with the first equation, we see that at equilibrium we have

Xme = (Kr/K)R.
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To find X*

me» We note that at equilibrium

*

d X
= — * = — p—me

From this equation we can solve i, . as a function of the CheR concentration:

" er*nkRR
Xme = kgBP — kgR
Note that this solution does not dependidiiL) or k" and hence we see that the
steady state solution is independent of the ligand concentration.

To see the integral action more directly, we write the dynamics in terms of a
new variablez = X3, — Xj, .

Further reading
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5.5 Yeast mating response
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Design and Synthesis






Chapter 6

Biological Circuit Components

6.1 Biological Circuit Design

One of the fundamental building blocks employed in synthetic biology is the pro-
cess of transcriptional regulation, which is found in natural transcrigtioet-
works. A transcriptional network is composed of a number of genes paess
proteins that then act as transcription factors for other genes. Thatratgich a
gene is transcribed is controlled by th@moter a regulatory region of DNA that
precedes the gene. RNA polymerase binds a defined site (a specificdaparsce)

on the promoter. The quality of this site specifies the transcription rate of tie ge
(the sequence of the site determines the chemitialtyg of RNA polymerase to the
site). RNA polymerase acts on all of the genes. However, each tratiseripc-

tor modulates the transcription rate of a set of target genes. Transcriptitams
affect the transcription rate by binding specific sites on the promoter regior of th
regulated genes. When bound, they change the probability per unit timeNXiAat
polymerase binds the promoter region. Transcription factors tfiestdhe rate at
which RNA polymerase initiates transcription. A transcription factor can siet a
repressomwhen it prevents RNA polymerase from binding to the promoter site. A
transcription factor acts as activator if it facilitates the binding of RNA poly-
merase to the promoter. Such interactions can be generally represemedeas
connected by directed edges.

Synthetic bio-molecular circuits are typically fabricated in bacteria or yewgst, b
cutting and pasting together according to a desired sequence genearudgy
sites (natural and engineered). Since the expression of a gene isth@dentrol
of its upstream promoter region, we can create a desired circuit of tativend
repression interactions among genes by appropriate construction ofr&izns.
Early examples of such circuits include an activator-repressor systroah dis-
play toggle switch or clock behavio?], a loop oscillator called the repressilator
obtained by connecting three inverters in a ring topold},[a toggle switch ob-
tained connecting two inverters in a ring fashi@7]| and an autorepressed circuit
[12] (Figure 6.1). In this chapter, we analyze the behavior of the early modules
fabricated so far by employing several of the techniques that we hatdiedtn the
previous chapters.
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a) Self repression b) Toggle switch
A C

c) Activator-repressor clock d) Repressilator

Figure 6.1: Early transcriptional circuits that have begricated in bacteri&. coli: the
self-repression circuitl]?], the toggle switch 27], the activator-repressor clock]| and

the repressilatorZ4]. Each node represents a gene and each arrow from node Z ¢o nod
X indicates that the transcription factor encoded in z, deth@, regulates gene 8] If

z represses the expression of x, the interaction is repiesdry ZX. If z activates the
expression of x, the interaction is represented byX| 3].

6.2 Self-repressed gene

In this section, we analyze the self repressed gene of Fiydm@nd focus on ana-
lyzing how the presence of the negative feedbdbicts the dynamics of the sys-
tem [63] and how the negative feedbaciects the noise properties of the system
[12 8].

Let X denote the concentration of protein X and let X be a transcriptional re-
pressor for its own production. Assuming that the mRNA dynamics are atite g
steady state, the ODE model describing the self repressed system ibgiven

B
= —6X
TexK 0%

in which we have assumed that the Hill ¢beient is equal to 1. We seek to compare
the behavior of this autoregulated system to the behavior of the unregafeed

X =Bo—
in which g is the unrepressed production rate.

Dynamic effects of negative feedback

We show here that the rise time of the system decreases due to the prefsirgce
negative feedback, that is, the dynamics become faster. For the essegdrsystem,
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we obtain (by direct integration) the behaviorXt) as
X)="2(1-e,

in which we have assumed zero initial condition. For the self represséehsys
assuming thaX(t) is suficiently small, we can use Taylor expansion ab¥et0 to
approximate the dynamics abotit 0 by X = 8- X +O(X?), in whichs = —5 - £.
As a consequence, we have that

X(t) = §(1— e 0t),

The rise time is the time(t) takes to go from 10% of its final value to 90% of its
final value. In this case, we thus have that for the unrepressed sifstaise time

is 2/8, while for the self-repressed system is given by.5Sinces > 6§, we have

that the rise time for the self-repressed system is smaller and hence its dgnamic
are faster. This was experimentally confirmed 6§]]

Noise filtering

In this section, we investigate th&ect of the negative feedback on the noise spec-
trum of the system. Specifically, we employ the Langevin modeling framework to
show that the presence of a negative feedback decreases the anyfiituel@oise

at low frequency, while it increases it at higher frequency. In orashow this fact,

we perform here a simplified analysis, in which we model the unrepregsezhs

by the reactions

s 5% x5

and the self repressed system, following the approximations of the presgotisn,
by the reactions

s5x, x%¢

in whichs = —6— %. The reader can as an exercise model the self-repressed system
by considering all the involved reactions including the binding of the repre®
DNA and verify that a result similar to the one we are about to show herenfello

As we have seen previously, the concentrafidt) in a stochastic model is a
random variable. In the Langevin approximation, it is giverift) = ¢(t) + %Z(t),
in which ¢(t) is the solution to the deterministic system whilf) is a zero-mean
random variable whose dynamics is determined by the Langevin equation:

Z(t) = AZ(t) + BL(t),

in which A = asaigx)lx:qj(t) with S the stoichiometry matrix and(X) is the vector

of reactions, whileB = S y/diag(f (¢(t)). The vectod (t) has entries given by real-
izations of white noise, in which each entrgnodels the noise on thth reaction.
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Bode Diagram
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Figure 6.2: Bode plots of the transfer functidn,_z(s) for both unrepressed (solid) and
self repressed (dashed) systems.

In the case in consideration, we are interested in the spectrum of the mailse o
steady state value of the system, so @} = Xy with Xp the steady state value.
Here, we assume for simplicity that the steady state value of the same for both the
self repressed and the unrepressed system. For the unreprestsd, sye have

that

f(X)=[Bo 6X]", S=[1 -1], A=—6, B=[1 —1][ ‘/5_0 \/g% ]:[\/,3_0 — \6Xo),

while for the self repressed system we have that

—_TRSX] <_ T b VB 0 3 —
f(X)=[Bd6X]’, S=[1 -1], A=-6, B=[1 —1][ 0 Voxg ]_[\/B - 1/5Xo].
It follows that the Langevin equations are given by

Z(t) = =6Z(t) + yBol'1 — V5Xol

for the unrepressed system and by

Z(t) = —6Z(t) + BT1— /6 Xol2

for the self repressed system.
We can calculate the noise spectrum by simply calculating the transfer func-
tion fromT; to Z, that is,Tr,_.z(s) and by computing their amplitude, _,z(w) =

v/ Tr-z(jw). This gives the expressions

_ \Bo VX
Ar,_z(w) = Vs Ar,_z(w) = iz
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Figure 6.3: Nullclines for the toggle switch. By analyzitgtdirection of the vector field
in the proximity of the equilibria, one can deduce their 8iigb

for the unrepressed system and

AF1—>Z(U)) = %’ AF2—>Z(CU) = %
Vw4 +06 Vw?+ 06

for the self repressed system. Fig6r8shows the amplitudar, _z(w) = /Tr,-z(jw).
Sinces > ¢, we have that the amplitude of the noiseXat low frequency is lower
for the self repressed circuit, while at higher frequency it is higher ferstif re-
pressed circuit. This illustrates the spectral shift of the intrinsic noise tbvinar
high frequency as also experimentally demonstrate@hy [

6.3 The Toggle Switch

The toggle switch is composed of two genes that mutually repress each sther a
shown in the diagram of Figur@3[27]. By assuming that the mRNA dynamics
are at the quasi steady state, we obtain two dimensional ODE model given by

- B
A 1+(B/K)n_‘SA
_ B B

1+ (A/K)
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in which we have assumed for simplifying the analysis that the parameters of the
repression functions are the same for A and B. The number and stabilityuof e
libria can be analyzed by performing nulicline analysis since the system is two-
dimensional. Specifically, by setting = 0 and B = 0, we obtain the nullclines
shown in Figures.3. In the case in which the parameters are the same for both A
and B, the nulicline always intersect in three points, which determine theystead
states of this system. The nullclines partition the plane into six regions. By deter-
mining the sign oA andB in each of these six regions, one determines the direction
in which the vector field is pointing in each of these regions (see FigdyeFrom

these directions, one immediately deduces that the steady state for Avhiéhis
instable while the other two are stable. This is thus a bistable system. When the
system converges to one steady steady or the other depending on withetime-

tial condition is in the region of attraction of one steady state or the other. Once
the system has converged to one of the two steady states, it cannot swiiteh to
other unless an external stimulation is applied that moves the initial condition to
the region of attraction of the other steady st&#.[Note that a bistable system,
when subject to noise, can give rise to noise-induced oscillations.

6.4 The repressilator

Elowitz and Leibler 24] constructed the first operational oscillatory genetic circuit
consisting of three repressors arranged in ring fashion, and coitieel ‘itepres-
silator” (See diagram d) of Figui 1). The repressilator exhibits sinusoidal, limit
cycle oscillations in periods of hours. The dynamical model of the rejatss
can be obtained by composing three transcriptional modules in a loop faShien
dynamics can be written as

fa = —ora+ f(C)

A = rpa-6A

g = —org+ f2(A)

B = rg-oB

fc = =orc+ f3(B)

C = rc-4C, (6.1)

in which in the original desigr2{], we had that

a?

1+p"

f1(p) = f2(p) = f3(p) =

This structure belongs to the class of cyclic feedback systems that wetuaved
in earlier chapters. In particular, Mallet-Paret and Smith Theotfthgnd Hast-
ings Theorem37] (see ChapteB8 for the details) can be applied to infer that if the
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system has a unique equilibrium point and this is unstable, then it admits a peri-
odic solution. Therefore, we first determine the number of equilibria andttiesr
stability. The equilibria of the system can be found by setting the time derigative
to zero. We thus obtain that

A HO L B L _BE)

62 52 7 T 82

B

which combined together yield to

A= 512 f1(6—12 fg(% fz(A))) =:g(A).

The solution to this equation determines the set of steady states of the syseem. Th
system will have one steady stategif{A) = % < 0, otherwise, it could have
multiple steady states. Since we have that

sign@ (A)) = I12_sign(f; (P)),

then if Hlesign(fi’(P)) < 0 the system has a unique steady state. We name the
productHf’:lsign(fi’(P)) loop gain Thus, any cyclic feedback system with negative
loop gain will have a unique steady state. It can be shown that a cyclibdekd
system with positive loop gain belongs to the class of monotone system acel hen
cannot have periodic orbit§]]. In the present case, systdi is such thatf’ <0,
so that the loop gain is negative and there is a unique steady state. Weualgxt s
the stability of this steady state by studying the Jacobian of the system.

Denoting byP the steady state value of the protein concentrations for A, B, and
C, the Jacobian of the system is given by

(=5 0 0 0 0 (P

1 -5 0 0 0 o0
j_lo ue s 0o o o0

o 0 1 -5 0 0 |

0 0 0 fP -5 0

0o 0o 0 0 1 -s

whose characteristic polynorznial is given pfa) = det@l —J) = (/l+6)6—1‘[i3=1 f/(P).
In the case in whicH;(P) = ﬁpn fori € {1,2,3}, this characteristic polynomial has
a root with positive real part If the ratie/¢ satisfies the relation

2 2 o 43 4/3
/0" > \ =2t no s

For the proof of this statement, the reader is referre@@ [This relationship is
plotted in the left plot of Figuré&.4. Whenn increases, the existence of an unsta-




6-8 CHAPTER 6. BIOLOGICAL CIRCUIT COMPONENTS

Repressilator (symmetric case) Repressilator (symmetric case)

90~ 1 350
i larger o gives less sensitivity

70k REGION THAT GIVES RISE TO OSCILLATIONS

a2
period

Figure 6.4: (Left) Space of parameters that give rise tdlasicins for the repressilator in
equations§.1). (Right) Period as a function éfanda.

ble equilibrium point is guaranteed for larger ranges of the other paranates.
Equivalently, for fixed values af andd, asn increases the robustness of the circuit
oscillatory behavior to parametric variations in the valueg ahds increases. Of
course, this “behavioral” robustness does not guarantee that othertéampfea-
tures of the oscillator, such as the period value, are slightly changed panam-
eters vary. Numerical studies indicated that the peTiagbproximatively follows
T 55! and varies only little withy (right plot of Figure6.4). From the figure, we
can note that as the value &increases, the sensitivity of the period to the varia-
tion of ¢ itself decreases. However, increasihgould necessitate the increase of
the cooperativityn, therefore indicating a possible tradf that should be taken
into account in the design process in order to balance the system complexity a
robustness of the oscillations.

A similar result for the existence of a periodic solution can be obtained for
the non-symmetric case in which the input functions of the three transcriptiona
modules are modified to

o -
a,2 pn

fa(p) = Trpn
QZ pn

that is, two interactions are activations and one only is a repression. Sentmth
gain is still negative, there is one equilibrium point only. We can thus obtain the
condition for oscillations again by establishing conditions on the parametdrs tha
guarantee that at least one root of the characteristic polyndfias positive
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Figure 6.5: Space of parameters that give rise to oscillatior the repressilator (non-
symmetric case).

real part. These conditions are reported in Figbi®(see RQ| for the detailed
derivations). One can conclude that it is possible to “over design” tleaitio be

in the region of parameter space that gives rise to oscillations. It is alsibpos

to show that increasing the number of elements in the oscillatory loop, the value
of n suficient for oscillatory behavior decreases. The design criteria for abtain
oscillatory behavior are thus summarized in FiguBekand6.5.

6.5 Activator-repressor clock

Consider the activator-repressor clock diagram shown in Fi§ure). The tran-
scriptional module for A has an input function that takes two inputs: anaotiv
A and a repressor B. The transcriptional module B has an input functidiekes
only an activator A asits input. Les andrg represent the concentration of m-RNA
of the activator and of the repressor, respectively. Ae@nd B denote the protein
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Figure 6.6: Shape of the curves in teB plane corresponding tog = O, B=0
and tora = 0,A =0 as function of the parameters. Lettingfa = Ki(ki/(5164)),
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concentration of the activator and of the repressor, respectivedy, We consider
the following four-dimensional model describing the rate of change offikeiss
concentrations:

fa = —01ra+Fi(AB)

A = —O0aA+Kira

fg = —darg+Fa(A)

B = —ogB+ kzl'B, (62)

in which the functiong-; andF, are the input functions and are given by

= (A,B) _ KlAn+KAo
! T T1491A0+y,B"
KzAn+KBo
P =

Two-dimensional analysisWe first assume the mRNA dynamics to be at the
QSS and perform a two dimensional analysis to invoke PoimBandixson The-
orem. Then, we analyze the four dimensional system and perform adiltmc
study. We thus denoty(A, B) := X1 F1(A, B) and f,(A) := 2 F»(A) andK := Ky '
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Kag:= KAO('%, Ky = Kzr%’ andKgg := KBOIg—i- For simplicity, we also denot&(A, B) :=
—oa+ f1(A,B) andg(A, B) := —6gB+ f2(A) so that the two-dimensional system is
given by

A
B

f(A,B)
(A, B).

For simplicity, we assumen= 1 andy; = 1 for all i. We then study whether the
system admits a periodic solution far= 1. We analyze the nullclines to deter-
mine the number and location of steady states. Specifigy,B) = O leads to

B = 452, which is an increasing function @. Settingf (A, B) = 0, we obtain

that B = KAKa-0nALA) which is a monotonically increasing function of A. As

o,
a consequence, we have one equilibrium only. The Jacobian of thensgstais

equilibrium is given by

af ot

-2 2

oA 3B

In order for the equilibrium to be unstable and not a saddle, it is negeasar

suficient that

Trace() >0 and det{) > 0,

in which Trace() = %\ + g—g. Since at the equilibrium point we have that

dB
d_A|f(A,B):O <0

and by the implicit function theorerﬁ%h(A,B):o = —%, we have thatg—/i <0

becausé% < 0. As a consequence, we have that Trdre(0 and hence the equi-
librium point it either stable or a saddle. Furthermore, the nullclines aretiath

dB| N dB|
dA g(A.B)=0 dA f(A,B)=0,

and since by the implicit function theorem we also have %A’B)zo = —ggf—gg,
it follows that det() > 0. Hence, the steady state is always stable and therefore, the
omega-limit set of any point on the plane cannot be a periodic orbit.
We now assume that= 2. In this case, the nullcliné(A, B) = 0 leads to the
set depicted in Figuré.6for suitable relationships among the values ofih& In
order for the equilibrium to be unstable and not a saddle, we requireridea () >
0, which leads to
0B
0f1/0A—-6a

Further, one can verify that the crossing of the nullclines given in Fi§uG&eads
to det) > O just as in the case= 1.

<1
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Four-dimensional analysis.Then, we consider the following four-dimensional
model describing the rate of change of the species concentrations:

fa = —01/€ra+ Fl(A, B)

A = V(—5AA+ k1/6 rA)

fg = —0z/€ rB+F2(A)

B = —6gB+ko/erg, (6.3)

in which the parameter regulates the dierence of time-scales between the re-
pressor and the activator dynamiess a parameter that regulates thé&elience of
time-scales between the m-RNA and the protein dynamics. The paraduttsr-
mines how close mode6(3) is to a two-dimensional model in which the m-RNA
dynamics are considered at the equilibrium. Thuis, a singular perturbation pa-
rameter (equationss(3) can be taken to standard singular perturbation form by
considering the change of variables=ra/e andrg = rg/€). The details on singu-
lar perturbation can be found in Chap®iThe values ot and ofy do not dfect the
number of equilibria of the system, while the values of the other parametdisare
ones that control the number of equilibria. The set of valuek;df;, 6i,yi,5a,0p
that allow the existence of a unique equilibrium can be determined by employing
graphical techniques. In particular, we can plot the curves cometsipg to the
sets ofA, B values for whichrg =0 andB = 0 and the set o, B values for which
ia=0 andA =0 as in Figures.6. The intersection of these two curves provides
the equilibria of the system and conditions on the parameters can be determined
that guarantee the existence of one equilibrium only. In particular, weéresthat

the basal activator transcription rate whgms not present, which is proportional
to Kao, is suficiently smaller than the maximal transcription rate of the activator,
which is proportional td;. Also, Kap must be non-zero. Also, in cakg >> Kao,

one can verify that\y ~ K1/2y; and thusM ~ K{/2+/y1y>. As a consequence,

if K1/y1 increases then so must #@/ys. Finally, An ~ 0, andm = +/Kao/y2Am.

