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Preface

This text is intended for researchers interested in the application ofdekadnd
control to biomolecular systems. The material has been designed so that it ca
be used in parallel with the textbodleedback Systenji$] as part of a course on
biomolecular feedback and control systems, or as a standalone féoencaders
who have had a basic course in feedback and control theory. Theesttifior this
book, along with additional supplemental material, is available on a companion
web site:

http://www.cds.caltech.edu/~murray/BFS

The material in this book is intended to be useful to three overlapping audi-
ences: graduate students in biology and bioengineering interested irstamdkng
the role of feedback in natural and engineered biomolecular systena)@sti/un-
dergraduates and graduate students in engineering disciplines whdeaestied
the use of feedback in biological circuit design; and established sarin the
biological sciences who want to explore the potential application of prirsgohel
tools from control theory to biomolecular systems. We have written the text as-
suming some familiarity with basic concepts in feedback and control, but have
tried to provide insights and specific results as needed, so that the maaerizd c
learned in parallel. We also assume some familiarity with cell biology, at the level
of a first course for non-majors. The individual chapters in the textaid the
pre-requisites in more detail, most of which are covered either in AM08 orein th
supplemental information available from the companion web site.

Domitilla Del Vecchio Richard M. Murray
Cambridge, Massachusetts Pasadena, California


http://www.cds.caltech.edu/~murray/BFS
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Notation

This is an internal chapter that is intended for use by the authors in fixinptiae
tion that is used throughout the text. In the first pass of the book we togparting
several conflicts in notation and the notes here may be useful to earlyafdbe
text.

Protein dynamics

For a gene ‘genX’, we writgenXfor the gene, i, ., for the mRNA and GenX for
the protein when they appear in text or chemical formulas. Superscriptssad
for covalent modifications, e.g.,»for phosphorylation. We also use superscripts
to differentiate between isomers, sgeg;( might be used to refer to mature RNA

or GenX to refer to the folded versions of a protein, if required. Mathematical
formulas use the italic version of the variable name, but roman font for the ge
isomeric state. The concentration of mRNA is written in text or formulasgsx
(m’éenxfor mature) and the concentration of proteir@&x(p‘;enx for folded). The
same naming conventions are used for common /geoiein combinations: the
MRNA concentration ofetRis MR the concentration of the associated protein is
Pretr @Nd parameters argetr, Yietr, €tC.

For generic genes and proteins, use X to refer to a protejrtpmefer to the
MRNA associated with that protein ardo refer to the gene that encodes X. The
concentration of X can be written either s px or [X], with that order of pref-
erence. The concentration of,man be written either asy (preferred) or [m].
Parameters that are specific to g@rere written with a subscripted pyp, vy, etc.
Note that although the protein is capitalized, the subscripts are lower ase (s
dexed by the gene, not the protein) and also in roman font (since theyoaie
variable).

Transcription and translationThe dynamics of protein production are given by

dmp - dP _
— = ap — {Mp —5pMp, — =kpMp —uP—ypP,
dt ——— dt —_—
—opMp —ypP

whereap is the (basal) rate of productiofy parameterizes the rate of degradation
of the mRNA m, Bp is the kinetic rate of protein productiop,is the growth rate
that leads to dilution of concentrations apgparameterizes the rate of degradation
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of the protein P. Since dilution and degradation enter in a similar fashion, eve us
6 =6 +u andy =y +u to represent the aggregate degradation and dilution rate. If
we are looking at a single gefpeotein, the various subscripts can be dropped.
When we ignore the mRNA concentration, we write the simplified protein dy-
namics as 4P
at =pp—ypP.
Assuming that the mRNA dynamics are fast compared to protein production, the

the constanBp is given by
2P
Bp =kp op

In general, if this does not create confusion, we remove the subsdfiptson the
parameters.

Hill functions.For regulated production of proteins using Hill functions, we modify
the constitutive rate of production to IB€Q), in which Q is a transcription factor,
instead ofp, or B, as appropriate. The Hill function is written in the forms

SRLCILS)

F(Q)= = 1+(Q/K)n+a'o.

(04
1+(Q/K)™
The notation forF mirrors that of transfer functions in AMO&, 4 represents the
inputoutput relationship between inp@tand outputP (rate). If the target gene is
not particularly relevant, the subscript can represent just the tiptisorfactor:

_ Qlac
Flac(Q) = 13 (0/ K Q7 Kiag)™e .

The subscripts can be dropped completely if there is only one Hill functiosen u

ConcentrationsFor a species AA is its concentration, that ig\.=[A]. na is the
number of A molecules anah, is the mRNA.

For complexes ES (complex of E and S), we deridte[ ES] and write difer-
ential equations witkC only or [ES], that is & or 4531,

For names of proteins, such as TetR, we wiite=[TetR] and everything fol-

lows the rules of the species A.

Vector fieldsx = f(x) or x= f(x,u,0): all are lower case. Upper cakds reserved
for Hill functions.

Some common symbols:

Symbol | LaTeX | Comment
Xtot X_\tot | Total concentration of a specigs
Ky \Kd Dissociation constant

Km \Km Michaelis-Menten constant




CONTENTS Vii

Chemical reactions

We write the symbol for a chemical species A using roman type. The number of
molecules of a species A is written ag The concentration of the species is oc-
casionally written as [A], but we more often use the nota#ioras in the case of
proteins, orx,. For a reaction A B «— C, we use the notation

dc
Rl: A+B—mC == _aAB-d,C
d dt

This notation is primarily intended for situations where we have multiple reactions
and need to distinguish between manyfatient constants. Enzymatic reactions
have the form o
R2: S+E=C->P+E
d2
For a small number of reactions, the reaction number can be dropped.

It will often be the case that two species A and B will form a molecular bond, in
which case we write the resulting species as AB. If we need to distinguislkebrtw
covalent bonds and hydrogen bonds, we write the latter as A:B. Finallgnires
situations we will have labeled section of DNA that are connected togethahw
we write as A-B, where here A represents the first portion of the DNA strand and B
represents the second portion. When describing (single) strandsAf\idwrite
A’ to represent the Watson-Crick complement of the strand A. ThtB:B/—A’
would represent a double stranded length of DNA with domains A and B.

The choice of representing covalent molecules using the conventiceraical
notation AB can lead to some confusion when writing the reaction dynamics using
A andB to represent the concentrations of those species. Namely, the syBbol
could represent either the concentration of A times the concentration otligor
concentration of AB. To remove this ambiguity, when using this notation we write
[A][B] as A-B.

When working with a system of chemical reactions, we wrijté S 1,...,n for
the species andjRj = 1,...,mfor the reactions. We write; to refer to the molecu-
lar count for speciesandx; = [Si] to refer to the concentration of the species. The
individual equations for a given species are written

dyx -
i Zki,jk X;j Xk
=

The collection of reactions are written as

dx dx;
ot = NV(x,6), d—:NijVj(X,Q),
wherex; is the concentration of specieg 8 € R™™ is the stochiometry matrix;;
is the reaction flux vector for reactign and@ is the collection of parameters that
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the define the reaction rates. Occasionally it will be useful to write the flages
polynomials, in which case we use the notation

Vj(x,6) = Z Ejk ]_[ Xf'jk
K |

whereEjx is the rate constant for thkth term of thejth reaction andsljk is the
stochiometry coféicient for the species;.

Generally speaking, cfiicients for propensity functions and reaction rate con-
stants are written using lower casg, i, etc). Two exceptions are the dissociation
constant, which we write aky, and the Michaelis-Menten constant, which we
write asKp,.

Figures

In the public version of the text, certain copyrighted figures are missing filds
names for these figures are listed and many of the figures can be lookedhap
following references:

e Coul8 - Mechanisms in Transcriptional Regulatioy A. J. Courey 17]

GNM93 - J. Greenblatt, J. R. Nodwell and S. W. Mason, “Transcriptional an-
titermination” [34]

Mad®7 - From a to alpha: Yeast as a Model for Cellular fErentiationby
H. Madhani p8]

MBoC - The Molecular Biology of the Celly Alberts et al. 2]
PKT08 - Physical Biology of the Celdy Phillips, Kondev and Theriop]

The remainder of the filename lists the chapter and figure number.

Review Comments intended for reviewers are marked as in this paragraph. Tinesesats
generally explain missing material that will be included in the final text.


Cou08
GNM93
Mad07
MBoC
PKT08

Chapter 1
Introductory Concepts

This chapter provides a brief introduction to concepts from systems bidiogjg
from differential equations and control theory, and approaches to modelifg, ana
ysis and design of biomolecular feedback systems. We begin with a discugsio
the role of modeling, analysis and feedback in biological systems. This isviedlo

by a short review of key concepts and tools from control and dynamsisteéms
theory, intended to provide insight into the main methodology described in the tex
Finally, we give a brief introduction to the field of synthetic biology, which is the
primary topic of the latter portion of the text. Readers who are familiar with one or
more of these areas can skip the corresponding sections without |losstiofuity.

1.1 Systems Biology: Modeling, Analysis and Role of Feedback

At a variety of levels of organization—from molecular to cellular to organismal—
biology is becoming more accessible to approaches that are commonly used in
engineering: mathematical modeling, systems theory, computation and abptract
proaches to synthesis. Conversely, the accelerating pace of digéovsological
science is suggesting new design principles that may have important praptica
plications in human-made systems. This synergy at the interface of biolafjy an
engineering fiers many opportunities to meet challenges in both areas. The guid-
ing principles of feedback and control are central to many of the kegtiunes in
biological science and engineering and can play an enabling role instadding

the complexity of biological systems.

In this section we summarize our view on the role that modeling and analysis
should (eventually) play in the study and understanding of biological sgstend
discuss some of the ways in which an understanding of feedback prindiple
biology can help us better understand and design complex biomoleculatscircu

There are a wide variety of biological phenomena that provide a rictteair
examples for control, including gene regulation and signal transductiomdnal,
immunological, and cardiovascular feedback mechanisms; muscular canttol
locomotion; active sensing, vision, and proprioception; attention andcmuss
ness; and population dynamics and epidemics. Each of these (and manymere
vide opportunities to figure out what works, how it works, and whatlmadone to
affect it. Our focus here is at the molecular scale, but the principles andagpr
that we describe can also be applied at larger time and length scales.
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Modeling and analysis

Over the past several decades, there have been significant asvanoodeling
capabilities for biological systems that have provided new insights into the com-
plex interactions of the molecular-scale processes that implement life. &kduc
order modeling has become commonplace as a mechanism for describingcand d
umenting experimental results and high-dimensional stochastic models can now
be simulated in reasonable periods of time to explore underlying stochfistitse
Coupled with our ability to collect large amounts of data from flow cytometry,
micro-array analysis, single-cell microscopy, and other modern expetafrtech-
niques, our understanding of biomolecular processes is advancinggitigace.

Unfortunately, although models are becoming much more common in biolog-
ical studies, they are still far from playing the central role in explaining derp
biological phenomena. Although there are exceptions, the predomireaot oed-
els is to “document” experimental results: a hypothesis is proposed and tsste
ing careful experiments, and then a model is developed to match the expelimen
results and help demonstrate that the proposed mechanisms can lead to the ob-
served behavior. This necessarily limits our ability to explain complex phenmmen
to those for which controlled experimental evidence of the desired pharsooas
be obtained.

This situation is much dlierent than standard practice in the physical sciences
and engineering, as illustrated in Figurd. (in the context of modeling, analysis,
and control design for gas turbine aeroengines). In those discipkrpsriments
are routinely used to help build models for individual components at a variety o
levels of detail, and then these component-level models are interconneated to
tain a system-level model. This system-level model, carefully built to capture the
appropriate level of detail for a given question or hypothesis, is usedftain,
predict, and systematically analyze the behaviors of a system. Becauseiafyth
in which models are viewed, it becomes possible to prove (or invalidate)aHryp
esis through analysis of the model, and the fidelity of the models is such that dec
sions can be made based on them. Indeed, in many areas of modern gngiree
including electronics, aeronautics, robotics, and chemical procedsimame a
few—models play a primary role in the understanding of the underlying physic
andor chemistry, and these models are used in predictive ways to exploredesig
tradedfs and failure scenarios.

A key element in the successful application of modeling in engineering dis-
ciplines is the use ofeduced-order modelthat capture the underlying dynamics
of the system without necessarily modeling every detail of the underlyindpmec
anisms. These reduced order models are often coupled with schematiesdiag
such as those shown in Figute?, to provide a high level view of a complex sys-
tem. The generation of these reduced-order models, either directly fatenod
through analytical or computational methods, is critical in tifeaive applica-
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Figure 1.1: Sample modeling, analysis and design frameWaor&n engineering system.

tion of modeling since modeling of the detailed mechanisms produces high fidelity
models that are too complicated to use with existing tools for analysis and design.
One area in which the development of reduced order models is fairly eedas

in control theory, where inpfdgutput models, such as block diagrams and transfer
functions are used to capture structured representations of dynanhesagipro-
priate level of fidelity for the task at hand][

While developing predictive models and corresponding analysis toolsdbr b
ogy is much more diicult, it is perhaps even more important that biology make
use of models, particularly reduced-order models, as a central elefnenter-
standing. Biological systems are by their nature extremely complex and ean be
have in counterintuitive ways. Only by capturing the many interacting aspécts
the system in a formal model can we ensure that we are reasoning lgrapeut
its behavior, especially in the presence of uncertainty. To do this will recpuib-
stantial €fort in building models that capture the relevant dynamics at the proper
scales (depending on the question being asked) as well as building aticahaly
framework for answering questions of biological relevance.

The good news is that a variety of new techniques, ranging from expaisrte
computation to theory, are enabling us to explore new approaches to maithaling
attempt to address some of these challenges. In this text we focus on tifeelse
vant classes of reduced-order models that can be used to captur@hsmmmena
of biological relevance.
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Figure 1.2: Schematic diagrams representing modeldtierdnt disciplines. Each diagram
is used toillustrate the dynamics of a feedback systemidajrecal schematics for a power
system 53], (b) a biological circuit diagram for a synthetic clockaiit [5], (c) a process
diagram for a distillation column8)] and (d) a Petri net description of a communication
protocol.

Dynamic behavior and phenotype

One of the key needs in developing a more systematic approach to the usd-of mo
els in biology is to become more rigorous about the various behaviors thahar
portant for biological systems. One of the key concepts that needs torhalfzed

is the notion of “phenotype”. This term is often associated with the existerae o
equilibrium point in a reduced-order model for a system, but clearly mmomeptex
(non-equilibrium) behaviors can occur and the “phenotypic resparfsg’system

to an input may not be well-modeled by a steady operating condition. Even more
problematic is determining which regulatory structures are “active” in angives-
notype (versus those for which there is a regulatory pathway that isasadusnd
hence not active).

Figure1l.3shows a graphical representation of a class of systems that captures
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Signalling A
Parameters molecules Disturbance
Unmodeled
l Dynamics
External inputs J
~ "] Chemical DNA TX-TL | Observed outputs
Kinetics Layout *@—’ Processes

[ (fast) j (slow)

Figure 1.3: Conceptual modeling framework for biomolecukedback systems. The
chemical kinetics block represents reactions betweencutzlespecies, resulting in signal-
ing molecules and bound promoters. The DNA layout block antofor the organization
of the DNA, which may be “rewired” to achieve a desired fuantiThe TX-TL processes
block represents the core transcription and translatiocgsses, which are often much
slower than the reactions between various species. Thésigma outputs of the various
blocks represent interconnections and external intenagti

many of the features we are interested in. The chemical kinetics of the system
are typically modeled using mass action kinetics (reaction rate equationg@nd r
resent the fast dynamics of chemical reactions. The reactions includénttiag

of activators and repressors to DNA, as well as the initiation of transanipiibe

DNA layout block represents the physical layout of the DNA, which deiees
which genes are controlled by which promoters. The core processemetrip-

tion (TX) and translation (TL) represent the slow dynamics (relative totikenical
kinetics) of protein expression (including maturation).

Several other inputs and outputs are represented in the figure. Inehgozth
kinetics block, we allow external inputs, such as chemical inducers, xacdhal
parameters (rate parameters, enzyme concentrations, etc) thaffedt! the reac-
tions that we are trying to capture in our model. We also include a (simplified)
notion of disturbances, represented in the diagram as an externathapdfects
the rate of transcription. This disturbance is typically a stochastic input éipat r
resents the fact that gene expression can be noisy. In terms of owtputapture
two possibilities in the diagram: small molecule outputs—often used for signaling
to other subsystems but which could include outputs from metabolic preeesse
and protein outputs, such as as fluorescent reporters.

Another feature of the diagram is the block labeled “unmodeled dynamics”,
which represents the fact that our models of the core processeseégpression
are likely to be simplified models that ignore many details. These dynamics are
modeled as a feedback interconnection with transcription and translatiach) wh
turns out to provide a rich framework for application of tools from continelory
(but unfortunately one that we will not explore in great detail within this text)
Tools for understanding this class of uncertainty are available for botarlered
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nonlinear control systemd] and allow stability and performance analyses in the
presence of uncertainty.

The combination of partially unknown parameters, external disturbanoes,
unmodeled dynamics are collectively referred tavasdel uncertaintyand are an
important element of our analysis of biomolecular feedback systems. Oéerillw
analyze the dynamic behavior of a system assuming that the parametenswarg k
disturbances are small and our models are accurate. This analysiseaalgable
insights into the behavior of the system, but it is important to make sure that this
behavior is robust with respect to uncertainly, a topic that we will discussrnme
detail in ChapteB.

A somewhat common situation is that a system may have multiple equilib-
rium points and the “phenotype” of the system is represented by the particu
equilibrium point that the system converges to. In the simplest case, weavan
bistability, in which there are two equilibrium pointge andxye for a fixed set of
parameters. Depending on the initial conditions and external inputs, a gy&e
tem may end up near one equilibrium point or the other, providing two distinct
phenotypes. A model with bistability (or multi-stability) provides one method of
modeling memory in a system: the cell or organism remembers its history by virtue
of the equilibrium point to which it has converted.

For more complex phenotypes, where the subsystems are not at a speady o
erating point, one can consider temporal patterns such as limit cyclesdjgerio
orbits) or non-equilibrium inpubutput responses. Analysis of these more compli-
cated behaviors requires more sophisticated tools, but again model-adgsisa
of stability and inpybutput responses can be used to characterize the phenotypic
behavior of a biological system undeifférent conditions or contexts.

Additional types of analysis that can be applied to systems of this form include
sensitivity analysis (dependence of solution properties on selecteti@@rs), un-
certainty analysis (impact of disturbances, unknown parameters andletedaly-
namics), bifurcation analysis (changes in phenotype as a function df leyais,
context or parameters) and probabilistic analysis (distributions of statefuas-
tion of distributions of parameters, initial conditions or inputs). In each a$ehe
cases, there is a need to extend existing tools to exploit the particular strottur
the problems we consider, as well as modify the techniques to providemeket@
biological questions.

Stochastic behavior

Another important feature of many biological systems is stochasticity: biolbgica
responses have an element of randomness so that even undelycaositiol con-
ditions, the response of a system to a given input may vary from experitmen
experiment. This randomness can have many possible sources, inclytingaé
perturbations that are modeled as stochastic processes and inteoegga®such
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-/intro/figures/gal-circuit.eps ./intro/figures/gal-response.eps

(a) Galactose control network (b) Pathway response

Figure 1.4: Galactose response in ye88}.[(a) GAL signaling circuitry showing a num-
ber of diferent feedback pathways that are used to detect the preskgeéactose and
switch on the metabolic pathway. (b) Pathway activity asrecfion of galactose concen-
tration. The points at each galactose concentration reptéise activity level of the galac-
tose metabolic pathway in an individual cell. Black dotsigatle the mean of a Gaussian
mixture model classificatiorBp]. Small random deviations were added to each galactose
concentration (horizontal axis) to better visualize thariutions.

as molecular binding and unbinding, whose stochasticity stems from thelymnder
ing thermodynamics of molecular reactions.

While for many engineered systems it is common to try to eliminate stochastic
behavior (yielding a “deterministic” response), for biological systemsthppear
to be many situations in which stochasticity is important for the way in which or-
ganisms survive. In biology, nothing is 100% and so there is always sharee
that two identical organisms will respondi@irently. Thus viruses are never com-
pletely contagious and so some organisms will survive, and DNA replication is
never error free, and so mutations and evolution can occur. In studiricgjts
where these types offfects are present, it thus becomes important to study the
distribution of responses of a given biomolecular circuit, and to collect idaaa
manner that allows us to quantify these distributions.

One important indication of stochastic behavidbiimodality We say that a cir-
cuit or system is bimodal if the response of the system to a given inpunhdit@m
has two or more distinguishable classes of behaviors. An example of bimodal-
ity is shown in Figurel.4, which shows the response of the galactose metabolic
machinery in yeast. We see from the figure that even though geneticalljcalen
organisms are exposed to the same external environment (a fixed galactes
centration), the amount of activity in individual cells can have a large at@iun
variability. At some concentrations there are clearly two subpopulationslisf ce
those in which the galactose metabolic pathway is turned on (higher repader fl
rescence values on tlyeaxis) and those for which it isfb(lower reporter fluores-
cence).

Another characterization of stochasticity in cells is the separation of nossines
in protein expression into two categories: “intrinsic” noise and “extrinsmise.
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Roughly speaking, extrinsic noise represents variability in gene expnetsat
effects all proteins in the cell in a correlated way. Extrinsic noise can be due to
environmental changes thdtect the entire cell (temperature, pH, oxygen level) or
global changes in internal factors such as energy or metabolite levetafsedue

to metabolic loading). Intrinsic noise, on the other hand, is the variability dueto th
inherent randomness of molecular events inside the cell and represetiection

of independent random processes. One way to attempt to measure thet afnou
intrinsic and extrinsic noise is to take two identical copies of a biomolecular cir-
cuit and compare their respons&gl,[88]. Correlated variations in the output of
the circuits corresponds (roughly) to extrinsic noise and uncorrelatéations to
intrinsic noise §0, 89.

The types of models that are used to capture stochastic behavior aréifvery
ferent than those used for deterministic responses. Instead of writiiegeditial
eqguations that track average concentration levels, we must keep tréok iofdi-
vidual events that can occur with some probability per unit time (or “prapgns
We will explore the methods for modeling and analysis of stochastic systems in
Chapterd.

1.2 The Cell as a System

The molecular processes inside a cell determine its behavior and aresideo
for metabolizing nutrients, generating motion, enabling procreation angirogrr
out the other functions of the organism. In multi-cellular organisnii@int types
of cells work together to enable more complex functions. In this section wiybrie
describe the role of dynamics and control within a cell and discuss the fasic
cesses that govern its behavior and its interactions with its environmentsimeas
knowledge of the basics of cell biology at the level found in standard dexdon
cell biology such as Albertst al.[2] or Phillipset al.[72].

Figure 1.5 shows a schematic of the major components in the cell: sensing,
signaling, regulation, and metabolism. Sensing of environmental signalsltypica
occurs through membrane receptors that are specifidi@reint molecules. Cells
can also respond to light or pressure, allowing the cell to sense the emar,
including other cells. There are several types of receptors, some akaigihaling
molecules in the environment to enter the cell wall, such as in the case of ion
channels. Others activate proteins on the internal part of the cell meenbrexe
they externally bind to the signaling molecule, such as enzyme-linked rese&wtor
G-protein coupled receptors.

As a consequence of the sensing, a cascade of signal transduciios (8ig-
naling), in which proteins are sequentially activated by (usually) recgighmos-
phate groups from ATP molecules through the processes of phospimrdador
phosphotransfer. These cascades transmit information to downstreaesges,
such as gene expression, by amplifying the information and dynamically fijterin
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Figure 1.5: The cell as a system. The major subsystems asagerignaling, regulation,
and metabolism.

signals to select for useful features. The temporal dynamics of emvé@otal sig-

nals and the kinetic properties of the stages in the signaling cascades determin
how a signal is transmittéfiltered. At the bottom stages of signaling cascades,
proteins are activated to become transcription factors, which can activaie
press the expression of other proteins through regulation of genessi@n. The
temporal dynamics of this regulation, with timescales in the range of minutes to
hours, are usually much slower than that of the transmission in the signatimg pa
way, which has timescales ranging from subseconds to seconds. Ornthity”

to signaling cascades, metabolic pathways, such as the glycolysis patreay,
charge of producing the necessary resources for all the othexgmes in the cells.
Through these pathways, nutrients in the environment, such as glucetepken
down through a series of enzymatic reactions, producing, among othduqis,

ATP, which is the energy currency in the cell used for many of the reastion
cluding those involved in signaling and gene expression.

Example: Chemotaxis

As an example of a sensing-transmission-actuation process in the cellngideo
chemotaxisthe process by which micro-organisms move in response to chemical
stimuli. Examples of chemotaxis include the ability of organisms to move in the
direction of nutrients or move away from toxins in the environment. Chemotaxis
is calledpositive chemotaxig the motion is in the direction of the stimulus and
negative chemotaxi§the motion is away from the stimulant.

The chemotaxis system . coli consists of a sensing system that detects the
presence of nutrients, an actuation system that propels the organism iviits e
ronment, and control circuitry that determines how the cell should move in the
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fbkexamps/figures/chemotaxis-ctrlsys.eps

Figure 1.6: A simplified circuit diagram for chemotaxis, slirag the biomolecular pro-
cesses involved in regulating flagellar motion.

presence of chemicals that stimulate the sensing system. The approximatenlocatio
of these elements are shown in Figlré. The sensing component is responsible
for detecting the presence of ligands in the environment and initiating signaling
cascades. The computation component, also realized through protephphgda-

tion, implements a feedback (integral) controller that allows the bacterium i ada
to changes in the environmental ligand concentration. This adaptatiorsdncan
actuator that allows the bacterium to ultimately move in the direction in which the
ligand concentration increases.

The actuation system in the coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown in
Figurel.7a When the flagella all spin in the counter clockwise direction, the indi-
vidual flagella form a bundle and cause the organism to move roughly inigtstr
line. This behavior is called a “run” motion. Alternatively, if the flagella spin ia th
clockwise direction, the individual flagella do not form a bundle and tigamism
“tumbles”, causing it to rotate (Figurgé.7h. The selection of the motor direc-
tion is controlled by the protein CheY: if phosphorylated CheY binds to the motor
complex, the motor spins clockwise (tumble), otherwise it spins counterwglsek
(run). As a consequence, the chemotaxis mechanisms is stochastic in néture
biased random motions causing the average behavior to be either postiative
or neutral (in the absence of stimuli).

1.3 Control and Dynamical Systems Tools 1!

To study the complex dynamics and feedback present in biological sysiems,
will make use of mathematical models combined with analytical and computational
tools. In this section we present a brief introduction to some of the key ptsice

1The material in this section is adapted frémedback System&hapter 1 ].
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Figure 1.7: Bacterial chemotaxis. Figures from Phillipgnidev and Theriotq2]; used
with permission of Garland Science.

from control and dynamical systems that are relevant for the study wfdiecular
systems considered in later chapters. More details on the application dficspec
concepts listed here to biomolecular systems is provided in the main body of the
text. Readers who are familiar with introductory concepts in dynamical systems
and control, at the level described in Astn and Murray 1] for example, can skip

this section.

Dynamics, feedback and control

A dynamical systens a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The tefevdbackefers to a situation
in which two (or more) dynamical systems are connected together such dhat ea
system influences the other and their dynamics are thus strongly couptgale S
causal reasoning about a feedback systemfidit because the first system in-
fluences the second and the second system influences the first, leadicigctdar
argument. This makes reasoning based on causeftaul &icky, and it is neces-
sary to analyze the system as a whole. A consequence of this is that #nedveh
of feedback systems is often counterintuitive, and it is therefore ofte@ssary to
resort to formal methods to understand them.

Figurel.8illustrates in block diagram form the idea of feedback. We often use
the termsopen loopand closed loopwhen referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a sycle, a
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Figure 1.8: Open and closed loop systems. (a) The outputstésyl is used as the input
of system 2, and the output of system 2 becomes the input térays, creating a closed
loop system. (b) The interconnection between system 2 astérayl is removed, and the
system is said to be open loop.

shown in Figurel.8a If we break the interconnection, we refer to the configuration
as an open loop system, as shown in Figugh

Biological systems make use of feedback in an extraordinary numberysf wa
on scales ranging from molecules to cells to organisms to ecosystems. One ex-
ample is the regulation of glucose in the bloodstream through the production of
insulin and glucagon by the pancreas. The body attempts to maintain a constant
concentration of glucose, which is used by the body’s cells to produesggn
When glucose levels rise (after eating a meal, for example), the hormorim insu
is released and causes the body to store excess glucose in the livergilbese
levels are low, the pancreas secretes the hormone glucagon, whicle logpptsite
effect. Referring to Figuré.8, we can view the liver as system 1 and the pancreas
as system 2. The output from the liver is the glucose concentration in tbe,blo
and the output from the pancreas is the amount of insulin or glucagonigedd
The interplay between insulin and glucagon secretions throughout theedjag h
to keep the blood-glucose concentration constant, at about 90 mg perL160
blood.

Feedback has many interesting properties that can be exploited in desigsing
tems. As in the case of glucose regulation, feedback can make a systiéentres
toward external influences. It can also be used to create linear bebaviof non-
linear components, a common approach in electronics. More generatijpdele
allows a system to be insensitive both to external disturbances and to vesiatio
its individual elements.

Feedback has potential disadvantages as well. It can create dynantditiesa
in a system, causing oscillations or even runaway behavior. Anotherhdcky
especially in engineering systems, is that feedback can introduce umhgantsor
noise into the system, requiring careful filtering of signals. It is for thessans
that a substantial portion of the study of feedback systems is devoteddlopiag
an understanding of dynamics and a mastery of techniques in dynamiteahsys
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Figure 1.9: A feedback system for controlling the speed daffziale. In the block diagram

on the left, the speed of the vehicle is measured and compaibd desired speed within
the “Compute” block. Based on theffiirence in the actual and desired speeds, the throttle
(or brake) is used to modify the force applied to the vehigléhe engine, drivetrain and
wheels. The figure on the right shows the response of theal@ystem to a commanded
change in speed from 25/mto 30 nis. The three dierent curves correspond tofiiiring
masses of the vehicle, between 1000 and 3000 kg, demongttag robustness of the
closed loop system to a very large change in the vehicle cterstics.

Feedback properties

Feedback is a powerful idea that is used extensively in natural anddiedfical
systems. The principle of feedback is simple: implement correcting actioes bas
on the diference between desired and actual performance. In engineerug, fe
back has been rediscovered and patented many times in m@&esedt contexts.
The use of feedback has often resulted in vast improvements in systeinildgp
and these improvements have sometimes been revolutionary, as discuseed ab
The reason for this is that feedback has some truly remarkable propeartieh

we discuss briefly here.

Robustness to Uncertaintfone of the key uses of feedback is to provide robust-
ness to uncertainty. By measuring thdéfelience between the sensed value of a
regulated signal and its desired value, we can supply a corrective dftiom sys-
tem undergoes some change théieets the regulated signal, then we sense this
change and try to force the system back to the desired operating point.

As an example of this principle, consider the simple feedback system shown
in Figurel1.9. In this system, the speed of a vehicle is controlled by adjusting the
amount of gas flowing to the engine. Simglimportional-integral(Pl) feedback
is used to make the amount of gas depend on both the error between et curr
and the desired speed and the integral of that error. The plot on thestigtvs
the results of this feedback for a step change in the desired speed aridtg of
different masses for the car, which might result from havingtemrint number of
passengers or towing a trailer. Notice that independent of the mass (veniek by
a factor of 3!), the steady-state speed of the vehicle always ap@me#uoh desired
speed and achieves that speed within approximately 5 s. Thus the peréeriofa
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide robustnessneghe
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ative feedback amplifier. When telephone communications were devebkped;
fiers were used to compensate for signal attenuation in long lines. A vaitinan
was a component that could be used to build amplifiers. Distortion cause@ by th
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-
jor breakthrough was the invention of the feedback amplifier in 1927 bglH&.
Black, an electrical engineer at Bell Telephone Laboratories. Blagk negative
feedbackwhich reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier
Feedback is also pervasive in biological systems, where transcripticarad;
lational and allosteric mechanisms are used to regulate internal concerstrattion
various species, and much more complex feedbacks are used to regofze p
ties at the organism level (such as body temperature, blood presslcg@adian
rhythm). One diterence in biological systems is that the separation of sensing, ac-
tuation and computation, a common approach in most engineering controhsyste
is less evident. Instead, the dynamics of the molecules that sense the emariron
tal condition and make changes to the operation of internal components may be
integrated together in ways that make iffidult to untangle the operation of the
system. Similarly, the “reference value” to which we wish to regulate a systgm ma
not be an explicit signal, but rather a consequence of mdfgreint changes in the
dynamics that are coupled back to the regulatory elements. Hence we deenot
a clear “setpoint” for the desired ATP concentration, blood oxygen levbbdy
temperature, for example. Thesdhdiulties complicate our analysis of biological
systems, though many important insights can still be obtained.

Design of DynamicsAnother use of feedback is to change the dynamics of a sys-
tem. Through feedback, we can alter the behavior of a system to meeiitie oie
an application: systems that are unstable can be stabilized, systems tHapgare s
gish can be made responsive and systems that have drifting operatirtg qein
be held constant. Control theory provides a rich collection of techniquesaiyze
the stability and dynamic response of complex systems and to place bounds on th
behavior of such systems by analyzing the gains of linear and nonlineeaitops
that describe their components.

An example of the use of control in the design of dynamics comes from the are
of flight control. The following quote, from a lecture presented by Wilbuight
to the Western Society of Engineers in 1964 illustrates the role of control in
the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at $ficient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
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Figure 1.10: Aircraft autopilot system. The Sperry autopfleft) contained a set of four
gyros coupled to a set of air valves that controlled the wurfpses. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aaftand was able to maintain level
flight as a mechanic walked on the wing (rightp].

of suficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the age
of flying will have arrived, for all other dficulties are of minor impor-
tance.

The Wright brothers thus realized that control was a key issue to enaie fl
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. |yéeHad
a rudder in the front of the airplane, which made the plane very mandigera
disadvantage was the necessity for the pilot to keep adjusting the ruddettie fl
plane: if the pilot let go of the stick, the plane would crash. Other early agiato
tried to build stable airplanes. These would have been easier to fly, bandeeof
their poor maneuverability they could not be brought up into the air. By uhbigig
insight and skillful experiments the Wright brothers made the first sutddkght
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, im’ente
by Sperry, was based on the concept of feedback. Sperry usg-atgbilized
pendulum to provide an indication of the vertical. He then arranged a &e&db
mechanism that would pull the stick to make the plane go up if it was pointing
down, and vice versa. The Sperry autopilot was the first use of éédb aero-
nautical engineering, and Sperry won a prize in a competition for thet séfplsine
in Paris in 1914. Figur&.10shows the Curtiss seaplane and the Sperry autopilot.
The autopilot is a good example of how feedback can be used to stabilizesta u
ble system and hence “design the dynamics” of the aircraft.
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One of the other advantages of designing the dynamics of a device is that it
allows for increased modularity in the overall system design. By usind#esdo
create a system whose response matches a desired profile, we carehidenth
plexity and variability that may be present inside a subsystem. This allows us to
create more complex systems by not having to simultaneously tune the response
of a large number of interacting components. This was one of the advanthge
Black’s use of negative feedback in vacuum tube amplifiers: the resulénige
had a well-defined linear inpioutput response that did not depend on the individ-
ual characteristics of the vacuum tubes being used.

Drawbacks of FeedbackWhile feedback has many advantages, it also has some
drawbacks. Chief among these is the possibility of instability if the system is not
designed properly. We are all familiar with the undesiralffeats of feedback
when the amplification on a microphone is turned up too high in a room. This is an
example of feedback instability, something that we obviously want to avoid. Th

is tricky because we must design the system not only to be stable under homina
conditions but also to remain stable under all possible perturbations of tiaerdy

ics. In biomolecular systems, these types of instabilities may exhibit themselves as
situations in which cells no longer function properly due to over expressdien-
gineered genetic components, or small fluctuations in parameters caugstém s

to suddenly cease to function properly.

In addition to the potential for instability, feedback inherently coupl&giknt
parts of a system. One common problem is that feedback often injectstalkdss
into the system. By coupling fierent parts of a biomolecular circuit, the fluctua-
tions in one part of the circuitféect other parts, which themselves may couple to
the initial source of the fluctuations. If we are designing a biomolecular syste
this crosstalk may makefact our ability to design independent “modules” whose
behavior can described in isolation.

Coupled to the problem of crosstalk is the substantial increase in complexity
that results when embedding multiple feedback loops in a system. An early engi-
neering example of this was the use of microprocessor-based feeslmiekns in
automobiles. The use of microprocessors in automotive applications began in
early 1970s and was driven by increasingly strict emissions standanats could
be met only through electronic controls. Early systems were expengiviaged
more often than desired, leading to frequent customer dissatisfactioaslomy
through aggressive improvements in technology that the performariedility
and cost of these systems allowed them to be used in a transparent f&shean
today, the complexity of these systems is such that itfigcdit for an individual
car owner to fix problems. While nature has evolved many feedback stsdhat
are robust and reliable, engineered biomolecular systems are still quiteernd
tary and we can anticipate that as we increase the use of feedback tonsatepe
for uncertainty, we will see a similar period in which engineers must over@mme
steep learning curve before we can get robust and reliable behavéomatter of
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course.

Feedforward Feedback is reactive: there must be an error before correctivasctio
are taken. However, in some circumstances it is possible to measure aatistirb
before it enters the system, and this information can then be used to tagetverr
action before the disturbance has influenced the system. fféwt ef the distur-
bance is thus reduced by measuring it and generating a control sighabtha
teracts it. This way of controlling a system is calliegdforward Feedforward is
particularly useful in shaping the response to command signals becaussacal
signals are always available. Since feedforward attempts to match two signals
requires good process models; otherwise the corrections may havedhg size

or may be badly timed.

The ideas of feedback and feedforward are very general arghappmany dif-
ferent fields. In economics, feedback and feedforward are amadoip a market-
based economy versus a planned economy. In business, a feadf@atrategy
corresponds to running a company based on extensive strategic [glawhiile a
feedback strategy corresponds to a reactive approach. In bidémgiforward has
been suggested as an essential element for motion control in humans tingts tu
during training. Experience indicates that it is often advantageous to cerfdsd-
back and feedforward, and the correct balance requires insightirssrerstanding
of their respective properties.

Positive Feedbackn most of control theory, the emphasis is on the roleegative
feedbackin which we attempt to regulate the system by reacting to disturbances in
a way that decreases thiext of those disturbances. In some systems, particularly
biological systemspositive feedbackan play an important role. In a system with
positive feedback, the increase in some variable or signal leads to a sitiratio
which that quantity is further increased through its dynamics. This hastabiles
lizing effect and is usually accompanied by a saturation that limits the growth of
the quantity. Although often considered undesirable, this behavior isindsd-
logical (and engineering) systems to obtain a very fast response tadéicoror
signal.

One example of the use of positive feedback is to create switching behavior
in which a system maintains a given state until some input crosses a threshold.
Hysteresis is often present so that noisy inputs near the threshold dauss the
system to jitter. This type of behavior is callbdstability and is often associated
with memory devices.

1.4 Input/Output Modeling 2

A model is a mathematical representation of a physical, biological or information
system. Models allow us to reason about a system and make predictiorts abou

2The material in this section is adapted fréedback SystemSections 2.1-2.21].
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Figure 1.11: lllustration of the inpfgutput view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic dfigsl the one on the right is its
representation as a block diagram.

how a system will behave. In this text, we will mainly be interested in models of
dynamical systems describing the infowtput behavior of systems, and we will
often work in “state space” form. In the remainder of this section we proaide
overview of some of the key concepts in infuttput modeling. The mathematical
details introduced here are explored more fully in Chapter

The heritage of electrical engineering

The approach to modeling that we take builds on the view of models that emerged
from electrical engineering, where the design of electronic amplifiers laddous

on inpufoutput behavior. A system was considered a device that transfornts inpu
to outputs, as illustrated in Figulel1l Conceptually an inpgautput model can be
viewed as a giant table of inputs and outputs. Given an input sigtjadver some
interval of time, the model should produce the resulting ougfiit

The inputoutput framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connectedhhrou
their inputs and outputs. Thus, we can take a complicated system suclhdas@rra
a television and break it down into manageable pieces such as the redeimed-
ulator, amplifier and speakers. Each of these pieces has a set of induistauts
and, through proper design, these components can be interconneb&bech tine
entire system.

The inputoutput view is particularly useful for the special clasdiogar time-
invariant systemsThis term will be defined more carefully below, but roughly
speaking a system is linear if the superposition (addition) of two inputs yields a
output that is the sum of the outputs that would correspond to individuatsriye-
ing applied separately. A system is time-invariant if the output responsegiven
input does not depend on when that input is applied. While most biomolesydar
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Figure 1.12: Inpybutput response of a linear system. The step response (& ghe
output of the system due to an input that changes from 0 to imattt=5 s. The fre-
guency response (b) shows the amplitude gain and phaseecdargo a sinusoidal input
at different frequencies.

tems are neither linear nor time-invariant, they can often be approximatedhby su
models, often by looking at perturbations of the system from its nominaMimha
in a fixed context.

One of the reasons that linear time-invariant systems are so prevalent @-mod
ing of inpufoutput systems is that a large number of tools have been developed to
analyze them. One such tool is tsiep responsevhich describes the relationship
between an input that changes from zero to a constant value abruptgp(anput)
and the corresponding output. The step response is very useful iactdr@zing
the performance of a dynamical system, and it is often used to specify siredle
dynamics. A sample step response is shown in Figut2a

Another way to describe a linear time-invariant system is to represent it by its
response to sinusoidal input signals. This is calledfthguency responsand a
rich, powerful theory with many concepts and strong, useful resuisshserged
for systems that can be described by their frequency responsesdiiitsrare based
on the theory of complex variables and Laplace transforms. The basibédiéad
frequency response is that we can completely characterize the bebkxisystem
by its steady-state response to sinusoidal inputs. Roughly speaking, tligas
by decomposing any arbitrary signal into a linear combination of sinusoigs (e
by using the Fourier transform) and then using linearity to compute the ougput b
combining the response to the individual frequencies. A sample freguesigonse
is shown in Figurel..12h

The inputoutput view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording itssesfio
particular inputs, e.g., a step or a set of sinusoids over a range oéfreigs.
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The control view

When control theory emerged as a discipline in the 1940s, the approagh to d
namics was strongly influenced by the electrical engineering (lopttut) view.
A second wave of developments in control, starting in the late 1950s, wageithsp
by mechanics, where the state space perspective was used. Thereraeriggpace
flight is a typical example, where precise control of the orbit of a spatfies es-
sential. These two points of view gradually merged into what is today the state
space representation of inpaiitput systems.

The development of state space models involved modifying the models from
mechanics to include external actuators and sensors and utilizing morelgene
forms of equations. In control, models often take the form

%( = f(xu), y =h(xu), (1.2)
wherex is a vector of state variables,is a vector of control signals andis a
vector of measurements. The tedwr/dt (sometimes also written ag represents
the derivative ofx with respect to time, now considered a vector, gnednd h
are (possibly nonlinear) mappings of their arguments to vectors of thexte
dimension.

Adding inputs and outputs has increased the richness of the classibldmpso
and led to many new concepts. For example, it is natural to ask if possible state
can be reached with the proper choicaudfeachability) and if the measuremegnt
contains enough information to reconstruct the state (observability) eTtbpgs
are addressed in greater detail in AMO8.

A final development in building the control point of view was the emergeiice o
disturbances and model uncertainty as critical elements in the theory. Thie simp
way of modeling disturbances as deterministic signals like steps and sinuasids h
the drawback that such signals cannot be predicted precisely. A naigticeap-
proach is to model disturbances as random signals. This viewpoint givatsiial
connection between prediction and control. The dual views of joptgut repre-
sentations and state space representations are particularly usefuhwlefing
uncertainty since state models are convenient to describe a nominal modal bu
certainties are easier to describe using ifguutput models (often via a frequency
response description).

An interesting observation in the design of control systems is that feedlyack
tems can often be analyzed and designed based on comparatively simpls.mode
The reason for this is the inherent robustness of feedback systemesyveip other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precothgutguts
that cause the system to respond in a certain way. Another area is s\atdas v
tion, where one wishes to verify that the detailed response of the systéonmpe
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as it was designed. Because of thedgedent uses of models, it is common to use
a hierarchy of models havingfterent complexity and fidelity.

State space systems

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a biochemical sytbtestate

is composed of the variables required to account for the current daftthe cell,
including the concentrations of the various species and complexes thaeasnt.

It may also include the spatial locations of the various molecules. A key issue in
modeling is to decide how accurately this information has to be represented. Th
state variables are gathered in a vectarR" called thestate vectorThe control
variables are represented by another vegtoRP, and the measured signal by the
vectory € RY. A system can then be represented by thedeéntial equation

Dotoew. y =nocu. (12
wheref : R"xRP — R" andh : R"x RP — RY are smooth mappings. We call a
model of this form astate space model

The dimension of the state vector is called trder of the system. The sys-
tem (L.2) is calledtime-invariantbecause the functions andh do not depend
explicitly on timet; there are more general time-varying systems where the func-
tions do depend on time. The model consists of two functions: the funttiives
the rate of change of the state vector as a function of stated controlu, and the
functionh gives the measured values as functions of stated control.

A system is called énear state space system if the functiohandh are linear
in X andu. A linear state space system can thus be represented by

% = Ax+Bu, y =Cx+Du, (1.3)
whereA, B, C andD are constant matrices. Such a system is said i{mbear and
time-invariant or LTI for short. The matrixA is called thedynamics matrixthe
matrix B is called thecontrol matrix the matrixC is called thesensor matrixand
the matrixD is called thedirect term Frequently systems will not have a direct
term, indicating that the control signal does not influence the output directly.

1.5 From Systems to Synthetic Biology

The rapidly growing field of synthetic biology seeks to use biological priesip
and processes to build useful engineering devices and systems. Aippkcaf
synthetic biology range from materials production (drugs, biofuels) to bicéd
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Figure 1.13: Milestones in the history of synthetic biology

sensing and diagnostics (chemical detection, medical diagnostics) to ballogie
chines (bioremediation, nanoscale robotics). Like many other fields at thetime
their infancy (electronics, software, networks), it is not yet clearr@tsynthetic
biology will have its greatest impact. However, recent advances sutte abil-

ity to “boot up” a chemically synthesized genon@8] demonstrate the ability to
synthesize systems thaffer the possibility of creating devices with substantial
functionality. At the same time, the tools and processes available to desigmsyste
of this complexity are much more primitive, aidg novosynthetic circuits typi-
cally use a tiny fraction of the number of genetic elements of even the smallest
microorganismsi4.

Several scientific and technological developments over the past fecadee
have set the stage for the design and fabrication of early synthetic biamarlec
circuits (see Figurd..13. An early milestone in the history of synthetic biology
can be traced back to the discovery of mathematical logic in gene regulation. |
their 1961 paper, Jacob and Monod introduced for the first time the idgansf
expression regulation through transcriptional feedbd&k Only a few years later
(1969), restriction enzymethat cut double-stranded DNA at specific recognition
sites were discovered by Arber and co-workefls These enzymes were a major
enabler of recombinant DNA technology, in which genes from one dsgaare
extracted and spliced into the chromosome of another. One of the mostatetebr
products of this technology was the large scale production of insulin by gimpglo
E. colibacteria as a cell factor@4].

Another key innovation was the development of the polymerase chain reac-
tion (PCR), devised in the 1980s, which allows exponential amplification ofl sma
amounts of DNA and can be used to obtaiffisient quantities for use in a variety
of molecular biology laboratory protocols where higher concentratiobdNs$ are
required. Using PCR, it is possible to “copy” genes and other DNA sexpseout
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of their host organisms.

The developments of recombinant DNA technology, PCR and artificial synth
sis of DNA provided the ability to “cut and paste” natural or synthetic pronsote
and genes in almost any fashion. This cut and paste procedure is claliedg
and traditionally consists of four primary stefiagmentation ligation, transfec-
tion andscreening The DNA of interest is first isolated using restriction enzymes
andor PCR amplification. Then, a ligation procedure is employed in which the
amplified fragment is inserted into a vector. The vector is often a piece afl@irc
DNA, called a plasmid, that has been linearized by means of restriction eazyme
that cleave it at appropriate restriction sites. The vector is then incubaie the
fragment of interest with an enzyme callBtA ligase producing a single piece
of DNA with the target DNA inserted. The next step is to transfect (or foany
the DNA into living cells, where the natural replication mechanisms of the cell will
duplicate the DNA when the cell divides. This process does not trareifesells,
and so a selection procedure if required to isolate those cells that havesihedd
DNA inserted in them. This is typically done by using a plasmid that gives the cell
resistance to a specific antibiotic; cells grown in the presence of that antigibitic
only live if they contain the plasmid. Further selection can be done to insure tha
the inserted DNA is also present.

Once a circuit has been constructed, its performance must be verifiedf an
necessary, debugged. This is often done with the hefipofescent reportersThe
most famous of these is GFP, which was isolated from the jellyistuorea vic-
toria in 1978 by Shimomuragd2]. Further work by Chalfie and others in the 1990s
enabled the use of GFP i colias a fluorescent reporter by inserting it into an ap-
propriate point in an artificial circuitlfg]. By using spectrofluorometry, fluorescent
microscopy or flow cytometry, it is possible to measure the amount of fluaresce
in individual cells or collections of cells and characterize the performafhae
circuit in the presence of inducers or other factors.

Two early examples of the application of these technologies wereefiressila-
tor [23] and a synthetic genetic switcRT].

The repressilator is a synthetic circuit in which three proteins each sepres
other in a cycle. This is shown schematically in Figliré4g where the three pro-
teins are TetRAcl and Lacl. The basic idea of the repressilator is that if TetR is
present, then it represses the production of. If Acl is absent, then Lacl is pro-
duced (at the unregulated transcription rate), which in turn represtBs Once
TetR is repressed, thetcl is no longer repressed, and so on. If the dynamics of
the circuit are designed properly, the resulting protein concentrationesillate,
as shown in Figuré.14h

The repressilator can be constructed using the techniques descriwed Riost,
we can make copies of the individual promoters and genes that fornirouit by
using PCR to amplify the selected sequences out of the original organisrhgcim w
they were found. TetR is the tetracycline resistance repressor proteis fhand
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Figure 1.14: The repressilator genetic regulatory netw@kA schematic diagram of the
repressilator, showing the layout of the genes in the pldghat holds the circuit as well
as the circuit diagram (center). The flat headed arrow betwheeprotein names represents
repression. (b) A simulation of a simple model for the regitator, showing the oscillation
of the individual protein concentrations. (Figure cowytbt Elowitz.)

in gram-negative bacteria (suchBscoli) and is part of the circuitry that provides
resistance to tetracycline. Lacl is the gene that prodlaceepressor, responsible
for turning df thelac operon in the lactose metabolic pathwayEincoli (see Sec-
tion 5.1). And A cl comes froml phage, where it is part of the regulatory circuitry
that regulates lysis and lysogeny.

By using restriction enzymes and related techniques, we can separatg-the n
ural promoters from their associated genes, and then ligate (reassénanie)n
a new order and insert them into a “backbone” vector (the rest of trsenidia in-
cluding the origin of replication and appropriate antibiotic resistance). Thi& D
is then transformed into cells that are grown in the presence of an antibiotic, s
that only those cells that contain the represilator can replicate. Finally, nvaka
individual cells containing our circuit and let them grow under a microsdop
image fluorescent reporters coupled to the oscillator.

Another early circuit in the synthetic biology toolkit is a genetic switch built
by Gardneret al. [27]. The genetic switch consists of two repressors connected
together in a cycle, as shown in Figutel5a The intuition behind this circuit is
that if the gene A is being expressed, it will repress production of B aridtaia
its expression level (since the protein corresponding to B will not beeptéds re-
press A). Similarly, if B is being expressed, it will repress the productfoh and
maintain its expression level. This circuit thus implements a tygeastébility that
can be used as a simple form of memory. FigluE5bshows the time traces for
a system, illustrating the bistable nature of the circuit. When the initial condition
starts with a concentration of protein B greater than that of A, the solution con
verges to the equilibrium point where B is on and A 1B ¢f A is greater than B,
then the opposite situation results.
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Figure 1.15: Stability of a genetic switch. The circuit diaigp in () represents two proteins
that are each repressing the production of the other. Thesop andu, interfere with this
repression, allowing the circuit dynamics to be modifiede Simulation in (b) shows the
time response of the system starting from twidetent initial conditions. The initial portion
of the curve corresponds to protein B having higher coneéintr than A, and converges to
an equilibrium where A isfd and B is on. At time = 10, the concentrations are perturbed,
moving the concentrations into a region of the state spaa¥ewolutions converge to the
equilibrium point with the A on and Bf&,

These seemingly simple circuits took years b to get to work, but showed
that it was possible to synthesize a biological circuit that performed aedifsinc-
tion that was not originally present in a natural system. Today, commeycitles
sis of DNA sequences and genes has become cheaper and fastempmigtatten
below $0.20 per base p&iiThe combination of inexpensive synthesis technolo-
gies, new advances in cloning techniques, and improved devices for ignagth
measurement has vastly simplified the process of producing a sequebDd&Aof
that encodes a given set of genes, operator sites, promoters andusitt@ns.
These techniques are a routine part of undergraduate courses inufapstd syn-
thetic biology.

As illustrated by the examples above, current techniques in synthetic biology
have demonstrated the ability to program biological function by designing DNA
sequences that implement simple circuits. Most current devices make tra@-of
scriptional or post-transcriptional processing, resulting in very slow tales (re-
sponse times typically measured in tens of minutes to hours). This restricts their
use in systems where faster response to environmental signals is nsecleds
rapid detection of a chemical signal or fast response to changes in theairdgavi-
ronment of the cell. In addition, existing methods for biological circuit debigre
limited modularity (reuse of circuit elements requires substantial redesigm-or tu
ing) and typically operate in very narrow operating regimes (e.g., a singlgesp
grown in a single type of media under carefully controlled conditions). Ewrth

3As of this writing; divide by a factor of two for every two years after thdlization date.
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Figure 1.16: Expression of a protein using an inducible mi@m[15]. (a) The circuit
diagram indicates the DNA sequences that are used to congtaupart (chosen from the
BioBrick library). (b) The measured response of the systemgtep change in the inducer
level (HSL).

more, engineered circuits inserted into cells can interact with the hostismgan
and have other unintended interactions.

As an illustration of the dynamics of synthetic devices, FigliE6 shows a
typical response of a genetic element to an inducer moled3e Ih this circuit,
an external signal of homoserine lactone (HSL) is applied at time zero &nd th
system reaches 10% of the steady state value in approximately 15 minutes. This
response is limited in part by the time required to synthesize the output protein
(GFP), including delays due to transcription, translation and folding. Simise
is the response time for the underlying “actuator”, circuits that are cordpoise
feedback interconnections of such genetic elements will typically oper&telét
times slower speeds. While these speeds are appropriate in many appli@tions
regulation of steady state enzyme levels for materials production), in the tontex
of biochemical sensors or systems that must maintain a steady operatingnpoint
more rapidly changing thermal or chemical environments, this response tinee is to
slow to be used as arffective engineering approach.

By comparison, the inpfdgutput response for the signaling componeri.igoli
chemotaxis is shown in Figuke17[81]. Here the response of the kinase CheA is
plotted in response to an exponential ramp in the ligand concentration. The re
sponse is extremely rapid, with the timescale measured in seconds. Thisaapid r
sponse is implemented by conformational changes in the proteins involved in the
circuit, rather than regulation of transcription or other slower processes

The field of synthetic biology has the opportunity to provide new appr@ache
to solving engineering and scientific problems. Sample engineering applEation
include the development of synthetic circuits for producing biofuels, @irsifive
chemical sensors, or production of materials with specific propertiesrénaurzed
to commercial needs. In addition to the potential impact on new biologically engi-
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Figure 1.17: Responses Bf coli chemotaxis signaling network to exponential ramps in
ligand concentration. Time responses of the “sensing”ystbm (from Shimizu, Tu and
Berg; Molecular Systems Biology, 2010), showing the respdn exponential inputs.

neered devices, there is also the potential for impact in improved undairgjaof
biological processes. For example, many diseases such as candtariimon’s
disease are closely tied to kinase dysfunction. Our analysis of robsignsy of
kinases and the ability to synthesize systems that support or invalidate badlogic
hypotheses may lead to a better systems understanding of failure modesdthat le
to such diseases.

1.6 Further Reading

There are numerous survey articles and textbooks that provide more di@tside
ductions to the topics introduced in this chapter. In the field of systems bidlugy,
textbook by Alon B] provides a broad view of some of the key elements of mod-
ern systems biology. A more comprehensive set of topics is covered iedkatr
textbook by Klipp pb2], while a more engineering-oriented treatment of modeling
of biological circuits can be found in the text by MyeB9]. Two other books that
are particularly noteworthy are Ptashne’s book on the plid@&] and Madhani’s
book on yeast§§], both of which use well-studied model systems to describe a
general set of mechanisms and principles that are present in méesedt types

of organisms.

Several textbooks and research monographs provide excellentreesdor
modeling and analysis of biomolecular dynamics and regulation. J. D. Msirray
two-volume text 7] on biological modeling is an excellent reference with many
examples of biomolecular dynamics. The textbook by Phillips, Kondev and The
riot [72] provides a quantitative approach to understanding biological systems, in
cluding many of the concepts discussed in this chapter. Coliiggives a detailed
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description of mechanisms transcriptional regulation.

The topics in dynamical systems and control theory that are briefly inteatuc
here are covered in more detail in AMOB [Other books that introduce tools for
modeling and analysis of dynamical systems with applications in biology include
J. D. Murray’s text 67] and the recent text by and Ellner and Guckenheirag}. [

Synthetic biology is a rapidly evolving field that includes manffetient sub-
areas of research, but few textbooks are currently available. Iptfie area of
biological circuit design that we focus on here, there are a numberaaf garvey
and review articles. The article by Baketral.[7] provides a high level description
of the basic approach and opportunities. Recent survey and revjgviaclude
Voigt [95] and Khalil and Collins $Q].



Chapter 2

Dynamic Modeling of Core Processes

The goal of this chapter is to describe basic biological mechanisms in a way tha
can be represented by simple dynamical models. We begin the chapter with a dis
cussion of the basic modeling formalisms that we will utilize to model biomolecu-
lar feedback systems. We then proceed to study a number of core ggeaeithin

the cell, providing diferent model-based descriptions of the dynamics that will
be used in later chapters to analyze and design biomolecular systems.clike fo
in this chapter and the next is on deterministic models using ordinéireintial
eqguations; Chapterdescribes how to model the stochastic nature of biomolecular
systems.

PrerequisitesReaders should have some basic familiarity with cell biology, at the
level of the description in Sectich?2 (see also Appendi®?), and a basic under-
standing of ordinary dierential equations, at the level of Chapter 2 of AM08.

2.1 Modeling Techniques

In order to develop models for some of the core processes of the cellilwead

to build up a basic description of the biochemical reactions that take platgginc

ing production and degradation of proteins, regulation of transcriptidriransla-

tion, intracellular sensing, action and computation, and intercellular sign&sg.

in other disciplines, biomolecular systems can be modeled in a varietyfefetit
ways, at many dferent levels of resolution, as illustrated in Fig@r& The choice

of which model to use depends on the questions that we want to ansdepad
modeling takes practice, experience, and iteration. We must properlyredphtu
aspects of the system that are important, reason about the appropriat@aemp
and spatial scales to be included, and take into account the types of simulation
and analysis tools to be applied. Models that are to be used for analyZgtimgx
systems should make testable predictions and provide insight into the underlyin
dynamics. Design models must additionally capture enough of the important be-
havior to allow decisions to be made regarding how to interconnect subsgste
choose parameters and design regulatory elements.

In this section we describe some of the basic modeling frameworks that we will
build on throughout the rest of the text. We begin with brief descriptions ef th
relevant physics and chemistry of the system, and then quickly move to models
that focus on capturing the behavior using reaction rate equations. Irhiqiec
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Figure 2.1: Diferent methods of modeling biomolecular systems.

our emphasis will be on dynamics with time scales measured in seconds to hours
and mean behavior averaged across a large number of molecules. \Weotdyc
briefly on modeling in the case where stochastic behavior dominates andadefe
more detailed treatment until Chapter

Statistical mechanics and chemical kinetics

At the fine end of the modeling scale depicted in Figlrg we can attempt to
model themolecular dynamicsf the cell, in which we attempt to model the indi-
vidual proteins and other species and their interactions via molecularfeceds

and motions. At this scale, the individual interactions between protein domains
DNA and RNA are resolved, resulting in a highly detailed model of the dynamics
of the cell.

For our purposes in this text, we will not require the use of such a detaildel. s
Instead, we will start with the abstraction of molecules that interact with ethehn o
through stochastic events that are guided by the laws of thermodynamicggide b
with an equilibrium point of view, commonly referred to statistical mechanics
and then briefly describe how to model the (statistical) dynamics of the system
using chemical kinetics. We cover both of these points of view very briefte,h
primarily as a stepping stone to deterministic models, and present a more detailed
description in Chaptet.

