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Preface

This text is intended for researchers interested in the application of feedback and
control to biomolecular systems. The material has been designed so that it can
be used in parallel with the textbookFeedback Systems[1] as part of a course on
biomolecular feedback and control systems, or as a standalone reference for readers
who have had a basic course in feedback and control theory. The fulltext for this
book, along with additional supplemental material, is available on a companion
web site:

http://www.cds.caltech.edu/˜murray/BFS

The material in this book is intended to be useful to three overlapping audi-
ences: graduate students in biology and bioengineering interested in understanding
the role of feedback in natural and engineered biomolecular systems; advanced un-
dergraduates and graduate students in engineering disciplines who are interested
the use of feedback in biological circuit design; and established researchers in the
biological sciences who want to explore the potential application of principles and
tools from control theory to biomolecular systems. We have written the text as-
suming some familiarity with basic concepts in feedback and control, but have
tried to provide insights and specific results as needed, so that the material can be
learned in parallel. We also assume some familiarity with cell biology, at the level
of a first course for non-majors. The individual chapters in the text indicate the
pre-requisites in more detail, most of which are covered either in AM08 or in the
supplemental information available from the companion web site.

Domitilla Del Vecchio Richard M. Murray
Cambridge, Massachusetts Pasadena, California

http://www.cds.caltech.edu/~murray/BFS
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Notation

This is an internal chapter that is intended for use by the authors in fixing thenota-
tion that is used throughout the text. In the first pass of the book we are anticipating
several conflicts in notation and the notes here may be useful to early users of the
text.

Protein dynamics

For a gene ‘genX’, we writegenXfor the gene, mgenX for the mRNA and GenX for
the protein when they appear in text or chemical formulas. Superscripts are used
for covalent modifications, e.g., Xp for phosphorylation. We also use superscripts
to differentiate between isomers, so m∗genX might be used to refer to mature RNA

or GenXf to refer to the folded versions of a protein, if required. Mathematical
formulas use the italic version of the variable name, but roman font for the gene or
isomeric state. The concentration of mRNA is written in text or formulas asmgenX

(m∗genX for mature) and the concentration of protein aspgenX (pf
genX for folded). The

same naming conventions are used for common gene/protein combinations: the
mRNA concentration oftetRis mtetR, the concentration of the associated protein is
ptetR and parameters areαtetR, γtetR, etc.

For generic genes and proteins, use X to refer to a protein, mx to refer to the
mRNA associated with that protein andx to refer to the gene that encodes X. The
concentration of X can be written either asX, px or [X], with that order of pref-
erence. The concentration of mx can be written either asmx (preferred) or [mx].
Parameters that are specific to genep are written with a subscripted p:αp, γp, etc.
Note that although the protein is capitalized, the subscripts are lower case (so in-
dexed by the gene, not the protein) and also in roman font (since they arenot a
variable).

Transcription and translation.The dynamics of protein production are given by

dmP

dt
= αP −µmP− δ̄PmP,

︸             ︷︷             ︸

−δPmP

dP
dt
= κPmP −µP− γ̄PP,

︸        ︷︷        ︸

−γPP

whereαP,0 is the (basal) rate of production,δP parameterizes the rate of degradation
of the mRNA mp, βP is the kinetic rate of protein production,µ is the growth rate
that leads to dilution of concentrations andγP parameterizes the rate of degradation
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of the protein P. Since dilution and degradation enter in a similar fashion, we use
δ = δ̄+µ andγ = γ̄+µ to represent the aggregate degradation and dilution rate. If
we are looking at a single gene/protein, the various subscripts can be dropped.

When we ignore the mRNA concentration, we write the simplified protein dy-
namics as

dP
dt
= βP−γPP.

Assuming that the mRNA dynamics are fast compared to protein production, then
the constantβP is given by

βP = κP
αP

δP
.

In general, if this does not create confusion, we remove the subscripts “P” from the
parameters.

Hill functions.For regulated production of proteins using Hill functions, we modify
the constitutive rate of production to beF(Q), in which Q is a transcription factor,
instead ofαp or βp as appropriate. The Hill function is written in the forms

F(Q) =
α

1+ (Q/K)n , F(Q) =
α(Q/K)n

1+ (Q/K)n +α0.

The notation forF mirrors that of transfer functions in AM08:Fp,q represents the
input/output relationship between inputQ and outputP (rate). If the target gene is
not particularly relevant, the subscript can represent just the transcription factor:

Flac(Q) =
αlac

1+ (Q/Klaq)nlac
.

The subscripts can be dropped completely if there is only one Hill function in use.

Concentrations.For a species A,A is its concentration, that is,A:=[A]. nA is the
number of A molecules andmA is the mRNA.

For complexes ES (complex of E and S), we denoteC = [ES] and write differ-
ential equations withC only or [ES], that is,dC

dt or d[ES]
dt .

For names of proteins, such as TetR, we writeT :=[TetR] and everything fol-
lows the rules of the species A.

Vector fields.̇x= f (x) or ẋ= f (x,u, θ): all are lower case. Upper caseF is reserved
for Hill functions.