As a consequence, the smallety becomes, the smallétgy must be (seell9] for
more details). Assume that the valueafk;, 6i,yi,5a, 6 have been chosen so that
there is a unique equilibrium and we numerically study the occurrence ioidoer
solutions as the tlierence in time-scales between protein and m-R&And the
difference in time-scales between activator and repregsame changed. In partic-
ular, we perform bifurcation analysis withandy the two bifurcation parameters.
These bifurcation results are summarized by Fiduie The reader is referred to
[19] for the details of the numerical analysis. In terms of ér@ndy parameters, it

is thus possible to “over design” the system: if the activator dynamicglisismtly
sped up with respect to the repressor dynamics, the system parameteragruss

a Hopf bifurcation (Hopf bifurcation was introduced in Chag8eand stable oscil-
lations will arise. From a fabrication point of view, the activator dynamics lwa
sped up by adding suitable degradation tags to the activator protein. Jiba of
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Figure 6.7: Design chart for the relaxation oscillator. Quitains sustained oscillations
passed the Hopf bifurcation, for valuesio$uficiently large independently of theftir-
ence of time scales between the protein and the mRNA dynaWviEealso notice that there
are values of for which a stable equilibrium point and a stable orbit caeaind values of

v for which two stable orbits coexist. The intervalhofalues for which two stable orbits
coexist is too small to be able to numerically sét such an interval. Thus, this interval is
not practically relevant. The valueswfor which a stable equilibrium and a stable periodic
orbit coexist is instead relevant. This situation corregfsato thehard excitationcondition
[49] and occurs for realistic values of the separation of timales between protein and
m-RNA dynamics. Therefore, this simple oscillator motisdebed by a four-dimensional
model can capture the features that lead to the long termraesgipn of the rhythm by
external inputsBirhythmicity[31] is also possible even if practically not relevant due to
the numerical dficulty of moving the system to one of the two periodic orbitsr Fore
details, the reader is referred tt9] 16].

the parameter space in which the system exhibits almost sinusoidal damped osc
lations is on the left-hand side of the curve corresponding to the Hopfchifion.
Since the data of7] exhibits almost sinusoidal damped oscillations, it is possible
that the clock is operating in a region of parameter space on the “left” ofuitve c
corresponding to the Hopf bifurcation. If this were the case, incredbimgepara-
tion of time-scales between the activator and the repressoray lead to a stable
limit cycle.
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Another key enabling technology has been the developmentbfo measure-
ment techniques that allow to measure the amount of protein produced lget tar
gene Xx. For instance, green fluorescent protein (GFP) is a protein wigitdperty
that it fluoresces in green when exposed to UV light. It is produced bjetyéish
Aequoria victorig and its gene has been isolated so that it can be used as a reporter
gene. The GFP gene is inserted (cloned) into the chromosome, adjacentty o
close to the location of gene x, so both are controlled by the same promater.reg
Thus, gene x and GFP are transcribed simultaneously and then transtated,
measuring the intensity of the GFP light emitted one can estimate how much of x
is being expressed. Other fluorescent proteins, such as yellow fteotgzrotein
(YFP) and red fluorescent protein (RFP) are genetic variations of i G

Just as fluorescent proteins can be used as a read out of a circuiteind
function as external inputs that can be used to probe the system. Iaducetion
by disabling repressor proteins. Repressor proteins bind to the DNAds#iad
prevent RNA polymerase from being able to attach to the DNA and synthesize
MRNA. Inducers bind to repressor proteins, causing them to change simal
making them unable to bind to DNA. Therefore, they allow transcription to take
place.

Inset (Electronic circuits) One of the current directions of the field is to create
circuitry with more complex functionalities by assembling simpler circuits, such
as those in Figuré.1 This tendency is consistent with what has been observed in
the history of electronics: after the bipolar junction transistor (BJT) wasnited

in 1947 by William Shockley and co-workers, the transistor era started. jarma
breakthrough in the transistor era occurred in 1964 with the invention dfrdte
operational amplifier (op amp), which led the way to standardized modulanand
tegrated circuit design. By comparison, synthetic biology may be directingrtbw

a similar development, in which modular and integrated circuit design becomes
a reality. This is witnessed by several recefibes toward formally characteriz-
ing interconnection mechanisms between modules, impedancefidatse and op
amp-like devices to counteract impedance proble36s46, 65, 21, 64, 69, 68]. ¢

Exercises

6.1 Consider the oscillator design of Stricker et &l. Build a four dimensional

model including mMRNA concentration and protein concentration. Then ecithis

fourth order model to a second order model using the QSS approximatitmefo
MRNA dynamics. Then, investigate the following points:

(a) Use the PoincéarBendixson theorem to determine under what conditions the
system in 2D admits a periodic orbit.

(b) Simulate the four dimensional system and the two dimensional system-for pa
rameter values that give oscillations and study how close the trajectories 2Dth
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approximation are to those of the 4D system.

(c) Determine whether the four dimensional system has a Hopf bifurcatitie(
analytically or numerically).
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Chapter 7

Interconnecting Components

7.1 Input/Output Modeling and the Modularity Assumption

Each node y of a transcriptional circuitry is usually modeled as an /ot
module taking as input the concentrations of transcription factors thdategene

y and giving as output the concentration of protein expressed by geleagted Y.
This is not the only possible choice for delimiting a module: one could in fact let
the messenger RNA (mRNA) or the RNA polymerase flow along the DNA (as sug
gested by 29]) play the role of input and output signals. The transcription factor
enters as input of the transcriptional module through the binding and unbidg-
namics of the transcription factors with the DNA promoter sites upstream @f gen
y. The internal dynamics of the transcriptional component is determinedeby th
transcription and translation dynamics. The processes of transcriptibtraars-
lation are much slower than the binding dynamics of the transcription factor to
the promoter sites on the DNAJ. Thus, the binding of the transcription factor to
the DNA promoter site reaches the equilibrium in seconds, while transcripin a
translation of the target gene takes minutes to hours. This time scale separation
a key feature of transcriptional circuits, leads to the following central firagle
simplification.

Modularity assumption. The dynamics of transcription facf@mMNA
binding are considered at the equilibrium and each transcription factor
concentration enters the inpotitput transcriptional module through
staticinput functions that drive the transcriptiranslation dynamics
(Figure7.1).

Transcriptional 1/O module

Transcription Translation | —— =

\

Figure 7.1: A transcriptional module is modeled as an ifquiput component with input
function given by the transcription regulation functié(X) and with internal dynamics
established by the transcription and translation prosesse
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Figure 7.2: The clock behavior can be destroyed by a loadhdstimber of downstream
binding sites for A,ptor, is increased in the load, the activator and repressor dipgsam
loose their synchronization and ultimately the oscillasi@isappear.

For engineering a system with prescribed behavior, one has to be ahkrtgec
the physical features so as to change the values of the parameters ofdbke mo
This is often possible. For example, the bindirfiraty (1/K in the Hill function
model) of a transcription factor to its site on the promoter canfleeted by single
or multiple base pairs substitutions. The protein decay rate (constamequation
(2.17) can be increased by adding degradation tags at the end of the gere®x
ing proteinY (http;/parts.mit.edfiegistryindex.phgHelp: Tag. (Degradation) Tags
are genetic additions to the end of a sequence which modify expressethprio
different ways such as marking the protein for faster degradation. Pratoédr
can accept multiple input transcription factors (called combinatorial pros)ater
implement regulation functions that take multiple inputs can be realized by com-
bining the operator sites of several simple promot@rdHor example, the operators
Or1 — Oro from theA promoter of thel bacteriophage can be used as binding sites
for the A transcription factor§1]. Then, the paiOg, — Ogr; from the 434 promoter
from the 434 bacteriophag#4] can be placed at the end of tg; — Og, Sequence
from theA promoter. Depending on the relative positions of these sites and on their
distance from the RNA polymerase binding site, the 434 transcription factpr ma
act as a repressor as when this protein is bound ©rits- Or; sites it prevents the
polymerase to bind, while th&transcription factor may act as an activator.
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7.2 Beyond the Modularity Assumption: Retroactivity

In the previous sections, we have outlined a circuit design process, o$ed

in synthetic biology, that relies on the interconnection of well characteiized
put/output transcriptional modules through suitable static input functions. Exam-
ples of designs performed through this process can be found in Cafitdeeply
relies on the modularity assumption, by virtue of which the behavior of the @atain
circuit topology can be directly predicted by the properties of the compasiitg.

For example, the monotonicity of the input functions of the transcriptional tesdu
composing the repressilator have been a key feature to formally showiserse

of periodic solutions. The form of the input functions in the activatorgsgor
clock design have been key enablers to easily predict the location andenumb
of equilibria as the parameters are changed. The modularity assumption implies
that when two modules are connected together, their behavior doesamgjeche-
cause of the interconnection. However, a fundamental systems-enginessue

that arises when interconnecting subsystems is how the process of trargsmnittin
signal to a “downstream” componerfiects the dynamic state of the sending com-
ponent. Indeed, after designing, testing, and characterizing thgonpuit behav-

ior of an individual component in isolation, it is certainly desirable if its chara
teristics do not change substantially when another component is connedtsd
output channel. This issue, thexct of “loads” on the output of a system, is well-
understood in many fields of engineering, for example in electrical ciresig.

It has often been pointed out that similar issues arise for biological sysfdors
states that “modules in engineering, and presumably also in biology, haugkp
features that make them easily embedded in almost any system. For exarnyple, ou
put nodes should have ‘low impedance,” so that adding on additionaistosam
clients should not drain the output to existing clients (up to some limit).” An ex-
tensive review on problems of loads and modularity in signaling network®ean
found in [67, 68, 69], where the authors propose concrete analogies with similar
problems arising in electrical circuits.

These questions are even more delicatgyimthetidbiology. For example, sup-
pose that we have built a timing device, a clock made up of a network of tativa
andor repression interactions among certain genes and proteins, suchoas thie
diagram c) of Figuré&.1 Next, we want to employ this clock (upstream system) in
order to drive one or more components (downstream systems), by ssitsgat-
putsignal the oscillating concentratidft) of the activator. From a systeysgynals
point of view, A(t) becomes aimput to the second system (Figure?). The terms
“upstream” and “downstream” reflect the direction in which we think of digiha
as traveling,from the clockto the systems being synchronized. However, this is
only an idealization, because the binding and unbinding of A to promoter siges in
downstream system competes with the biochemical interactions that constitute the
upstream block (retroactivity) and may therefore disrupt the operafitrealock
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Figure 7.3: On the left, we represent a tank system that @dké&sput the constant flovig
and gives as output the pressyrat the output pipe. On the right, we show a downstream
tank.

itself (Figure7.2). One possible approach to avoid disrupting the behavior of the
clock, motivated by the approach used with reporters such as GFP, isoduoé a
gene coding for a new protein X, placed under the control of the sannegbeo as

the gene for A, and using the concentration of X, which presumably mitmatsf

A, to drive the downstream system. This approach, however, has stgrdttem

that the behavior of the X concentration in time may be altered and even didrupte
by the addition of downstream systems that drain X. The net result is stiliitbat
downstream systems are not properly timed.

Modeling retroactivity

We broadly call retroactivity the phenomenon by which the behavior of@n u
stream system is changed upon interconnection to a downstream systarsins

ple example, which may be more familiar to an engineering audience, consider th
one-tank system shown on the left of Figit8 We consider a constant input flow

fo as input to the tank system and the presguet the output pipe is considered
the output of the tank system. The corresponding output flow is giveki\ay,

in which k is a positive constant depending on the geometry of the system. The
pressurep is given by (neglecting the atmospheric pressure for simpligity)oh,

in which h is the height of the water level in the tank gnmis water density. Let

A be the cross section of the tank, then the tank system can be represettied b
equation

d
Ad—?:pfo—pk\/ﬁ. (7.1)

Let us now connect the output pipe of the same tank to the input pipe of a-dow
stream tank shown on the right of Figut&. Let p1 = ph1 be the pressure generated

by the downstream tank at its input and output pipes. Then, the flow autpato

of the upstream tank will change and will now be givendfg, p1) = k+/|p— p1/ if

p > p1 and byg(p, p1) = —k+/|p— p1| if p < p1. As a consequence, the time behav-
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Figure 7.4: A systens input and output signals. The red signals denote signajgating
by retroactivity upon interconnection.

ior of the pressur@ generated at the output pipe of the upstream tank will change
to

dp
AE = pfo—pa(p, p1)
dp
AIW = pg(p, p1) —pk1 VP1, (7.2)

in which A; is the cross section of the downstream tank lanig a positive param-
eter depending on the geometry of the downstream tank. Thus, the¢ounmuit
response of the tank measured in isolation (equaffah))(does not stay the same
when the tank is connected through its output pipe to another tank (equa@pn (
We will model this phenomenon by a signal that travels from downstream-to up
stream, which we catetroactivity. The amount of such a retroactivity will change
depending on the features of the interconnection and of the downstsesiems
For example, if the aperture of the pipe connecting the two tanks is very small
compared to the aperture of an output pipe of the downstream tank, thsupze
p at the output of the upstream tank will not change much when the dowmstrea
tank is connected.

We thus model a system by adding an additional input, calléd the system
to model any change in its dynamics that may occur upon interconnection with
a downstream system. Similarly, we add to a system a sigaalanother output
to model the fact that when such a system is connected downstreamtb&ano
system, it will send upstream a signal that will alter the dynamics of the upstrea
system. More generally, we define a syst8rno have internal statg, two types
of inputs (1), and two types of outputs (O): an inpuwt {l), an output 'y (O), a
retroactivity to the input'r” (O), and aretroactivity to the outputs’ (I) (Figure
7.4). We will thus represent a systeinby the equations

x=f(xu,9), y=Y(xu,s), r=R(x,u,s), (7.3)

in which f,Y,R are arbitrary functions and the signaay, s,r,y may be scalars

or vectors. In such a formalism, we define the iriputput model of the isolated
system as the one in equatiors3) withoutr in which we have also set= 0. Let

Si be a system with inputs; ands and with outputsy; andr;. Let S; andS; be

two systems with disjoint sets of internal states. We define the interconneétion o
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Q X Downstream transcriptional component
z \‘ TR ‘

Figure 7.5: The transcriptional component takes as inppitotein concentratiod and
gives as outpuf protein concentratioX. The transcription factor Z binds to operator sites
on the promoter. The red part belongs to a downstream tiigtisoal block that takes
protein concentratioiX as its input.

an upstream systeBy with a downstream syste8p by simply settingy; = u, and
s = rp. For interconnecting two systems, we require that the two systems do not
have internal states in common.

Retroactivity in gene transcriptional circuits

In the previous section, we have defined retroactivity as a generaépbmodeling
the fact that when an upstream system is ifgauput connected to a downstream
one, its dynamic behavior can change. In this section, we focus on tigistal
circuits and show what form the retroactivity takes.

We denote by X the protein, b (italics) the average protein concentration,
and by x (lower case) the gene expressing protein X. A transcriptiamaponent
that takes as input protein Z and gives as output protein X is shown ind=rgbir
in the dashed box. The activity of the promoter controlling gene x depamttseo
amount of Z bound to the promoter.4f= Z(t), such an activity changes with time.
We denote it byk(t). By neglecting the mRNA dynamics, which are not relevant
for the current discussion, we can write the dynamicX af

dX

i K(t) — 6%, (7.4)
in which§ is the decay rate of the protein. We refer to equatitd) @s the isolated
system dynamics. For the current study, the mRNA dynamics can be neglecte
because we focus on how the dynamicsxoéhanges when we add downstream
systems to which X binds. As a consequence, also the specific fokit) @ not
relevant. Now, assume that X drives a downstream transcriptional my bied-
ing to a promoter p with concentratign(the red part of Figur&.5). The reversible
binding reaction of X with p is given by

X+p%}£ C,

in which C is the complex protein-promoter akgh andkyy are the binding and
dissociation rates of the protein X to the promoter site p. Since the promoter is
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not subject to decay, its total concentratipip is conserved so that we can write
p+C = prot. Therefore, the new dynamics ¥fis governed by the equations

‘3_1( = (1)~ X +[koyC—kon(Pror—C)X|. 5= kyyC~kon(pror-C)X
O KyCrkn(pror—O)X (7.5)

in which the terms in the box represent the siggathat is, the retroactivity to

the output, while the second of equatiodsy describes the dynamics of the input
stage of the downstream system drivenXayThen, we can interpretas being a
mass flow between the upstream and the downstream system. M &rihe first

of equations7.5) reduces to the dynamics of the isolated system given in equation
(7.4). Here, we have assumed that X binds directly to the promoter p. The case
in which a signal molecule is needed to transform X to the active form that then
binds to p, can be treated in a similar way by considering the additional iteeers
reaction of X binding to the signal molecule. The end result of adding thitioea

is the one of having similar terms in the box of equati@rb) involving also the
signaling molecule concentration.

How large is the gect of the retroactivity s on the dynamics of X and what are
the biological parameters thatffect it? We focus on the retroactivity to the out-
puts. We can analyze theffect of the retroactivity to the inputon the upstream
system by simply analyzing the dynamicsin the presence of its binding sites
po in Figure7.5in a way similar to how we analyze the dynamicsXfin the
presence of the downstream binding sites p. Tifeceof the retroactivitys on the
behavior ofX can be very large (Figuré.6). This is undesirable in a number of
situations in which we would like an upstream system to “drive” a downstie@aam
as is the case, for example, when a biological oscillator has to time a number of
downstream processes. If, due to the retroactivity, the output sifjtied apstream
process becomes too low godout of phase with the output signal of the isolated
system (as in Figuré.6), the coordination between the oscillator and the down-
stream processes will be lost. We next propose a procedure to obtapeeative
quantification of the fect of the retroactivity on the dynamics of the upstream
system.

Quantification of the retroactivity to the output

In this section, we propose a general approach for providing armtypeguantifi-
cation of the retroactivity to the output on the dynamics of the upstream system.
This approach can be generally applied whenever there is a separfdiime-o
scales between the dynamics of the output of the upstream module and éme-dyn
ics of the input stage of the downstream module. This separation of timesssale
always encountered in transcriptional circuits. In fact, the dynamicseoinhut
stage of a downstream system is governed by the reversible bindirtipreaicthe
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Figure 7.6: The dramaticfiect of interconnection. Simulation results for the system i
equations 1.5). The green plot (solid line) represemt) originating by equationsrz(4),
while the blue plot (dashed line) represeKts) obtained by equatior7(5). Both transient
and permanent behaviors aréeient. Herek(t) = 0.01(1+ sin(wt)) with w = 0.005 in the
left side plots andv = O in the right side plotskon = 10, koy = 10,6 = 0.01, prot = 100,
X(0) = 5. The choice of protein decay rate imn1) corresponds to a half life of about
one hour. The frequency of oscillations is chosen to haveriagef about 12 times the
protein half life in accordance to what is experimentallgeived in the synthetic clock of

(7]

transcription factor with the operator sites. These reactions are ofteredinté
scales of a second and thus are fast compared to the time scales ofipteorscr
and translation (often of several minute3)) [These determine, in turn, the dynam-
ics of the output of a transcriptional module. Such a separation of timessisale
encountered even when we extend a transcriptional network to includeeson-
nection mechanisms between transcriptional modules protein-protein intagactio
(often with a subsecond timescal®?]), as encountered in signal transduction net-
works.