The underlying representation for both statistical mechanics and cheniical k
netics is to identify the appropriataicrostatesof the system. A microstate cor-
responds to a given configuration of the components (species) in ttearsysla-
tive to each other and we must enumerate all possible configurations betvece
molecules that are being modeled.
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Figure 2.2: Microstates for RNA polymerase. Each micrestdtthe system corresponds
to the RNA polymerase being located at some position in tiie IEeve discretize the
possible locations on the DNA and in the cell, the microstaigrresponds to all possi-
ble non-overlapping locations of the RNA polymerases. fégtom Phillips, Kondev and
Theriot [72]; used with permission of Garland Science.

s an example, consider the distribution of RNA polymerase in the cell. It is
known that most RNA polymerases are bound to the DNA in a cell, either as they
produce RNA or as they fluse along the DNA in search of a promoter site. Hence
we can model the microstates of the RNA polymerase system as all possible lo-
cations of the RNA polymerase in the cell, with the vast majority of these corre-
sponding to the RNA polymerase at some location on the DNA. This is illustrated
in Figure2.2 In statistical mechanics, we model the configuration of the cell by
the probability that the system is in a given microstate. This probability can be
calculated based on the energy levels of tHEedent microstates. The laws of sta-
tistical mechanics state that if we have a set of microst@teken the steady state
probability that the system is in a particular microstgts given by

1
P(q) = ze—Eq/(kB”, (2.1)

whereEg is the energy associated with the microsigteQ, kg is the Boltzmann
constant,T is the temperature in degrees Kelvin, afids a normalizing factor,
known as theartition function

7 = Z g Ea/(keT)
geQ

(These formulas are described in more detail in Chap)er
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By keeping track of those microstates that correspond to a given sysdém s
(also called amacrostatg we can compute the overall probability that a given
macrostate is reached. Thus, if we have a set of sgte§) that correspond to a
given macrostate, then the probability of being in theSset given by

quS e Eq/(kBT)

Z Qe—Eq/(kBT) (22)

P(S) = Z g Ea/(keT) _

qu

This can be used, for example, to compute the probability that some RNA poly-
merase is bound to a given promoter, averaged over many indepeadeples,
and from this we can reason about the rate of expression of the pondiag
gene. More details and several examples will be illustrated in Chdpter

Statistical mechanics describes the steady state distribution of microstates, but
does not tell us how the microstates evolve in time. To include the dynamics, we
must consider thehemical kineticof the system and model the probability that
we transition from one microstate to another in a given period of timeqlcep-
resent the microstate of the system, which we shall take as a vector of mthger
represents the number of molecules of a specific types in given confangar
locations. Assume we have a set\freactionsR;, j = 1,..., M, with ¢; represent-
ing the change in staigassociated with reactioR;. We describe the kinetics of
the system by making use of tipgopensity function gq,t) associated with reac-
tion R;, which captures the instantaneous probability that at timesystem will
transition between statpand stateg + &;.

More specifically, the propensity function is defined such that

aj(g,t)dt = Probability that reactiof®; will occur between time
and timet + dt given that the microstate

We will give more detail in Chaptetregarding the validity of this functional form,
but for now we simply assume that such a function can be defined foystars.

Using the propensity function, we can keep track of the probability distribu-
tion for the state by looking at all possible transitions into and out of the curre
state. Specifically, giveR(qg,t), the probability of being in statgat timet, we can
compute the time derivativeP(qg,t)/dt as

dpP M
@0 = J;(aj (a-£€)P@-¢j.1) - 3j(@P(a.1))- (2.3)

This equation (and its many variants) is callede¢hemical master equatidCME).

The first sum on the right hand side represents the transitions into the $tate
some other statg-¢; and the second sum represents that transitions out of the
stateq. The variable; in the sum ranges over all possible reactions.
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Clearly the dynamics of the distributid{q, t) depend on the form of the propen-
sity functionsa;(q). Consider a simple reaction of the form

Ri:A+B— AB
R, :AB — A +B.

A+B=—=AB

(2.4)

We assume that the reaction takes place in a well-stirred volaraad let the
configurationgy be represented by the number of each species that is present. The
forward reactiorRs is a bimolecular reaction and we will see in Chaptahat it

has a propensity function

k
ai(e) = 55 Nane.

wherek; is a parameter that depends on the forward reactionparahdng are
the number of molecules of each species. The reverse re&gtism unimolecular
reaction and we will see that it has a propensity function

ar(0) = Krnag,

wherek; is a parameter that depends on the reverse reactionsgnd the number
of molecules of AB that are present.

If we now letq = (na,Nng,Nag) represent the microstate of the system, then we
can write the chemical master equation as

dP
a(nA, Ng,Nag) = krNag P(Na — 1,ng — 1,nag + 1) — kinang P(Na, Ng, Nag)-

The first term on the right hand side represents the transitions into the tateros

g = (na,Ng,Nag) and the second term represents the transitions out of that state.
The number of dterential equations depends on the number of molecules of

A, B and AB that are present. For example, if we start with 1 molecules of A, 1

molecule of B, and 3 molecules of AB, then the possible states and dynamics are

0o =(1,0,4) dPp/dt = 3k;P1

a1 =(2,1,3) dPy/dt = 4k, Py — 2(ks/ Q)P

02=(3,2,2) dP,/dt = 3k;P1 — 6(ki/Q)P2

g3 =(4,3,1) dPs/dt = 2k, P, — 12(k;/Q)P3

s = (5,4,0) dP4/dt = 1k, P3 — 20(;/Q)P4,
whereP; = P(q;,t). Note that the states of the chemical master equation are the
probabilities that we are in a specific microstate, and the chemical master @quatio

is alinear differential equation (we see from equati¢h3 that this is true in
general).

The primary diference between the statistical mechanics description given by equa-
tion (2.1) and the chemical kinetics description in equati2r8)is that the master
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equation formulation describes how the probability of being in a given midesta
evolves over time. Of course, if the propensity functions and energislave mod-
eled properly, the steady state, average probabilities of being in a giveostaite
should be the same for both formulations.

Reaction rate equations

Although very general in form, the chemical master equatidfessifrom being a

very high dimensional representation of the dynamics of the system. Wesskall

in Chapter4 how to implement simulations that obey the master equation, but in
many instances we will not need this level of detail in our modeling. In particula
there are many situations in which the number of molecules of a given species
is such that we can reason about the behavior of a chemically reactitegnsys
by keeping track of theoncentrationof each species as a real number. This is
of course an approximation, but if the number of molecules fEBcsently large,

then the approximation will generally be valid and our models can be dramatically
simplified.

To go from the chemical master equation to a simplified form of the dynam-
ics, we begin by making a number of assumptions. First, we assume that we can
represent the state of a given species by its concentraiipf?, whereny is the
number of molecules of A in a given volungg We also treat this concentration
as a real number, ignoring the fact that the real concentration is quaurftizelly,
we assume that our reactions take place in a well-stirred volume, so thatelod ra
interactions between two species is solely determined by the concentratithes of
species.

Before proceeding, we should recall that in many (and perhaps mostjiaits
inside of cells, these assumptions a@ particularly good ones. Biomolecular
systems often have very small molecular counts and are anything but weld.mixe
Hence, we should not expect that models based on these assumptioluspsTe
form well at all. However, experience indicates that in many cases the foas
of the equations provides a good model for the underlying dynamics auoe: lnee
often find it convenient to proceed in this manner.

Putting aside our potential concerns, we can now proceed to write theniyga
of a system consisting of a set of specigsiS 1,...,n undergoing a set of reac-
tionsR;, j=1,...,m. We write x; = [Sj] = ng /Q for the concentration of speciés
(viewed as a real number). Because we are interested in the casethdruenber
of molecules is large, we no longer attempt to keep track of every possible co
figuration, but rather simply assume that the state of the system at anytigneen
is given by the concentrationg. Hence the state space for our system is given by
x € R" and we seek to write our dynamics in the form of fietential equation

dx
Z_f
dt (x.6),
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wheref : R" - R" describes the rate of change of the concentrations as a function
of the instantaneous concentrations @mdpresents the parameters that govern the
dynamic behavior.
To illustrate the general form of the dynamics, we consider again the €ase o
basic bimolecular reaction
A+B=AB.

Each time the forward reaction occurs, we decrease the number of msletéle
and B by 1 and increase the number of molecules of AB (a separate 9®cikes
Specifically, here AB denotes the complex formed by species A bound tiespe
B. Similarly, each time the reverse reaction occurs, we decrease the nomber
molecules of AB by one and increase the number of molecules of A and B.

Using our discussion of the chemical master equation, we know that the likeli-
hood that the forward reaction occurs in a given intedtak given bya;(q)dt =
(ks/Q)nangdt and the reverse reaction has likelihaadq) = kinag. It follows that
the concentration of the complex AB satisfies

[AB](t+dt) - [AB](t) = E(nas(t+dt)/Q - nag(t)/€2)
= (as(q—£1.t) - a,(0))/Q-dt
= (kannB/QZ — krnAB /Q)dt
= (ki[Al[B] ~ ki[AB] )dt
in which E(x) denotes the expected valuexfTaking the limit asdt approaches

zero (but remains large enough that we can still average across multipteores,
as described in more detail in Chap#grwe obtain

d
giAB] = ki[Al[B] —ki[AB].

In a similar fashion we can write equations to describe the dynamics of A and
B and the entire system of equations is given by

91A] = K [AB] - ki[Al[B] 9A L Cc_KkAB

at at

d dB

S1B1 =K[AB] —K(AIB]  or  “E=kC-kiAB
dgt[AB] — ke[AJ[B] —k/[AB] ‘jj—ct: — kiA-B—kC,

whereC = [AB], A =[A], and B = [B]. These equations are known as tmass
action kineticor thereaction rate equationfor the system. The parametdgsand

k; are called theate constantand they match the parameters that were used in the
underlying propensity functions.
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Note that the same rate constants appear in each term, since the rate of pro-
duction of AB must match the rate of depletion of A and B and vice versa. We
adopt the standard notation for chemical reactions with specified ratesréed
the individual reactions as

A+BSAB.  AB S A4B,

whereks andk; are the reaction rates. For bidirectional reactions we can also write

ks
A+B = AB.
Kr

Itis easy to generalize these dynamics to more complex reactions. For example
if we have a reversible reaction of the form

k
A+2B=2C+D,
kr

where A, B, C and D are appropriate species and complexes, then tamidgfor
the species concentrations can be written as

EA= k,C?-D-k{A- B2, Ec = 2k:A-B? — 2k,C?- D,
d%B: 2k,C?-D - 2k;A- B, dgtD = k;A-B?—k,C?-D.

Rearranging this equation, we can write the dynamics as

Al (-1 1

d[B|_|-2 2|(kA-B?

dt|C| |2 -2 [erZ-D]' (26)
D] (1 -1

We see that in this decomposition, the first term on the right hand side is a matrix
of integers reflecting the stoichiometry of the reactions and the second term is
vector of rates of the individual reactions.

More generally, given a chemical reaction consisting of a set of sp&ies
i=1,...,nand a set of reactionR;, j = 1,...,m, we can write the mass action

kinetics in the form d
X
— = NVX),
g; = NV
whereN € R™™ s the stoichiometry matriXor the system and(x) e R™ is the
reaction flux vectarEach row ofv(x) corresponds to the rate at which a given
reaction occurs and the corresponding column of the stoichiometry matri-cor

sponds to the changes in concentration of the relevant species. Raplexéor the
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system in equatior2(6) we have

-1 1
B -2 2 _ (k¢A-B?
x=(A,B,C,D), N = o _o| v(X) = {erZ-D]'
1 -1

As we shall see in the next chapter, the structured form of this equatioalleilt us
to explore some of the properties of the dynamics of chemically reacting systems
Sometimes, the following notation will be used to denote birth and death of
species
ks K
0—A A—0.
We attach to the first reaction theffdrential equation

dA
"k
TR

and to the second reaction we attach tHeedéntial equation

dA

— = -k, A

dt '
From a physical point of view, these reactions simplify the representatiome
complex processes, such as production of proteins or degradatigoteiirs due

to proteases.

Example 2.1(Covalent modification of a protein)Consider the set of reactions
involved in the phosphorylation of a protein by a kinase, as shown in FRj@6
Let S represent the substrate, K represent the kinase ‘arep8sent the phospho-
rylated (activated) substrate. The sets of reactions illustrated in F2g28are

Ri: K+ATP — K:ATP Rs: S:KIATP— S*:K:ADP
Ry: K:ATP — K +ATP Rs: S":KIADP — S*+K:ADP
R;: S+KATP — S:IKIATP R;: K:ADP — K+ ADP

Rs: SIKIATP— S+ K:ATP Rg: K+ADP — K:ADP.

We now write the kinetics for each reaction:

v1 = ki [K][ATP], Vs = ks [S:K:ATP],
V2 = ko [KIATP], Vg = kg [S*:K:ADP],
v3 = k3[S][K:ATP], v7 = k7[K:ADP],

Vg = Kq[S:K:ATP], vg = kg [K][ADP].

We treat [ATP] as a constant (regulated by the cell) and hence do remtlglir
track its concentration. (If desired, we could similarly ignore the conceortraf
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ADP since we have chosen not to include the many additional reactions ih whic
it participates.)
The kinetics for each species are thus given by

%[K] =—Vi+Vo+V7—Vg %[K:ATP] =Vi—Vo—V3+Vy
d d

a[S] =-V3+\Vy a[S:K:ATP] =V3—V4—V5

d d

—[S'] = —[S":K:ADP] = v5—
GilS1=Ve GilS ]=Vs—Ve
%[ADP] =V7—Vg %[K:ADP] =Vp—V7+Vs.

Collecting these equations together and writing the state as a vector, we obtain

K] -1 1 0 0 0O 0 1 -I)yMwn
[K:ATP] 1 -1 1 -1 0 0 0 Of]w

[S] O 0 -1 1 0 O 0 O0f]wvs
d|[SKATP]| |0 0 1 -1 -1 0 0 0] |vs
dt [S*] “lo o o 0o 0o 1 0 of]wl
[S*:K:ADP] O 0 O O 1 -1 0 oO0f]lvs
[ADP] O 0 O O O O 1 -1 |w
[K:ADP] 0O 0 O O O 1 -1 1) 1\vs
~——

X N V(X)

which is in standard stoichiometric form. \Y

Reduced order mechanisms

In this section, we look at the dynamics of some common reactions that occur in
biomolecular systems. Under some assumptions on the relative rates ofirgactio
and concentrations of species, it is possible to derive reduced oquiessions for

the dynamics of the system. We focus here on an informal derivation aéléneant
results, but return to these examples in the next chapter to illustrate thattlee sa
results can be derived using a more formal and rigorous approach.

Simple binding reactionConsider the reaction in which two species A and B bind
reversibly to form a complex €AB:

A+B ? C, (2.7)

wherea is the association rate constant amds the dissociation rate constant.
Assume that B is a species that is controlled by other reactions in the celland th
the total concentration of A is conserved, so tAatC = [A] + [AB] = A If the
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dynamics of this reaction are fast compared to other reactions in the celthinen
amount of A and C present can be computed as a (steady state) funcBon of
To compute howA andC depend on the concentration of B at the steady state,
we must solve for the equilibrium concentrations of A and C. The rate equfatio
C is given by
dC
i aB-: (At —C)-dC.
By settingdC/dt = 0 and lettingKy := d/a, we obtain the expressions

_ Ac(B/Kq) A Po
~ 1+(B/Kg)’ ~ 1+(B/Kg)’

The constanKy is called thalissociation constardf the reaction. Its inverse mea-
sures the flinity of A binding to B. The steady state value ©fincreases witlB
while the steady state value éfdecreases witlB as more of A is found in the
complex C.

Note that wherB ~ Ky, A and C have roughly equal concentration. Thus the
higher the value oKy, the moreB is required forA to form the complex CKq4
has the units of concentration and it can be interpreted as the concentfaBi@t
which half of the total number of molecules of A are associated with B. Toeref
a highKy represents a weaktmity between A and B, while a lou{y represents a
strong dhnity.

Cooperative binding reactiorAssume now that B binds to A only after dimeriza-
tion, that is, only after binding another molecule of B. Then, we have tlzatre
tions @2.7) become

k:
B+B B, BZ+A%c, A+C = A,
2

in which B, denotes the dimer of B. The corresponding ODE model is given by

dd—Bt2 = 2leZ—2szz—aBz'(Atot—C) +dC, (:j—(f =aB; - (Awt—C)—-dC.

By settingdB,/dt = 0,dC/dt = 0, and by definind, := ko/k1, we we obtain that

B2 — BZ/ Km, C _ AtOt(BZ/ Kd) A A[Ot

T 1+ (By/Kg)’ "~ 1+ (B2/Kg)
so that
_AoB/KaKe) Ao
T 1+ B2/(KmKq)’ 14 B?/(KmKq)”

As an exercise, the reader can verify that if B binds to A only as a comglex o
copies of B, that is,

k:
B+B+"'+B\—\—an’ Bn+A;C, A+C:A(Ot7
d

ko
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Figure 2.3: Steady state concentrations of the complex Coénf as functions of the
concentration of B.

then we have that

_ AtotBn/ (KmKd) _ Aot
T 1+ BY/(KmKq)’ 1+ BY/(KmKq)

In this case, one says that the binding of B to Ad@perativenith cooperativityn.
Figure2.3shows the above functions, which are often referred tdithéunctions.

Another type of cooperative binding is when a species R can bind A otdy af
another species B as bound. In this case, the reactions are given by

B+A=C, R+4C=—=C., A+C+C =Aq
d d

Proceeding as above by writing the ODE model and equating the time dezivativ
to zero to obtain the equilibrium, one obtains

1
K/Kq

1 ’ ’ ’
C:K_dB(Atot—C_C), C R(Atot—c_c)-

By solving this system of two equations for the unknow@igindC, one obtains

, Ax(B/Ki(R/KY) oo Act(B/Ka)
 1+(B/Ka) + (B/Ka)(R/K})’  1+(B/Ka) + (B/Ka)(R/K})

In the case in which B would first bind cooperatively with other copies ofitd w
cooperativity n, the above expressions would modify to

B Awot(B"/KaKm)(R/ Ké) C= Aot(B"/KaKm)
1+ (B"/KaKm)(R/KY) + (B"/KaKm)’ ~ 1+(B"/KaKm)(R/K) + (B"/KaKm)’

’

Competitive binding reactiorkinally, consider the case in which two species B
and B both bind to A competitively, that is, they cannot be bound to A at the same
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time. Let C, be the complex formed between Bnd A and let Cbe the complex
formed between Band A. Then, we have the following reactions

a a
B,+A=C, B,+A=C, A+Ca+C; = Ao,
d @
for which we can write the dynamics as

dC d ’ /
O By (Aw-Ca~C)-0Ca, o7 =By (Ae~Ca~C)-dC:.

By setting the derivatives to zero, we obtain that

Ca(aBa+d) = aBa(Awt —Cr), Ci(@'Br +d’) = a'Br(Awt— Ca),

so that
Br (Aot — Ca) BaBr K4
C,= ot~ Ca|Ba+Kg— = Ba| =—9%—
r Br+Ka ) a( a+ Kd Br+Ké) a(Br+Ké Acot,
from which we finally obtain that
o - Acot(Ba/Ka) ~ Acot(Br/K})
®7 1+ (Ba/Ka) + (B /KY)’ "7 1+ (Ba/Ka) + (Br/K))

In this derivation, we have assumed that bogtaBd B bind A as monomers. If
they were binding as dimers, the reader should verify as an exercessEXsecises)
that they would appear in the final expressions with a power of two.

Note also that in this derivation we have assumed that the binding is competi-
tive, that is, B and B cannot simultaneously bind to A. If they were binding simul-
taneously to A, we would have included another complex comprisipdgpand
A. Denoting this new complex by’Cwe would have added also the two additional
reactions

a a
C,+B,=C, C,+B,=C
d @
and we would have modified the conservation law for Ajg = A+C,+C, +C’.
The reader can verify as an exercise (see Exercises) that in thia caiged term
B, Ba would appear in the equilibrium expressions.

Enzymatic reactionA general enzymatic reaction can be written as
a _ k
E+S=C->E+P,
d
in which E is an enzyme, S is the substrate to which the enzyme binds to form

the complex GES, and P is the product resulting from the modification of the
substrate S due to the binding with the enzyme E. The param&teeferred to as



42 CHAPTER 2. DYNAMIC MODELING OF CORE PROCESSES

association rate constauitas dissociation rate constant, dnds the catalytic rate
constant. Enzymatic reactions are very common and we will see specificdastan
of them in the sequel, e.g., phosphorylation and dephosphorylation mesciioe
corresponding ODE system is given by

dS dC
d—E=—aE'S+dC+kC, d—szC.
dt dt

The total enzyme concentration is usually constant and denotég,fgo that
E + C = Eior. Substituting in the above equatioBs= E;o;— C, we obtain

dd—f = —a(Etot—C)-S+dC+ kC, (?j—? :a(Etot—C)~S—(d+k)C,
ds dpP

This system cannot be solved analytically, therefore assumptions haxeubed

in order to reduce it to a simpler form. Michaelis and Menten assumed that the
conversion of E and S to C anice versais much faster than the decomposition

of C into E and P. Under this assumption and lett®@) be sdficiently large

(see Exampl8.13, C immediately reaches its steady state value (whiis still
changing). This approximation is called theasi-steady state assumptiand the
mathematical conditions on the parameters that justify it will be dealt with in Sec-
tion 3.6. The steady state value Gfis given by solvinga(Eii—C)S—(d+K)C =0

for C, which gives

_ EtotS . _d+k
“ 5Ky with Ky, = 9

in which the constanky, is called theMichaelis-Menten constanitetting Vimax =
kEo, the resulting kinetics

d_P_k EtotS _y S
dt ~ S+Kn  "¥S+Kn

is calledMichaelis-Menten kinetics

The constanVhax is called the maximal velocity (or maximal flux) of modifi-
cation and it represents the maximal rate that can be obtained when the eéazyme
completely saturated by the substrate. The valu€p€orresponds to the value of
S that leads to a half-maximal value of tieproduction rate. When the enzyme
complex can be neglected with respect to the total substrate arSgunte have
thatSiot ~ S+ P, so that the above equation can be also re-written as

dP _ VimaxStot—P)
dt (Stot - P) + Km )
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Figure 2.4: Enzymatic reactions. (a) Transfer curve shgulire production rate foP as a
function of substrate concentration. (b) Time plots of pdP(t) for different values of
the Km. In the plotsS;o; = 1 andVmax= 1. The black plot shows the behavior for a value
of Km much smaller that the total substrate amo8gt. This corresponds to a constant
product formation rate (at least before the substrate isstiall converted to product, that
is, Stot — P = Kpy)), which is referred taero-order kinetics

When K, < Syt and the substrate has not yet been all converted to product,
that is,Siot — P > K, we have that the rate of product formation becomes approx-
imately dP/dt ~ Vinax Which is the maximal speed of reaction. Since this rate is
constant and does not depend on the reactant concentrations, iaiky usterred
to zero-order kineticsin this case, the system is said to operate in the zero-order
regime (see Figurg.4).

2.2 Transcription and Translation

In this section we consider the processes of transcription and transladiag,the
modeling techniques described in the previous section to capture the fum@dame
dynamic behavior. Models of transcription and translation can be doneaaitedy

of levels of detail and which model to use depends on the questions thatone w

to consider. We present several levels of modeling here, starting withhada-
tailed set of reactions and ending with highly simplified models that can be used
when we are only interested in average production rate of proteins ttegldong

time scales.

The central dogma: production of proteins

The genetic material inside a cell, encoded in its DNA, governs the respbase
cell to various conditions. DNA is organized into collections of genes, witth ea
gene encoding a corresponding protein that performs a set of fuadtidhe cell.
The activation and repression of genes are determined through acfertaaplex



44 CHAPTER 2. DYNAMIC MODELING OF CORE PROCESSES

Vi e R
N—=C \\C —N #
R c/ A \N _N/ \c .
TN N
C = Cha C\ //C - c\
a4
H/ N /N—H o CH3
H
N
N—H o R
\
/N =C d >C B N\/
R \
n-C. G N—H N C Cc—
o \ "/
c /C —cC /C T— C\
= Y
/ \\o — _ i
H | 0=l§-0 hydrogen bond o phosphodiester
H 5'end 3'end Bend
(a) Base pairs (b) Double stranded

Figure 2.5: Molecular structure of DNA. (a) Individual bag@ucleotides) that make up
DNA: adenine (A), cytocine (C), guanine (G) and thymine ((B). Double stranded DNA
formed from individual nucleotides, with A binding to T ando@hding to G. Each strand
contains a 5" and 3’ end, determined by the locations of thbares where the next nu-
cleotide binds. Figure from Phillips, Kondev and Therid2]f used with permission of
Garland Science.

interactions that give rise to a remarkable set of circuits that perform tiediduns
required for life, ranging from basic metabolism to locomotion to procreaGen.
netic circuits that occur in nature are robust to external disturbancksasmfunc-
tion in a variety of conditions. To understand how these processes @ulisome

of the dynamics that govern their behavior), it will be useful to presealaively
detailed description of the underlying biochemistry involved in the production o
proteins.

DNA is double stranded molecule with the “direction” of each strand specified
by looking at the geometry of the sugars that make up its backbone (see Eigu
The complementary strands of DNA are composed of a sequence of tidieteo
that consist of a sugar molecule (deoxyribose) bound to one of 4:badesine
(A), cytocine (C), guanine (G) and thymine (T). The coding strand ¢awention
the top row of a DNA sequence when it is written in text form) is specified fifoan
5’ end of the DNA to the 3’ end of the DNA. (As described briefly in Appitiel?,
5" and 3’ refer to carbon locations on the deoxyribose backbone thabheolved
in linking together the nucleotides that make up DNA.) The DNA that encodes
proteins consists of a promoter region, regulator regions (described & chetail
below), a coding region and a termination region (see Figue We informally
refer to this entire sequence of DNA as a gene.

Expression of a gene begins with tin@nscriptionof DNA into mRNA by RNA
polymerase, as illustrated in Figu2e7. RNA polymerase enzymes are present in
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Figure 2.6: Geometric structure of DNA. The layout of the DNAhown at the top. RNA

polymerase binds to the promoter region of the DNA and tndlpss the DNA starting at
the+1 side and continuing to the termination site.

./coreproc/figures/Cou®8_02_01.eps

Figure 2.7: Production of messenger RNA from DNA. RNA polyass, along with other
accessory factors, binds to the promoter region of the DNd\than “opens” the DNA to
begin transcription (initiation). As RNA polymerase mowksvn the DNA, producing an
RNA transcript (elongation), which is later translateaiatprotein. The process ends when

the RNA polymerase reaches the terminator (terminatioepréduced from Coureyif];
permission pending.
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the nucleus (for eukaryotes) or cytoplasm (for prokaryotes) and localize and
bind to the promoter region of the DNA template. Once bound, the RNA poly-
merase “opens” the double stranded DNA to expose the nucleotides thatupak
the sequence. This reversible reaction, caiteinerization is said to transform
the RNA polymerase and DNA from @osed complexo anopen complexAf-

ter the open complex is formed, RNA polymerase begins to travel down the DNA
strand and constructs an mRNA sequence that matches the 5’ to 3’ sequfenc
the DNA to which it is bound. By convention, we number the first base pair tha
is transcribed as+1’ and the base pair prior to that (which is not transcribed) is
labeled as ‘-1'. The promoter region is often shown with the -10 and -gioms
indicated, since these regions contain the nucleotide sequences to whiRiNAhe
polymerase enzyme binds (the locations vary fifiedént cell types, but these two
numbers are typically used).

The RNA strand that is produced by RNA polymerase is also a sequence of
cleotides with a sugar backbone. The sugar for RNA is ribose insteagloafyd-
bose and mRNA typically exists as a single stranded molecule. Anotfieretice
is that the base thymine (T) is replaced by uracil (U) in RNA sequences RN
polymerase produces RNA one base pair at a time, as it moves from in th&8'5’ to
direction along the DNA coding strand. RNA polymerase stops transcribiigy D
when it reaches termination regionor terminator) on the DNA. This termination
region consists of a sequence that causes the RNA polymerase to urdomthé
DNA. The sequence is not conserved across species and in many edksrifi-
nation sequence is sometimes “leaky”, so that transcription will occasioraiyr o
across the terminator.

Once the mRNA is produced, it must be translated into a protein. This process
is slightly different in prokaryotes and eukaryotes. In prokaryotes, there isanreg
of the mRNA in which the ribosome (a molecular complex consisting of of both
proteins and RNA) binds. This region, called titeosome binding site (RB)as
some variability between fierent cell species and betweelifelient genes in a
given cell. The Shine-Delgarno sequence, AGGAGG, is the conseesjuEnce
for the RBS. (A consensus sequence is a pattern of nucleotides that inmpdeme
a given function across multiple organisms; it is not exactly conservegose
variations in the sequence will be present from one organism to another.)

In eukaryotes, the RNA must undergo several additional steps hiefeteans-
lated. The RNA sequence that has been created by RNA polymerassteais
introns that must be spliced out of the RNA (by a molecular complex called the
spliceosome), leaving only thexons which contain the coding sequence for the
protein. The ternpre-mRNAs often used to distinguish between the raw transcript
and the spliced mRNA sequence, which is calledture mRNAIn addition to
splicing, the mRNA is also modified to contairpaly(A) (polyadenine}ail, con-
sisting of a long sequence of adenine (A) nucleotides on the 3’ end of tidAMR
This processed sequence is then transported out of the nucleus inyadhksm,
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Figure 2.8: Translation is the process of translating trgusace of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protgimhesis. The genetic

code describes the relationship between the sequence@phas in a gene and the cor-
responding amino acid sequence that it encodes. In theyteplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assehgbfmdtein. Figure and

caption courtesy the National Human Genome Researchutestit

where the ribosomes can bind to it.

Unlike prokaryotes, eukaryotes do not have a well defined ribosond@lgise-
guence and hence the process of the binding of the ribosome to the mRNAgs mor
complicated. Th&ozak sequencd/GCCACCAUGG is the rough equivalent of
the ribosome binding site, where the underlined AUG is the start codorrifaesc
below). However, mRNA lacking the Kozak sequence can also be tratislate

Once the ribosome is bound to the mRNA, it begins the procesarmsglation
Proteins consist of a sequence of amino acids, with each amino acid spégifie
a codon that is used by the ribosome in the process of translation. Each cod
consists of three base pairs and corresponds to one of the 20 amincoaeds
“stop” codon. The genetic code mapping between codons and amino adidgis s
in Table??. The ribosome translates each codon into the corresponding amino acid
using transfer RNA (tRNA) to integrate the appropriate amino acid (whichsbind
to the tRNA) into the polypeptide chain, as shown in Fig2r@ The start codon
(AUG) specifies the location at which translation begins, as well as codinpé
amino acid methionine (a modified form is used in prokaryotes). All subsgque
codons are translated by the ribosome into the corresponding amino acid until
reaches one of the stop codons (typically UAA, UAG and UGA).
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Table 2.1: Rates of core processes involved in the creafiproteins from DNA inE. coli.

Process Characteristic rate Source

MRNA transcription rate 24-29 bgsec BioNumbers 1]
Protein translation rate 12-21 agsec BioNumbers 1L1]
Maturation time (fluorescent proteing)6—60 min BioNumbers 11]
mMRNA half life ~ 100 sec YMO3 [99]

E. colicell division time 20-40 min BioNumbers 1L1]
Yeastcell division time 70-140 min BioNumbers 11]
Protein half life ~5x10* sec YMO03 [99]
Protein difusion along DNA up to 1d bp'sec | PKT [72]

The sequence of amino acids produced by the ribosome is a polypeptide cha
that folds on itself to form a protein. The process of folding is complicatet an
involves a variety of chemical interactions that are not completely underséab
ditional post-translational processing of the protein can also occur asttje,
until a folded and functional protein is produced. It is this molecule thatles tab
bind to other species in the cell and perform the chemical reactions thatlynd
the behavior of the organism. Theaturation timeof a protein is the time required
for the polypeptide chain to fold into a functional protein.

Each of the processes involved in transcription, translation and folditigeof
protein takes time andi&cts the dynamics of the cell. Tal#lel shows the rates of
some of the key processes involved in the production of proteins. It is tamdo
note that each of these steps is highly stochastic, with molecules binding togethe
based on some propensity that depends on the binding energy but alsihéhe
molecules present in the cell. In addition, although we have describegtieney
as a sequential process, each of the steps of transcription, transladidol@ng
are happening simultaneously. In fact, there can be multiple RNA polyméteges
are bound to the DNA, each producing a transcript. In prokaryotespas as
the ribosome binding site has been transcribed, the ribosome can bindgind be
translation. Itis also possible to have multiple ribosomes bound to a single piece o
MRNA. Hence the overall process can be extremely stochastic and asyauah.

Reaction models

The basic reactions that underly transcription include tfision of RNA poly-
merase from one part of the cell to the promoter region, binding of an R p
merase to the promoter, isomerization from the closed complex to the open com-
plex, and finally the production of mRNA, one base pair at a time. To captigre th
set of reactions, we keep track of the various forms of RNA polymereserd-

ing to its location and state: RNARepresents RNA polymerase in the cytoplasm,
RNAPP represents RNA polymerase in the promoter region, and RNSRNA
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polymerase non-specifically bound to DNA. We must similarly keep track of the
state of the DNA, to insure that multiple RNA polymerases do not bind to the same
section of DNA. Thus we can write DN®for the promoter region, DNA&' for the
ith section of a geng (whose length can depend on the desired resolution) and
DNA ! for the termination sequence. We write RNAP:DNA to represent RNA poly-
merase bound to DNA (assumed closed) and RNAP:BNAindicate the open
complex. Finally, we must keep track of the mRNA that is produced by trgmscr
tion: we write mRNA to represent an mRNA strand of lengtand assume that
the length of the gene of interesthk

Using these various states of the RNA polymerase and locations on the DNA,
we can write a set of reactions modeling the basic elements of transcription as

Binding to DNA: RNAP® = RNAP¢
Diffusion along DNA: RNAP = RNAPP

Binding to promoter: RNAP-+DNAP — RNAP:DNAP
Isomerization: RNAP:DNAR — RNAP:DNA°

Start of transcription: RNAP:DNA— RNAP:DNA%! + DNAP
mMRNA creation: RNAP:DNA! — RNAP:DNA%? + mRNA}
Elongation: RNAP:DNA™1+mRNA]!
—s RNAP:DNA%*2 1 mRNA"
Binding to terminator: RNAP:DNAN + mRNAN !

— RNAP:DNA'+ mRNA!
Termination: RNAP:DNA — RNAP®

Degradation: mRNA — 0.
(2.8)

Not all these reactions occur on the same time scale. For example, the binding
to promoter reaction is usually much faster than the isomerization reaction. Note
that at the start of transcription we “release” the promoter region of thé&,DN
thus allowing a second RNA polymerase to bind to the promoter while the first
RNA polymerase is still transcribing the gene. These reactions have bétgnw
for prokaryotes, but a similar set of reactions could be written for guias: the
main diferences would be that the RNA polymerase remains in the nucleus and
the mRNA must be spliced and transported to the cytosol.

A similar set of reactions can be written to model the process of translation.
Here we must keep track of the binding of the ribosome to the mRNA, translation
of the mRNA sequence into a polypeptide chain, and folding of the polypeptide
chain into a functional protein. Let Ribo:mRN&S indicate the ribosome bound
to the ribosome binding site, Ribo:mRMA' the ribosome bound to thith codon,
Ribo:mRNAS®"and Ribo:mRNA™P for the start and stop codons, and PR@ a
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polypeptide chain consisting omino acids. The reactions describing translation
can then be written as

Binding to RBS:  Ribo- mRNATES = Ribo:mRNAR®®
Start of translation:  Ribo:mRNAPS — Ribo:mRNAT"+ mRNARES
Polypeptide chain creation: Ribo:mRI&"— Ribo:mRNAM? + PPC!
Elongationj = 1,...,M: Ribo:mRNAM(*Y 1 ppC
— Ribo:mRNAM(2) 4 ppci+
Stop codon:  Ribo:mRNX +PPCY-1
— Ribo:mRNA™ P+ ppc
Release of mMRNA: Ribo:mRNA’® —s Ribo
Folding: PPC' — protein
Degradation: proteir— 0.

As in the case of transcription, we see that these reactions allow multiple ribesome
to translate the same piece of MRNA by freeing up the ribosome binding site (RBS)
when translation begins.

As complex as these reactions are, they are still missing many important ef-
fects. For example, we have not accounted for the existencefBetdseof the 5’
and 3’ untranslated regions (UTRs) of a gene and we have also lefanats error
caorrection mechanisms in which ribosomes can step back and release madhco
amino acid that has been incorporated into the polypeptide chain. We havefals
out the many chemical species that must be present in order for a vafigtg o
reactions to happen (NTPs for mRNA production, amino acids for proteituzr
tion, etc). Incorporation of thesdfects requires additional reactions that track the
many possible states of the molecular machinery that underlies transcription an
translation.

When the details of the isomerization, start of transcription (translation); elon
gation, and terminaion are not relevant for the pheomenon to be studigdarthe
scription and translation reactions are lumped into much simpler reduced rsactio
For the transcription process, these reduced reactions take the form:

k
RNAP:DNAP —> mRNA+ RNAP+DNAP 2.9)

MRNA- 0.

in which the first reaction lumps together isomerization, start of transcriglion;
gation, mRNA creation, and termination. Similarly, for the translation process, th
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reduced reactions take the form:

Ribo+ mRNA = Ribo:mRNA
Ribo:mRNA— protein+ mMRNA+ Ribo
Ribo:mRNA— Ribo

protein— 0,

(2.10)

in which the second reaction lumps the start of translation, elongation, fokiulg
termination. The third reaction models the fact that mMRNA can also be degraded
when bound to ribosomes. The process of MRNA degradation occuugthRNAse
enzymes binding to the ribosome binding site and cleaving the mRNA strand. It is
known that ribosome binding site cannot be both bound to the ribosome arel to th
RNase 62]. However, the species Ribo:mRNA is a lumped species encompassing
also configurations in which ribosomes are bound on the mRNA strand bahno
the ribosome binding site. Hence, we also let this species be degradedasg RN

Reaction rate equations

Given a set of reactions, the various stochastic processes thalyushetailed mod-

els of transcription and translation can be specified using the stochastidimyode
framework described briefly in the previous section. In particular, usithgr mod-

els of binding energy or measured rates, we can construct propamsayans for

each of the many reactions that lead to production of proteins, including ttiemmo

of RNA polymerase and the ribosome along DNA and RNA. For many problems
in which the detailed stochastic nature of the molecular dynamics of the cell are
important, these models are the most relevant and they are covered in daihe de
in Chapterd.

Alternatively, we can move to the reaction rate formalism and model the reac-
tions using diferential equations. To do so, we must compute the various reaction
rates, which can be obtained from the propensity functions or measyyedraen-
tally. In moving to this formalism, we approximate the concentrations of various
species as real numbers, which may not be accurate since some spéties e
low molecular counts in the cell. Despite all of these approximations, in many sit-
uations the reaction rate equations are perfectifigent, particularly if we are
interested in the average behavior of a large number of cells.

In some situations, an even simpler model of the transcription, translation and
folding processes can be utilized. Let the “active” mMRNA be the mRNA that is
available for translation by the ribosome. We model its concentration through a
simple time delay of length™ that accounts for the transcription of the ribosome
binding site in prokaryotes or splicing and transport from the nucleuskargu
otes. If we assume that RNA polymerase binds to DNA at some average/adé (
includes both the binding and isomerization reactions) and that transcripties ta
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some fixed time (depending on the length of the gene), then the process-of tra
scription can be described using the delayadential equation
dd—”f —@—pmp—6mp,  m5(t) =€+ mp(t—7"), (2.11)

whereme is the concentration of mRNA for protein Ry is the concentration
of active mRNA,« is the rate of production of the mRNA for protein @js the
growth rate of the cell (which results in dilution of the concentration) argithe
rate of degradation of the mRNA. Since the dilution and degradation termg are o
the same form, we will often combine these terms in the mRNA dynamics and use
a single co#icients = u+46. The exponential factor accounts for dilution due to the
change in volume of the cell, whereis the cell growth rate. The constamtand
6 capture the average rates of production and degradation, which ingpemd on
the more detailed biochemical reactions that underlie transcription.

Once the active mMRNA is produced, the process of translation can biédelsc
via a similar ordinary dferential equation that describes the production of a func-

tional protein:
dP

dt
Here P represents the concentration of the polypeptide chain for the préé&in,
represents the concentration of functional protein (after folding). gdrameters
that govern the dynamics ake the rate of translation of mMRNAy, the rate of
degradation and dilution of P; and, the time delay associated with folding and
other processes required to make the protein functional. The exponemtigdain
accounts for dilution due to cell growth. The degradation and dilution terrappa
eterized byy, captures both rate at which the polypeptide chain is degraded and the
rate at which the concentration is diluted due to cell growth.

It will often be convenient to write the dynamics for transcription and transla

tion in terms of the functional MRNA and functional proteinfidrentiating the
expression fomy, we see that

=xmp—yP, Py =e*" Pt-1"). (2.12)

dn’ﬁ’(t) —utm - m
a0 met=7) (2.13)
= e (@ —omp(t—1™) = @ — Smi(t),

wherea = e#" . A similar expansion for the active protein dynamics yields

dF;ft(t) :I?m;(t_,rf)_,ypf(t)’ (2.14)

wherex = e#'x. We shall typically use equation2.03 and @.14 as our (re-
duced) description of protein folding, dropping the superscfi@nd overbars
when there is no risk of confusion. Also, in the presence fiedint proteins, we
will attach subscripts to the parameters to denote the protein they refer to.
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In many situations the time delays described in the dynamics of protein pro-
duction are small compared with the time scales at which the protein concentration
changes (depending on the values of the other parameters in the systsomghl
cases, we can simplify our model of the dynamics of protein productionfeven
ther and write

dmp dP
— =a-0m s — =xmp—vyP 2.15
g =@~ ome il L (2.15)
Note that we here have dropped the superscriad f since we are assuming
that all mMRNA is active and proteins are functional and dropped the averixy
andk since we are assuming the time delays are negligible.

Finally, the simplest model for protein production is one in which we only keep
track of the basal rate of production of the protein, without including the mRNA
dynamics. This essentially amounts to assuming the mRNA dynamics reach steady
state quickly and replacing the firstidrential equation in equatio.15 with its
equilibrium value. This is often a good assumption as mRNA degration is usually
about 100-1000 times faster than protein degradation (see ZableThus we
obtain

dP o«

azﬁ—'yp, B.ZKE.
This model represents a simple first order, lineiiedéntial equation for the rate of
production of a protein. In many cases this will be #isiently good approximate
model, although we will see that in many cases it is too simple to capture the
observed behavior of a biological circuit.

2.3 Transcriptional Regulation

The operation of a cell is governed in part by the selective expres$iganas in

the DNA of the organism, which control the various functions the cell is able to
perform at any given time. Regulation of protein activity is a major compookent
the molecular activities in a cell. By turning genes on afidand modulating their
activity in more fine-grained ways, the cell controls the many metabolic pagyway
responds to external stimuli,féirentiates into dierent cell types as it divides, and
maintains the internal state of the cell required to sustain life.

The regulation of gene expression and protein activity is accomplisheagghro
a variety of molecular mechanisms, as discussed in Settiand illustrated in
Figure2.9. At each stage of the processing from a gene to a protein, there are po-
tential mechanisms for regulating the production processes. The remairities
section will focus on transcriptional control and the next section on tealqmst-
transcriptional control mechanisms. We will focus on prokaryotic mechanis
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Figure 2.9: Regulation of proteins. Figure from Phillipgridev and Theriot72]; used
with permission of Garland Science.

Transcriptional regulation of protein production

There are a variety of mechanisms in the cell to regulate the productiontefrso
These regulatory mechanisms can occur at various points in the ovexagigsrthat
produces the protein. Figuge9 shows some of the common points of regulation in
the protein production process. We focus firstr@mscriptional regulationwhich
refers to regulatory mechanisms that control whether or not a gene setitzed.

The simplest forms of transcriptional regulation are repression and tatiyva
which are controlled througtranscription factors In the case ofepressionthe
presence of a transcription factor (often a protein that binds near tmeagper)
turns df the transcription of the gene and this type of regulation is often called
negative regulation or “down regulation”. In the caseacfivation(or positive reg-
ulation), transcription is enhanced when an activator protein binds to theopeo
site (facilitating binding of the RNA polymerase).

RepresessiorA common mechanism for repression is that a protein binds to a re-
gion of DNA near the promoter and blocks RNA polymerase from binding Th
region of DNA to which the repressor protein binds is calledbarrator region
(see Figure2.109. If the operator region overlaps the promoter, then the presence
of a protein at the promoter can “block” the DNA at that location and transcrip
tion cannot initiate, as illustrated in FiguPelOa Repressor proteins often bind to
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(a) Repression of gene expression
Figure 2.10: Repression of gene expression. F

used with permission of Garland Science.
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Figure 2.12: Activation of gene expression. (a) Conceptpa&lration of an activator. The
activator binds to DNA upstream of the gene and attracts Rhlimperase to the DNA
strand. (b) Examples of activiators: catablite activatotgin (CAP), p53 tumor supressor,
zinc finger DNA binding domain and leucine zipper DAN bindidgmain. Figure from
Phillips, Kondev and Theriof7[2]; used with permission of Garland Science.

present in order for transcription to occur. In this case, the protein maodt to
either recruit or enable RNA polymerase to begin transcription.

The simplest form of activation involves a protein binding to the DNA near
the promoter in such a way that the combination of the activator and the promoter
sequence bind RNA polymerase. Fig@d?2 illustrates the basic concept. Like
repressors, many activators have inducers, which can act in eithesit@é@ or
negative fashion (see FiguBl4d). For example, cyclic AMP (cCAMP) acts as a
positive inducer for CAP.

Another mechanism for activation of transcription, specific to prokasydse
the use ofsigma factors Sigma factors are part of a modular set of proteins that
bind to RNA polymerase and form the molecular complex that performs tigascr
tion. Different sigma factors enable RNA polymerase to bind fi@dint promot-
ers, so the sigma factor acts as a type of activating signal for transcripéble2.2
lists some of the common sigma factors in bacteria. One of the uses of sigma fac-
tors is to produce certain proteins only under special conditions, sushesthe
cell undergoebeat shockAnother use is to control the timing of the expression of
certain genes, as illustrated in Figld 3

Inducers.A feature that is present in some types of transcription factors is the ex-
istence of annducer moleculéhat combines with the protein to either activate or
inactivate its function. Aoositive inducers a molecule that must be presentin order
for repression or activation to occur.egative inducers one in which the pres-
ence of the inducer molecule blocks repression or activation, eitherdmgatiy the
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Table 2.2: Sigma factors iB. coli[2].

Sigma factor Promoters recognized
o0 most genes
o2 genes associated with heat shock
o8 genes involved in stationary phase and stress response
o8 genes involved in motility and chemotaxis
o4 genes dealing with misfolded proteins in the periplasm

shape of the transcription factor protein or by blocking active sites onrtteip
that would normally bind to the DNA. Figur214a summarizes the various possi-
bilities. Common examples of repressor-inducer pairs incladeand lactose (or
IPTG),tetRand aTc, and tryptophan repressor and tryptophan. Lat®dse and
aTc are both negative inducers, so their presence causes the otheprisssed
gene to be expressed, while tryptophan is a positive inducer.

Combinatorial promoterdn addition to promoters that can take either a repressor
or an activator as the sole input transcription factor, therecanebinatorial pro-
motersthat can take both repressors and activators as input transcriptionstac
This allows genes to be switched on arftl lmased on more complex conditions,
represented by the concentrations of two or more activators or repsess
Figure2.15shows one of the classic examples, a promoter fotabesystem.
In the lac system, the expression of genes for metabolizing lactose are under the
control of a single (combinatorial) promoter. CAP, which is positively induicg
cAMP, acts as an activator and Lacl (also called “lac repressor’ichwis neg-
atively induced by lactose, acts as a repressor. In addition, the indAd&R is
expressed only when glucose levels are low. The resulting behaviot théharo-
teins for metabolizing lactose are expressed only in conditions where theoe is
glucose (so CAP is activa@ndlactose is present.
More complicated combinatorial promoters can also be used to control tran-

./coreproc/figures/MBoC09_07_43.eps

Figure 2.13: Use of sigma factors to controlling the timifigxpression. Reproduced from
Alberts et al. B]; permission pending.
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./coreproc/figures/MBoC09_07_37.eps

Figure 2.14: Hects of inducers. Reproduced from Alberts et 2], permission pending.

scription in two diferent directions, an example that is found in some viruses.

Antitermination.A final method of activation in prokaryotes is the useaatiter-
mination The basic mechanism involves a protein that binds to DNA and deacti-
vates a site that would normally serve as a termination site for RNA polymerase.
Additional genes are located downstream from the termination site, but withou
promoter region. Thus, in the presence of the anti-terminator protein, geess

are not expressed (or expressed with low probability). Howevernwilie antiter-
mination protein is present, the RNA polymerase maintains (or regains) its tontac
with the DNA and expression of the downstream genes is enhanced. halhis
antitermination allows downstream genes to be regulated by repressingdypre
ture” termination. An example of an antitermination protein is the protein N in
phaget, which binds to a region of DNA labeled Nut (for N utilization), as shown
in Figure2.16[35].

Reaction models

We can capture this set of molecular interactions by modifying the RNA poly-
merase binding reactions in equati@g). For a repressor (Rep), we simply have
to add a reaction that represents the repressor bound to the promotét DNA

Repressor binding: DNA+ Rep= DNA:Rep
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Figure 2.15: Combinatorial logic for tHac operator. Figure from Phillips, Kondev and
Theriot [72]; used with permission of Garland Science.

This reaction acts to “sequester” the DNA promoter site so that it is no longé+ a
able for binding by RNA polymerase. The strength of the repressor isctefl
in the reaction rate constants for the repressor binding reaction. Sometimaes,
RNA polymerase can bind to the promoter even when the repressor is,haurd
ally with lower association rate constant. In this case, the repressor stillsallow
some transcription even when bound to the promoter and the repressdrtislsa
“leaky”.

The modifications for an activator (Act) are a bit more complicated, since we
have to modify the reactions to require the presence of the activatorebRfdh

./coreproc/figures/GNM93-antitermination.eps

Figure 2.16: Antitermination. Reproduced froB8][; permission pending.
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polymerase can bind the promoter. One possible mechanism, also known as the
recruitment modelis given by

Activator binding: DNAP + Act = DNAP:Act
RNAP binding w activator: RNAP + DNAP:Act = RNAP:DNAP:Act
Isomerization: RNAP:DNA:Act — RNAP:DNA°:Act

Start of transcription: RNAP:DNAAct — RNAP:DNA%*DNAP:Act.
(2.16)

In this model, RNA polymerase cannot bind to the promoter unless the activator
is already bound to it. More generally, one can model both the enhanceitdpin

of the RNA polymerase to the promoter in the presence of the activator,lezsve
the possibility of binding without an activator. This translates into the additional
reaction RNAP + DNAP = RNAP:DNAP. The relative reaction rates determine
how strong the activator is and the “leakiness” of transcription in the alseh

the activator. A dferent model of activation, calleallosterig is one in which the
RNAP binding to DNA is not enhanced by the presence of the activatandtu

the promoter, but the open complex (and hence start of transcriptionafiom can
occur only (is enhanced) in the presence of the activator.

A simplified ordinary dfferential equation model can be obtained by account-
ing for the fact that transcription factors and RNAP bind to the DNA rapidigmw
compared to other reactions, such as isomerization, so that they can bapwell
proximated by their quasi-steady state values. In this case, we can maké use
the reduced order models described in SecBidn We can consider the compet-
itive binding case to model a strong repressor that prevents RNAP fioaing
to the DNA. In the sequel, we remove the superscripts “p” and “d” fromARN
to simplify notation. The quasi-steady state concentration of the complex of DNA
promoter bound to the repressor will have the expression

[DNA]([Rep]/Kd)

P. —
[DNAP:Rep]= 1+[Rep)/Kq+[RNAP]/K}

and the steady state amount of DNA promoter bound to the RNA polymerase will
be given by
([RNAP]/KZ)[DNA]

‘DNAP] —
[RNAP:DNAP] 1+ [RNAP]/K, + [Rep)/Kq’

in which Ké is the dissociation constant of RNAP from the promoter wKilgis
the dissociation constant of Rep from the promoter. The free promoter \WikhA
RNAP bound will allow transcription, while the complex DNZ&Rep will not allow
transcription as it is not bound to RNAP. Using the lumped reacti21®, this can
be modeled as

dImRNA]

— = F(Rep))- SmRNA),
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in which the production rate is given by

[DNA] ([RNAP] /KY)

F(RepD = ki I RNAP] /K +[Rep)/Kq’

If the repressor binds to the promoter with cooperativitghe above expression
becomes (see Secti@nl)
[DNA]([RNAP] /K)

F([Rep]) = ki 1+ [RNAP]/Ka +[Repl/(KgKm)’

in which Ky, is the dissociation constant of the reactionnofolecules of Rep
binding together. The functioR is usually denoted by the standard Hill function
form

a
F([Rep])= W’

in which o andK are implicitly defined.

Finally, if the repressor allows RNAP to still bind to the promoter at a small
rate (leaky repressor), the above expression can be modified to takerthésee
Section2.1)

a
F([Rep])= 1+ (Rep)/K)" + o, (2.17)

in which ag is the basal expression level when the promoter is fully repressed,
usually referred to as “leakiness”.

To model the production rate of MRNA in the case in which an activator Act is
required, we can consider first the case in which RNAP binds only wieeadtiva-
tor is already bound to the promoter. To simplify the mathematical derivation, we
re-write the reactions2(16) involving the activator with the lumped transcription
reaction 2.9) into the following:

DNAP + Act == DNAP:Act
RNAP+ DNAP:Act = RNAP:DNAP:Act (2.18)

k
RNAP:DNAP:Act — mRNA+RNAP+DNAP:Act.

The first and second reactions fit the structure of the cooperativénbimdodel
illustrated in Sectior2.1 Also, since the third reaction is much slower compared
to the first two, the complex RNAP:DNAAct concentration can be well approxi-
mated at its quasi-steady state. The expression of this quasi-steady st@fieeva

in Section2.1in correspondence to the cooperative binding model and takes the

form:
([RNAP][Act]) /(KgK{)[DNA]

1+ ([Act] /Kg)(1+[RNAP]/K?)’

in which K}, is the dissociation constant of RNAP with the complex of DNA bound
to Act andKy is the dissociation constant of Act with DNA. When the activator Act

[RNAP:DNAP:Act] =
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Figure 2.17: Hill function for an activator (left) and a repsor (right).

binds to the promoter with cooperativity the above expression will be modified
to (see Sectiof??):

(IRNAP][Act] ")/ (KaK{Km)[DNA]

1+ ([Act]"/KgKm)(1+ [RNAP]/K))’

[RNAP:DNAP:Act] =

in which K., is the dissociation constant of the reactionnofmolecules of Act

binding together.
In order to write the dterential equation for the mRNA concentration, we con-

sider the third reaction ir2(18 along with the above quasi-steady state expressions
of [RNAP:DNAP:Act] to obtain

d [MRNA]

G = F([Act) —S[mRNAJ,

in which
(IRNAPJ[AC")/(KaKiKm)[DNA]  o([Act] /K)"
1+([Act]“/Kde)(1+[RNAP]/K(’j) 1+ ([Act] /K)N

F([Act]) =k

in which @ andK are implicitly defined. The right-hand side expression is in the
standard Hill function form. Figur@.17 shows the shape of these Hill functions
for both an activator and a repressor. If we assume that RNAP canistllitb
DNA even when the activator is not bound, we have an additional bagedssion
rateag so that the new form of the production rate is given by

a([Act]/K)"

FIAD) = 17 (Ac /K7

Q.
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As indicated earlier, many activators and repressors operate in thenpeesf
inducers. To incorporate these dynamics in our description, we simplytb ksl
the reactions that correspond to the interaction of the inducer with the méleva
protein. For a negative inducer, we can simply add a reaction in which thheend
binds the regulator protein andfectively sequesters it so that it cannot interact
with the DNA. For example, a negative inducer operating on a represstd be
modeled by adding the reaction

Rep+ Ind = Rep:Ind

Since the above reactions are very fast compared to transcription,ahdyecas-
sumed at the quasi-steady state. Hence, the free amount of repregsmarttstill
bind to the promoter can be calculated by writing the ODE model corresponding
to the above reactions and by setting the time derivatives to zero. This yields

_ [Repot
[Rep]= m,

in which [Rep]ot = [Rep]+ [Rep:Ind] is the total amount of repressor (bound and
unbound to the inducer) art; is the dissociation constant of Ind binding to Rep.
This expression of the repressor concentration needs to be substitutesér-
pression of the production rakEg{[Rep]).

Positive inducers can be handled similarly, except now we have to modify the
binding reactions to only work in the presence of a regulatory proteindtuan
inducer. For example, a positive inducer on an activator would have thiéietb
reactions

Inducer binding: Act Ind = Act:Ind
Activator binding: DNAP + Act:Ind = DNAP:Act:Ind
RNAP binding w activator: RNAR+-DNAP:Act:Ind = RNAP:DNAP:Act:Ind
Isomerization: RNAP:DNA:Act:Ind — RNAP:DNA°:Act:Ind
Start of transcription: RNAP:DNAAct:Ind — RRNAP:DNA%! +
DNAP:Act:Ind.

Hence, in the expression of the production ra{pAct]), we should substitute the
concentration [Act:Ind] in place of [Act]. This concentration, in turn, isliveg-
proximated by its quasi-steady state value since binding reactions are nsteh fa
than isomerization and transcription.

Example 2.2(Autoregulation of gene expressiorgonsider the three circuits shown

in Figure 2.18 representing a unregulated gene, a negatively autoregulated gene
and a positively autoregulated gene. We want to model the dynamics ofatespr

A starting from zero initial conditions for the threefldirent cases to understand
how the three dferent circuit topologiesféect dynamics.
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Figure 2.18: Autoregulation of gene expression. The thiewiits control the expression
of gene regulation using (a) unregulated, (b) negativeragtdation and (c) positive au-
toregulation.

The dynamics of the three circuits can be written in a common form,

dmy dA
ar - - - = - 2.19
g - A -oma = =kmA—YA (2.19)
whereF(A) has the form
@ aa(A/K)
Funed)=0s.  Fropesd®) = Tyt 0 Faonad =17 i\((A—// _K))” e

We choose the parameters to be

ap=1/3, ag=1/2, o =5x107%,
« = 20log(2)120, 6 =log(2)/120, y =10g(2)/60Q
K =10% n=2,

corresponding to biologically plausible values. Note that the parameteth@sen
so thatf (0) ~ ap for each circuit.

Figure 2.1% shows the results of the simulation. We see that initial increase
in protein concentration is identical for each circuit, consistent with ouiceho
of Hill functions and parameters. As the expression level increasesfféats of
positive and negative are seen, leading tedént steady state expression levels.
In particular, the negative feedback circuit reaches a lower steaidyestaression
level while the positive feedback circuit settles to a higher value.

In some situations, it makes sense to ask wheth@eréint circuit topologies
have diferent properties that might lead us to choose one over another. Insthe ca
where the circuit is going to be used as part of a more complex pathway, it may
make the most sense to compare circuits that produce the same steady st@ite con
tration of the protein A. To do this, we must modify the parameters of the individu
circuits, which can be done in a number offdient ways: we can modify the pro-
moter strengths, degradation rates, or other molecular mechanisms reiftettted
parameters.
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Figure 2.19: Simulations for autoregulated gene expras$&@ Non-normalized expres-
sion levels. (b) Normalized expression.

The steady state expression level for the negative autoregulation @admec
adjusted by using a stronger promoter (modeledrpyor ribosome binding site
(modeled by). The equilibrium point for the negative autoregulation case is given
by the solution of the equations

aKn K
m = —=—"0Q, = —Mae.
heT ST A Py
These coupled equations can be solvedhige andAe, but in this case we simply
need to find values;; and«’ that give the same values as the unregulated case. For

example, if we equate the mRNA levels of the unregulated system with that of the
negatively autoregulated system, we have

aB 1 aéK”
K"+ AQ

Kn+Ag aBkK

Kn ’ 6’)/ ’

55 +0/0) = ag=(ag—o)
whereAg is the desired equilibrium value (which we choose using the unregulated
case as a guide).