Some common symbols:

Symbol LaTeX Comment
Xtot X_\tot Total concentration of a species
Kd \Kd Dissociation constant
Km \Km Michaelis-Menten constant
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Chemical reactions

We write the symbol for a chemical species A using roman type. The number of
molecules of a species A is written asna. The concentration of the species is oc-
casionally written as [A], but we more often use the notationA, as in the case of
proteins, orxa. For a reaction A+B←−→ C, we use the notation

R1 : A +B
a1−−⇀↽−−
d1

C
dC
dt
= a1AB−d1C

This notation is primarily intended for situations where we have multiple reactions
and need to distinguish between many different constants. Enzymatic reactions
have the form

R2 : S+E
a2−−⇀↽−−
d2

C
k−→ P+E

For a small number of reactions, the reaction number can be dropped.
It will often be the case that two species A and B will form a molecular bond, in

which case we write the resulting species as AB. If we need to distinguish between
covalent bonds and hydrogen bonds, we write the latter as A:B. Finally, in some
situations we will have labeled section of DNA that are connected together, which
we write as A−B, where here A represents the first portion of the DNA strand and B
represents the second portion. When describing (single) strands of DNA, we write
A′ to represent the Watson-Crick complement of the strand A. Thus A−B:B′−A′

would represent a double stranded length of DNA with domains A and B.
The choice of representing covalent molecules using the conventional chemical

notation AB can lead to some confusion when writing the reaction dynamics using
A andB to represent the concentrations of those species. Namely, the symbolAB
could represent either the concentration of A times the concentration of B orthe
concentration of AB. To remove this ambiguity, when using this notation we write
[A][B] as A·B.

When working with a system of chemical reactions, we write Si , i = 1, . . . ,n for
the species and Rj , j = 1, . . . ,m for the reactions. We writeni to refer to the molecu-
lar count for speciesi andxi = [Si ] to refer to the concentration of the species. The
individual equations for a given species are written

dxi

dt
=

m∑

j=1

ki, jk x j xk.

The collection of reactions are written as

dx
dt
= Nv(x, θ),

dxi

d =
Ni j v j(x, θ),

wherexi is the concentration of species Si , N ∈ Rn×m is the stochiometry matrix,v j

is the reaction flux vector for reactionj, andθ is the collection of parameters that
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the define the reaction rates. Occasionally it will be useful to write the fluxesas
polynomials, in which case we use the notation

v j(x, θ) =
∑

k

E jk

∏

l

x
ǫ

jk
l

l

whereE jk is the rate constant for thekth term of the jth reaction andǫ jk
l is the

stochiometry coefficient for the speciesxl .
Generally speaking, coefficients for propensity functions and reaction rate con-

stants are written using lower case (cξ, ki , etc). Two exceptions are the dissociation
constant, which we write asKd, and the Michaelis-Menten constant, which we
write asKm.

Figures

In the public version of the text, certain copyrighted figures are missing. The file-
names for these figures are listed and many of the figures can be looked upin the
following references:

• Cou08 - Mechanisms in Transcriptional Regulationby A. J. Courey [17]

• GNM93 - J. Greenblatt, J. R. Nodwell and S. W. Mason, “Transcriptional an-
titermination” [34]

• Mad07 - From a to alpha: Yeast as a Model for Cellular Differentiationby
H. Madhani [58]

• MBoC - The Molecular Biology of the Cellby Alberts et al. [2]

• PKT08 - Physical Biology of the Cellby Phillips, Kondev and Theriot [72]

The remainder of the filename lists the chapter and figure number.

Comments intended for reviewers are marked as in this paragraph. These commentsReview
generally explain missing material that will be included in the final text.

Cou08
GNM93
Mad07
MBoC
PKT08


Chapter 1
Introductory Concepts

This chapter provides a brief introduction to concepts from systems biology, tools
from differential equations and control theory, and approaches to modeling, anal-
ysis and design of biomolecular feedback systems. We begin with a discussion of
the role of modeling, analysis and feedback in biological systems. This is followed
by a short review of key concepts and tools from control and dynamicalsystems
theory, intended to provide insight into the main methodology described in the text.
Finally, we give a brief introduction to the field of synthetic biology, which is the
primary topic of the latter portion of the text. Readers who are familiar with one or
more of these areas can skip the corresponding sections without loss of continuity.

1.1 Systems Biology: Modeling, Analysis and Role of Feedback

At a variety of levels of organization—from molecular to cellular to organismal—
biology is becoming more accessible to approaches that are commonly used in
engineering: mathematical modeling, systems theory, computation and abstractap-
proaches to synthesis. Conversely, the accelerating pace of discovery in biological
science is suggesting new design principles that may have important practical ap-
plications in human-made systems. This synergy at the interface of biology and
engineering offers many opportunities to meet challenges in both areas. The guid-
ing principles of feedback and control are central to many of the key questions in
biological science and engineering and can play an enabling role in understanding
the complexity of biological systems.

In this section we summarize our view on the role that modeling and analysis
should (eventually) play in the study and understanding of biological systems, and
discuss some of the ways in which an understanding of feedback principles in
biology can help us better understand and design complex biomolecular circuits.