We quantify the dierence between the dynamicsXfin the isolated system
(equation 7.4)) and the dynamics aX in the connected system (equatioidss)
by establishing conditions on the biological parameters that make the two dynam-
ics close to each other. This is achieved by exploiting tiffedince of time scales
between the protein production and decay processes and its bindinglainding
process to the promoter p. By virtue of this separation of time scales, wepean a
proximate system7(.5) by a one dimensional system describing the evolutioX of
on the slow manifold47]. This reduced system takes the form:

CL—T =k(t)—6X+s,

whereX is an approximation oK andsis an approximation o, which can be
written ass = —R(X)(k(t) — 6X). If R(X) is zero, then alss =0 and the dynamics
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of X becomes the same as the one of the isolated systefn SinceX approxi-
matesX, the dynamics oK in the full system 7.5) is also close to the dynamics
of the isolated systen¥(4) wheneverR(X) = 0. The factorR(X) provides then a
measure of the retroactivity on the dynamicsft is also computable as a func-
tion of measurable biochemical parameters and of the sKtraveling across the
interconnection, as we next illustrate.

Consider again the full system in equatiorsy, in which the binding and
unbinding dynamics is much faster than protein production and decay,,tkgtis
K(t), kog > 6 [3], and kon = kog/kg With kg = O(1). Even if the second equation
goes to equilibrium very fast compared to the first one, the above systeon iis
“standard singular perturbation form47]. To explicitly model the dierence in
time scales between the two equations of systés),(we introduce a parameter
which we define ag = ¢/Kqy. Sincekyy > 6, we also have that < 1. Substituting
Kogr = 6/ €, Kon = 6/(ekq), and lettingy = X + C (thetotal protein concentration), we
obtain the system in singular perturbation form

dy
Y - kw-ay-0)
S - ~5C+ 2 (pror-C)y-O). (7.6)

This means, as some authors proposgdthaty (total concentration of protein)
is the slow variable of the systeni.p) as opposed tX (concentration of free
protein). We can then obtain an approximation of the dynamics of the limit
in which € is very small, by setting = 0. This leads to (see]] for details) the
approximatedX dynamics

dy(y)

dx — -
It = KO- X (k(t) - 5X)d—>7‘

(7.7)
The smallere, the better is the approximation. Singewell approximates for e
small, conditions for which the dynamics of equati@n/ is close to the dynamics
of the isolated systen¥(4) also guarantee that the dynamicsXofjiven in system
(7.5) is close to the dynamics of the isolated system.

The diterence between the dynamics in equatiéim)((the connected system
after a fast transient) and the dynamics in equati®#) ((the isolated system) is
zero when the terrﬁ% in equation 7.7) is also zero. We thus consider the factor

@ as a quantification of the retroactivigafter a fast transient in the approxima-

tion in whiche ~ 0. We can also interpret the factg{!‘yﬂ as a percentage variation

of the dynamics of the connected system with respect to the dynamics of the iso
lated system at the quasi steady state. We next determine the physical gnefanin
such a factor by calculating a more useful expression that is a functikeyddio-
chemical parameters. By using the implicit function theorem, one can compute the
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following expression fon%?:

dy(y) 1 v
2 = — =: R(X), (7.8)
d (1+X/kg)?
y 1+ prot/Kd

in which one can verify thaR(X) < 1 (see 1] for details). The expressioR(X)
quantifies the retroactivity to the output on the dynamicX after a fast transient,
when we approximat& with X in the limit in whiche ~ 0. The retroactivity mea-
sure is thus low if the fiinity of the binding sites p is smalk{ large) or if the
signal X(t) is large enough compared g ot. Thus, the expression &(X) pro-
vides an operative quantification of the retroactivity: such an expressioin fact
be evaluated once the association and dissociation constants of X to poane, kn
the concentration of the binding sitpgoT is known, and the range of operation of
the signalX(t) that travels across the interconnection is also known.

Therefore, the modularity assumption introduced in Secfidnholds if the
value of R(X) is low enough. As a consequence, the design of a simple circuit
motif such as the ones of Figuéel can assume modularity if the interconnections
among the composing modules can be designed so that the vaR{X)ods given
in expression®.8) is low.

7.3 Insulation Devices to Enforce Modularity

Of course, it is not always possible to design an interconnection suthhtha
retroactivity is low. This is, for example, the case of an oscillator that has to time
a downstream load: the load cannot be in general designed and thetosaillest
perform well in the face of unknown and possibly variable load prope(Eegure
7.2). Therefore, in analogy to what is performed in electrical circuits, @mede-
sign a device to be placed between the oscillator and the load so that the device
output is not changed by the load and the device doesffexttdahe behavior of the
upstream oscillator. Specifically, consider a systias the one shown in Figure
7.4 that takesu as input and giveg as output. We would like to design it in such
a way that (a) the retroactivity to the input is very small; (b) theffect of the
retroactivity s to the output on the internal dynamics of the system is very small
independently of itself; (c) its inpufoutput relationship is about linear. Such a
system is said to enjoy thiasulation property and will be called an insulation
component or insulation device. Indeed, such a system will fiettean upstream
system because~ 0 and it will keep the same output signaindependentlypf
any connected downstream system. In electronics, amplifiers enjoy tHatiosu
property by virtue of the features of the operational amplifier (op amp)tkiest
employ [71] (Figure7.7).

The concept of amplifier in the context of a biochemical network has been
considered before in relation to its robustness and insulation property €x
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Figure 7.7: In diagram (a), we show the basic non-invertimgléfier circuit that is com-
posed of the op amp plus a feedback circuit. The op amp isitiregrlar shape that takes
as input the dierential voltagev, — V_ and gives as (open) outpMgy = AV, —V_), in
which the gainA is infinity in the ideal op amp. The blue circuit componentgresent
the feedback circuit, while the red component is the loadting@K = Ry /(R + Rp), direct
computation leads t¥,y — V. /K asA — oo. That is, the output voltage does not depend
on the load: the retroactivity to the output is almost cortgdleattenuated. In diagram (b),
we zoom inside the op amp to show the abstraction of its iatestiucture. In an ideal
op amp,R; = oo so that it absorbs almost zero current and any upstreangeoffanerator
will not experience a voltage drop at its output terminalsrumterconnection with the
amplifier. That is, the retroactivity to the input of the aifipl is almost zero.

ternal disturbances&p] and [68]). Here, we revisit the amplifier mechanism in the
context of gene transcriptional networks with the objective of mathematicadly a
computationally proving how suitable biochemical realizations of such a mecha-
nism can attain properties (a), (b), and (c).

Retroactivity to the input

In electronic amplifierst is very small because the input stage of an op amp ab-
sorbs almost zero current (Figurer). This way, there is no voltage drop across
the output impedance of an upstream voltage source. Equati®mantifies the
effect of retroactivity on the dynamics &f as a function of biochemical param-
eters that characterize the interconnection mechanism with a downstre@msy
These parameters are thii@ity of the binding site 1kg, the total concentration

of such binding siteproT, and the level of the signal(t). Therefore, to reduce
the retroactivity, we can choose parameters such 8} (s small. A sificient
condition is to choosé&y large (low dfinity) and prot small, for example. Hav-
ing small value ofprot andor low afinity implies that there is a small “flow” of
protein X toward its target sites. Thus, we can say that a low retroactivityeto th
input is obtained when the “input flow” to the system is small. This interpretation
establishes a nice analogy to the electrical case, in which low retroactivitg to th
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Figure 7.8: Diagram (a) shows the basic feediatiplification mechanism by which am-
plifiers attenuate thefiect of the retroactivity to the outpst Diagram (b) shows an alter-
native representation of the same mechanism of diagramv(agh will be employed to
design biological insulation devices.

input is obtained, as explained above, by a low input current. Such aprietation

can be further carried to the hydraulic example. In such an example, if plog in
flow to the downstream tank is small compared, for example, to the output flow o
the downstream tank, the output pressure of the upstream tank will radieoted

by the connection. Therefore, the retroactivity to the input of the dowastrtank

will be small.

Retroactivity to the output

In electronic amplifiers, thefiect of the retroactivity to the outpston the ampli-
fier behavior is reduced to almost zero by virtue of a large (theoreticallyitiefi
amplification gain of the op amp and an equally large negative feedback mscha
that regulates the output voltage (Figiit@). Genetic realization of amplifiers have
been previously proposed (se], for example). However, such realizations fo-
cus mainly on trying to reproduce the layout of the device instead of implementing
the fundamental mechanism that allows it to properly work as an insulaton Su
a mechanism can be illustrated in its simplest form by diagram (a) of Fig8re
which is very well known to control engineers. For simplicity, we have @eslin
such a diagram that the retroactivigyis just an additive disturbance. The reason
why for large gain$s the dfect of the retroactivitys to the output is negligible can
be verified through the following simple computation. The outpistgiven by

y=G(u-Ky)+s
which leads to
G S

17KG T11KG’

As G grows,y tends tau/K, which is independent of the retroactivisy

Therefore, a central enabler to attenuate the retroactitfiégieat the output of
a component is to (1) amplify through a large gain the input of the component a
(2) to apply a large negative output feedback. We next illustrate thiggledea in

y=u
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Figure 7.9: We amplify the input flowlp through a large gait and we apply a large
negative feedback by employing a large output pipe with aiflpw G” /p.

the context of a simple hydraulic system.

Hydraulic exampleConsider the academic hydraulic example consisting of two
connected tanks shown in Figure. The objective is to attenuate thffext of the
pressure applied from the downstream tank to the upstream tank, soettoait put
pressure of the upstream system does not change when the downsdrdais
connected. We let the input floig be amplified by a large factds. Also, we
consider a large pipe in the upstream tank with output ®w/p, with G" > k
andG’ > k;. Let p be the pressure at the output pipe of the upstream tankand
the pressure at the bottom of the downstream tank. One can verify thahige
equilibrium value for the pressune at the output pipe of the upstream tank is
obtained forp > p1 and it is given by

Gf
G’ + (Kky)/ \[K2 +K2

peq =

If we let G’ be suficiently larger thark; andk and we letG’ = KG for some pos-
itive K = O(1), then forG suficiently largepeq ~ (fo/K)?, which does not depend
on the presence of the downstream system. In fact, it is the same as therkomilib
value of the isolated upstream systa;ﬂr%? = pGfo— pG" /P —pk+/p for G suffi-
ciently large and foG" = KG with K = O(1).

Coming back to the transcriptional example, consider the approximated dynam-
ics of equation1.7) for X. Let us thus assume that we can apply a gaito the
input k(t) and a negative feedback gasi to X with G’ = KG. This leads to the
new diferential equation for the connected systén7)given by
dX

ot = (GO~ (G +6)X)(1-d(V)). (7.9)
in which we have defined(t) := dg—gy) wherey(t) is given by the reduced system

%’ = GK(t) - (G’ +9)(y—¥(y)). It can be shown (se&4] for details) that a$5 and
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thus agG’ grow, the signak(t) generated by the connected systéh®(becomes
close to the solutioX(t) of the isolated system

(:j_)t( = GK(t) - (G’ +6)X, (7.10)

that is, the presence of the disturbance td(tjiwill not significantly afect the time
behavior ofX(t). Sinced(t) is a measure of the retroactivityfect on the dynamics
of X, such an fect is thus attenuated by employing large gaihandG’. How
can we obtain a large amplification gain G and a large negative feedbddk G
a biological insulation componentPhis question is addressed in the following
chapter, in which we show two possible realizations of insulation devices.

7.4 Design of genetic circuits under the modularity assumption

Based on the modeling assumptions introduced in Ch&p#exd on the tools for
studying the dynamics of a nonlinear system introduced in Ch&ptemumber
of synthetic genetic circuits have been designed and fabricated by cimgpi@s-

scriptional modules through ingoutput connection (Figur6.l). Through such
a design procedure one seeks to predict the behavior of a circuit lyetravior

of the composing units, once these have been well characterized in isolgtisn
approach is standard also in the design and fabrication of electronidiircu

7.5 Biological realizations of an insulation component

In the previous section, we have proposed a general mechanism moicteate

an insulation component. In particular, we have specified how one cariedteio-
logical features of the interconnection mechanism in order to have lovactividy

to the inputr and we have shown a general method to attenuate the retroactivity
to the outputs. Such a method consists of a large amplification of the input and a
large negative output feedback. The insulation component will be isierfdace

of the transcriptional component of Figureb. This will guarantee that the sys-
tem generating Z, an oscillator, for example, will maintain the same behavior as
in isolation and also that the downstream system that aceepssits input will

not alter the behavior ak. The net result of this is that the oscillator generating
signalZ will be able to time downstream systems with the desired phase and ampli-
tude independently of the number and the features of downstream sybtehis.
section, we determine two possible biological mechanisms that can be exploited
to obtain a large amplification gain to the inpatof the insulation component
and a large negative feedback on the oufwif the insulation component. Both
mechanisms realize the negative feedback through enhanced degradh&dirst
design realizes amplification through transcriptional activation, while thenskec
design through phosphorylation of a protein that is in abundance in thensys
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Figure 7.10: We highlight in blue the parts that Designffeets. In particular, a negative

feedback occurring through post-translational reguatiod a promoter that produces a
large signal amplification are the central parts of this glesirhe red part indicates the

downstream component that takes as input the concentiationotein X.

Design 1: Amplification through transcriptional activatio n

In this design, we obtain a large amplification of the input sigi@® by having
promoter g (to which Z binds) be a strong, non leaky, promoter. The negative
feedback mechanism oX relies on enhanced degradation of X. Since this must
be large, one possible way to obtain an enhanced degradation for X isg¢caha
protease, called Y, be expressed by a strong constitutive promotepratease Y

will cause a degradation rate for X, which is larger if Y is more abundanten th
system. This design is schematically shown in Figlifed

In order to investigate whether such a design realizes a large amplification an
a large negative feedback ohas needed, we analyze the full infouttput model
for the block in the dashed box of FiguielQ In particular, the expression of
gene x is assumed to be a two-step process, which incorporates also th® mRN
dynamics. Incorporating these dynamics in the model is relevant for thentur
study because they may contribute to an undesired delay betweehahd X
signals. The reaction of the protease Y with protein X is modeled as the two-step
reaction

X+YE Wby,

which can be found in standard references (8gddr example). The inpubutput
system model of the insulation component that takes an input and givex as
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an output is given by the following equations

dz
i k(t)—52+]sz—u(po,TOT—zp)\ (7.11)
dz,
W = k+Z(pO,TOT_Zp)_k—Zp (712)
dd_thb( = GZp—élmx (7-13)
dX
i VW—U1YX+;72W—52X+\koﬁc—konX(pTOT—C)\ (7.14)
%V = mXY—nW-BW (7.15)
%—T = —-mYX+BW+aG—-vyY +nW (7.16)
dc
gt = KrCtkonX(pror-C), (7.17)

in which we have assumed that the expression of gene z is controlled bynater

with activity k(t). These equations will be studied numerically and analyzed math-
ematically in a simplified form. The variablg, is the concentration of protein Z
bound to the promoter controlling genepgtot is the total concentration of the
promoter g controlling gene ximy is the concentration of messenger RNA ofCX,

is the concentration of X bound to the downstream binding sites with total nence
tration pror, y is the decay rate of the protease Y. The valu& @ the production
rate of X mRNA per unit concentration of Z bound to the promoter controlling Xx;
the promoter controlling gene y has strength, for some constant, and it has

the same order of magnitude strength as the promoter controlling Xx. The terms in
the box in equationd.1]) represent the retroactivityto the input of the insulation
component in Figur@.1Q The terms in the box in equatiofi.(4) represent the
retroactivity s to the output of the insulation component of FigardQ The dy-
namics of equations/(11)—(7.17) without s (the elements in the box in equation
(7.14) describe the dynamics of with no downstream system.

We mathematically explain why syste.{1)—(7.17) allows to attenuate the
effect of s on the X dynamics. Equations/(11) and (.12 simply determine the
signalZy(t) thatis the input to equation$.(.3—(7.17). For the discussion regarding
the attenuation of thefiect of s, it is not relevant what the specific form of signal
Zp(t) is. Let thenZ,(t) be any bounded signa(t). Since equation?.13) takesv(t)
as an input, we will have thax = Gv(t), for a suitable signal(t). Let us assume
for the sake of simplifying the analysis that the protease reaction is a one step
reaction, that is, X Y &5 Y. Therefore, equatiori7(16) simplifies to‘(’j—\{ =aG-vyY
and equationq.14 simplifies to%—>§ = yMy —BY X—= 52X+ KogC — konX(proT = C).

If we consider the protease to be at its equilibrium, we haveX{tat aG/y. As a
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consequence, thé dynamics becomes

dX _
S = YOUD) — (BaG/y +2)X + | koyC — kanX(proT - C)
with C determined by equatior7(17). By using the same singular perturbation
argument employed in the previous section, we obtain that the dynamicsvidif

be after a fast transient approximatively given by

>

‘jj—i( = (VGW(t) — (BaG/y + 62)X)(1—d(t)), (7.18)

in which 0< d(t) < 1 is the dfect of the retroactivitys. Then, ass increasesx(t)
becomes closer to the solution of the isolated system

O = VGV~ (8aGy + 32X
as explained in Section3".

We now turn to the question of minimizing the retroactivity to the inpbte-
cause its ffect can alter the input signalt). In order to decrease we guarantee
that the retroactivity measure given in equati@fl) (s small. This is seen to be true
if (kg +Z)2/(po,TOde) is very large, in which kg = k, /k_ is the dfinity of the
binding site g to Z. Since after a short transie@l; = (po.r012)/(Kd + Z), for Z,
not to be a distorted version & it is enough to ask thady > Z. This, combined
with the requirement thak§ + Z)?/(poTotky) is very large, leads to the require-
mentpo1oT1/kd < 1. Summarizing, for not having distortioiffects betwee# and
Z, and small retroactivity, we need that

kg > Z andporoT/kg < 1. (7.19)

Simulation results. Simulation results are presented for the insulation system of
equations 1.10)—(7.17) as the mathematical analysis of such a system is only
valid under the approximation that the protease reaction is a one step reaction
In all simulations, we consider protein decay rates to §drfin~! to obtain a
protein half life of about one hour. We consider always a periodicidgrk(t) =
0.01(1+ sin(wt)), in which we assume that such a periodic signal has been gener-
ated by a synthetic biological oscillator. Therefore, the oscillating signalstao-

sen to have a period that is about 12 times the protein half life in accordamwbato

is experimentally observed in the synthetic clock@f Pll simulation results were
obtained by using MATLAB (Simulink), with variable step ODE solver ODE23s.
For large gains@ = 1000,G = 100), the performance considerably improves com-
pared to the case in whick was generated by a plain transcriptional component
acceptingZ as an input (Figur&.6). For lower gainsG = 10, G = 1), the perfor-
mance starts to degrade 1Br= 10 and becomes not acceptable ®& 1 (Figure

1See the supplementary material for the mathematical details.
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Figure 7.11: Design 1: results forftérent gainsG. In all plots, red (dotted line) is the
inputZ to the insulation device, green (solid line) is the outudf the insulation device in
isolation (without the downstream binding sites p), bluasfted line) is the outpt of the
insulation device when downstream sites p are present. ptoés$, k(t) = 0.01(1+ sin(wt)),
prot = 100,Kgs = kon = 10,6 = 0.01, andw = 0.005. The parameter values ae= 0.01,
potor=1,nm1=n2=B=y=001,k =200k, =10, =0.1,6,=0.1,v=0.1, and
G =100Q100,10,1. The retroactivity to the output is not well attenuatedvalues of the
gainG = 1 and the attenuation capability begins to worser&er 10.