A similar calculation can be done for the case of positive autoregulation, in
this case decreasing the promoter parametgrand ag so that the steady state
values match. A simple way to do this is to leavg unchanged and decreasg
to account for the positive feedback. Solving &gy to give the same mRNA levels
as the unregulated case yields

n

’
Ap = A —pA——.
B Kn+Ad

Figure2.1% shows simulations of the expression levels over time for the mod-
ified circuits. We see now that the expression levels all reach the samg statal
value. The negative autoregulated circuit has the property that itesdlch steady
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state more quickly, due to the increased rate of protein expressionAvisesmall
(ag > ag). Conversely, the positive autoregulated circuit has a slower rate-of ex
pression than the constitutive case, since we have lowered the rateteinpr-
pression wherd is small. The initial higher and lower expression rates are com-
pensated for via the autoregulation, resulting in the same expression |etehdy
State. \%

We have described how the Hill function can model the regulation of a gene
by a single transcription factor. However, genes can also be regulptedltiple
transcription factors, some of which may be activators and some may les+epr
sors. In this case, the promoter controlling the expression of the gented aa
combinatorial promoter. The mRNA production rate can thus take severatsfo
depending on the roles (activators versus repressors) of the saramscription
factors [B]. In general, the production rate resulting from a promoter that takes as
input transcription factors;For i € {1,..., N} will be denotedr(Px, ..., Pp).

Thus, the dynamics of a transcriptional module is often well captured by the
ordinary diferential equations

? =F(P1,...,Pn) —dp,mp,, ﬁ = kp,Mp, —yp, P;. (2.20)
t dt

For a combinatorial promoter with two input proteins, an activatpaid a
repressor R in which the activator cannot bind if the repressor is bound to the
promoter, the functior (P4, P;) can be obtained by employing the competitive
binding in the reduced order models of Sect@d. In this case, assuming the
activator has cooperativity n and the repressor has cooperativity rabtaa the
expression

(Pa/Ka)"
1+ (Pa/Ka)" + (Pr /K )™

Here, we have thaKa = (KmaKa 2™, Ky = (KmrKg )™, in which K4 4 and
Kg,r are the dissociation constants of the activator and repressor, respedtom
the DNA promoter site, whil&,,5 andKy,, are the dissociation constants for the
cooperative binding reactions for the activator and repressorectsgely. In the
case in which the activator is “leaky”, that is, some transcription still oceues
when there is no activator, the above expression will be modified to

(Pa/Ka)"
1+ (Pa/Ka)"+ (Pr/Ky)m

F(Pa, Pr) =

(2.21)

F(Pa, Pr) = +(10,
in which «a is the basal transcription rate when no activator is present. If such a
basal rate can still be repressed by the repressor, the abovesapnemdifies to

the form
@(Pa/Ka)"+ao

1+ (Pa/Ka)"+ (Pr /K )™

F(Pa, Pr) -



2.3. TRANSCRIPTIONAL REGULATION 67

0 100 200 300 400 500 600 700 800 900 1000
time (min)

0 100 200 300 400 500 600 700 800 900 1000

time (min)
O os (\

A—»B—C 0 100 200 300 400 500 600 700 800 900 1000
time (min)

(a) (b)

Figure 2.20: The incoherent feed-forward loop (type I). Aa3chematic diagram of the
circuit. (b) A simulation of a the model in equatich 22 with ap =0.01,y=0.01,ap =1,
ac =100,Kg = 0.001, andKa = 1.

Example 2.3 (Incoherent Feed-forward Loopsfombinatorial promoters with
two inputs are often used in systems where a logical “and” is required.nAs a
example, we illustrate here an incoherent feed-forward loop (typ8].Such a
circuit is composed of three transcription factors A, B, and C, in which Aatly
activates C and B while B represses C. This is illustrated in Figu2§a). This

is different from a coherent feed-forward loop in which both A and B atgia

In the incoherent feed-forward loop, if we would like C to be high only wide

is high and R is low (“and” gate), we can consider a combinatorial promoter in
which the activator A and the repressor B competitively bind to the promot@r of
The resulting Hill function is given by the expression thZ1). Depending on the
values of the constants, the expression of C is low unless A is high and B.is low
The resulting ODE model is given by the system

dA
dt
dB_ A/Ka

dat = B1e(A/Ka)
dC _ A/Ka
dt ~ “CT+(A/Ka) + (B/Ka)

in which we have assumed no cooperativity of binding for both the actieatdr
the repressor. Upon a step @£, protein A binds to the promoter of C initiating
transcription, so that protein C starts getting produced. At the same timeinprote
B is produced and accumulates until it reaches a large enough valueréssep
C. Hence, we can expect a pulse of C production for suitable paranstersv
This is shown in Figure.20 In addition to being pulse generators, incoherent

=aa—7YA

vB (2.22)
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feed-forward loops can accelerate the response time to step inputs, in tivaich
response time is measured by the time the system takes to reach 90% of the steady
state. v

Finally, a simple regulation mechanism is based on altering the half life of a pro-
tein. Specifically, the degradation rate of a protein is determined by the anwiunts
proteases present, which bind to recognition sites (degradation tag#)eande-
grade the protein. Degradation of a protein A by a protease P can thendeetio
by the following two-step reaction

a _ k
A+P=C-P,
d
in which C=AP is the complex of the protease Y bound to protein X. By the end of
the reaction, protein X has been degraded to nothing, so that this reaatifteris
simplified to X— 0.

2.4 Post-Transcriptional Regulation

In addition to regulation of expression through modifications of the praafdssn-
scription, cells can also regulate the production and activity of proteins eida
lection of other post-transcriptional modifications. These include methauedf
ulating the translation of proteins, as well dkeating the activity of a protein via
changes in its conformation, as shown in Fig2re

Allosteric modifications to proteins

In allosteric regulation, a regulatory molecule, called allosteffieator, binds to a
site separate from the catalytic site (active site) of an enzyme. This bindiisgsa
a change in the three dimension conformation of the protein, turrfr{graturning
on) the catalytic site (Figur2.21).

An allosteric d€fector can either be an activator or an inhibitor, just like inducers
work for activation or inhibition of transcription factors. Inhibition can eithe
competitive or not competitive. In the case of competitive inhibition, the inhibitor
competes with the substrate for binding the enzyme; that is, the substratedan b
to the enzyme only if the inhibitor is not bound. In the case of non-competitive
inhibition, the substrate can be bound to the enzyme even if the latter is bound to
the inhibitor. In this case, however, the product may not be able to formayr
form at a lower rate, in which case, we have partial inhibition.

Activation can be absolute or not. Specifically, an activator is absoluta tilee
enzyme can bind to the substrate only when bound to the activator. Othgettvase
activator is not absolute. In this section, we derive the expressiotiseqroduc-
tion rate of the active protein in an enzymatic reaction in the two most common
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./coreproc/figures/Allosteric-diagram.eps

Figure 2.21: In allosteric regulation, a regulatory moledinds to a site separate from the
catalytic site (active site) of an enzyme. This binding esus change in the three dimen-
sion conformation of the protein, turningfdor turning on) the catalytic site. Permission
pending.

cases: when we have a (hon-competitive) inhibitor | or an (absolutepémtiA of
the enzyme.

Allosteric inhibition

Consider the standard enzymatic reaction

a k
E+S=ES—E+P
d

in which enzyme E binds to substrate S and transforms it into the produdtibé.e
a (non-competitive) inhibitor of enzyme E so that when E is bound to |, the ledmp
El can still bind to substrate S, however, the complex EIS is non-proddhat
is, it does not produce P. Then, we have the following additional reaction

K, K, a
E+1 = El ES+| = EIS El+ S= EIS,
k. k. d

with the conservation laws (assumiSgy is in much greater amounts th&g,)
Eiwot = E+[ES]+[EI] +[EIS], Siot=S+P+[ES]+[EIS]~S+P.

The production rate of P is given lfP/dt = k|[ES]. Since binding reactions are
very fast, we can assume all the complexes to be at the quasi-steady hktate. T

gives
_a ki ‘ 1 ‘
[EIS] = a[EI] -S, [Ell = —E-I, [ES]= —KmS E,
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in which Kp, = (d+Kk)/ais the Michaelis-Menten constant. Using these expressions,
the conservation law for the enzyme, and the fact éidt~ 1/K,, we obtain

Etot

E = K Dars/Ky W Ka=k/ks,
so that s E
B tot
[ES]= S+Knl+l/Ky

and, as a consequence,

dp 1 S
dt klEtOt(l+I/Kd)(S+Km)'

Using the conservation law f@, this is also equivalent to

dP_ o (1 ) (Sa=P)
dt T 1/Kg )\ (St =P) + K/

In our earlier derivations of the Michaelis-Menten kinetGsx= ki Eiot Was called

the maximal speed of madification, which occurs when the enzyme is completely
saturated by the substrate (Sect®d). Hence, the fect of a hon-competitive
inhibitor is to decrease the maximal speed of modification by a fag{arll /Kq).

Another type of inhibition occurs when the inhibitor is competitive, that is, when
is bound to E, the complex El cannot bind to protein S. Since E can either bind to
I or S (not both), | competes against S for binding to E. See ExePcide

Allosteric activation

In this case, the enzyme E can transform S to its active form only when itiiscbo
to A. Also, we assume that E cannot bind S unless E is bound to A (from there
name absolute activator). The reactions are therefore modified to be

E+A == EA
ko
and

EA+S< EASS P+EA,
d

with conservation laws

Etot = E+[EA] + [EAS], Stot~ S+P.
The production rate of P is given lyP/dt = K|[EAS]. Assuming as above that the
complexes are at the quasi-steady state, we have that

S-[EA]

E-A
EA] = —— EAS] =
EAl =~ [EAS]= 2=



2.4. POST-TRANSCRIPTIONAL REGULATION 71

1 1
_Kd—l
08‘\ “““ Kd:O5 08’ ”—’,—"__
> BV ---K=15 2 - — K=
= \\ = . d
g 0.6 \ 2 0.6 ) Kd:O.S
) AN () B =
2 A\ L ! ...Kd 1.5
0.4 204 /,
c . c !
| L /
0.2 e 0.2/
O ““““ L
0 5 10 00 5 10
Inhibitor | Activator A

Figure 2.22: Enzyme activity in the presence of allostefieators (activators or in-
hibitors). The red plots show the enzyme activity in the pnee of an inhibitor as a
function of the inhibitor concentration. The green plotswthe enzyme activity in the
presence of an activator as a function of the activator aunagon. The dierent plots

show the &ect of the dissociation constant.

which, using the conservation law for E, leads to

~ Erot _(_A S
B = @ sk ARy [EAS]‘(A+Kd)(S+Km)E‘°”

dP A s
dt kE“’t(A+ Kd)(S+ Km)‘

Using the conservation law for S, this is also equivalent to

d_F’_kEt( A ( (Stot—P) )
dat — = A+Kd) (Stot—P)+ Km )’

Hence, we have that

The dfect of an absolute activator is to modulate the maximal speed of modification
by a factorA/(A+ Ky).

Figure 2.22 shows the behavior of the enzyme activity as a function of the
allosteric dfector. As the dissociation constant decreases, that isflih&yaof the
effector increases, a very small amount fitetor will cause the enzyme activity
to be completely “on” in the case of the activator and completefiy ‘ia the case
of the inhibitor.

Another type of activation occurs when the activator is not absolutejghaten
E can bind to S directly, but cannot activate S unless the complex ES fidst Ain
(see Exercis@.11).
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./coreproc/figures/Mad07_05_0§4a.eps

Figure 2.23: Phosphorylation of a protein via a kinase. Béypced from Madhanigg];
permission pending

Covalent modifications to proteins

In addition to regulation that controls transcription of DNA into mRNA, a variety
of mechanisms are available for controlling expression after mRNA is peatuc
These include control of splicing and transport from the nucleus (iaryokes),

the use of various secondary structure patterns in mRNA that can ietevidr
ribosomal binding or cleave the mRNA into multiple pieces, and targeted degrada
tion of MRNA. Once the polypeptide chain is formed, additional mechanisms are
available that regulate the folding of the protein as well as its shape andyactiv
level. We briefly describe some of the major mechanisms here.

Material to be written: SRNA, riboswitches.

One of the most common types of post-transcriptional regulation is through the
phosphorylatiorof proteins. Phosphorylation is an enzymatic process in which a
phosphate group is added to a protein and the resulting conformation abtieép
changes, usually from an inactive configuration to an active one. ithgre that
adds the phosphate group is callekimase(or sometimes @hosphotransferage
and it operates by transferring a phosphate group from a bound Aldeuleto the
protein, leaving behind ADP and the phosphorylated pro@aphosphorylation
is a complementary enzymatic process that can remove a phosphate gnoup fr
a protein. The enzyme that performs dephosphorylation is callgibaphatase
Figure2.23shows the process of phosphorylation in more detail.

Phosphorylation is often used as a regulatory mechanism, with the phgsphor
lated version of the protein being the active conformation. Since phoggation
and dephosphorylation can occur much more quickly than protein produantic
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degradation, it is used in biological circuits in which a rapid response isrezt]

One common pattern is that a signaling protein will bind to a ligand and the result-
ing allosteric change allows the signaling protein to serve as a kinase. Whe ne
active kinase then phosphorylates a second protein, which modulateduwibe
tions in the cell. Phosphorylation cascades can also be used to amplifyetbiecd

the original signal; we will describe this in more detail in Sectoh

Kinases in cells are usually very specific to a given protein, allowing detailed
signaling networks to be constructed. Phosphatases, on the otherahamdyuch
less specific, and a given phosphatase species may desphosphoayigtdiferent
types of proteins. The combined action of kinases and phosphatases itaintjio
signaling since the only way to deactivate a phosphorylated protein is byiegno
the phosphate group. Thus phosphatases are constantly “tufiiimateins, and
the protein is activated only whenfSgient kinase activity is present.

Phosphorylation of a protein occurs by the addition of a charged phtesph
(PG,) group to the serine (Ser), threonine (Thr) or tyrosine (Tyr) amincsa8am-
ilar covalent modifications can occur by the attachment of other chemicapgro
to select amino aciddviethylationoccurs when a methyl group (GHis added
to lysine (Lys) and is used for modulation of receptor activity and in modifying
histones that are used in chromatin structubestylationoccurs when an acetyl
group (COCH) is added to lysine and is also used to modify histohdsquitina-
tion refers to the addition of a small protein, ubiquitin, to lysine; the addition of a
polyubiquitin chain to a protein targets it for degradation.

Covalent modification is a post-translational protein modification tfiaces
the activity of the protein. It plays an important role both in the control of nwisin
and in signal transduction. Here, we focusrewersiblecycles of modification, in
which a protein is interconverted between two forms th&edin activity either
because offéects on the kinetics relative to substrates or for altered sensitivity to
effectors.

At a high level, a covalent modification cycle involves a target protein X, an
enzyme Z for modifying it, and a second enzyme Y for reversing the modifica-
tion (see Figur.24). We call X* the activated protein. There are often allosteric
effectors or further covalent modification systems that regulate the activityeof th
modifying enzymes, but we do not consider this added level of complexis. he
There are several types of covalent modification, depending on theotyaeti-
vation of the proteinPhosphorylatioris a covalent modification that takes place
mainly in eukaryotes and involves activation of the inactive protein X by additio
of a phosphate group, RQn this case, the enzyme Z is calle¢iaasewhile the
enzyme Y is callegphosphataseAnother type of covalent modification, which is
very common in both procaryotes and eukaryotesi@thylationHere, the inactive
protein is activated by the addition of a methyl group,,CH

The reactions describing this system are given by the following two enzymatic
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Figure 2.24: (Left) General diagram representing a covaterdification cycle. (Right)
Detailed view of a phoshorylation cycle including ATP, AD#hd the exchange og the
phosphate group “p”.

phosphatase

reactions, also called a two step reaction model,

a k a k:
Z+X=C, 5 X" +Z, Y4+X = C, 5 XY,
dl d2

in which we have let G=ZX be the kinasgrotein complex and &=X"Y be the
active proteifphosphatase complex. The corresponding ODE model is given by

& @z Xt(ard)C T =kCimaYX +G:Co
%_)'[( =—-aZ-X+d1C1 + koCo, % =aY- X" = (d2+k2)Co,
% =ayZ- X~ (dy+kg)Cy, (ZI—T =—aY X" +(d2 + k2)Ca.

Furthermore, we have that the total amounts of enzymes Z and Y are wedser
Denote the total concentrations of Z and Y By, Yior, respectively. Then, we
have also the conservation la&is- C1 = Ziot andY + C» = Yior. We can thus reduce
the above system of ODE to the following one, in which we have substizited
Ziot—C1 andY = Yiot — Co:

dC
5 = a1(Zio=C1)- X~ (d + k)Cy.
dx: .

T kiC1—ax(Yiot — C2) - X" +d2Co,
dC
d—f = a(Yiot—Ca) - X" — (d + k2)Ca.

As for the case of the enzymatic reaction, this system cannot be analytically
integrated. To simplify it, we can perform a similar approximation as done for the
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enzymatic reaction. In particular, the complexgsadd C, are often assumed to
reach their steady state values very quickly becays,as,d, > ki,ko. There-
fore, we can approximate the above system by substitutin@{cand C, their
steady state values, given by the solutions to

a1(Ztot—C1)- X—(d1 +k1)C1 =0

and
a(Yiot—C2) - X* = (d2 + k2)C2 = 0.

By solving these equations, we obtain that

YtotX* . d2 + k2
=, W|th K =
27 X+ Kz m2T T
and
ZtotX d]_ + k1

Ci =
LT X Ky

As a consequence, the ODE model of the phosphorylation system camrlbe w
approximated by

with K1 = .
m1 a

ax: ZiotX YiotK YiotX*
AR ot g, Yotfm2 g Yt

which, considering thad,Km 2 — dz = ko, leads finally to

dX' _\ ZoX | VX'
dt "X+ Kmi X+ Kmo'

(2.23)

We will come back to the modeling of this system after we have introduced sin-
gular perturbation theory, through which we will be able to perform a fbamnal-
ysis and mathematically characterize the assumptions needed for approximating
the original system by the first order ODE mod2I23. In the model of equation
(2.23, we have thaX = Xt — X* — C1 — C, by the conservation laws. A standard
assumption is that the amounts of enzymes are small compared to the amount of
substrate, so thaf ~ Xt — X* [33].

Ultrasensitivity

One relevant aspect of the response of the covalent modification cytdertput is
the sensitivity of the steady state characteristic curve. Specifically, whatters
affect the shape of the steady state response is a crucial question. Toidetére
steady state characteristics, which shows how the steady stdtechfinges when
the input stimulug is changed, we setX*/dt = 0 in equation 2.23. Using the
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Figure 2.25: Steady state characteristic curve showingetlesance of the response coef-
ficient for ultrasensitivity. A®R — 1, the points/ o andygg tend to each other.

approximationX ~ Xt — X*, denotingVy := KiZiot, V2 1= Kz Yiot, K_l = Km1/Xtot,
andKy := Km2/Xiot, We obtain

Vi X*/Xtot(Kl"'(l_X*/Xtot))
V= T (Kot X [ %Xeo) (1= X/ Xeg)

(2.24)

We are interested in the shape of the steady state cur¥é a$ function ofy.
This shape is usually characterized by two key parameters: the resmsisgent,
denotedR, and the point of half maximal induction, denotgd. Lety, denote the
value ofy corresponding to having* equala% of the maximum value oK*
obtained foty = oo, which is equal toX;o;. Then, the response dheient is defined

as
R:= yio,

Y10
and measures how switch-like the response is (Figu2g. WhenR — 1 the re-
sponse becomes switch-like. In the case in which the steady state cliatiadtea
Hill function, we have thak* = (y/K)"/(1+ (y/K)"), so thaty, = (a/(100- )/
and as a consequence

log(81)
log(R) -

Hence, whem = 1, that is, the characteristic is of the Michaelis-Menten type, we
have thatR = 81, while whenn increasesR decreases. Usually, when> 1 the
response is referred to a#trasensitive The formulan = log(81)/log(R) is often
employed to estimate thapparent Hill cogficientof a dose response curve (the in-
put/output steady state characteristic curve obtained from experimentabiaia)
R can be calculated for any response curve directly from the data points.

In the case of the current system, from equat@24), we have that

R=(81)Y", or equivalentlyn =

_ (K1+0.1)09
" (K2+0.9)0.1

_ (K1+09)01

and =i
Yio= (& 101)09

Y90
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Figure 2.26: Steady state characteristics of a covalenifioation cycle as a function of
the Michaelis-Menten constarks, 1 andKp,2.

so that Ki+0.1)(K,+0.1

~ (K +0.9)(K1+0.9)
As a consequence, whéq, K, > 1, we have thaR — 81, which gives a Michaelis-
Menten type of response. If insteld, K, < 0.1, we have thaR — 1, which cor-
responds to a theoretic Hill ciientn > 1, that is, a switch-like response (Figure
2.26). In particular, if we have, for examplefl = K, = 1072, we obtain an appar-
ent Hill codficient grater than 13. This type of ultrasensitivity is usually referred
to aszero-order ultrasensitivityThe reason of this name is due to the fact that
whenKp 1 is much smaller than the amount of protein substigteve have that
Ziot X/ (Km1 + X) = Ziot. Hence, the forward modification rate is “zero order” in the
substrate concentration (no free enzyme is left, all is bound to the subpstrate

One can study the behavior also of the point of half maximal induction

_K1+05
- K2+05

(2.25)

Y50

to find that aslzz increases, it decreases and thalt?@sincreases, it increases.

Phosphotransfer systems

Phosphotransfer systems are also a common motif in cellular signal transductio
These structures are composed of proteins that can phosphorylateteac. In
contrast to kinase-mediated phosphorylation, where the phosphateislasaally

ATP, in phosphotransfer the phosphate group comes from the dooiirpitself
(Figure2.27). Each protein carrying a phosphate group can donate it to the next
protein in the system through a reversible reaction. In this section, weilesc
module extracted from the phosphotransferase sys3&m [
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Figure 2.27: (a) Diagram of a phosphotransfer system. @gis X and Z are transferring
the phosphate group p to each other.

Let X be a transcription factor in its inactive form and let be the same tran-
scription factor once it has been activated by the addition of a phospraip.g
Let Z* be a phosphate donor, that is, a protein that can transfer its phospbape g
to the acceptor X. The standard phosphotransfer reactié8jscdn be modeled
according to the two-step reaction model

ke ks
"+ X=C,=X"+Z,
ko
in which G is the complex of Z bound to X bound to the phosphate group. Ad-
ditionally, protein Z can be phosphorylated and proteindéphosphorylated by
other phosphotransfer interactions. These reactions are modeled ateprreac-
tions depending only on the concentrations of Z aridtiat is,

z 7z, x*Bx

Protein X is assumed to be conserved in the system, th&gjs; X +Cq + X*.
We assume that protein Z is produced with time-varying productionk(@tend
decays with rate. The ODE model corresponding to this system is thus given by
the equations

dz

5= K(t) — yZ + ksCq — ke X*Z -~ m1Z

dc X* C

- klxtot(1— - —1)2* —KksCy1—koCy + ks X*Z

dt Xiot  Xtot

47 w (2.26)
= 117 + koCq — kg Xior [ 1— — — == |z

dt m£+ Kol —Kg tot( Xeor Xtot)

dx:

=k — kg X*Z — o X",
ai 3C1—ka 2




2.5. CELLULAR SUBSYSTEMS 79

1.4

1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time

Figure 2.28: Output response of the phosphotransfer sysitma step signak(t) = 1+
0.5sin(t). The parameters are given lpy= 0.01, Xt = 5000,k; = kp = ks = kg =71 =
mo =0.01.

Sample simulation results when the input is a time-varying (periodic) stimulus are
shown in Figure2.28 The outputX* well “tracks” the input stimulus by virtue of
the fast phosphotransfer reactions.

This model will be considered again in Chapter 7 when the phosphotraysfe
tem is proposed as a possible realization of an insulation devicefter lsystems
from retroactivity éfects.

2.5 Cellular Subsystems

In the previous section we have studied how to model a variety of coregses
that occure in cells. In this section we consider a few common “subsystems” in
which these processes are combined for specific purposes.

Intercellular signaling: MAPK cascades

The Mitogen Activated Protein Kinase (MAPK) cascade is a recurrenttsiral

motif in several signal transduction pathways (FigRr29. The cascade consists

of a MAPK kinase kinase (MAPKKK), denoted,Xa MAPK kinase (MAPKK),
denoted X, and a MAPK, denoted X MAPKKKSs activate MAPKKSs by phospho-
rylation at two conserved sites and MAPKKs activate MAPKSs by also pharsp
lation at conserved sites. The cascade relays signals from the plasmaanembr
to targets in the cytoplasm and nucleus. It has been extensively studiedaati

eled. Here, we provide two fiierent models. First, we build a modular model by
viewing the system as the composition of single phosphorylation cycle modules
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X2 X2* XQ**

T o

Figure 2.29: Schematic representing the MAPK cascade slthvae levels: the first one
has a single phosphorylation, while the second and the timed have a double phospho-
rylation.

(whose ODE model was derived earlier) and double phosphorylaticle ayod-
ules, whose ODE model we derive here. Then, we provide the full listauftions
describing the cascade and construct a mechanistic ODE model frotohsdide
will then highlight the diference between the two derived models.

Double phosphorylation modeTonsider the double phosphorylation motif in Fig-
ure2.30 The reactions describing the system are given by

ai kg « &2 ko
E,+X=C, —» X" +E, E,+X"=C, = X+E,,
d1 d2
a; K . % :
X*+E, = C3 — X" +E,, E2+X**\=‘C4E>X*+E2,

1 2

inwhich C, is the complex of Ewith X, C, is the complex of Ewith X " C,isthe
complex of § with X”, and G, is the complex of Ewith X ™. The conservation
laws are given by

E1+C1+C3=Eyor, Ex+Co+Cys=Eptot,
Xigt = X+ X+ X +C1+Co+C3+Cyq =~ X+ X" + X*,
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Figure 2.30: Schematic representing a double phosphamwlaycle.E; is the input and
X** is the output.

in which we have assumed the the total amounts of enzymes are small compared
to the total amount of substrate as we have explained earlier. As perfeamlést,

we assume that the complexes are at the quasi-steady state since bincliogsea

are very fast compared to the catalytic rates. This gives the Michaelisellérrm

for the amount of formed complexes:

Ci=E X Cs=E X
PR K X KK ST THOKGX KX+ KK
K; X* Kz X™
Ca=E 2 Ci=E ’
2 2,tot K;X* T KZX** + KZK; > 4 2,tot sz* + KZX** + KZK;

inwhichK; = (di + kj)/a; andK" = (d” +k)/a are the Michaelis-Menten constants
for the enzymatic reactions. Since the complexes are at the quasi-stefdytsta
follows that

d * * *
d_t X =kiC1—koCy — le3 + kéC4,
d skk K K
d_t X = k1C3 - k2C4,
from which, substituting the expressions of the complexes, we obtain that

d ki XK =K XKy KX Kz = ko X* K

— X" = Eq ot + B2 tot .

dt KX+ Ky X* + KTKy KX+ KX + KoK

d K1 X* . Ko X**

dt TEHONGX + KX + KGKG 2 2 KX+ KX + KoK

in which X = Xt — X* — X**,
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Modular model of MAPK cascades

In this section, to simplify notation, we denote “MAPK” by,XIn a modular com-
position framework, the output of one stage becomes an input to the nget sta
downstream of it. Hence, (}(becomes the input enzyme that activates the phos-
phorylation of X, and X1 becomes the input enzyme that activates the phospho-
rylation of X,. Let (ay,dy, ki) and @z, dz;, ko) be the association, dissociation,
and catalytic rates for the forward and backward enzymatic reactiespectvely,

for the first cycle at stagee {0, 1,2}. Similarly, let (aii,dii,kii) and @;’i,d;i,k;i)

be the association, dissociation, and catalytic rates for the forward aha/aa
enzymatic reactions, respectively, for the second cycle at s&afk 2}. Also, de-
note byKj; andKz; fori € {0, 1,2} the Michaelis-Menten constants of the forward
and backward enzymatic reactions, respectively, of the first cyclageéis Sim-
ilarly, denoteKii and K2*,i for i € {1,2} be the Michaelis-Menten constants of the
forward and backward enzymatic reactions, respectively, of thengecgcle at
stagei. Let Pyt and P tor be the total amounts of the,Xand X, phosphatases,
respectively. Then, the modular ODE model of the MAPK cascade is giyen b

d.. Xo X5
gt Xo = kioE1totxgrirg — Ko PO,totm

E X* = X kit Xo Ky —ki, X{ Kia +P 51 Kaa Xi"—koa X7 K3

dt L Ki, Xa+Kin X +K1iKy, © 1 LOWRS X+Ko 1 Xy +K21K5

d X K X+ K
VG * 1 "™\l . 1 2,1 2 27
dt Xl kl,l XO KI,l X1+Kq1 X1+K1,1K11 k2,1 Pl,tot Kil Xi+Ka1 XI*+K2.1K£1 ( : )
d X = X kiaXa Ki,—Ki, X5 Koz +P 52 Koz X3 —ka2 X5 K3,

dt 2 = M K, %e+Ki2 XGHKT, Kiz 2tot K3, X5+Ka2 XG5 +Kz2 K,

d X5 Kiz X5 Koz

sk |k EX3 N
dt Xy =kip X Ki, Xo+Ki2 XG+K], Kiz Kz 2 P2t K3, XKoo X +Ka2 K3,

in which, letting Xo.tot, X1.tot @nd Xz 10t represent the total amounts of each stage
protein, we haveXo = Xotot — X5, X1 = Xy tot— X] = Xi* @and Xz = Xp ot = X5 — X3*.
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Mechanistic model of the MAPK cascade

We now give the entire set of reactions for the MAPK cascade of Figit@as
they are found in standard references (Huang-Ferrell mddgt [

k1 0 &0 I<2 0

le d2o
aj, ki1 Y ko1
XS+X1\—C — X7+ Xp XI+P1\—C — X, +P;
di1 (o731
* * ai’l ki,l *k * *x %1 k21
dl.l d2,l
a2 k12 a2 k22
X**+X2—C7—>X +X7" X§+P2\—C8—>X +P,
di2 2
ok * aiz k12 dk ‘35 k22
12 2,2

with conservation laws

Xotot = Xo+Xg+C1+C2+C3+Cs

Xitot= X1+ X[ +C3+ X" +C4+Cs5+Cg+C7+Cyg
Xotot = Xo+ X5+ X5" +C7+Cg+Co+Cyp

Eitot = E1+C1, Potor = Po+C2

P1tot = P1+Cs4+Ce

P2tot = P2+ Cg + Cio.
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The corresponding ODE model is given by

d
a C1=a10E1 Xo—(d,0+ki0) C1

a Xo=k1,0C1+0d20Co—apo Po Xg+(di1+ki1) Ca—ags Xg X
+(dyg +kpp) Cs—agy X5 Xg

d
—Co=ap0 Po Xj—(d20+k2p) C2

dt

%Cg—a]_]_XlXO (dpg+ku1) Cs

C(Ijtxi—k11C3+d21C4 a1 Xy P1+dy;Cs—ay ) Xy Xg+k; 4 Co
%(_‘,4 =ap1 X] P1—(d21+ka1) Ca

;C5—%¢Xox* 117K 1) Cs

Stxi*_kilc5 81 X Prtdy; Co—ane X" X2

+ (d1’2 + k172) C7 - a1’2 X;_* X; + (d:T.Z + kl,2) Cg

d k%

dt
;Q—%ﬂgb(dﬁﬁﬁa

;&_ —ap5 X3 Py+ 02 Cg—al, X3 X3+, Co+Cao Kag
c?tCS—aZZXzPZ (d22+ko2) Cg

;xy_@gx a5, X5 P2 +d3, Cao

gtc =8, X" Xy = (dy 2+ Ky 5) Co
:cm_%gqumn+ggqo

Assuming as before that the total amounts of enzymes are much smaller than
the total amounts of substrateS; ot, Po.tot, P1.tots P2.tot < Xo.tots X1.tot, X2.tot), WE
can approximate the conservation laws as

Xotot & Xo+ X5 +Cz +Cs,
Xl,tot X X1+ XI +C3-+—XTF +C5+C7+Cg,

XZ,tot X Xz + X; + X;* + C7 + Cg.
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Using these and assuming that the complexes are at the quasi-steadyesiaite, w
tain the following functional dependencies:

Cy = f10X5, X3, X717, X5, X57), Co = f2(Xp),
Cs = f3(Xp, X1, X1, X5, X57), Cs = f5(Xp, X7),
C7 = (XL, X5, X5, X55), Co = fo(X1", X5).

The fact thatC7 depends oiX; and X" illustrates that the dynamics of the second

stage are influenced by those of the third stage. Similarly, the facCthdepends

on X7, X7*, X5, X5 indicates that the dynamics of the first stage are influenced by

those of the second stage and by that of the third stage. The phenonyerbith

the behavior of a “module” is influenced by that of its downstream clientdliscta

retroactivity, which is a phenomenon similar to impedance in electrical systems

and to back-fect in mechanical systems. It will be studied at length in Chapter 7.
This fact is in clear contrast with the ODE model obtained by modular compo-

sition, in which each stage dynamics depended upon the variables of theamps

stages and not upon those of the downstream stages. That is, frativege.27),

itis apparent that the dynamics ¥j (first stage) do not depend on the variables of

the second stagex{, X}, X;*). In turn, the dynamics ok} andX;* (second stage)

do not depend on the variables of the third stageendX"). Indeed modular com-

position does not consider the fact that the proteins of each stagesae-ty” in

the process of transmitting information to the downstream stages. This backwa

effect has been theoretically shown to lead to sustained oscillations in the MAPK

cascade{6]. By contrast, the modular ODE model of MAPK cascades does not

give rise to sustained oscillations.

Properties of the MAPK Cascade

The stimulus-response curve obtained with the mechanistic model predidisehat
response of the MAPKKK to the stimulls; to: is of the Michaelis-Menten type.
By contrast, the stimulus-response curve obtained for the MAPKK and KMAP
are sigmoidal and show high Hill cigients, which increases from the MAPKK
response to the MAPK response. That is, an increase ultrasensitivibgésved
moving down in the cascade (Figu2e81). These model observations persist when
key parameters, such as the Michaelis-Menten constants are chatiedur-
thermore, zero-order ultrasensitivityfects can be observed. Specifically, if the
amounts of MAPKK were increased, one would observe a higher appdiin
codficient for the response of MAPK. Similarly, if the values of #g for the re-
actions in which the MAPKK takes place were decreased, one would atsovab

a higher apparent Hill cdggcient for the response of MAPK. Double phosphory-
lation is also key to obtain a high apparent Hill fibi@ent. In fact, a cascade in
which the double phosphorylation was assumed to occur through a gnestie|
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Figure 2.31: Dose response of the MAPK cascade for evergsgigulations from the
model of [76].

(similar to single phosphorylation) predicted substantially lower apparentétill
efficients.

Additional topics to be added later:

1. Transport across the membrane

2. Membrane receptors, ligand binding, G-proteins

Exercises

2.1(BE 150, Winter 2011) Consider a cascade of three activatesy %> Z. Pro-

tein X is initially present in the cell in its inactive form. The input signal ofs,
appears at time=0. As a result, X rapidly becomes active and binds the promoter
of gene Y, so that protein Y starts to be produced atga®&hen Y levels exceed

a thresholK, gene Z begins to be transcribed and translated aprah proteins

have the same degradatiditution ratey.
(&) What are the concentrations of proteins Y and Z as a function of time?
(b) What is the minimum duration of the pulSg such that Z will be produced?

(c) What is response time of protein Z with respect to the time of additi@3)@f
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2.2 (Hill function for a cooperative repressor) Consider a repressaibiinds to an
operator site as a dimer:

Rl: R+tR=—=R,
R2: R,+DNAP=R,:DNA
R3: RNAP+DNAP = RNAP:DNAP

Assume that the reactions are at equilibrium and that the RNA polymerase con
centration is large (so that [RNAP] is roughly constant). Show that the ohtioe
concentration of RNA:DNA to the total amount of DNADy:, can be written as a

Hill function
[RNAP:DNA]  «

DtOt B K+ R2

f(R) =
and give expressions farandK.

2.3 (Switch-like behavior in cooperative binding) Derive the expressidrs and
A at the steady state when you have the cooperative binding reactions

k
B+B+...+B\——‘1—Bn, Bn+AéC, and A+C = Apt.
d

ko

Make MATLAB plots of the expressions that you obtain and verify thah &%
creases the functions become more switch-like.

2.4 Consider the following modification of the competitive binding reactions:
B, +A % C, B +A=C,
d

and

C+B, = C’, andC+B, = C’
d o
with At = A+C + C +C’. What are the steady state expressionsXandC?
What information do you deduce from these expressions if A is a pron®eer,
is an activator protein, and C is the activalXA complex that makes the gene
transcriptionally active?

2.5 Consider the case of a competitive binding of an activator A and a repress
R with D and assume that before they can bind D they have to cooperatinely b
according to the following reactions:

k: k:
A+A+.+A=A,  R+R+..+R=R,,
ko ko



88 CHAPTER 2. DYNAMIC MODELING OF CORE PROCESSES

in which the complex A contains n molecules of A and the compley Bontains
m molecules of R. The competitive binding reactions with A are given by

a a
A,+D=C R,+D=C,
d d

andDy; = D+ C+C’. What are the steady state expression<fandD?

2.6 Assume that we have an activatog &d a repressor protein. .BNe want to
obtain an input function such that when a lot of B present, the gene is tran-
scriptionally active only if there is no Bwhen low amounts of Bare present, the
gene is transcriptionally inactive (with or without)BWrite down the reactions
among B, B,, and complexes with the DNA (A) that lead to such an input func-
tion. Demonstrate that indeed the set of reactions you picked leads to theddes
input function.

2.7 Consider the phosphorylation reactions described in Se2ti§rbut suppose
that the kinase concentrati@nis not constant, but is produced and decays accord-

ing to the reaction Z% 0. How should the system in equatidh 23 be modified?
t

Use a MATLAB simulation to apply a periodic input stimulk@) using parameter
valuesk; =k, =1,a; =ap=d; = dy =10,y = 0.01. Is the cycle capable of “track-
ing” the input stimulus? If yes, to what extent? What are the tracking ptieper
depending on?

2.8 Another model for the phosphorylation reactions, referred to as opaate
action model, is given by ZX — X*+Z and Y+ X* — X +Y, in which the
complex formations are neglected. Write down the ODE model and comparing the
differential equation oK* to that of equationZ.23), list the assumptions under
which the one step reaction model is a good approximation of the two step reactio
model.

2.9 (Transcriptional regulation with delay) Consider a repressor or dotit
modeled by a Hill functior-(B). Show that in the presence of transcriptional delay
7™, the dynamics of the active mRNA can be written as

dmi(t)
dt

e T F(B(t-1")—om".

2.10(Competitive Inhibition) Derive the expression of the production ratéah
the phosphorylation cycle in the presence of a competitive inhibitor I.

2.11(Non-absolute activator) Derive the expression of the productiorofa{é in
the phosphorylation cycle in the presence of a non-absolute activator A.



Chapter 3

Analysis of Dynamic Behavior

In this chapter, we describe some of the tools from dynamical systems edd fe
back control theory that will be used in the rest of the text to analyze asidjd
biological circuits, building on tools already described in AM08. We foceigion
deterministic models and the associated analyses; stochastic methods aia given
Chapterd.

PrerequisitesReaders should have a understanding of the tools for analyzing sta-
bility of solutions to ordinary dterential equations, at the level of Chapter 4 of
AMO08. We will also make use of linearized inpotitput models in state space,
based on the techniques described in Chapter 5 of AM08 and the frggden
main techniques described in Chapters 8-10.

3.1 Analysis Near Equilibria

As in the case of many other classes of dynamical systems, a great diesibbt
into the behavior of a biological system can be obtained by analyzing tlradgs
of the system subject to small perturbations around a known solution. il g
considering the dynamics of the system near an equilibrium point, which isfone
the simplest cases and provides a rich set of methods and tools.

In this section we will model the dynamics of our system using the joptgut
modeling formalism described in Chapter

x = f(x,0,u), y = h(x,6), (3.1)

wherex € R" is the system stat#,e RP are the system parameters and RY is

a set of external inputs (including disturbances and noise). The sysétex is a
vector whose components will represent concentration of specidsasymroteins,
kinases, DNA promoter sites, inducers, allosteffe@ors, etc. The system param-
etersf is also a vector, whose components will represent biochemical parameters
such as association and dissociation rates, production rates, decgydrs$eci-
ation constants, etc. The inputis a vector whose components will represent a
number of possible physical entities, including the concentration of trigtiscr
factors, DNA concentration, kinases concentration, etc. The oytp®™ of the
system represents quantities that can be measured or that are usedcctmimget
subsystem models to form larger models.
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Example 3.1(Transcriptional componentConsider a promoter controlling a gene
g that can be regulated by a transcription factor Z. Letamd G represent the
MRNA and protein expressed by gene g. This system can be viewed atemgsy
in whichu = Z is the concentration of transcription factor regulating the promoter,
the statex = (X1, X2) is such thak; = mg is the concentration of MRNA ang = G

is the concentration of protein, aiyd= G = X, is the concentration of protein G.
Assuming that the transcription factor regulating the promoter is a repreksor
system dynamics can be described by the following system

dX]_ _ a dXZ _ —
at 1+ (u/K)" gt aTre  ¥=X (3.2)

in which 6 = (a,K,6,«,y,n) is the vector of system parameters. In this case, we
have that

O0X1,

a

—— —0X

f(x,0,u) = | 1+ (U/K)" . h(x6) =x.
KX1—YX2

\%

Note that we have chosen to explicitly model the system paramgterisich
can be thought of as an additional set of (mainly constant) inputs to thersyste

Equilibrium points and stability [AMO8]

We begin by considering the case where the inpaind parameterg in equa-
tion (3.1) are fixed and hence we can write the dynamics of the system as

dx

i f(x). (3.3)
An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a statds an equilibrium point for a dynamical system
if f(xe) = 0. If a dynamical system has an initial conditi®(®) = xe, then it will
stay at the equilibrium poin(t) = xe for all t > 0.

Equilibrium points are one of the most important features of a dynamical sys-
tem since they define the states corresponding to constant operatiritjiortd\
dynamical system can have zero, one or more equilibrium points.

Thestability of an equilibrium point determines whether or not solutions nearby
the equilibrium point remain close, get closer or move further away. Aitiequm
point X is stableif solutions that start neax, stay close tak. Formally, we say
that the equilibrium poinke is stable if for alle > 0, there exists & > 0 such that

IX(0)—Xell <6 = |IX(t)—Xel|<e forallt>0,

where x(t) represents the solution the thefdrential equation3.3) with initial
conditionx(0). Note that this definition does not imply thgt) approaches. as
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Figure 3.1: Phase portrait (trajectories in the state gpatehe left and time domain sim-
ulation on the right for a system with a single stable eqtillim point. The equilibrium
point X at the origin is stable since all trajectories that start xeatay nearxe.

time increases but just that it stays nearby. Furthermore, the vatumay depend

on ¢, so that if we wish to stay very close to the solution, we may have to start
very, very closed < €). This type of stability, which is illustrated in Figu&1,

is also calledstability in the sense of Lyapund¥an equilibrium point is stable in
this sense and the trajectories do not converge, we say that the equilfwintis
neutrally stable

An example of a neutrally stable equilibrium point is shown in Figgide From
the phase portrait, we see that if we start near the equilibrium point, theraywe s
near the equilibrium point. Indeed, for this example, given ailyat defines the
range of possible initial conditions, we can simply chodsee to satisfy the defi-
nition of stability since the trajectories are perfect circles.

An equilibrium pointxe is asymptotically stabléf it is stable in the sense of
Lyapunov and alsa(t) — Xe ast — oo for x(0) suficiently close taxe. This corre-
sponds to the case where all nearby trajectories converge to the stiaibiensfor
large time. Figure3.2 shows an example of an asymptotically stable equilibrium
point.

Note from the phase portraits that not only do all trajectories stay neagtlie e
librium point at the origin, but that they also all approach the origihgets large
(the directions of the arrows on the phase portrait show the direction irhwiihéc
trajectories move).

An equilibrium pointxe is unstableif it is not stable. More specifically, we say
that an equilibrium poinke is unstable if given some> 0, there doesiot exist a
6 > 0 such that ifijx(0) — Xg|| < &, then||X(t) — X¢|| < € for all t. An example of an
unstable equilibrium point is shown in FiguBe3.

The definitions above are given without careful description of their dlowia
applicability. More formally, we define an equilibrium point to lmeally stable
(or locally asymptotically stab)eif it is stable for all initial conditionsx € B;(a),
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Figure 3.2: Phase portrait and time domain simulation foysdesn with a single asymp-
totically stable equilibrium point. The equilibrium poirg at the origin is asymptotically
stable since the trajectories converge to this poirt-asx.

where
Br(a) = {x:|Ix-all <r}

is a ball of radiug arounda andr > 0. A system igylobally stableif it is stable for
all r > 0. Systems whose equilibrium points are only locally stable can have inter-
esting behavior away from equilibrium points, as we explore in the netibsec

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called theegion of attractionfor the equilibrium point. In general,
computing regions of attraction isfilcult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable aguilib
that are attracting. This gives partial information about the behavior cfytstem.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes amttractor. An unstable equilibrium point can be either a
source if all trajectories lead away from the equilibrium point, ssaddle if some
trajectories lead to the equilibrium point and others move away (this is the situ-
ation pictured in Figure.3). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as the one in Fjlires called
acenter

Example 3.2(Bistable gene circuit) Consider a system composed of two genes
that express transcription factors that repress each other as shdviguie 3.4.
Denoting the concentration of protein A by and that of protein B by, and
neglecting the mRNA dynamics, the system can be modeled by the following dif-
ferential equations:

dxq 1 dx _ (0%

E R R TS A S oo



3.1. ANALYSIS NEAR EQUILIBRIA 93
1 ————
v dx/dt=2x3 — X2
0.5 dxo/dt = —X1 + 2%>
100 ;
0 X,

1
- — -100
1 0.5 )9 0.5 1 0 1 2 3
1 Timet

Figure 3.3: Phase portrait and time domain simulation forséesn with a single unstable
equilibrium point. The equilibrium points at the origin is unstable since not all trajectories
that start neaxe stay neae. The sample trajectory on the right shows that the trajezgor
very quickly depart from zero.

Figure 3.4(b) shows the phase portrait of the system. This system is bi-stable be-
cause there are two (asymptotically) stable equilibria. Specifically, the tregscto
converge to either of two possible equilibria: one whetes high andx; is low

and the other wherg; is low andx; is high. A trajectory will approach the first
one if the initial condition is below the dashed line, called the separatrix, while it
will approach the second one if the initial condition is above the separateixcéd

the region of attraction of the first equilibrium is the region of the plane belew th
separatrix and the region of attraction of the second one is the portion plaihe
above the separatrix. \%

Nullcline Analysis

Nullcline analysis is a simple and intuitive way to determine the stability of an
equilibrium point for systems iiR?. Consider the system witk = (X1, X2) € R?
described by the élierential equations

Tt = fa(Xq, X2).

dx
f1(x1, %2), ¥
The nuliclines of this system are given by the two curves inxhe, plane in
which f1(xg, x2) = 0 and fa(x1, X2) = 0. The nuliclines intersect at the equilibria of
the systemxe. Figure3.5shows an example in which there is a unique equilibrium.

The stability of the equilibrium is deduced by inspecting the direction of the
trajectory of the system starting at initial conditioxslose to the equilibriunxe.
The direction of the trajectory can be obtained by determining the sigfsanfd
f, in each of the regions in which the nullclines partition the plane around the
equilibrium xe. If f; <0 (fy > 0), we have thak; is going to decrease (increase)
and similarly if f; < 0 (f2 > 0), we have thak; is going to decrease (increase). In
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Figure 3.4: (a) Diagram of a bistable gene circuit compodedo genes. (b) Phase plot
showing the trajectories converging to either one of the passible stable equilibria de-
pending on the initial condition. The parameters@te- a2 = 1, Ky = Ko = 0.1, andy = 1.

Figure3.5 we show a case in which < 0 on the right-hand side of the nulicline
fy = 0 and f; > 0 on the left-hand side of the same nulicline. Similarly, we have
chosen a case in which < 0 above the nullclind, = 0 andf, > 0 below the same
nullcline. Given these signs, it is clear (see the figure) that starting frognpaint

x close toxe the vector field will always point toward the equilibriuxaand hence
the trajectory will tend toward such equilibrium. In this case, it then follows that
the equilibriumxg is asymptotically stable.

Example 3.3 (Negative autoregulation)As an example, consider expression of
a gene with negative feedback. bat represent the mRNA concentration axg
represent the protein concentration. Then, a simple model (in which fotisityp
we have assumed all parameters to be 1) is given by

dxq 1 Xo

— = - X1, — =X — X,

dt  1+x ! dt 1=
so thatfi(xg, x2) = 1/(1+ X2) — X1 and fao(x1, X2) = X1 — Xo. Figure 3.5(@) exactly
represents the situation for this example. In fact, we have that

1
f1(X, %) <0 = x> , fo(X1, %) <0 = Xo> Xy,
1+ X%

which provides the direction of the vector field as shown in FiiBe As a con-
sequence, the equilibrium point is stable. The phase plot of FR)&fk) confirms
this fact since the trajectories all converge to the unique equilibrium point. V

Stability analysis via linearization

For systems with more than two states, the graphical technique of nullclinesenaly
cannot be used. Hence, we must resort to other techniques to detetatiitieys
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Figure 3.5: (a) Example of nullclines for a system with a gneguilibrium pointxe. To
understand the stability of the equilibrium poixg, one traces the direction of the vec-
tor field (fy, f2) in each of the four regions in which the nullcline partititre plane. If
in each region the vector field points toward the equilibripaint, then such a point is
asymptotically stable. (b) Phase plot diagram for the negaiutoregulation example.

Consider a linear dynamical system of the form

dx
a = AX, X(O) = Xo, (34)

whereA € R™™. For a linear system, the stability of the equilibrium at the origin
can be determined from the eigenvalues of the matrix

A(A) = {se C: detsl-A) =0}.

The polynomial detl — A) is the characteristic polynomiabnd the eigenvalues
are its roots. We use the notatian for the jth eigenvalue oA andA(A) for the
set of all eigenvalues o, so thatd; € A(A). For each eigenvalug; there is a
corresponding eigenvectey € R", which satisfies the equatidhvj = ;v;.

In generall can be complex-valued, althoughAfis real-valued, then for any
eigenvaluel, its complex conjugata* will also be an eigenvalue. The origin is al-
ways an equilibrium point for a linear system. Since the stability of a linearrsyste
depends only on the matrik we find that stability is a property of the system. For
a linear system we can therefore talk about the stability of the system ra#mer th
the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose systerasmatric
are in diagonal form. In this case, the dynamics have the form

A1 0
dx A2

i X. (3.5)
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It is easy to see that the state trajectories for this system are indepeifdaacho
other, so that we can write the solution in termsiafidividual systems;j = 2x;.
Each of these scalar solutions is of the form

Xj(t) = e/lthj (0).

We see that the equilibrium poirg = 0 is stable if1; < 0 and asymptotically stable
if i < 0.
Another simple case is when the dynamics are in the block diagonal form

o1 w1 0 0
—-w1 O 0 0
% B 1 1 )
0 0 Om wWm
0 0 —Wm Om

In this case, the eigenvalues can be shown tajbeo; +iwj. We once again can
separate the state trajectories into independent solutions for each pabesf and
the solutions are of the form

Xoj_1(t) = eo-jt(ij_l(O) coswjt+ X2j(0) sinwjt),
Xoj(t) = ea-jt(—ij_l(O)Sina)jt +X2j(0) coswit),

wherej = 1,2,...,m. We see that this system is asymptotically stable if and only
if oj = Red; < 0. Itis also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some sysh@ms
be transformed into these forms via coordinate transformations. One kRssh ¢
of systems is those for which the dynamics matrix has distinct (non-repeating)
eigenvalues. In this case there is a malrigk R™" such that the matrif AT is
in (block) diagonal form, with the block diagonal elements correspondirieo
eigenvalues of the original matri. If we choose new coordinates= T x, then

9 y=TAx=TAT

dt
and the linear system has a (block) diagonal dynamics matrix. Furtherthere,
eigenvalues of the transformed system are the same as the original syjstem s
if v is an eigenvector oA, thenw = Tv can be shown to be an eigenvector of
TAT-1. We can reason about the stability of the original system by noting that
x(t) = T~1(t), and so if the transformed system is stable (or asymptotically stable),
then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, thk stab
ity of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we makktlise o
following theorem, proved in the next chapter:
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Theorem 3.1(Stability of a linear system)The system

dx
i AX
is asymptotically stable if and only if all eigenvalues of A all have a strictly trega

real part and is unstable if any eigenvalue of A has a strictly positive redl p

In the case in which the system state is two-dimensional, thatig?, we have
a simple way of determining the eigenvalues of a makispecifically, denote by
tr(A) the trace ofA, that is, the sum of the diagonal terms, and let Aet{e the
determinant ofA. Then, we have that the two eigenvalues are given by

Ao = %(tr(A) + Vir(A)2 - 4det)).

Both eigenvalues have negative real parts when (&) &(0 and (2) detd) > 0. By
contrast, if condition (2) is satisfied but&)> 0, the eigenvalues have positive real
parts.

An important feature of dierential equations is that it is often possible to de-
termine the local stability of an equilibrium point by approximating the system by
a linear system. Suppose that we have a nonlinear system

dx
= f
ity
that has an equilibrium point a&. Computing the Taylor series expansion of the
vector field, we can write
dx of . .
— =f(Xe)+ —| (X—Xe)+ higher-order terms in{— Xe).
dt OXIxe
Since f(xe) = 0, we can approximate the system by choosing a new state variable
Z= X— X and writing

dz of

i Az, where A= I . (3.6)
We call the system3.6) thelinear approximatiorof the original nonlinear system
or thelinearizationat x.. We also refer to matriA as theJacobian matrixof the
original nonlinear system.

The fact that a linear model can be used to study the behavior of a nanlinea
system near an equilibrium point is a powerful one. Indeed, we carthékeven
further and use a local linear approximation of a nonlinear system to de $&gul-
back law that keeps the system near its equilibrium point (design of dynamics
Thus, feedback can be used to make sure that solutions remain closedaithe e
rium point, which in turn ensures that the linear approximation used to stabilize it
is valid.
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Example 3.4(Negative autoregulation)Consider again the negatively autoregu-
lated gene modeled by the equations

dX]_ _ 1
dt a 1+ X%

%
X1, E = X1 — Xo.

In this case,

f(x):( ﬁ_xl),

X1— X2

so that, lettingxe = (X1.e, X2,¢), the Jacobian matrix is given by

1
A= ﬁ‘ = -1 T (@xe? |
OXlxe 1 -1

In this case, we have that &)= -2 < 0 and that de#) = 1+ m > 0. Hence,
independently of the value of the equilibrium point, the eigenvalues havenbgth
ative real parts, which implies that the equilibrium poxatis asymptotically sta-
ble. v

Frequency domain analysis

Frequency domain analysis is a way to understand how well a systemsgamde

to rapidly changing input stimuli. As a general rule, most physical systerpkaglis

an increased dliculty in responding to input stimuli as the frequency of variation
increases: when the input stimulus changes faster than the natural tireecfchke
system, the system becomes incapable of responding. If instead thetinputis

is changing much slower than the natural time scales of the system, the system
will respond very accurately. That is, the system behaves like a “Iss-pler”.

The cut-df frequency at which the system does not display a significant response
is called thebandwidthand quantifies the dominant time scale. To identify this
dominant time scale, we can perform infowitput experiments in which the system

is excited with periodic input at various frequencies.

Example 3.5(Phosphorylation cycle)To illustrate the basic ideas, we consider
the frequency response of a phosphorylation cycle, in which enzynestations
are modeled by a first order reaction. Referring to Figuéa we have that the one
step reactions involved are given by

Z+X 570X YaX B v ax,

with conservation lawX + X* = Xior. Let Yior be the total amount of phosphatase.
We assume that the kinase Z has a time-varying concentration, which we siew a
theinputto the system, whil&X* is theoutputof the system.
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Bode Diagram
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Figure 3.6: (a) Diagram of a phosphorylation cycle, in whiglis the kinase, X is the
substrate, and Y is the phosphatase. (b) Bode plot showasmgtdgnitude and phase lag
for the frequency response of a one step reaction model opltbephorylation system
on the left. The magnitude is plotted in decibels (dB), inathiM|gg = 20l0g,;o(M). The
parameters arg=y = 1.

The diterential equation model is given by

dXx*
dt

= ke Z(t)(Keot — X*) — K2 Yiot X7,

If we assume that the cycle is weakly activated & Xot), the above equation is
well approximated by
dx* .

g = PE0 - X, (3.7)
whereg = ki Xior andy = ko Yior. To determine the frequency response, we set the
inputZ(t) to a periodic function. It is customary to take sinusoidal functions as the
input signal as they lead to an easy way to calculate the frequency resph@is
thenZ(t) = Apsin(wt).

Since equation3d.7) is linear in the stateX* and inputZ, it can be directly
integrated to lead to

\/% sin(t —tan X (w/y)) - %e‘yt.

The second term dies out folarge enough. Hence, the steady state response is
given by the first term. The amplitude of response is thus giveAdsy v w? +y2,
in which the gains/ y/w? +y2 depends on the system parameters and on the fre-
quency of the input stimulation.

As this frequency increases, the amplitude decreases and appraachédsr
infinite frequencies. Also, the argument of the sine function shows dineghase
shift of tarr!(w/y), which indicates that there is an increased delay in responding

X*(t) =
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to the input as the frequency increases. Hence, the key quantities iretjufrcy
response are the magnituti§(w), also called gain of the system, and phase lag
¢#(w) given by
_B
These are plotted in Figu®6h a type of figure known asBode plot

The bandwidth of the system, denoted is the frequency at which the gain
drops belowM(0)/ V2. In this case, the bandwidth is given by = v = kyYor,
which implies that the bandwidth of the system can be made larger by increasing
the amount of phosphatase. However, note that i@ = B/y = ki Xiot/ (K2 Yiot),
increased phosphatase will also result in decreased amplitude of sesptance,
if one wants to increase the bandwidth of the system while keeping the value of
M(O) (also called theero frequency gajrunchanged, one should increase the total
amounts of substrate and phosphatase in comparable proportions. Fwvejub
of the zero frequency gain, the bandwidth of the system increases widasex
amounts of phosphatase and kinase. \%

M(w) = $(w) = tanl(ﬂ).
Y

More generally, thdrequency responsef a linear system with one input and
one output
X = AX+ Bu, y =Cx+Du

is the response of the system to a sinusoidal inpaiasinwt with input amplitude
a and frequencw. Thetransfer functiorfor a linear system is given by

Gyu(s) =C(sl-A)*B+D

and represents the response of a system to an exponential signafahthgt) =
e wherese C. In particular, the response to a sinusaig asinwt is given by
y = Masin(wt + ¢) where the gairM and phase shif can be determined from the
transfer function evaluated at iw:

Im(Gyu(ia))))
ReGyu(iw)) )’
where Re() and Im(-) represent the real and imaginary parts of a complex number.

For finite dimensional linear (or linearized) systems, the transfer funceon b
written as a ratio of polynomials is

Gyu(iw) = M€?,
d(w) = tan‘l(

b(s
G(s) = Q
a(s)
The values ot at which the numerator vanishes are calledzbesof the transfer
function and the values afat which the denominator vanishes are calledatbles
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The transfer function representation of an irjputput linear system is essen-
tially equivalent to the state space description, but we reason about rilaendys
by looking at the transfer function instead of the state space matricesx&opée,
it can be shown that the poles of a transfer function correspond to tbevaig
ues of the matrixA, and hence the poles determine the stability of the system.
In addition, interconnections between subsystems often have simpleearfares
tions in terms of transfer functions. For example, two syst&mnandG; in series
(with the output of the first connected to the input of the second) havenaioced
transfer functiorGseriedS) = G1(5)G2(s) and two systems in parallel (a single in-
put goes to both systems and the outputs are summed) has the transfemfunctio
Gparalle(s) = Gy(8) +G2(9).

Transfer functions are useful representations of linear systemedeettee prop-
erties of the transfer function can be related to the properties of the dymamic
particular, the shape of the frequency response describes howstieensyesponse
to inputs and disturbances, as well as allows us to reason about the stdability o
interconnected systems. The Bode plot of a transfer function gives thritude
and phase of the frequency response as a function of frequedcthaiyquist
plot can be used to reason about stability of a closed loop system from the open
loop frequency response (AMO08, Section 9.2).

Returning to our analysis of biomolecular systems, suppose we have msyste
whose dynamics can be written as

x= f(x6,u)

and we wish to understand how the solutions of the system depend on éme-par
etersg and input disturbancas We focus on the case of an equilibrium solution
X(t; X0,00) = Xe. Letz= X—Xe, li=U—Ug andd =0-6o represent the deviation of
the state, input and parameters from their nominal values. Linearizatidreqaer-
formed in a way similar to the way it was performed for a system with no inputs.
Specifically, we can write the dynamics of the perturbed system using itsiiaear
tion as

dZ_(af) - (6f) 7 (éf) i
dt  \ 0%/ (x, 00.00) 9 (4. 0,u0) OW ) (. 60.0)

This linear system describes small deviations foquo, wo) but allowsd andw to
be time-varying instead of the constant case considered earlier.