There are a wide variety of biological phenomena that provide a rich source of
examples for control, including gene regulation and signal transduction; hormonal,
immunological, and cardiovascular feedback mechanisms; muscular controland
locomotion; active sensing, vision, and proprioception; attention and conscious-
ness; and population dynamics and epidemics. Each of these (and many more) pro-
vide opportunities to figure out what works, how it works, and what canbe done to
affect it. Our focus here is at the molecular scale, but the principles and approach
that we describe can also be applied at larger time and length scales.
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Modeling and analysis

Over the past several decades, there have been significant advances in modeling
capabilities for biological systems that have provided new insights into the com-
plex interactions of the molecular-scale processes that implement life. Reduced-
order modeling has become commonplace as a mechanism for describing and doc-
umenting experimental results and high-dimensional stochastic models can now
be simulated in reasonable periods of time to explore underlying stochastic effects.
Coupled with our ability to collect large amounts of data from flow cytometry,
micro-array analysis, single-cell microscopy, and other modern experimental tech-
niques, our understanding of biomolecular processes is advancing at arapid pace.

Unfortunately, although models are becoming much more common in biolog-
ical studies, they are still far from playing the central role in explaining complex
biological phenomena. Although there are exceptions, the predominant use of mod-
els is to “document” experimental results: a hypothesis is proposed and tested us-
ing careful experiments, and then a model is developed to match the experimental
results and help demonstrate that the proposed mechanisms can lead to the ob-
served behavior. This necessarily limits our ability to explain complex phenomena
to those for which controlled experimental evidence of the desired phenomena can
be obtained.

This situation is much different than standard practice in the physical sciences
and engineering, as illustrated in Figure1.1 (in the context of modeling, analysis,
and control design for gas turbine aeroengines). In those disciplines,experiments
are routinely used to help build models for individual components at a variety of
levels of detail, and then these component-level models are interconnected toob-
tain a system-level model. This system-level model, carefully built to capture the
appropriate level of detail for a given question or hypothesis, is used toexplain,
predict, and systematically analyze the behaviors of a system. Because of the ways
in which models are viewed, it becomes possible to prove (or invalidate) a hypoth-
esis through analysis of the model, and the fidelity of the models is such that deci-
sions can be made based on them. Indeed, in many areas of modern engineering—
including electronics, aeronautics, robotics, and chemical processing,to name a
few—models play a primary role in the understanding of the underlying physics
and/or chemistry, and these models are used in predictive ways to explore design
tradeoffs and failure scenarios.

A key element in the successful application of modeling in engineering dis-
ciplines is the use ofreduced-order modelsthat capture the underlying dynamics
of the system without necessarily modeling every detail of the underlying mech-
anisms. These reduced order models are often coupled with schematics diagrams,
such as those shown in Figure1.2, to provide a high level view of a complex sys-
tem. The generation of these reduced-order models, either directly from data or
through analytical or computational methods, is critical in the effective applica-
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Figure 1.1: Sample modeling, analysis and design frameworkfor an engineering system.

tion of modeling since modeling of the detailed mechanisms produces high fidelity
models that are too complicated to use with existing tools for analysis and design.
One area in which the development of reduced order models is fairly advanced is
in control theory, where input/output models, such as block diagrams and transfer
functions are used to capture structured representations of dynamics atthe appro-
priate level of fidelity for the task at hand [1].

While developing predictive models and corresponding analysis tools for biol-
ogy is much more difficult, it is perhaps even more important that biology make
use of models, particularly reduced-order models, as a central element of under-
standing. Biological systems are by their nature extremely complex and can be-
have in counterintuitive ways. Only by capturing the many interacting aspectsof
the system in a formal model can we ensure that we are reasoning properly about
its behavior, especially in the presence of uncertainty. To do this will require sub-
stantial effort in building models that capture the relevant dynamics at the proper
scales (depending on the question being asked) as well as building an analytical
framework for answering questions of biological relevance.

The good news is that a variety of new techniques, ranging from experiments to
computation to theory, are enabling us to explore new approaches to modelingthat
attempt to address some of these challenges. In this text we focus on the useof rele-
vant classes of reduced-order models that can be used to capture manyphenomena
of biological relevance.
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Figure 1.2: Schematic diagrams representing models in different disciplines. Each diagram
is used to illustrate the dynamics of a feedback system: (a) electrical schematics for a power
system [53], (b) a biological circuit diagram for a synthetic clock circuit [5], (c) a process
diagram for a distillation column [80] and (d) a Petri net description of a communication
protocol.

Dynamic behavior and phenotype

One of the key needs in developing a more systematic approach to the use of mod-
els in biology is to become more rigorous about the various behaviors that are im-
portant for biological systems. One of the key concepts that needs to be formalized
is the notion of “phenotype”. This term is often associated with the existence of an
equilibrium point in a reduced-order model for a system, but clearly more complex
(non-equilibrium) behaviors can occur and the “phenotypic response”of a system
to an input may not be well-modeled by a steady operating condition. Even more
problematic is determining which regulatory structures are “active” in a given phe-
notype (versus those for which there is a regulatory pathway that is saturated and
hence not active).