7.17). Since we can vievs as the number of transcripts produced per unit time
(one minute) per complex of protein Z bound to promotgmaluesG = 100,1000
may be dificult to realizein vivo, while the value<s = 10,1 could be more easily
realized. The values of the parameters chosen in Figdrkare such thaky > Z
andpo 1ot < Kg. This is enough to guarantee that there is small retroactivity
the input of the insulation device independently of the value of the @aactcord-

ing to relations 7.19. The poorer performance of the device @k 1 is therefore
entirely due to poor attenuation of the retroactiwstio the output.

Design 2: Amplification through phosphorylation

In this design, the amplification & is obtained by having activate the phos-
phorylation of a protein X, which is available in the system in abundancd.i$ha
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Insulation component

Figure 7.12: The dashed box contains the insulation device.blue parts highlight the
mechanism that provides negative feedback and amplifitaegative feedback occurs
through a phosphatase Y that converts the active fgback to its inactive formX.
Amplification occurs through Z activating the phosphorgatof X.

Z is a kinase for a protein X. The phosphorylated form of X, callggd Xnds to

the downstream sites, while X does not. A negative feedback,da obtained by
having a phosphatase Y activate the dephosphorylation of protgiRnétein Y is

also available in abundance in the system. This mechanism is depicted in Figure
7.12 A similar design has been proposed B%,[69], in which a MAPK cascade

plus a negative feedback loop that spans the length of the MAPK caicade-
sidered as a feedback amplifier. Our design is much simpler as it involves only
one phosphorylation cycle and does not require the additional feledibag. In

fact, we realize a strong negative feedback by the action of the phiasghidat
converts the active protein formpXo its inactive form X. This negative feedback,
whose strength can be tuned by varying the amount of phosphatase yrstbm s

is enough to mathematically and computationally show that the desired insulation
properties are satisfied.

We consider two dferent models for the phosphorylation and dephosphoryla-
tion processes. A one step reaction model is initially considered to illustrate wha
biochemical parameters realize the input g&@rand the negative feedback .
Then, we turn to a more realistic two step model to perform a parametric analysis
and numerical simulation. The one step model that we consider is the 08§:of |

Z+X 874X,

and
Y +Xp Ky + X.

We assume that there is plenty of protein X and of phosphatase Y in the system
that these quantities are conserved. The conservation of X)Xiwe§ +C = Xtor,
in which X is the inactive protein, Xis the phosphorylated protein that binds to
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the downstream sites p, and C is the complex of the phosphorylated prgiein X
bound to the promoter p. Th¢, dynamics can be described by the first equation
in the following model

d
ﬁ=k1>('|'o'|'Z(t)(l— %p —| <& )—szXp‘f"koﬁC—konxp(pTOT—C)‘

dt XTtoT Xrot

(7.20)
dC
ar - —kofC +konXp(proT - C). (7.21)

The boxed terms represent the retroactigitg the output of the insulation system
of Figure 7.12 For a weakly activated pathway3]), X, < Xror. Also, if we
assume that the concentration of total X is large compared to the concentftion
the downstream binding sites, that¥s,ot > proT, equation .20 is approxima-
tively equal to

dX
—P — Ky X1 oTZ(t) - k2Y Xp + KogiC — konXp(ProT —C).

dt
DenoteG = ki Xtotr andG’ = k»Y. Exploiting again the dierence of time scales
between theX, dynamics and th€ dynamics, after a fast initial transient, the
dynamics ofX, can be well approximated by

dXp ,
¢ = (GZ() - G'X)(1-d(). (7.22)

in which 0< d(t) < 1 is the dfect of the retroactivitys to the output after a short

transient. Therefore, fd& andG’ large enoughXp(t) tends to the solutioiX(t)

of the isolated systen‘% = GZ(t) - G'X,, as explained in Section®. As a con-

sequence, thefiect of the retroactivity to the outputis attenuated by increasing
kiXtotr andkoY enough. That is, to obtain large input and feedback gains, one
should have large phosphorylatidephosphorylation rates giod a large amount
of protein X and phosphatase Y in the system. This reveals that the valties of
phosphorylatiofdephosphorylation rates cover an important role toward the real-
ization of the insulation property of the module of Figuré2

We next consider a more complex model for the phosphorylation and depho
phorylation reactions and perform a parametric analysis to highlight the ebles
the various parameters for attaining the insulation properties. In partiaidamn-
sider a two-step reaction model such as those38j. [According to this model,
we have the following two reactions for phosphorylation and dephogfaiimn,
respectively:

X+2Z %clﬁxﬁz, (7.23)

2See the supplementary material for the mathematical details.
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and

Y +Xp BC BX +Y, (7.24)
in which G, is the [protein Xkinase Z] complex and s the [phosphatase/protein
Xp] complex. Additionally, we have the conservation equatiépsr = Y +Co, XtoT =
X+ Xp+C1+Cy+C, because proteins X and Y are not degraded. Therefore, the
differential equations modeling the insulation system of Figut@become

d—z=k(t)—5z —BiZXror(l- gl — s — & [ L€ )4 (B +k)Ca

dt Xror  Xror  Xror Xror
(7.25)
dCy Xp C1 C C
By +k ZXror(1- - - - 7.2
g = Bt k)CrtprZXron( Xror  Xeor  Xror | ¥ror ) (7.26)
dc, C,
— = —(kz + a’z)Cz + Q'J_YTOTXp(l - ) (7.27)
dt YroT
dXp C
— =kiC1+a2Cr—a1YrorXp(1- ) +’ KoffC — konXp(proT —C) ‘ (7.28)
dt YroT
dC
i —KofC +konXp(proT —C), (7.29)

in which the expression of gene z is controlled by a promoter with actigily

The terms in the large box in equation.25 represent the retroactivity to the
input, while the terms in the small box in equatioh2d and in the boxes of
equations 7.26) and (/.28 represent the retroactivityto the output. We assume
that XtoT > prot SO that in equations/(25 and (7.26) we can neglect the term
C/XtoT1 becauseC < prot. Also, phosphorylation and dephosphorylation reac-
tions in equations7.23 and (7.24) can occur at a much faster rate (on the time
scale of a secondtf]) than protein production and decay processes (on the time
scale of minutesd]). ChoosingXtot and Yyor suficiently large, the separation

of time-scales between equatioh45 and equations7(26-7.29 can be explic-

itly modeled by lettinge = 6/Kop, kon = Kog/Kd, and by defining the new rate con-
stantsh; =B1XT0T€/d, a1 = a1 YTOTE/ O, b, =f2€/0, a2 = a2€/0, C; = eki /6. Letting
z=Z+Cq (the total amount of kinase) be the slow variable, we obtain the system
in the standard singular perturbation form

dz
a - KD-6(z-Cy)
dC; Xp C1 Co
e—— = —06(ba+C1)Cqp+6b1(z—Cq)(1- - -
Ot (b2 +¢1)Cy + by (z2— Cy)( Xror Xror  Xror
6@ = —=0(Co+ap)Co+oapXp(1l- &)
dt YtoT
pr C2
e—> = 0CiCy+082Co—6arXp(1— =)+ 6C —6/ka(ProT—C)Xp |
dt YtoT
Ec(jj—ct: = —6C+6/kd(pTOT—C)Xp, (7.30)
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in which the boxed terms represent the retroactivity to the owgpile then com-

pute the dynamics on the slow manifold by letting: 0. When we set = 0, the

terms due to the retroactivityvanish. This means that if the internal dynamics of
the insulation device evolve on a time scale that is much faster than the dynamics
of the input signak, then (provided we also havé- ot > proT) the retroactivitys

to the output has nofkect on the dynamics of, at the quasi steady state. This is a
crucial feature of this design. Letting= (82 + ki1)/81 andy = (a2 + k2) /a1, setting

€ = 0in the third and fourth equations of.@0 the following relationships can be
obtained:

XpYToTk2 XpYTOT
_ vk
C1=Fi(Xp) = T %o)5 Co=F2(Xp) = 1 X 5 (7.31)
Using expressions/(31) in the second of equation$.80 with € = 0 leads to

b:Z X Fao(X

F1(Xp)(0p + €1+ ——) = by Z(1 - -2 — 2Xp), (7.32)
Xrot Xror  Xror

Assuming for simplicity thaiX, < y, we obtain that1(X;) ~ m and that

Fa(Xp) = %YTOT. As a consequence of these simplifications, equald32( leads

to -
Xp = = = m(2).

= (1+ Yror/y + (Yrorka)/(vke) + YTOTkZ (b2 + Cl)
In order not to have distortion from to X, we reqwre that

Y
Yrorgel

Z< (7.33)

1+ Yror | Yrork’
Y Y ki

so thatm(Z) ~ ZXTOTW1 and therefore we have a linear relationship betw&eand

Z with gain fromZ to Xp given byﬁgg‘é In order not to have attenuation frafn
to X, we require that the gain is greater than or equal to one, that is,

Xt OT7—’k1

> 1. 7.34
Yrotyke (7.34)

input/output gairns
Requirements7.33, (7.34, and X, < y are enough to guarantee that we do not
have nonlinear distortion betweéhand X, and thatX is not attenuated with
respect t&Z. In order to guarantee that the retroactivityp the input is sfficiently
small, we need to quantify the retroactivitffext on theZ dynamics due to the
binding of Z with X. To achieve this, we proceed as in Secfiadby computing
the Z dynamics on the slow manifold, which gives a good approximation of the
dynamics ofZ if e ~ 0. Such a dynamics is given by

dZ dFy dXp

- () -02)1- 252,
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in which 3—2% measures thefkect of the retroactivity to the input on theZ

dynamics. Direct computation (ﬂ% and of% along withXp, <y and with (7.33

leads toﬁ—%% ~ Xtot/7, SO that in order to have small retroactivity to the input,

we require that

Xtot

Y

Concluding, for having attenuation of th&exct of the retroactivity to the output
s, we require that the time scale of the phosphorylgtephosphorylation reac-
tions is much faster than the production and decay processes of Z (thetonpu
the insulation device) and thatr ot > pror, that is, the total amount of protein
Xis in abundance compared to the downstream binding sites p. To obtain also a
small dfect of the retroactivity to the input, we require that> Xtot as estab-
lished by relation7.35. This is satisfied if, for example, kinase Z has loffiraty
to binding with X. To keep the inpfdutput gain betweed and X, close to one
(from equation 7.34), one can choos¥to1 = YroT, @and equal ca&cients for the
phosphorylation and dephosphorylation reactions, thatisy andk; = ko.

Simulation results. System in equations/(25-7.29 was simulated with and
without the downstream binding sites p, that is, with and without, respectiely
terms in the small box of equatioi.5 and in the boxes in equations.28 and
(7.26). This is performed to highlight theffect of the retroactivity to the outpust
on the dynamics aoX,. The simulations validate our theoretical study that indicates
that whenXtot > prot and the time scales of phosphorylafid@phosphorylation
are much faster than the time scale of decay and production of the proteia Z, th
retroactivity to the outpusis very well attenuated (Figurg13 plot A). Similarly,
the time behavior oZ was simulated with and without the terms in the large box
in equation 7.25, that is, with and without X to which Z binds, to verify whether
the insulation component exhibits retroactivity to the inpuh particular, the ac-
cordance of the behaviors dft) with and without its downstream binding sites
on X (Figure7.13 plot B), indicates that there is no substantial retroactivity to the
inputr generated by the insulation device. This is obtained bec¥yise < y as
indicated in equation7.39), in which 1/ can be interpreted as théiaity of the
binding of X to Z. Our simulation study also indicates that a faster time scale of
the phosphorylatigidephosphorylation reactions is necessary, even for high values
of Xyo1 andYtoT, to maintain perfect attenuation of the retroactivity to the output
s and small retroactivity to the output In fact, slowing down the time scale of
phosphorylation and dephosphorylation, the system looses its insulatiparpr
(Figure7.14). In particular, the attenuation of théect of the retroactivity to the
outputsis lost because there is not enough separation of time scales between the
Z dynamics and the internal device dynamics. The device also displays a&gen n
ligible amount of retroactivity to the input because the conditieg Xt IS not
satisfied anymore.

<1 (7.35)
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Phosphorylation and dephosphorylation with fast time scale

X Protein Concentration

1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Z Protein Concentration

1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (min)

Figure 7.13: Simulation results for system in equatioh2%-7.29. In all plots, ptoT =
100, kofr = kon = 10,6 = 0.01, k(t) = 0.01(1+ sin(wt)), andw = 0.005. In subplots A and
B, k1 = ko =50,a1 =81 =0.01,82 = a2 = 10, andY1oT1 = X707 = 1500. In subplot A, the
signalXp(t) without the downstream binding sites p is in green (sofié)j while the same
signal with the downstream binding sites p is in blue (dadime]. The small error shows
that the &ect of the retroactivity to the outputis attenuated very well. In subplot B, the
signal Z(t) without X to which Z binds is in red (solid), while the samegrsal Z(t) with

X present in the systenX¢ ot = 1500) is in black (dashed line). The small error confirms
a small retroactivity to the input. The values of the compkeroncentration€; andC,
oscillate about 0.4, so they are comparable to the valuXg.of
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Phosphorylation and dephosphorylation with slow time scale

X Protein Concentration

Z Protein Concentration

0 L 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (min)

Figure 7.14: In all plotsprot = 100 andkoy = kon = 10,6 = 0.01,k(t) = 0.01(1+ sin(wt)),
andw = 0.005. Phosphorylation and dephosphorylation rates areesltvan the ones in
Figure7.13 that is,k; = ko = 0.01, while the other parameters are left the same, that is,
@2 = 2 =10, a1 = 1 = 0.01, andYrot = Xro1 = 1500. In subplot A, the signaXy(t)
without the downstream binding sites p is in green (solid)linvhile the same signal with
the downstream binding sites p is in blue (dashed line). Tieekof the retroactivity to the
outputsis dramatic. In subplot B, the signa(t) without X in the system is in red (solid
line), while the same signal(t) with X in the system is in black (dashed line). The device
thus also displays a large retroactivity to the input
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Appendices

These appendices provide some background information that may loé teser-
ious readers of the book, depending on prior background. Mosteofrthterial

here is extracted from other documents, as referenced in the introdtetéaTh
appendix.






Appendix A
Cell Biology Primer

Note The text and figures in this chapter are basedAdBcience Primeby the
National Center for Biotechnology Information (NCBI) of the National laky
of Medicine (NLM) at the National Institutes of Health (NIH}7]. The text in
this chapter is not subject to copyright and may be used freely for ampppe, as
described by the NLM:

Information that is created by or for the US government on this site is
within the public domain. Public domain information on the National
Library of Medicine (NLM) Web pages may be freely distributed and
copied. However, it is requested that in any subsequent use of this
work, NLM be given appropriate acknowledgment.

Some minor modifications have been made, including insertion of additional fig-
ures (from the NHGRI Talking Glossarp§]), deletion of some of the text not
needed here, and minor editorial changes to maintain consistency with the main
text.

The original material included here can be retrieved from the following web
sites:

e http://www.ncbi.nlm.nih.gov/About/primer/genetics.html
e http://www.genome.gov/glossary

We gratefully acknowledge the National Library of Medicine for this material.


http://www.ncbi.nlm.nih.gov/About/primer/genetics.html
http://www.genome.gov/glossary
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Eukaryote Prokaryote

4.5 billion years ago Earth Formed

3.5 billion years ago First Life -- Prokaryotic
Bacteria Dominate

1.5 billion years ago Nucleated Cells Arise

Flagellum 0.5 billion years ago Multi-Cellular
Eukaryotes Arise
Cell Membrane
(a) Cell types (b) Timeline

Figure A.1: Eukaryotes and prokaryotes. (a) This figurestfiates a typical human cell
(eukaryotg and a typical bacteriunpokaryot§. The drawing on the left highlights the
internal structures of eukaryotic cells, including the leus (light blue), the nucleolus
(intermediate blue), mitochondria (orange), and riboso(dark blue). The drawing on the
right demonstrates how bacterial DNA is housed in a strectatled the nucleoid (very
light blue), as well as other structures normally found irr@karyotic cell, including the
cell membrane (black), the cell wall (intermediate blubg tapsule (orange), ribosomes
(dark blue), and a flagellum (also black). (b) History of lifie earth. Figures courtesy the
National Library of Medicine.

A.1 Whatis a Cell

Cells are the structural and functional units of all living organisms. Some or
ganisms, such as bacteria, are unicellular, consisting of a single cell. @ther
ganisms, such as humans, are multicellular, or have many cells—an estimated
100,000,000,000,000 cells! Each cell is an amazing world unto itself: it caririak
nutrients, convert these nutrients into energy, carry out specializedidns, and
reproduce as necessary. Even more amazing is that each cell stores getomf
instructions for carrying out each of these activities.

Cell Organization

Before we can discuss the various components of a cell, it is important i@ kno
what organism the cell comes from. There are two general categories|lsf
prokaryotesandeukaryotegsee Figuréd.1a).

Prokaryotic Organisms

It appears that life arose on earth about 4 billion years ago (see FAglibeThe
simplest of cells, and the first types of cells to evolve, were prokaryotis—ee
organisms that lack a nuclear membrane, the membrane that surroundsléhesnu
of a cell. Bacteria are the best known and most studied form of proiarge
ganisms, although the recent discovery of a second group of ptkatycalled
archaea has provided evidence of a third cellular domain of life and new insights
into the origin of life itself.
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Prokaryotes are unicellular organisms that do not developfterditiate into
multicellular forms. Some bacteria grow in filaments, or masses of cells, but each
cell in the colony is identical and capable of independent existence. &lle ¢
may be adjacent to one another because they did not separate aftavisahd
or because they remained enclosed in a common sheath or slime secreted by the
cells. Typically though, there is no continuity or communication between the cells.
Prokaryotes are capable of inhabiting almost every place on the eanth,tlire
deep ocean, to the edges of hot springs, to just about every soffaaebodies.

Prokaryotes are distinguished from eukaryotes on the basis of nwctpami-
zation, specifically their lack of a nuclear membrane. Prokaryotes als@igckf
the intracellular organelles and structures that are characteristic afyetikaells.
Most of the functions of organelles, such as mitochondria, chloroplaststhe
Golgi apparatus, are taken over by the prokaryotic plasma membraheriRytc
cells have three architectural regions: appendages dipellaandpili—proteins
attached to the cell surfacerell envelopeonsisting of a capsule,cell wall, and
aplasma membranand acytoplasmic regiotihat contains theell genomé&DNA)
and ribosomes and various sorts of inclusions.

Eukaryotic Organisms

Eukaryotednclude fungi, animals, and plants as well as some unicellular organ-
isms. Eukaryotic cells are about 10 times the size of a prokaryote and can be
as much as 1000 times greater in volume. The major and extremely significant
difference between prokaryotes and eukaryotes is that eukaryotic cathsirco
membrane-bound compartments in which specific metabolic activities take place.
Most important among these is the presence of a nucleus, a membranatgeline
compartment that houses the eukaryotic cell’s DNA. It is this nucleus thes the
eukaryote—literally, true nucleus—its name.