To analyze the resulting deviations, it is convenient to look at the system in the
frequency domain. Let = Cx be a set of values of interest. The transfer functions
betweerd, W andy are given by

Hy(S) = C(sl— A) By, Hyw(S) = C(sl- A) 1By,

where
f f f
A= a_ s 89 = a_ 5 B\N = 6_ .
OX | (xe,00,0) 96 | (xe,00,w0) OW | (xe,00,w0)
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Note that if we lets= 0, we get the response to small, constant changes in
parameters. For example, the change in the outpws a function of constant
changes in the parameters is given by

Hy5(0) = CA™'By = CSyy.

Example 3.6(Transcriptional regulation)Consider a genetic circuit consisting of
a single gene. The dynamics of the system are given by

dmp dP

——=F(P)-6mp, ——=kmp—yP,

g~ F(P)-ome L

wheremp is the mMRNA concentration arfdlis the protein concentration. Suppose
that the mRNA degradation ratecan change as a function of time and that we
wish to understand the sensitivity with respect to this (time-varying) parameter
Linearizing the dynamics around an equilibrium point

_ [0 F'(Pe) _[~Mee
(70 e (T

For the case of no feedback we havéP) = «, and the system has an equilib-
rium point atmpe = @/, Pe = ka/(yd). The transfer function froma to P, after
linearization about the steady state, is given by

—KMpe
(s+96)(s+y)’
wheredp represents the nominal value ®&round which we are linearizing. For
the case of negative regulation, we have

Go(9) =

a
F(P) = m + o,

and the resulting transfer function is given by

naPg1/K"
(1+PY/KM2’

BMpe
(s+60)(S+7y) + k0’

GRy(9) = o =-F'(Pe)=
Figure 3.7 shows the frequency response for the two circuits. We see that the

feedback circuit attenuates the response of the system to perturbattbriews

frequency content but slightly amplifies perturbations at high frequaesmyared

to the open loop system). \%

3.2 Robustness

The term “robustness” refers to the general ability of a system to continfuec-
tion in the presence of uncertainty. In the context of this text, we will waneto b
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Figure 3.7: Attenuation of perturbations in a genetic diccu

more precise. We say that a given function (of the circuit) is robust wipheaet
to a set of specified perturbations if the sensitivity of that function to peatur
tions is small. Thus, to study robustness, we must specify both the functianewe
interested in and the set of perturbations that we wish to consider.

In this section we study the robustness of the system

x = f(x,0,u), y = h(x,6)

to various perturbations in the paramet@end disturbance inputs The function

we are interested in is modeled by the outpuénd hence we seek to understand
how y changes if the parametefisare changed by a small amount or if external
disturbancess are present. We say that a system is robust with respect to these
perturbations ify undergoes little changes as these perturbations are introduced.

Parametric uncertainty

In addition to studying the inpfdutput transfer curve and the stability of a given
equilibrium point, we can also study how these features change with tespec
changes in the system parameterket ye(6p, Ug) represent the output correspond-
ing to an equilibrium pointe with fixed parametergy and external inputiy, SO
that f (X, 8o, Ug) = 0. We assume that the equilibrium point is stable and focus here
on understanding how the value of the output, the location of the equilibriumb po
and the dynamics near the equilibrium point vary as a function of changés in
parameters and external inputsr.

We start by assuming that= 0 and investigating howe andye depend ord.
The simplest approach is to analytically solve the equatiog, ) = O for xe and
then setye = h(Xe, 6p). However, this is often dlicult to do in closed form and so
as an alternative we instead look at the linearized response given by

de 90, yo - déo 90’

SX,@ .—
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which is the (infinitesimal) change in the equilibrium state and the output due to
a change in the parameter. To deternt8yg we begin by diferentiating the rela-
tionship f(xe(6),6) = 0 with respect t@:

0 = Sy= (3.8)

0 axdo o6 do ~ \ox) a6
Similarly, we can compute the change in the output sensitivity as

dye _ o a_h__(ah(ﬂ)‘laf ")

df afdx  of dxe__(af)‘laf

(xedo)

Sv0=39 “axde Ta0~ |ax\ox) a6t a0

(xebo)

These quantities can be computed numerically and hence we can evaludfedbhe e
of small (but constant) changes in the paramedars the equilibrium state. and
corresponding output value.

A similar analysis can be performed to determine tfieats of small (but con-
stant) changes in the external inputSuppose thaxe depends on both andu,
with f(Xe, 80, Ug) = 0 andfg andug representing the nominal values. Then

dxe __(af\" of dx __(af)\7 of
do  \0x) 06|xeour) du  \dx] éu

The sensitivity matrix can be normalized by dividing the parameters by their
nominal values and rescaling the outputs (or states) by their equilibriumsvadfue
we define the scaling matrices

(xebo,uo)

D* =diagx}, D% =diagye}, D?=diags),
Then the scaled sensitivity matrices can be written as
Sxo = (D*) 1Sy D", Sye = (D¥)'S,,4D". (3.9)

The entries in this matrix describe how a fractional change in a paramegs giv
a fractional change in the output, relative to the nominal values of the pteeme
and outputs.

Example 3.7 (Transcriptional regulation)Consider again the case of transcrip-
tional regulation described in ExampB6. We wish to study the response of
the protein concentration to fluctuations in its parameters in two casesisiitu-
tive promoter(no regulation) and self-repression (negative feedback), illustnated
Figure 3.8. For the case of no feedback we hdv) = «, and the system has an
equilibrium point atme = @/6, Pe = ka/(y5). The parameter vector can be taken
aso = (a,9,«,y). Since we have a simple expression for the equilibrium concentra-
tions, we can compute the sensitivity to the parameters directly:

o (3 —é—g 0 0

[e%

- K a Ka | »
96 ¥e y62 s 5y?
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Figure 3.8: Parameter sensitivity in a genetic circuit. Dpen loop system (a) consists
of a constitutive promoter, while the closed loop circuit i€self-regulated with negative
feedback (repressor).

where the parameters are evaluated at their nominal values, but we Edlie o
subscript 0 on the individual parameters for simplicity. If we choose thanpe-
ters ag)p = (0.001380.005780.1150.00116), then the resulting sensitivity matrix

evaluates to
170 -41 0 0
open__

SXef’ - [17000 -4100 210 —2100(}' (3.10)

If we look instead at the scaled sensitivity matrix, then the open loop nattine of
system yields a particularly simple form:

=~ 1 -1 0 O
open _
S _[1 11 _1]. (3.11)

In other words, a 10% change in any of the parameters will lead to a cobipara
positive or negative change in the equilibrium values.
For the case of negative regulation, we have

a
FP) = Tk oo
and the equilibrium points satisfy
Y @ oy
-rp =6Me = — Po. 3.12
Me = 5 Pe, TPyt 0= 0me= " Pe (3.12)

In order to make a proper comparison with the previous case, we needaodiel
to choose the parameters so that the equilibrium concentr@tiomtches that of
the open loop system. We can do this by modifying the promoter strength
the RBS strength so that the second formula in equatiéh1?) is satisfied or,
equivalently, choose the parameters for the open loop case so that tterythe
closed loop steady state protein concentration (see Exari)le

Rather than attempt to solve for the equilibrium pointin closed form, we instead
investigate the sensitivity using the computations in equatdbh?. The state,
dynamics and parameters are given by

F(P)—-6ém

X = (m P), f(x’e):[Km—yP]’ 9=(a/0 6 K ¥y a n K).
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Note that the parameters are ordered such that the first four parametiets the
open loop system. The linearizations are given by

ot (-5 F'(Po) (1 -m 0 0 ggy So® o
- 00 0

KP)Z (PR |
ox B -Y 0O 0 m -P 0 0

where again the parameters are taken to be their nominal values. From taswe
compute the sensitivity matrix as

9F
__7 ym_ __mF P e _ YH vk
yo—kF’  yo—kF’ yo—kF" yé—«kF’ yo—kF’ yo—kF’ yo—kF’
Sx’f): OF OF oF >
I < KM __ém oP _ KBeg k% K
yo—kF"  yo—«kF’ yo—«kF"  yo—«kF’ y6—kF’ yo—kF’ yo—kF’

whereF’ = 9F /0P and all other derivatives df are evaluated at the nominal pa-
rameter values.

We can now evaluate the sensitivity at the same protein concentration ag we us
in the open loop case. The equilibrium point is given by

[me) (5] _ (0.239
o [m) = (5] 35

and the sensitivity matrix is
gelosed | 761 -182 -116 116 0.134 -0.212 -0.00011
X0 ~ 17610 -1820 908 -908Q 134 -212 -00117|°

The scaled sensitivity matrix becomes

Selosed [0.16 -044 -056 056 028 -178 -3.08x 107} (3.13)
Xe.0 0.16 -044 044 -0.44 028 -178 -3.08x107|"
Comparing this equation with equatio®.{1), we see that there is reduction in the
sensitivity with respect to most parameters. In particular, we become lesisiae
to those parameters that are not part of the feedback (columns 2+4hebe is
higher sensitivity with respect to some of the parameters that are part fefetie
back mechanisms (particulanty. v

More generally, we may wish to evaluate the sensitivity of a (non-constant) s
lution to parameter changes. This can be done by computing the fule{ihndo,
which describes how the state changes at each instant in time as a function of
(small) changes in the parametérs

Let x(t,80) be a solution of the nominal system

x = f(X, 60, U), x(0) = Xo.
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To computed x/dg, we write a diferential equation for how it evolves in time:

d(dx) _d (dx|_ (f( 0. ))_afdx of
dt\de/  dol\dt axdo a0’

This is a diferential equation wit x m states given by the entries of the ma-
trix Sy(t) = dx(t)/dé; and with initial conditionSy¢(0) = O (since changes to the
parameters to nottiect the initial conditions).

To solve these equations, we must simultaneously solve for thexstaie the
sensitivitySy ¢ (whose dynamics depend ajp Thus, letting

of of
M(t,6p) := —(X,0,u R N(t, 00) ;== —(X,6,u ,
(t,60) ax( )X:X(wo)ﬂ:% (t.60) aa( )X:X(t’eo)yezg0

we solve the set af + nmcoupled diferential equations

dx
dt dt

with initial condition x(0) = xop andSx(0) = 0.

This differential equation generalizes our previous results by allowing us to
evaluate the sensitivity around a (non-constant) trajectory. Note that ispte
cial case that we are at an equilibrium point and the dynamicSfgrare stable,
the steady state solution of equatid1) is identical to that obtained in equa-
tion (3.8). However, equation3(14) is much more general, allowing us to deter-
mine the change in the state of the system at a fixed Timfor example. This
eqguation also does not require that our solution stay near an equilibriinmy o
only requires that our perturbations in the parameters dheismtly small.

Several simulation tools include the ability to do sensitivity analysis of this sort,
including COPAST.

£ = T(xd0.U). = M(t,60)Sx + N(t, 60), (3.14)

Adaptation and disturbance rejection

A system is said to adapt to the inpwtvhen the steady state value of its output
y is independent of the actual (constant) non-zero value of the inpuir@=3y9).
Basically, after the input changes to a constant non-zero value, theteatprns

to its original value after a transient perturbation. Adaptation corresptmthe
concept ofdisturbance rejectiorin control theory. The full notion of disturbance
rejection is more general and depends on the specific disturbance mpiitia
studied using the internal model principgg].

For example, for adaptation to constant signals, the internal model primeiple
quires integral feedback. The internal model principle is a powerfultavaycover
biochemical structures in natural networks that are known to have thadidae
property. An example of this is the bacterial chemotaxis described in mori¢ deta
in Chaptels.
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/ \Not adaptation
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Figure 3.9: Adaptation property. The system is said to hheeatlaptation property if the
steady state value of the output does not depend on the ss¢ateyvalue of the input.
Hence, after a constant input perturbation, the outputmstto its original value.

We illustrate two main mechanisms to attain adaptation: integral feedback and
incoherent feedforward loops (IFFLs). We next study these two arésims from a
mathematical standpoint to illustrate how they achieve adaptation. Possible liemole
ular implementations are presented in later chapters.

Integral feedback

Inintegral feedback systems, a “memory” variabkeeps track of the accumulated
difference betweem(t) and its nominal steady state valyg A comparison is
performed between this memory variable and the current inpptroviding an
error term that is used to drive the feedback mechanism that brings stensy
output back to the desired valyg (Figure3.10.

In this system, the outpwy{t), after any constant input perturbatiantends to

Figure 3.10: Basic block diagram representing a systeminiéiyral action.
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U T { 22

Figure 3.11: Incoherent feedforward loop. The inpaffects the output through two chan-
nels. It indirectly represses it through an intermediatéatéde x; and it activates it directly.

Yo for t — oo independently of the (constant) valuewniThe equations representing
the system are given by:

dz
— =V, y1=Y-Yo, y =k(u-2),

dt
so that the equilibrium is obtained by setting 0, from which we obtairy = yo.
That is, the steady state gfdoes not depend on. The additional question to
answer is whether, after a perturbatioroccurs,yi(t) tends to zero fot — co.
This is the case if and only #— 0 ast — oo, which is satisfied if the equilibrium
of the systenz = —kz+ ku—Yjp is asymptotically stable. This, in turn, is satisfied
whenevek > 0 andu is a constant. Hence, after a constant perturbatismpplied,
the system output approaches back its original steady state vaii¢hat is,y is
robust to constant perturbations.
More generally, a system with integral action can take the form
dx

— =f(x,u,k), y=h(x),

dt
in which the steady state valueyfeing the solution tg—yy = 0, does not depend
onu. In turn,y tends to this steady state value for o if and only if z— 0 as
t — oo. This, in turn, is the case #tends to a constant value for co, which is
satisfied ifu is a constant and the steady state of the above system is asymptotically
stable.

Integral feedback is recognized as a key mechanism of perfectlyiagdgio-
logical systems, both at the physiological level and at the cellular level, as1in
blood calcium homeostasi]], in the regulation of tryptophan i&. coli[90], in
neuronal control of the prefrontal corte&d], and inE. coli chemotaxis 9§].

Incoherent feedforward loops

Feedforward motifs (Figur8.11) are common in transcriptional networks and it
has been shown they are over-representesl. icoli gene transcription networks,
compared to other motifs composed of three no8ksThese are systems in which
the inputu directly helps promote the production of the outgpaind also acts as a
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delayed inhibitor of the output through an intermediate variabl@ his incoherent
counterbalance between positive and negatiteces gives rise, under appropriate
conditions, to adaptation. A large number of incoherent feedforwaraslpartici-
pate in important biological processes such as the EGF to ERK activa@trije
glucose to insulin releas&@]], ATP to intracellular calcium releas&Z], micro-
RNA regulation B9], and many others.

Several variants of incoherent feedforward loops exist for peddaptation.
The “snifer”, for example, is one in which the intermediate variable promotes

degradation:

dxg dx
T au—yXy, at = BU— X1 Xo. (3.15)

In this system, the steady state value of the ouxpig obtained by setting the time
derivatives to zero. Specifically, we have thxat="0 givenx; = au/y andx, =0
gives x = Bu/(6x1). IN the case in whichu # 0, these can be combined to yield
X2 = (By)/(6a), which is a constant independent of the inpuThe linearization of
the system at the equilibrium is given by

A= N 0
—-6(By)/(0a) —d(au/y)|’

which has eigenvaluesy and-d(au/y). Since these are both negative, the equi-
librium point is asymptotically stable. The fif@r appears in models of neutrophil
motion andDictyosteliumchemotaxis 97]. Note that in the case in which, for ex-
ample,u goes back to zero after a perturbation, as it is in the case of a pulse, the
outputx, does not reach back necessarily its original steady state. That is, shis sy
tem “adapts” only to constant non-zero input stimuli but is not capabldaptng
to pulses. This can be seen from equati8rif, which, whenu = 0 admits mul-
tiple steady states. For more details on this “memofiédt, the reader is referred
to [85].

Another form for a feedforward loop is one in which the intermediate vieiab
X1 inhibits production of the output, such as in the system:

% = aU—yXy, O:j—)iz :Bxﬂl —8Xo. (3.16)
The equilibrium point of this system for a constant non-zero inpist given by
setting the time derivatives to zero. From= 0, one obtainsg = au/y and from
X2 = 0 one obtains thak, = pu/(6x1), which combined together result ixp =
(By)/(6a), which is a constant independent of the input

By calculating the linearization at the equilibrium, one obtains

- 0
e
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Figure 3.12: Fold-change detection. The output response dot depend on the absolute
magnitude of the input but only on the fold change of the input

whose eigenvalues are given by and—¢. Hence, the equilibrium point is asymp-
totically stable. Further, one can show that the equilibrium point is globalinpsy
totically stable because the subsystem is linear, stable, axgdapproaches a con-
stant value (for constanf) and thex, subsystem, in whicjgu/x; is viewed as an
external input is also linear and exponentially stable.

Scale Invariance and fold-change detection

Scale invariance is the property by which the outpift) of the system does not
depend on the amplitude of the inpu(t) (Figure3.12). Specifically, consider an
adapting system and assume that it pre-adapted to a constant backgatugs,

then apply inpuia+b and letx(t) be the resulting output. Now consider a new
background valug a for the input and let the system pre-adapt to it. Then apply
the inputp(a+ b) and letxy(t) be the resulting output. The system has the scale
invariance property ikx(t) = X(t). This also means that the output responds in the
same way to inputs changing by the same multiplicative factor (fold), hence this
property is also called fold-change detection. Looking at Figui®, the output
would present dferent pulses for dierent fold changels/a.

Some incoherent feedforward loops can implement the fold-changetidatec
property B2]. As an example, consider the feedforward motif represented by equa-
tions (3.16 and consider two inputsi (t) = a+ by (t—tp) anduy(t) = pa+ pby(t—to).
Assume also, as said above, that at tigihe system is at the steady state, that is,
it pre-adapted. Hence, we have that the two steady states from whiclstieens
starts att = tg are given byx; 1 = aa/y andx; 2 = paa/y for the x; variable and
by x21 = %22 = (By)/(6a) for the x, variable. Integrating syster?9) starting from
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Figure 3.13: (a) Disturbance attenuation. A system is saithte the disturbance attenua-
tion property if there is an internal system param@&tsuch that the system output response
becomes arbitrarily close to a nominal output (independégtiite inputu) by increasing the
value ofG. (b) High gain feedback. A possible mechanism to attairudistince attenuation
is to feedback the error between the nominal outgleind the actual outpuytthrough a
large gainG.

these initial conditions, we obtain foe to
x11(t) = a—e ") 4 (a+ b)(1- et and
Y

x12(t) = pa—e 70 1 p(a+ b)(1 - e 7).
Y
Using these in the expressionxfin equation 9?) gives the diferential equa-

tions to whichxz 1(t) andx, 2(t) obey fort > tg as

dxo1 p(a+b)
dt ale(t-) 4 (a+b)(1-er(-1)

—0X2,1, X21(to) = (By)/(6a)

and

dx2 _ pB(a-+b)
dt ~ pate 1)+ p(a+b)(1-e ()

—6X2.2, X2,2(to) = (By)/(0a),

which give x2.1(t) = x22(t) for all t > to. Hence, the system responds exactly the
same way after changes in the input of the same fold. The output resisomse
dependent on the scale of the input but only on its shape.

Disturbance attenuation

A system has the property of disturbance attenuation if there is a systametar

G such that the output respong#) to the input(t) can be made arbitrarily small as
Gisincreased (Figurgd.13). A possible mechanism for disturbance attenuation is
high gain feedback (Figur@ 13). In a high gain feedback configuration, the error
between the outpyt, perturbed by some exogenous disturbamcand a desired
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nominal outputyy is fed back with a negative sign to produce the outpitgelf. If
Yo >Y, this will result in an increase of otherwise it will result in a decrease pf
Mathematically, one obtains from the block diagram that

u G

REPYRRLEIvC

so that a<s increases the (relative) contribution wion the output of the system
can be arbitrarily reduced.

High gain feedback can take a much more general form. Consider a system
with x € R" in the formX = f(x,t). We say that this system ntractingif any
two trajectories starting from fierent initial conditions tend to each other as time
increase to infinity. A sfiicient condition for the system to be contracting is that in
some set of coordinates, with matrix transformation den@tgtie symmetric part
of the linearization matrix (Jacobian) is negative definite. That is, that tgedar

eigenvalue of
10t ofT
ox )’

y

2\ 0x

is negative. We denote this eigenvalue-byfor 2 > 0 and call it the contraction
rate of the system.

Now, consider the nominal systexis='G f(x,t) for G > 0 and its perturbed ver-
sionXp = G f(xp,t)+u(t). Assume that the input) is bounded everywhere in norm
by a constan€ > 0. If the system is contracting, we have the following robustness
result:
xC
E,
in which y is an upper bound on the condition number (ratio between the largest
and the smallest eigenvalue ®f ®) of the transformation matri® [57]. Hence,
if the perturbed and the nominal systems start from the same initial conditiens, th
difference between their states can be made arbitrarily small by increasingrthe ga
G. Hence, the system has the disturbance attenuation property.

A comprehensive treatment of concepts of stability and robustness ¢anrizk
in standard references], 84].

[IX(t) = Xp(D)Il < ¥IIX(0) — Xp(0)lle” % +

3.3 Analysis of Reaction Rate Equations

The previous section considered analysis techniques for generainityal sys-
tems with small perturbations. In this section, we specialize to the case where the
dynamics have the form of a reaction rate equation:

ds
— = NV(X,0), (3.17)
dt
wherex is the vector of species concentratiofiss the vector of reaction parame-
ters,N is the stoichiometry matrix ang(x, ) is the reaction rate (or flux) vector.
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Reduced reaction dynamics

When analyzing reaction rate equations, it is often the case that therersereed
guantities in the dynamics. For example, conservation of mass will imply that if all
compounds containing a given species are captured by the model, the tetal ma
of that species will be constant. This type of constraint will then give semed
quantity of the formc; = Hijx whereH; represents that combinations of species in
which the given element appears. Sirgés constant, it follows thatlg/dt =0

and, aggregating the set of all conserved species, we have

dc ds
0= i Ha =HNWx,0) forall x.

If we assume that the vector of fluxes sp@s(the range of/: R" xRP — R™M),
then this implies that the conserved quantities correspond to the left nué spac
the stoichiometry matrin.

It is often useful to remove the conserved quantities from the descrigitibie o
dynamics and write the dynamics for a set of independent species. Tisdaéh
transform the state of the system into two sets of variables:

)-10)

The vectorx; = Px is the set of independent species and is typically chosen as
a subset of the original species of the model (so that the Pwsnsists of all
zeros and a single 1 in the column corresponding to the selected spedies). T
matrix H should span the left null space bf, so thatxy represents the set of
dependent concentrations. These dependent species do naardgesrrespond
to individual species, but instead are often combinations of speciesx&nple,
the total concentration of a given element that appears in a number of rfeslecu
that participate in the reaction).
Given the decompositior8(18), we can rewrite the dynamics of the system in

terms of the independent variablgs We start by noting that giver andxgy, we
can reconstruct the full set of species

(P M0

[ 19

i e )

wherecy represents the conserved quantities. We now write the dynamigsder

dx d
d—’t“ _ Pd—)t( = PNWLX; + Co,0) = NeV; (%, Co,6), (3.19)
where N; is thereduced stoichiometry matriand v, is the rate vector with the

conserved quantities separated out as constant parameters.
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The reduced order dynamics in equati@l9 represent the evolution of the
independent species in the reaction. Giwgnwe can reconstruct the full set of
species from the dynamics of the independent species by writingx; + co. The
vectorcy represents the values of the conserved quantities, which must be specifie
in order to compute the values of the full set of species. In addition, sirce
Lx + cg, we have that

dx dx
i La = LNV (X, Co, P) = LNy V(X,6),
which implies that
N = LN;.

Thus,L also reconstruct the reduced stoichiometry matrix from the reduced space
to the full space.

Example 3.8(Enzyme kinetics) Consider an enzymatic reaction
a _k
E+S=C—-E+P,
d

whose full dynamics can be written as

S) (-1 1 0

gE_—lllaEC':S

dtfc| {1 -1 1| g
Pl o o 1

The conserved quantities are given by

01 10
H‘[1 —101}‘

The first of these is the total enzyme concentratigyn = E + C, while the second
asserts that the concentration of prod@ et equal to the free enzyme concentration
E minus the substrate concentratiSnIf we assume that we start with substrate
concentratiorsg, enzyme concentratide; and no product or bound enzyme, then
the conserved quantities are given by

c— E+C | _ [ Eot
- S-E+P - SO_EtOt )

There are many possible choices for the set of independent speei®x, but
since we are interested in the substrate and the product, we cR@sse

1000
F’=[0001]'
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Figure 3.14: Enzyme dynamics. The simulations were canig@d =d = 10,k=1,Sp =
500 andEy; = 5,1020. The top plot shows the concentration of substeaéad product
P, with the fastest case correspondinggg; = 20. The figures on the lower left zoom in
on the substrate and product concentrations at the initi@ &nd the figures on the lower
right at one of the transition times.

OnceP is chosen then we can compute

1 0 0
S R H e
H 0 -1 -1y H c So ’
0 1 0

The resulting reduced order dynamics can be computed to be

d(s) (-1 10

datlP] " |lo 0 1
_ (~a(P+S+Ei—S0)S—d(P+S - Sp)

a k(So—-S-P) :

A simulation of the dynamics is shown in Figuel4 We see that the dynamics
are very well approximated as being a constant rate of production unékinaust
the substrate (consistent with the Michaelis-Menten approximation).

a(P+ S+ Etot — So)S
d(-P—S + So)
k(-P—S+So)

\%

Metabolic control analysis

Metabolic control analysis (MCA) focuses on the study of the sensitivisteddy
state concentrations and fluxes to changes in various system parafiegebgsic
concepts are equivalent to the sensitivity analysis tools described in 158cijo
specialized to the case of reaction rate equations. In this section we padvick
introduction to the key ideas, emphasizing the mapping between the general co
cepts and MCA terminology (as originally done [#3]).
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Consider the reduced set of chemical reactions

dx
dt
We wish to compute the sensitivity of the equilibrium concentratiysnd equi-
librium fluxesve to the parameter& We start by linearizing the dynamics around
an equilibrium pointe. Definingz= x—Xe, U=0—0g and f (z,u) = Ny V(Xe + Z 0 +
u), we can write the linearized dynamics as

= NrVr (X, 6) = Nrv(LX; +Co, 6).

dx ov ov
at = Ax+ Bu, A= (Nra L) B= (Nrap) (3.20)

which has the form of a linear fierential equation with stateand inputu.
In metabolic control analysis, the following terms are defined:

_ dv _ .
€= a0 e = flux control codficients
Xe,0o
R = e _ Ry =
= =CXe Y
00 C* = concentration control cégcients
—

r-Ne_cvg Ro =

00 CV = rate control cofficients

These relationships describe how the equilibrium concentration and emumibr
rates change as a function of the perturbations in the parameters. Theritxol c
matrices provide a mapping between the variation in the flux vector evaluated at

(()V)
XeHO

and the corresponding ftiérential changes in the equilibrium poidtx./00 and

0Ve/06. Note that
OVe (8v)
J— ;é J—
00 90 )y 60

The left side is the relative change in the equilibrium rates, while the rightiside
the change in the rate functiax, 6) evaluated at an equilibrium point.

To derive the cofficient matrice<C* andCY, we simply take the linear equa-
tion (3.20 and choose outputs correspondingiandyv:

=1X = aVLx+ aVu
V= D6 W= = gt
Using these relationships, we can compute the transfer functions
ov
_ -1p_
Hu(s) = (sl-A)B= [(s|— |_) Nr]ag

ov

1
V(s)_—L(sI A B+ (’)p

[ L(I—Nr |_)1Nr |]
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./dynamics/figures/fluxbalance.eps

Figure 3.15: Flux balance analysis.

Classical metabolic control analysis considers only the equilibrium coratemts,
and so these transfer functions would be evaluated-dl to obtain the equilibrium
equations.

These equations are often normalized by the equilibrium concentrations and
parameter values, so that all quantities are expressed as fractionétigealf we
define

D* = diag X}, DY = diagiV(Xe, 6o)}, DY = diag6o},

then the normalized cdigcient matrices (without the overbar) are given by
CX= (DX)_16XDV, CcV= (DV)_lc_VDV,
R;( — (DX)—l%DO, R\H/ — (DV)_lﬁ\éDg.

Flux balance analysis

Flux balance analysis is a technique for studying the relative ratefefeint reac-
tions in a complex reaction system. We are most interested in the case where ther
may be multiple pathways in a system, so that the number of reacticgreater

than the number of speciasThe dynamics

dx

i NV(X, 6)
thus have the property that the mathikhas more columns that rows and hence
there are multiple reactions that can produce a given set of speciehdtance is
often applied to pathway analysis in metabolic systems to understand the limiting
pathways for a given species and the tifie@s of changes in the network (e.g.,
through gene deletions) to the production capacity.

To perform a flux balance analysis, we begin by separating the reacifons

the pathway into internal fluxes versus exchanges flux, as illustrated in Fig-
ure3.15 The dynamics of the resulting system now be written as
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%‘ - NV(x,6) = N [\‘/’;] = NVi(x,6) — b,

wherebe = — NV, represents thefkects of external fluxes on the species dynamics.

Since the matriN has more columns that rows, it hagght null space and hence

there are many tlierent internal fluxes that can produce a given change in species.
In particular, we are interested studying the steady state properties ofsthe s

tem. In this case, we have théit/dt = 0 and we are left with an algebraic system

NVi = be.

Material to be completed. Review

3.4 Oscillatory Behavior

In addition to equilibrium behavior, a variety of cellular procesess invobsailla-

tory behavior in which the system state is constantly changing, but in atiegea
pattern. Two examples of biological oscillations are the cell cycle and d¢acad
rhythm. Both of these dynamic behaviors involve repeating changes in the co
centrations of various proteins, complexes and other molecular speciesdalth
though they are very flierent in their operation. In this section we discuss some of
the underlying ideas for how to model this type of oscillatory behavior, Simgu

on those types of oscillations that are most common in biomolecular systems.

Biomolecular oscillators

Biological systems have a number of natural oscillatory processes thetrgiine
behavior of subsystems and whole organisms. These range from Irdsoiléa-
tions within cells to the oscillatory nature of the beating heart to various tremors
and other undesirable oscillations in the neuro-muscular system. At the bimmole
ular level, two of the most studied classes of oscillations are the cell cycle and
circadian rhythm.

The cell cycle consists of a set “phases” that govern the duplicatiodigisibn
of cells into two new cells:

G1 phase - gap phase, terminated by “G1 checkpoint”

S phase - synthesis phase (DNA replication)

G2 phase - gap phase, terminated by “G2 checkpoint”
e M - mitosis (cell division)
The cell goes through these stages in a cyclical fashion, with ffereit enzymes

and pathways active infierent phases. The cell cycle is regulated by mafiedi
ent proteins, often divided into two major class€gclinsare a class of proteins
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(a) Overview of cell cycle (b) Molecular mechanisms

Figure 3.16: TheCaulobacter crescentusell cycle. (a)Caulobactercells divide asym-
metrically into a stalked cell, which is attached to a swefeand a swarmmer cell, that is
motile. The swarmer cells can become stalked cells in a neatitm and begin the cell
cycle anew. The transcriptional regulators CtrA, DnaA ami/AGare the primary factors
that control the various phases of the cell cycle. (b) Thesiertircuitry controlling the
cell cycle consists of a large variety of regulatory mechians, described in more detail in
the text. Figure obtained frond4l] (permission TBD).

that sense environmental conditions internal and external to the cellraradsa
used to implement various logical operations that control transition out déthe
and G2 phase£yclin dependent kinas¢€DKSs) are proteins that serve as “actu-
ators” by turning on various pathways duringtdrent cell cycles.

An example of the control circuitry of the cell cycle for the bacteri@aulobac-
ter crescentughenceforthCaulobacte) is shown in Figure3.16 [54]. This or-
ganism uses a variety offtirent biomolecular mechanisms, including transcrip-
tional activation and represssion, positive autoregulation (CtrA), giimisansfer
and methlylation of DNA.

The cell cycle is an example of an oscillator that does not have a fixed pe-
riod. Instead, the length of the individual phases and the transitioning diftiee-
ent phases are determined by the environmental conditions. As one ex#meple
cell division time forE. coli can vary between 20 minutes and 90 minutes due to
changes in nutrient concentrations, temperature or other externatfacto

A different type of oscillation is the highly regular pattern encoding in circa-
dian rhythm, which repeats with a period of roughly 24 hours. The obterv
of circadian rhythms dates as far back as 400 BCE, when Androstdesesbed
observations of daily leaf movements of the tamarind t&®. [There are three
defining characteristics associated with circadian rhythm: (1) the time to complete
one cycle is approximately 24 hours, (2) the rhythm is endogenouslyajedeand
self-sustaining and (3) the period remains relatively constant undegeban am-
bient temperature. Oscillations that have these properties appear in nitengrdi
organisms, including micro-organisms, plants, insects and mammals. Some com-
mon features of the circuitry implementing circadian rhythms in these organisms is
the combination of positive and negative feedback loops, often with thiveos-
ements activating the expression of clock genes and the negative elepppisk
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Figure 3.17Caption omitted pending permissidifrigure and caption froni[0])

ing the positive elementd.{]. Figure3.17shows some of the flerent organisms
in which circadian oscillations can be found and the primary genes rabpofa
different positive and negative factors.

Clocks, oscillators and limit cycles

To begin our study of oscillators, we consider a nonlinear model of therayste
described by the dierential equation

% = f(x,u,0), y = h(x,0)

dt
wherex € R" represents the state of the system (typically concentrations of various
proteins and other species and complexes)RY represents the external inpws
RP represents the (measured) outputs @adk® represents the model parameters.
We say that a solutiorx(t), u(t)) is oscillatory with period Tif y(t+ T) = y(t). For
simplicity, we will often assume thagt = g = 1, so that we have a single input
and single output, but most of the results can be generalized to the multi-input,
multi-output case.

There are multiple ways in which a solution can be oscillatory. One of the sim-

plest is that the input(t) is oscillatory, in which case we say that we haveraed
oscillation In the case of a linear system, an input of the faii) = Asinwt then
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we know already the output will be of the foryt) = M- Asin(wt + ¢) whereM

andg represent the gain and phase of the system (at frequendg the case of a
nonlinear system, if the output is periodic then we can write it in terms of a set of
harmonics,

y(t) = Bp + By Sin(wt + ¢1) + Basin(2wt + ¢2) + - -«

The termBg represents the average value of the output (also called the bias), the
termsB; are the magnitudes of théh harmonic and; are the phases of the har-
monics (relative to the input). Thascillation frequencyw is given byw = 27/T
whereT is the oscillation period.

A different situation occurs when we have no input (or a constant input}ifind s
obtain an oscillatory output. In this case we say that the systemdatsustained
oscillation This type of behavior is what is required for oscillations such as the
cell cycle and circadian rhythm, where there is either no obvious forcingtion
or the forcing function is removed but the oscillation persists. If we assuatéhth
input is constanti(t) = Ag, then we are particularly interested in how the pefiod
(or equivalently frequency), amplitudesB; and phaseg; depend on the inpug
and system parametets

To simplify our notation slightly, we consider a system of the form

dx
=60, y=h(x6) (3.21)

where the input is ignored (or taken to be one of the constant paramieteing)
analysis that follows. We have focused on the oscillatory nature of theroy(tp
thus far, but we note that if the statge@) are periodic then the output is as well,
as this is the most common case. Hence we will often talk aboigytstenbeing
oscillatory, by which we mean that there is a solution for the dynamics in which
the state satisfiegt+ T) = x(t).

More formally, we say that a closed curles R" is anorbit if trajectories that
start onl’ remain o for all time and ifl" is not an equilibrium point of the system.
As in the case of equilibrium points, we say that the orbi#tableif trajectories
that start neaf stay neaf’, asymptotically stabld in addition nearby trajectories
approacH” ast — co andunstableif it is not stable. The orbif" is periodic with
periodT if for any x(t) e T', x(t+ T) = X(t).

There are many ¢lierent types of periodic orbits that can occur in a system
whose dynamics are modeled as in equat®21). A harmonic oscillatorrefer-
ences to a system that oscillates around an equilibrium point, but doassoatly)
get near the equilibrium point. The classical harmonic oscillator is a lineggrays

of the form
E 0 w X1
dt {—w O] X ’
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Figure 3.18: Examples of harmonic oscillators.

whose solutions are given by
X1(t)] [ coswt sinwt)| [x1(0)
{xz(t)] B [— sinwt co&ut} [xz(O)] '
The frequency of this oscillation is fixed, but the amplitude depends on thesva
of the initial conditions, as shown in FiguBel8 Note that this system has a single
equilibrium point atx = (0,0) and the eigenvalues of the equilibrium point have
zero real part, so trajectories neither expand nor contract, but simpliatesc

An example of a nonlinear harmonic oscillator is given by the equation

da _ X2 + Xq(1— %5 — X3), dx _ —Xg +Xo(1- X2 - X). (3.22)
dt dt
This system has an equilibrium pointat (0,0), but the linearization of this equi-
librium point is unstable. The phase portrait in Fig@r@8bshows that the solu-
tions in the phase plane converge to a circular trajectory. In the time domain this
corresponds to an oscillatory solution. Mathematically the circle is call@dit
cycle Note that in this case, the solution for any initial condition approaches the
limit cycle and the amplitude and frequency of oscillation “in steady state” (once
we have reached the limit cycle) are independent of the initial condition.

A different type of oscillation can occur in nonlinear systems in which the equi-
librium points are saddle points, having both stable and unstable eigenva@lues
particular interest is the case where the stable and unstable orbits of or@mer
equilibrium points join together. Two such situations are shown in FigLre The
figure on the left is an example offreomoclinic orbit In this system, trajectories
that start near the equilibrium point quickly diverge away (in the directomrs
responding to the unstable eigenvalues) and then slowly return to the eguilibr
point along the stable directions. If the initial conditions are chosen to loispig
on the homoclinic orbif” then the system slowly converges to the equilibrium
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dx %
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(a) Homoclinic orbit (b) Heteroclinic orbit

Figure 3.19: Homoclinic and heteroclinic orbits.

point, but in practice there are often disturbances present that willrpefte sys-
tem df of the orbit and trigger a “burst” in which the system rapidly escapes from
the equilibrium point and then slowly converges again.

A somewhat similar type of orbit is heteroclinic orbit in which the orbit
connects two dferent equilibrium points, as shown in Figu8d.9b

An example of a system with a homoclinic orbit is given by the system

% = Xy, % =X - X (3.23)
The phase portrait and time domain solutions are shown in Fig2@ In this
system, there are periodic orbits both inside and outside the two homaoclinic cy-
cles (left and right). Note that the trajectory we have chosen to plot in the time
domain has the property that it rapidly moves away from the equilibrium point
and then slowly re-converges to the equilibrium point, before begin daameay

2
¥l 1t d
K‘“&__:ﬁ:—i ‘_-'-::.::—J Xl -0 Xz
o o 2 10 20 30
. Timet
(@) (b)

Figure 3.20: Example of a homoclinic orbit.



3.4. OSCILLATORY BEHAVIOR 125

2.5
2
o 15
1
, m ‘ 0.5
v 3 vy 0 05 1 15 2
S I S
(@) (b)

Figure 3.21: (a) The glycolysis pathway. “S” is a substragich is converted into product
“P”. This, in turn, is activating its own production by enltamg the rates,. (b) Oscillations
in the glycolysis pathway. Parameters age- 1, k; = 1, andkp = 1.00001.

again. This type of oscillation, in which one slowly returns to an equilibriumtpoin
before rapidly diverging is often calledralaxation oscillation Note that for this
system, there are also oscillations that look more like the harmonic oscillator case
described above, in which we oscillate around the unstable equilibrium gints

x = (£1,0).

Example 3.9(Glycolytic oscillations) Glycolysis is one of the principal metabolic
networks involved in energy production. It is a sequence of enzyriadyead reac-
tions that coverts sugar into pyruvate, which is then further degraddddioa (in
yeast fermentation) and lactic acid (in muscles) in anaerobic conditiong\T&hd
(the cell’s major energy supply) is produced as a result. Both dampediatadrseed
oscillations have been observed. Damped oscillations were first reguyrti0)]
while sustained oscillations in yeast cell free extracts were observaugiheose-
6-phosphate (G6P), fructose-6-phosphate (F88])dr trehalose T5] were used as
substrates.

Here, we introduce the fundamental motif that is known to be at the core of
these oscillatory phenomenon. This is depicted in Fi@u?4 (a). A simple model
for the system is given by the twoftkrential equations

— =Vp—V1, — =V1— Vo,
dt 0 1 dt 1 2

in which

a(P/K)?
1+ (P/K)2’
whereF (P) is the Hill function. Under the assumption théts P?, we haveF (P) ~
kiP2, in which we have defineki := «/K. This second order system admits a stable
limit cycle under suitable parameter conditions (Figar2lb). \%

vi=SHP), F(P)= Vo = koP,
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The example above illustrates some of the types of questions we would like to
answer for oscillatory systems. For example, under what parameteitioosdio
oscillations occur in the glycolytic system? How much can the parameter change
before the limit cycle disappears? To analyze these sorts of questionsete
to introduce tools that allow to infer the existence and robustness of limit cycle
behavior from a dferential equation model. The objective of this section is to
address these questions.

Consider the system = f(x) and letx(t, Xo) denote its solution starting &b
at timet = 0, that is,x(t, Xg) = f(X(t, X)) andx(0, Xg) = Xo. We say thak(t, xo) is a
periodic solutionif there isT > 0 such thai(t, Xp) = x(t+ T, Xp) for all t € R. Here,
we seek to answer two questions: (a) when does a systerf{x) admit periodic
solutions? (b) When are these periodic solutions stable or asymptoticallystable

In order to provide the main result to state the existence of a stable periodic
solution, we need the concept of omega-limit set of a ppjrtenotedu(p). Basi-
cally, the omega-limit seb(p) denotes the set of all points to which the trajectory
of the system starting frorp tends as time approaches infinity. This is formally
defined in the following definition.

Definition 3.1. A point x e R" is called aromega-limit poinbf pe R" if there is a
sequence of timef;} with t; — oo for i — oo such thaix(tj, p) — X asi — . The
omega-limit sebf p, denotedu(p), is the set of all omega-limit points qf

The omega-limit set of a system has several relevant properties, antocly w
the fact that it cannot be empty and that it must be a connected set.

Limit cycles in the plane

Before studying periodic behavior of systemit we study the behavior of sys-
tems inR? as several high dimensional systems can be often well approximated by
systems in two dimensions by, for example, employing quasi-steady statxappro
mations. For systems ik?, we will see that there are easy-to-check conditions that
guarantee the existence of a limit cycle.

The first result that we next give provides a simple check to rule oubgier
solutions for system ii®?. Specifically, letx € R? and consider

X1=fi(x, %) X2 = (X1, %), (3.24)

in which the functionsf; : R? — R2 for i = 1,2 are smooth. Then, we have the
following result:

Theorem 3.2(Bendixson’s criterion) If on a simply connected region ®R? (i.e.,
there are no holes in it) the expression

ot oty
0X1 0%
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is not identically zero and does not change sign, then syEe2) has no closed
orbits that lie entirely in D.

Example 3.10. Consider the system

X1 = X+ 0%, Yo =X,
with 6 > 0. We can computé)% + g—)z = 352, which is positive in alR? if 5 # 0. If
6 # 0, we can thus conclude from Bendixson’s criterion that there are nodie
solutions. Investigate as an exercise what happens wheh v

The following theorem, completely characterizes the omega-limit set of any
point for a system iR2.

Theorem 3.3 (Poincae-Bendixson) Let M be a bounded and closed positively
invariant region for the system= f(x) with xe (i.e., any trajectory that starts in

M stays in M for all t> 0). Assume that there are finitely many steady states in M.
Let pe M, then one of the following possibilities holds tofp):

() w(p)is a steady state;
(i) w(p) is a closed orbit;

(iii) w(p) consists of a finite number of steady states and orbits, each starting (for
t = 0) and ending (for t> ) at one of the fixed points.

This theorem has two important consequences:

1. If the system does not have steady statelljrsincew(p) is not empty, it
must be a periodic solution;

2. If there is only one steady statehMhand it is unstable and not a saddle (i.e.,
the eigenvalues of the linearization at the steady state are both positive), the
w(p) is a periodic solution.

We will employ this result in Chaptes to determine conditions under which
the activator-repressor clock of Atkinsenal. [5] admits sustained oscillations.

Limit cyclesin R"

The results above holds only for systems in two dimensions. However, liheee
been recent extensions of this theorem to systems with special structffelm
particular, we have the following result due to Hastings et al. (1977).

Theorem 3.4(Hastings et al. 1977)Consider a systermr = F(X), which is of the
form

X1 = f1(Xn, X1)

Xj = fj(Xj-1,%j), 2<j<n
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on the set M defined by x O for all i with the following inequalities holding in
M:

() G <Oand2- >0, for2<i<n andgt <0
(i) i(0,0)> 0and f(x,0)> Ofor all x> 0;

(iii) The system has a unique steady state kx3, ..., X;) in M such that f(x,, x1) <
0if Xn > X and x > X7, while f(xn, X)) > 0if xn < X; and % < x3;

(iv) 7 afl is bounded above in M.

Then, if the Jacobian of f atshas no repeated eigenvalues and has any eigenvalue
with positive real part, then the system has a non-constant periodic solatign

This theorem states that for a system with cyclic structure in which the cy-
cle “has negative gain”, the instability of the steady state (under some tathnic
assumption) is equivalent to the existence of a periodic solution. This theore
however, does not provide information about whether the orbit is atteaatinot,
that is, of whether it is an omega-limit set of any pointMn This stability result is
implied by a more recent theorem due to Mallet-Paret and Smith (1990), fohwh
we provide a simplified statement as follows.

Theorem 3.5(Mallet-Paret and Smith, 1990 onsider the systeta= F(x) with
the following cyclic feedback structure

X1 = f1(Xn, X1)
Xj = fj(Xj-1,%j), 2<j<n

on a set M defined by % O for all i with all trajectories starting in M bounded for
t > 0. Then, thev-limit setw(p) of any point p= M can be one of the following:

(a) A steady state;
(b) A non-constant periodic orbit;
(c) A set of steady states connected by homaoclinic or heteroclinic orbits.

As a consequence of the theorem, we have that for a system with cydlic fee
back structure that admits one steady state only and at which the linearizaton h
all eigenvalues with positive real part, the omega-limit set must be a peridatic o

Let for somes; € {1,-1} be §; LiX-1) ‘”(X’“ ) 5 0forall 0<i<nand defineA :=
01-...-0n . One can show that the S|gn mﬁs related to whether the system has one
or multlple steady states.

In Chapte6, we will apply these results in Chap&to determine the parameter
space that makes the repressilaZ8] joscillate.



3.5. BIFURCATIONS

@ oS

R0 PO
ﬁ\‘“r“ﬁ—‘-’l \Jﬂ"{!f‘f_{ uTt.b\\

Figure 3.22: Phase portraits for a simple bifurcation.

3.5 Bifurcations

Another important property of nonlinear systems is how their behaviorggsas
the parameters governing the dynamics change. We can study this in thet cbnte
models by exploring how the location of equilibrium points, their stability, their re-
gions of attraction and other dynamic phenomena, such as limit cycles, asegb
on the values of the parameters in the model.

Parametric stability
Consider a dferential equation of the form

d

d’t( “F(x0), XeR"§eRr, (3.25)

wherexis the state andis a set of parameters that describe the family of equations.
The equilibrium solutions satisfy

F(x,0) =0,

and asf is varied, the corresponding solutiorgd) can also vary. We say that
the system3.25 has abifurcationatd = 6* if the behavior of the system changes
qualitatively at9*. This can occur either because of a change in stability type or a
change in the number of solutions at a given valué. of

As an example of a bifurcation, consider the linear system

dx d

= —KkX; — uXxo,
dt 1~ HXA2

wherek > 0 is fixed andd is our bifurcation parameter. Figu®22 shows the
phase portraits for elierent values of. We see that a1 = 0 the system transitions
from a single stable equilibrium point at the original to having an unstabliitequ
rium. Hence, a8 goes from negative to positive values, the behavior of the system
changes in a significant way, indicating a bifurcation.
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Figure 3.23: Bifurcation diagrams for some common bifuiorat

A common way to visualize a bifurcation is through the use tifarcation
diagram To create a bifurcation diagram, we choose a funcfierh(x) such that
the value ofy at an equilibrium point has some useful meaning for the question
we are studying. We then plot the valueyaf= h(xs(8)) as a function ob for all
equilibria that exist for a given parameter valueBy convention, we use dashed
lines if the corresponding equilibrium point is unstable and solid lines otherwis
Figure3.23shows examples of some common bifurcation diagrams. Note that for
some types of bifurcations, such as the pitchfork bifurcation, there exdises of
0 where there is more than one equilibrium point. A system that exhibits this type
of behavior is said to benultistable A common case is that there are two stable
equilibria, in which case the system is said tadistable

Another type of diagram that is useful in understanding parametric depee
is aparametric stability diagraman example of which was shown in Figu?e.
In this type of diagram, we pick one or two (or sometimes three) parameters in the
system and then analyze the stability type for the system over all possiblénaemb
tions of those parameters. The resulting diagram shows those regionaingiar
space where the system exhibits qualitativelffestent behaviors; an example is
shown in Figure8.24a

A particular form of bifurcation that is very common when controlling linear
systems is that the equilibrium remains fixed but the stability of the equilibrium
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Figure 3.24: Stability plots a nonlinear system. The plotajpshows the real part of the
system eigenvalues as a function of the parangefEne system is stable when all eigenval-
ues have negative real part (shaded region). The plot irhs the locus of eigenvalues
on the complex plane as the parameéter varied and gives a fierent view of the stability
of the system. This type of plot is called@ot locus diagram

changes as the parameters are varied. In such a case it is revealinghe pigen-
values of the system as a function of the parameters. Such plots areroatlbxtus
diagramsbecause they give the locus of the eigenvalues when parameters change
An example is shown in Figurg.24h Bifurcations occur when parameter values
are such that there are eigenvalues with zero real part. Computing remants
such LabVIEW, MATLAB and Mathematica have tools for plotting root loci.
Parametric stability diagrams and bifurcation diagrams can provide valuable
insights into the dynamics of a nonlinear system. It is usually necessaryetoléar
choose the parameters that one plots, including combining the natural parame
of the system to eliminate extra parameters when possible. Computer programs
such asAUTO, LOCBIF andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.

Hopf bifurcation

The bifurcations discussed above involved bifurcation of equilibriumtpo#in-
other type of bifurcation that can occur is that a system with an equilibriunt po
admits a limit cycle as a parameter is changed through a critical value. The Hopf
bifurcation theorem provides a technique that is often used to undensteattier
a system admits a periodic orbit when some parameter is varied. Usuallyassuch
orbit is a small amplitude periodic orbit that is present in the close vicinity of an
unstable steady state.

Consider the system dependent on a parameter

dx
it =g(xa),xeR", ¥ €R,
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Figure 3.25: Hopf Bifurcation. On the left hand,@mcreases a stable limit cycle appears.
On the right hand side, @increases a limit cycle appears but it is unstable.

and assume that at the steady stateorresponding tar = « (i.e., g(Xx,a) = 0),
the linearizationdg/dx(x, @) has a pair of (non zero) imaginary eigenvalues with
the remaining eigenvalues having negative real parts. Define the nametar

0 := a —a and re-define the system as

2(: f(x,0) =: g(x,0+a),

dt
so that the linearizatiof /dx(x,0) has a pair of (non zero) imaginary eigenvalues
with the remaining eigenvalues having negative real parts. Denot@by: 5(0) +
iw(0) the eigenvalue such tha(0) = 0. Then, ifdB/96(0) # 0 the system admits a
small amplitude almost sinusoidal periodic orbit famall enough and the system
is said to go through a Hopf bifurcation @t 0. If the small amplitude periodic
orbit is stable, the Hopf bifurcation is sasdipercritical while if it is unstable it is
saidsubcritical Figure3.25shows diagrams corresponding to these bifurcations.

In order to determine whether a Hopf bifurcation is supercritical or stitol;

it is necessary to calculate a “curvature” fis®ent, for which there are formu-
las (Marsden and McCrocken, 1976) and available bifurcation saftvearch as
AUTO. In practice, it is often enough to calculate the vatuef the parameter at
which Hopf bifurcation occurs and simulate the system for values of treapeter
a close toa. If a small amplitude limit cycle appears, then the bifurcation must be
supercritical.

Example 3.11(Glycolytic oscillations) Recalling the model3.9) for the gly-
colytic oscillator, we ask whether such an oscillator goes through a Howf bif
cation. In order to answer this question, we consider again the exprasfsibe
eigenvalues

_ tr(J) = /tr(J)2 - 4det(Q)

A ,
12 >
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in which
2

Vi 2 V
tr(J) = ko — k]_(—o) and detd) = k]_(—o) .
ko ko

The eigenvalues are imaginary if3)(= 0, that is, ifk; = k3/v3. Furthermore, the
frequency of oscillations is given iy = v4det{) = 4ky(Vo/k2)*. Whenk; ~ k3 /3,

an approximately sinusoidal oscillation appears. Wkgeis large, the Hopf bifur-
cation theorem does not imply the existence of a periodic solution. This isibeca
the Hopf theorem provides only local results. \%

The Hopf bifurcation theorem is based on center manifold theory for rneanlin
dynamical systems. For a rigorous treatment of Hopf bifurcation is thusssacy
to study center manifold theory first, which is outside the scope of this text. For
details, the reader is referred to standard text in dynamical sys@8y37].

3.6 Model Reduction Techniques

The techniques that we have developed in this chapter can be applied te a wid
variety of dynamical systems. However, many of the methods require satific
computation and hence we would like to reduce the complexity of the models as
much as possible before applying them. In this section, we review methods for
doing such a reduction in the complexity of the models. Most of the techniques
are based on the common idea that if we are interested in the slower time scale
dynamics of a system, the fast time scale dynamics can be approximated by their
equilibrium solutions. This idea was introduced in Chaj2ér the context of re-
duced order mechanisms; we present a more mathematical analysis of Siechss

here.

Singular perturbation analysis

Singular perturbation techniques apply to systems that have processegaiva
on both fast and slow time scales and that can be written in a standard foich, wh
we now introduce. Let(y) € D := Dyx Dy c R"xR™ and consider the vector field

dx
a - f(X,y,E), X(O)_ XO
d

Ed_)t/ =9(X.Y,€), y(0) = Yo

in which O< € <« 1 is a small parameter and botlix,y,0) andg(x,y,0) are well
defined. Since < 1, the rate of change gfcan be much larger than the rate of
change ok, resulting iny dynamics that are much faster than #@ynamics. That
is, this system has a slow time scale evolutiondiand a fast time-scale evolution
(iny), so thatx is called the slow variable ands called the fast variable.
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If we are interested only in the slower time scale then the above system can be
approximated (under suitable conditions) by teéuced system
dx

a = f(nya 0)7 )?(0) = X09

0=9g(xy.0).
Let y = h(X) denote the locally unique solution gfx,y,0) = 0. The manifold of
(x,y) points wherey = h(x) is called theslow manifold Theimplicit function theo-
rem[60] shows that this solution exists whenewgy dy is non singular and that in
such a case

dh__dgtag
dx  ay ox
We can now re-write the dynamics »in the reduced system as
Yo t@h@.0 0=,

We seek to determine under what conditions the solut{onis “close” to the
solution x(t) of the reduced system. This problem can be addressed by analyzing
the fast dynamics, that is the dynamics of the system in the fast timesedle.

In this case, we have that

d d
d_j:ef(x,y,e), d—Z —g(xy.e),  (x0).Y(0)) = (X0, Y0):

so that where < 1, x(r) does not appreciably change. Therefore, the above system
in thet time scale can be well approximated by the system

Y g0v0.  YO=Yo

in which x is “frozen” at the initial conditionxy. This system is usually referred
to as theboundary layersystem. For this system, the point h(xp) is an equi-
librium point. Such an equilibrium point is asymptotically stablg(if) converges

to h(xg) ast — . In this case, the solutiorx(t), y(t)) of the original system ap-
proachesX(t), h(x(t))). This qualitative explanation is more precisely captured by
the following theorem%1].

Theorem 3.6. Assume that

0
Rea /l(—g(x,y)‘ )) <0
( Y y=h(x)

uniformly for xe Dy. Let the solution of the reduced system be uniquely defined for
te[0,t¢]. Then, for all t, € (O,t;] there is a constart® > 0 and setQ ¢ D such that

X(t) — X(t) = O(e) uniformly for te [0,t¢],
y(t) — h(x(t)) = O(€) uniformly for te [ty t¢],
providede < €* and(Xo, Yo) € Q.
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Example 3.12(Hill function). In Section2.1, we obtained the expression of the
Hill function by making a quasi-steady state approximation on the dynamics of
binding. Here, we illustrate how Hill function expressions can be detdyeal for-

mal application of singular perturbation. Specifically, consider the simplérignd
scenario of a transcription factor X with DNA promoter sites p. Assume thedt su

a transcription factor is acting as an activator of the promoter and let Y h@dhe
tein expressed under promoter p. Assume further that X dimerizes b@falieg

to promoter p. The reaction equations describing this system are given by

kg a ks
X+X=X,, X,+p=_C, C—m,+C,
ko d
K 3 Y
mY_>mY+Y, mY_>03 Y_)®7 p+C:pt0t‘

The corresponding fferential equation model is given by

dd—)iz = klxz— k2X2_aXZ(ptOt_C) +dC
dcC
ar - aXo(pot—C) -dC
dmy
i kiC —omy
dy
e = kMy —yY.

Since all the binding reactions are much faster than mRNA and protein giroauc
and decay, we have thks,d > ki, «,0,y. Let Ky, := ko/ki, Kq :=d/a, ¢ :=ky/d,
ande :=vy/d. Then, we can re-write the above system by using the substitutions

d= % azKlde, kzzcg, klchLme,
so that we obtain
e% = cKlmXZ—chz— KldXZ(ptot—C) +7C
Et;—? = Kldxz(ptot_c)_yc
dd—”tw =k{C—-omy
i—: = kMy —yY.

This system is in the standard singular perturbation foBmb)( As an exercise,
the reader can verify that the slow manifold is locally asymptotically stable (see
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Exercises). The slow manifold is obtained by setting0 and determineX, and
C as functions oX. These functions are given by

X2  ProeX?/(KmKa)

Xp = —!, = o 2 m el
> Km 1+ X2/(KmKq)

As a consequence, the reduced system becomes

dmy — K ptotxz/(KmKd) B
dt 1+ X2/(KmKq)

omy

dy
= —Y.
at KMy =7y,

which is the familiar expression for the dynamics of gene expression withtan a
vator as derived in Secticgh1and lettinga = K piot, We have that

Xz/(KmKd)

) = 5 (KK

is the standard Hill function expression.
\Y

Example 3.13(Enzymatic reaction)Let’s go back to the enzymatic reaction
a _ k
E+S=C—->E+P,
d

in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the substrate
S due to the binding with the enzyme E. The corresponding systentfefatitial
equations is given by

c:j_ItE = —aE-S+dC+kC, (jj—ct: =akE-S-(d+Kk)C, (3.26)
ds dP
o = aE-s+dc Tt =kC (3.27)

By considering that binding and unbinding reactions are much faster tlgan th
catalytic rates, mathematically expressedday k, we obtained before that ap-
proximatelydC/dt = 0 and thus tha€ = ES/(S + Km), with K, = (d+k)/a and
dP/dt = VimaxS/(S + Ky) with Vinax= KEr. From this, it also follows that

dE _

dE ds _ dP
dt ~

dt  dt
How good is this approximation? By applying the singular perturbation method,
we will obtain a clear answer to this question. Specifically, deipe= d/a and

Oand (3.28)



3.6. MODEL REDUCTION TECHNIQUES 137

take the system to standard singular perturbation form by defining the sasall p
rametere := k/d, so thatd = k/¢, a = k/(Kge), and the system becomes

dE k dC Kk

- __E.S+k k — =—E-S-kC-¢k
Edt Kq S+ kC+ ekC, Edt Kq S-kC-€kC,
ds k dpP
Ea——K—dE‘S-f‘kC, a—kc

One cannot directly apply singular perturbation theory on this systenubeca
one can verify from the linearization of the first three equations that tbadsry
layer dynamics are not locally exponentially stable since there are two igeno-e
values. This is because the three variallgS, C are not independent. Specifically,
E = Eiot—C andS+C+ P = S(0) = Siot, assuming that initially we have S in amount
S(0) and no amount of P and C in the system. Given these conservatiorntaws,
system can be re-written as

dc

dP_
“dt

k
= K_d(Etot_C) (Stot— C - P) —kC-€kC, i kC.
Under the assumption made in the analysis of the enzymatic reactio8ghat

Eiot, We have tha€ <« Syt SO that the equations finally become

dC

“dt -

k
K_d(Etot —C)-(Stot— P) —kC—-€kC, i kC.