Figure1.3shows a graphical representation of a class of systems that captures
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Figure 1.3: Conceptual modeling framework for biomolecular feedback systems. The
chemical kinetics block represents reactions between molecular species, resulting in signal-
ing molecules and bound promoters. The DNA layout block accounts for the organization
of the DNA, which may be “rewired” to achieve a desired function. The TX-TL processes
block represents the core transcription and translation processes, which are often much
slower than the reactions between various species. The inputs and outputs of the various
blocks represent interconnections and external interactions.

many of the features we are interested in. The chemical kinetics of the system
are typically modeled using mass action kinetics (reaction rate equations) and rep-
resent the fast dynamics of chemical reactions. The reactions include thebinding
of activators and repressors to DNA, as well as the initiation of transcription. The
DNA layout block represents the physical layout of the DNA, which determines
which genes are controlled by which promoters. The core processes oftranscrip-
tion (TX) and translation (TL) represent the slow dynamics (relative to the chemical
kinetics) of protein expression (including maturation).

Several other inputs and outputs are represented in the figure. In the chemical
kinetics block, we allow external inputs, such as chemical inducers, and external
parameters (rate parameters, enzyme concentrations, etc) that will effect the reac-
tions that we are trying to capture in our model. We also include a (simplified)
notion of disturbances, represented in the diagram as an external inputthat affects
the rate of transcription. This disturbance is typically a stochastic input that rep-
resents the fact that gene expression can be noisy. In terms of outputs,we capture
two possibilities in the diagram: small molecule outputs—often used for signaling
to other subsystems but which could include outputs from metabolic processes—
and protein outputs, such as as fluorescent reporters.

Another feature of the diagram is the block labeled “unmodeled dynamics”,
which represents the fact that our models of the core processes of gene expression
are likely to be simplified models that ignore many details. These dynamics are
modeled as a feedback interconnection with transcription and translation, which
turns out to provide a rich framework for application of tools from controltheory
(but unfortunately one that we will not explore in great detail within this text).
Tools for understanding this class of uncertainty are available for both linear and
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nonlinear control systems [1] and allow stability and performance analyses in the
presence of uncertainty.

The combination of partially unknown parameters, external disturbances,and
unmodeled dynamics are collectively referred to asmodel uncertaintyand are an
important element of our analysis of biomolecular feedback systems. Often we will
analyze the dynamic behavior of a system assuming that the parameters are known,
disturbances are small and our models are accurate. This analysis can give valuable
insights into the behavior of the system, but it is important to make sure that this
behavior is robust with respect to uncertainly, a topic that we will discuss insome
detail in Chapter3.

A somewhat common situation is that a system may have multiple equilib-
rium points and the “phenotype” of the system is represented by the particular
equilibrium point that the system converges to. In the simplest case, we canhave
bistability, in which there are two equilibrium pointsx1e andx2e for a fixed set of
parameters. Depending on the initial conditions and external inputs, a given sys-
tem may end up near one equilibrium point or the other, providing two distinct
phenotypes. A model with bistability (or multi-stability) provides one method of
modeling memory in a system: the cell or organism remembers its history by virtue
of the equilibrium point to which it has converted.

For more complex phenotypes, where the subsystems are not at a steady op-
erating point, one can consider temporal patterns such as limit cycles (periodic
orbits) or non-equilibrium input/output responses. Analysis of these more compli-
cated behaviors requires more sophisticated tools, but again model-based analysis
of stability and input/output responses can be used to characterize the phenotypic
behavior of a biological system under different conditions or contexts.

Additional types of analysis that can be applied to systems of this form include
sensitivity analysis (dependence of solution properties on selected parameters), un-
certainty analysis (impact of disturbances, unknown parameters and unmodeled dy-
namics), bifurcation analysis (changes in phenotype as a function of input levels,
context or parameters) and probabilistic analysis (distributions of states asa func-
tion of distributions of parameters, initial conditions or inputs). In each of these
cases, there is a need to extend existing tools to exploit the particular structure of
the problems we consider, as well as modify the techniques to provide relevance to
biological questions.

Stochastic behavior

Another important feature of many biological systems is stochasticity: biological
responses have an element of randomness so that even under carefully control con-
ditions, the response of a system to a given input may vary from experiment to
experiment. This randomness can have many possible sources, including external
perturbations that are modeled as stochastic processes and internal processes such
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./intro/figures/gal-circuit.eps

(a) Galactose control network

./intro/figures/gal-response.eps

(b) Pathway response

Figure 1.4: Galactose response in yeast [93]. (a) GAL signaling circuitry showing a num-
ber of different feedback pathways that are used to detect the presenceof galactose and
switch on the metabolic pathway. (b) Pathway activity as a function of galactose concen-
tration. The points at each galactose concentration represent the activity level of the galac-
tose metabolic pathway in an individual cell. Black dots indicate the mean of a Gaussian
mixture model classification [92]. Small random deviations were added to each galactose
concentration (horizontal axis) to better visualize the distributions.

as molecular binding and unbinding, whose stochasticity stems from the underly-
ing thermodynamics of molecular reactions.

While for many engineered systems it is common to try to eliminate stochastic
behavior (yielding a “deterministic” response), for biological systems there appear
to be many situations in which stochasticity is important for the way in which or-
ganisms survive. In biology, nothing is 100% and so there is always some chance
that two identical organisms will respond differently. Thus viruses are never com-
pletely contagious and so some organisms will survive, and DNA replication is
never error free, and so mutations and evolution can occur. In studyingcircuits
where these types of effects are present, it thus becomes important to study the
distribution of responses of a given biomolecular circuit, and to collect datain a
manner that allows us to quantify these distributions.