Eukaryotic organisms also have other specialized structures, catjadelles
which are small structures within cells that perform dedicated functionghés
name implies, you can think of organelles as small organs. There are ia dibze
ferent types of organelles commonly found in eukaryotic cells. In this primer
will focus our attention on only a handful of organelles and will examineghes
organelles with an eye to their role at a molecular level in the cell.

The origin of the eukaryotic cell was a milestone in the evolution of life. Al-
though eukaryotes use the same genetic code and metabolic processdans p
otes, their higher level of organizational complexity has permitted the develop
ment of truly multicellular organisms. Without eukaryotes, the world would lack
mammals, birds, fish, invertebrates, mushrooms, plants, and complex sitigkk-c
organisms.
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Organelles

Nucleus —

Nucleolus

e

Ribosomes
Rough ———7 .1
Endoplasmic

Reticulum Mitochondrion

Lysosomes

Smooth —— 7
Endoplasmic
Reticulum

Golgi Body

Microtubule
Centrioles

—cel

Figure A.2: An organelle is a subcellular structure that dlas or more specific jobs to
perform in the cell, much like an organ does in the body. Amtiregmore important cell
organelles are the nuclei, which store genetic informatioitochondria, which produce
chemical energy; and ribosomes, which assemble proteins.

Cell Structures: The Basics
The Plasma Membrane—A Cell’s Protective Coat

The outer lining of a eukaryotic cell is called tipglasma membranelhis mem-
brane serves to separate and protect a cell from its surroundingpemént and

is made mostly from a double layer of proteins and lipids, fat-like molecules. Em-
bedded within this membrane are a variety of other molecules that act asethann
and pumps, moving ftierent molecules into and out of the cell. A form of plasma
membrane is also found in prokaryotes, but in this organism it is usuallyreefe

to as thecell membrane

The Cytoskeleton—A Cell’'s Scaffold

Thecytoskeletoris an important, complex, and dynamic cell component. It acts to
organize and maintain the cell's shape; anchors organelles in place;chelpg
endocytosisthe uptake of external materials by a cell; and moves parts of the cell
in processes of growth and motility. There are a great number of protspsiated
with the cytoskeleton, each controlling a cell’s structure by directing, bugchind
aligning filaments.
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Nucleus

Il | cell
fl | Membrane

Figure A.3: The cell membrane, also called the plasma memebiia found in all cells
and separates the interior of the cell from the outside enuient. The cell membrane
consists of a lipid bilayer that is semipermeable. The celinbrane regulates the transport
of materials entering and exiting the cell.

The Cytoplasm—A Cell’s Inner Space

Inside the cell there is a large fluid-filled space called ¢giiplasm sometimes
called thecytosol In prokaryotes, this space is relatively free of compartments. In
eukaryotes, theytosolis the “soup” within which all of the cell’s organelles reside.

It is also the home of the cytoskeleton. The cytosol contains dissolved mistrie
helps break down waste products, and moves material around the celyjlthao
process calledytoplasmic streamingrhe nucleus often flows with the cytoplasm
changing its shape as it moves. The cytoplasm also contains many salts and is a
excellent conductor of electricity, creating the perfect environment éontechan-

ics of the cell. The function of the cytoplasm, and the organelles which resitje

are critical for a cell’'s survival.

Genetic Material

Two different kinds of genetic material existeoxyribonucleic acid (DNAgndri-
bonucleic acid (RNA)Most organisms are made of DNA, but a few viruses have
RNA as their genetic material. The biological information contained in an onganis
is encoded in its DNA or RNA sequence. Prokaryotic genetic material is gz

in a simple circular structure that rests in the cytoplasm. Eukaryotic genetic mate-
rial is more complex and is divided into discrete units caiedesHuman genetic
material is made up of two distinct components: iielear genomand themito-
chondrial genomeThe nuclear genome is divided into 24 linear DNA molecules,
each contained in a flierentchromosomeThe mitochondrial genomés a circu-

lar DNA molecule separate from the nuclear DNA. Although the mitochondrial
genome is very small, it codes for some very important proteins.
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Nucleus

Nuclear Membrane

Nucleolus —#=
> Nucleopore

Chromatin

Figure A.4: A nuclear membrane is a double membrane thabseslthe cell nucleus.
It serves to separate the chromosomes from the rest of theTbel nuclear membrane
includes an array of small holes or pores that permit thegugesef certain materials, such
as nucleic acids and proteins, between the nucleus andagiop

Organelles

The human body contains manyfférent organs, such as the heart, lung, and kid-
ney, with each organ performing af@irent function. Cells also have a set of “little
organs”, calledrganellesthat are adapted afuit specialized for carrying out one
or more vital functions. Organelles are found only in eukaryotes andlesmzys
surrounded by a protective membrane. It is important to know some basic fa
about the following organelles.

The Nucleus—A Cell's CenteFhe nucleusis the most conspicuous organelle
found in a eukaryotic cell. It houses the cell's chromosomes and is the\plaere
almost all DNA replication and RNA synthesis occur. The nucleus is smghero
in shape and separated from the cytoplasm by a membrane calleuithesar
envelope The nuclear envelope isolates and protects a cell’s DNA from various
molecules that could accidentally damage its structure or interfere with itsgsroce
ing. During processing, DNA igranscribed or synthesized, into a special RNA,
called mRNA. This mRNA is then transported out of the nucleus, where it istran
lated into a specific protein molecule. In prokaryotes, DNA processing teliaee

in the cytoplasm.

The Ribosome—The Protein Production Machine. Ribosaredound in both
prokaryotes and eukaryotes. The ribosome is a large complex composehy
molecules, including RNAs and proteins, and is responsible for procettsrge-

netic instructions carried by an mRNA. The process of converting an mRNA
genetic code into the exact sequence of amino acids that make up a protein is
calledtranslation Protein synthesis is extremely important to all cells, and there-
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Mitochondria

Outer membrane

Inner membrane

Figure A.5: Mitochondria are membrane-bound cell orga&se{mitochondrion, singular)
that generate most of the chemical energy needed to poweelitsshiochemical reactions.
Chemical energy produced by the mitochondria is stored mallsnolecule called adeno-
sine triphosphate (ATP). Mitochondria contain their owraimmhromosomes. Generally,
mitochondria, and therefore mitochondrial DNA, are intestionly from the mother.

fore a large number of ribosomes—sometimes hundreds or even thouszamls
be found throughout a cell.

Ribosomes float freely in the cytoplasm or sometimes bind to another organelle
called the endoplasmic reticulum. Ribosomes are composed of one largeeand on
small subunit, each having affiirent function during protein synthesis.

Mitochondria and Chloroplasts—The Power Generators. Mitochondria self-
replicating organelles that occur in various numbers, shapes, andrsthescyto-
plasm of all eukaryotic cells. As mentioned earlier, mitochondria contain their o
genome that is separate and distinct from the nuclear genome of a cell. btitoch
dria have two functionally distinct membrane systems separated by a space: th
outer membranewhich surrounds the whole organelle; and iieer membrange
which is thrown into folds or shelves that project inward. These inwaikfare
called cristae The number and shape of cristae in mitochondrigedi depend-
ing on the tissue and organism in which they are found, and serve to $ecttea
surface area of the membrane.

Mitochondria play a critical role in generating energy in the eukaryotic cell,
and this process involves a number of complex pathways. Let’s breai dagh
of these steps so that you can better understand how food and nutreetisreed
into energy packets and water. Some of the best energy-supplying thatiwe
eat contain complex sugars. These complex sugars can be brokenimowan
less chemically complex sugar molecule caltgdcose Glucose can then enter
the cell through special molecules found in the membrane, cgllezbse trans-
porters Once inside the cell, glucose is broken down to ma#tenosine triphos-
phate (ATP)a form of energy, via two dierent pathways.

The first pathwayglycolysis requires no oxygen and is referred taaserobic
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./cellbio/figures/MBoC_02_70.dps

./cellbio/figures/MBoC_02_82.eps

(a) Glycolysis (b) Kreb's cycle

Figure A.6: Cell energy production. Reproduced from Albat al. P]; permission pend-
ing.

metabolismGlycolysis occurs in the cytoplasm outside the mitochondria. During
glycolysis, glucose is broken down into a molecule cafigduvate Each reaction

is designed to produce some hydrogen ions that can then be used to mele en
packets ATP). However, only four ATP molecules can be made from one molecule
of glucose in this pathway. In prokaryotes, glycolysis is the only method fose
converting energy.

The second pathway, called tikeeb’s cycle or thecitric acid cycle occurs
inside the mitochondria and is capable of generating enough ATP to run aklihe
functions. Once again, the cycle begins with a glucose molecule, whichgdinen
process of glycolysis is stripped of some of its hydrogen atoms, transfgrimén
glucose into two molecules gfyruvic acid Next, pyruvic acid is altered by the
removal of a carbon and two oxygens, which go on to form carbon dtoXihen
the carbon dioxideis removed, energy is giverffpand a molecule called NAD
is converted into the higher energy form, NADH. Another molecatesnzyme A
(CoA), then attaches to the remaining acetyl unit, formacgtyl CoA

Acetyl CoAenters the Kreb'’s cycle by joining to a four-carbon molecule called
oxaloacetateOnce the two molecules are joined, they make a six-carbon molecule
called citric acid. Citric acid is then broken down and modified in a stepwise fash
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ion. As this happens, hydrogen ions and carbon molecules are rel&agsachrbon
molecules are used to make more carbon dioxide. The hydrogen ionsled pjT

by NAD and another molecule calldlivin-adenine dinucleotide (FADEventu-
ally, the process produces the four-carbon oxaloacetate againgamuiwhere it
started €. All in all, the Kreb's cycle is capable of generating from 24 to 28 ATP
molecules from one molecule of glucose converted to pyruvate. Therafds
easy to see how much more energy we can get from a molecule of glucase if o
mitochondria are working properly and if we have oxygen.

Chloroplastsare similar to mitochondria but are found only in plants. Both
organelles are surrounded by a double membrane with an intermembraee spa
both have their own DNA and are involved in energy metabolism; and both have
reticulations, or many foldings, filling their inner spaces. Chloroplastsarbtight
energy from the sun into ATP through a process cagbledtosynthesis

The Endoplasmic Reticulum and the Golgi Apparatus—Macromoleculedé¢ana
Theendoplasmic reticulum (ER the transport network for molecules targeted for
certain modifications and specific destinations, as compared to moleculeslthat w
float freely in the cytoplasm. The ER has two forms: thegh ERand thesmooth
ER The rough ER is labeled as such because it has ribosomes adheringiteiits o
surface, whereas the smooth ER does not. Translation of the mRNA fer pinos
teins that will either stay in the ER or lexportedmoved out of the cell) occurs at
the ribosomes attached to the rough ER. The smooth ER serves as the tdoipien
those proteins synthesized in the rough ER. Proteins to be exportedsaeziia
the Golgi apparatus sometimes called a Golgi body or Golgi complex, for further
processing, packaging, and transport to a variety of other cellulaidosa

Lysosomes and Peroxisomes—The Cellular Digestive System. Lysesuiper-
oxisomesare often referred to as the garbage disposal system of a cell. Both or-
ganelles are somewhat spherical, bound by a single membrane, and rigksn d
tive enzymes, naturally occurring proteins that speed up biochemiced$ses.
For example, lysosomes can contain more than three dozen enzymesraaidgg
proteins, nucleic acids, and certain sugars called polysaccharidex.tAése en-
zymes work best at a low pH, reducing the risk that these enzymes willtdiggs
own cell should they somehow escape from the lysosome. Here we cdhesee
importance behind compartmentalization of the eukaryotic cell. The cell cotld no
house such destructive enzymes if they were not contained in a mentiwand-
system.

One function of a lysosome is to digest foreign bacteria that invade a cedir Oth
functions include helping to recycle receptor proteins and other memboamgoes
nents and degrading worn out organelles such as mitochondria. logegscan
even help repair damage to the plasma membrane by serving as a membrane patch
sealing the wound.

Peroxisomes function to rid the body of toxic substances, such as lgrdrog
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Figure A.7: Endoplasmic reticulum is a network of membransile a cell through which
proteins and other molecules move. Proteins are assentiegbaelles called ribosomes.
(a) When proteins are destined to be part of the cell membraegported from the cell,
the ribosomes assembling them attach to the endoplasnitlteh, giving it a rough
appearance. (b) Smooth endoplasmic reticulum lacks rihes@nd helps synthesize and
concentrate various substances needed by the cell.

peroxide, or other metabolites and contain enzymes concerned with ouiijeas

tion. High numbers of peroxisomes can be found in the liver, where toxicooly

ucts are known to accumulate. All of the enzymes found in a peroxisome are im-
ported from the cytosol. Each enzyme transferred to a peroxisime hascelsp
sequence at one end of the protein, calldlT&or peroxisomal targeting signal

that allows the protein to be taken into that organelle, where they then furtotion
rid the cell of toxic substances.

Peroxisomes often resemble a lysosome. However, peroxisomes arepself r
cating, whereas lysosomes are formed in the Golgi complex. Peroxisonees als
have membrane proteins that are critical for various functions, suar &sport-
ing proteins into their interiors and to proliferate and segregate into daugiter

Where Do Viruses Fit?

Viruses are not classified as cells and therefore are neither unicelturlanuti-
cellular organisms. Most people do not even classify viruses as “liiiregause
they lack a metabolic system and are dependent on the host cells that gatytonf
reproduce. Viruses have genomes that consist of either DNA or RiRtheere are
examples of viruses that are either double-stranded or single-strangextantly,
their genomes code not only for the proteins needed to package its genetiama
but for those proteins needed by the virus to reproduce during its ivdenjtcle.
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Figure A.8: A Golgi body, also known as a Golgi apparatus, ¢gelhorganelle that helps
process and package proteins and lipid molecules, eslyepiateins destined to be ex-
ported from the cell. Named after its discoverer, Camilldggahe Golgi body appears as
a series of stacked membranes.

Making New Cells and Cell Types

For most unicellular organisms, reproduction is a simple matteelbtiuplication

also known ageplication But for multicellular organisms, cell replication and
reproduction are two separate processes. Multicellular organismseefdataged

or worn out cells through a replication process calteidosis the division of a
eukaryotic cell nucleus to produce two identickughter nuclei To reproduce,
eukaryotes must first create special cells cajathetes-eggs and sperm—that
then fuse to form the beginning of a new organism. Gametes are but one of th
many unique cell types that multicellular organisms need to function as a complete
organism.

Making New Cells

Most unicellular organisms create their next generation by replicating &tledf

parts and then splitting into two cells, a typeasfexual reproductionalledbinary
fission This process spawns not just two new cells, but also two new organisms.
Multicellullar organisms replicate new cells in much the same way. For example,
we produce new skin cells and liver cells by replicating the DNA found in¢kkt
through mitosis. Yet, producing a whole new organism requsexsial reproduc-

tion, at least for most multicellular organisms. In the first step, specialized cells
called gametes—eggs and sperm—are created through a process called meiosis.
Meiosisserves to reduce the chromosome number for that particular organism by
half. In the second step, the sperm and egg join to make a single cell, whioha®
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Figure A.9: Mitosis is a cellular process that replicatesoaibsomes and produces two
identical nuclei in preparation for cell division. Gendyamitosis is immediately followed
by the equal division of the cell nuclei and other cell cotdento two daughter cells.

the chromosome number. This joined cell then divides afféréntiates into dif-
ferent cell types that eventually form an entire functioning organism.

Mitosis. Every time a cell divides, it must ensure that its DNA is shared between
the two daughter cells. Mitosis is the process of “divvying up” the genortvedsmn

the daughter cells. To easier describe this process, let's imagine a cellmyth o
one chromosome. Before a cell enters mitosis, we say the cellrigarphasethe
state of a eukaryotic cell when not undergoing division. Every time a sétles, it
must first replicate all of its DNA. Because chromosomes are simply DNA veichpp
around protein, the cell replicates its chromosomes also. These two cluoess
positioned side by side, are callsidter chromatidend are identical copies of one
another. Before this cell can divide, it must separate these sister diderfram

one another. To do this, the chromosomes have to condense. This stagesi$

is calledprophase Next, the nuclear envelope breaks down, and a large protein
network, called thespindle attaches to each sister chromatid. The chromosomes
are now aligned perpendicular to the spindle in a process calégdphaseNext,
“molecular motors” pull the chromosomes away from the metaphase plate to the
spindle poles of the cell. This is calleshaphaseOnce this process is completed,
the cells divide, the nuclear envelope reforms, and the chromosomesaredax
decondense durintglophase The cell can now replicate its DNA again during
interphase and go through mitosis once more.

Meiosis. Meiosiss a specialized type of cell division that occurs during the forma-
tion of gametes. Although meiosis may seem much more complicated than mitosis,
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Figure A.10: Meiosis is the formation of egg and sperm ceéfissexually reproducing
organisms, body cells are diploid, meaning they containgets of chromosomes (one set
from each parent). To maintain this state, the egg and sgetnhite during fertilization
must be haploid, meaning they each contain a single set ofrddsomes. During meiosis,
diploid cells undergo DNA replication, followed by two radsiof cell division, producing
four haploid sex cells.

it is really just two cell divisions in sequence. Each of these sequendesama
strong similarities to mitosis.

Meiosis Irefers to the first of the two divisions and is often calledréduction
division This is because it is here that the chromosome complement is reduced
from diploid (two copies) tchaploid (one copy). Interphase in meiosis is identical
to interphase in mitosis. At this stage, there is no way to determine what type of
division the cell will undergo when it divides. Meiotic division will only oacin
cells associated with male or female sex orgdephase lis virtually identical
to prophase in mitosis, involving the appearance ofd®mosomeshe devel-
opment of the spindle apparatus, and the breakdown of the nuclear nmeambra
Metaphase | is where the criticalffirence occurs between meiosis and mitosis.
In mitosis, all of the chromosomes line up on the metaphase plate in no particu-
lar order. In Metaphase |, the chromosome pairs are alighed on eitheofdide
metaphase plate. It is during this alignment that the chromatid arms may overlap
and temporarily fuse, resulting in what is callesbssoversDuring Anaphase ||
the spindle fibers contract, pulling the homologous pairs away from eaehant
toward each pole of the cell. [felophase ,la cleavage furrow typically forms,
followed by cytokinesisthe changes that occur in the cytoplasm of a cell during
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nuclear division; but the nuclear membrane is usually not reformed, anchtio-
mosomes do not disappear. At the end of Telophase |, each daughteasa
single set of chromosomes, half the total number in the original cell, that ike wh
the original cell was diploid; the daughter cells are now haploid.

Meiosis Ilis quite simply a mitotic division of each of the haploid cells pro-
duced in Meiosis I. There is no Interphase between Meiosis | and MeiRsis |
and the latter begins witRrophase Il At this stage, a new set of spindle fibers
forms and the chromosomes begin to move toward the equator of the cell. During
Metaphase |l all of the chromosomes in the two cells align with the metaphase
plate. InAnaphase lIthe centromeres split, and the spindle fibers shorten, drawing
the chromosomes toward each pole of the cellTdtophase lla cleavage furrow
develops, followed by cytokinesis and the formation of the nuclear membraee
chromosomes begin to fade and are replaced bygthaular chromatin a char-
acteristic of interphase. When Meiosis Il is complete, there will be a totalwf fo
daughter cells, each with half the total number of chromosomes as the original
cell. In the case afmale structuresall four cells will eventually develop intsperm
cells In the case of théemale life cyclesn higher organisms, three of the cells
will typically abort, leaving a single cell to develop into an egg cell, which is much
larger than a sperm cell.