One can verify (see Exercises) that in this system, the boundary layantgs
is locally exponentially stable, so that setting 0 one obtains

Eot(Stot— P) .

c- o) _ hp
(Stot— P) + Kiy P)
and thus that the reduced system is given by
dP (Stot—P)

dt ™ (Stot_P)"'Km'

This system is the same as that obtained in Chaptétowever,dC(t)/dt and
dE(t)/dt are not close to zero as obtained earlier. In fact, from the conservation
S+C+P=S5(0) = Sy, We obtain tha = -9 - 9 in which nowdf = J(P)- 4.

Therefore _ _
ds dP oh —

TR T a_P(P))’ S(0) = Stot— h(P(0)) - P(0) (3.29)
and dE  dC  6h —dP
S q s —8—P(P)a, E(0) = Eiot— h(P(0)), (3.30)

which are diferent from expression8.28).



138 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR
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Figure 3.26: Simulation results for the enzymatic reactiomparing the approximations
from singular perturbation and from the quasi-steady sipfgroximation (QSSA). Here,
we haveSio = 100, Eyot = 1, a=d = 10, andk = 0.1. The full model is the one in equa-

tions 3.27).

These expressions are close to those in equaB@8(only whenah/aP(ﬁ) is
small enough. In the plots of FiguBe26 we show the time trajectories of the orig-
inal system, of the Michaelis-Menten quasi-steady state approximation (RQSSA
and of the singular perturbation approximation. In the full model (solid linegn F
ure 3.26), E(t) starts from a unit concentration and immediately collapses to zero
as the enzyme is all consumed to form the complex C by the substrate, which is
in excess. SimilarlyC(t) starts from zero and immediately reaches the maximum
possible value of one.

In the QSSA, bottE(t) andC(t) are assumed to stabilize immediately to their
(quasi) steady state and then stay constant. This is depicted by the dotteid plots
Figure 3.26 in which E(t) stays at zero for the whole time a@{t) stays at one
for the whole time. This approximation is fairly good as long as there is an £xces
of substrate. When the substrate concentration goes to zero as it is\atteoh
to product, also the complex concentrati©rgoes to zero (see solid line of Fig-
ure 3.26). At this time, the concentrations of complex and enzyme substantially
change with time and the QSSA is unsatisfactory. By contrast, the redunachdy
ics obtained from the singular perturbation approach well represeilytiemics
of the full system even during this transient behavior. Hence, while tH&/QJSa
good approximation only as long as there is excess of substrate in the strstem,
reduced dynamics obtained by singular perturbation is a good approxinezgon
when the substrate concentration goes to zero.

In Figure3.27, we show the curv€ = h(P) (in red) and the trajectories of the
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Figure 3.27: The slow manifold of the syst&r= h(P) is shown in red. In black, we show
the trajectories of the the full system. These trajecta@kmpse into ar-neighbor of the
slow manifold. Here, we havBiot = 100,Et=1,a=d =10, andk = 0.1.

full system in black. All of the trajectories of the system immediately collapse into
ane-neighbor of the curv€ = h(P). From this plot, it is clear thath/dP is small

as long as the product concentratiBris small enough, which corresponds to a
substrate concentratighlarge enough. This confirms that the QSSA is good only
as long as there is excess of substte \%

Exercises

3.1(BE 150, Winter 2011File missing: ./dynamicgexerciseglual-activation
3.2(BE 150, Winter 2011File missing: ./dynamicgexercisegposfbk-cascade

3.3 (Frequency response of a phosphorylation cycle) Consider the rabdeto-
valent modification cycle as illustrated in Chapein which the kinase Z is not

. . u(t)
constant, but it is produced and decays according to the reactiea:Z Let u(t)

Y
be the input stimulus of the cycle and ¥t be the output. Determine the fre-
qguency response of* to u, determine its bandwidth, and make plots of it. What
parameters can be used to tune the bandwidth?

3.4 (Design for robustness) Consider a one-step reaction model forsppbiyla-

tion cycle as seen in Homework 1, in which the input stimulus is the time-varying
concentration of kinas&(t). When found in the cellular environment, this cycle is
subject to possible interactions with other cellular components, such asrhe no
specific or specific binding of X* to target sites, to noise due to stochasti€ity o
the cellular environment, and to other cross-talk phenomena. We will corkddbac
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these “disturbances” later during the course. For now, we can think sé ttistur-
bances as acting like an aggregate rate of change on the output proteimixh
we calld(t). Hence, we can model the “perturbed” cycle by

*

X—)— KaYioX® +d(t),
t

X = Z(t)klxtot(l—
Xtio

which is the same as you found in Homework 1, except for the presenite of
disturbanced(t). Assume that you can tune all the parameters in this system (we
will see later that this is actually possible to large extent by suitably fabricating
genetic circuits). Can you tune these parameters so that the respoxsg) db

d(t) is arbitrarily attenuated while the responseXsft) to Z(t) remains arbitrarily
large? If yes, explain how these parameters should be tuned to reaclesigs d
objective and justify your answer through a careful mathematical regagosing

the tools introduced in class.

3.5 (Adaptation) Show that the equation of thefar (3.15 can be taken into the
standard integral feedback form through a suitable change of cabedin

3.6 (Design limitations) This problem is meant to have you think about possible
trade-dt's and limitations that are involved in any realistic design question (we will
come back to this when we start design). Here, we examine this throughehe op
loop and negative feedback transcriptional component seen in otesBitgire 3-8

in the Lecture Notes). Specifically, we want to compare the robustnesssaf tvo
topologies to cellular noise, crosstalk, and other cellular interactions. s ped

in Problem 1, we model these phenomena as a time-varying disturbfiactng

the production rate of MRNA m and protein P. To slightly simplify the problem,
we focus only on disturbance#fecting the production of protein. The open loop
model becomes

Mp = ag— 6Mp P = kmp—yP+d(t)

and the negative feedback system becomes

fp = g+ SMp P = Bmp—yP +d(t).

_r
1+ (P/K)"
Answer the following questions:

(a) After performing linearization about the equilibrium point, determine ana-
lytically the frequency response Bfto d for both systems.

(b) Sketch the magnitude plot of this response by hand for both systems, co
pare them, and determine what happeng asad« increase (note: if your
calculations are correct, you should find that what really matters for tpe ne
ative feedback system is the produet which we can view as thieedback
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gain). So, is increasing the feedback gain to arbitrarily large values the best
strategy to decrease the sensitivity of the system to the disturbance? Com-
ment.

(c) Pick parameter values and use Matlab to draw Bode plots as the f&edbac
gain increases and validate your predictions of (b). (Suggested parame
6=1,vy=1,K=1,n=1,ax={1,10,1001000Q...}). Note: in Matlab, once
you have determined the matricAsB, C, andD for the linearization, you
can just do:SYS=ss(A,B,C,D); bode(SYS) and the Bode plot will pop
up.

(d) Investigate the answer to (c) when you have?20, that is, the timescale of
the mRNA dynamics becomes faster than that of the protein dynamics. What
does change with respect to what you found in (c)? Note: wheoreases
you are reducing the (phase) lag within the negative feedback loop...

(e) Whené is at least 10 times larger than you can approximate tha dy-
namics to the quasi-steady state. So, the two above systems can be reduced
to one diferential equation each for the protein concentraforfror these
two reduced systems, determine analytically the frequency respodsatb
use it to find out whether arbitrarily increasing the feedback gain is a good
strategy to decrease the sensitivity of response to the disturbance.

3.7 (Bendixson criterion) Consider the possible circuit topologies of FigL28 in
which A and B are transcriptional components. Model each transcriptiongpo-
nent by a first order system, in which you have approximated the mRNAndigsa

at the quasi-steady state. Hence, each topology will be representati/bgmical
system in the plan&?. Use Bendixson criterion to rule out topologies that cannot
give rise to closed orbits.

3.8 (Two gene oscillator) Consider the feedback system composed of tvas gen
expressing proteins A (activator) and R (repressor), in which wetedny A, R,

ma, andmg, the concentrations of the activator protein, the repressor protein, the
MRNA for the activator protein, and the mRNA for the repressor protegpee
tively. The ODE model corresponding to this system is given by

dm =« dnk _ a(A/KQ)™

dt 1+(R/K1)”_6mA dt ~ 1+(A/K)™
dA drR
E—KmA—)/A a—Km?_YR-

Determine parameter conditions under which this system admits a stable limit cy-
cle. Validate your finding through simulation.

3.9(Goodwin oscillator) Consider the simple set of reactions

k k k
Xi—= Xo—= Xz.... = X,
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Figure 3.28: Circuit topologies with two components (piasg A and B.

Assume further that Xis a transcription factor that represses the production of pro-
tein Xz through transcriptional regulation (assume simple binding ofdoXDNA).
Neglecting the mRNA dynamics of X write down the ODE model of this sys-
tem and determine conditions on the length n of the cascade for which thensyste
admits a stable limit cycle. Validate your finding through simulation.

3.10 (Phosphorylation via singular perturbation) Consider again the model of a
covalent modification cycle as illustrated in Chag®én which the kinase Z is not

constant, but it is produced and decays according to the reacti:eyﬁtZ).
u(t)

(a) Consider thag, d > k,y,u(t) and employ singular perturbation with small pa-
rameter, for examples = y/d to obtain the approximated dynamics &ft) and
X*(t). How is this diferent from the result obtained in Exerc&? Explain.

(b) Simulate these approximated dynamics whg@is a periodic signal with fre-
guencyw and compare the responses of Z of this approximated dynamics to those
obtained in Exercis@.8as you change. What do you observe? Explain.

3.11 (Hill function via singular perturbation) Show that the slow manifold of the
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following system is asymptotically stable:

dX _ 7 2 Y dmy _
g - CKmX Cy X2 Kg Xo(prot—C) +7C, a aC—-dmy,
daC vy dy
EE_K_dXZ(ptOt_C)_YC, a—ﬂmv—VY

3.12(Enzyme dynamics via singular perturbation) Show that the slow manifold of
the following system is asymptotically stable:
dC

k
S K_d(Etot —C)-(Stot—P) —kC—ekC,

dP

— =kC.
dt ¢

3.13(BE 150, Winter 2011; Based on Alon 4.6—Shaping the pulse) Consider a s
uation where X in an 11-FFL begins to be produced at tigf@ o that the level of
protein X gradually increases. The input sigBalandSy are present throughout.

(&) How does the pulse shape generated by the 11-FFL depend onekbdhus
Kxz, Kxy, @andKy,, and ong, the production rate of protein X? (i.e. How does in-
creasing or decreasing these parameters change the height or pdsitierpolse
peak, the slope of the rise of the pulse, etc?)

(b) Analyze a set of gene&g,, 2, ..., Z,, all regulated by the same X and Y in I1-
FFLs. Design thresholds such that the genes are turned ON in the risasg ph
the pulse in a certain temporal order and turned OFF in the declining phése of
pulse with the same order.

(c) Design thresholds such that the turn-OFF order is opposite the MNrorer.
Plot the resulting dynamics.

3.14(BE 150, Winter 2011; Based on Alon 5.6—Bi-fan dynamics) Consider a bi-
fan in which activatorsX; and X, regulate geneZ; andZ,. The input signal of
X1,Sx2, appears at time=D and vanishes at timeD. The input signal oK, Sx2,
appears at time=D/2 and vanishes at2D. Plot the dynamics of the promoter
activity of Z; andZ;, given that the input functions &; andZ, are AND and OR
logic, respectively.

3.15(BE 150, Winter 2011; Based on Alon 6.1—Memory in the regulated-feed-
back network motif) Transcription factor X activates transcription fattandY-.

Y, and Y, mutually activate each other. The input function at ¥aeand Y, pro-
moters is an OR gatéf is activated when either X of; binds the promoter). At
time =0, X begins to be produced from an initial concentration ef0XInitially

Y1 = Y2 = 0. All production rates arg = 1 and degradation rates are= 1. All of

the activation thresholds are<.5. At time &3, production of X stops.
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Y1 Y2

() Plotthe dynamics of, Y1, Y>. What happens t¥; andY; after X decays away?

(b) Consider the same problem, but ndandY- repress each other and X ac-
tivatesY; and represse¥,. At time t=0, X begins to be produced and the initial
levels areX =0,Y; =0,Y, = 1. Attime &3, X production stops. Plot the dynamics
of the system. What happens after X decays away?

3.16(BE 150, Winter 2011; Repressilator) Simulate the following simplified ver-
sion of the repressilator:

dmy Kp dp

dt 1+ ()" = Knded™ dt KiransM1 — KpdegP1
dmp Kp dp

dt 1+ (Z)n ez ot = Kirans™2 ~ KpdegP2
dms  kp dps

— Kmded™s at = KiransMs — KpdegP3

dt 1+(£—;)” d
(a) Simulate the system using the following parametigs= 0.5,n = 2,Ky =

(b) Suppose the protein half-life suddenly decreases by half. Whichmzder(s)
will change and how? Simulate what happens. What if the protein half-lifeus d
bled? How do these two change®eat the oscillatory behavior?

(c) Now assume that there is leakiness in the transcription process. Hestlu®
system’s ODE change? Simulate the system with a small leakiness (say, fbe-3) a
comment on how it iects the oscillatory behavior.

3.17(BE 150, Winter 2011; Glycolytic oscillations) In almost all living cells, glu-
cose is broken down into the cell's energy currency, ATP, via the glgi®lyath-
way. Glycolysis is autocatalytic in the sense that ATP must first be consuntiegl in
early steps before being produced later and oscillations in glycolytic metabolite
have been observed experimentally. We will look at a minimal model of glycolysis
dX 2Vy? K dy Vy2

2
at ~ Ty g =@ osaiE -t
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Note that this system has been normalized suchtthat 1.

(&) While a system may have the potential to oscillate, the behavior still depends
on the parameter values. The glycolysis system undergoes muitfpkeations

as the parameters are varied. Using linear stability analysis, find the parameter
conditions where the system is stable vs. unstable. Next, find the conditiware w

the system has eigenvalues with nonzero imaginary parts.

(b) Letg=k=V=L1. Find the relationship betwedranda where the system is stable
or not. Draw the stability diagram and mark the regions where the systemlis stab
vs. unstable. In the same plot, mark the regions where the system hasagigsnv
with nonzero imaginary parts.

(c) Letg=k=V=1. Chooseh anda such that the eigenvalues are unstable and have
nonzero imaginary parts. Use these parameter values and simulate the aronline
system in MATLAB. Sketch the time response of the system starting with initial
condition X(0)=1.2, Y(0)= 0.5 (you may use MATLAB or sketch by hand). Com-
ment on what you see compared to what linear stability analysis told you id@out
system.

3.18(BE 150, Winter 2011) Finding limit cycles for nonlinear systems and under-
standing how changes in parameteffee the amplitude and period of the oscil-
lation is dificult to do in analytical form. A graphical technique that gives some
insight into this problem is the use déscribing functionswhich is described in
Feedback SystemSection 9.5. In this problem we will use describing functions for
a simple feedback system to approximate the amplitude and frequency of a limit
cycle in analytical form.

Consider the system with the block diagram shown below. The Rasla relay

Vi
r == o u V¥ | B

— (] R() =| P(s) -

with hysteresis whose inpgoutput response is shown on the right and the process
transfer function isP(s) = e 5/s. Use describing function analysis to determine
frequency and amplitude of possible limit cycles. Simulate the system and compar
with the results of the describing function analysis.

3.19(BE 150, Winter 2011) In this problem we will compare the model with single
methylation site vs. double methylation sites. The model with a single methylation
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site is given by:

d(X + Xx) VgBXx
— 2 —VrR-
dt R K+ X
where theactivity is given by A = X«. The model with two methylation sites is

given by
d(X2 + Xz*) _ RVRX1

- — BVgX
dt X1+ X  BA2*
d(X1 + Xl*) RVRXO RVRX]_
BT BVeX - ~ BVgX
at B N Xy Xi+Xo  BLF
dXo  RVkXo
S __ BVgX
dt  Xo+ X, o BTE

and the activity is given byA = Xp « +Xo*. Let K = 10,VRR = 1,VgB = 2. Derive

the parameter sensitivities of the activitie%ﬁ for both the single and double
methylation models. Comment on which parameter each model is most robust and
most sensitive to.

3.20(BE 150, Winter 2011) Consider a toy model of protein production:

dm_

dp
o = f(p)—om R (DR

(a) Assume that there is transcriptional self-regulatib(p) = #pn). We now
know that the mRNA transcription process and thus we want to understand th
sensitivity with respect to the mRNA transcription ratg Compute the trans-
fer function froma to p. Plot this transfer function fotr = 0.002 8¢ = 0.1,6 =
0.005y = 0.00LK = 0.002 Compare it with the transfer function fromy to p
without regulation {(p) = @p = 0.001). (Note: As a reminder on how to compute
these transfer functions, see BFS chapter 3 page 3-11).

(b) Now assume that there is no transcriptional regulatfigp)(= ao) but there is

translational self-regulation such trg(p) = %’gn. Computer the transfer function

from ag to p wheng = 0.2. Compare again with the case with no regulation.
3.21(BE 150, Winter 2011) Consider a simple model of chemotaxis:

dd_xtm = keR+ k' (L)X, — K X

dXx;, X

= —kgBP—" Kk (L)X}, +K'X

at - B ey K (DXt KX

whereX, is the concentration of methylated receptor complex, §has the con-
centration of activated, methylated receptor complex. Ligand concenteiiens
into the equation through the rat&(L). In this modelCheR(R) andCheB’ (BP)
concentrations are constant. (BFS, Section 5)
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(a) Pick parameter values such thgBP > kgrR and plot the dynamics, doubling
the ligand concentration at time20. Compare to figure 5.12 in BFS.

(b) Now assume that CheR no longer acts in saturation. Rederive thenadyma
and plot. Comment on how this assumptidfeats adaptation.
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Chapter 4

Stochastic Modeling and Analysis

In this chapter we explore stochastic behavior in biomolecular systems, lguildin
on our preliminary discussion of stochastic modeling in Sec2dnWe begin by
reviewing the various methods for modeling stochastic processes, incltiging
chemical master equation (CME), the chemical Langevin equation (CLE}&nd
Fokker-Planck equation (FPE). Given a stochastic description, wihearanalyze

the behavior of the system using a variety of stochastic simulation and analysis
tools.

PrerequisitesThis chapter makes use of a variety of topics in stochastic processes
that are not covered in AM08. Readers should have a good workiogl&dge of
basic probability and some exposure to simple stochastic processes (@njdr
motion), at the level of the material presented in Apper®fixdrawn from B8)).

4.1 Stochastic Modeling of Biochemical Systems

Biomolecular systems are inherently noisy due to the random nature of malecula
reactions. When the concentrations of molecules are high, the deterministtsmod
we have used in the previous chapters provide a good description ofriaenits

of the system. However, if the molecular counts are low then it is often rexgess
explictly account for the random nature of events. In this case, th chbmédions

in the cell can be modeled as a collection of stochastic events correspdnding
chemical reactions between species, including binding and unbinding of nfede
(such as RNA polymerase and DNA), conversion of one set of spietéeanother,

and enzymatically controlled covalent modifications such as phosphorylation
this section we will briefly survey some of theffdirent representations that can be
used for stochastic models of biochemical systems, following the material in the
textbooks by Phillipet al.[72], Gillespie 29] and Van Kampen49].

Statistical mechanics

At the core of many of the reactions and multi-molecular interactions that take
place inside of cells is the chemical physics associated with binding between two
molecules. One way to capture some of the properties of these interactions is
through the use of statistical mechanics and thermodynamics.
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As described briefly already in Chapt2r the underlying representation for
both statistical mechanics and chemical kinetics is to identify the appropriate mi-
crostates of the system. A microstate corresponds to a given configuohtioe
components (species) in the system relative to each other and we mustateume
all possible configurations between the molecules that are being modeled.

In statistical mechanics, we model the configuration of the cell by the pilebab
ity that system is in a given microstate. This probability can be calculated based
the energy levels of the fllerent microstates. Consider a setting in which our sys-
tem is contained within a reservoir. LEt represent the energy in the resevai,
the energy in the system afgh; = E; + E sthe total (conserved) energy. Given two
different energy IeveIE(Sl) and E(SZ) for the system of interest, &/ (Eo; — Eg_))
be the number of possible microstates of the reservoir with ertgrgyE o — Eg),

i = 1,2. The laws of statistical mechanics state that the ratio of probabilities of be-
ing at the energy levelE® andE® is given by the ratio of number of possible
states of the reservoir:
P(ES) _ Wi (Ewi—ESY)
PEP) Wi (Eoi-ED)
Defining the entropy of the system&s- kg InW, wherekg is Boltmann’s constant,
we can rewrite equatiord(l) as

(4.1)

W, (Eior— ES) _ eSr(BaEke
W (Etot — E(sz)) eST(Etot—E(sz))/ ke

We now approximat&, (Eq:— Es) in a Taylor series expansion arouBgy, under
the assumption tha, > Eg:

0S
Sr(Etot - Es) ~ Sr(Etot) - a_Er Es.

From the properties of thermodynamics, if we hold the volume and number of
molecules constant, then we can define the temperature as

0S 1

9ElN T

and we obtain ®
P(Egl)) ~ g Es’/keT

PED) o T

This implies that
P(ED) o g EL/(kaT)

and hence the probability of being in a microstais given by

1
B(q) = S e /teT), (4.2)
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where we have writte for the energy of the microstate adds a normalizing
factor, known as theartition function defined by

7= Z g Ea/(keT)
qeQ

By keeping track of those microstates that correspond to a given sysém s
(also called a macrostate), we can compute the overall probability that a give
macrostate is reached.

In order to determine the energy levels associated wifferdint microstates,
we will often make use of théee energyof the system. Consider an elementary
reaction A+ B = AB. Let E be the energy of the system, taken to be operating
at pressuré® in a volumeV. Theenthalpyof the system is defined &= E + PV
and theGibbs free energis defined a$&s = H— T S whereT is the temperature of
the system an@ is its entropy (defined above). The change in bond energy due to
the reaction is given by

AH = AG+TAS,

where theA represents the change in the respective quantityd represents the
amount of heat that is absorbed from the reservoir, which tlffesta the entropy
of the reservoir.

Derivation to be added later. Review
The resulting formula for the probability of being in a microstais given by

1
P(q) = — g AG/keT
(©) €

Example 4.1(Transcription factor binding)Suppose that we have a transcription
factor R that binds to a specific target region on a DNA strand (such gsrthe
moter region upstream of a gene). We wish to find the probablitynqthat the
transcription factor will be bound to this location as a function of the number of
transcription factor molecules in the system. If the transcription factor is a re-
pressor, for example, knowirg,oundNr) Will allow us to calculate the likelihood

of transcription occurring.

To compute the probability of binding, we assume that the transcription factor
can bind non-specifically to other sections of the DNA (or other locationsen th
cell) and we leiNps represent the number of such sites. WeBgjngrepresent the
free energy associated with R bound to its specified target regioBamepresent
the free energy foR in any other non-specific location, where we assume that
Epound< Ens. The microstates of the system consist of all possible assignments of
theng transcription factors to either a non-specific location or the target redion o
the DNA. Since there is only one target site, there can be at most oneripgiosc
factor attached there and hence we must count all of the ways in whicl eétoe
or one molecule of R are attached to the target site.
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If none of theng copies of R are bound to the target region then these must be
distributed between th,,s non-specific locations. Each bound protein has energy
Ens, SO the total energy for any such configuratiomggEns. The number of such
combinations is(';'];S) and so the contribution to the partition function from these
microstates is

7w = an e—nREns/(kBT) = —an! e_nREnS/(kBT)
7\ nk NR!(Nns— NR)!

For the microstates in which one molecule of R is bound at a target site and the
otherng — 1 molecules are at the non-specific locations, we have a total energy of
Epound+ (NR — 1)Ens and((n':”_sl)) possible such states. The resulting contribution to
the partition function is

Nig! o (Evound-("r-1)Eng)/(keT)

Zbound=

The probability that the target site is occupied is now computed by looking at
the ratio of theZyoungto Z = Zns+ Zpoung After some basic algebraic manipulations,
it can be shown that

(ﬁﬁwl) exp—(Epound+ Ens)/(ksT)]
+ (ﬁﬁwl) exp[ —(Ebound+ Ens)/(ksT)] '

Pbounc(nR) =

If we assume thall,s > ng thenNps— nr+ 1 ~ Ny, and we can write

Knr
1+ knR’

1
PooundNR) ~ where k= N exp[—(Ebound— Ens)/(ksT)].
ns
As we would expect, this says that for very small numbers of represBgysq
is close to zero, while for large numbers of repressBgsung— 1. The point at
which we get a binding probability of 0.5 is wher = 1/k, which depends on the
relative binding energies and the number of non-specific binding sites.  V

Example 4.2(Combinatorial promoter)A combinatorial promoter is a region of
DNA in which multiple transcription factors can bind and influence the sulesgqu
binding of RNA polymerase. Combinatorial promoters appear in a numbextof n
ural and engineered circuits and represent a mechanism for creatfitofp-tike
behavior, for example by having a gene that controls expression of istran-
scription factors.

One method to model a combinatorial promoter is to use the binding energies
of the diferent combinations of proteins to the operator region, and then compute
the probability of being in a given promoter state given the concentratiosobf @f
the transcription factors. Tabdel shows the possible states of a notional promoter
that has two operator regions—one that binds a repressor protein Bnatiaer
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Table 4.1: Configurations for a combinatorial promoter wvath activator and a repres-
sor. Each row corresponds to a specific macrostate of theqteornim which the listed
molecules are bound to the target region. The relative gnafrgtate compared with the
ground state provides a measure of the likelihood of tha¢ stecurring, with more nega-
tive numbers corresponding to more energetically faverabhfigurations.

State  OR1 OR2 Prom Eq4(AG) Comment

S - - - 0 No binding (ground state)

S, - - RNAP -5 RNA polymerase bound

S3 R - - -10 Repressor bound

S4 — A - -12 Activator bound

Ss - A RNAP -15 Activator and RNA polymerase

that binds an activator protein A. As indicated in the table, the promoter hees thr
(possibly overlapping) regions of DNA: OR1 and OR2 are binding sitesher
repressor and activator proteins, and Prom is the location where RNAprase
binds. (The individual labels are primarily for bookkeeping purposesmay not
correspond to physically separate regions of DNA.)

To determine the probabilities of being in a given macrostate, we must compute
the individual microstates that occur at a given concentrations of gepreac-
tivator and RNA polymerase. Each microstate corresponds to an indigdtaf
molecules binding in a specific configuration. So if we hayeepressor molecules,
then there is one microstate correspondingaohdifferent repressor molecule that
is bound, resulting img individual microstates. In the case of configuraties)
where two diferent molecules are bound, the number of combinations is given by
the product of the numbers of individual moleculeg; nrnap, reflecting the pos-
sible combinations of molecules that can occupy the promoter sites. Thdlovera
partition function is given by summing up the contributions from each microstate:

7 — g Eo/(keT) | NRNAP g Ernap/(ksT) N] g Er/(keT)

+Na g Ea/ksT) NANRNAP g Earnap/(keT) (4.3)

The probability of a given macrostate is determined using equa®@ or
example, if we define the promoter to be “active” if RNA polymerase is bound
to the DNA, then the probability of being in this macrostate as a function of the
various molecular counts is given by

1 —Ernap/(keT —Enrnap/(keT
Pactive(NR> NA, NRNAP) = > (nRNAPe ruap/(keT) 1y nrape EaRe/ (ke ))

3 Ka:RnAP NA + KrRnAP
1+ krnap + KR MR + (Ka + Ka:rnap)Na”
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where
ky = g (Ex—Eo)/(keT)_

From this expression we see thamif > na thenPyciive tends to 0 while i > ng
thenPggivetends to 1, as expected. \Y

Chemical master equation (CME)

The statistical physics model we have just considered gives a descriftibe
steady statgroperties of the system. In many cases, it is clear that the system
reaches this steady state quickly and hence we can reason about éh@beh

the system just by modeling the free energy of the system. In other situations,
however, we care about the transient behavior of a system or thenitygaf a
system that does not have an equilibrium configuration. In these instameenust
extend our formulation to keep track of how quickly the system transitioms fro
one microstate to another, known as themical kineticef the system.

To model these dynamics, we return to our enumeration of all possible mi-
crostates of the system. LE(q,t) represent the probability that the system is in
microstateq at a given timet. Hereq can be any of the very large number of
possible microstates for the system, which for chemical reaction systemsnwe ca
represent in terms of a vector consisting of the number of molecules oépactes
that is present. We wish to write an explicit expression for lirRfe;t) varies as a
function of time, from which we can study the stochastic dynamics of the system.

We begin by assuming we have a set\bfreactions I]R j=1,...,M, with ¢
representing the change in state associated with reacti@pBcificallyj is given
by the jth column of the stoichiometry matriX. The propensity functiordefines
the probability that a given reaction occurs in &siently small time steplt:

aj(g,t)dt = Probability that reaction jFWiII occur between time
and timet + dt given that the microstate

The linear dependence aft relies on the fact thalt is chosen sfliciently small.
We will typically assume thaa; does not depend on the timend writea;(g)dt
for the probability that reactiopoccurs in state.
Using the propensity function, we can compute the distribution of states at time
t + dt given the distribution at time

M M
P(a.t+d) = P(a.)(1- > aj()dt)+ > Pa—&))aj(a—&))dt
j=1 j=1
(4.4)

M
=P+ > (aj@-&)P(a-£.1) - aj(Q)P(a.t))dt
j=1
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Sincedtis small, we can take the limit @& — 0 and we obtain thehemical master
equation(CME):

M
%;MJ)=g;&ﬁm—§ﬂpm—fp0—aM®PMJD (4.5)

This equation is also referred to as theward Kolmogorov equatiofor a discrete
state, continuous time random process.

Despite its complexity, the master equation does capture many of the important
details of the chemical physics of the system and we shall use it as ourépge
sentation of the underlying dynamics. As we shall see, starting from thatiequ
we can then derive a variety of alternative approximations that allow ussteean
specific equations of interest.

The key element of the master equation is the propensity funat{ort), which
governs the rate of transition between microstates. Although the detailedofalue
the propensity function can be quite complex, its functional form is oftetivelg
simple. In particular, for a unimolecular reaction of the forra+AB, the propensity
function is proportional to the number of molecules of A that are present:

aj(q,t) = kjna. (4.6)

This follows from the fact that each reaction is independent and heedeéti-
hood of a reaction happening depends directly on the number of copfeshaft
are present.

Similarly, for a bimolecular reaction, we have that the likelihood of a reaction
occurring is proportional to the product of the number of molecules di égme
that are present (since this is the number of independent reactiongithatcur)
and inversely proportional to the volunge Hence, for a reaction of the form-A
B — C we have

k.
3(.) = 5 Nans. 4.7)

The rigorous verification of this functional form is beyond the scopeisftéxt, but
roughly we keep track of the likelihood of a single reaction occurring betwe
and B and then multiply by the total number of combinations of the two molecules
that can reacta - ng).

A special case of a bimolecular reaction occurs whenBj so that our reaction
is given by A+ A — B. In this case we must take into account that a molecule
cannot react with itself, and so the propensity function is of the form

1

a(@0 = 3 (- 1) @8)

The termna(na — 1) represents the number of ways that two molecules can be
chosen from a collection afa identical molecules.
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Table 4.2: Examples of propensity functions for some comoases31]. Here we take
andrp to be the &ective radii of the moleculesy® = mymy/(my + my) is the reduced mass
of the two molecules is the volume over which the reaction occurds temperaturesg

is Boltzmann’s constant anth, ng are the numbers of molecules AfandB present.

Reaction type Propensity function cd&cient, k;

; 5 172
Reaction occurs if molecules “touch” (ikﬁ;r) n(ra+rp)?

. . o 1/2
Reaction occurs if molecules collide with enexgy (ik—%T) / A(ra+rp)2-e</keT
Steady state transcription factor PhoundocNRNAP

Note that the use of the paramelgrin the propensity functions above is in-
tentional since it corresponds to the reaction rate parameter that is piresea
reaction rate equation model. The factor(®ffor biomolecular reactions models
the fact that the propensity of a biomolecular reaction occurring depxudisitly
on the volume in which the reaction takes place.

Although it is tempting to extend the formula for a biomolecular reaction to the
case of more than two species being involved in a reaction, usually sutforea
actually involve combinations of bimolecular reactions, e.qg.:

A+B+C—D = A+B—AB AB+C—D

This more detailed description reflects that fact that it is extremely unlikely that
three molecules will all come together at precisely the same instant, versus the
much more likely possibility that two molecules will initially react, followed be a
second reaction involving the third molecule.

The propensity functions for these cases and some others are givaoléd D

Example 4.3 (Repression of gene expression)e consider a simple model of
repression in which we have a promoter that contains binding sites for RINA p
merase and a repressor protein R. RNA polymerase only binds wherptiesser
is absent, after which it can undergo an isomerization reaction to form @m op
complex and initiate transcription. Once the RNA polymerase begins to create
MRNA, we assume the promoter region is uncovered, allowing anothessgpre
or RNA polymerase to bind.

The following reactions describe this process:

R, R+DNA — R:DNA

R,: R:DNA — R+DNA

R;:  RNAP+DNA — RNAP:DNA®

R,: RNAP:DNA® — RNAP+DNA

R.: RNAP:DNA®— RNAP:DNA®°

R;: RNAP:DNA° — RNAP+DNA + mRNA,
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where RNAP:DNA represents the closed complex and RNAP:DNApresents
the open complex. The states for the system depend on the number of n®lecule
of each species that are present. If we assume that we stanipvigpressors and
nrnap RNA polymerases, then the possible states for our system are given by

State DNA R RNAP R:DNA RNAP:DNA RNAP:DNA°
a1 1 NR NRNAP 0 0 0
g2 0 nr-1 ngrnap 1 0 0
(0 0 NR Nrnap— 1 0 1 0
Q4 0 R Nrnap—1 0 0 1

Note that we do not keep track of each individual repressor or RNpnperase
molecule that binds to the DNA, but simply keep track of whether they aredooun
or not.

We can now rewrite the chemical reactions as a set of transitions between the
possible microstates of the system. Assuming that all reactions take placelin a vo
umeQ, we use the propensity functions for unimolecular and bimolecular reactions
to obtain:

Ri: o — 0y a(th)=(ki/Q)nRr R,: O, — 0 a(g) =k
Ry: 0 — 03 ag(gu) = (ka/Q) Nrnap Ry 03— 0 () =ks
Ry: 03— as(0)=ks Rg: d,— 0y, as(t) =ke

The chemical master equation can now be written down using the propensity fu
tions for each reaction:

P(q1.t) —(ki/Q)Nr — (ka/Q)NrNap ko Ka ke | (P(01,t)

d |P(a.t)] _ (ki/Q)nR —ko 0 0 [ [P(a2.1)
dt [ P(ds,t) (ka/Q)NrNnaP 0 -ki—-ks O [|P(gst)]"
P(0s.t) 0 0 ks —ks) (P(Qa.1)

The initial condition for the system can be takerPég,0) = (1,0,0,0), correspond-
ing to the state);. A simulation showing the evolution of the probabilities is shown
in Figure4.1

The equilibrium solution for the probabilities can be solved by setfing 0,
which yields:

Py(qy) = koK4Q (K4 +Ks)

k1keNr(Ka + Ks) + koksnrnap(Ks + Ks) + kokeQ (K4 + ks)
Pu(tp) = kiksnr(Ks +Ks)

k1ksNr(Ka + ks) + kokanrnap(Ks + Ks) + kokeQ(Ks + Ks)
Po(C) = koksKsNrnAP

KiksnNr(Ks + Ks) + koksnrnap(Ks + Ke) + Kake€2(K4 + Ks)
Po(Cu) = koksKsNrnaP

k1KsNr(Ks + ks) + kokanrnap(Ks + Ks) + kokeQ(Ks + Ks)
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1

P(a1)
0.8 P(q2)
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P(g4)
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Figure 4.1: Numerical solution of chemical master equatitorsimple repression model.

We see that the functional dependencies are similar to the case of the ctariaina
promoter of Examplel.2, but with the binding energies replaced by kinetic rate
constants. v

Example 4.4(Transcription of mMRNA) Consider the production of mMRNA from
a single copy of DNA. We have two basic reactions that can occur: mRMA ca
be produced by RNA polymerase transcribing the DNA and producing adAnR
strand, or mRNA can be degraded. We represent the micrastdtthe system in
terms of the number of mMRNA's that are present, which we writa fig ease of
notation. The reactions can now be represented as+1, corresponding to tran-
scription andé, = —1, corresponding to degradation. We choose as our propensity
functions

ai(n,t) = o, ax(n,t) =dn,

by which we mean that the probability of that a gene is transcribed in dine
adt and the probability that a transcript is created in tidtés sndt (proportional
to the number of MRNA'S).

We can now write down the master equation as described above. Equadpn (
becomes

P(n.t+dt) = P(n,H)(1- >  an.ndt)+ > P(n-&,ta(q-&)dt
i=1,2 i=1,2
= P(n,t) —ai(n,t)P(n,t) — ax(n,t)P(n,t)
+ai1(n—-1Lt)P(n-1,t)+ax(n+ L, t)P(n+1)
= P(n,t) + aP(n—1,t)dt— (@ —sn)P(n, t)dt+ 6(n+ 1)P(n+ 1,t)dt.

This formula holds fon > 0, with then = 0 case satisfying
P(0,t +dt) = P(0,t) — «P(0, t)dt+ 5 P(1, t)dt.

Notice that we have an infinite number of equations, simcan be any positive
integer.
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We can write the dferential equation version of the master equation by sub-
tracting the first term on the right hand side and dividingdlly

dgtP(n, t) = aP(n-1,1t) — (@ + sn)P(n,t) + 5(n+ L)P(n+ 1,t), n>0
dgtP(O, t) = —aP(0,t)dt+ 5P(1,1t).

Again, this is an infinite number of filerential equations, although we could take
some limitN and simply declare th&(N,t) = 0 to yield a finite number.

One simple type of analysis that can be done on this equation without truncating
it to a finite number is to look for a steady state solution to the equation. In this
case, we se(n,t) = 0 and look for a constant solutid?(n,t) = pe(n). This yields
an algebraic set of relations

0= —ape(0)+dpe(1) == aPe(0) = 6 pe(1)
0= ape(0) — (a +6) pe(1) + 26 pe(2) aPe(1) = 26 pe(2)
0= ape(1) — (a +26) pe(2) + 30 Pe(3) aPe(1) = 30 pe(3)

ap(n- 1)': nsp(n).

It follows that the distribution of steady state probabilities is given by the Boiss
distribution (@/6)"
—/0\X

and the mean, variance and fiogent of variation are thus

1 )
u=2 o222 cv=H-_—_ |2
0 0 o \u o
Note taht the caficient of variation increasesif decreases. \%

Chemical Langevin equation (CLE)

The chemical master equation gives a complete description of the evolutioa of th
distribution of a system, but it can often be quite cumbersome to work with directly
A number of approximations to the master equation are thus used to provide more
tractable formulations of the dynamics. The first of these that we shalld=aris
known as thehemical Langevin equatiqiCLE).

To derive the chemical Langevin equation, we start by assuming that theenumb
of molecules in the system is large and that we can therefore represeysthen
using a vector of real numbeb§, with X; representing the (real-valued) number
of molecules in § (Often X; will be divided by the volume to give a real-valued
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concentration of species.pIn addition, we assume that we are interested in the
dynamics on time scales in which individual reactions are not important and so
we can look at how the system state changes over time intervals in which many
reactions occur and hence the system state evolves in a smooth fashion.

Let X(t) be the state vector for the system, where we assume now that the ele-
ments ofX are real-valued rather than integer valued. We make the further approx-
imation that we can lump together multiple reactions so that instead of keeping
track of the individual reactions, we can average across a numbeactions over
a timer to allow the continuous state to evolve in continuous time. The resulting
dynamics can be described by a stochastic process of the form

M M
Xi(t+7) = X0+ ) &a(XO)r+ ) & 2(XOIN(0, V7,
=1 =1

wherea; are the propensity functions for the individual reactiafisare the corre-
sponding changes in the system stafeand \V; are a set of independent Gaussian
random variables with zero mean and variance

If we assume that is small enough that we can use the derivative to approxi-
mate the previous equation (but still large enough that we can averagaoliple
reactions), then we can write

dX(t) < $ 1/2 $
a0 = i)+ ) EiaEXNTi) =t AX@) + ) B (X0,
— — —
i i i 4.9)
wherel’j are white noise processes (see Appertilx This equation is called the

chemical Langevin equatiqi€LE).

Example 4.5(Protein production) Consider a simplified two-step model of pro-
tein production in which mRNA is produced by DNA and protein by mRNA. We
do not model the detailed processes of isomerization and elongation of th& mRN
and polypeptide chains. We can capture the state of the system by keegkoftr
the number of copies of DNA, mRNA, and protein, which we denotXpy Xm
andXp, respectively, so thaX = (Xp, X, Xp).

The simplified reactions with the corresponding propensity functions aea gi
by

R,: DNA 5 mRNA & =(1,0) a1 (X) = a Xp

R,: MRNAS ¢ £=(-1,0)  a(X)=06Xn
Rs: MRNA S mRNA+protein -~ &= (0,1) az(X) = k Xm
R,: proteinb ¢ fa=(0,-1)  ayX) =y Xp.
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Using these, we can write the Langevin equation as

dd—)i'n = QXD - 5Xm + \/Q’XDF]_(t) - V(SXmFZ(t)

d
d_XtP = X = yXp + ViKla(®) = V¥Rl a(0).

We can keep track of the species concentration by dividing the numbeledubes
by the volumeQ. Lettingm= X,,/Q, P = Xp/Q, andag = aXp/Q, we obtain the

final expression

d(m)_ (=6 0} (m L [@o +i (\/a0+6m)rm

dt (P K =y)\P 0) Vo (\/Km+yP)Fp '
wherel'r, andI'p are independent white noise processes with unit variance (note
that here we have used thafif andI'> are Gaussian white noises with unit vari-

ance, thenyal'y + VbI'; = Va+bI' with " also a Gaussian white noise with unit
variance). \%

Fokker-Planck equations (FPE)

The chemical Langevin equation provides a stochastic ordindigrential equa-
tion that describes the evolution of the system state. A slighffierdint (but com-
pletely equivalent) representation of the dynamics is to model how the probab
ity distribution P(x,t) evolves in time. As in the case of the chemical Langevin
equation, we will assume that the system state is continuous and write down a
formula for the evolution of the density functigo(x,t). This formula is known
as theFokker-Planck equationdPE) and is essentially an approximation on the
chemical master equation.
Consider first the case of a random process in one dimension. We aggtme

the random process is in the same form as the previous section:

% = A(X(t)) + B(X(t))I'(t). (4.10)
The functionA(X) is called thedrift term and B(X) is thedifusion term It can
be shown that the probability density function f&r p(x,t), satisfies the partial
differential equation

1 62

ap 0 2
5t x1) = 6X(A(X’t) p(x,t)) + 26x2(B (X, )p(x,1t)) (4.11)
Note that here we have shifted to the probability density function since we are

consideringX to be a continuous state random process.
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In the multivariate case, a bit more care is required. Using the chemicagizang
equation 4.9), we define

M M
Di(x) = Y Bi0cD,  Cij(xt) =) Bk(xOBK(D,i<j=1....M.
j=1 k=1

The Fokker-Planck equation now becomes

o, . o, 1h 9 #
30D =2, 5y DRI+ 3 ), 50 5 (Dix0p0cD)

M (92
_ Z I%0X; (Cij(xHp(x1). (4.12)
] = 1
<]

Note that the Fokker-Planck equation is very similar to the chemical master
equation: both provide a description of how the probability distribution vases
function of time. In the case of the Fokker-Planck equation, we regarstale as
a continuous set of variables and we write a partifiledgential equation for how
the probability density function evolves in time. In the case of the chemical master
equation, we have a discrete state (microstates) and we write an ordiffery di
ential equation for how the probability distribution (formally the probability mass
function) evolves in time. Both formulations contain the same basic information,
just using slightly diferent representations of the system and the probability of
being in a given state.

Linear noise approximation (LNA)

The chemical Langevin equation and the Fokker-Planck equation prapjgtex-
imations to the chemical master equation. A slightlffetient approximation can
be obtained by expanding the density function in terms of a size parafieitiis
approximation is know as theear noise approximatiofLNA) or the Q expan-
sion[49].

We begin with the master equation forcantinuousrandom variableX. For-
mally deriving this requires a considerabléoet since we have to extend our pre-
vious discussions to the case where the random variable has a contseiafs
values. To do this, we rewrite the propensity functa(u,t) asag(q,t; ), where
g€ R"is a vector of continuous states afid R" is a vector of continuous “incre-
ments” (the analog of reactions). We also explicitly keep track of the depeed
of the propensity function on a parameg(the volume in our case).

Using this notation, we can write the master equation for the random variable
X as

)= [ (ax- £5QP-£0 -2 x E DPX D)
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Since we are working with continuous variables, we now have an integpdae
of our previous sum. In addition, if we take the derivativePgx, t) with respect to
the continuous variable, we can obtain the pdf of the distributigafx, t) and this
satisfies the equation

%f(x,t) _ f (Be(x— £,1; Q) p(X—£.1) — 8e(x, Q)X 1) .

Although we are skipping important theoretical details, the basic idea of this fo
mulation is the same as the discrete chemical master equation: we keep track of
how the probability density changes by “summing” (integrating) over all éncr
mental) reactions going into and out of that particular state.

We now assume that the mean Xfcan be written afd¢(t) where¢(t) is a
continuous function of time that represents the evolution of the meai@f To
understand the fluctuations of the system about this mean, we write

X =Qp+Q27,

whereZ is a new variable representing the perturbations of the system about its
mean. We can write the distribution fdras

Pz(z.t) = Px(Qe(t) + Q32 1)

and it follows that the derivatives @fz can be written as

9"z _ 39"Px

Z X
opz _0px . dpdpx dpx = 1dpapz
ot ot +th ox ot +det 0z’

We further assume that tlf& dependence of the propensity function is such that

a:(Q¢.1,Q) = F(Q)a(¢),

whered’is not dependent on the paramegeor the timet. From these relations,
we can now derive the master equation figrin terms of powers of2 (derivation
omitted).
The Q2 term in the expansion turns out to yield

d¢ X(0)

— = Qp)d 0)=——=

o= [eatanse  s0="2
which is precisely the equation for the mean of the concentration. It ctrefure
shown that the terms i2° are given by

2
LD - i) emelzt)+ oo EED (a13)
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where
ay(X) = f &8:()de, = (.

Notice that in the case thaft) = ¢ (a constant), this equation becomes the Fokker-
Planck equation derived previously.

Higher order approximations to this equation can also be carried out pynkee
track of the expansion terms in higher order power£2ofin the case wher@
represents the volume of the system, the next term in the expangion &nd this
represents fluctuations that are on the order of a single molecule, wiictsoally
be ignored.

Reaction rate equations (RRE)

As we already saw in Chapt@rthe reaction rate equations can be used to describe
the dynamics of a chemical system in the case where there are a large rafimber
molecules whose state can be approximated using just the concentratiors of th
molecules. We re-derive the results from Sectohhere, being more careful to
point out what approximations are being made.

We start with the chemical Langevin equatiodsd, from which we can write
the dynamics for the average quantity of the each species at each point:in time

d(Xi(t))
dt

M
> &t (X)), (4.14)
=1

where the second order term drops out under the assumption thgtdiage inde-
pendent processes with zero mean. We see that the reaction rate ex)titom

by definingx = (Xi)/Q and assuminghat (a;(X(t))) = a;((X(t))). This relation-
ship is true whem,; is linear (e.qg., in the case of a unimolecular reaction), but is an
approximation otherwise.

4.2 Simulation of Stochastic Systems

Suppose that we want to generate a collection of sample trajectories fohastic
system whose evolution is described by the chemical master equétin (

d
rACOE Za(q—fi)P(q—a,t)—Za«(q)P(q,t),

whereP(qg,t) is the probability of being in a microstatgat timet (starting from
(o at timetp) and a(q) is the propensity function for a reactionstarting at a
microstateq and ending at microstatg+ &. Instead of simulating the distribution
function P(qg,t), we wish to simulate a specific instangg) starting from some
initial conditiongp(to). If we simulate many such instanceyft), their distribution
at timet should matchP(q, t).
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A naive algorithm for stochastic simulation
The Stochastic Simuilation Algorithm

To illustrate the basic ideas that we will use, consider first a simple birth ggoce
which the microstate is given by an integge {0,1,2,...} and we assume that the
propensity function is given by

a(g)dt = adt, E=+1

Thus the probability of transition increases linearly with the time increndént
(so birth events occur at rafie on average). If we assume that the birth events are
independent of each other, then it can be shown (see App@#fyilkat this process
has Poisson distribution with parameiet

(A0

—AT
T

Pt+7)-qt)=0) = :
where is the diference in time and is the diference in coung. In fact, this
distribution is a joint distribution in time and count, and by setting = 1 it can
be seen that the time to the next reactiofollows an exponential distribution and
has density function

pr(r) =1e .

The exponential distribution has expectationt and so we see that the average
time between events is inversely proportional to the reactiontate

Consider next a more general case in which we have a countable nuhmbier o
crostates) € {0,1,2,...} and we lek;; represent the transition probability between
a microstaté and microstatg. The birth process is a special case givekiby; = A
and all othek; = 0. The chemical master equation describes the joint probability
that we are in statg =i at a particular timé. We would like to know the probabil-
ity that we transition to a new statg= j at timet + dt. Given this probability, we
can attempt to generate an instance of the varigfh)eby first determining which
reaction occurs and then when the reaction occurs.

Let P(j,7) ;= P(j,t+7+dr|i,t+7) represent the probability that we transition
from the state to the statg in the time interval {+ 7, t+ 7+ dr]. For simplicity and
ease of notation, we will take= 0. LetT := Tj; be the time at which the reaction
first occurs. We can write the probability that we transition to sjatethe interval
[r,7+d7] as

P(j,7) = P(T > 1) kji dr, (4.15)

whereP(T > 7) is the probability that no reaction occurs in the time intervat]O
andkjidr is the probability that the reaction taking stat® statej occurs in the
nextdr seconds (assumed to be independent events, giving the productef the
probabilities).
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To computeP(T > 1), define
ki = Z Kii
]

so that (- E)dr is the probability that no transition occurs from staile the next
dr seconds. Then, the probability that no reaction occurs in the interwat 7]
can be written as

P(T > 7+d7) = P(T > 7)(1-k) dr. (4.16)
It follows that
EP(T >7) = lim PO>7+d) PO >1) _ -P(T > 1) k.
dr dr—0 dr

Solving this diferential equation, we obtain
P(T >1) =™, (4.17)

so that the probability that no reaction occurs in tintecreases exponentially with
the amount of time that we wait, with rate given by the sum of all the reactions that
can occur from state

We can now combine equatiod.L7) with equation 4.15) to obtain

P(j,7) = P(j.r+dr|i,0) = kjj e %7 dir.

We see that this has the form of a density function in time and hence the pitgbab
that the next reaction is reactignindependent of the time in which it occurs, is

ok g Ki
Pji = kje " Tdr = —. (4.18)
0 Ki

Thus, to choose the next reaction to occur from a dtate choose betweeN
possible reactions, with the probability of each reaction weightekl; bk .

To determine the time that the next reaction occurs, we sum over all possible
reactionsj to get the density function for the reaction time:

pr(0) = > ke K™ = ke 7,
i

This is the density function associated with a Poisson distribution. To compute a
time of reactionAt that draws from this distribution, we note that the cumulative
distribution function forT is given by

At At _ _
fr(r)dr= | ke "dr=1-e"
0 0
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The cumulative distribution function is always in the rangelJ@and hence we can
computeAt by choosing a (uniformly distributed) random numioen [0,1] and

then computing
1 1

(This equation can be simplified somewhat by replacirg Iith r’ and noting
thatr’ can also be drawn from a uniform distribution on1)

Note that in the case of a birth process, this computation agrees with our ear-
lier analysis. Namelyk; = A2 and hence the (only) reaction occurs according to an
exponential distribution with parameter

This set of calculations gives the following algorithm for computing an ingtanc
of the chemical master equation:

1. Choose an initial conditiog at timet = O.
2. Calculate the propensity functioagq) for each possible reactian

3. Choose the time for the reaction according to equatidrf, wherer € [0, 1]
is chosen from a uniform distribution.

4. Use a weighted random number generator to identify which reaction will
take place next, using the weights in equatiérig.

5. Updateg by implementing the reactiochand update the timeby &t
6. If T < Tstop gOtO Ste®.

This method is sometimes called “Gillespie’s direct meth@®, B0], but we shall
refer to it here as the “stochastic simulation algorithm” (SSA). We note thaethe r
action number in stegp can be computed by calculating a uniform random number
on [0, 1], scaling this by the total propensidy; a;(&,q), and then finding the first
reactioni such thatzij:0 a(éj,q) is larger than this scaled random number.

Example 4.6(Transcription) To be completed. V Review

4.3 Input/Output Linear Stochastic Systems

In many situations, we wish to noise how noise propogates through a bioraslecu
system. For example, we may wish to understand how stochastic variation&in RN
polymerase concentratofi@ct gene expression. In order to analyze these cases, we
specialize to the case of a biomolecular system operating around a fixedioge
point.

We now consider the problem of how to compute the response of a lingansys
to a random process. We assume we have a linear system described spatate
as

X=AX+FW Y =CX (4.20)
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Given an “input”W, which is itself a random process with meaft), variance

o?(t) and correlation (t,t + 7), what is the description of the random proc¥8s
Let W be a white noise process, with zero mean and noise inteQsity

r(r) = Qs(7).

We can write the output of the system in terms of the convolution integral

t
Y(t) = f h(t—r)W(r)dr,
0
whereh(t — 1) is the impulse response for the system
h(t—7) = CE"" B+ Ds(t - 7).

We now compute the statistics of the output, starting with the mean:
t
ECV0) = E( [ ht=n)W(r) o)
t
- [ he-mEwadn o

Note here that we have relied on the linearity of the convolution integral tahpill
expectation inside the integral.

We can compute the covariance of the output by computing the corretafion
and settingr$ =ry(0). The correlation function foy is

t S
re(t.9) = E(Y(OY(S) = E( fo h(t— m)W(r) - fo h(s—&W(E) d¢)

t S
= fo fo h(t— )W) W(Eh(s— &) dnd)

Once again linearity allows us to exchange expectation and integration
t S
(9= [ [ R WE)Ns-drds

t S

- [ |t n)Qotn-en(s- &) e
0 JO
t

- [ ha-nens-na

Now lett = s—t and write
t
rv(t) =ry(t,t+7) = f h(t—n)Qh(t+7—-n)dn
0

{
_ fo hEQhE+7)dé  (settingé = t—7)
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Finally, we lett — oo (steady state)

limry(t,t+7) =ry(r) = foo h(¢)Qh(¢ + 7)dé (4.21)
o0 0

If this integral exists, then we can compute the second order statistics foutiet
Y.

We can provide a more explicit formula for the correlation functiamterms of
the matrice®\, F andC by expanding equatior(21). We will consider the general
case wher&V € RP andY € R% and use the correlation matii(t, s) instead of the
correlation functiorr(t, s). Define thestate transition matrixd(t, tg) = e*t-%) so
that the solution of systend (20 is given by

X(t) = D(t, to)X(to) + ft t(D(t,/l)FW(/l)d/l

Proposition 4.1 (Stochastic response to white noisept E(X(tg) X" (to)) = P(to)
and W be white noise witB(W(1)WT (£)) = Rwd(1 — &). Then the correlation ma-
trix for X is given by

Rx(t,s) = P)®T(s1)

where Rt) satisfies the linear matrix glerential equation
P(t)= AP+PAT +FRyF,  P(0) =P.
Proof. Using the definition of the correlation matrix, we have

E(X(®)XT(9) = E((D(t, 0)X(0)XT (0)DT (t,0)+ cross terms
' T )
+ j(; D(t, ) FW(E) dfj(; W (Q)F ' @(s,2)dA
= @(t, 0)E(X(0)X" (0))®(s. 0)

t s
T T
+f0 fo O(t, ) FE(W(EW' (1))F ' (s, 1)déda

= @(t,0)P(0)¢' (s,0)+ fo t O(t, )FRw()FTd(s, ) dA.

Now use the fact thab(s,0) = ®(s,t)®(t,0) (and similar relations) to obtain
Rx(t.s) = P()®"(s.t)
where -
P(t) = ®(t,0)P(0)® (t,0) + f @(t, )FRWFT (DD (t,1)dA

Finally, differentiate to obtain i

P(t)= AP+PAT +FRyF,  P(0) =Pq
(see FriedlandZ6] for details). O
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The correlation matrix for the outpit can be computed using the fact that
Y = CX and henceRy = CTRxC. We will often be interested in the steady state
properties of the output, which are given by the following proposition.

Proposition 4.2(Steady state response to white naider a time-invariant linear
system driven by white noise, the correlation matrices for the state and output
converge in steady state to

Rx(1) = Rx(t,t+7) = P"",  Ry(r) = CRx(r)CT
where P satisfies the algebraic equation
AP+PAT +FRyFT=0  P>0. (4.22)

Equation 4.22) is called the_yapunov equatioand can be solved in MATLAB
using the functiorlyap.

Example 4.7(First-order system)Consider a scalar linear process
X =—aX+W, Y =cX

whereW is a white, Gaussian random process with noise intensityJsing the
results of Propositiod.1, the correlation function foX is given by

Rx(t,t+7) = p(t)e ™
wherep(t) > 0 satisfies
p(t) = —2ap+o2.

We can solve explicitly fop(t) since it is a (non-homogeneous) lineatteiential
equation:

p(t) = € **'p(0)+ (1- e‘z""‘)(r—z-
2a

Finally, making use of the fact that= cX we have

2
F(t,t+7) = (e 2p(0)+ (1— e-Zat)%)e—af.

In steady state, the correlation function for the output becomes

2

r(r) = —22 e,

Note correlation function has the same form as the Ornstein-Uhlenbeckgsrn
Example?? (with Q = ¢?02). \Y
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As in the case of deterministic linear systems, we can analyze a stochastic linear
system either in the state space or the frequency domain. The frequenaindip-
proach provides a very rich set of tools for modeling and analysis otionerected
systems, relying on the frequency response and transfer functioepresent the

flow of signals around the system.

Given a random proceg§t), we can look at the frequency content of the prop-
erties of the response. In particular, if we ¢ét) be the correlation function for a
(scalar) random process, then we definegbeer spectral density functias the
Fourier transform op:

S(w) = ﬁwp(T)e—ij dr, p(‘r) - % Ioo S(w)ejwr dr.

The power spectral density provides an indication of how quickly the satfie
a random process can change through the frequency content: ifisheigh fre-
guency content in the power spectral density, the values of the ranaigaile can
change quickly in time.

Example 4.8(Ornstein-Uhlenbeck processjo illustrate the use of these mea-
sures, consider a first-order Markov process where the correfatiation is

p(e) = 5ol
2wo

This correspnds to Exampde7 (also called aDrnstein-Uhlenbeck processhe
power spectral density becomes

S(w) = f Q olgrior gy
oo 200

0 00
_ [ R geiorgr g f Q gromioyrgr— @
0 2wo

_eo 20 2

2
w +a)o
We see that the power spectral density is similar to a transfer function and we
can plotS(w) as a function ofv in a manner similar to a Bode plot, as shown in
Figure4.2 Note that althougls(w) has a form similar to a transfer function, itis a
real-valued function and is not defined for compgex v

Using the power spectral density, we can more formally define “white noise”:

awhite noise process a zero-mean, random process with power spectral density
S(w) = W = constant for allw. If X(t) € R" (a random vector), theW/ € R™",
We see that a random process is white if all frequencies are equalgseeyed in
its power spectral density; this spectral property is the reason for timént@ogy
“white”.

Given a linear system

X = AX+FW, Y=CX
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} logs(w)

wo logw

Figure 4.2: Spectral power density for a first-order Markovgess.

with W given by white noise, we can compute the spectral density function cor-
responding to the output. We start by computing the Fourier transform of the
steady state correlation functiof.21):

sv)= [ [ [ ) h(f)Qh(fw)df]e-imdr

_ 00 00 . Cior i

fo h(f)Q[Loh(& e d ]df

_ f ) h(g)Q[ f h(/l)e‘j‘”“‘f)d/l}df
0 0

_ fo " h(e)e dé- QH(j) = H(- j)QH(juw).

This is then the (steady state) response of a linear system to white noise.

As with transfer functions, one of the advantages of computations in the fre
guency domain is that the composition of two linear systems can be represented
by multiplication. In the case of the power spectral density, if we pass whise no
through a system with transfer functiéhi (s) followed by transfer functiom(s),
the resulting power spectral density of the output is given by

Sy(w) = Hi(=jw)Hz(-jw)QuH2(jw)H1(jw).