One important indication of stochastic behavior isbimodality. We say that a cir-
cuit or system is bimodal if the response of the system to a given input or condition
has two or more distinguishable classes of behaviors. An example of bimodal-
ity is shown in Figure1.4, which shows the response of the galactose metabolic
machinery in yeast. We see from the figure that even though genetically identical
organisms are exposed to the same external environment (a fixed galactose con-
centration), the amount of activity in individual cells can have a large amount of
variability. At some concentrations there are clearly two subpopulations of cells:
those in which the galactose metabolic pathway is turned on (higher reporter fluo-
rescence values on they axis) and those for which it is off (lower reporter fluores-
cence).

Another characterization of stochasticity in cells is the separation of noisiness
in protein expression into two categories: “intrinsic” noise and “extrinsic” noise.
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Roughly speaking, extrinsic noise represents variability in gene expression that
effects all proteins in the cell in a correlated way. Extrinsic noise can be due to
environmental changes that affect the entire cell (temperature, pH, oxygen level) or
global changes in internal factors such as energy or metabolite levels (perhaps due
to metabolic loading). Intrinsic noise, on the other hand, is the variability due to the
inherent randomness of molecular events inside the cell and represents acollection
of independent random processes. One way to attempt to measure the amount of
intrinsic and extrinsic noise is to take two identical copies of a biomolecular cir-
cuit and compare their responses [24, 88]. Correlated variations in the output of
the circuits corresponds (roughly) to extrinsic noise and uncorrelated variations to
intrinsic noise [40, 88].

The types of models that are used to capture stochastic behavior are verydif-
ferent than those used for deterministic responses. Instead of writing differential
equations that track average concentration levels, we must keep track ofthe indi-
vidual events that can occur with some probability per unit time (or “propensity”).
We will explore the methods for modeling and analysis of stochastic systems in
Chapter4.

1.2 The Cell as a System

The molecular processes inside a cell determine its behavior and are responsible
for metabolizing nutrients, generating motion, enabling procreation and carrying
out the other functions of the organism. In multi-cellular organisms, different types
of cells work together to enable more complex functions. In this section we briefly
describe the role of dynamics and control within a cell and discuss the basicpro-
cesses that govern its behavior and its interactions with its environment. We assume
knowledge of the basics of cell biology at the level found in standard textbooks on
cell biology such as Albertset al. [2] or Phillipset al. [72].

Figure 1.5 shows a schematic of the major components in the cell: sensing,
signaling, regulation, and metabolism. Sensing of environmental signals typically
occurs through membrane receptors that are specific to different molecules. Cells
can also respond to light or pressure, allowing the cell to sense the environment,
including other cells. There are several types of receptors, some allow the signaling
molecules in the environment to enter the cell wall, such as in the case of ion
channels. Others activate proteins on the internal part of the cell membrane once
they externally bind to the signaling molecule, such as enzyme-linked receptors or
G-protein coupled receptors.

As a consequence of the sensing, a cascade of signal transduction occurs (sig-
naling), in which proteins are sequentially activated by (usually) receiving phos-
phate groups from ATP molecules through the processes of phosphorylation and/or
phosphotransfer. These cascades transmit information to downstream processes,
such as gene expression, by amplifying the information and dynamically filtering
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Figure 1.5: The cell as a system. The major subsystems are sensing, signaling, regulation,
and metabolism.

signals to select for useful features. The temporal dynamics of environmental sig-
nals and the kinetic properties of the stages in the signaling cascades determine
how a signal is transmitted/filtered. At the bottom stages of signaling cascades,
proteins are activated to become transcription factors, which can activateor re-
press the expression of other proteins through regulation of gene expression. The
temporal dynamics of this regulation, with timescales in the range of minutes to
hours, are usually much slower than that of the transmission in the signaling path-
way, which has timescales ranging from subseconds to seconds. “Orthogonally”
to signaling cascades, metabolic pathways, such as the glycolysis pathway,are in
charge of producing the necessary resources for all the other processes in the cells.
Through these pathways, nutrients in the environment, such as glucose, are broken
down through a series of enzymatic reactions, producing, among other products,
ATP, which is the energy currency in the cell used for many of the reactions, in-
cluding those involved in signaling and gene expression.

Example: Chemotaxis

As an example of a sensing-transmission-actuation process in the cell, we consider
chemotaxis, the process by which micro-organisms move in response to chemical
stimuli. Examples of chemotaxis include the ability of organisms to move in the
direction of nutrients or move away from toxins in the environment. Chemotaxis
is calledpositive chemotaxisif the motion is in the direction of the stimulus and
negative chemotaxisif the motion is away from the stimulant.

The chemotaxis system inE. coli consists of a sensing system that detects the
presence of nutrients, an actuation system that propels the organism in its envi-
ronment, and control circuitry that determines how the cell should move in the
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fbkexamps/figures/chemotaxis-ctrlsys.eps

Figure 1.6: A simplified circuit diagram for chemotaxis, showing the biomolecular pro-
cesses involved in regulating flagellar motion.

presence of chemicals that stimulate the sensing system. The approximate location
of these elements are shown in Figure1.6. The sensing component is responsible
for detecting the presence of ligands in the environment and initiating signaling
cascades. The computation component, also realized through protein phosphoryla-
tion, implements a feedback (integral) controller that allows the bacterium to adapt
to changes in the environmental ligand concentration. This adaptation occurs by an
actuator that allows the bacterium to ultimately move in the direction in which the
ligand concentration increases.