Recombination—The Physical Exchange of DIA.organisms sifer a certain
number of smalimutations or random changes in a DNA sequence, during the
process of DNA replication. These are callggbntaneous mutatiorend occur

at a rate characteristic for that organisBenetic recombinationefers more to a
large-scale rearrangement of a DNA molecule. This process involvesgphe-
tween complementary strands of two parental duplex, or double-strddidad,

and results from a physical exchange of chromosome material.

The position at which a gene is located on a chromosome is caleia In a
given individual, one might find two €fierent versions of this gene at a particular
locus. These alternate gene forms are cadléeles During Meiosis |, when the
chromosomes line up along the metaphase plate, the two strands of a chromosome
pair may physically cross over one another. This may cause the strandsato b
apart at the crossover point and reconnect to the other chromosesuétjng in
the exchange of part of the chromosome.

Recombination results in a new arrangement of maternal and paternal alleles
on the same chromosome. Although the same genes appear in the same erder, th
alleles are dferent. This process explains whifspring from the same parents can
look so diferent. In this way, it is theoretically possible to have any combination
of parental alleles in anftspring, and the fact that two alleles appear together in
one dfspring does not have any influence on the statistical probability that anothe
offspring will have the same combination. This theoryioffependent assortmént
of alleles is fundamental to genetic inheritance. However, having said the, ith
an exception that requires further discussion.
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The frequency of recombination is actually not the same for all gene combi-
nations. This is because recombination is greatly influenced by the proximity of
one gene to another. If two genes are located close together on a cobromdbe
likelihood that a recombination event will separate these two genes is less than
they were farther apart.inkagedescribes the tendency of genes to be inherited
together as a result of their location on the same chromosimieage disequilib-
rium describes a situation in which some combinations of genes or genetic markers
occur more or less frequently in a population than would be expected freim th
distances apart. Scientists apply this concept when searching for dahgémeay
cause a particular disease. They do this by comparing the occurreacpetific
DNA sequence with the appearance of a disease. When they find a higlaton
between the two, they know they are getting closer to finding the appropéate g
sequence.

Binary Fission—How Bacteria ReproducBacteria reproduce through a fairly
simple process calldninary fission or the reproduction of a living cell by division
into two equal, or near equal, parts. As just noted, this type of asexuraldection
theoretically results in two identical cells. However, bacterial DNA has divelg
high mutation rate. This rapid rate of genetic change is what makes bacteaia ca
ble of developing resistance to antibiotics and helps them exploit invasion into a
wide range of environments.

Similar to more complex organisms, bacteria also have mechanisms for ex-
changing genetic material. Although not equivalent to sexual reprodudtie
end result is that a bacterium contains a combination of traits from tftereint
parentalcells. Three dierent modes of exchange have thus far been identified in
bacteria.

Conjunctioninvolves the direct joining of two bacteria, which allows their cir-
cular DNAs to undergo recombination. Bacteria can also undeagsformation
by absorbing remnants of DNA from dead bacteria and integrating theg@énts
into their own DNA.. Lastly, bacteria can exchange genetic material thropgb-a
cess calledransduction in which genes are transported into and out of the cell
by bacterial viruses, calleblacteriophagesor by plasmids an autonomous self-
replicating extrachromosomal circular DNA.

Viral ReproductionBecause viruses are acellular and do not use ATP, they must
utilize the machinery and metabolism of a host cell to reproduce. For thisimeas
viruses are calledbligate intracellular parasitesBefore a virus has entered a host
cell, it is called a virion—a package of viral genetic materiations—infectious

viral particles—can be passed from host to host either through dicetact or
through a vector, or carrier. Inside the organism, the virus can entf & war-

ious ways. Bacteriophages—bacterial viruses—attach to the cell wédicsuin
specific places. Once attached, enzymes make a small hole in the cell wall, and
the virus injects its DNA into the cell. Other viruses (such as HIV) enter the hos
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Figure A.11: Types of viruses. This illustration depictseth types of viruses: a bacterial
virus, otherwise called a bacteriophage (left center); mimal virus (top right); and a

retrovirus (bottom right). Viruses depend on the host dadlt tthey infect to reproduce.
When found outside of a host cell, viruses, in their simplestf, consist only of genomic
nucleic acid, either DNA or RNA (depicted as blue), surrceshdy a protein coat, or

capsid.

via endocytosisthe process whereby cells take in material from the external envi-
ronment. After entering the cell, the virus’s genetic material begins the dégé&u
process of taking over the cell and forcing it to produce new viruses.

There are three fferent ways genetic information contained in a viral genome
can be reproduced. The form of genetic material contained imithecapsid the
protein coat that surrounds the nucleic acid, determines the exact tigplipgo-
cess. Some viruses have DNA, which once inside the host cell is replicatie
host along with its own DNA. Then, there are twdtdrent replication processes
for viruses containing RNA. In the first process, the viral RNA is directipied
using an enzyme calleleNA replicaseThis enzyme then uses that RNA copy as
a template to make hundreds of duplicates of the original RNA. A secongbgrou
of RNA-containing viruses, called thretroviruses uses the enzyme reverse tran-
scriptase to synthesize a complementary strand of DNA so that the virugsge
information is contained in a molecule of DNA rather than RNA. The viral DNA
can then be further replicated using the host cell machinery.

Steps Associated with Viral Reproduction.

1. Attachmentsometimes calledbsorption The virus attaches to receptors on
the host cell wall.

2. Penetration The nucleic acid of the virus moves through the plasma mem-
brane and into the cytoplasm of the host cell. The capsid of a phagetea bac
rial virus, remains on the outside. In contrast, many viruses that infengan
cells enter the host cell intact.

3. Replication The viral genome contains all the information necessary to pro-
duce new viruses. Once inside the host cell, the virus induces the Hdst ce
synthesize the necessary components for its replication.
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4. AssemblyThe newly synthesized viral components are assembled into new
viruses.

5. Release Assembled viruses are released from the cell and can now infect
other cells, and the process begins again.

When the virus has taken over the cell, it immediately directs the host to begin
manufacturing the proteins necessary for virus reproduction. Thiepnoduces
three kinds of proteinsearly proteins enzymes used in nucleic acid replication;
late proteins proteins used to construct the virus coat; &t proteing enzymes
used to break open the cell for viral exit. The final viral product ieadgsded spon-
taneously, that is, the parts are made separately by the host and areiggjetuer
by chance. This self-assembly is often aided by moleahiaperonesor proteins
made by the host that help the capsid parts come together.

The new viruses then leave the cell either by exocytosis or by lysis. Bpe«lo
bound animal viruses instruct the host’s endoplasmic reticulum to make certain
proteins, calledylycoproteins which then collect in clumps along the cell mem-
brane. The virus is then discharged from the cell at these exit sitestadfto as
exocytosis. On the other hand, bacteriophages must break odgse dhe cell to
exit. To do this, the phages have a gene that codes for an enzymelgatizgme
This enzyme breaks down the cell wall, causing the cell to swell and burst. T
new viruses are released into the environment, killing the host cell in thegsoc

One family of animal viruses, called the retroviruses, contains RNA genomes
in their virus particles but synthesize a DNA copy of their genome in infected
cells. Retroviruses provide an excellent example of how viruses camaplegypor-
tant role as models for biological research. Studies of these viruseghatefirst
demonstrated the synthesis of DNA from RNA templates, a fundamental mode fo
transferring genetic material that occurs in both eukaryotes and patkar

Why Study Viruses?. Virusese important to the study oholecular and cellu-

lar biology because they provide simple systems that can be used to manipulate
and investigate the functions of many cell types. We have just discusseditab
replication depends on the metabolism of the infected cell. Therefore, tte stu

of viruses can provide fundamental information about aspects of cédigyiand
metabolism. The rapid growth and small genome size of bacteria make them excel-
lent tools for experiments in biology. Bacterial viruses have also furihgsldied

the study of bacterial genetics and have deepened our understafdiregbasic
mechanisms of molecular genetics. Because of the complexity of an animal cell
genome, viruses have been even more important in studies of animal cells than
in studies of bacteria. Numerous studies have demonstrated the utility of animal
viruses as probes for investigatingtdrent activities of eukaryotic cells. Other
examples in which animal viruses have provided important models for biologica
research of their host cells include studieDiNA replication transcription RNA
processingandprotein transport
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Deriving New Cell Types

Look closely at the human body, and it is clear that not all cells are alike. Fo
example, cells that make up our skin are certainffedént from cells that make

up our inner organs. Yet, all of theftirent cell types in our body are alérived

or arise, from a single, fertilized egg cell throughfeientiation.Differentiation

is the process by which an unspecialized cell becomes specialized intd thee o
many cells that make up the body, such as a heart, liver, or muscle cell. During
differentiation, certain genes are turned on, or becactigated while other genes

are switched f§, orinactivated This process is intricately regulated. As a result, a
differentiated cell will develop specific structures and perform certairtifums

Mammalian Cell TypesThree basic categories of cells make up the mammalian
body: germ cells somatic cellsand stem cells Each of the approximately 100
trillion cells in an adult human has its own copy, or copies, of the genome, with the
only exception being certain cell types that lack nuclei in their fuljedentiated
state, such as red blood cells. The majority of these celldliateid, or have two
copies of each chromosome. These cells are cabheaktic cellsThis category of
cells includes most of the cells that make up our body, such as skin and muscle
cells. Germ line cellsare any line of cells that give rise wametes-eggs and
sperm—and are continuous through the generati®tesn cellson the other hand,
have the ability to divide for indefinite periods and to give rise to specialie8g.c
They are best described in the context of normal human development.

Human developmertegins when a sperm fertilizes an egg and creates a sin-
gle cell that has the potential to form an entire organism. In the first hdtes a
fertilization, this cell divides into identical cells. Approximately 4 days after fe
tilization and after several cycles of cell division, these cells begin toiasles
forming a hollow sphere of cells, calledodastocyst The blastocyst has an outer
layer of cells, and inside this hollow sphere, there is a cluster of cells caked th
inner cell mass The cells of the inner cell mass will go on to form virtually all
of the tissues of the human body. Although the cells of the inner cell mass can
form virtually every type of cell found in the human body, they cannoimf@n
organism. Therefore, these cells are referred fg@aspotent that is, they can give
rise to many types of cells but not a whole organism. Pluripotent stem cells un-
dergo further specialization into stem cells that are committed to give rise to cells
that have a particular function. Examples include blood stem cells that igive r
to red blood cells, white blood cells, and platelets, and skin stem cells that give
rise to the various types of skin cells. These more specialized stem cellsllack ¢
multipotert—capable of giving rise to several kinds of cells, tissues, or structures.
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Figure A.12: Diferentiation of human tissues. Human development begins atsperm
fertilizes an egg and creates a single cell that has the paitémform an entire organism,
called the zygote (top panel, mauve). In the first hours déteilization, this cell divides
into identical cells. These cells then begin to speciafiaening a hollow sphere of cells,
called a blastocyst (second panel, purple). The blastd@san outer layer of cells (yel-
low), and inside this hollow sphere, there is a cluster ofscedlled the inner cell mass
(light blue). The inner cell mass can give rise to the gerriseeéggs and sperm—as well
as cells derived from all three germ layers (ectoderm, lijbe; mesoderm, light green;
and endoderm, light yellow), depicted in the bottom panwlluding nerve cells, muscle
cells, skin cells, blood cells, bone cells, and cartilagepi@duced with permission from
the Office of Science Policy, the National Institutes of Health.

The Working Cell: DNA, RNA, and Protein Synthesis
DNA Replication

DNA replication or the process of duplicating a cell's genome, is required every
time a cell divides. Replication, like all cellular activities, requires specialmzed
teins for carrying out the job. In the first step of replication, a specdtkm, called

a helicase unwinds a portion of the parental DNA double helix. Next, a molecule
of DNA polymerase-a common name for two categories of enzymes that influ-
ence the synthesis of DNA— binds to one strand of the DNA. DNA polymerase
begins to move along the DNA strand in the 3’ to 5’ direction, using the single-
stranded DNA as a template. This newly synthesized strand is callddatimg
strandand is necessary for forming new nucleotides and reforming a double helix
Because DNA synthesis can only occur in the 5’ to 3’ direction, a secdwd D
polymerase molecule is used to bind to the other template strand as the double he-
lix opens. This molecule synthesizes discontinuous segments of polynuekotid
calledOkazaki fragmentsAnother enzyme, calleBNA ligase is responsible for
stitching these fragments together into what is calledabging strand
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Figure A.13: An overview of DNA replication. Before a cellrcdivide, it must first du-
plicate its DNA. This figure provides an overview of the DNAplieation process. In the
first step, a portion of the double helix (blue) is unwound byeticase. Next, a molecule
of DNA polymerase (green) binds to one strand of the DNA. livemalong the strand,
using it as a template for assembling a leading strand (fetl@eotides and reforming a
double helix. Because DNA synthesis can only occur 5’ to 3ee@ond DNA polymerase
molecule (also green) is used to bind to the other templedadts the double helix opens.
This molecule must synthesize discontinuous segmentsyrfipcieotides (called Okazaki
Fragments). Another enzyme, DNA Ligase (yellow), therchs these together into the
lagging strand.

The average human chromosome contains an enormous number of nucleotide
pairs that are copied at about 50 base pairs per second. Yet, thereptication
process takes only about an hour. This is because there areremioation ori-
gin siteson a eukaryotic chromosome. Therefore, replication can begin at some
origins earlier than at others. As replication nears completion, “bubbfasdwly
replicated DNA meet and fuse, forming two new molecules.

With multiple replication origin sites, one might ask, how does the cell know
which DNA has already been replicated and which still awaits replicationafe d
two replication control mechanisntsave been identified: one positive and one neg-
ative. For DNA to be replicated, each replication origin site must be boural by
set of proteins called th@rigin Recognition ComplexThese remain attached to
the DNA throughout the replication process. Specific accessory psotafedi-
censing factorsmust also be present for initiation of replication. Destruction of
these proteins after initiation of replication prevents further replication syoben
occurring. This is because licensing factors are only produced wigenutiear
membrane of a cell breaks down during mitosis.

DNA Transcription—Making mRNA

DNA transcriptionrefers to the synthesis of RNA from a DNA template. This pro-
cess is very similar to DNA replication. Of course, there affedent proteins that
direct transcription. The most important enzymeRiNA polymerasean enzyme
that influences the synthesis of RNA from a DNA template. For transcription to
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TACTG TAGTCGGCGTTCG TTAA GCTGTATT

Figure A.14: Transcription is the process of making an RNpyoof a gene sequence. This
copy, called a messenger RNA (mMRNA) molecule, leaves tHenoeleus and enters the
cytoplasm, where it directs the synthesis of the proteiricivti encodes.

be initiated, RNA polymerase must be able to recognize the beginning sequenc
of a gene so that it knows where to start synthesizing an mRNA. It is dir¢ote
this initiation site by the ability of one of its subunits to recognize a specific DNA
sequence found at the beginning of a gene, calleptmoter sequencdhe pro-
moter sequence is a unidirectional sequence found on one strand oNh¢hBt
instructs the RNA polymerase in both where to start synthesis and in which di-
rection synthesis should continue. The RNA polymerase then unwinds tixtedo
helix at that point and begins synthesis of a RNA strand complementary tofone
the strands of DNA. This strand is called thetisenser template strangdwhereas

the other strand is referred to as thenseor coding strand. Synthesis can then
proceed in a unidirectional manner.

Although much is known about transcript processing, the signals amdsethat
instruct RNA polymerase to stop transcribing and dréjtlee DNA template re-
main unclear. Experiments over the years have indicated that procesgsagaic
messages contairpaly(A) addition signal]AAUAAA) at their 3’ end, followed by
a string of adenines. This poly(A) addition, also calledbéy/(A) site contributes
not only to the addition of the poly(A) tail but also to transcription termination and
the release of RNA polymerase from the DNA template. Yet, transcription does
not stop here. Rather, it continues for another 200 to 2000 basead#dyis site
before it is aborted. It is either before or during this termination processttie
nascent transcript isleaved or cut, at the poly(A) site, leading to the creation of
two RNA molecules. The upstream portion of the newly formedascentRNA
then undergoes further modifications, calpest-transcriptional modificatigrand
becomes mRNA. The downstream RNA becomes unstable and is rapidlylddgra

Although the importance of the poly(A) addition signal has been established,
the contribution of sequences further downstream remains uncertaneAtrstudy
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Figure A.15: Translation is the process of translating tmguence of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protgihesis. The genetic
code describes the relationship between the sequence®phas in a gene and the cor-
responding amino acid sequence that it encodes. In theyteflasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assemelgbedtein.

suggests that a defined region, calledt#renination regionis required for proper
transcription termination. This study also illustrated that transcription termination
takes place in two distinct steps. In the first step, the nascent RNA is dledve
specific subsections of the termination region, possibly leading to its release f
RNA polymerase. In a subsequent step, RNA polymerase disengamasttie
DNA. Hence, RNA polymerase continues to transcribe the DNA, at leasa fo
short distance.

Protein Translation—How Do Messenger RNAs Direct Protein Synthesis?

The cellular machinery responsible for synthesizing proteins isiltlesome The
ribosome consists of structural RNA and about &Bedent proteins. In its inactive
state, it exists as two subunitstaaige subunitand asmall subunitWhen the small
subunit encounters an mMRNA, the procesgrahnslatingan mRNA to a protein
begins. In the large subunit, there are two sites for amino acids to bind asd thu
be close enough to each other to form a bond. Thsite’ accepts a neviransfer

RNA or tRNA—the adaptor molecule that acts as a translator between mRNA and
protein—bearing an amino acid. The “P sieSitebinds the tRNA that becomes
attached to the growing chain.

As we just discussed, the adaptor molecule that acts as a translator between
MRNA and protein is a specific RNA molecule, the tRNA. Each tRNA has a spe-
cific acceptor sitethat binds a particular triplet of nucleotides, calle¢@lon
and ananti-codon sitethat binds a sequence of three unpaired nucleotides, the
anti-codon, which can then bind to the the codon. Each tRNA also has #ispec
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Figure A.16: Transfer RNA (tRNA) is a small RNA molecule thparticipates in protein
synthesis. Each tRNA molecule has two important areasnadieotide region called the
anticodon and a region for attaching a specific amino acidinguranslation, each time
an amino acid is added to the growing chain, a tRNA molecute$obase pairs with
its complementary sequence on the messenger RNA (mRNA)coieleensuring that the
appropriate amino acid is inserted into the protein.

charger protein called anaminoacyl tRNA synthetas€his protein can only bind
to that particular tRNA and attach the correct amino acid to the acceptor site.