As stated earlier, white noise is an idealized signal that is not seen in practice
One of the ways to produced more realistic models of noise and disturbances
to apply a filter to white noise that matches a measured power spectral density
function. Thus, we wish to find a covarian@éand filterH(s) such that we match
the statisticsS(w) of a measured noise or disturbance signal. In other words, given
S(w), find W > 0 andH(s) such thatS(w) = H(— jw)WH(jw). This problem is
know as thespectral factorization problem

Figure 4.3 summarizes the relationship between the time and frequency do-
mains.
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1 e 1 X
V=™ v u |y pY) = o8
Sv(w) =Ry Sy(w) = H(=jw)RvH(jw)
X =AX+FV py(7) =Ry(r) =CPeATCT
=Rvé
pv(r) = Rvo(r) Y=CX AP+PAT +FR/FT =0

Figure 4.3: Summary of steady state stochastic response.

Exercises

4.1 (BE 150, Winter 2011) For this problem, we return to our standard model of
transcription and transcription process with probabilistic creation ancdatjon
of discrete mMRNA and protein molecules. T®pensity function$or each reac-
tion are as follows:

Probability of transcribing 1 mRNA molecule:Zait

Probability of degrading 1 mRNA molecule:5ait and is proportional to the num-
ber of MRNA molecules.

Probability of translating 1 proteindband is proportional to the number of mMRNA
molecules.

Probability of degrading 1 protein molecule5@t and is proportional to the num-
ber of protein molecules.

dtis the time step chosen for your simulation. Here we chalbse0.05.

(&) Simulate the stochastic system above until time 100. Plot the resulting
number of mMRNA and protein over time.

(b) Now assume that the proteins are degraded much more slowly than mRINA an
the propensity function of protein degradation is na@3dt. To maintain similar
protein levels, the translation probability is novb@t (and still proportional to the
number of MRNA molecules). Simulate this system as above. Whatelice do

you see in protein level? Comment on th&eet of protein degradation rates on
noise.

4.2 (BE 150, Winter 2011) Compare a simple model of negative autoregulation
with one without autoregulation:

(0)4
at =Bo—yX
and dx 8
dat 1+ % X

(a) Assume that the basal transcription r@t@sdgg vary between cells, following
a Gaussian distribution Wita% = 0.1. Simulate time courses of both models for
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100 diferent "cells” using the following parametefs= 2,80 =1,y = 1,K = 1. Plot
the nonregulated and autoregulated systems in two separate plots. Comriient on
variation you see in the time courses.

(b) Calculate the deterministic steady state for both models above. How does va
ation in the basal transcription ragéeor 3y enter into the steady state and relate it
to what you see in part (a).

4.3 Consider gene expressioﬂn:& m, m— m+P, m ¢, and PL 0. Answer the
following questions:

(a) Use the stochastic simulation algorithm (SSA) to obtain realizations of the
stochastic process of gene expression and numerically compare witheneice

istic ODE solution. Explore how the realizations become close to or aparttfrem
ODE solution when the volume is changed. Determine the stationary probability
distribution for the protein (you can do this numerically, but note that thisga®is
linear, so you can compute the probability distribution analytically in closed form)

(b) Now consider the additional binding reaction of protein P with downstrea

_— . kon .
DNA binding sites D: B-D —= C. Note that the system no longer linear due to
kot t
the presence of a bi-molecular reaction. Use the SSA algorithm to obtain sample

realizations and numerically compute the probability distribution of the protein and
compare it to what you obtained in part (a). Explore how this probabilityidistr
tion and the one of C change as the rdigsandky,s become larger and larger
with respect toy, @, «,6. Do you think we can use a QSS approximation similar to
what we have done for ODE models?

(c) Determine the Langevin equation for the system in part (b) and obtaiplea
realizations. Explore numerically how good this approximation is when the volume
decreaségmicreases.

k
4.4 Consider the bi-molecular reaction+8B :1 C, in whichA andB are in total
k

amountsAt and By, respectively. Compare t2he steady state valu€ abtained

from the deterministic model to the mean valueCobbtained from the stochastic
model as the volume is changed in the stochastic model. What do you observe?
You can perform this investigation through numerical simulation.

4.5 Consider the simple birth and death process:& 0, in whichG is a “gain”.

Assume that the reactions are catalyzed by enzymes and that th& gain be
tuned by changing the amounts of these enzymes. A deterministic ODE model for
this system incorporating noise and disturbances due to the stochasticity of th
cellular environment is given by

Z =kiG-k,GZ+ d(t),
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in which d(t) incorporates noise, as seen in the previous homework. Determine the
Langevin equation for this birth and death process and compare its forne to th
deterministic one. Also, determine the frequency respongttofnoise for both

the deterministic model and for the Langevin model. Does increasing thezgain
has the samefect in both models? Explain.

4.6 Consider a second order system with dynamics

Xi) (-a 0) (X)) (1 ~ Xy

ol =[5 SIfe)h v - o
that is forced by Gaussian white noise with zero mean and vari@ahcAssume
a,b>0.

(a) Compute the correlation functiqrir) for the output of the system. Your an-
swer should be an explicit formula in termsayb ando.

(b) Assuming that the input transients have died out, compute the mean &nd var
ance of the output.
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Chapter 5
Feedback Examples

In this chapter we present a collection of examples that illustrate some of the mod
eling and analysis tools covered in the preceding chapters. Each okttesples
represents a more complicated system than we have considered previotos a
gether they are intended to demonstrate both the role of feedback in bidlogica
systems and how tools from control and dynamical systems can be applies to p
vide insight and understanding. Each of the sections below is indepetidms
others and they can be read in any order (or skipped entirely).

Pagination in this chapter is broken down by section to faciliate author editegiew
Some extraneous blank pages may be included due to LaTeX processing.
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5.1 The lac Operon

The lac operon is one of the most studied regulatory networks in molecular bi-
ology. Its function is to determine when the cell should produce the proteihs a
enzymes necessary to import and metabolize lactose from its externalreneina
Since glucose is a mordfient source of carbon, the lactose machinery is not pro-
duced unless lactose is present and glucose is not preseracltantrol system
implements this computation.

In this section we construct a model for the lac operon and use that madel to
derstand how changes of behavior can occur for large changesaimeters (e.g.,
lactose¢glucose concentrations) and also the sensitivity of the phenotypic respon
to changes in individual parameter values in the model. The basic model artd mu
of the analysis in this section is drawn from the work of Yildirim and Maclag].[

Modeling

In constructing a model for thiac system, we need to decide what questions we
wish to answer. Here we will attempt to develop a model that allows us to under-
stand what levels of lactose are required forldesystem to become active in the
absence of glucose. We will focus on the so-called “bistability” ofl&weoperon:

there are two steady operating conditions—at low lactose levels the machinery
is off and at high lactose levels the machinery is on. The system has hysteresis,
so once the operon is actived, it remains active even if the lactose ¢oatt@n
descreases. We will construct afdrential equation model of the system, with
various simplifying assumptions along the way.

A schematic diagram of theac control system is shown in Figutel Starting
at the bottom of the figure, lactose permease is an integral membrane protein tha
helps transport lactose into the cell. Once in the cell, lactose is convertedi&zallo
tose, and allolactose is then broken down into glucose and galactose,itfothev
assistance of the enzyrgegalactosidases¢gal for short). From here, the glucose
is processed using the usual glucose metabolic pathway and the galactose.

The control circuitry is implemented via the reactions and transcriptional reg-
ulation shown in the top portion of the diagram. Tihe operon, consisting of the
genedacZ(coding forg-gal),lacY (coding for lactose permease) dadA (coding
for a transacetylase), has a combinatorial promoter. Normally, lac sepréscl)
is present and the operon if.0The activator for the operon is CAP, which has
a positive inducer cAMP. The concentration of CAMP is controlled by glaco
when glucose is present, there is very little cAMP available in the cell (ancehen
CAP is not active).

The bistable switching behavior in thee control system is implemented with a
feedback circuit involving théac repressor. Allolactose bindac repressor and so
when lactose is being metabolized, then the repressor is sequestereddnyadio
and thelac operon is no longer repressed.
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./fbkexamps/figures/lac-diagram.eps

Figure 5.1: Schematic diagram for tlae system §9]. Permission pending.

To model this circuit, we need to write down the dynamics of all of the reactions
and protein production. We will denote the concentration ofsdgal mRNA and
protein asm, andB. We assume that the internal concentration of lactose is given
by L, ignoring the dynamics of lactose permease and transport of lactose into the
cell. Similarly, we assume that the concentration of repressor proteintetdRias
constant.

We start by keeping track of the concentration of free allolacfkoSéne relevant
reactions are given by the transport of lactose into the cell, the conmerdiactose
into allolactose and then into glucose and lactose and finally the sequestration o
repressoR by allolactose:

Transport: L¢+P=L*P— L+P
Conversion: L+B=—LB —A+B
Conversion: A+B=—AB — Glu+Gal+B
Sequestration: A+R=—=AR
We see that the dynamics involve a number of enzymatic reactions and hence w
can use Michaelis-Menten kinetics to model the response at a slightly reldweéd
of detail.
Given these reactions, we can write the reaction rate equations to deseribe th

time evolution of the various species concentrations.dxeandKy represent the
parameters of the Michaelis-Menten functions asgdrepresent the dilution and
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degradation rate for a given species X. Thfatential equation for the internal
lactose concentratiolh becomes

dL oL 5 L
— = e -
dt ~ “tHUKexle ARTK AL

-7k, (5.1)

where the first term arises from the transport of lactose into the cell, tonde
term is the conversion of lactose to allolactose, and the final term is due ta-deg
dation and dilution. Similarly, the dynamics for the allolactose concentration can
be modeled as

dA L

A
— = B—— B—— +K\LJAR] —kiL[AIIR] = vAA.
gr = AL K L @AB KA+A+ AR[AR] = Kag[A][R] —vaA

The dynamics of the production gfgal and lactose permease are given by
the transcription and translational dynamics of protein production. Thesesg
are both part of the same operon (along wabA) and hence the use a single
MRNA strand for translation. To determine the production rate of mMRNA, we nee
to determine the amount of repression that is present as a function of theeoho
repressor, which in turn depends on the amount of allolactose that snprége
make the simplifying assumption that the sequestration reaction is fast, so that it is
in equilibrium and hence

[AR] = kar[AI[R],  kar = Khg/Khg-

We also assume that the total repressor concentration is constantdfiwaduoatches
degradation and dilution). LettinByo; = [R] + [AR] represent the total repressor
concentration, we can write

[R] = Ro—kar[AIR] = [R]:ulzﬁ-

The simplification that the sequestration reaction is in equilibrium also simplifies
the reaction dynamics for allolactose, which becomes

(5.2)

dA L A
8 AB —anB —yAA. 5,
dt = PR AL PPKaeA A (5.3)

We next need to compute thé&ect of the repressor on the productionsegal
and lactose permease. It will be useful to express the promoter state inderms
the allolactose concentratighrather tharR, using equationq.2). We model this
using a Hill function of the form

R ar(1+ KarA)"

a
Fea(A) = -
Ba(A) Kr+R"  Kgr(1+KarA)"+RY,
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Table 5.1: Parameter values fac dynamics (from 99)).

Parameter Value Description
n 3.03x102min"t dilution rate
awm 997 nMmirr® production rate oB-gal mMRNA
Bs 1.66x102min~t  production rate oB-galactosidase
Bp 2?22 mint production rate of lactose permease
aa 1.76x 10* min~1 production rate of allolactose
oM 0.411 mir? degradation and dilution gi-gal mMRNA
¥B 8.33x10“*min~t  degradation and dilution ¢f-gal
P 2?2 mirt degradation and dilution of lactose permease
YA 1.35x102min"!  degradation and dilution of allolactose
n 2 Hill coefficient for repressor
K 7200
Ky 2.52x 1072 (uM)~?
KL 0.97uM
Ka 1.95uM
Ba 2.15x 10* min?!
™ 0.10 min
B 2.00 min
TP ??? min

Letting M represent the concentration of the (common) mRNA, the resulting form
of the protein production dynamics becomes

dMm ur =

W =€ "™MFpaA(A(t—7m)) — oMM,

dB e _

gt =pe€ " EM(t-78) - v8B, (5.4
dP _

gt :,Bpe_”(TMJrTP)M(t—TM —1p)—ypP.

This model includes the degradation and dilution of mMRNfy) the transcrip-
tional delays3-gal mRNA (ry), the degradation and dilution of the proteing,(
vp) and the delays in the translation and folding of the final proteigsp).

To study the dynamics of the circuit, we consider a slightly simplified situa-
tion in which we study the response to the internal lactose concentitatiorthis
case, we can take(t) as a constant and ignore the dynamics of the permease
Figure5.2a shows the time response of the system for an internal lactose concen-
tration of 100uM. As a test of the fect of time delays, we consider in Figuse?h
the case when we set the delayg and g to both be zero. We see that the re-
sponse has very little flerence, consistent with our intuition that the delays are
short compared to the dynamics of the underlying processes.
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Lac operon simulation (YSHMO04) Lac operon simulation (no time delays)
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Figure 5.2: Time response of the Lac system.

Bifurcation analysis

To further explore the dierent types of dynamics that can be exhibited by the
Lac system, we make use of bifurcation analysis. If we vary the amounttosia
present in the environent, we expect that the lac circuitry will turn onraegaoint.
Figure5.3ashows the concentration of allolacto8eas a function of the internal
lactose concentratioh. We see that the behavior of thec system depends on
the amount of lactose that is present in the cell. At low concentrations okkcto
thelac operon is turned fd and the proteins required to metabolize lactose are not
expressed. At high concentrations of lactose,ltteoperon is turned on and the
metabolic machinery is activated. In our model, these two operating conditiens a
measured by the concentration®falactosidas® and allolactosé\. At interme-
diate concentrations of lactose, the system has multiple equilibrium points, with
two stable equilibrium points corresponding to high and low concentratiods of
(andB, as can be verified separately).

The parametric stability plot in Figufe 3bshows the dferent types of behav-
ior that can result based on the dilution ratand the lactose concentratibn\We
see that we get bistability only in a certain range of these parameters. Giberw
we get that the circuitry is either uninduced or induced.

Sensitivity analysis

We now explore how the equilibrium conditions vary if the parameters in oueiod
are changed.

For the gendacZ (which encodes the protefitgalactosidase), we |& repre-
sent the protein concentration ahtdrepresent the mRNA concentration. We also
consider the concentration of the lactdsiaside the cell, which we will treat as an
external input, and the concentration of allolactesejssuming that the time de-
lays considered previously can be ignored, the dynamics in terms of theables
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. /fbkexamps/figures/lac-stability.eps
. /fbkexamps/figures/lac-bifurcatign.eps

(a) Bifurcation diagram (b) Stability diagram

Figure 5.3: Bifurcation and stability diagram for the las®m. Figures from1[0Q.

are
dM 1+k A"
v Fea(A 0) —6pM, Fea(A,6) = VABY AT
dB L
a —,BBM —)’BB, FAL(ng) = aAkLT’ (5-5)
dA

— = BFaL(L,0) — BFaa(A,0) — aA, Faa(A,0) =Ba

ddt B kA+A'

Here the state is = (M, B, A) € RS, the input isw = L € R and the parameters are
0 = (e, BB, @A, 0B, YB, 0a, N, K K1, KL, Ka, 8p) € RY2. The values for the parameters are
listed in Table5.1

We investigate the dynamics around one of the equilibrium points, corrdspon
ing to an intermediate input df = 40uM. There are three equilibrium points at
this value of the input:

X1.e=(0.0003930.0002103.17), X2 =(0.003280.0017419.4), X3e=(0.01420.0075842.1).

We choose the third equilibrium point, corresponding to the lactose metabolic ma-
chinery being activitated and study the sensitivity of the steady state doaibemns
of allolactose Q) andg-galactosidaseR) to changes in the parameter values.

The dynamics of the system can be represented in the dogiadt = f(x,0,L)
with

Fga(A 0) —6sM —uM
f(x,6,L) = BeM —ygB-uB .
FaL(L,0)B-Faa(A 6)B—yaA-puA

To compute the sensitivity with respect to the parameters, we compute tha-deriv
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tives of f with respect to the state

TR *
ax | Bs ~YB— K 0
0  Fa—-Fan -BZa

and the parametets

of

oF oF oF
Z=(Fea 00 -M 0 0 % Zp a0 0 0).

Carrying out the relevant computations and evaluating the resulting sipmesu-
merically, we obtain

0 (Be) _ (-121 00243 -335x10% 0935 146 ... 00011
89 |\Ae) ~ |-2720 477 -0.00656 1830 286Q ... 327 |-
We can also normalize the sensitivity computation, as described in equai@pn (
= OXe/Xe

_—:DX—lS Db”
= 5660 (D*)"Sxeo

whereD* = diag{Xe} andD? = diag{fp}, which yields

S .- -485 32 -318 311 32 63 -605 -41 402 605
Y = 1-1.96 113 -112 11 113 324 -311 -211 207 311

where
9=(,U av K Ki B aa KL Ba Ka L).

We see from this computation that increasing the growth rate decreasegiifite- e
rium concentation oB andA, while increasing the lactose concentration by 2-fold
increases the equilibriugrgal concentration 12-fold (6X) and the allolactose con-
centration by 6-fold (3X).

5.2 Bacterial Chemotaxis

Chemotaxigefers to the process by which micro-organisms move in response to
chemical stimuli. Examples of chemotaxis include the ability of organisms to move
in the direction of nutrients or move away from toxins in the environment. Chemo-
taxis is calledpositive chemotaxis the motion is in the direction of the stimulus
andnegative chemotaxisthe motion is away from the stimulant, as shown in Fig-
ure5.4. Many chemotaxis mechanisms are stochastic in nature, with biased random
motions causing the average behavior to be either positive, negativeltoaln@n
the absence of stimuli).

In this section we look in some detail at bacterial chemotaxis, Whiatoli use
to move in the direction of increasing nutrients. The material in this section islbase
primarily on the work of Barkai and LeibleB] and Rao, Kirby and Arkin77].
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Figure 4.16d Physical Biology of the Cell (© Garland Science 2009)

Figure 5.4: Examples of chemotaxis. Figure from Phillipendev and Theriotq2]; used
with permission of Garland Science.

Control system overview

The chemotaxis system iB. coli consists of a sensing system that detects the
presence of nutrients, and actuation system that propels the organisnemwiis
ronment, and control circuitry that determines how the cell should move in the
presence of chemicals that stimulate the sensing system.

The actuation system in the coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown
in Figure5.5a When the flagella all spin in the counter clockwise direction, the
individual flagella form a bundle and cause the organism to move roughdy in
straight line. This behavior is called a “run” motion. Alternatively, if the fléae
spin in the clockwise direction, the individual flagella do not form a bundtethe
organism “tumbles”, causing it to rotate (Figusesh). The selection of the motor
direction is controlled by the protein CheY: if phosphorylated CheY bindséo th
motor complex, the motor spins clockwise (tumble), otherwise it spins counter-
clockwise (run).

Because of the size of the organism, it is not possible for a bacterium e sen
gradients across its length. Hence, a more sophisticated strategy is ustdthn
the organism undergoes a combination of run and tumble motions. The basic ide
is illustrated in Figuré.5¢c when high concentration of ligand (nutrient) is present,
the CheY protein is left unphosphorylated and does not bind to the actuation
plex, resulting in a counter-clockwise rotation of the flagellar motor (ruen-C
versely, if the ligand is not present then the molecular machinery of thearedbs
CheY to be phosphorylated and this modifies the flagellar motor dynamics so that
clockwise rotation occurs (tumble). The néieet of this combination of behaviors
is that when the organism is traveling through regions of higher nutrietters
tration, it continues to move in a straight line for a longer period before tumbling
causing it to move in directions of increasing nutrient concentration.

A simple model for the molecular control system that regulates chemotaxis is
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Figure 5.5: Bacterial chemotaxis. Figures from Phillipgnidev and Theriot72]; used
with permission of Garland Science.

shown in Figurés.6. We start with the basic sensing and and actuation mechanisms.
A membrane bound protein MCP (methyl-accepting chemotaxis protein) that is
capable of binding to the external ligand serves as a signal transdueimgre

from the cell exterior to the cytoplasm. Two other proteins, CheW and Cloew,

a complex with MCP. This complex can either be in an active or inactive state. In
the active state, CheA is autophosphorylated and serves as a phaspfertise

for two additional proteins, CheB and CheY. The phosphorylated fdr@heY

then binds to the motor complex, causing clockwise rotation of the motor.

The activity of the receptor complex is governed by two primary factors: the
binding of a ligand molecule to the MCP protein and the presence or abskumge o
to 4 methyl groups on the MCP protein. The specific dependence on Etwdse
factors is somewhat complicated. Roughly speaking, when the ligaadound
to the receptor then the complex is less likely to be active. Furthermore, as more
methyl groups are present, the ligand binding probability increases, atjavin
gain of the sensor to be adjusted through methylation. Finally, even in theabse
of ligand the receptor complex can be active, with the probability of it beitigeac
increasing with increased methylation. Figet& summarizes the possible states,
their free energies and the probability of activity.

Several other elements are contained in the chemotaxis control circuit. /e mo
important of these are implemented by the proteins CheR and CheB, both &f whic
affect the receptor complex. CheR, which is constitutively produced in the cell,
methylates the receptor complex at one of the foffedént methylation sites. Con-



188 CHAPTER 5. FEEDBACK EXAMPLES
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Figure 5.6: Control system for chemotaxis. Figure from Real.[77] (Figure 1A).

versely, the phosphorylated form of CheB demethylates the receptor comgle
described above, the methylation patterns of the receptor comfiéet #s activ-

ity, which afects the phosphorylation of CheA and, in turn, phosphorylation of
CheY and CheB. The combination of CheA, CheB and the methylation of the re-
ceptor complex forms a negative feedback loop: if the receptor is attte CheA
phosphorylates CheB, which in turn demethylates the receptor complex,gntkin
less active. As we shall see when we investigate the detailed dynamics thétow,
feedback loop corresponds to a type of integral feedback law. Thgraitaction
allows the cell to adjust to fferent levels of ligand concentration, so that the be-
havior of the system is invariant to the absolute nutrient levels.

Modeling

The detailed reactions that implement chemotaxis are illustrated in Fig8re
Letting T represent the receptor complex anfi fepresent an active form, the
basic reactions can be written as

TA+A=—TAA — AP+TA
AP+B=—AP.B— A+BP BP+P—BP.P—B+P (5.6)
AP+Y = AP.Y — A+YP YP+Z—YPZ——>Y+Z

where CheA, CheB, CheY and CheZ are written simply as A, B, Y and Z for
simplicity and P is a non-specific phosphatase. We see that these are basically
three linked sets of phosphorylation and dephosphorylation reactigtmsCive A
serving as a phosphotransferase and P and CheZ serving as atlasgsh

The description of the methylation of the receptor complex is a bit more com-
plicated. Each receptor complex can have multiple methyl groups attachéieand
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./fbkexamps/figures/receptor-activity|. eps

Figure 5.7: Receptor complex states. The probability ofv@ryistate being in an active
configuration is given by. Figure obtained fromgg.

activity of the receptor complex depends on both the amount of methylation and
whether a ligand is attached to the receptor site. Furthermore, the bindibg-pro
bilities for the receptor also depend on the methylation pattern. To capturevéhis,
use the set of reactions that are illustrated in Fig&résnd5.8. In this diagram,
TS represents a receptor that hasethylation sites filled and ligand state s (which
can be either u if unoccupied or o if occupied). WeNetrepresent the maximum
number of methylation sited = 4 for E. coli).

Using this notation, the transitions between the states correspond to the reac-
tions shown in Figur®.9;

T'+BP =T B? — T +BP i >0, xe{u,0}
T'+R=T'R— T}, +R i< M, xe{u,0}
T'+L=T?

We now must write reactions for each of the receptor complexes with Cheszh E

form of the receptor complex has dferent activity level and so the most complete
description is to write a separate reaction for eaftaiid T" species:

f.o c.o
T +A=TXA K—>Ap+TiX,

K
where xe {o,u} and i=0,...,M. This set of reactions replaces the placeholder
reaction " + A = TA:A — AP+ TA used earlier.
Approximate model

The detailed model described above iffisiently complicated that it can be dif-
ficult to analyze. In this section we develop a slightly simpler model that can be
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Figure 5.8: Circuit diagram for chemotaxis.

used to explore the adaptation properties of the circuit, which happenlowers
time-scale.

We begin by simplifying the representation of the receptor complex and its
methylation pattern. Lek(t) represent the ligand concentration ahdrepresent
the concentration of the receptor complex witsides methylated. If we assume
that the binding reaction of the ligand L to the complex is fast, we can write the
probability that a receptor complex witlsites methylated is in its active state as a
static functiona;(L), which we take to be of the form

a’l N ai K

(L) = .
aill) = T koL

The codficientse? anda; capture the fect of presence or absence of the ligand on
the activity level of the complex. Note that has the form of a Michaelis-Menten
function, reflecting our assumption that ligand binding is fast compared t@he

./fbkexamps/figures/chemotaxis-methylation.eps

Figure 5.9: Methylation model for chemotaxis. Figure frorarBai and Leibler §] (Box
1). Note: the figure uses the notatiofi #r the receptor complex instead of.T
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Figure 5.10: Probability of activity.

of the dynamics in the model. Followin@T], we take the cofcients to be

ap=0, a; =0.1, a, =0.5, az =0.75 au=1,
ay=0, aj=0, ay=01  aJ=0.5, ag=1

and choos&| = 10uM. Figure5.10shows how each; varies withL.

The total concentration of active receptors can now be written in terms of the
receptor complex concentratiofis and the activity probabilitieg;(L). We write
the concentration of activated complef &nd inactivated complex'Tas

4 4
Th= Y aUT T =Y A-a()T
i=0 =0

These formulas can now be used in our dynamics agfant&e concentration of
active or inactive receptors, justifying the notation that we used in equ@ién

We next model the transition between the methylation patterns on the receptor.
We assume that the rate of methylation depends on the activity of the receptor
complex, with active receptors less likely to be demethylated and inactivetoese
less likely to be methylated[, 66]. Let

BP R

re=ke———,  Ir=Keo——,
BT P+ TA R R Kr+T!

represent rates of the methylation and demethylation reactions. We chease th
efficients as

ke=05 Kg=55 kr=0255 Kr=0.251

We can now write the methylation dynamics as

%Ti = rR(1-iz1(L))Ti—t + reaica(L) Tiva = rr(1—ai(L)Ti - reai(L)T;,



192 CHAPTER 5. FEEDBACK EXAMPLES

5}

]

w ~
o o
> o

ConcentratioinM)

F/
P

N
T

.

L

-
T

o

N

Average number of methylated residi

‘y'/
|
0 200 400 600 800 100C 120C 1400 0 200 400 600 800 100C 120C  140C

Time (seo Time (seo

(a) (b)

Ap

o
=)

=)

Figure 5.11: Simulation and analysis of reduced-order dtaxis model.

where the first and second terms represent transitions into this state vidanethy
tion or demethylation of neighboring states (see Figu8eand the last two terms
represent transitions out of the current state by methylation and demethytatio
spectively. Note that the equations fo§ and T4 are slightly diferent since the
demethylation and methylation reactions are not present, respectively.

Finally, we write the dynamics of the phosphorylation and dephosphorylation
reactions, and the binding of Ch&Yo the motor complex. Under the assumption
that the concentrations of the phosphorylated proteins are small relative timtal
protein concentrations, we can approximate the reaction dynamics as

d
A= 50TAA— 100APY — 30APB,

d

i7" = 100APY ~0.1YP — 5[M] YP+ 19[M:Y *] - 30V,
9 Bp _ 30aPB—BP.

dt

d
d—t[M:Y Pl = 5[M] YP - 19[M:Y P].
The total concentrations of the species are given by

A+AP=5nM, B+BP=2nM, Y+YP+[M:YP]=17.9nM
[M] +[M:Y P] =5.8 nM, R=0.2nM StoTi=5nM.

The reaction co@icients and concentrations are taken from Rgal.[77].
Figureb.1l1lashows a the concentration of the phosphorylated proteins based on
a simulation of the model. Initially, all species are started in their unphospledyla
and demethylated states. At tirie= 500 s the ligand concentration is increased to
L=10uM and attimeT = 1000 itis returned to zero. We see thatimmediately after
the ligand is added, the Ch&¥oncentration drops, allowing longer runs between
tumble motions. After a short period, however, the CR&dncentration adapts to
the higher concentration and the nominal run versus tumble behavior isegsto



5.2. BACTERIAL CHEMOTAXIS 193
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Figure 5.12: Reduced order model of receptor activity. @lethfrom ], Figure 7.9.

Similarly, after the ligand concentration is decreased the concentrationedf"Ch
increases, causing a larger fraction of tumbles (and subsequemgeshendirec-
tion). Again, adaptation over a longer time scale returns that CheY coatentr
to its nominal value.

Figure 5.11bhelps explain the adaptation response. We see that the average
amount of methylation of the receptor proteins increases when the ligandrcon
tration is high, which decreases the activity of CheA (and hence desd¢hs
phosphorylation of CheY).

Integral action

The perfect adaptation mechanism in the chemotaxis control circuitry haartine
function as the use of integral action in control system design: by includfagd-
back on the integral of the error, it is possible to provide exact canceilabio
constant disturbances. In this section we demonstrate that a simplified vefsion
the dynamics can indeed be regarded as integral action of an appr&igiadd:
This interpretation was first pointed out by &t al[98].

We begin by formulating an even simpler model for the system dynamics that
captures the basic features required to understand the integral aatox répre-
sent the receptor complex and assume that it is either methylated or not. We let X
represent the methylated state and we further assume that this methylatedrstate c
be activated, which we write asX This simplified description replaces the multi-
ple stated; and probabilities(L). We also ignore the additional phosphorylation
dynamics of CheY and simply take the activated receptor concentidlj@s our
measure of overall activity.

Figure5.12shows the transitions between the various foknas before, CheR
methylates the receptor and CHedemethylates it. We simplify the picture by only
allowing CheP’ to act on the active state,xand CheR to act on the inactive state.
We take the ligand into account by assuming that the transition between the activ
form X, and the inactive form X depends on the ligand concentration: higher
ligand concentration will increase the rate of transition to the inactive state.

This model is a considerable simplification from the ligand binding model that
is illustrated in Figure$.7 and5.9. In the previous models, there is some prob-
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ability of activity with or without methylation and with or without ligand. In this
simplified model, we assume that only three states are of interest: demethylated,
methylatednactive and methylatgdctive. We also modify the way that that lig-
and binding is captured and instead of keeping track of all of the possibilities
Figure5.7, we assume that the ligand transitions us from an active stat®Xn
inactive X,,. These states and transitions are roughly consistent with fferetit
energy levels and probabilities in Figusey, but it is clearly a much coarser model.
Accepting these approximations, the model illustrated in Figut@results in
a set of chemical reactions of the form

Rl: X+R=XR—X,+R methylation
R2: X;5+BP =X/ :BP— X+BP  demethylation

R3: Xp=—=Xp activatiorideactivation
k"

For simplicity we take both R and®Bto have constant concentration.

We can approximate the first and second reactions by their Michaelis-Mente
forms, which yield net methylation and demethylation rates (for those reaxtions

X X
—_ V_ = kBBp—m.
Kx + X K)(;;1 + X;fn
If we further assume thaX > Ky > 1, then the methylation rate can be further
simplified:

X
Kx + X

Using these approximations, we can write the resulting dynamics for thellovera
system as

V+ = kRR

~ KrR.

dgtxm = kgR+ k' (L)X — K Xm

d X

Moy p__™m . f * r

51 m = —keBP i — o k" (L)XE +K X,

We wish to use this model to understand how the steady state activityXgvel
depends on the ligand concentratiofwhich enters through the deactivation rate
k'(L)).

It will be useful to rewrite the dynamics in terms of the activated complex con-
centrationX?;, and thetotal methylated complex concentratiofh, = Xm + Xz, A
simple set of algebraic manipulations yields

d X
X"‘ =k(X,, - X5) - kBBIOW kf(L)Xx:,

dxm X
= kgR—kgBP—2_.
dt R 8 Kxz +Xm
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From the second equation, we see that the the concentration of methylatplgxo
X} is a balance between the action of the methylation reaction (R1, characterized
by v;) and the demethylation reaction (R2, at rat¢ Since the action of a ligand
binding to the receptor complex increases the rate of deactivation of thdeomp
(R3), in the presence of a ligand we will increase the amount of methylatad co
plex (and, via reaction R1) eventually restore the amount of the activateglex.
This represents the adaptation mechanism in this simplified model.

To further explore theféect of adaptation, we compute the equilibrium points
for the system. Setting the time derivatives to zero, we obtain

. Kyx: kR
Xme = 1oBP —kaR
Xt = l(kfx* +k38pi+kf(L)X*).
me = jr (7 m Ky + X m

Note that the solution for the active compl&g, . in the first equation does not
depend orkf(L) (or k') and hence the steady state solution is independent of the
ligand concentration. Thus, in steady state, the concentration of acto@tgalex
adapts to the steady state value of the ligand that is present, making it ingensitiv
to the steady state value of this input.

The dynamics foix!, can be viewed as an integral action: when the concen-
tration of X;, matches its reference value (with no ligand present), the quantity of
methylated complex!, remains constant. But X!, does not match this reference
value, therX}!, increases at a rate proportional to the methylation “error” (measured
here by diference in the nominal reaction ratesandv_). It can be shown that
this type of integral action is necessary to achieve perfect adaptationoipuatr
manner 98].
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Chapter 6

Biological Circuit Components

In this chapter, we describe some simple circuits components that havedieen c
structed inE. colicells using the technology of synthetic biology. We will analyze
their behavior employing mainly the tools from Chap8eaind some of the tools
from Chapte#. The basic knowledge of Chapt2will be assumed.

6.1 Introduction to Biological Circuit Design

In Chapter2 we have introduced a number of core processes and their modeling.
These include gene expression, transcriptional regulation, postatiianal regu-
lation such as covalent modification of proteins, allosteric regulation ofreegy
activity regulation of transcription factors through inducers, etc. Tloese pro-
cesses provide a rich set of functional building blocks, which can bebowed
together to create circuits with prescribed functionalities.

For example, if we want to create an inverter, a device that returns hightou
when the input is low and vice versa, we can use a gene regulated byseripan
tion repressor. If we want to create a signal amplifier, we can employcadas
of covalent modification cycles. Specifically, if we want the amplifier to be lin-
ear, we should tune the amounts of protein substrates to be in smaller valnes tha
the Michaelis-Menten constants. If instead we are looking for an almost ldigita
response, we could employ a covalent modification cycle with high amounts of
substrates compared to the Michaelis-Menten constants. Furthermore aifewe
looking for a fast inpybutput response, phosphorylation cycles are better candi-
dates than transcriptional systems.

In this chapter and in the next one, we illustrate how one can build circuits with
prescribed functionality using some of the building blocks of Chaptend the
design techniques illustrated in Chap8eiVe will focus on two types of circuits:
gene circuits and signal transduction circuits. In some cases, we will ilestea
signs that incorporate both.

A gene circuit is usually depicted by a set of nodes, each represengegea
connected by unidirectional edges, representing a transcriptionzd@mti or a re-
pression. Inducers will often appear as additional nodes, whichadetdr inhibit
a specific edge. Early examples of such circuits include an activatorssqr sys-
tem that can display toggle switch or clock behavig]; b loop oscillator called
the repressilator obtained by connecting three inverters in a ring topo3ya]
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Figure 6.1: Early gene circuits that have been fabricatdshiieriak. coli: the negatively
autoregulated gend], the toggle switch 27], the activator-repressor clock]| and the
repressilatorZ3].

toggle switch obtained by connecting two inverters in a ring fash2Zathh pnd an
autorepressed circui®] (Figure6.1). Each node represents a gene and each arrow
from node Z to node X indicates that the transcription factor encoded i@ gen
denoted Z, regulates gene3d|.[If z represses the expression of X, the interaction is
represented byX. If z activates the expression of x, the interaction is represented
by Z—-X[3].

Basic synthetic biology technology

Simple synthetic gene circuits can be constituted from a set of (connected) tr
scriptional components, which are made up by the DNA base-pair sezgidrat
compose the desired promoters, ribosome binding sites, gene coding, ragibn
terminators. We can choose these components from a library of basithisutees
able parts, which are classified based on biochemical properties swathnigg
(of promoter, operator, or ribosome binding sites), strength (of a projmeted
efficiency (of a terminator).

The desired sequence of parts is usually assembled on plasmids, whah are
cular pieces of DNA, separate from the host cell chromosome, with theiooigin
of replication. These plasmids are then inserted, through a processtcaiisfbr-
mation in bacteria and transfection in yeast, in the host cell. Once in the Hipst ce
they express the proteins they code for by using the transcription arglatian
machinery of the cell. There are three main types of plasmids: low copy number
(5-10 copies), medium copy number (15-20 copies), and high copy ewufap to
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hundreds). The copy humber reflects the average number of copies pasmid
inside the host cell. The higher the copy number, the mfiteient the plasmid is
at replicating itself. The exact number of plasmids in each cell fluctuatelsastoc
tically and cannot be exactly controlled.

In order to measure the amounts of proteins of interest, we make tesgoofer
genesA reporter gene codes for a protein that fluoresces in a specific Eelhr
blue, green, yellow, etc.) when itis exposed to light of the correct viewgth. For
instance, green fluorescent protein (GFP) is a protein with the propeitti fluo-
resces in green when exposed to UV light. It is produced by the jelpfEsfuoria
victoria, and its gene has been isolated so that it can be used as a reporter. Other
fluorescent proteins, such as yellow fluorescent protein (YFP)eah@uorescent
protein (RFP) are genetic variations of GFP.

A reporter gene is usually inserted downstream of the gene expressipgoth
tein whose concentration we want to measure. In this case, both genasdaire
the control of the same promoter and are transcribed into a single mRNA molecule
The mRNA is then translated to protein and the two proteins will be fused together
This technique sometimeffacts the functionality of the protein of interest because
some of the regulatory sites may be occluded by the fluorescent protgirevient
this, another viable technique is to clone after the protein of interest theteepo
gene under the control of a copy of the same promoter that also contretsjires-
sion of the protein. This way the protein is not fused to the reporter pratéiich
guarantees that the protein function is nfieeted. Also, the expression levels of
both proteins should be close to each other since they are controlledffeyddt
copies of) the same promoter.

Just as fluorescent proteins can be used as a read out of a cirauigiadunc-
tion as external inputs that can be used to probe the system. Inducet®rfun
by either disabling repressor proteins (negative inducers) or bylirgadctiva-
tor proteins (positive inducers). Two commonly used negative inducerdPd G
and aTc. Isopropyb-D-1-thiogalactopyranoside (IPTG) induces activity of beta-
galactosidase, which is an enzyme that promotes lactose utilization, throwth bin
ing and inhibiting thdac repressor Lacl. The anhydrotetracycline (aTc) binds the
wild-type repressor (TetR) and prevents it from binding to the Tet aperéwo
common positive inducers are arabinose and AHL. Arabinose activatesatft
scriptional activator AraC, which activates the pBAD promoter. SimilarlyAsl
a signaling molecule that activates the LuUxR transcription factor, whichaaesv
the pLux promoter.

Protein dynamics can be usually altered by the addition of a degradation tag at
the end of the coding region. A degradation tag is a sequence of baséyadiadds
an amino acid sequence to the functional protein that is recognized bypeste
Proteases then bind to the protein, degrading it into a non-functional nelésu
a consequence, the half life of the protein decreases, resulting in aagectdecay
rate. Degradation tags are often employed to obtain a faster responsegodtin
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concentration to input stimulation and to prevent protein accumulation.

6.2 Negative Autoregulation

In this section, we analyze the negatively autoregulated gene of Fgglrand
focus on analyzing how the presence of the negative feedlttetksthe dynamics
of the system and how the negative feedbafikcts the noise properties of the
system. This system was introduced in Exangk
Let A denote the concentration of protein A and let A be a transcriptional

repressor for its own production. Assuming that the mRNA dynamics aresat th
guasi-steady state, the ODE model describing the negatively autoregsyatech
is given by

dA B

dt 1+ (A/K)

We seek to compare the behavior of this autoregulated system to the bedfavior
the unregulated one:

YA, (6.1)

dA

at =pLo—YA,
in which gg is the unrepressed production rate. We refer to this system as the open
loop system.

Dynamic effects of negative autoregulation

As we showed via simulation in Exam@#e2, negative autoregulation speeds up the
response to perturbations. Hence, the time the system takes to reach ysstitad
decreases with negative feedback. In this section, we show this resijtieally

by employing linearization about the steady state and by explicitly calculating the
time the system takes to reach it.

Let Ac = Bo/y be the steady state of the unregulated system armHet — Ag
denote the perturbation with respect to such a steady state. The dynamiaeof
given by

dz
i —yzZ
Given a small initial perturbatiom,, the response time afis given by the expo-
nential
2(t) = e,

The “half-life” of the signalz(t) is the time it takes to reach half @§. This is a
common measure for the speed of response of a system to an initial pediirba
Simple mathematical calculation shows that: = In(2)/y. Note that the half-life
does not depend on the production rageand only depends on the protein decay
rate constany.
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Let now A¢ be the steady state of the negatively autoregulated sy$ein (
Assuming that the perturbatiawith respect to such a steady state is small enough,
we can employ linearization to describe the dynamicg. dfhese dynamics are
given by

dz_ _
ai - -Y%
in which
np{;—l/Kn
(1+ (Ae/K)M)?
In this case, we have thags = In(2)/7.

Sincey > y (independently of the steady stadg), we have that the dynamic
response to a perturbation is faster in the system with negative autoreguldiie
confirms the simulation findings of Exam#e2

y=v+p

Noise filtering

In this section, we investigate théect of the negative autoregulation on the noise
of the system. In order to do this, we employ the Langevin modeling framework
and determine the frequency response to the intrinsic noise on the vaamii®ns.

We perform two diferent studies. In the first one, we assume that the decay rate of
the protein is much smaller than that of the mRNA. As a consequence, the mRNA
can be well approximated by its quasi-steady state and we focus on thaidgna

of the protein only. In the second study, we investigate the consequéheging

the mRNA and protein decay rates in the same range so that the quasi-s&tady s
assumption cannot be made. This is the case, for example, when degrddgtio

are added to the protein to make its decay rate larger. In either case, we stud
both the open loop system and the closed loop system (the system with aegativ
autoregulation) and compare the corresponding frequency respionseise.

Assuming that mRNA is at its quasi-steady state

In this case, the reactions for the open loop system are given by

Rl:pﬁ—°>A+p, RZ:AL(Z),

in which Bg is the constitutive production rate, p is the DNA promoter, and
the decay rate of the protein. Since the concentration of DNA promoter ptis no
changed by these reactions, it is a constant, which wepgall

Employing the Langevin equatiod.Q) of Section4.1 and lettingna denote
the real-valued number of molecules of A and iyythe real-valued number of
molecules of p, we obtain

dnA

Ot = Bonp —yNa+ yBonpl'1 — Vynal’z,
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in whichT'; andI'; are the noises on the production reaction and on the decay reac-
tion, respectively. By denoting = na/Q the concentration of A ang= np/Q = prot
the concentration of p, we have that

dA 1
at = BoProt — YA+ ﬁ( VBoPtotl'1 — \/)TA\FZ)-

This is a linear system and therefore we can calculate the frequencynsesfio
any of the two input¥'; andI',. The frequency response to indyythas magnitude
given by

We now consider the autoregulated system. The reactions are given by

RipLA+p.  RyAL0,

RyA+pSC.  RyCSA+p  po=p+C.

Employing the Langevin equatiod.Q) of Section4.1, we obtain

d 1
d_f = —aAp+d(poi— P) + (= VaARa + yd(pro— PIl)

dA 1
gt =pp—yA-aAp+d(pot— p) + ﬁ(\/ﬁ_prl— VYA, — \JaAp 3+
Vd(prot— P)I'4),

in whichI's andT’4 are the noises on the association and on the dissociation reac-
tions, respectively. Letting(q = d/a, N1 = \/_lﬁ(_ AP/ Kal'3+ +/(Prot— P)T4), and
N, = %( \VBpr'i— VyAI'2), we can rewrite the above system in the following form:

d

Gt = —3AP+d(poi— P+ VANL(D)

dA

St =FP—vA-aAp+d(pot— p) + Na(t) + VAN (D).

Sinced > vy, 8, this system displays two time scales. Letting: y/d and defining
y:= A-p, the system can be rewritten in standard singular perturbation tén (

d
egr = ~YAP/Ka+y(Por—P) + VE VN()

d
d—i’ =Bp—y(y+p)+Na(t).
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By settinge = 0, we obtain the quasi-steady state vahueprot/ (A/Kq + 1). Writing
A=y+ p, using the chain rule fop, and assuming thatii/Kq is suticiently small,
we obtain the reduced system describing the dynamiésasf

dA

Prot 1 .
@ Pagr A ﬁ(\/ﬁ_prl— VyAD) =: (A T1,T2).

The equilibrium point for this system corresponding to the mean values)
andI'; = 0 of the inputs is given by

Ae= %(\/Kg""‘ﬁptoth/)’—Kd)-

The linearization of the system about this equilibrium point is given by

OA|a.r;1=0T2=0 (Ae/Kg+1)? ’
of 1 BProt of 1
b= — = , = — =———\vAe
YT Olilarcormo . va Y Ad/Ka+1 2T l2laricor-0 VO 7
Hence, the frequency responsdchas magnitude given by
b1

M (w) = ———.
N

In order to make a fair comparison between this response and that oféhe op
loop system, we need the steady states of both systems to be the same. to order
guarantee this, we set
___ B
CA/Kg+ 1
This can be attained by properly adjusting the strength of the promoter ahd of
ribosome binding site. As a consequence, we havebthat+/Bopiot/Q. Since we
also have thay > v, it follows that M®(w) < M(w) for all w. That is, the gain of
the closed loops system is smaller than that of the open loop system. This result

implies that negative autoregulation attenuates noise at all frequencieswdhe
frequency responses are plotted in Figbi&a).

Bo

MRNA decay close to protein decay

In the case in which mRNA and protein decay rates are comparable, wameed
model both the processes of transcription and translation. Lettinglenote the
MRNA of A, the reactions describing the open loop system modify to

R;: mAi>mA+A, Rz:Al>®, Rs: P mp +P, Rg: mAi(Z),
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Figure 6.2: (a) Magnitude of the frequency response to roiég for both open loop and
closed loop for the model in which mRNA is assumed at its gatesady state. The param-
eters arepy; = 10, Kg = 10,5 =0.001,y = 0.01,Q = 1, andBp = 0.00092. (b) Frequency
response to noisis(t) for both open loop and closed loop for the model in which mRNA
decay is close to protein decay. The parameterpgie 10,Kq = 10,a =0.001,8 = 0.01,
6=0.01,y=0.01, andag = 0.0618.

while those describing the closed loop system modify to
R:m,S>mu+A,  RyAL0,
a d
Ry:A+p—C, Ry:C—A+p,

R5:pi> My +P, Rg: mAi(Z), Ptot = P+ C.

Employing the Langevin equation, and applying singular perturbation &= perd
before, we obtain the dynamics of the system as

dd—n;A = F(A) -omp + %(\/F(A)l"s— \/SMaT6)

?j_? = KmA—’yA+ %(\/KmAl"l— \/’y_Arz),

in whichT's andI's are the noise on the production reaction and decay reaction of
MRNA, respectively. For the open loop system we hB{8) = agptot, While for
the closed loop system we have the Hill function

ot
FA) = A/Kg+1’
The steady state for the open loop system is given by

o @0Ptot o _ kKaoProt
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Considerind’s as the input of interest, the linearization of the system at this equi-
librium is given by

(3 5) e

kK=Y

Letting K = «/(yKq), the steady state for the closed loop system is given by

c  KMe c 1
R==5 0 s 5(—1/K+ \/(1/K)2+4apmt/(K6)).

The linearization of the closed loop system at this equilibrium point is given by

(3) o)

K =y 0

in which g = (pot/Ka)/(AS/Kg + 1)? represents the contribution of the negative
autoregulation. The larger the valuegthe stronger the negative autoregulation.

In order to make a fair comparison between the two systems, we let the steady
states be the same. To do this, we @gt «/(AS/Kqg+ 1), which can be done by
suitably changing the strengths of the promoter and ribosome binding site.

The open loop and closed loop transfer functions are given by

KVomeg/Q

Cars(® = G o)507)

and by
K Vome/Q

G5 = ,
(S S+ S(6+7)+ 06y +kg

respectively. By looking at these expressions, it is clear that the op@ntians-
fer function has two real poles, while the closed loop transfer functionheae
complex conjugate poles whenis suficiently large. As a consequence, noige
can be amplified at shiciently high frequencies. Figuig2(b) shows the magni-
tude M(w) of the corresponding frequency responses for both the open lubp a
the closed loop system.

It is clear that the presence of negative autoregulation attenuates nittise w
respect to the open loop system at low frequency, but it amplifies it aehfgé-
guency. This is a very well knowrfiect known as the “water bedfect”, according
to which negative feedback decreases tfiect of disturbances at low frequency,
but it can amplify it at higher frequency. Thiffect is not found in first order model,
as demonstrated by the derivations when mRNA is at the quasi-steady $tiste. T
illustrates the spectral shift of the frequency response to intrinsic noiseds the
high frequency, as also experimentally reportgid [
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Figure 6.3: (a) Nullclines for the toggle switch. By anahgithe direction of the vector
field in the proximity of the equilibria, one can deduce ttstatbility as described in Section
3.1 (b) Time traces foA(t) and B(t) when inducer concentrations anduy are changed.
In the simulation, we have=2,Kg1 = Kg2 =1, K2 = 0.1,8=1, andy = 1. The inducers
are such thati; = 100 fort < 100 andu; = O for t > 100, whileu, = 0 for t < 100 and
up = 100 fort > 100.

6.3 The Toggle Switch

The toggle switch is composed of two genes that mutually repress eachasther,
shown in the diagram of Figur@.1[27]. We start by describing a simple model
with no inducers. By assuming that the mRNA dynamics are at the quasi-steady
state, we obtain a two dimensionatférential equation model given by

dA B dB B

=T YA - = w 7B

dt  1+(B/K)" dt 1+ (A/K)"

in which we have assumed for simplicity that the parameters of the repression
functions are the same for A and B.

The number and stability of equilibria can be analyzed by performing nulicline
analysis since the system is two-dimensional. Specifically, by setiiigt = 0
anddB/dt = 0 and lettingn > 2, we obtain the nullclines shown in Figuée3a
The nullclines intersect at three points, which determine the steady statds of th
system. The stability of these steady states can be determined as follows.

The nullclines partition the plane into six regions. By determining the sign of
dA/dtanddB/dtin each of these six regions, one determines the direction in which
the vector field is pointing in each of these regions. From these directioes, 0
deduces that the steady state at whick B is unstable while the other two are
stable. Hence, this is a bistable system.

The system'’s trajectory converges to one steady state or the other depend
on the initial condition. Specifically, a trajectory starting at an initial condition in
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the region of attraction of steady steffe converges to this steady state. The 45
degree line divides the plane into the two regions of attraction of the stabtéy/stea
states. Once the system'’s trajectory has converged to one of the two statasy

it cannot switch to the other unless an external stimulation is applied.

In the toggle switch byZ7], external stimulations were added in the form of
negative inducers for A and B. Specifically, let e the negative inducer for A
and U be the negative inducer for B. Then, as we have seen in SeZi®ithe
expressions of the Hill functions need to be modified to repladey A(1/(1+
u1/Kg1)) andB by B(1/(1+ u2/Kqg2)), in which Ky 1 andKq 2 are the dissociation
constants of pwith A and of u, with B, respectively. Hence, the system becomes

fj—A= P B P e

t ~ 1+(B/Kg)" dt — 1+ (A/Kp)"

in which we have letKg = K(1+ u2/Kg2) and Ka = K(1+ u;/Kq1) denote the
effective K values of the Hill functions. We show in Figufe3btime traces for
A(t) and B(t) when the inducer concentrations are changed. Initiallyis high
until time 100 whileu, is low until this time. As a consequence, A does not repress
B while B represses A. Accordingly, the concentration of A stays low until time
100 and the concentration of B stays high. After time 160s high andu; is low.
As a consequence B does not repress A while A represses B. In tras@ituA
switches to its high value and B switches to its low value.

Note that the ffect of the inducers in this model is that of changing the shape
of the nullclines by changing the valueskf andKg. Specifically, high values of
u; andu, = 0 will lead to increased values &fx, which will shift the point of half-
maximal value of the Hill functio/(1+ (A/Ka)") to the right. As a consequence,
the nullclines will intersect at one point only, in which the valueBak high and
the value ofA is low. The opposite will occur whem, is high andu; = 0, leading
to only one intersection point in whidB is low andA is high.

6.4 The Repressilator

Elowitz and Leibler 23] constructed the first operational oscillatory genetic circuit

consisting of three repressors arranged in ring fashion, and coitieel ‘itepres-

silator” (Figure6.1d). The repressilator exhibits sinusoidal, limit cycle oscillations

in periods of hours, slower than the cell-division life cycle. Thereftire state of

the oscillator is transmitted between generations from mother to daughter cells.
The dynamical model of the repressilator can be obtained by composirgg thre

transcriptional modules in a loop fashion. The dynamics can be written as

dma dmg dnme

M _ki0)- a8 _ Eu(A) - A k) -
. 1(C) —6mp . 2(A) —omg it 3(B) —ome 62)
d_A\—m_A d_B—m_ B d_C— _C .
dt =AY at ey T
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where we take o

1+ (P/K)"
This structure belongs to the class of cyclic feedback systems that wetuaied
in Section3.4. In particular, the Mallet-Paret and Smith theorem and Hastings the-
orem (see SectioB.4for the details) can be applied to infer that if the system has a
unique equilibrium point and this equilibrium is unstable, then the system admits a
periodic solution. Therefore, to apply these results, we first determineutinder
of equilibria and their stability.

The equilibria of the system can be found by setting the time derivativesdo zer
Letting 8 = (x/6), we obtain

ABRUC) G BRAA) L BF(B)

Y Y Y

F1(P) = F2(P) = F3(P) =

which combined together yield
A= ’fFl(’f Fs(é FZ(A))) — o).
Y Y Y
The solution to this equation determines the set of steady states of the syseem. Th
number of steady states is given by the number of crossings of the twtidiusic
h1(A) = g(A) andhy(A) = A. Sincehy is strictly monotonically increasing, we ob-
tain a unique steady statehf is monotonically decreasing. This is the case when
g(A) = % < 0, otherwise there could be multiple steady states. Since we have
that

sign@ (A)) = I, sign(F; (P)),

it follows that if H?zlsign(Fi’(P)) < 0 the system has a unique steady state. We call
the producﬂf:lsign(Fi’(P)) theloop gain

Thus, any cyclic feedback system with negative loop gain will have a eniqu
steady state. It can be shown that a cyclic feedback system with posipeé&n
belongs to the class of monotone systems and hence cannot have periitdic o
[59]. In the present case, syste?) is such thaF, < 0, so that the loop gain is
negative and there is a unique steady state. We next study the stability aétdy s
state by studying the linearization of the system.

Letting P denote the steady state value of the protein concentrations for A, B,
and C, the linearization of the system is given by

-6 0 0 0 0 Fi(P)
-y 0 0 0 0
FP) -6 O 0 0
0 K -y 0 (O I
0 0 F4(P) =6 O
0 0 0 K -y

O OO OoO=x
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Figure 6.4: Space of parameters that give rise to osciliatfor the repressilator in equa-
tion (6.2). Here, we have sé& = 1 for simplicity.

whose characteristic polynomial is given by
det@l —J) = (1 +7)3(1+6)° - 3112, F/(P).
The roots of this characteristic polynomial are given by
(A+y)(1+0) =5,

in which s € {(<F’(P), (kF'(P)/2)(1+i V3),(xkF’(P)/2)(1-i V3)}. For being able to
invoke Hastings Theorem to infer the existence of a periodic orbit, itfiscgnt
that one of the roots of the characteristic polynomial has positive retlTias is
the case if

n(Pn—l/Kn)
F'(P 6, FPl=ao———=2,
KIF"(P)l > IF"(P)l L5 (PIKM)2
in which P is the equilibrium value satisfying the equilibrium condition

B«
IR TICTILE

One can plot the pair of values,f3/y) for which the above two conditions are
satisfied. This leads to the plot of Figued. Whenn increases, the existence of
an unstable equilibrium point is guaranteed for larger ranges/pf Of course,
this “behavioral” robustness does not guarantee that other importdntds of the
oscillator, such as the period, are not changed when parameters vary.

A similar result for the existence of a periodic solution can be obtained when
two of the Hill functions are monotonically increasing and only one is monotoni-
cally decreasing:

a _a(P/K)"

_ _a(P/K)"
GO K ST TS

Fi(P) = " TR
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Figure 6.5: Space of parameters that give rise to oscillatfor the repressilator (non-
symmetric design). As the value aofis increased, the range of the other parameter for
which a periodic cycle exists become larger. Here, we havk sel.

That is, two interactions are activations and one only is a repressioneféfeto

this as the “non-symmetric” design. Since the loop gain is still negative, there is
only one equilibrium point. We can thus obtain the condition for oscillations again
by establishing conditions on the parameters that guarantee that at leasboof

the characteristic polynomiab(4) has positive real part, that is,

k(IF1(P2)F5(P1)F5(P2)) ™) > s, (6.3)
in which P1, P2, P3 are the equilibrium values &, B, andC. These satisfy:

B (P/K)" p._ A (P2/K)"

n_ B
BT Y R e (oY LR S A Y

2
Using these expressions numerically and checking for each combinatioa pé-
rametersif,8/y) whether 6.3) is satisfied, we can plot the combinationsnadind

B/vy values that lead to an unstable equilibrium. This is shown in Fi§use=rom

this figure, we can deduce that the qualitative shape of the parameter thahc
leads to a limit cycle is the same in the repressilator and in the non-symmetric de-
sign. One can conclude that it is then possible to “over design” the cinaclitthat

the parameters land in the filled region of the plots. In practice, values ofithe H
codficientn between one and two can be obtained by employing repressors that
have cooperativity higher than or equal to two. There are plenty of jmkssors,
including those originally used in the repressilator desiff). However, values of

n greater than two may be hard to reach in practice. To overcome this probsiem, o
can include more elements in the loop. In fact, it is possible to show that the value
of n sufficient for obtaining an unstable equilibrium decreases when the number of
elements in the loop is increased (see Exercises).



6.5. ACTIVATOR-REPRESSOR CLOCK

200cf ’! \ X\ ‘ ““
AuA |

211

— alphaC

gamm

— bete

15067\ |

—  delte

| \ \ | 0 \ - "
[ \ \/ - 1 = alphe
wooct || Voo \ ] N ‘ ; P
/ 3\‘ r{ \ I\ N f r! -2F h ! "\1 -«
s\ \ \‘\ I\ /A »“‘\ / [\
| S [\ \ I\ [\ / /o ;o\ 4
500 \ /\ / \ /\ / \ J _al
/ / \ \ / / \ \ / / \
/ \ \/ \ \/ \
- A D DN 6 w w L w
ok . : . o 0 5000 1000C 1500C 2000
0 500¢ 1000C 1500C 2000(
(a) (b)

Figure 6.6: (a) Repressilator proteins as functions of ti(b¢ Repressilator sensitivity
plots. The most important parameters are the protein andAniRiday ratey andé.

Example 6.1 (Repressilator Parameter Sensitivityi this example, we use the
parameter sensitivity analysis tools of Chaeo investigate the sensitivity of
the protein concentrations to changes in the parameters. In this case, wktheod
repressilator Hill functions adding the basal expression rate as it vigisaily
done in R3:

(07
—— +ap.
1+ (P/K) 0
Letting x = (ma, A, mg, B,mc,C) andd = (a0, 6, .y, a, K), we can compute the sen-
sitivity Sx¢ along the limit cycle corresponding to nominal parameter vegias
illustrated in ChapteB:

F1(P) = F2(P) = F3(P) =

d Sx’g
dt

where M(t,6p) and N(t,0p) are both periodic in time. If the dynamics 8fy are
stable then the resulting solutions will be periodic, showing how the dynamics
around the limit cycle depend on the parameter values. The results ara ghow
Figure6.6b where we plot the steady state sensitivityAats a function of time. We
see, for example, that the limit cycle depends strongly on the protein degnad
and dilution rates, indicating that changes in this value can lead to (relatively)
large variations in the magnitude of the limit cycle.