The actuation system in theE. coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown in
Figure1.7a. When the flagella all spin in the counter clockwise direction, the indi-
vidual flagella form a bundle and cause the organism to move roughly in a straight
line. This behavior is called a “run” motion. Alternatively, if the flagella spin in the
clockwise direction, the individual flagella do not form a bundle and the organism
“tumbles”, causing it to rotate (Figure1.7b). The selection of the motor direc-
tion is controlled by the protein CheY: if phosphorylated CheY binds to the motor
complex, the motor spins clockwise (tumble), otherwise it spins counter-clockwise
(run). As a consequence, the chemotaxis mechanisms is stochastic in nature, with
biased random motions causing the average behavior to be either positive,negative
or neutral (in the absence of stimuli).

1.3 Control and Dynamical Systems Tools 1

To study the complex dynamics and feedback present in biological systems,we
will make use of mathematical models combined with analytical and computational
tools. In this section we present a brief introduction to some of the key concepts

1The material in this section is adapted fromFeedback Systems, Chapter 1 [1].
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Figure 1.7: Bacterial chemotaxis. Figures from Phillips, Kondev and Theriot [72]; used
with permission of Garland Science.

from control and dynamical systems that are relevant for the study of biomolecular
systems considered in later chapters. More details on the application of specific
concepts listed here to biomolecular systems is provided in the main body of the
text. Readers who are familiar with introductory concepts in dynamical systems
and control, at the level described in Åström and Murray [1] for example, can skip
this section.

Dynamics, feedback and control

A dynamical systemis a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The termfeedbackrefers to a situation
in which two (or more) dynamical systems are connected together such that each
system influences the other and their dynamics are thus strongly coupled. Simple
causal reasoning about a feedback system is difficult because the first system in-
fluences the second and the second system influences the first, leading toa circular
argument. This makes reasoning based on cause and effect tricky, and it is neces-
sary to analyze the system as a whole. A consequence of this is that the behavior
of feedback systems is often counterintuitive, and it is therefore often necessary to
resort to formal methods to understand them.

Figure1.8 illustrates in block diagram form the idea of feedback. We often use
the termsopen loopand closed loopwhen referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a cycle, as



12 CHAPTER 1. INTRODUCTORY CONCEPTS

u
System 2System 1

y

(a) Closed loop

y
System 2System 1

ur

(b) Open loop

Figure 1.8: Open and closed loop systems. (a) The output of system 1 is used as the input
of system 2, and the output of system 2 becomes the input of system 1, creating a closed
loop system. (b) The interconnection between system 2 and system 1 is removed, and the
system is said to be open loop.

shown in Figure1.8a. If we break the interconnection, we refer to the configuration
as an open loop system, as shown in Figure1.8b.

Biological systems make use of feedback in an extraordinary number of ways,
on scales ranging from molecules to cells to organisms to ecosystems. One ex-
ample is the regulation of glucose in the bloodstream through the production of
insulin and glucagon by the pancreas. The body attempts to maintain a constant
concentration of glucose, which is used by the body’s cells to produce energy.
When glucose levels rise (after eating a meal, for example), the hormone insulin
is released and causes the body to store excess glucose in the liver. When glucose
levels are low, the pancreas secretes the hormone glucagon, which has the opposite
effect. Referring to Figure1.8, we can view the liver as system 1 and the pancreas
as system 2. The output from the liver is the glucose concentration in the blood,
and the output from the pancreas is the amount of insulin or glucagon produced.
The interplay between insulin and glucagon secretions throughout the day helps
to keep the blood-glucose concentration constant, at about 90 mg per 100mL of
blood.

Feedback has many interesting properties that can be exploited in designingsys-
tems. As in the case of glucose regulation, feedback can make a system resilient
toward external influences. It can also be used to create linear behavior out of non-
linear components, a common approach in electronics. More generally, feedback
allows a system to be insensitive both to external disturbances and to variations in
its individual elements.

Feedback has potential disadvantages as well. It can create dynamic instabilities
in a system, causing oscillations or even runaway behavior. Another drawback,
especially in engineering systems, is that feedback can introduce unwanted sensor
noise into the system, requiring careful filtering of signals. It is for these reasons
that a substantial portion of the study of feedback systems is devoted to developing
an understanding of dynamics and a mastery of techniques in dynamical systems.
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Figure 1.9: A feedback system for controlling the speed of a vehicle. In the block diagram
on the left, the speed of the vehicle is measured and comparedto the desired speed within
the “Compute” block. Based on the difference in the actual and desired speeds, the throttle
(or brake) is used to modify the force applied to the vehicle by the engine, drivetrain and
wheels. The figure on the right shows the response of the control system to a commanded
change in speed from 25 m/s to 30 m/s. The three different curves correspond to differing
masses of the vehicle, between 1000 and 3000 kg, demonstrating the robustness of the
closed loop system to a very large change in the vehicle characteristics.