Thestart signalfor translation is the codon ATG, which codes for methionine.
Not every protein necessarily starts with methionine, however. Oftentime# sis
amino acid will be removed in later processing of the protein. A tRNA charged
with methionine binds to the translation start signal. The large subunit binds to
the mRNA and the small subunit, and so begisngation the formation of the
polypeptide chain. After the first charged tRNA appears in the A site, thsoiine
shifts so that the tRNA is now in the P site. New charged tRNAs, correspgndin
the codons of the mRNA, enter the A site, and a bond is formed between the two
amino acids. The first tRNA is now released, and the ribosome shifts agtiatso
a tRNA carrying two amino acids is now in the P site. A new charged tRNA then
binds to the A site. This process of elongation continues until the ribosoroleega
what is called astop codona triplet of nucleotides that signals the termination of
translation. When the ribosome reaches a stop codon, no aminoacyl tRN#\ bind
to the empty A site. This is the ribosome signal to break apart into its large and
small subunits, releasing the new protein and the mRNA. Yet, this isn't althays
end of the story. A protein will often undergo further modification, calbedt-
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Figure A.17: A stop codon is a trinucleotide sequence withmessenger RNA (mMRNA)
molecule that signals a halt to protein synthesis. The geoetle describes the relationship
between the sequence of DNA bases (A, C, G, and T) in a genehancbtresponding
protein sequence that it encodes. The cell reads the segjoétie gene in groups of three
bases. Of the 64 possible combinations of three bases, 6fyspe amino acid, while the
remaining three combinations are stop codons.

translational modificationFor example, it might be cleaved by a protein-cutting
enzyme, called a protease, at a specific place or have a few of its amirs acid
altered.

DNA Repair Mechanisms

Maintenance of the accuracy of the DNA genetic code is critical for botlotige
and short-term survival of cells and species. Sometimes, normal celttiétias,
such as duplicating DNA and making new gametes, introduce changestar
tionsin our DNA. Other changes are caused by exposure of DNA to chemicals,
radiation, or other adverse environmental conditions. No matter the sgeretic
mutations have the potential for both positive and negatiiects on an individ-
ual as well as its species. A positive change results in a slighfilgrdnt version
of a gene that might eventually prove beneficial in the face of a new dismas
changing environmental conditions. Such beneficial changes are thersione
of evolution. Other mutations are considedileterious or result in damage to a
cell or an individual. For example, errors within a particular DNA seqeenay
end up either preventing a vital protein from being made or encoding atokefe
protein. It is often these types of errors that lead to various diseass.state

The potential for DNA damage is counteracted by a vigorous surveillamte a
repair system. Within this system, there are a number of enzymes capable of re
pairing damage to DNA. Some of these enzymes are specific for a particodar ty
of damage, whereas others can handle a range of mutation types. Ve&sass
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Figure A.18: A peptide is one or more amino acids linked byneical bonds. The term also
refers to the type of chemical bond that joins the amino attigsther. A series of linked
amino acids is a polypeptide. The cell’s proteins are maat® fvne or more polypeptides.
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Figure A.19: Proteins are an important class of moleculesdan all living cells. A protein
is composed of one or more long chains of amino acids, theesegof which corresponds
to the DNA sequence of the gene that encodes it. Proteinsaplagiety of roles in the cell,
including structural (cytoskeleton), mechanical (musddochemical (enzymes), and cell
signaling (hormones). Proteins are also an essential pdi¢o
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also difer in the degree to which they are able to restore the normaililditype
sequence.

Categories of DNA Repair Systems.

Photoreactivatioris the process whereby genetic damage caused by ultra-
violet radiation is reversed by subsequent illumination with visible or near-
ultraviolet light.

Nucleotide excision repais used to fix DNA lesions, such as single-stranded
breaks or damaged bases, and occurs in stages. The first stagesmeaiog-
nition of the damaged region. In the second stage, two enzymatic reactions
serve to remove, or excise, the damaged sequence. The third stagesnvolv
synthesis by DNA polymerase of the excised nucleotides using the second
intact strand of DNA as a template. Lastly, DNA ligase joins the newly syn-
thesized segment to the existing ends of the originally damaged DNA strand.

Recombination repajror post-replication repair fixes DNA damage by a
strand exchange from the other daughter chromosome. Because iesvolv
homologous recombination, it is largely error free.

Base excision repaiallows for the identification and removal of wrong
bases, typically attributable tieaminatior—the removal of an amino group
(NH2)—of normal bases as well as from chemical modification.

Mismatch repairis a multi-enzyme system that recognizes inappropriately
matched bases in DNA and replaces one of the two bases with one that
“matches” the other. The major problem here is recognizing which of the
mismatched bases is incorrect and therefore should be removed armgdepla

Adaptivdnducible repairdescribes several protein activities that recognize
very specific modified bases. They then transfer this modifying group fro
the DNA to themselves, and, in doing so, destroy their own function. These
proteins are referred to as inducible because they tend to regulate thmeir ow
synthesis. For example, exposure to modifying agents induces, or turns on
more synthesis and therefore adaptation.

SOS repairor inducible error-prone repairis a repair process that occurs

in bacteria and is induced, or switched on, in the presence of potentially
lethal stresses, such as UV irradiation or the inactivation of genestidsen
for replication. Some responses to this type of stress incluatagenesis-

the production of mutations—or cell elongation without cell division. In this
type of repair process, replication of the DNA template is extremely inac-
curate. Obviously, such a repair system must be a desperate refmuts

cell, allowing replication past a region where the wild-type sequence has
been lost.
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From Cells to Genomes

Understanding what makes up a cell and how that cell works is fundahtenta
all of the biological sciences. Appreciating the similarities arftedeénces between
cell types is particularly important to the fields of cell and molecular biologgs€h
fundamental similarities and fiierences provide a unifying theme, allowing the
principles learned from studying one cell type to be extrapolated andajzee
to other cell types.

Perhaps the most fundamental property of all living things is their ability to re-
produce. All cells arise from pre-existing cells, that is, their genetic matauat
be replicated and passed from parent cell to progeny. Likewise, all reliuter
organisms inherit their genetic information specifying structure and funéitoon
their parents. The next section of the genetics primer, What is a Genotaéds de
how genetic information is replicated and transmitted from cell to cell and ergan
ism to organism.
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Figure A.20: The four DNA bases. Each DNA base is made up dftigar 2’-deoxyribose
linked to a phosphate group and one of the four bases depbi@eb: adenine (top left),
cytosine (top right), guanine (bottom left), and thyminet{bm right).

A.2 Whatis a Genome

Life is specified bygenomesEvery organism, including humans, has a genome
that contains all of the biological information needed to build and maintain a liv-
ing example of that organism. The biological information contained in a genome
is encoded in itgleoxyribonucleic acid (DNAxnd is divided into discrete units
calledgenes Genes code for proteins that attach to the genome at the appropriate
positions and switch on a series of reactions called gene expression.

The Physical Structure of the Human Genome
Nuclear DNA

Inside each of our cells liesraucleus a membrane-bounded region that provides
a sanctuary for genetic information. The nucleus contains long stranD$lAf
that encode this genetic information.[2NA chain is made up of four chemical
basesadening/A) andguanineg(G), which are calleghurines andcytosingC) and
thymine(T), referred to apyrimidines Each base has a slightlyfiirent composi-
tion, or combination of oxygen, carbon, nitrogen, and hydrogen. IINA Bhain,
every base is attached to a sugar molecule (deoxyribose) and a pteosytecule,
resulting in a nucleic acid arucleotide Individual nucleotides are linked through
the phosphate group, and it is the precise order, or sequence, lebtides that
determines the product made from that gene.

A DNA chain, also called a strand, has a sense of direction, in which ahe en
is chemically dfferent than the other. The so-called 5’ end terminates in a 5’ phos-
phate group (-PO4); the 3’ end terminates in a 3’ hydroxyl group (-Hjs is
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Figure A.21: A nucleotide is the basic building block of reiclacids. RNA and DNA are

polymers made of long chains of nucleotides. A nucleotidesigis of a sugar molecule (ei-
ther ribose in RNA or deoxyribose in DNA) attached to a pha@éplyroup and a nitrogen-
containing base. The bases used in DNA are adenine (A),ingt¢€), guanine (G), and

thymine (T). In RNA, the base uracil (U) takes the place ohtime.

important because DNA strands are always synthesized in the 5’ to 8tidine

The DNA that constitutes a gene is a double-stranded molecule consisting of
two chains running in opposite directions. The chemical nature of the lases
double-stranded DNA creates a slight twisting force that gives DNA itsaciber-
istic gently coiled structure, known as the double helix. The two strandsoare ¢
nected to each other by chemical pairing of each base on one strandeoificsp
partner on the other strand. Adenine (A) pairs with thymine (T), and gedi@h
pairs with cytosine (C). Thu®-T andG-C base pairsare said to beomplemen-
tary. This complementary base pairing is what makes DNA a suitable molecule
for carrying our genetic information—one strand of DNA can act sanagplateto
direct the synthesis of a complementary strand. In this way, the information in a
DNA sequence is readily copied and passed on to the next generatieltsof ¢

Organelle DNA

Not all genetic information is found in nuclear DNA. Both plants and animals hav
an organelle—a “little organ” within the cell— called tmitochondrion Each
mitochondrion has its own set of genes. Plants also have a second gt
chloroplast which also has its own DNA. Cells often have multiple mitochon-
dria, particularly cells requiring lots of energy, such as active muscle ddiis is
because mitochondria are responsible for converting the energy $toneakcro-
molecules into a form usable by the cell, namely,@ldenosine triphosphate (ATP)
molecule. Thus, they are often referred to as the power generators célth

Unlike nuclear DNA(the DNA found within the nucleus of a cell), half of which
comes from our mother and half from our father, mitochondrial DNA is orttein
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Base Pairs

Figure A.22: A base pair is two chemical bases bonded to oothanforming a "rung of
the DNA ladder.” The DNA molecule consists of two strandd thismd around each other
like a twisted ladder. Each strand has a backbone made ofiaiteg sugar (deoxyribose)
and phosphate groups. Attached to each sugar is one of feasbadenine (A), cytosine
(C), guanine (G), or thymine (T). The two strands are helettiogr by hydrogen bonds
between the bases, with adenine forming a base pair withitiejrand cytosine forming a
base pair with guanine.

ited from our mother. This is because mitochondria are only found in the female
gametes or “eggs” of sexually reproducing animals, not in the male gamete, or
sperm. Mitochondrial DNA also does not recombine; there is néfiahg of genes

from one generation to the other, as there is with nuclear genes.

Large numbers of mitochondria are found in the tail of sperm, providing them
with an engine that generates the energy needed for swimming toward the egg
However, when the sperm enters the egg during fertilization, the tail félia&ing
away the father’s mitochondria.

Why Is There a Separate Mitochondrial Genome?

The energy-conversion process that takes place in the mitochondisglakeaer-
obically, in the presence of oxygen. Other energy conversion processesgglth
take placeanaerobically or without oxygen. The independent aerobic function of
these organelles is thought to have evolved from bacteria that lived iosatber
simple organisms in a mutually beneficial, ®ymbioti¢ relationship, providing
them with aerobic capacity. Through the process of evolution, these tijayisms
became incorporated into the cell, and their genetic systems and cellular fisnctio
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Mitochondria

Mitochondrial DNA

Figure A.23: Mitochondrial DNA is the small circular chrosmwme found inside mitochon-
dria. The mitochondria are organelles found in cells thathe sites of energy production.
The mitochondria, and thus mitochondrial DNA, are passeuwhfmother to @spring.

became integrated to form a single functioning cellular unit. Because mitodhond
have their own DNA, RNA, and ribosomes, this scenario is quite possibigtd:
ory is also supported by the existence of a eukaryotic organism, callecthtieba,
which lacks mitochondria. Therefore, amoeba must always have a symigiatic
tionship with an aerobic bacterium.

Why Study Mitochondria?

There are many diseases caused by mutatiomaitochondrial DNA (mtDNA)
Because the mitochondria produce energy in cells, symptoms of mitochondrial
diseases often involve degeneration or functional failure of tissue. eme,
mtDNA mutations have been identified in some forms of diabetes, deafness, and
certain inherited heart diseases. In addition, mutations in mtDNA are able to ac-
cumulate throughout an individual's lifetime. This igfdrent from mutations in
nuclear DNA, which has sophisticated repair mechanisms to limit the accumula-
tion of mutations. Mitochondrial DNA mutations can also concentrate in the mi-
tochondria of specific tissues. A variety of deadly diseases are attributata

large number of accumulated mutations in mitochondria. There is even a theory,
the Mitochondrial Theory of Agingthat suggests that accumulation of mutations
in mitochondria contributes to, or drives, the aging process. Thesetdai® asso-
ciated with Parkinson’s and Alzheimer’s disease, although it is not kndwattver
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the defects actually cause or are a direct result of the diseases. efpeedence
suggests that the mutations contribute to the progression of both diseases.

In addition to the critical cellular energy-related functions, mitochondriaége
are useful to evolutionary biologists because of their maternal inheritartthigh
rate of mutation. By studying patterns of mutations, scientists are able to recon-
struct patterns of migration and evolution within and between species. &,
MtDNA analysis has been used to trace the migration of people from Asiasacros
the Bering Strait to North and South America. It has also been used to idantify
ancient maternal lineage from which modern man evolved.

Ribonucleic Acids

Just like DNA,ribonucleic acid (RNA)s a chain, or polymer, of nucleotides with
the same 5’ to 3’ direction of its strands. However, the ribose sugar cagnpon
of RNA is slightly different chemically than that of DNA. RNA has a 2’ oxygen
atom that is not present in DNA. Other fundamental structurdéiinces exist.
For example, uracil takes the place of the thymine nucleotide found in DN&, an
RNA is, for the most part, a single-stranded molecule. DNA directs the syisthe
of a variety of RNA molecules, each with a unique role in cellular function. For
example, all genes that code for proteins are first made into an RNA strand
the nucleus called messenger RNA (mMRNA)he mRNA carries the information
encoded in DNA out of the nucleus to the protein assembly machinery, cafled th
ribosome in the cytoplasm. The ribosome complex uses mRNA as a template to
synthesize the exact protein coded for by the gene.

In addition to mMRNA, DNA codes for other forms of RNA, including riboso-
mal RNAs (rRNAs), transfer RNAs (tRNAs), and small nuclear RNASR(SAS).
rRNAs and tRNAs participate in protein assembly whereas snRNAs aid in-a pro
cess called splicing —the process of editing of mMRNA before it can be usad a
template for protein synthesis.

Proteins

Although DNA is the carrier of genetic information in a cell, proteins do the bulk
of the work. Proteins are long chains containing as many as 2€relit kinds
of amino acids. Each cell contains thousands diedent proteinsenzymeshat
make new molecules and catalyze nearly all chemical processes ingstalis;
tural componentshat give cells their shape and help them move; hormones that
transmit signals throughout the bodntibodiesthat recognize foreign molecules;
andtransport moleculeshat carry oxygen. The genetic code carried by DNA is
what specifies the order and number of amino acids and, therefore,ahe ahd
function of the protein.

The “Central Dogm&—a fundamental principle of molecular biology—states
that genetic information flows from DNA to RNA to protein. Ultimately, however,
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Figure A.24: Messenger RNA (mRNA) is a single-stranded RN#\enule that is comple-
mentary to one of the DNA strands of a gene. The mRNA is an RNA&iee of the gene
that leaves the cell nucleus and moves to the cytoplasm wgneteins are made. During
protein synthesis, an organelle called a ribosome movegydlee mRNA, reads its base
sequence, and uses the genetic code to translate eactbés®ériplet, or codon, into its
corresponding amino acid.

Polypeptide Chain
m Amino Acids
Amino Acids
Amino Acids
Ala: Alanine GlIn: Glutamine Leu: Leucine Ser: Serine
Arg: Arginine Glu: Glutamic acid ~ Lys: Lysine Thr: Threonine
Asn: Asparagine Gly: Glycine Met: Methionine Trp: Tryptophane
Asp:Aspartic acid His: Histidine Phe: Phenylalanine  Tyr: Tyrosisne
Cys:Cysteine Ile: Isoleucine Pro: Proline Val: Valine

Figure A.25: Amino acids are a set of 2@fdrent molecules used to build proteins. Proteins
consist of one or more chains of amino acids called polydepti The sequence of the
amino acid chain causes the polypeptide to fold into a shagded biologically active. The
amino acid sequences of proteins are encoded in the genes.
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Amino acids
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AUGACGGAUCAGCCGCAAGCGGAAUUG UAA
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Figure A.26: A codon is a trinucleotide sequence of DNA or Rt corresponds to
a specific amino acid. The genetic code describes the netdip between the sequence
of DNA bases (A, C, G, and T) in a gene and the correspondintgipreéequence that
it encodes. The cell reads the sequence of the gene in grotipee bases. There are 64
different codons: 61 specify amino acids while the remaininegtire used as stop signals.

the genetic code resides in DNA because only DNA is passed from giemet@
generation. Yet, in the process of making a protein, the encoded infornmatish

be faithfully transmitted first to RNA then to protein. Transferring the codenfr
DNA to RNA is a fairly straightforward process call&@nscription Deciphering

the code in the resulting mRNA is a little more complex. It first requires that the
MRNA leave the nucleus and associate with a large complex of specialized RNAs
and proteins that, collectively, are called ttigosome Here the mRNA is trans-
lated into protein by decoding the mRNA sequence in blocks of three RNApase
calledcodonswhere each codon specifies a particular amino acid. In this way, the
ribosomal complexuilds a protein one amino acid at a time, with the order of
amino acids determined precisely by the order of the codons in the mRNA.

A given amino acid can have more than one codon. These redundasriscod
usually difer at the third position. For example, the amino acid serine is encoded
by UCU, UCC, UCA, antr UCG. This redundancy is key to accommodating
mutations that occur naturally as DNA is replicated and new cells are prdduce
By allowing some of the random changes in DNA to have fieat on the ultimate
protein sequence, a sort of genetic safety net is created. Some amlonscode
for an amino acid at all but instruct the ribosome when to stop adding new amino
acids.

The Core Gene Sequence: Introns and Exons

Genes make up about 1 percent of the total DNA in our genome. In the human
genome, the coding portions of a gene, caigdns are interrupted by intervening
sequences, callédtrons In addition, a eukaryotic gene does not code for a protein
in one continuous stretch of DNA. Both exons and introns &@nscribed into
MRNA, but before itis transported to the ribosome, the primary mRNA trarissrip
edited. This editing process removes the introns, joins the exons togettiadds
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Table A.1: RNA triplet codons and their corresponding an@nials.