= M(t, Qo)Sxﬁ + N(t, 6p),

\%

6.5 Activator-Repressor Clock

Consider the activator-repressor clock diagram shown in FigLe). The tran-
scriptional module A has an input function that takes two inputs: an actitedod

a repressor B. The transcriptional module B has an input function thes @iy
an activator A as its input. Leha andmg represent the concentration of mRNA
of the activator and of the repressor, respectively. A@nd B denote the protein
concentration of the activator and of the repressor, respectivedyn, Mre consider
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the following four-dimensional model describing the rate of change offkeiss
concentrations:

dma dmg

—gr = 0Ama+Fi(AB), == =—deme+Fa(A),
dA dB

— = —vA A Ma, — =—vygB mg,

dt ~ /ATTHATA gr - /BETHeme

in which the functions=; andF, are Hill functions and given by

aa(A/KA)" +ano
1+ (A/Ka)" + (B/Kg)™

ag(A/Ka)" +aro

AR L+ (/KA

Fa(A) =

The Hill function F; can be obtained through a combinatorial promoter, where
there are sites both for an activator and for a repressor (see S2@jon

Two-dimensional analysis

We first assume the mRNA dynamics to be at the quasi-steady state so that we
can perform two dimensional analysis and invoke the Po&&andixson theo-
rem (Sectior3.4). Then, we analyze the four dimensional system and perform a
bifurcation study.
We let f1(A,B) := (ka/da)F1(A, B) and f2(A) := (kg/ds)F2(A). For simplicity,
we also denotd (A, B) := —yaA+ f1(A, B) andg(A, B) := —ygB+ f2(A) so that the
two-dimensional system is given by
dA dB
For simplifying notation, we assunme= 1 andKa = Kg = 1.
We first study whether the system admits a periodic solution fol. To do so,
we analyze the nullclines to determine the number and location of steady skttes. L
an = aa(ka/dp), @B = a(ks/dB), @ao = @po(ka/da), andapgg = apo(ks/dg). Then,
g(A,B) =0 leads to
_ apA+app
(1+A)ys’

which is an increasing function &. Settingf (A, B) = 0, we obtain that

_ apA+ap— )/AA(]. + A)

B
YaAA

’

which is a monotonically decreasing function of A. These nuliclines are gisgla
in Figure6.7(a).

We see that we have one equilibrium only. To determine the stability of such
an equilibrium, we calculate the linearization of the system at such an equilibrium.



6.5. ACTIVATOR-REPRESSOR CLOCK 213

(@n=1 (byn=2

Figure 6.7: Nullclines for the two-dimensional systef4]. (a) shows the only possi-
ble configuration of the nuliclines when= 1. (b) shows a possible configuration of the
nullclines whenn = 2. In this configuration, there is a unique equilibrium, whian be
unstable.

This is given by the Jacobian matrix

of of
| 0A 9B
o
0A 0B
In order for the equilibrium to be unstable and not a saddle, it is negeasdr
suficient that trg) > 0 and det{) > 0. Graphical inspection of the nullclines at the
equilibrium (see Figuré.7(a)) shows that
dB

— <0.
dAlf(aBR)=0

By the implicit function theorem (Chapt8& Section3.6), we further have that

dB ot JoA

dA’f(A,B):o ~ of/oB’
so thatdf /0A < 0 becauséf/dB < 0. As a consequence, we have thaf)r 0
and hence the equilibrium point is either stable or a saddle.
To determine the sign of det(J), we further inspect the nullclines and find tha
g dB
dAlgap-0 dAlfap=0

Again using the implicit function theorem we have that
dB‘

dB _ 0g/oA
dA

gaB-0  09/0B’
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Figure 6.8: Effect of the trace of the Jacobian on the stability of the eltilim. The
above plots illustrate the trajectories of syste8wl) for both a functional (trJ) > 0) and
a non-functional (tr) < 0) clock. The parameters in the simulation éke= 65 = 1, aa =
ag =100,ap0 = .04, agg = .004,ya = 1, ka = kg = 1, andKp = Kg = 1. In the Functional
Clock, yg = 0.5 whereas in the Non-Functional Clockg = 1.5. Parameteraa andag
were chosen to give about 500-2000 copies of protein perfaekctivated promoters.
Parameteraag andagy were chosen to give about 1-10 copies per cell for non-aetiva
promoters.

so that det]) > 0. Hence, thew-limit set (Chaptei3, Section3.4) of any point in
the plane is not necessarily a periodic orbit. It follows that to guarantéettya
initial condition converges to a periodic orbit, we need to requirerthat.

We now study the cagse= 2. In this case, the nullcling(A, B) = 0 changes and
can have the shape shown in Figét& (b). In the case in which, as in the figure,
there is only one equilibrium point and the nuliclines intersect both with positive
slope (equivalent to deitf > 0), the equilibrium is unstable and not a saddle if
tr(J) > 0, which is satisfied if

YB
— <1
Ot /OA— A

This condition reveals the crucial design requirement for the functioniriyeo
clock. Specifically the repressor B time scale must lf@d@antly slower than the
activator A time scale. This point is illustrated in the simulations of Figu8ein
which we see that ifg is too large, the trace becomes negative and oscillations
disappear.

Four-dimensional analysis

In order to deepen our understanding of the role of time scale separatiwadn
activator and repressor dynamics, we perform a time scale analysis engpllog
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bifurcation tools described in Secti@5. To this end, we consider the following
four-dimensional model describing the rate of change of the speciesiations:

d d
d_thlA = —(6a/€) ma+F1(A, B), d_rr:;, = —(6B/€) Mg+ F2(A),
dA dB

— = v(=yaA+ (ka/€) Ma), = —ygB+(xkg/€) Mg.

dt dt

This system is the same as systeBrb( where we have explicitly introduced
two parametersy ande, which model time scale fierences as follows. The pa-
rametern determines the relative time scale between the activator and the repressor
dynamics. Asv increases, the activator dynamics become faster compared to the
repressor dynamics. The parametatetermines the relative time scale between
the protein and mMRNA dynamics. Asecomes smaller, the mRNA dynamics be-
come faster compared to protein dynamics and mdgl&) becomes close to the
two-dimensional modelg.4), in which the mRNA dynamics are considered at the
guasi-steady state. Thusis a singular perturbation parameter. In particular, equa-
tions 6.5 can be taken to standard singular perturbation form by considering the
change of variable®ia = ma/e andmg = mg/e. The details on singular perturbation
can be found in Sectio8.6.

The values ot and ofy do not dfect the number of equilibria of the system. We
then perform bifurcation analysis withandy as the two bifurcation parameters.
The bifurcation analysis results are summarized by Figu@eln terms of thee
andv parameters, it is thus possible to “over design” the system: if the activator
dynamics are dficiently sped up with respect to the repressor dynamics, the sys-
tem undergoes a Hopf bifurcation (Hopf bifurcation was introduced ti&e3.4)
and stable oscillations will arise.

From a fabrication point of view, the activator dynamics can be sped up by
adding suitable degradation tags to the activator protein. Similarly, the sepres
dynamics can be slowed down by adding repressor DNA binding site€ (sgeer
7 and the #&ects of retroactivity on dynamic behavior).

6.6 An Incoherent Feedforward Loop (IFFL)

In Section3.2, we described various mechanisms to obtain robustness to external
perturbations. In particular, one such mechanism is provided by ineohgzred-
forward loops. Here, we describe an implementation that was proposetking

the steady state levels of protein expression robust to perturbations inplxsA

mid copy number12]. In this implementation, the inputis the amount of DNA
plasmid coding for both the intermediate regulator A and the output protein B.
The intermediate regulator A represses through transcriptional raprabe ex-
pression of the output protein B (FiguéelQ. The expectation is that the steady
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Figure 6.9: Design chart for the relaxation oscillator. Vidain sustained oscillations past
the Hopf bifurcation point, for values ofsuficiently large independently of theftérence
of time scales between the protein and the mRNA dynamics.|¥denmtice that there are
values ofy for which a stable equilibrium point and a stable orbit ceexind values of
v for which two stable orbits coexist. The intervalhofalues for which two stable orbits
coexist is too small to be able to numerically s@&t such an interval. Thus, this interval is
not practically relevant. The valueswfor which a stable equilibrium and a stable periodic
orbit coexist is instead relevant. This situation corregfsoto thehard excitationcondition
[55] and occurs for realistic values of the separation of tirnales between protein and
mMRNA dynamics. Therefore, this simple oscillator motif ciésed by a four-dimensional
model can capture the features that lead to the long termraesgipn of the rhythm by
external inputs.

state value oB is independent of the concentratiarof the plasmid. That is, the
concentration of B should adapt to the copy number of its own plasmid.

In order to analyze whether the adaptation property holds, we write ffes-di
ential equation model describing the system, assuming that the mRNA dynamics
are at the quasi-steady state. This model is given by

dB klu

ot Trakg P 69

dA
a - kOU_'yA,

in whichkg is the constitutive rate at which A is expressed Kydk the dissociation
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Figure 6.10: The incoherent feedforward motif with a posilmplementation. The circuit
is integrated on a DNA plasmid denoted u. Protein A is underctintrol of a constitutive
promoter in the DNA plasmid u, while B is repressed by A. Aro®, in turn, is also

expressed by a gene in the plasmid u. Hence B is also “adlivateu.

constant of the binding of A with the promoter. This implementation has been
called the srfer in Section3.2 The steady state of the system is obtained by
setting the time derivatives to zero and gives

ko k]_U
A=—u, B=——.
Y ¥ +kou/Kg

From this expression, one can easily note tha€adecreases, the denominator
of the right-side expression tendskegu/Kq resulting into the steady state value
B = k1 Kq4/ko, which does not depend on the inpLtHence, in this case, adaptation
would be reached. This is the case if thérty of Lacl to its operator sites is
extremely high, resulting also in a strong repression and hence a lower eflu
B. In practice, however, the value & is non-zero, hence the adaptation is not
perfect. We show in Figuré.11the behavior of the steady stateB&s a function
of the inputu for different values oKq. Ideally, for perfect adaptation, this should
be a horizontal line.

In this study, we have not modeled the cooperativity of the binding of protein
A to the promoter. If A is Lacl, for example, the cooperativity of bindingis 4.
We leave as an exercise to show that the adaptation behavior persists iasthis c
(see Exercises).

For engineering a system with prescribed behavior, one has to be ahkeige:
the physical features so as to change the values of the parameters ofdake mo
This is often possible. For example, the bindirigraty (1/Kg in the Hill function)
of a transcription factor to its site on the promoter can be weakened by single
or multiple base pairs substitutions. The protein decay rate can be incieased
adding degradation tags at the end of the gene expressing proteimoters that
can accept multiple transcription factors (combinatorial promoters) to implement
regulation functions that take multiple inputs can be realized by combining the
operator sites of several simple promotelr§] |
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Figure 6.11: Behavior of the steady state valuBafs a function of the inpui.

Exercises

6.1 Consider the negatively autoregulated system:

dA_ B

Ao _ P A
dt ~ 1+ (A/K) 7

Explore through linearization how increasing the Hill fic@ent dfects the re-
sponse time of the system. Also, compare the results of the linearization analysis
to the behavior of the nonlinear system obtained through simulation.

6.2 Consider the toggle switch:

dA Ba

aA_ P dB_ B8
dt 1+ (B/K)"

AR T VTS

Here, we are going to explore the parameter space that makes the systeaswo
a toggle. To do so, answer the following questions:

(a) Considem=n= 1. Determine the number and stability of the equilibria.

(b) Considem =1 andn > 1 and determine the number and stability of the equi-
libria (as other parameters change).

(c) Considem=n= 2. Determine parameter conditions 81 s, v, K for which
the system is histable, i.e., there are two stable steady states.

6.3 Consider the repressilator model and the parameter space for oscillaiens p
vided in Figure6.4. Determine how this parameter space changes if the valie of
in the Hill function is changed.
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6.4 Consider the “generalized” model of the repressilator in which we mave
repressors (witlman odd number) in the loop. Explore via simulation the fact that
whenmis increased, the system oscillates for smaller values of the Hifficmnt

n.

6.5 Consider the oscillator design of Stricker et 86][ Build a four dimensional
model including mRNA concentration and protein concentration. Then ecithis
fourth order model to a second order model using the QSS approximatitmefo
MRNA dynamics. Explore through simulation conditions for oscillations and com-
pare the behavior of the reduced model to that of the original model.

6.6 Consider the feedforward circuit shown in Fig@&40 Assume now to model
cooperativity such that the model modifies to

dA dB Kk
92 kou— @e___ W g
at RUTYA L T T ke Y

Show that the adaptation property still holds under suitable parameter cosditio
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Chapter 7

Interconnecting Components

In Chapter2 and Chapte6, we studied the behavior of simple biomolecular mod-
ules, such as oscillators, toggles, self repressing circuits, signatitreticen and
amplification systems, based on reduced order models. One naturalrstepdies

to create larger and more complex systems by composing these modules together
In this chapter, we illustrate problems that need to be overcome when inteaten

ing components and propose a number of engineering solutions basesifeadh

back principles introduced in Chapt&rSpecifically, we explain how impedance-
like effects arise at the interconnection between modules, which change the ex-
pected circuit behavior. These impedance problems appear in setlfezalengi-
neering domains, including electrical, mechanical, and hydraulic systethBasa

been largely addressed by the respective engineering communities. ¢haipier,

we explain how similar engineering solutions can be employed in biomolecular
systems to defeat impedancieets and guarantee “modular” interconnection of
circuits. In ChapteB, we further study loading of the cellular environment by syn-
thetic circuits employing the same framework developed in this chapter.

7.1 Input/Output Modeling and the Modularity Assumption

The inpufoutput modeling introduced in Chapteand further developed in Chap-

ter 3 has been employed so far to describe the behavior of various modules and
subsystems. This inplatutput description of a system allows to connect systems
together by setting the inpup of a downstream system equal to the outypubf

Uy Y1 U 12

—_— [—— —_—
Uy U2 = Y1 ’
- Y2

Figure 7.1: In the inpybutput modeling framework, systems are interconnecteddiy s
cally assigning to the input of the downstream system theevaf the output of the up-
stream system.
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the upstream system (Figurel) and has been extensively used in the previous
chapters.

Each node of a gene circuit, such as those in Figutehas been modeled as
an inpufoutput system taking the concentrations of transcription factors as input
and giving, through the processes of transcription and translatiomptioentration
of another transcription factor as an output. For example, node C in thesep
lator has been modeled as a second order system that takes the caioceofra
transcription factor B as an input through the Hill function and gives tidpison
factor C as an output. This is of course not the only possible choice lionitieg
a system. We could in fact let the mRNA or the RNA polymerase flowing along the
DNA, called PoPS (polymerase per secorifj][play the role of input and output
signals. Similarly, a signal transduction network is usually composed byiprote
covalent modification modules, which take a modifying enzyme (a kinase in the
case of phosphorylation) as an input and gives the modified protein astjut.
Accordingly, one of the models of the MAPK cascade considered in Se2tton
is obtained by setting the value of the kinase concentration of a downstyeam ¢
cle equal to the value of the concentration of the modified protein of the apstre
cycle.

This inpufoutput modeling framework is extremely useful because it allows
to predict the behavior of an interconnected system from the behavtbea$o-
lated modules. For example, the location and number of steady states in the toggle
switch of Sectior6.3were predicted by intersecting the steady state joptput
characteristics, determined by the Hill functions, of the isolated modules Band
Similarly, the number of steady states in the repressilator was predicted by modu
larly composing the inpybutput steady state characteristics, again determined by
the Hill functions, of the three modules composing the circuit.

For this inpufoutput interconnection framework to reliably predict the behav-
ior of connected modules, it is necessary that the jiopipput (dynamic) behavior
of a system does not change upon interconnection to another systeraféieor
the property by which a system inpotitput behavior does not change upon inter-
connection asnodularity. All the designs and modeling described in the previous
chapter assume that the modularity property holds. In this chapter, wéajues
this assumption and investigate when modularity holds in gene and in signal trans
duction circuits. Further, we illustrate design methods, based on the teekrofju
Chapter3, to create functionally modular systems.

7.2 Introduction to Retroactivity

The modularity assumption implies that when two modules are connected together,
their behavior does not change because of the interconnection. EQweunda-
mental systems-engineering issue that arises when interconnectingtemsys
how the process of transmitting a signal to a “downstream” compotfigtta the
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Figure 7.2: (a)-(b) show the activator-repressor cloclotogy and the time behavior of the
activator and repressor concentrations. (c)-(d) show\ilen a load is connected to the
clock, sustained oscillations disappear.

dynamic state of the sending component. This issue, fiieeteof “loads” on the
output of a system, is well-understood in many engineering fields suchciscze
engineering. It has often been pointed out that similar issues may arismlog-
ical systems. These questions are especially delicate in design probl@msssu
those described in Chaptér

For example, consider a biomolecular clock, such as the activatorssepre
clock introduced in Sectiof.5and shown in Figur@.2awith simulations in Figure
7.2h Assume that the activator protein concentra#igt) is now used as a commu-
nicating species to synchronize or time a downstream system D (Rid2geFrom
a systemysignals point of viewA(t) becomes aimput to the downstream system
D. The terms “upstream” and “downstream” reflect the direction in which & th
of signals as travelindgromthe clockto the systems being synchronized. However,
this is only an idealization because when A is taken as an input by the doamstre
system it binds to (and unbinds from) the promoter that controls the expmess
of D. These additional bindirignbinding reactions compete with the biochemical
interactions that constitute the upstream clock and may therefore disrumtehne
ation of the clock itself (Figur@?(d)). We call this “back-fect” retroactivity to
extend the notion of impedance or loading to non-electrical systems andiicx par
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Figure 7.3: A systen$ input and output signals. Theands signals denote signals origi-
nating by retroactivity upon interconnectiotd.

ular to biomolecular systems. This phenomenon, while in principle may be used
in an advantageous way by natural systems, can be deleterious whgnirps
synthetic systems.

One possible approach to avoid disrupting the behavior of the clock is to in-
troduce a gene coding for a new protein X, placed under the controkafdme
promoter as the gene for A, and using the concentration of X, which imesly
mirrors that of A, to drive the downstream system. This approach, rewvsiill
has the problem that the behavior of the X concentration may be alteredramd e
disrupted by the addition of downstream systems that drain X, as we shah se
the next section. The net result is that the downstream systems areopetlpr
timed as X does not transmit the desired signal.

To model a system with retroactivity, we add to the iriputput modeling
framework used so far, an additional input, calledo model any change that
may occur upon interconnection with a downstream system. Thamsdels the
fact that whenevey is taken as an input to a downstream system the valye of
may change, because of the physics of the interconnection. This pheoorise
also called in the physics literature “the observed”, implying that no phys-
ical quantity can be measured without being altered by the measuremenrg.devic
Similarly, we add a sighal as an additional output to model the fact that when a
system is connected downstream of another one, it will send a sigrie¢asthat
will alter the dynamics of that system. More generally, we define a syStém
have internal statg, two types of inputs, and two types of outputs: an inpuit “
an output ¥’ (as before), aetroactivity to the inputr”, and aretroactivity to the
output“s’ (Figure 7.3). We will thus represent a systegnby the equations

dx
i f(x,u,s), y=h(xu,s), r=R(x,u,s), (7.2)
where f, g, andR are arbitrary functions and the signalsu, s, r, andy may be
scalars or vectors. In such a formalism, we define the foptgut model of the
isolated system as the one in equati@riY without r in which we have also set
s=0.

LetS; be a system with inputg ands and with outputy; andr;. LetS; andS;
be two systems with disjoint sets of internal states. We define the intercormectio
of an upstream systef with a downstream systef®y by simply settingy; = us
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Downstream
Transcription component transcription component

Figure 7.4: Atranscription component takes as inppitotein concentratiod and gives as
outputy protein concentratioiX. The downstream transcription component takes protein
concentratiorX as its input.

ands; = rp. For interconnecting two systems, we require that the two systems do
not have internal states in common.

It is important to note that while retroactivijis a back-action from the down-
stream system to the upstream one, it is conceptuaffgrént from feedback. In
fact, retroactivitysis non-zero any timg s transmitted to the downstream system,
that is, it is not possible to send sigiyab the downstream system without retroac-
tivity s. By contrast, feedback from the downstream system can be remogad ev
when the upstream system sends signal

7.3 Retroactivity in Gene Circuits

In the previous section, we have introduced retroactivity as a ger@mraépt mod-
eling the fact that when an upstream system is ifquiput connected to a down-
stream one, its behavior can change. In this section, we focus on igemiéscand
show what form retroactivity takes and what iffeets are.

Consider the interconnection of two transcription components illustrated in Fig-
ure 7.4. A transcription component is an inpotitput system that takes the tran-
scription factor concentratian as input and gives the transcription factor concen-
tration X as output. The activity of the promoter controlling gendepends on
the amount of Z bound to the promoterat= Z(t), such an activity changes with
time. To simplify notation, we denote it (t). We assume here that the mRNA
dynamics are at their quasi-steady state. The reader can verify tha¢ aigtlts
hold unchanged when the mRNA dynamics are included (see exercises)titd/
the dynamics of X as

dX

e k(t) —yX, (7.2)
in which v is the decay rate constant of the protein. We refer to equafi@h s
theisolated system dynamics
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Figure 7.5: The fect of retroactivity. The solid line representgt) originating by equa-
tions (7.2), while the dashed line represeit§) obtained by equatior?(3). Both transient
and permanent behaviors aréfédient. Herek(t) = 0.01(1+ sin(wt)) with w = 0.005 in (a)
andw =0 in (b), kon = 10, kot = 10,y = 0.01, pot = 100, X(0) = 5. The choice of protein
decay rate (in min') corresponds to a half life of about one hour. The frequeri@soil-
lations is chosen to have a period of about 12 times the proh life in accordance to
what is experimentally observed in the synthetic clockf |

Now, assume that X drives a downstream transcription module by binding to a
promoter p with concentratiop (Figure7.4). The reversible binding reaction of X
with p is given by

Kon
X+p=C
Kofr
in which C is the complex protein-promoter akg andkes are the association and
dissociation rate constants of protein X to promoter site p. Since the promoter is
not subject to decay, its total concentratipg; is conserved so that we can write
p+C = pwt. Therefore, the new dynamics of X are governed by the equations

O =)~y X+ [k C—kon(Ppor~CX], S = HanC +on(Pror~COX. (7.3)

dt
We refer to this system as tlewnnectedsystem. Comparing the rate of change
of X in the connected system to that in the isolated sysfé®),(we notice the
additional rate of changekdsC — kon(prot — C)X] of X in the connected system.
Hence, we have

S = [KotC — Kon(Ptot — C) X1,

and s = 0 when the system is isolated. We can intergeis being a mass flow
between the upstream and the downstream system, similar to a current iicalectr
circuits.

How large is the fiect of retroactivitys on the dynamics oK and what are the
biological parameters thaffact it? We focus on the retroactivity to the outs
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we can analyze thefect of the retroactivity to the inpuiton the upstream system
by simply analyzing the dynamics dfin the presence of the promoter regulating
the expression of.

The dfect of retroactivitys on the behavior oK can be very large (Figurg.5).
By looking at Figurer .5, we notice that theféect of retroactivity is to “slow down”
the dynamics oK(t) as the response time to a step input increases and the response
to a periodic signal appears attenuated and phase-shifted. We will cointolihis
more precisely in the next section.

These €ects are undesirable in a number of situations in which we would like
an upstream system to “drive” a downstream one as is the case, fapkxavhen
a biological oscillator has to time a number of downstream processes.elfodu
the retroactivity, the output signal of the upstream process becomest@mbtor
out of phase with the output signal of the isolated system (as in Fig&jethe
coordination between the oscillator and the downstream processes wititbé/m
next provide a procedure to obtain an operative quantification offieeteof the
retroactivity on the dynamics of the upstream system.

Quantification of the retroactivity to the output

In this section, we provide a general approach to quantify the retrdgdtivthe
output. To do so, we quantify theftkrence between the dynamics)ofn the iso-
lated system®.2) and the dynamics oX in the connected systeni.@) by estab-
lishing conditions on the biological parameters that make the two dynamics close
to each other. This is achieved by exploiting thffatience of time scales between
the protein production and decay processes and bifdibgnding reactions, math-
ematically described big > k(t),y. By virtue of this separation of time scales,
we can approximate system.B) by a one dimensional system describing the evo-
lution of X on the slow manifold (see Secti@ng).

To this end, note thaf7(3) is not in standard singular perturbation form: while
Cis afast variableX is neither fast nor slow since itsftirential equation includes
both fast and slow terms. To explicitly model théfdience of time scales, we let
z= X+ C be the total amount of protein X (bound and free) and re-write system
(7.3) in the new variablesz(C). Letting € = y/ko, Kg = Koit/Kon, Ko = v/€, and
kon = y/(eKy), system 7.3) can be re-written as

dz C v
GO0, e =1CH - (Pu-0@-0). (74
in which z is a slow variable. The reader can check as an exercise that the slow
manifold of system7{.4) is locally exponentially stable (see Exercises).
We can obtain an approximation of the dynamicXoh the limit in whiche is
very small, by setting = 0. This leads to

ProtX

Y — = i =
—yC+ K—d(ptot—c)x =0— C=g(X) with g(X) = X+Ky
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Sincedy/dt = dX/dt+ dC/dt, we have thaty/dt = dX/dt+ (dg/dX)dX/dt. This
along withdy/dt = k(t) — yX lead to

dX 1
s (k(t) —yX)(m). (7.5)
The diterence between the dynamics in equatié)((the connected system

after a fast transient) and the dynamics in equati@g) ((the isolated systemg is
zero when the terrﬁd—))(o in equation 7.5) is zero. We thus consider the teﬂ%‘%

as a quantification of the retroactivigjafter a fast transient in the approximation

in which € ~ 0. We can also interpret the terﬂﬁ(xi) as a percentage variation of
the dynamics of the connected system with respect to the dynamics of thedsolate
system at the quasi-steady state. We next determine the physical measiut) af
term by calculating a more useful expression that is a function of key eiidal
parameters.

By using the implicit function theorem, one can compute the following expres-
sion fordg(X)/dX: daX) K

g Ptot/ Kd )

aX ~ OKgr1E R(X). (7.6)
The retroactivity measur® is low whenever the ratigy/Kq, which can be seen
as an €ective load, is low. This is the case if théiaity of the binding sites p is
small (Kq large) or if piot is low. Also, the retroactivity measure is dependeniXon
in a nonlinear fashion and it is such that it is maximal when X is the smallest. The
expression ofR(X) provides an operative quantification of retroactivity: such an
expression can in fact be evaluated once the dissociation constant dgvis,,
the concentration of the binding sitpg; is known, andX is also measured. From
(7.5 and from {.6), it follows that the rate of change &fin the connected system
is smaller than that in the isolated system, that is, retroactivity slows down the
dynamics of the transcription system. This has been also experimentallye@por
in [46].

Summarizing, the modularity assumption introduced in Sectidrolds only
when the value oR(X) is small enough. As a consequence, the design of a simple
circuit can assume modularity if the interconnections among the composing mod-
ules can be designed so that the valu&@X) is low. From a design point of view,
low retroactivity can be obtained by either choosing Idivrity binding sites p or
by making sure that the amounts of p is not too high compared fthis can be
guaranteed by placing the promoter sites p on low copy number plasmidsror eve
on the chromosome (with copy humber equal to 1). High copy number plasmids
are expected to lead to non-negligible retroactivitigets on X.

In the presence of very lowffinity andor very low amount of promoter sites,
the amount of complex C will be very low. As a consequence, the amplitude of
the transmitted signal to downstream systems may also be very small and, as a
consequence, noise may become a bottleneck. A better approach mayekto d




7.3. RETROACTIVITY IN GENE CIRCUITS 229

insulation devices (as opposed to designing the interconnection for lopacetr
tivity) to buffer systems from possibly large retroactivity as explained later in the
chapter.

Effects of retroactivity on the frequency response

How do we explain the amplitude attenuation and phase shift due to retroactiv-
ity observed in Figur&@.5? In order to answer this question, we can linearize the
system about its steady state and determine figeteof retroactivity on the fre-
quency response. To this end, consider the input in the fgtje= k+ Agsin(wt).

Let X = k/y andC = piotX/ (X + Kqg) be the equilibrium values correspondingkto

The isolated system is already linear, so there is no need to perform lirieariza
and the transfer function frokato X is given by

1
Gl (s) = —.
(9=
For the connected system.§), let (E )?)_denote the steady state, which is the same
as for the isolated system, andket k—k andx = X— X denote small perturbations
about this steady state. Then, the linearization of sys#8 &bout k, X) is given
by (see Sectio.1):

1
1+ (prot/Ka)/(X/Kg +1)2°

dx ~

5 = kKO-
Letting R:= (Ptot/ Kd)/()Z/ Kq+ 1)2, we obtain the transfer function froknto x of
the connected system linearization as

c 1 1
1+Rs+y/(1+R)

Hence, we have the following result for the frequency response galrphase
shift:

1
M (w) = \/% ¢'(w) = tan *(-w/y),
w2+y
1 1

M (w) = ¢%(w) = tam(-w(1+R)/y),

1+R \wZ+92/(1+R?

from which one obtains that'(0) = M©(0) and, sinceR > 0, the bandwidth of

the connected systewy(1+ R) is lower than that of the isolated systemAs a
consequence, we have thdt (w) > M®(w) for all w > 0. Also, the phase shift of

the connected system is larger than that of the isolated system. This explains w
the plots of Figur&Z.5show a lag, an attenuation, and a phase shift in the response
of the connected system.
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input
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Figure 7.6: Covalent modification cycle with its input, outtpand downstream system.

This fact further indicates that if the frequency of the input stimulak(th
is suficiently lower than the bandwidth of the connected sysigfi + R), then
the connected and isolated systems will respond similarly. Hence fléneseof
retroactivity are tightly related to the time scale properties of the input signals
and of the system, Thesé&ects will be negligible when the input stimulation is
suficiently slow (see exercises), and mitigation of retroactivity is required only
when the frequency range of the signals of interest is larger than theecte
system bandwidtly/(1+ R).

7.4 Retroactivity in Signaling Systems

Signaling systems are circuits that take external stimuli as inputs and, theough
sequence of biolmolecular reactions, transform them to useful signalddtea-
mine how cells respond to their environment. These systems are usually anpos
of covalent modification cycles (phosphorylation, methylation, urydylilateto.)
connected in cascade fashion, in which each cycle has multiple downstegets

(or substrates). An example is the MAPK cascade, which we have adaly3ec-

tion 2.5. Since covalent modification cycles always have downstream targets, su
as DNA binding sites or other substrates, it is particularly important to utedets
whether and how retroactivity from these downstream systéfesta the response

of the upstream cycles to input stimulation. In this section, we study this question
both for the steady state and dynamic response of a covalent modificatierta@yc
its input (refer to Figurée.6).
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Steady state effects of retroactivity

We have seen in Sectidh4that one important characteristic of signaling systems
and, in particular, of covalent modification cycles, is the steady stateathasa

tic or dose response curve. In particular, we showed in Se2tibthat when the
Michaelis-Menten constants arefciently small compared to the total protein
amount, the cycle characteristics becomes ultrasensitive, a condition oalted z
order ultrasensitivity. When the cycle is connected to its downstream tatigists
steady state characteristics changes. In order to understand howgpensawe
rewrite the reaction rates and the correspondifigintial equation model for the
covalent modification cycle of Sectidh4 adding the binding of Xto its down-
stream target S. Referring to Figufes, we have the following reactions:

a k a k
Z+X=C,5X*+Z,  Y+X'=C,5X+Y,
dl d2

to which we add the binding reaction of X* with its substrates S:

Kon
X*+S=—C,
Kofr
in which C is the complex of X* with S. In addition to this, we have the conserva-
tion lawsXiot = X* + X+ C1+Co+C, Z+Cq = Zior, andY + C5 = Yiot.
The rate equations governing the system are given by

% =y XZ- (d1 + kl)Cl

d;i = —ayX*Y 4+ 0oCy + ki Cp — koS X + kofiC
dac _
dt
dc

i KonX"S — KotC.

aZX*Y — (d2 + kz)Cz

The inpufoutput characteristics are found by solving this system for the equilib-
rium. In particular, by settindC,/dt = 0, dC,/dt = 0, using thaZ = Z;,;— C; and
thatY = Yo — C», we obtain the familiar expressions for the complexes:

Ztotx Ytotx* . dl + k1 dz + k2
= = h K = K = .
1 K1+ X’ C2 Ko + X* ’ wit ! a1 and 2 ar
By settingd X*/dt+ dC,/dt+dC/dt = 0, we obtairk;C, = koC», which leads to
X X*
V1 Vi = klztot and Vo = kZYtot- (7.7)

—V
Kit X 2Kpt X*

By assuming that the substrafg is in excess compared to the enzymes, we have
thatCj,Cy < Xiot SO thatX ~ Xiot— X* —C, in which (from settingdC/dt=0) C =
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Figure 7.7: The addition of downstream target sites makeéngmay/output characteristics
more linear-like, that is, retroactivity makes a switdkeliresponse into a more graded
response.

X*S/Kq with Kg = Kor/Kon, leading toX ~ Xiot — X*(1+ S/Kq). Calling A = S/Ky,
equation 7.7) finally leads to
_ Vi X (Ka/14+ )+ ((Keot/ 1+ 2) = X))
\ (K2 + X*) (Xtot/ (L + 2)) = X¥)

(7.8)

Here, we can interpret as an €ective load, which increases with the amount of
targets of X but also with the fiinity of these targets (Kg).

We are interested in how the shape of the steady state characterisitasf
function ofy change when thefiective loadt is changed. As seen in Secti@r,
a way to quantify the sensitivity of the steady state characteristics is to calculate
the response céiécientR = ygo/Yy10. The maximal value oK* obtained ay — o
is given byXqi/(1+ 1). Hence, from equatiorv(8), we have that

(K1+0.1)0.9 (K1+0.9)0.1
Yoo= @+ 40901 Y07 (Ky(1+1)+01)09’
- . K K>
Ky = - Ky = -
so that _ _
R 81(51+0‘1)(K2(1+f)+0'1_
(Ko(1+2) +0.9)(K1 +0.9)

Comparing this expression with the one obtained in equaBd&¥) for the isolated
covalent modification cycle, we see that the rfig& of the downstream target S is
that of increasing the Michaelis-Menten constiatby the factor (& 2). Hence,
we should expect that with increasing load, the steady state charactesisiids
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Figure 7.8: (a) Step response of the cycle in the presenceaditive step. The response
time is not dected by the load. (b) Response to a negative step. The peeséthe load
makes the response slower. HeXg; = 1, Ky = K, = 0.1, k; =k, =1, and1 =5.

be more linear-like. This is confirmed by the simulations shown in Figufand it
was also experimentally demonstrated in signal transduction circuits rectetbtitu
in vitro [91].

One can check th& is a monotonically increasing function &f In particular,
as/ increases, the value 8ftends to 81K +0.1)/(K2+0.9), which, in turn, tends
to 81 forK;, Ky, — 0. Whena = 0, we recover the results of Sectigm.

Dynamic effects of retroactivity

In order to understand the dynamitexts of retroactivity on the signaling module,
we seek a one dimensional approximation of Xfielynamics, which can be easily
analyzed. To do so, we exploit time scale separation and apply singularrijzion
analysis.

Specifically, we have that, ko > ki, ko, SO we can choose as a small parameter
€ = ki/kog and slow variablev = X* + C + C,. By settinge = 0, we obtain that
C1 = ZiotX/ (K1 + X), Co = YiorX /(K2 + X*) =: g(X*), andC = AX*, in which Zy is
time-varying input signal. Hence, the dynamics of the slow variabt® the slow
manifold are given by

dw Ziot() X X"

=k — .
dt ~ YK+ X 2ONIK,

Usingdw/dt=dX*/dt+dC/dt+dCy/dt, dC/dt= AdX*/dt, dCy/dt = dg/oX*d X* /dlt,
and the conservation laX = X — X*(1 + 1), we finally obtain the approximated
X* dynamics as

(7.9)

dx _ 1 Ztot(t)(xtot_x*(l"'/l))_ Y, X*
dt I+A\ FKit Kot— XF(@+2) 2 O% 4Ky )’
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Figure 7.9: Behavior of the bandwidth as a function of thellta different values of the
Michaelis-Menten constant§;, Ko. Here, Xiot = 1.

where we have assumed that thgt/ Ko < S/Kyg, so that the fect of the binding
dynamics of X* with Y (modeled byg/0X*) is negligible with respect tda. The
reader can verify this derivation as an exercise (see exercises).

From this expression, one can understand fifieceof the loadl on the rise
time and decay time in response to large step input stiiliFor the decay time,
one can assume an initial conditiofi(0) # 0 andZy(t) = O for all t. In this case,
we have that dxc - L
gt - Ve e T
from which, sincel > 0, it follows that the transient will be slower than whega 0
and hence that the system will have an increased decay time due to rettpacti
For the rise time, one can assuifig; ~ co and X*(0) = 0. In this case, at least
initially we have that

(1+/l)dX* (k Ziot(Xiot — X*(1+ 1))

at K+ Kot = X (11 ) )

which is the same expression for the isolated system in wKitls scaled by
(1+ ). So, the rise time is notfizected. The response of the cycle to positive and
negative steps changes of the input stimdwse shown in Figur&.8.

In order to understand how the bandwidth of the systenffected by retroac-
tivity, we considerZi(t) = Z + Agsin(wt). Let X be the equilibrium ofX* corre-
sponding taZ. Let z= Zio;— Z andx = X* — X denote small perturbations about the
equilibrium. The linearization of systeri.Q) is given by

dx
i —a(A)x+b()z(t),
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in which

_ 1 K1(1+/1) Ko
al) = 1+A( (KT ot - XA D)2 +k2Y“"(Kz+X)2)

and
b(1) =

Ky Xiot — X(1+ )
1+ A\ Ky + Kot — X(1+ ) )

so that the bandwidth of the system is givenday= a(A).

Figure7.9shows the behavior of the bandwidth as a function of the load. When
the isolated system static characteristics are linear-kgK> > Xq), the band-
width monotonically decreases with the load. By contrast, when the isolatearsys
static characteristics are ultrasensiti¥q (Ko, < Xot), the bandwidth of the con-
nected system can be larger than that of the isolated systemffmiently large
amounts of loads. In these conditions, one should expect that the sespbthe
connected system becomes faster than that of the isolated system. Tloes#-the
cal predictions have been experimentally validated in a covalent modificatite ¢
reconstitutedn vitro [48].

7.5 Insulation Devices: Retroactivity Attenuation

As explained in the previous section, it is not always possible or adveotiago
design the downstream system so that it applies low retroactivity bedauss;
ample, the downstream system may already have been designed and opfimized
other purposes. A better approach, in analogy to what is performecciniee cir-
cuits, is to design a device to be placed between the upstream system ({lib&oosc
for example) and the downstream load so that the device output is najeshay
the load and the device does ndiiegt the behavior of the upstream system. That
is, the output of the device should follow the prescribed behavior indkety of
any loading applied by a downstream system.

Specifically, consider a systegnsuch as the one shown in Figute. We would
like to design such a system such that

(a) the retroactivity to the input is very small;

(b) the dfect of the retroactivitys to the output on the internal dynamics of the
system is very small independently sitself (retroactivity attenuation).

Such a system is said to have thsulationproperty and will be called an insulation
device. Indeed, such a system will néiteact an upstream system because0 and

it will keep the same output signglindependentlpf any connected downstream
system. Of course, other requirements may be important, such as the stability of
the device and the speed of response.
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Figure 7.10: The diagram in (a) shows the basic high-gaitdifaek mechanism to attenuate
the contribution of disturbanceon the output. The diagram in (b) shows an alternative
representation, which will be employed to design biolobiicsulation devices.

Equation 7.6) quantifies the fect of retroactivity on the dynamics &f as a
function of biochemical parameters. These parameters ardfihigyeof the bind-
ing site /Ky, the total concentration of such binding sfig;, and the level of the
signalX(t). Therefore, to reduce retroactivity, we can choose parametendisaic
(7.6) is small. A sificient condition is to choosKy large (low dfinity) and piot
small, for example. Having small value pf,; andor low afinity implies that there
is a small “flow” of protein X toward its target sites. Thus, we can say thatva lo
retroactivity to the input is obtained when the “input flow” to the system is snmall. |
the next sections, we focus on the retroactivity to the output, that is, oetitoac-
tivity attenuation problem, and illustrate how the problem of designing a device
that is robust tes can be formulated as a classical disturbance attenuation problem
(Section3.2). We provide two main design techniques to attenuate retroactivity:
the first one (principle 1) is based on the idea of high-gain feedbadkti(88.2),
while the second one uses time-scale separation and leverages the etofi tier
interconnection.

Attenuation of retroactivity to the output: Principle 1

The basic mechanism for retroactivity attenuation is based on the corfodigt o
turbance attenuation through high-gain feedback presented in S&c#olm its
simplest form, it can be illustrated by the diagram of Figdr&0a in which the
retroactivity to the outpus plays the same role as an additive disturbance. For
large gainsG, the dfect of the retroactivitys to the output is negligible as the
following simple computation shows. The outgus given by

y=Gu-Ky)+s,
which leads to

_u G L_S
- 1+KG  1+KG’

y
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As G grows,y tends tou/K, which is independent of the retroactivity
Figure7.10billustrates an alternative representation of the diagram depicting
high-gain feedback. This alternative depiction is particularly usefullaigflights
that to attenuate retroactivity we need to (1) amplify the input of the systemghro
a large gain and (2) apply a similarly large negative feedback on the oUtpeit.
question of how to realize a large input amplification and a similarly large nega-
tive feedback on the output through biomolecular interactions is the sudfjdet
next section. In what follows, we fist illustrate how this strategy also wtwka
dynamical system of the form o7 (5).
Consider the dynamics of the connected transcription systésn Assume that
we can apply a gaifs to the inputk(t) and a negative feedback ga®i to X with
G’ = KG. This leads to the new filerential equation for the connected syst&n)
given by

‘Z_)t( = (Gk(t) - (G +7)X) (1 -d(1), (7.10)

in which we have defined(t) = R(X)/(1+ R(X)). Sinced(t) < 1, lettingG’ = KG,
we can verify (see exercises) that @sgrows X(t) tends tok(t)/K for both the
connected systen7 (10 and the isolated system

c;—i( = Gk(t) - (G’ +y)X. (7.11)

Specifically, we have the following fact:

Proposition 7.1. Consider the scalar systex= G(t)(k(t) — KX) with G(t) > Go > 0
andk(t) bounded. Then, there are positive constang®ad G such that

IX(t) — k(t) /K| < Coe oKt + =
Go

As a consequence, the solutiox@) of the connected and isolated systems tend
to each other a& increases. Hence, the presence of the disturbdfirevill not
significantly dfect the time behavior of(t). It follows that the &ect of retroactiv-
ity can be arbitrarily attenuated by increasing gainandG’.

The next questions we address is how we can implement such amplification and
feedback gains in a biomolecular system.

Biomolecular realizations of Principle 1

In this section, we illustrate two possible biomolecular implementations to obtain a
large input amplification gain and a similarly large negative feedback on tpeiu
Both implementations realize the negative feedback through enhancedidggn.

The first design realizes amplification through transcription activation, whde
second design uses phosphorylation.
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Figure 7.11: Design 1. The inpdi(t) is amplified by virtue of a strong promoteg.prhe
negative feedback on the output X is obtained by enhancindegradation through the
protease Y.

Design 1: Amplification through transcription activation

This design is depicted in Figuiell We implement a large amplification of the
input signalZ(t) by having Z be a transcription activator for protein X, such that
the promoter p controlling the expression of X is a strong, non-leaky promoter.
The signalZ(t) can be further amplified by increasing the strength of the ribosome
binding site of gene x. The negative feedback mechanism on X relieshameead
degradation of X. Since this must be large, one possible way to obtain anesth
degradation for X is to have a specific protease, called Y, be exprbgsedtrong
constitutive promoter.

To investigate whether such a design realizes a large amplification and a large
negative feedback oX as needed to attenuate retroactivity to the output, we con-
struct a model. The reaction of the protease Y with protein X is modeled as the two-

step reaction XY é Wi Y (see Sectiorz.3). The inputoutput system model of

d
the insulation device that tak&sas an input and giveX as an output is given by
the following equations

dz

G = KO-72Z+[k C-k. Z(Powor~C)] (7.12)
dC N L~

5 = kZ(powi-C)-kC (7.13)
dd_”t’x = GC-omy (7.14)
%V — aXY—dW-Kw (7.15)
dy =

Gt = CaYX+kW+aG-yyY+dW (7.16)
c(lj—i( = kmy —aY X+ dW—yx X+ [KotC — konX(Ptot — C)] (7.17)
dc

T ~KoftC + KonX(ptot — C), (7.18)
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in which we have assumed that the expression of gene z is controlled bynater
with activity k(t). In this system, we have denotedlyandk_ the association and
dissociation rates constants of Z with its promoter sjjeénptotal concentration
Po.tot- AlSO, C is the complex of Z with such a promoter site. Herg, /a the
mMRNA of X, and C is the complex of X bound to the downstream binding sites p
with total concentratiomy:. The promoter controlling genehas strengtlG, for
some constant, and it has about the same strength as the promoter contrrlling
The terms in the square brackets in equatitd? represent the retroactivity
to the input of the insulation device in Figurell The terms in the square brackets
in equation 7.17) represent the retroactivigto the output of the insulation device.
The dynamics of equationg.0.2—(7.18 withoutsdescribe the dynamics &fwith
no downstream system (isolated system). _
Equations 7.12 and (7.13 determine the signal(t) that is the input to equa-
tions (7.14—(7.18. For the discussion regarding the attenuation of freceofs, it
is not relevant what the specific form of sigi@t) is. Let therC(t) be any bounded
signal. Since equatior7 (14 takesC(t) as an input, we will have thaty (t) = G\(t),
for a suitable signal(t). Let us assume for the sake of simplifying the analysis that

the protease reaction is a one step reaction, thatirs{)& Y. Therefore, equation
(7.16 simplifies to

dy
g =aG—-yyY
and equationq.17) simplifies to
dX =
at kM — K'Y X—yx X + Kot C — KonX(Ptot — C).
If we further consider the protease to be at its equilibrium, we haveM{iat
aG/yy.
As a consequence, thedynamics become
dX

i = kGM(t) — (K aG/yy +yx) X + koiC — konX(prot — C),

with C determined by equatior7 (18. By using the same singular perturbation
argument employed in the previous section, we obtain that the dynamicsanf
be reduced to dx

g = (KGUH - (KaG/yy +yx)X)(1-d(1)), (7.19)

in which O< d(t) < 1 is the retroactivity term given bR(X)/(1+R(X)). Then, as
G increasesX(t) becomes closer to the solution of the isolated system

dX Y,
St = KOMO) — (KaG/yy +7)X,

as explained in the previous section be virtue of Propositidn
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Figure 7.12: Design 1: results forftBrent gainss. In all plots, k(t) = 0.01(1+ sin(wt)),
Prot = 100, kot = kon = 10, ¥z = 0.01 = yy, andw = 0.005. The parameter values afe
0.01, potot =1,a=d =k’ =0.01,k_ =200,k, =10, =0.1,yx = 0.1, x = 0.1, andG =
100Q100,10,1. The retroactivity to the output is not well attenuatedvialues of the gain
G =1 and the attenuation capability begins to worsenGat 10. Protein decay rates of
0.01min™* correspond to a protein half life of about one hour. We caersil periodic
forcing k(t) = 0.01(1+ sin(wt)) with a period that is about 12 times the protein half life in
accordance to what is experimentally observed in the stintbleck of [5].

We now turn to the question of minimizing the retroactivity to the inpbt-
cause its ffect can alter the input signa(t). In order to decrease we must guar-
antee that the retroactivity measure given in equaffod (in which we substitute
Z in place ofX, potot in place ofpyt, andKy =k, /k_ in place ofKy, is small. This
is the case iKq > Z andpo ot/ Kg < 1.

Simulation results for{.12—(7.18 are shown in Figurg.12 For large gains
(G =1000,G = 100), the performance considerably improves compared to the case
in which X was generated by a transcription component acce@iag an input
(Figure 7.5). For lower gains@ = 10, G = 1), the performance starts to degrade
for G = 10 and becomes poor f@ = 1. Since we can views as the number of
transcripts produced per unit time (one minute) per complex of protein Zdboun
to promoter p, valuesG = 100,1000 may be diicult to realizein vivo, while the
valuesG = 10,1 could be more easily realized. However, the value ivfcreases
with the strength of the ribosome binding site and therefore the gain may berfurth
increased by picking strong ribosme binding sitesxofhe values of the param-
eters chosen in Figure.12are such thakKy > Z and potot < Kg. This is enough
to guarantee that there is small retroactivityp the input of the insulation device
independently of the value of the gai The poorer performance of the device
for G = 1 is therefore entirely due to poor attenuation of the retroactiity the
output. To obtain a large negative feedback gain, we also require hgbssion



7.5. INSULATION DEVICES: RETROACTIVITY ATTENUATION 241

Insulation device
Z .' :

Figure 7.13: Phosphorylation cycle with a downstream DNiyea Amplification of Z
occurs through the phosphorylation of substrate X. Negdtedback occurs through a
phosphatase Y that converts the active form X* back to itstiaa form X.

of the protease. It is therefore important that the protease is highly sptecitic
target X.

Design 2: Amplification through phosphorylation

In this design, the amplification gaf® of Z is obtained by havin@ be a kinase
that phosphorylates a substrate X, which is available in abundance.ebla¢ive
feedback gairc’ on the phosphorylated proteki is obtained by having a phos-
phatase Y dephosphorylate the active proteinPtotein Y should also be available
in abundance in the system. This implementation is depicted in Figlig

To illustrate what the key parameters are that enable retroactivity attenuation
we first consider a simplified model for the phosphorylation and deploogiation
processes. This model will help in obtaining a conceptual understanélinai
reactions are responsible in realizing the desired g@irmdG’. The one step
model that we consider is the same as considered in Chapter 2 (Ex2R)ise

k k;
Z+X =5 Z+ X", Y+X* 5 Y +X.

We assume that there is an abundance of protein X and of phosphatagé@éy in
system and that these quantities are conserved. The conservationNe#sSXg

X* +C = Xiot, in Which X is the inactive protein, Xis the phosphorylated protein
that binds to the downstream sites p, and C is the complex of the phosphdrylate
protein X* bound to the promoter p. Th&* dynamics can be described by the
following model

ax* X* C
5 = KaXoiZ() (1— o~ [%D — kY X" + [KotC — konX*(prot —C)]  (7.20)
98 iC+KonX' (P = ). (7.21)

dt
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The terms in the square brackets represent the retroacsititythe output of the
insulation device of Figur@.13 For a weakly activated pathwa8§|, X* < Xt.
Also, if we assume that the total concentration of X is large compared to the con
centration of the downstream binding sites, tha¥ig; > piwt, €quation 7.20 is
approximatively equal to

dax* "
o ki XiotZ(t) — koY X' + Kot C — konX*(Ptot — C).

Let G = ki X0t and G’ = koY. Exploiting again the dierence of time scales
between theX* dynamics and th€ dynamics, the dynamics of can be reduced
to

D Gz -Ex)a-do).
in which O< d(t) < 1 is the retroactivity term. Therefore, fGrandG’ large enough,
X*(t) tends to the solutioiX*(t) of the isolated syster% =GZ(t)-G'X*, as ex-
plained before by virtue of Propositionl As a consequence, théfect of the
retroactivity to the outpusis attenuated by increasing th€extive ratek; Xio; and
kY. That is, to obtain large input and negative feedback gains, one shauéd
large phosphorylatigdephosphorylation rates glod a large amount of protein X
and phosphatase Y in the system. This reveals that the values of the phesph
latiorydephosphorylation rates cover an important role toward the retroactivity a
tenuation property of the module of Figurel3 The reader can verify through
simulation how increasing the phosphatase and substrate amount§eitteoé
retroactivity can be attenuated (see exercises).

From a practical point of view, thdfective rates can be increased by increasing
the total amounts of X and Y. These amounts can be tuned, for example cygpla
thex andy genes under the control of inducible promoters. Experiments performed
on a covalent modification cycle reconstituteditro, showed that increasing these
protein amounts is arnfiective means to attain retroactivity attenuatid|

A design similar to the one illustrated can be proposed in which a phosphory-
lation cascade, such as the MAPK cascade, realizes the input amplificati@na
explicit feedback loop is added from the product of the cascade to it$ j@pL
The design presented here is simpler as it involves only one phosphanydstie
and does not require any explicit feedback loop. In fact, a strongtivedeedback
can be realized by the action of the phosphatase that converts the actiem p
form X* back to its inactive form X.

Attenuation of retroactivity to the output: Principle 2

In this section, we present a more general mechanism for retroactivibpatten,
which can be applied to systems offdrential equations of arbitrary dimension.
This will allow us to consider more complex and realistic models of the phospho-
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Figure 7.14: Interconnection of a device with inprand outpuix to a downstream system
with internal stater applying retroactivitys.

rylation reactions and investigate the key parameters that control theatétitya
attenuation property.

For this purpose, consider Figureld We illustrate next how systef can at-
tenuate retroactivityg by employing the principle of time scale separation. Specif-
ically, when the internal dynamics of the system are much faster compareel to th
input u, the system immediately reaches its quasi-steady state with respect to the
input. This quasi-steady state, in turn, is basically independestat to the in-
terconnection structure between the systems. To illustrate this idea mathematically,
consider the following simple structure in which (for simplicity) we assume that
all variables are scalar:

du

i fo(u,t) +r(u, X)

dx —

i Gfi(xu)+GHX,V) (7.22)
dv —

a = —GdX,V).

Here letG > 1 to model the fact that the internal dynamics of the system are much
faster than that of the input. Similarl¢g > 1 models the fact that the dynamics
of the interconnection with downstream systems is also very fast. This ilyusua
the case since the reactionss@are due to bindingnbinding reactions which are
much faster than most of other biochemical processes, including geressim

and phosphorylation. The claim that we make about this system is the following

If G> 1 and the Jacobian df has eigenvalues with negative real part,
thenx(t) is not d@fected by retroactivitys after a short initial transient,
independently of the value @&.

This result states that independently of the characteristics of the doamsyes-
tem, systenS can be tuned (by makinG large enough) such that it attenuates
the retroactivity to the output. To clarify why this would be the case, it is isefu
rewrite system.22 in standard singular perturbation form by employing 1/G

as a small parameter and="x+ Vv as the slow variable. Hence, it can be re-written
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as
du
a - fO(Uyt) + r(u9 X)
dx o
S f1(X=v,u) (7.23)
dv -
pri -GgX-V,V).

Sinced f1 /0% has eigenvalues with negative real part, one can apply standard singu-
lar perturbation to show that after a very fast transient, the trajectogesttaacted
to the slow manifold given byf;(X—v,u) = 0. This is locally given byx = g(u)
solving f1(x,u) = 0. Hence, on the slow manifold we have tléd = g(u(t)), which
is independent of the downstream system, that is, it is fiet&d by retroactivity.

The same result holds for a more general class of systems in which thielearia
u, X,V are vectors:

du

i fo(u,t) +r(u,x)

dx —

i Gfi(x,u) + GAYX,V) (7.24)
dv —

rrie -GBgx,V)

as long as there are matriceeandM such thall A+ MB =0 andT is invertible. In
fact, one can take the system to new coordinat&sv with X = T X+ My, in which
the system will have the fornv(23.

Biomolecular realizations of Principle 2

We next consider possible biomolecular structures that realize Princigmee

this principle is based on a fast time scale of the device dynamics when campare
to that of the device input, we focus on signaling systems, which are known to
evolve on faster time scales than those of protein production and decay.

Design 1: Implementation through phosphorylation

We consider now a more realistic model for the phosphorylation and delpbigs
lation reactions in a phosphorylation cycle than those considered in S&didn
particular, we consider a two-step reaction model as seen in Sé&toAccord-

ing to this model, we have the following two reactions for phosphorylation and
dephosphorylation:

ai k1 " . R ko
X+Z=C,—>X"+2Z, Y+X'=C,— X+Y. (7.25)

dy dz
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Additionally, we have the conservation equatiofig = Y + Cp, Xiot = X+ X* +
C1+C,+C, because proteins X and Y are not degraded. Therefore, fileeetitial
eguations modeling the system of Figuré3become

dz X C1 G [ C ]

22 ) —yZ| a2 Xo(l- o= = 2~ 22 | 2 )+ (di+k)C1| (7.26
at -y 1Z %iot( X X X | X )+(di+k)Cy| (7.26)
dC, xX* Ci G [ C ]
Ty +k)Cr+ A Z Kol - o — 2 = 2 | 7.27
at (d1 +k1)C1 +a1Z Xior( Yo X X | X ) (7.27)
dc . c
2 = (ko + 0p)Co + 3 Yior X" (1= =2) (7.28)
dt Yot
ax: % C2 *

e k1C1+dCo —anYiotX (1 - ﬁ)"‘[koﬂc—konx (ptot—C)] (7.29)

(0]
dC
at = —koffC + konX* (Ptot — C), (7.30)

in which the expression of Z is controlled by a promoter with actilt). The
terms in the large square bracket in equatidr2@ represent the retroactivity
to the input, while the terms in the square brackets of equatit@3)(and (.29
represent the retroactivityto the output.

We assume tha;; > pot SO that in equations(26) and (7.27) we can neglect
the termC/ X sinceC < pyr. Phosphorylation and dephosphorylation reactions
in equations 7.25 can occur at a much faster rate than protein production and
decay processes (see Chaf#erChooseX:t and Yot to be siificiently large, let
G = ki X¢ot/y andG = ko/y. Then, we can re-write the system wky, = kog/Kg,
b1 = &g X0t/ (YG), a1 = a2 Yiot/ (YG), b2 = d1/(¥G), a2 = d2/(yG), ¢ = ki/(¥G), and
kon = Gy/Kq. Lettingz= Z + C1 we obtain the system in the form

d
7 =kO-yz-C)

dC; ( ( X C G ))

— =G[—y(b2+¢))C1+yb(z-C))[1- —— - — - =

Tt y(b2 +¢1)C1 +yb1(z—Cy) Xt Xeot Xtot)

@ -G —')/(C2+a2)C2+7a1X* 1- & (7.31)

dt Yiot

dx: (1-C2)\\. & ’
=G|yCiCr+yaCo —yar X" | 1- = ||+ G(yC — y/Kd(prot — C)X)

dt Ytot

dC ~

gt = ~COC-y/Ka(po-C)XY),

which is in the form of system7(24) with u =z, x = (C1,C», X*), andv=_C, in
which one can choos€ as the 3 by 3 identity matrix anft = (0 0 1). Hence,
this system, folG suficiently larger than 1 attenuates thi#eet of the retroactiv-
ity to the outputs. For G to be large, one has to require thak:; is suficiently
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large and tha&, Yo is also comparatively large. These are the same design require-
ments obtained in the previous section based on the one-step reaction frtbeel o
enzymatic reactions.

In order to understand théfect of retroactivity to the input on th&dynamics,
one can consider the reduced system describing the dynamics on the time sca
of Z. To this end, letKy1 = (d1 + k1)/a1 and K2 = (d2 + k2)/a, represent the
Michaelis-Menten constants of the forward and backward enzymatitoeaglet
G =1/ein (7.3]), and takee to the left-hand side. Setting= 0 in the third and
fourth equations of{.31) the following relationships can be obtained:

_ o (XViotko) / (Km2ky) B o
Ci=aqu(X") = 1+ X /Ky » Co=0(X) =

(X*Yiot)/ Km2
1+X*/Km2 )

(7.32)

Using expressions/(32) in the second of equationg.81) with € = 0 leads to

gl(X*)(bz tor+ t)’(l—z) - blz(l— X QZ(X*)). (7.33)

tot Xtot Xtot

Assuming for simplicity thaX* < Ky, 2, we obtain thag; (X*) ~ X*Yiotka/ Km2ki
and thay(X*) = X*/Km2Yiot- AS a consequence of these simplifications, equation
(7.33 leads to

b,z
FE(1+ Yiot/ Kz + (Yiotkz) / (Kmazka)) + g2 (b2 + ¢1)

X*(2) =

In order not to have distortion fro to X*, we require that

ko Km
Ytot ki K2
Yiot |, Yiot ko’
1+ Kmz ~ Km2 ki

Z< (7.34)

S0 thatX*(Z) ~ ZXotKm2k1/YiotKm1ke and therefore we have a linear relationship
betweenX* andZ with gain fromZ to X* given by XiotKm2k1/YiotKm k2. In order
not to have attenuation fro to X* we require that the gain is greater than or
equal to one, that is,

Xtoth,Zkl

inputoutput gairk ———— > 1.
P putg Ytoth,lkZ

(7.35)

Requirements.34), (7.39 andX* < Ky 2 are enough to guarantee that we do
not have nonlinear distortion betwegrand X* and thatX* is not attenuated with
respect t&Z. In order to guarantee that the retroactivityp the input is sfficiently
small, we need to quantify the retroactivitffect on theZ dynamics due to the
binding of Z with X. To achieve this, we proceed as in Secfio®by computing
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the Z dynamics on the slow manifold, which gives a good approximation of the
dynamics oZ if e ~ 0. These dynamics are given by

dg dX*
dxs dz )’

dz

— =(k(t)-y2){1-

5 - k-2
in which gﬁl ddlz measures thefkect of the retroactivity to the input on theZ
dynamics. Direct computation c% and of% along with X* < K2 and with
(7.349) leads todd dX' Xiot/ Km1, SO that in order to have small retroactivity to the

\ dx- dz
Input, we require that

Xtot

m1
Hence, a design traddf@ppearsX: should be stiiciently large to provide a gain
G large enough to attenuate the retroactivity to the output. X{gtshould be small
enough compared td,1 So to apply minimal retroactivity to the input.