Feedback properties

Feedback is a powerful idea that is used extensively in natural and technological
systems. The principle of feedback is simple: implement correcting actions based
on the difference between desired and actual performance. In engineering, feed-
back has been rediscovered and patented many times in many different contexts.
The use of feedback has often resulted in vast improvements in system capability,
and these improvements have sometimes been revolutionary, as discussed above.
The reason for this is that feedback has some truly remarkable properties, which
we discuss briefly here.

Robustness to Uncertainty.One of the key uses of feedback is to provide robust-
ness to uncertainty. By measuring the difference between the sensed value of a
regulated signal and its desired value, we can supply a corrective action. If the sys-
tem undergoes some change that affects the regulated signal, then we sense this
change and try to force the system back to the desired operating point.

As an example of this principle, consider the simple feedback system shown
in Figure1.9. In this system, the speed of a vehicle is controlled by adjusting the
amount of gas flowing to the engine. Simpleproportional-integral(PI) feedback
is used to make the amount of gas depend on both the error between the current
and the desired speed and the integral of that error. The plot on the right shows
the results of this feedback for a step change in the desired speed and a variety of
different masses for the car, which might result from having a different number of
passengers or towing a trailer. Notice that independent of the mass (whichvaries by
a factor of 3!), the steady-state speed of the vehicle always approaches the desired
speed and achieves that speed within approximately 5 s. Thus the performance of
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide robustness is theneg-
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ative feedback amplifier. When telephone communications were developed,ampli-
fiers were used to compensate for signal attenuation in long lines. A vacuumtube
was a component that could be used to build amplifiers. Distortion caused by the
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-
jor breakthrough was the invention of the feedback amplifier in 1927 by Harold S.
Black, an electrical engineer at Bell Telephone Laboratories. Black usednegative
feedback, which reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier.

Feedback is also pervasive in biological systems, where transcriptional,trans-
lational and allosteric mechanisms are used to regulate internal concentrations of
various species, and much more complex feedbacks are used to regulate proper-
ties at the organism level (such as body temperature, blood pressure and circadian
rhythm). One difference in biological systems is that the separation of sensing, ac-
tuation and computation, a common approach in most engineering control systems,
is less evident. Instead, the dynamics of the molecules that sense the environmen-
tal condition and make changes to the operation of internal components may be
integrated together in ways that make it difficult to untangle the operation of the
system. Similarly, the “reference value” to which we wish to regulate a system may
not be an explicit signal, but rather a consequence of many different changes in the
dynamics that are coupled back to the regulatory elements. Hence we do notsee
a clear “setpoint” for the desired ATP concentration, blood oxygen level or body
temperature, for example. These difficulties complicate our analysis of biological
systems, though many important insights can still be obtained.

Design of Dynamics.Another use of feedback is to change the dynamics of a sys-
tem. Through feedback, we can alter the behavior of a system to meet the needs of
an application: systems that are unstable can be stabilized, systems that are slug-
gish can be made responsive and systems that have drifting operating points can
be held constant. Control theory provides a rich collection of techniques toanalyze
the stability and dynamic response of complex systems and to place bounds on the
behavior of such systems by analyzing the gains of linear and nonlinear operators
that describe their components.

An example of the use of control in the design of dynamics comes from the area
of flight control. The following quote, from a lecture presented by Wilbur Wright
to the Western Society of Engineers in 1901 [64], illustrates the role of control in
the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at sufficient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
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Figure 1.10: Aircraft autopilot system. The Sperry autopilot (left) contained a set of four
gyros coupled to a set of air valves that controlled the wing surfaces. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able to maintain level
flight as a mechanic walked on the wing (right) [42].

of sufficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the age
of flying will have arrived, for all other difficulties are of minor impor-
tance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
tried to build stable airplanes. These would have been easier to fly, but because of
their poor maneuverability they could not be brought up into the air. By usingtheir
insight and skillful experiments the Wright brothers made the first successful flight
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, invented
by Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized
pendulum to provide an indication of the vertical. He then arranged a feedback
mechanism that would pull the stick to make the plane go up if it was pointing
down, and vice versa. The Sperry autopilot was the first use of feedback in aero-
nautical engineering, and Sperry won a prize in a competition for the safest airplane
in Paris in 1914. Figure1.10shows the Curtiss seaplane and the Sperry autopilot.
The autopilot is a good example of how feedback can be used to stabilize an unsta-
ble system and hence “design the dynamics” of the aircraft.
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One of the other advantages of designing the dynamics of a device is that it
allows for increased modularity in the overall system design. By using feedback to
create a system whose response matches a desired profile, we can hide the com-
plexity and variability that may be present inside a subsystem. This allows us to
create more complex systems by not having to simultaneously tune the responses
of a large number of interacting components. This was one of the advantages of
Black’s use of negative feedback in vacuum tube amplifiers: the resultingdevice
had a well-defined linear input/output response that did not depend on the individ-
ual characteristics of the vacuum tubes being used.

Drawbacks of Feedback.While feedback has many advantages, it also has some
drawbacks. Chief among these is the possibility of instability if the system is not
designed properly. We are all familiar with the undesirable effects of feedback
when the amplification on a microphone is turned up too high in a room. This is an
example of feedback instability, something that we obviously want to avoid. This
is tricky because we must design the system not only to be stable under nominal
conditions but also to remain stable under all possible perturbations of the dynam-
ics. In biomolecular systems, these types of instabilities may exhibit themselves as
situations in which cells no longer function properly due to over expressionof en-
gineered genetic components, or small fluctuations in parameters cause the system
to suddenly cease to function properly.