U C A G
UUU Phenylalaningl UCU Serine UAU Tyrosine UGU Cysteine
UUC Phenylalaningl UCC Serine UAC Tyrosine UGC Cysteine
UUA Leucine UCA Serine UAA Stop UGA Stop
UUG Leucine UCG Serine UAG Stop UGG Tryptophan
CUU Leucine CCU Proline CAU Histidine CGU Arginine
CUC Leucine CCC Proline CAC Histidine CGC Arginine
CUA Leucine CCA Proline CAA Glutamine | CGA Arginine
CUG Leucine CCG Proline CAG Glutamine | CGG Arginine
AUU lIsoleucine ACU Threonine| AAU Asparagine| AGU Serine
AUC Isoleucine ACC Threonine| AAC Asparagine| AGC Serine
AUA lIsoleucine ACA Threonine| AAA Lysine AGA Arginine
AUG Methionine ACG Threonine| AAG Lysine AGG Arginine
GUU Valine GCU Alanine GAU Aspartate | GGU Glycine
GUC Valine GCC Alanine GAC Aspartate | GGC Glycine
GUA Valine GCA Alanine GAA Glutamate | GGA Glycine
GUG Valine GCG Alanine | GAG Glutamate | GGG Glycine

Chromosome

DNA (Double Helix)

Figure A.27: An exon is the portion of a gene that codes fomanaicids. In the cells of
plants and animals, most gene sequences are broken up by om@e DNA sequences
called introns. The parts of the gene sequence that aressquré the protein are called ex-
ons, because they are expressed, while the parts of the ggmerse that are not expressed
in the protein are called introns, because they come in letwar interfere with—the ex-
ons. In the cells of plants and animals, most gene sequerebsaken up by one or more
introns.
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Parental DNA Molecules
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Figure A.28: Recombination. Recombination involves pajrbetween complementary
strands of two parental duplex DNAs (top and middle pandi)s process creates a stretch
of hybrid DNA (bottom panel) in which the single strand of aheplex is paired with its
complement from the other duplex.

unique features to each end of the transcript to makeattireé mRNA. One might
then ask what the purpose of an intron is if it is spliced out after it is tréveat?

It is still unclear what all the functions of introns are, but scientists belibat
some serve as the site frecombination the process by which progeny derive a
combination of genes flerent from that of either parent, resulting in novel genes
with new combinations of exons, the key to evolution.

Gene Prediction Using Computers

When the complete mRNA sequence for a gene is known, computer programs ar
used to align the mRNA sequence with the appropriate region of the genomic DNA
sequence. This provides a reliable indication of the beginning and ene cdtling
region for that gene. In the absence of a complete mMRNA sequence uhédrees

can be estimated by ever-improving, but still inexact, gene prediction seftWae
problem is the lack of a single sequence pattern that indicates the begim®ingd o

of a eukaryotic gene. Fortunately, the middle of a gene, referred to asthgene
sequencehas enough consistent features to allow more reliable predictions.
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Figure A.29: An overview of transcription and translatidhis drawing provides a graphic
overview of the many steps involved in transcription andgtation. Within the nucleus of
the cell (light blue), genes (DNA, dark blue) are transadibéo RNA. This RNA molecule
is then subject to post-transcriptional modification anatiam, resulting in a mature mRNA
molecule (red) that is then transported out of the nucledsirto the cytoplasm (peach),
where it undergoes translation into a protein. mMRNA molesalre translated by ribosomes
(purple) that match the three-base codons of the mRNA middouthe three-base anti-
codons of the appropriate tRNA molecules. These newly ggitled proteins (black) are
often further modified, such as by binding to affieetor molecule (orange), to become
fully active.

From Genes to Proteins: Start to Finish

We just discussed that the journey from DNA to mRNA to protein requires that
a cell identify where a gene begins and ends. This must be done botly doein
transcription and the translation process.

Transcription

Transcription the synthesis of an RNA copy from a sequence of DNA, is carried
out by an enzyme calleBNA polymeraseThis molecule has the job of recogniz-
ing the DNA sequence where transcription is initiated, callegpthenoter siteIn
general, there are two “promoter” sequences upstream from the begifrevery
gene. The location and base sequence of each promoter site vamplfaryotes
(bacteria) an@ukaryoteghigher organisms), but they are both recognized by RNA
polymerase, which can then grab hold of the sequence and drive tthegtion of

an mRNA.

Eukaryotic cells have threeftierent RNA polymerases, each recognizing three
classes of gene®NA polymerase lis responsible for synthesis of mMRNAs from
protein-coding genes. This polymerase requires a sequence resefilifg,
commonly referred to as thRATA boxwhich is found 25-30 nucleotides upstream
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of the beginning of the gene, referred to asittigator sequence

Transcription terminates when the polymerase stumbles upon a termination,
or stop signal. In eukaryotes, this process is not fully understoodkaBRrotes,
however, tend to have a short region composed of G’s and C’s thaleisafold
in on itself and form complementary base pairs, creating a stem in the new mRNA.
This stem then causes the polymerase to trip and releaseagoent or newly
formed, mRNA.

Translation

The beginning oftranslation the process in which the genetic code carried by
MRNA directs the synthesis of proteins from amino acid$eds slightly for prokary-
otes and eukaryotes, although both processes always initiate at a foodoe-
thionine. For prokaryotes, the ribosome recognizes and attaches aqhense
AGGAGGU on the mRNA, called th€hine-Delgarno sequenciat appears just
upstream from the methionine (AUG) codon. Curiously, eukaryotes la&kdbog-
nition sequence and simply initiate translation at the amino acid methionine, usu-
ally coded for by the bases AUG, but sometimes GUG. Translation is terminated
for both prokaryotes and eukaryotes when the ribosome reached tmetoree

stop codons.

Structural Genes, Junk DNA, and Regulatory Sequences

Over 98 percent of the genome is of unknown function. Although oftfarned to
as “junk” DNA, scientists are beginning to uncover the function of many e$¢h
intergenic sequences—the DNA found between genes.

Structural GenesSequences that code for proteins are calledctural genesAl-
though it is true that proteins are the major components of structural elements in
cell, proteins are also the real workhorses of the cell. They perfocm fsunctions

as transporting nutrients into the cell; synthesizing new DNA, RNA, and iprote
molecules; and transmitting chemical signals from outside to inside the cell, as
well as throughout the cell—both critical to the process of making proteins.

Regulatory Sequence.class of sequences callegjulatory sequencesakes up

a numerically insignificant fraction of the genome but provides critical tions.

For example, certain sequences indicate the beginning and end of gikegsor
initiating replication and recombination, or provide landing sites for proteirts tha
turn genes on andfo Like structural genes, regulatory sequences are inherited,;
however, they are not commonly referred to as genes.

Other DNA Regiong-orty to forty-five percent of our genome is made up of short
sequences that are repeated, sometimes hundreds of times. Therenareus
forms of this ‘repetitive DNA, and a few have known functions, such as stabiliz-
ing the chromosome structure or inactivating one of the two X chromosomes in
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Figure A.30: A chromosome. A chromosome is composed of aleeymolecule of DNA
and associated proteins that carry hereditary informafidve centromere, shown at the
center of this chromosome, is a specialized structure th@tas during cell division and
ensures the correct distribution of duplicated chromosotoadaughter cells. Telomeres
are the structures that seal the end of a chromosome. Tedsmlkay a critical role in chro-
mosome replication and maintenance by counteracting tiuetey of the chromosome to
otherwise shorten with each round of replication.

developing females, a process calkdhactivation The most highly repeated se-
guences found so far in mammals are callsaltéllite DNA because their unusual
composition allows them to be easily separated from other DNA. Thesersszgie
are associated with chromosome structure and are found a&etiteomereqor
centers) andelomeregends) of chromosomes. Although they do not play a role
in the coding of proteins, they do play a significant role in chromosome steyctu
duplication, and cell division. The highly variable nature of these sexpsemakes
them an excellentrfarker by which individuals can be identified based on their
unique pattern of their satellite DNA.

Another class of non-coding DNA is th@$eudogerie so named because it is
believed to be a remnant of a real gene that hfesed mutations and is no longer
functional. Pseudogenes may have arisen through the duplication ottofuad
gene, followed by inactivation of one of the copies. Comparing the pcesen
absence of pseudogenes is one method used by evolutionary genetigisigfo
species and to determine relatedness. Thus, these sequences drnetthoagy a
record of our evolutionary history.

How Many Genes Do Humans Have?

In February 2001, two largely independent draft versions of the hugemome
were published. Both studies estimated that there are 30,000 to 40,000rgdTees
human genome, roughly one-third the number of previous estimates. Merelse
scientists estimated that there are less than 30,000 human genes. Hoveestil, w
have to make guesses at the actual number of genes, because ntihakhoman
genome sequence is annotated and not all of the known sequencehasbigned
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a particular position in the genome.

So, how do scientists estimate the number of genes in a genome? For the most
part, they look for tell-tale signs of genes in a DNA sequence. These gicpén
reading framesstretches of DNA, usually greater than 100 bases, that are not in-
terrupted by a stop codon such as TAA, TAG or TG#art codonssuch as ATG;
specific sequences foundsglice junctionsa location in the DNA sequence where
RNA removes the non-coding areas to form a continuous gene tranfecripgns-
lation into a protein; andene regulatory sequencékhis process is dependent on
computer programs that search for these patterns in various sequadalcases and
then make predictions about the existence of a gene.

From One Gene—One Protein to a More Global Perspective

Only a small percentage of the 3 billion bases in the human genome becomes an
expressed gene product. However, of the approximately 1 percent gemome

that is expressed, 40 percent is alternatively spliced to produce multiptieins

from a single geneAlternative splicingrefers to the cutting and pasting of the
primary mRNA transcript into various combinations of mature mRNA. Therefore
the one gene—one protein theory, originally framed as “one gene—ayane,

does not precisely hold.

With so much DNA in the genome, why restrict transcription to a tiny portion,
and why make that tiny portion work overtime to produce many alternate tran-
scripts? This process may have evolved as a way to limit the deleteffecsseof
mutations. Genetic mutations occur randomly, and ffeceof a small number of
mutations on a single gene may be minimal. However, an individual having many
genes each with small changes could weaken the individual, and thussitiesp
On the other hand, if a single mutatiofiexts several alternate transcripts at once,
it is more likely that the ffect will be devastating—the individual may not survive
to contribute to the next generation. Thus, alternate transcripts from le gjege
could reduce the chances that a mutated gene is transmitted.

Gene Switching: Turning Genes On and Off

The estimated number of genes for humans, less than 30,000, is ndfeserdi
from the 25,300 known genes of Arabidopsis thaliana, commonly called rdustar
grass. Yet, we appear, at least at first glance, to be a far more coogl@xism.

A person may wonder how this increased complexity is achieved. One alssve

in the regulatory system that turns genes on affidTthis system also precisely
controls the amount of a gene product that is produced and can fumibeify

the product after it is made. This exquisite control requires multiple regylater
put points. One veryf@&cient point occurs at transcription, such that an mRNA is
produced only when a gene product is needed. Cells also regulateegpres-
sion bypost-transcriptional maodificatigrby allowing only a subset of the mRNAs
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to go on to translation; or by restricting translation of specific mMRNAs to only
when the product is needed. At other levels, cells regulate gene siqréisrough
DNA folding, chemical modification of the nucleotide bases, and intrickted-
back mechanismig which some of the gene’s own protein product directs the cell
to cease further protein production.

Controlling Transcription

Promoters and Regulatory SequencEsnscription is the process whereby RNA
is made from DNA. It is initiated when an enzymNA polymerasebinds to

a site on the DNA called aromoter sequencén most cases, the polymerase is
aided by a group of proteins callettdnscription factoréthat perform specialized
functions, such as DNA sequence recognition and regulation of the prageis
enzyme activity. Other regulatory sequences incladivators repressors and
enhancersThese sequences candis-acting(affecting genes that are adjacent to
the sequence) drans-acting(affecting expression of the gene from a distant site),
even on another chromosome.

The Globin Genes: An Example of Transcriptional Regulatiin.example of
transcriptional control occurs in the family of genes responsible for thdye-
tion of globin. Globin is the protein that complexes with the iron-containing heme
molecule to make hemoglobiflemoglobintransports oxygen to our tissues via
red blood cells. In the adult, red blood cells do not contain DNA for makivg ne
globin; they are ready-made with all of the hemoglobin they will need.

During the first few weeks of life, embryonic globin is expressed in the yolk
sac of the egg. By week five of gestation, globin is expressed in earlydaits.
By birth, red blood cells are being produced, and globin is expresse ibahe
marrow. Yet, the globin found in the yolk is not produced from the same gene
is the globin found in the liver or bone marrow stem cells. In fact, at eagesta
of development, dierent globin genes are turned on arititbrough a process of
transcriptional regulation callegtvitching.

To further complicate matters, globin is made from twietient protein chains:
an alpha-like chain coded for on chromosome 16; and a beta-like chagd ¢od
on chromosome 11. Each chromosome has the embryonic, fetal, and adult fo
lined up on the chromosome in a sequential order for developmental sipres
The developmentally regulated transcription of globin is controlled by a nuatber
cis-acting DNA sequences, and although there remains a lot to be ledmedize
interaction of these sequences, one known control sequence is amcenlgalled
the Locus Control Region (LCRYhe LCR sits far upstream on the sequence and
controls the alpha genes on chromosome 16. It may also interact with othansfa
to determine which alpha gene is turned on.

Thalassemiaare a group of diseases characterized by the absence or decreased
production of normal globin, and thus hemoglobin, leading to decreasggnxn
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the system. There are alpha and beta thalassemias, defined by the dafenty

and there are variations of each of these, depending on whether thgoenabfe-

tal, or adult forms areféected angbr expressed. Although there is no known cure
for the thalassemias, there are medical treatments that have been devwlepdd

on our current understanding of both gene regulation and didrdntiation. Treat-
ments include blood transfusions, iron chelators, and bone marrow laatsp
With continuing research in the areas of gene regulation and digrelntiation,

new and more fective treatments may soon be on the horizon, such as the advent
of gene transfer therapies.

The Influence of DNA Structure and Binding Domaiisguences that are im-
portant in regulating transcription do not necessarily code for trarignrifiac-
tors or other proteins. Transcription can also be regulated by subtldioasian
DNA structure and by chemical changes in the bases to which transcriptitor$
bind. As stated previously, the chemical properties of the four DNA bdisks
slightly, providing each base with unique opportunities to chemically react with
other molecules. One chemical modification of DNA, calheethylation involves

the addition of amethyl group (-CH3)Methylation frequently occurs at cytosine
residues that are preceded by guanine bases, oftentimes in the vicinignudter
sequences. The methylation status of DNA often correlates with its functonal
tivity, where inactive genes tend to be more heavily methylated. This is betais
methyl group serves to inhibit transcription by attracting a protein that bjmetsifs
ically to methylated DNA, thereby interfering with polymerase binding. Methyla-
tion also plays an important role genomic imprintingwhich occurs when both
maternal and paternal alleles are present but only one allele is expresie the
other remains inactive. Another way to think of genomic imprinting is@arént

of origin differencesin the expression of inherited traits. Considerable intrigue
surrounds theféects of DNA methylation, and many researchers are working to
unlock the mystery behind this concept.

Controlling Translation

Translationis the process whereby the genetic code carried by an mRNA directs
the synthesis of proteingranslational regulationoccurs through the binding of
specific molecules, calletepressor proteinsto a sequence found on an RNA
molecule. Repressor proteins prevent a gene from being expréssed: have
just discussed, the default state for a gene is that of being expreissi vecog-
nition of its promoter by RNA polymerase. Close to the promoter region is another
cis-acting site called theperator, the target for the repressor protein. When the re-
pressor protein binds to the operator, RNA polymerase is preventedriitating
transcription, and gene expression is turnéd o

Translational control plays a significant role in the process of embrymviel-
opment and cell dierentiation. Upon fertilization, an egg cell begins to multiply
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to produce a ball of cells that are all the same. At some point, howeveg, teds

begin todifferentiate or change into specific cell types. Some will become blood
cells or kidney cells, whereas others may become nerve or brain cells) ¥he

of the cells formed are alike, the same genes are turned on. Howeverdifiec-
entiation begins, various genes irffdrent cells must become active to meet the
needs of that cell type. In some organisms, the egg houses store immatufessmRN
that become translationally active only after fertilization. Fertilization theneserv

to trigger mechanisms that initiate th&ieient translation of mRNA into proteins.
Similar mechanisms serve to activate mRNAs at other stages of development and
differentiation, such as when specific protein products are needed.

Molecular Genetics: The Study of Heredity, Genes, and DNA

As we have just learned, DNA provides a blueprint that directs all celadtivi-

ties and specifies the developmental plan of multicellular organisms. Therafor
understanding of DNA, gene structure, and function is fundamentarf@ppre-
ciation of the molecular biology of the cell. Yet, it is important to recognize that
progress in any scientific field depends on the availability of experimenttd too
that allow researchers to make new scientific observations and conuledtex-
periments. The last section of the genetic primer concludes with a discugsion o
some of the laboratory tools and technologies that allow researchers yocstisl

and their DNA.
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A.3 Molecular Genetics: Piecing It Together

Molecular genetics is the study of the agents that pass information frommagene
tion to generation. These molecules, genesare long polymers adeoxyribonu-
cleic acid or DNA. Just four chemical building blocks—guanine (G), adening (A)
thymine (T), and cytosine (C)—are placed in a unique order to code fof #ie
genes in all living organisms.

Genes determinbereditary traits such as the color of our hair or our eyes.
They do this by providing instructions for how every activity in every célbor
body should be carried out. For example, a gene may tell a liver cell to emov
excess cholesterol from our bloodstream. How does a gene do thigRitistvuct
the cell to make a particular protein. It is this protein that then carries out the
actual work. In the case of excess blood cholesterol, it is the receitaigs on
the outside of a liver cell that bind to and remove cholesterol from the blDoel
cholesterol molecules can then be transported into the cell, where theyrtier f
processed by other proteins.

Many diseases are caused foytations or changes in the DNA sequence of
a gene. When the information coded for by a gene changes, the resutiteinp
may not function properly or may not even be made at all. In either caseglise
containing that genetic change may no longer perform as expected. Wienow
that mutations in genes code for ttleolesterol receptor proteiassociated with a
disease callefamilial hypercholesterolemiarhe cells of an individual with this
disease end up having reduced receptor function and cannot rensaffecent
amount of low density lipoprotein (LDL), or bad cholesterol, from their kloo
stream. A person may then develop dangerously high levels of cholegtettohg
them at increased risk for both heart attack and stroke.

How do scientists study and find these genetic mutations? They have available
to them a variety of tools and technologies to compare a DNA sequence isolated
from a healthy person to the same DNA sequence extracted frofil@ted per-
son. Advanced computer technologies, combined with the explosion ofigene
data generated from the various whole genome sequencing projedik soci@n-
tists to use these molecular genetic tools to diagnose disease and to design new
drugs and therapies. Below is a review of some common laboratory methads tha
geneticists— scientists who study the inheritance pattern of specific traitsusean
to obtain and work with DNA, followed by a discussion of some applications.

Laboratory Tools and Techniques

The methods used by molecular geneticists to obtain and study DNA have been
developed through keen observation and adaptation of the chemictibnsaand
biological processes that occur naturally in all cells. Many of the enzytimags
copy DNA, make RNA from DNA, and synthesize proteins from an RNA tem-
plate were first characterized in bacteria. These basic researdts teste become
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Figure A.31: Polymerase chain reaction (PCR) is a laboyatwhnique used to amplify
DNA sequences. The method involves using short DNA seqeralied primers to select
the portion of the genome to be amplified. The temperaturd@sample is repeatedly
raised and lowered to help a DNA replication enzyme copydhget DNA sequence. The
technique can produce a billion copies of the target sequienjcist a few hours.

fundamental to our understanding of the function of human cells and hdv