Concluding, for having attenuation of th&ext of the retroactivity to the out-
put s, we require that the time scale of the phosphoryldtiephosphorylation re-
actions is much faster than the production and decay processes of Z (ftite in
to the insulation device) and thato: > prot, that is, the total amount of protein
X'is in abundance compared to the downstream binding sites p. To obtain also a
small dfect of the retroactivity to the input, we require th&t1 > Xior. This is
satisfied if, for example, kinase Z has lofiaity to binding with X. To keep the
input/output gain betwee@ and X* close to one (from equatior? 35), one can
chooseXio: = Yior, @and equal caéicients for the phosphorylation and dephospho-
rylation reactions, that i¥m1 = Kmn2 andky = ko.

System in equations/(26-7.30 was simulated with and without the down-
stream binding sites p, that is, with and without, respectively, the terms in tHe sma
box of equation 7.26 and in the boxes in equation$.29 and (7.27). This is
performed to highlight theféect of the retroactivity to the outpston the dynam-
ics of X*. The simulations validate our theoretical study that indicates that when
Xiot > Prot @and the time scales of phosphorylatidephosphorylation are much
faster than the time scale of decay and production of the protein Z, theatititya
to the outputsis very well attenuated (Figuré159. Similarly, the time behavior
of Z was simulated with and without the terms in the large box in equati@®)
that is, with and without X to which Z binds, to verify whether the insulation devic
exhibits retroactivity to the input

In particular, the accordance of the behaviorZ @j with and without its down-
stream binding sites on X (Figurg.153, indicates that there is no substantial
retroactivity to the input generated by the insulation device. This is obtained be-
causeXyt < Km1 as indicated in equatior7 (36), in which 1/Ky, can be interpreted
as the #inity of the binding of X to Z.

Our simulation study also indicates that a faster time scale of the phosphory-
latiorydephosphorylation reactions is necessary, even for high valuggaind

< 1. (7.36)
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Figure 7.15: (a) Performance with fast phosphorylationey®imulation results for system
in equations 1.26-7.30. In all plots, piot = 100, Kot = kon = 10,y = 0.01, k(t) = 0.01(1+
sin(wt)), andw = 0.005. In subplots A and B¢ = ko =50,a, =a; =0.01,d; =d> =10, and
Yiot = Xiot = 1500. In the upper plot, the isolated system is without daokasn binding sites
p and the connected system is with binding sites p. The smalt shows that theféect

of the retroactivity to the outpus is attenuated very well. In the lower plot, the isolated
system stands for the case in which Z does not have X to bindhde the connected
system stands for the case in which Z binds to substratéX<£ 1500). The small error
confirms a small retroactivity to the input(b) Performance with a slow phosphorylation
cycle. Phosphorylation and dephosphorylation rates arvesslthan the ones in (a), that is,
ki = ko = 0.01, while the other parameters are left the same, thdt is,d; = 10,ap = a3 =
0.01, andYiot = Xiot = 1500.

Yiot, 10 Maintain perfect attenuation of the retroactivity to the ougpand small
retroactivity to the output. In fact, slowing down the time scale of phosphorylation
and dephosphorylation, the system looses its insulation property (FdLBB. In
particular, the attenuation of thdéfect of the retroactivity to the outpis lost
because there is not enough separation of time scales betwegudyhamics and
the internal device dynamics. The device also displays a non negligible &afoun
retroactivity to the input because the conditiéf < Xiot is not satisfied anymore.

Design 2: Realization through phosphotransfer

Let X be a transcription factor in its inactive form and let Be the same tran-
scription factor once it has been activated by the addition of a phospraip.g
Let Z* be a phosphate donor, that is, a protein that can transfer its phospbaype g
to the acceptor X. The standard phosphotransfer reactions (seenSzdfioan be
modeled according to the two-step reaction model

k ks
74X = Cp = X* +Z,
ko ka
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Figure 7.16: Syster$ is a phosphotransfer system. The output X* activates trgptsm
through the reversible binding of X* to downstream DNA prdercsites p.

in which G is the complex of Z bound to X bound to the phosphate group. Ad-
ditionally, protein Z can be phosphorylated and proteindéphosphorylated by
other phosphotransfer interactions. These reactions are modeled-ateprreac-
tions depending only on the concentrations of Z arigtiat is, 7= Z", X* X,
Protein X is assumed to be conserved in the system, thégis; X+Cy+ X* +C.

We assume that protein Z is produced with time-varying productionk{itend
decays with rate.. The active transcription factor>binds to downstream DNA
binding sites p with total concentratign,; to activate transcription through the

. . ko . .
reversible reaction $ X* == C. Since the total amount of p is conserved, we also

i
have thalC + p = pyt. The ODE model corresponding to this system is thus given
by the equations

(?j—f = k(t)—)/z+ ksCy — kg X*Z—mZ

dC, ( X C [ C ])
— =k Xiot|l - — - — - | — || Z¥ —k3C1 —koC1 + ky X*Z
dt Lot Xiot  Xiot | Xtot sC1-keCrths
dz* X* C1 C
= mZ +koCr— kX[ 1- 2 = 2 —| ||z 7.37
g et L1kt tOt( Xiot  Xtot [Xtot]) ( )
ax: - "
T kaC1 — kaX*Z + [KoftC — KonX*(Ptot — C) ] = m2X
dC

i KonX*(Ptot — C) — kot C.

Since phosphotransfer reactions are faster than protein productiodezay,
defineG := Xiotk1/y S0 thatky := Xiotk1/G =y, ko := ko /G, k3 := k3/G, kg := kq/G,
r1:=m1/G, mp ;= mp/G are of the same order &{t) andy. Similarly, the process
of protein binding and unbinding to promoter sites is much faster than protein
production and decay. L& := kog/y andKq := Ko/ Kon. ASsuming also thgby: <
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Figure 7.17: Output response of the phosphotransfer sysigima periodic signak(t) =
v(1+0.5sinwt). The parameters are given #y= 0.01, Xiot =5000,ky = ko =ks=ky=m1 =

72 = 0.01G in whichG =1 (a), andG = 100 (b). The downstream system parameters are
given byKqy = 1 andkeg = 0.01G, in whichG assumes the values indicated on the legend.
The isolated systems(= 0) corresponds t@: = O while the connected systers £ 0)
corresponds t@t = 100.

Xiot» We have tha€ <« Xt SO that system?(37) can be rewritten as

dd_f = k(1) —7Z +G (keC1 — kaZX' ~7:2)
d& = G(El(l— X &)Z*—%Cl—ng1+E4X*Z)
dt tot  Xot
Z* __ = = X
d = G(7T12+k2C1—k1 (l— - &)Z*) (738)
dt tot  Xtot
dxt = G (keC1~ kuX*Z - 12X") = G| L-X* (prot —~C) +7C
T 1 2 Kq ot Y
dC — v ..
at - G(K_dx (Ptot— C) —C).

TakingT = I3x3, the 3 by 3 identity matrix, anil = (0,0, 1)T, the coordinate trans-
formationX'= T x+ Mv brings the system to the form of systehd4) with u= 2,
x=(Cq,Z*,X*), andv =C.

Figure7.17ashows that, for a periodic inpk(t), the system with low value for
G suffers from retroactivity to the output. However, for a large valu&dfFigure
7.170, the permanent behavior of the connected system becomes similar to that of
the isolated system, wheth@r> G, G = G or G < G. This confirms the theoretical
result that, independently of the order of magnitudé_oﬂhe system can arbitrarily
attenuate retroactivity for large enough
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Exercises

7.1 Include in the study of retroactivity in transcription systems the mRNA dy-
namics and demonstrate havhether the results change. Specifically, consider the
following model of a connected transcription system

mx

i k(t) — omx

dX

i kMy =y X + [KotC — Kon(Prot — C) X],
dC

E = —koﬂrC + kon( Ptot — C)X’

7.2 Consider the system in standard singular perturbation form, in whiehl.
Demonstrate that the slow manifold is locally exponentially stable.

dz

dC
G =KO-7z-C) e =C i (Pa-C)(z-C).

7.3 The characterization of retroactivityfects in a transcription module was based
on the following model of the interconnection:

%( = K(t) = ¥X+ [KotC — Kon(Ptot — C) X],
‘j'j_f = —koniC +Kon(Prot—O)X.

in which it was implicitly assumed that the complex C does not dilute. This is
often a fair assumption. However, depending on the experimental corgliton
more appropriate model may include dilution for the complex C. In this case, the
model modifies to

%( = k() = (u+7)X+ [korC — Kon(ptot = C)X],
‘fj_f = —KotC +kon(Prot— C)X — C.

in which u represents decay due to dilution apdepresents protein degradation.
Employ singular perturbation to determine the reduXatynamics and thefiects
of retroactivity in this case. Is the steady state characteristic of the tipinsor
module d@ected by retroactivity? How?

7.4 In this problem, we are going to study the frequency-depend@atte of
retroactivity in gene circuits through simulation to validate the findings obtained
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through linearization in Sectiod.3. In particular, consider the model of a con-
nected transcription componert8). Consider the parameters provided in Figure
7.5and simulate the system with inpk(t) = y(1 + sin(wt)) with w = 0.005. Then,
decrease and increase the frequency progressively and makeerfoyamplitude

plot for both connected and isolated systems. Increasel re-do the frequenamplitude
plot. Comment on the retroactivityffects that you observe.

7.5 Consider the negatively autoregulated gene illustrated in Se6tibhnstead

of modeling negative autoregulation using the Hill function, explicitly model the
binding of A with its own promoter. In this case, the formed complex C will be
transcriptionally inactive (see Secti@?3). Explore through simulation how the
response of the system without negative regulation compares to that \ativee
regulation when the copy number of the A gene is increased and the essedr
expression ratg is decreased.

7.6 We have illustrated that the expression of the point of half-maximal induction
in a covalent modification cycle idfacted by the #ective loadl as follows:

K_]_ +0.5

Ye0 = R+ 1)+ 05

Study the behavior of this quantity when thieetive loadl is changed.
7.7 Show how equation7(9) is derived in Sectioi7.4.
7.8 Demonstrate through a mathematical proof that in the following system

‘3_1( = G (kD) - KX) (1-d()),

in whichd(t) < 1, we have thaX(t) — k(t)/K becomes smaller &3 is increased.

7.9 Consider the one-step reaction model of the phosphorylation cycle with-dow
stream binding sites given 7 21). Simulate the system and determine how the
behavior of the connected system compares to that of the isolated systamtheh
amounts of substrate and phosphatéggand Yy are increased.

7.10 Consider the activator-repressor clock described in Seétiband take the
parameter values of Figu&8 that result in a limit cycle. Then, assume that the
activator A connects to another transcription circuit through the reverbibd-

. . . . Kon

ing of A with operator sites p to form activator-operator complex G:g== C

Kot f
(connected clock). Answer the following questions:

() Simulate the connected clock and vary the total amount of p, thatds,
Explore how this &ects the behavior of the clock.
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(i) Give a mathematical explanation of the phenomenon you saw in (i). To do
S0, use singular perturbation to approximate the dynamics of the clock with
downstream binding on the slow manifold (hetg, kog > ya,vs)-

(iii) Assume now that A does not bind to sites p, while the repressor B daks. T
the parameter values of FiguBeBthat result in a stable equilibrium. Explore
how increasingp; affects the clock trajectories.
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Chapter 8

Design Tradeoffs

In this chapter, we describe a couple of design tréidearising from the interaction
between synthetic circuits and the host organism. We specifically focusmistw
sues. The first issue is concerned with tffe@s of competition for shared cellular
resources on circuits’ behavior. In particular, circuits (endogeaodsxogenous)
share a number of cellular resources, such as RNA polymerase, mbeséTP,
nucleatides, etc. The insertion (induction) of synthetic circuits in the celt@mv
ment increases (changes) the demand for these resources, witHyposdissired
repercussions on the functioning of the circuits themselves. Indepecideunts
may become actually coupled when they share common resources that are no
overabundence. This fact leads to constraints among the concentdtfmoseins

in synthetic circuits, which should be accounted for in the design phaseseldond
issue we consider, is thé&ect of biological noise on the design of devices requiring
high gains. Specifically, we illustrate possible design tré@ddaetween retroactiv-
ity attenuation, requiring high gains, and noise amplification, which emergesdue
the intrinsic noise of biomolecular reactions.

8.1 Competition for Shared Cellular Resources

Exogenous circuits, just like the endogenous ones, use cellular cespguch as
ribosomes, RNA polymerase, and ATP, that are shared among all thérgiraiu
the cell. From a systems and signals point of view, these interactions cag be d
picted as in Figurd.1 The cell endogenous circuitry system produces resources
as output and exogenous circuits take these resources as inputsodseguence,
as seen in Chaptét, there is retroactivity from the exogenous circuits to the en-
goneous circuitry system. This retroactivity creates indirect couplingdezivthe
exogenous circuits and can, in principle, lead to undesired crosstdtislohap-
ter, we study the féect of the retroactivity from the synthetic circuits to shared
resources in the cellular environment by focusing on tfiece on availability of
RNA polymerase and ribosomes, for simplicity. We then study the conseguenc
of this retroactivity, illustrating how the behavior of unconnected circuitobees
coupled. ThesefBects are significant for any resource whose availability is not in
substantial excess compared to the demand of exogeous circuits.

In order to illustrate the problem, we consider the simple system shown in Fig-
ure 8.2, in which two modules, a constitutively expressed gene (Module 1) and a
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Shared resources

ATP, Ribosomes, RNAP,...

1 T2 T \

Circuit 1 Circuit 2 | = Circuit n

Figure 8.1: The cell environment provides resources tot@titt circuits, such as RNA
polymerase, ribosomes, ATP, nucleotides, proteases]kése resources can be viewed
as an “output” of the cell endogenous circuitry and an inputhie exogenous circuits.
Circuit i takes these resources as input and, as a consequence g eagtroactivity;

to its input. Hence, the endogenous circuitry system har@aetivity to the outpus that
encompasses all the retroactivities applied by the exageaiocuits.

gene activated by a transcription activator A (Module 2), are both ptésthe cel-
lular environment. In theory, Module 2 should respond to changes in thaiac
A concentration, while Module 1, having a constitutively active promoteyuksh
display a constant expression level that is independent of the activatoncen-
tration. Experimental results, however, indicate that this is not the caseul&lo
1's output protein P concentration also responds to changes in the activator A
concentration. In particular, as the activator A concentration is incteése con-
centration of protein Pcan substantially decrease. This fact can be qualitatively
explained by the following reasoning. When A is added, RNAP can bind t4 DN
promoter B and start transcription, so that the free available RNAP decreases as
some is bound on DNA D Transcription of Module 2 generates mRNA and hence
ribosomes will have more ribosome binding sites to which they can bind, so that
less ribosomes will be free and available for other reactions. It follovisilesad-
dition of activator A leads to an overall decrease of the free RNAP andaoiibnes
that can take part in the transcription and translation reactions of ModUlbel.
net dfect is that less Pprotein will be produced.

The extent of this #ect will depend on the overall availability of the shared
resources and whether they are regulated. It is known that RNAPilzogbmes
are internally regulated by a combination of feedback interactidis5g|. This,
of course, may help compensating for changes in the demand of thesecesso

In this chapter, we illustrate how thigfect can be mathematically explained
by explicitly accounting for the usage of RNAP and ribosomes in the trarisgrip
and translation models of the circuits. To simplify the mathematical analysis and
to gather analytical understanding of the key parameters at the basis phiiis
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X=RNAP
Y:IRibo
Module 1 * ________________ 1 Module 2
L -~ A—;\\\\ P P )
// \ //
H /
D1 D2

Figure 8.2: Module 1 has a constitutively active promoteit ttontrols the expression of
protein B, while Module 2 has a promoter activated by activator A, whtontrols the
expression of protein 2 The two modules do not share any transcription factorsheyp t
are not “connected”. Both of them use RNAP (X) and ribosonYgddr the transcription
and translation processes.

nomenon, we first focus on the usage of RNAP, neglecting the usadmsbmes.
We then provide a computational model that accounts for both RNAP arsbrit®
utilization and illustrate quantitative simulation results.

Analytical study

To illustrate the essence of the problem, we assume that gene expressmmeis a
step process, in which the RNA polymerase binds to the promoter regionesiea g
resulting in a transcriptionally active complex, which, in turn, producesitbiem.
That is, we will be using the lumped reactio2s9), in which on the right-hand side
of the reaction we have the protein instead of the mRNA.

By virtue of this simplification, we can write the reactions describing Module

1as:
Y

a k
D,+X =D; X 5D, +X+P., P, 50.
dy
The reactions describing Module 2 can be written similarly recalling that in the
presence of an activator the reactions modify accordin@.tt8(. Taking this into

account, the reactions of Module 2 are given by

ao a ko Y
A+D2TTA:D2, A:D2+Xd‘ﬁ2A:D2:X—>A:D2+X+P2, P, = 0.
We let Dior1 and Dyt 2 denote the total concentration of DNA for Module 1 and
Module 2, respectively, and we &y = dp/ag, K1 = d1/a1, andK; = dp/a,. By
approximating the complexes concentrations with their quasi-steady stats value
as illustrated in SectioB.3, we obtain the expressions

X/Ka (A/Kg)(X/K2)

1+X/Ky’ 1+ (A/Kg)(d+X/Kg) 8.1)

[D]_:X] = DtOLl [ADZX] = DtOLZ
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As a consequence, thefidirential equation model for the system is given by
dPy X/Kq
—= =kyDior1——— —yP
dt — MTIX K, Y

dPr o (AKQ(X/KD)
dt 22T (A/Kg)(1+ X/K)

vPo,

so that the steady state valuedfafandP, are given by

_ kDot X/Ky P, = koDiot2  (A/Kg)(X/K2)

L= T TRy =T Ir (AR X/KD)'

These two values are indirectly coupled through the conservation law APRN
Specifically, we letXy: denote the total concentration of RNAP. This value is
mainly determined by the cell growth rate and for a given growth rate it istabou
constant. Then, we have thég: = X +[D,:X] +[A:D ,:X], which, considering the
expressions of the quasi-steady state values of the complexes cotiopatia
(8.1, leads to

X/Kq D (A/Kg)(X/K2)
T+ X/Ky P TH (A/K)(L+ X/Kg)

Xiot = X+ Drot1 (8.2)
We next study how the steady state valueXaé affected by the activator concen-
tration A and how this &ect reflects into a dependency Bf on A. To perform
this study, it is useful to writex := (A/Kg) and note that forr sufficiently small
(sufficiently small amounts of activator A), we have that

(@(X/K2))/(1+ a(1+ X/K2)) = a(X/Ky).

Also, to simplify the derivations, we assume that the binding of X jostffi-
ciently weak, that isX <« Kj. In light of this, we can re-write the conservation law

(8.2 as
X

X
Xtot = X+ Dot 17—+ DtoLZG’K_-
2

K1
This equation can be explicitly solved firto yield

X = Xiot
1+ (Diot1/K1) + @(Dior2/K2)”

This expression depends anand hence on the activator concentra#orspecifi-
cally, as the activator is increased, the value of free X concentrationtorinally
decreases. As a consequence, the equilibrium jueill also depend oA ac-
cording to

P, - K1Dtot 1 Xtot/ K1
Y 1+ (Diot1/K1) + @(Dior2/K2)
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so that alsd?; monotonically decreases &sis increased. That is, Module 1 re-
sponds to changes in the activator of Module 2. From these expresgiercan
also deduce that Dyt 1/K1 > aDior2/ Ko, that is, the demand for RNAP in Module
1 is much larger than that of Module 2, then changes in the activator civatien
will lead to small changes in the free amount of RNAP an&+in

This analysis illustrates that forcing an increase in the expression ofratgjp
causes an overall decrease in available resources, which leadstasi=of ex-
pression of other proteins. As a consequence there is a ffdmdaveen how much
protein we can have in a circuit, which is crucial, for example, for the insuiatio
devices designs, and how much the expression of other circuit prote&riised.

In addition to a design tradéothis analysis illustrates that “unconnected” circuits
can dfect each other because they share common resources. This cancipl@yin
lead to a dramatic departure of a circuit’s behavior from its nominal one.

As an exercise, the reader can verify that similar results would hold in & ca
in which Module 2 has a repressible promoter instead of one that can betedti
(see Exercis8.1).

The model that we have presented here contains many simplifications. In ad-
dition to the mathematical approximations performed and to the fact that it does
not account for ribosomes, it does not account for the transcripfienaogenous
genes. In fact, RNAP is also being used for transcription of chromosgeras.
While the qualitative behavior of the coupling between Module 1 and Module 2
is not going to be fiected by including endogenous transcription, the extent of
this coupling may be substantially impacted by endogenous transcriptiont-In pa
ticular, the quantitative impact of endogenous transcription on this cougtidyh
depends on thefiective demand for RNAP of endogenous genes. This is briefly
illustrated in the next section.

Estimates of the effects of adding external plasmids on the a vailability of
RNAP

In the previous section, we illustrated qualitatively the mechanism by which the
change in the availability of a shared resouce, due to the addition of syntiretic
cuits, can cause unexpected crosstalk between unconnected cirbeitsxtént of
this crosstalk depends on the amount by which the shared resourageshaiis
amount, in turn, depends on the specific values of the dissociation congkents
total resource amounts, and the fraction of resource that is usedyabrgaatural
circuits.

In E. coli, the amount of RNA polymerase and its partitioning mainly depends
on the growth rate of the cellLB]: with 0.6 doublingghour there are only 1500
moleculegcell, but with 2.5 doubling®our this number is 11400. The fraction of
active RNA polymerase molecules also increases with the growth rate. Ftnaillus
tion purposes, we assume here that the growth rate is the lowest codsidgl@.
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Therefore, a reasonable estimate is that the total number of RNA polymisrase
about 1000. Since the fraction of immature core enzyme at low growth raidyis o
a few percent14], we assume that the total number of functional RNA polymerase
is about 1000 per cell, that is, we $&¢; = 1000nM (recalling that 1 molecule cor-
responds to a concentration of abol &M). Based on the data presentedid][

a reasonable partitioning of RNA polymerase is the following:

active core enzyme: 15% (150 molecutesl or X; = 150nM),
promoter-bound holoenzyme: 15% (150 molecidel or X, = 150nM),
free holoenzyme: 5% (50 moleculesll or X; = 50nM),

inactive DNA-bound core: 65% (650 molecylesll X; = 650nM).

There are about 1000 genes expressed in exponential growth[ddhdeence
we approximate the number of binding sites for X to 1000Dgg = 1000nM,
and we assume that all the 150 promoter-bound holoenzymes are boursdo th
promoters. The binding reaction is of the form

D+X, % D:X,

in which D is the DNA promoter in total concentratidyy;.. Consequently, we
haveDiot = D +[D : X]. At the equilibrium, we havel) : X] = X, = 150nM and

D = Dot — [D : X] = Diot — Xp = 850nM. With dissociation constamtq = ¢ the

equilibrium is given by G= X;D — Kyp:x, hence we have that

Kd X ~ 300nM

D

T [D:X]
which is interpreted as an flective” dissociation constant. This is in the range
1-1000nM suggested by for specific binding of RNA polymerase to DNA.
Therefore, we are going to model the binding of RNA polymerase to the gesao
of the chromosome dE. coli in exponential phase as one promoter with concen-
tration Dot and dfective dissociation constaKy.

Furthermore, we have to take into account the rather significant amoRihNAf
polymerase bound to the DNA other than at the promoter regign X; = 800nM).

To do so, we assume that the fraction= X, + X + Xp/Xp is approximately con-
stant at the equilibrium.

Now, we can consider the addition of synthetic plasmids. Specifically, we con
sider the plasmid pSB1AK3 (copy number 1:0800) with one copy of a gene
under the control of a constitutive promoter. The binding of RNA polynmetas
the constitutive promoter is modeled by

D'+xf% D’:X
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where D’ is the RNA polymerase-free promoter arfdX0s the RNA polymerase:
promoter complex. Consequently, we hd¥g, = D’ +[D’ : X]. The dissociation
constant is given by} = g— The total concentration of promoteB , can be
determined by considering the copy number of the plasmid, which is- B0

plasmidgcell, so that we seD;,; ~ 200nM. At the equilibrium, we have

Xt

D’ : X] = D} yy——.

[ ] tOtKa'i'Xf
We also have X
f

D:X]=D .

[D:X] = Diorp—

The conservation law for RNA polymerase must be now considered irr tmde
determine the equilibrium concentrations:

Xi+m[D: X]+[D": X] = Xot. (8.3)

Here, we did not account for RNA polymerase molecules paused, quanad
actively transcribing on the plasmid, moreover, we also neglected the nesista
genes on the pSB1AKS3 plasmid. Hence, we are underestimatindgféo ef load
presented by the plasmid.

Solving equation§&.3) for the free RNA polymerase amouKi gives the fol-
lowing results. These results depend on the ratio betweerfiingiee dissociation
constanKy and the dissociation constat} of RNA polymerase from the plasmid
promoter:

K = 0.1K4 (RNA polymerase binds better to the plasmid promoter) results
in X; =21nM, [D: X] =69nM and P’ : X] = 85nM. Hence, the concentration
of free RNA polymerase decreases by about 60%;

K = Kq (binding is the same) results ¥ = 41nM, [D : X] = 126nM and
[D’ : X] = 25nM. Hence, the concentration of free RNA polymerase de-
creases by about 20%;

Ki = 10Kgq (RNA polymerase binds better to the chromosome) results in
X; =49nM, D : X] = 147nM and P’ : X] = 3nM. Hence, the concentration
of free RNA polymerase decreases by about 2%.

We conclude that if the promoter on the synthetic plasmids has a dissociation
constant for RNA polymerase that is in the range of theative one calculated
above, the perturbation on the available free RNA polymerase is abut Pi0i%o.
perturbation, even if fairly small, may in practice result into largfeas on the
protein concentration. This is because it may cause a large perturbati@naarth
centration of free ribosomes. In fact, one added copy of an exoggrasmid will
lead to transcription of several mMRNA molecules, which will demand ribosomes
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for translation. Hence, a small increase in the demand for RNAP may lead to a
dramatically larger increase in the demand for ribosomes. This is illustrated in the
next section through a computational model including ribosome sharing.

Computational model and numerical study

In this section, we introduce a model of the system in Figu2ein which we con-
sider both the RNA polymerase and the ribosome usage. We let the coticantra
or RNA polymerase be denoted Bfyand the concentration of ribosomes be de-
noted byY. We letm; andP; denote the concentrations of the mRNA and protein
in Module 1 and letn, andP, denote the concentrations of the mRNA and protein
in Module 2. The reactions of the transcription process in Module 1 aendiy
(see SectioR.2):

a kl 0
X+D1d‘=‘X:D1, XD;—m+X+D;, m;—0,
1

while the translation reactions are given by

/ /

&
Y+m=Ym,, Y:mliP1+Y+m1, P11>(2), Y:mliY.
d

The resulting system of fierential equations is given by

d
a [XZDl] = X Dl—(d1+k1) [XID]_]

d

d—lekl [X:D]-a, Y m+d, [Y:m]-&my+k [Y:im,] (8.4)
d ’ ’
ai [Yim]=a] Y m—(d] +ke;) [Yim,]

d Py

F = k:,I. [Y:ml] =Y Pl,
in which Dy = Dyot1 — [X:D,] from the conservation law of DNA in Module 1.

The reactions of the transcription process in Module 2 are given byS@etéon
2.3

ag a ko )
A+D2d‘=\A:D2, AD,+X d‘=‘A:D2:X—>A:D2+X+m2, m, — 0,
0 2

while the translation reactions are given by

/ ’

&
Y+m,=Ym,, Y:mz—kiP2+Y+m2, Y:mziY PZL(Z).
d
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The resulting system of flerential equations is given by

d

ai [A:D,] =ag ADy—dp [A:D,] —a X[A:D,] + (dz + ko)[A:D,:X]

% [A:D,:X] = az X[A:D,] - (d2 + ko) [A:D ,:X]

d
d—TZ — ko [AD,X] &, Y mp+d) [Y:m,]—sm+ K, [Y:m,]  (8.5)
d ’ 4 /
T [Yim,] =&Y mp—(d;+k5) [Y:m,] —6[Y:m,)]
dP,
_dt2 =K, [Y:m,] -y Py,

in which, we have thabD; = Dotz — [A:D,] —[A:D,:X] by the conservation law of
DNA in Module 2.

The two modules are coupled by the conservation laws for RNAP and ribo-
somes given by

Xiot = X+ [X:D ] +[A:D,:X],  Yiot=Y+[Y:m ] +[Y:m,],
which are employed in system8.4)-(8.5) by writing
X=Xt = [X:D4] =[A:D,:X], Y =VYor—[Y:my]=[Y:m,].

The results are shown in Figu83a8.3d In the simulations, we have chosen
Xiot = 1uM to account for the fact that the total amount of RNAP in wild type cells
at fast division rate i is given by about @8l of which only uM is free, while
the rest is bound to the endogenous DNA. Since in the simulations we did not
account for endogenous DNA, we assumed that oplM is available in total to
the two exogenous modules. A similar reasoning was employed ¥,setlOuM.

In exponential growth, we have aboutid4 of total ribosomes concentration, but
only about 30% of this is free, resulting in aboupM concentration of ribosomes
available to the exogenous modules.

Figure 8.3aillustrates that as the activator concentrattdincreases, there is
no substantial perturbation on the free amount of RNAP. However,usecthe
resulting perturbation on the free amount of riboson®&84 is significant, the
resulting decrease ¢f; is substantial.

8.2 Stochastic Effects: Design Tradeoffs in Systems with Large
Gains

1As we have seen in Chapter 7, a biomolecular system can be renderasiinse
tive to retroactivity by implementing a large input amplification gain in a negative

1This section is extracted from Jayanthi and Del Vecchio CDC 2009.
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Figure 8.3: Simulation results for the ordinary ffdrential equation

model @.5-(8.4). For this model, the parameter values were taken from
http://bionumbers.hms.harvard.edu/ as follows. For the concentrations, we
have Xiot = 1uM, Yiot = 10uM, Diot1 = Diot2 = 0.2uM. The values of the association and
dissociation rate constants were chosen such that thesporiding dissociation constants
were in the range of specific binding dissociation constaBgecifically, we have
ao = 10uM*min"?, do = Imin™*, a = 10uM*min~?, dp = Imint, &, = 100uM~*min?,

d, = Imin't, a; = 1uM~*min™t, dy = Imin™!, & = 10uM*min", andd; = 1min™.
The transcription and translation rate constants wereutzdbd based on the elongation
speeds, the average length of a gene, and the average nuieAB per gene and of
ribosomes per transcript. The resulting values chosenieea gy ki = k» = 40min ! and

ki =k, = 6minL. Finally, the decay rates are given fy= 0.01min™* corresponding to a
protein half life of about 70 minutes amd= 0.1min"* corresponding to a mRNA half life
of about 7 minutes.

feedback loop. However, relying on a large negative feedback, thésdafdesign
may have undesiredfects in the presence of noise as seen infiemint context
in Section6.2 Also, it is not clear so far what theffect of retroactivity is on the
noise content of the upstream system. Here, we employ the Langevin egumatio
troduced in Chapter 4 to address these questions.
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Consider a transcription system that takes a transcription factor U asangut
produces a transcription factor Z as output. The transcription rate ofethezg
which expresses the protein Z, is given by a time varying fundBé(t) that de-
pends on the transcription factor U. This dependency is not modeled, isiisce
not central to our discussion. The param&eanodels the input amplification gain.
The degradation rate of protein Z is also assumed to be tunable and thusedentifi
by Gy. The variable gain paramet&rwill be adjusted to improve the retroactivity
attenuation.

The transcription factor Z is also an input to the downstream load through the
reversible binding of Z to promoter sites p. Neglecting the Z messenger RNA dy
namics, the system can be modeled by the chemical equations

G k(t Kon
0 o Z, Z+p=C.
Gy Koft

We assume thdi(t) andy are of the same order and dendtg = Kog/kon. We
also assume that the production and decay processes are slower tiag bimd
unbinding reactions, that ikgg > Gy, ko > Gy as performed before. Let the total
concentration of promoter b@,:. The deterministic ordinary fferential equation
model is given by

dz

Gt = OKO-GyZ+konZ —kon(Por—C)Z,

dc

¢ = ~konC+kon(Pot-C)Z (8.6)

To identify by what amount& should be increased to compensate the retroac-
tivity effect, we perform a linearized analysis 8f€) aboutk(t) = k, and the corre-
sponding equilibriunZ = k/y andC = Z pot/(Z + Kg). By performing the linearized
analysis as in Section.3 lettingz= Z — Z andk = k- k, we obtain

dz_ G &0 _ __KdPot
G- R 0 R=

(8.7)
Thus, we should choose ~ 1+ R to compensate for retroactivity from the load.
In real systems, however, there are practical limitations on how much thegain
be increased so that retroactivity may not be completely rejected.

We have shown that increasing the g@irs beneficial for rejecting retroactivity
to the upstream component. However, as shown in Fi§uancreasing the gain
G impacts the frequency content of the noise in a single realization. For lows/alu
of G, the error signal between a realization and the mean is of lower frequency
when compared to a higher gain.



266 CHAPTER 8. DESIGN TRADEOFFS
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Time (s)
Figure 8.4: Increasing the value &f produces a disturbance signal of higher frequency.
Two realizations are shown withférent values fo& without load. The parameters used in
the simulations arg = 0.01s %, Kq = 20nM, ko = 5051, w = 0.005rag's andQ = 10nM™2.
The input signal used i&(t) = y(1+ 0.8sint))st. The mean of the signal is given as
reference.

To study this problem, we employ the Langevin equation (Seeti@n For our
system, we obtain

92 —GK1) - GyZ ~Kon(Proc~C)Z + kot C + VGO Nul0)~ VG1Z o) (8.8)
— VRon(Por—C)Z Na(®) + vkorC Na(t),
0 Ken(Pot~C)Z ~kar -+ VRen(Pror—CIZ No() ~ VarC N(0)

The above system can be viewed as a non-linear system with five ifgtts,
andN;(t) fori = 1,2,3,4. Letk(t) = k, Ny(t) = Na(t) = Na(t) = N4(t) = 0 be constant
inputs and letZ andC be the corresponding equilibrium points. Then for small
amplitude signalk(t) the linearization of the systen8.§) leads, with abuse of
notation, to

dz - — _
T Gk(t) — GyZ — kon(ptot = C)Z + konZ C + kotC

+ VB N(®)~ \YZ Naf®) ~ ko€ No®)+ yfkorn(Prot—O)Z Na(®)

Kon(Ptot — C)Z — konZ C — kostC + v kotC Na(t) = +/Kon(Prot — C)Z Nat).
(8.9)

dc _
dt

We can further simplify the above expressions by notingydat Gk andkon(Prot—

C)Z = kotC. Also, sinceN; are independent identical Gaussian white noises, we
can writeNy(t) — Na(t) = V2I'1(t) andNa(t) — Na(t) = V205(t), in whichT'1(t) and
I'>(t) are independent Gaussian white noises identichl; (9. This simplification
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leads to the system

dd—f = GK(t) - GyZ — kon(Prot — C)Z + konZ C + kotC + V2GKI1(t) — 1/ 2koCT2 (1),
% an(Pror— 2~ konZC o C + | 2kon 1), (8.10)

This is a system with three inputs: the deterministic ink(tit and two inde-
pendent white noise sourcEsg(t) andI'»(t). One can interprdi; as the source of
the fluctuations caused by the production and degradation reactiondwisléhe
source of fluctuations caused by binding and unbinding reactions. Biasgstem
is linear, we can analyze theffirent contributions of each noise source separately
and independent from the sigridt).

The transfer function fronfi; to Z is (after settingy/kog = € = 0)

V2Gk
S(1+R)+Gy’

The zero frequency gain of this transfer function is equélig (0) = V2k/ VGy.
Thus, asG increases, the zero frequency gain decreases. But for largglefred
quencies, jw(1+R)+Gy ~ jw(1+R), and the amplitudéHzr, (jw)| ~ V2kG/
w(1+R) becomes a monotone function®f This efect is illustrated in Figur8.5.
The frequency at which the amplitude|blzr, (jw)| computed withG = 1 intersects
the amplitudeéHzr, (jw)| computed withG > 1 is given by the expression

We = yx/é
7 (1+R)’

Thus, when increasing the gain from 1Go- 1, we reduce the noise at frequencies
lower thanwe but we increase it at frequencies larger thanNote , in particular,
that there is an increase of the amplitude at the frequency of intere$t01.

While retroactivity contributes to filtering noise in the upstream system as it
decreases the bandwidth of the noise transfer function, high gainsheoetto
increasing noise at frequencies higher thanIn particular, when increasing the
gain from 1 toG > 1 we reduce the noise in the frequency ranges belgw
v VG/(R +1), but the noise at frequencies abaygincreases. If we were able to
indefinitely increasé&s, we could sends to infinity attenuating the deterministic
effects of retroactivity while amplifying noise only at very high, hence nowaaig
frequencies.

In practice, however, the value &f is limited. For example, in the insulation
device based on phosphorylatida,is limited by the amounts of substrate and
phosphatase that we can have in the system. Hence, a designfiinaeieds to
be considered when designing insulation devices: placing the largesbleds
attenuates retroactivity but it may increase noise in a possibly relevauieiney
range.

Hzr,(9) = (8.11)
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Figure 8.5: MagnitudeM of the transfer functions$dzr,(s) as a function of the input
frequencyw. The parameters used in this plot are- 0.01s1, Ky = 1nM, ko = 50571,
w = 0.005rad’s, pyot = 100nM. WhenG increases from 1 to £ R = 25, the contribution
fromI'; decreases at low frequency but it spreads to a higher rarthe ffequency.

Exercises

8.1 In the case of a repressor, a similar derivation to what was performee in th
text can be carried if R were a repressor of the transcription of Modulésihg

a one-step reaction model for gene expression, write down the reaquai@ns

for this case and the reaction rate equations describing the rate of abfegand

P>. Then, determine how the free concentration of RNARtisaed by changes in

R and howP; is afected by changes R.

8.2 Consider again the case of a repressor as considered in the prexaongle.

Now, consider a two-step reaction model for transcription and build a simalatio
model with parameter values as indicated in the text and determine the extent of
coupling between Module 1 and Module 2 when the repressor is increased



Appendix A
A Primer on Control Theory

This appendix provides a brief primer on some of the key topics in controtyhe
that are used in the text. The material here is drawn fre®dback Systenis/
Astrom and Murray.

A.1 System Modeling

A model is a precise representation of a system’s dynamics used to anssger g
tions via analysis and simulation. The model we choose depends on the nsiestio
we wish to answer, and so there may be multiple models for a single physieal sys
tem, with diferent levels of fidelity depending on the phenomena of interest. In
this chapter we provide an introduction to the concept of modeling, andderov
some basic material on two specific methods that are commonly used in feedback
and control systems: fierential equations andfterence equations.

1. A modelis a mathematical representation of a system that can be used to
answer question about that system. The choice of the model depends on
the questions one wants to ask. Models for control systems are typically
inputoutput models and combine techniques from mechanics and electrical
engineering.

2. Thestateof a system is a collection of variables that summarize the past
history of the system for the purpose of predicting the futurstate space
modelis one that describe how the state of a system evolves over time.

3. We can model the evolution of the state usingrdinary diferential equa-

tionsof the form

x = f(x,u) X = Ax+Bu

(A1)

y = h(x,u) y=Cx+Du
wherex represents the state of the systeris, the time derivative of the state,
u are the external inputs arychre the measured outputs. For the linear form,
A, B, C andD are matrices of the appropriate dimension and the model is
linear time invariant(LTI).

4. Three common questions that can be answered using state space mmdels a
(1) how the system state evolves from a given initial condition, (2) the stabil-
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ity of an equilibrium point from nearby initial conditions and (3) the steady
state response of the system to sinusoidal forcingftgreéint frequencies.

5. Models can be constructed from experiments by measuring the respbns
a system and determining the parameters in the model that correspond to
features in the response. Examples include measuring the period of oscilla-
tion, the rate of damping and the steady state amplitude of the response of a
system to a step input.

6. Schematic and block diagrams are common tools for modeling large, com-
plex systems. The following symbols are some of the ones commonly used
for modeling control systems:

up Ui + Uy
u ku u sat(y)
—» k = —
uz2
Summing junction Gain block Saturation
t
u fo udt u y u f(u)
— f —— — SystenT—> —>\/—>
Integrator Input/output system Nonlinear map

Computer packages such as LabView, MATL/SBVMULINK and Modelica
can be used to construct models for complex, multi-component systems.

A.2 Dynamic Behavior

In this chapter we give a broad discussion of the behavior of dynanystdras,
focused on systems modeled by nonlinedifiedéntial equations. This allows us to
discuss equilibrium points, stability, limit cycles and other key concepts drtiyn
ical systems. We also introduce some methods for analyzing global beludvior
solutions.

1. We say thaxk(t) is a solution of a dterential equation on the time intenval
to t¢ with initial value xg if it satisfies

X(to) =% and X(t)=F(x()) forall to<t<t;. (A.2)

We will usually assuméy = 0. For most diterential equations we will en-
counter, there is a unique solution for a given initial condition. Numerical
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Figure A.1: Basic features of dynamical systems. (a) An gytitally stable equilibrium
point atx = (0,0). (b) A limit cycle of radius one, with an unstable equilibn point at
x=(0,0). (c) A stable equlibirum point at¢= (0, 0) (nearby initial conditions stay nearby).]

tools such as MATLAB and Mathematica can be used to obtain numerical
solutions forx(t) given the functior(x).

. An equilibrium pointfor a dynamical system represents a poinsuch that

if X(0) = Xe thenx(t) = xe for all t. Equilibrium points represent stationary
conditions for the dynamics of a systemlimit cyclefor a dynamical system
is a solutionx(t) which is periodic with some periofl, so thatx(t+ T) = x(t)
for all t.

. An equilibrium point is (locally)stableif initial conditions that start near

an equilibrium point stay near that equilibrium point. A equilibrium point is
(locally) asymptotically stablé it is stable and, in addition, the state of the
system converges to the equilibrium point as time increases. An equilibrium
point isunstableif it is not stable. Similar definitions can be used to define
the stability of a limit cycle.

. Phase portraits provide a convenient way to understand the bel&der

dimensional dynamical systems. A phase portrait is a graphical repaesen
tion of the dynamics obtained by plotting the staf® = (xy(t), X2(t)) in the
plane. This portrait is often augmented by plotting an arrow in the plane cor-
responding td-(x), which shows the rate of change of the state. Figude
illustrates some of the basic features of a dynamical systems.

. Alinear system

dx
i AX (A.3)

is asymptotically stable if and only if all eigenvaluesAfll have strictly
negative real part and is unstable if any eigenvaluA bés strictly positive
real part. A nonlinear system can be approximated by a linear systemdarou
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an equilibrium point by using the relationship

X =F(Xe) + % (X—Xe) + higher order terms in{— Xe). (A.4)

Ye
SinceF(xe) = 0, we can approximate the system by choosing a new state
variablez = x— x¢ and writing the dynamics as= Az The stability of the
nonlinear system can be determined in a local neighborhood of the equilib-

rium point through its linearization.

. A Lyapunov functiors an energy-like functiov : R" — R that can be used

to reason about the stability of an equilibrium point. We define the derivative
of V along the trajectory of the system as

V(X) = %5@ %F(x) (A.5)

Assumingxe = 0 andV(0) = 0, the following conditions hold:

Condition onvV  Condition onV  Stability
V(X)>0,x#0 V(x)<Oforallx x stable
V(X)>0,x#0 V(X)<0,x#0 X asymptotically stable

Stability of limit cycles can also be studied using Lyapunov functions.

. Theglobal behaviorof a nonlinear system refers to dynamics of the system

far away from equilibrium points. Theegion of attractionof an asymptot-
ically stable equilirium point refers to the set of all initial conditions that
converge to that equilibrium point. An equilibrium point is said togbeb-

ally asymptotically stablé all initial conditions converge to that equilibrium
point. Global stability can be checked by finding a Lyapunov function that is
globally positive definition with time derivative globally negative definite.

A.3 Linear Systems

Previous chapters have focused on the dynamics of a system with ryléitileat-
tention to the inputs and outputs. This chapter gives an introduction tqgaupitit
behavior for linear systems and shows how a nonlinear system can foxapgted
near an equilibrium point by a linear model.

1. A linear systemis one in which the output is jointly linear in the intitial

condition for the system and the input to the system. In particular, a linear
system has the property that if we apply an inp{t} = au;(t) + Bup(t) with

zero initial condition, the corresponding output will &) = ay;(t) + By2(t),
wherey; is the output associated with the inpyt This propery is called
linearsuperposition
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2. A differential equation of the form

X = Ax+ Bu xeRueR
(A.6)
y=Cx+Du yeR

is asingle-input, single-outpuiSISO)linear differential equationlts solu-
tion can be written in terms of thmatrix exponential

1
M= +At+ éA2t2 A3t3 Z X = Aktk, (A.7)

The solution to the dierential equation is given by tle®nvolution equation
t
y(t) = Ce%(0) + f C=IBy(r)dr + Du(t). (A.8)
0

3. Alinear system
X = AX (A.9)

is asymptotically stabléf and only if all eigenvalues oA all have strictly
negative real part and is unstable if any eigenvalué dfas strictly posi-

tive real part. For systems with eigenvalues having zero real-part, stability
determined by using the Jordan normal form associated with the matrix. A
system with eigenvalues that have no strictly positive real part is stabld if an
only if the Jordan block corresponding to each eigenvalue with zeraogart
scalar (1x1) block.

4. The inputoutput response of a (stable) linear system contains a transient
region portion, which eventually decays to zero, and a steady state portion
which persists over time. Two special responses arstdperesponsevhich
is the output corresponding to an step input applidd-dd and thefrequency
responsewhich is the response of the system to a sinusoidal input at a given
frequency.

5. The step response is characterized by the following parameters:
e Thesteady state valyeg/ss, of a step response is the final level of the

output, assuming it converges.

e Therise time T,, is the amount of time required for the signal to go
from 10value.

e Theovershoat My, is the percentage of the infal value by which the
signal initially rises above the final value.

e Thesettling time T, is the amount of time required for the signal to
stay within 5times.
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6. The frequency response is given by

y(t) = CeM(x(0) - (sl - A)'B)+(D +C(sl - A)'B)e!, (A.10)

transient steady state

where cosut = 3 (el + e7¢!) and s = jw. The gain and phase of the fre-
quency response are given by

gain) = % =M phase@) = ¢ -y = 0. (A.11)

7. A nonlinear system of the form

x = f(x,u) xeRueR
(A.12)
y = h(x, u) yER

is a single-input, single-output (SISO) nonlinear system. It can be lireghriz
about an equibrium point= Xe, U = Ue, Y = Ve by defining new variables

Z=X—Xe V=U—-Uge W =y —h(Xe, Ug). (A.13)

The dynamics of the system near the equilibrium point can then be approxi-
mated by the linear system

X = AX+ Bu
(A.14)
y=Cx+Du
where af af
OX  Ixe e U Ixeue (A.15)
Co oh(x,u) D oy(x,u) ’
X weu U ke

The equilibrium point for a nonlinear system is locally asymptotically stable
if the real part of the eigenvalues of the linearization about that equilibrium
point have strictly negative real part.

A.4 Reachability and observability

The concept of reachability is introduced and used to investigate how sigfde
the dynamics of a system through placement of its eigenvalues. In particwulgr

be shown that under certain conditions it is possible to assign the systemadige
ues to arbitrary values by appropriate feedback of the system state t\ddvice

the concept of observability and show that if a system is observable,dsslge

to recover the state from measurements of the inputs and outputs to the system.
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1. Alinear system with dynamics

X=Ax+Bu xe RueR
(A.16)
y=Cx+Du yeR
is said to bereachableif we can find an inpuu(t) defined on the interval
[0, T] that can steer the system from a given final poi{X) = X to a desired
final pointx(T) = X;.

2. Thereachability matrixfor a linear system is given by
W =[B AB .- A™!B|. (A.17)

A linear system is reachable if and only if the reachability maxis in-
vertible (assuming a single intgsingle output system). Systems that are
not reachable have states that are constrained to have a fixed relg@ionsh
with each other.

3. Integral feedbackcan be used to provide zero steady state error instead of
careful calibration of the gail,. An integral feedback controller has the
form

U= —Kp(X—Xe) —kiz+kr. (A.18)
where
Z=y-r (A.19)

is the integral error. The gairkg, ki andk; can be found by designing a sta-
bilizing state feedback for the system dynamics augmented by the integrator
dynamics.

4. Alinear system with dynamics

X=Ax+Bu xeRueR

A.20
y=Cx+Du yeR ( )

is said to beobservabldf we can determine the state of the system through
measurements of the input) and the outpuy(t) over a time interval [0T].

5. Theobservability matriXor a linear system is given by

C
CA

Wo=| . |. (A.21)
CAn—l

A linear system is observable if and only if the observability matkixis
full rank. Systems that are not reachable have "hidden” states thadtthe
determined by looking at the inputs and outputs.
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6. Anobserveiis a dynamical system that estimates the state of another system

through measurement of inputs and outputs. For a linear system, theabserv
given by

dx . o

i AX+ Bu+L(y—CX) (A.22)
generates an estimate of the state that converges to the actual AtatieGf
is has eigenvalues with negative real part. If a system is observabie, the
there exists a anbserver gain Lsuch that the observer error is governed
by a linear diferential equation with an arbitrary characteristic polynomial.
Hence the eigenvalues of the error dynamics for an observable lingansy

can be placed arbitrarily through the use of an appropriate obseriver ga

. Adiscrete time, linear process with noise is given by

X(k+1) = Ax(k) + Bu(k) + v(k) xeRueR

y(k) =Cx(k) + Du(k) +w(k)  yeR (A.23)

wherev is a vector, white, Gaussian random process with mean 0, autoco-
varianceR,, w is a white, Guassian random process with mean 0, variance
R,. We take the initial condition to be random with mean 0 and covariance
Po. The optimal estimator is given by

K(k+ 1) = AR(K) + Bu(k) + L(y(k) — Cx(K)) (A.24)
where the observer gain satisfies

P(k+1) = ATP(K)AT + R,— APKK)CT (R, + CPC")"1CP" (k) AT
P(0) = P (A.25)
L=ATP(K)C'(Ry+CPC")™

This estimator is an example okalman filter

A.5 Transfer Functions

This chapter introduces the concept of the transfer function, which dsrgact
description of the input-output relation for a linear system. Combining transfe
functions with block diagrams gives a powerful method of dealing with complex
systems. The relationship between transfer functions and other syssernptiens

of dynamics is also discussed.

1. Thefrequency responsaf a linear system

Xx=Ax+ Bu (A.26)
y=Cx+Du '
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Figure A.2: Interconnections of linear systems. Seriesfajallel (b) and feedback (c)
connections are shown. The transfer functions for the caitgpeystems can be derived by
algebraic manipulations assuming exponential functionslf signals.

is the response of the system to a sinusoidal input at a given frequamney
to linearity, the response of a system to a more complicated input can be
constructed by decomposing the input into the sum of sines and cosines

ut) = i ay Sin(kwt) + by coskwt). (A.27)
k=1

2. Thetransfer functiorfor a linear system is given by
Gyu(s) =C(sl-A)'B+D. (A.28)

The transfer function represents the steady state response of the $gste
an exponential input. The transfer function is independent of the clodice
coordinates for the state space.

3. Thezero frequency gaiof a system is given by the magnitude of the trans-
fer function ats = 0. It represents the ratio of the steady state value of
the output with respect to a step input. For a transfer function of the form
G(s) = b(s)/a(s), the roots of the polynomial(s) are called thgolesof the
system and the roots of the polynomixk) are called theerosof the sys-
tem. A polep is also called anodeof the system. The poles correspond to
the eigenvalues of the dynamics matiand determine the stability of the
system. The zeros of a transfer function correspond to exponentiallsig
whose transmission is blocked by the system.

4. Block diagrams that consist of transfer functions can be manipulated us
ing block diagram algebraFigureA.2 gives the transfer functions for some
common interconnections of linear systems.

5. A Bode plotis a plot of the magnitude and phase of the frequency response:
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The top plot is the gain curve; the frequency and magnitude are both plotted
using a logarithmic scale. The bottom plot is the phase curve and uses a log-
linear scale. The dashed lines show straight line approximations of the gain
curve and the corresponding phase curve.

6. The transfer function for a system can be determined from experirbgnts
measuring the frequency response and fitting a transfer function totine da
Formally, the transfer function corresponds to the ratio of the Laplacs-tran
forms of the output to the input.

A.6 Frequency Domain Analysis

In this chapter we study how how stability and robustness of closed loognsys
can be determined by investigating how signals propagate around theabdedb
loop. The Nyquist stability theorem is a key result that provides a way tlyzma
stability and introduce measures of degrees of stability.

1. Theloop transfer functiorof a feedback system represents the transfer func-
tion obtained by breaking the feedback loop and computing the resulting
transfer function of the open loop system. For a simple feedback system

r e u y
C(9) = P(s) >

the loop transfer function is given by= PC
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2. TheNyquist criterionprovides a way to check the stability of a closed loop
system by looking at the properties of the loop transfer function. Fotéesta
open loop system, the Nyquist criterion states that the system is stable if the
contour of the loop transfer function plotted frosi= —joo to S= joo has
no net encirclements of the poiats —1 when it is plotted on the complex
plane.

3. The general Nyquist criterion uses the image of the loop transfetiémnc
applied to theNyquist countour

Gamma

The number of unstable poles of the closed loop system is given by the num-
ber of open loop unstable poles plus the number of clockwise encirclements
of the points=-1.

4. Stability margins describe the robustness of a system to perturbations in the
dynamics. We define thphase crossover frequenay;80 as the smallest
frequency where the phase of the loop transfer functionli8C and the
gain crossover frequencygyc as the small frequency where the loop transfer
function has unit magnitude. Thgain marginandphase margirare given

by
1

" IL(jw1so)]

These margins describe the the maximum variation in gain and phase in the
loop transfer function under which the system remains stable. Two other
margins are thestability margin which is the shortest distance frmo the
Nyquist curve to the critical poins = —1, and thedelay margin which is

the smallest time delay required to make the system unstable.

Om ¢m = m+argL(jwgc) (A.29)

5. Bode’'s relationselate the gain and phase of a transfer function with no poles
or zeros in the right half plane. They show that

7 dlog|G(jo)

argG(jwo) ~ 5 dlogw

(A.30)
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A non-minimum phassytem is one for which there is more phase lag than
the amount given by Bode’s relations. Systems with right have plane poles
or zeros are non-minimum phase.

. Thegainof an inputoutput system is defined as

y=su M, (A.31)
uezs |IUll
where sup is the supremum. Thmall gain theorenstates that if two sys-
tems with gaing/; andy; are connected in a feedback loop, then the closed
loop system is stable if;y».

A.7 PID Control

This chapter describes the use of proportional integral derivatiNg) l@eedback
for control systems design. We discuss the basic concepts behind Riidl@nd
the methods for choosing the PID gains.

1. The basic PID controller as the form

t
u(t) = kpe(t) +ki fo e(r)dr + kdccji—f, (A.32)

whereu is the control signal and is the control error. The control signal

is thus a sum of three terms: a proportional term that is proportional to the
error, an integral term that is proportional to the integral of the errat,a
derivative term that is proportional to the derivative of the error.

Error A Present

Time

. Integral actionguarantees that the process output agrees with the reference

in steady state and provides an alternative to including a feedforward term
for tracking a constant reference input. Integral action can be implechente
usingautomatic resetwhere the output of a proportional controller is fed
back to its input through a low pass filter:

1
u= kpe+ rs_l_iu, (A33)
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3. Derivative actionprovides a method for predictive action. The input-output
relation of a controller with proportional and derivative action is

u=Kkpe+ kc%[e =k(e+ sz—f), (A.34)
whereTy = kq/Kp is the derivative time constant. The action of a controller
with proportional and derivative action can be interpreted as if the dontro
is made proportional to the predicted process output, where the prediction
is made by extrapolating the errdg time units into the future using the
tangent to the error curve.

A.8 Limits of Performance

In this chapter we continue to explore the use of frequency domain tedwiiqu
design of feedback systems. We begin with a more thorough descriptiore of th
performance specifications for controls systems, and then introducertbeptamf
"loop shaping” as a mechanism for designing controllers in the frequaoimain.

We also introduce some fundamental limitations to performance for systems with
right half plane poles and zeros.

1. The primary transfer functions that define the iriputput characteristics of
the system are called tl@&ang of Six

PCF P P
C T C

1+PC’ 1+PC’ 1+PC’
+CF ' C I (A-35)
CFS=1ipcc  ©S"Topc ST Iipc

The transfer functions in the first column give the response of the gsoce
output and control signal to the reference signal. The second colures gi
the response of the control variable to the load disturbance and the noise,
and the final column gives the response of the process output to those two
inputs. Wher-(s) = 1, the system is said to have pure error feedback and the
relevant inpyoutput transfer functions are given by tGang of Four given

by the transfer functions in the right two columns.

2. The performance of a system can be given in terms of the characteristic
of the frequency response between an input and outptesénant peals
a maximum of the gain, and the peak frequency is the corresponding fre-
quency.

3. Thesensitivity function S 1/(1+ PC) describes how disturbances are at-
tenuated by closing the feedback loop. Disturbances with frequenaits su
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that|S(iw)| < 1 are attenuated, but disturbances with frequencies such that
|S(iw)| > 1 are amplified by feedback. The maximum sensitiwity, which
occurs at the frequenayms, is @ measure of the largest amplification of
the disturbances. Theomplementary sensitivity function=TPC/(1+ PC)
describes how well the controller tracks a references signal.nidemum
complementary sensitivitiM;, which occurs at the frequeneyn, is the
peak value of the magnitude of the complementary sensitivity function. It
provides the maximum amplification from the reference signal to the output
signal.

. Feedback control systems have a number of fundamental limits, usually ex

acerbated by the presence of right half plane poles and zeros. stensy
with right half plane poles or zeros, we can decompose the processiaygna
into a minimum phase transfer function (no right half plane poles or zeros)
and an all pass transfer function (gairi):

P(S) = Pmp(S)Pap(9), (A.36)

. Another fundamental limit is given tBode’s integral formulawhich states

that for systems with a loop transfer function that goes to zero faster ftsan 1
ass— oo, the sensitivity function must satisfy

fo log|S(iw)| dw = f 9 L(la))l w=m)" P, (A.37)

wherepg are the poles in the right half-plane. This conservation law shows
that to get lower sensitivity in one frequency range, we must get higimer s
sitivity in some other region. An analogous formula exists for the comple-
mentary sensitivity function in the presence of right half plane zeros.

Robust Performance

This chapter focuses on the analysis of robustness of feedbacknsy3ie con-
sider the stability and performance of systems who process dynamicscamtaim
and derive fundamental limits for robust stability and performance. Wed@sass
how to design controllers to achieve robust performance.

1. Uncertainty can enter a model in many forfAgrametric uncertaintpccurs

when the values of the parameters in the model are not precisely known or
may vary.Unmodeled dynamicare a more general class of uncertainty in
which some portions of the systems behavior are not included in the model,
either due to lack of knowledge or simplicity. Unmodeled dynamics can be
taken into consideration by incorporating an uncertainty block with bounded
inputoutput response. Common types of unmodeled dynamics ineldde
ditive uncertaintymultiplicative uncertaintyandfeedback uncertainty
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2. TheVinnicombe metri¢or v-gap metric) provides a measure of the distance
between two transfer functions. It is defined as

5,(Py.Py) = | 0P P2). T (P1Po) €C 38)
o 1, otherwise '

whered(Py, P,) is a distance measure between the two transfer function

d(P1.Py) = sup |P1(.|w)— Pa(iw)| __
o V(L+IPLiw)B)(L+[Paiw)?)
andC is the set of all pairsi1, P2) such that the functionfy = 1+ P1(s)P1(-9)

and f, = 1+ P»(9)P1(-9) have the same number of zeros in the right half-
plane

(A.39)

3. Robust stability can be determined through the use of the Nyquist plot. The
stability margin g, defined as the shortest distanced from -1 to the Nyquist
curve, provides a measure of robustness. For an additive perturidgs)
the system is robustly stable if

1
u

1+PC|

|A|<| -

A
o |6]= ||3| < (A.40)
This condition can be derived using thmall gain theorenand allows us to
reason about uncertainty without exact knowledge of the procets iper

tions.

4. In addition to stability, uncertainty can alsfiexct the performance of a sys-
tem. For additive uncertainty, the load response satisfies

dGyqg dP
o S5 (A.41)

The response to load disturbances is thus insensitive to process vaifation
frequencies where the magnitude of the sensitivity fundgiw)| is small.
Similarly, the response of the controller to noise in the presence of additive

uncertainty satisfies

dGyn dpP
=-T— A.42
Gun P’ ( )

indicating that the controller is insensitive to noise when the complementary
sensitivity is small. Control design in the presence of uncertainty can k& don
by using the Gang of Four to insure that the appropriate sensitivity fursction
are all well behaved.
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