In addition to the potential for instability, feedback inherently couples different
parts of a system. One common problem is that feedback often injects “crosstalk”
into the system. By coupling different parts of a biomolecular circuit, the fluctua-
tions in one part of the circuit affect other parts, which themselves may couple to
the initial source of the fluctuations. If we are designing a biomolecular system,
this crosstalk may make affect our ability to design independent “modules” whose
behavior can described in isolation.

Coupled to the problem of crosstalk is the substantial increase in complexity
that results when embedding multiple feedback loops in a system. An early engi-
neering example of this was the use of microprocessor-based feedbacksystems in
automobiles. The use of microprocessors in automotive applications began inthe
early 1970s and was driven by increasingly strict emissions standards,which could
be met only through electronic controls. Early systems were expensive and failed
more often than desired, leading to frequent customer dissatisfaction. It was only
through aggressive improvements in technology that the performance, reliability
and cost of these systems allowed them to be used in a transparent fashion. Even
today, the complexity of these systems is such that it is difficult for an individual
car owner to fix problems. While nature has evolved many feedback structures that
are robust and reliable, engineered biomolecular systems are still quite rudimen-
tary and we can anticipate that as we increase the use of feedback to compensate
for uncertainty, we will see a similar period in which engineers must overcomea
steep learning curve before we can get robust and reliable behavior as a matter of
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course.

Feedforward.Feedback is reactive: there must be an error before corrective actions
are taken. However, in some circumstances it is possible to measure a disturbance
before it enters the system, and this information can then be used to take corrective
action before the disturbance has influenced the system. The effect of the distur-
bance is thus reduced by measuring it and generating a control signal that coun-
teracts it. This way of controlling a system is calledfeedforward. Feedforward is
particularly useful in shaping the response to command signals because command
signals are always available. Since feedforward attempts to match two signals, it
requires good process models; otherwise the corrections may have the wrong size
or may be badly timed.

The ideas of feedback and feedforward are very general and appear in many dif-
ferent fields. In economics, feedback and feedforward are analogous to a market-
based economy versus a planned economy. In business, a feedforward strategy
corresponds to running a company based on extensive strategic planning, while a
feedback strategy corresponds to a reactive approach. In biology,feedforward has
been suggested as an essential element for motion control in humans that is tuned
during training. Experience indicates that it is often advantageous to combine feed-
back and feedforward, and the correct balance requires insight and understanding
of their respective properties.

Positive Feedback.In most of control theory, the emphasis is on the role ofnegative
feedback, in which we attempt to regulate the system by reacting to disturbances in
a way that decreases the effect of those disturbances. In some systems, particularly
biological systems,positive feedbackcan play an important role. In a system with
positive feedback, the increase in some variable or signal leads to a situation in
which that quantity is further increased through its dynamics. This has a destabi-
lizing effect and is usually accompanied by a saturation that limits the growth of
the quantity. Although often considered undesirable, this behavior is usedin bio-
logical (and engineering) systems to obtain a very fast response to a condition or
signal.

One example of the use of positive feedback is to create switching behavior,
in which a system maintains a given state until some input crosses a threshold.
Hysteresis is often present so that noisy inputs near the threshold do notcause the
system to jitter. This type of behavior is calledbistability and is often associated
with memory devices.

1.4 Input/Output Modeling 2

A model is a mathematical representation of a physical, biological or information
system. Models allow us to reason about a system and make predictions about

2The material in this section is adapted fromFeedback Systems, Sections 2.1–2.2 [1].
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Figure 1.11: Illustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the one on the right is its
representation as a block diagram.

how a system will behave. In this text, we will mainly be interested in models of
dynamical systems describing the input/output behavior of systems, and we will
often work in “state space” form. In the remainder of this section we providean
overview of some of the key concepts in input/output modeling. The mathematical
details introduced here are explored more fully in Chapter3.

The heritage of electrical engineering

The approach to modeling that we take builds on the view of models that emerged
from electrical engineering, where the design of electronic amplifiers led toa focus
on input/output behavior. A system was considered a device that transforms inputs
to outputs, as illustrated in Figure1.11. Conceptually an input/output model can be
viewed as a giant table of inputs and outputs. Given an input signalu(t) over some
interval of time, the model should produce the resulting outputy(t).

The input/output framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio or
a television and break it down into manageable pieces such as the receiver, demod-
ulator, amplifier and speakers. Each of these pieces has a set of inputs and outputs
and, through proper design, these components can be interconnected toform the
entire system.

The input/output view is particularly useful for the special class oflinear time-
invariant systems. This term will be defined more carefully below, but roughly
speaking a system is linear if the superposition (addition) of two inputs yields an
output that is the sum of the outputs that would correspond to individual inputs be-
ing applied separately. A system is time-invariant if the output response fora given
input does not depend on when that input is applied. While most biomolecularsys-
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Figure 1.12: Input/output response of a linear system. The step response (a) shows the
output of the system due to an input that changes from 0 to 1 at time t = 5 s. The fre-
quency response (b) shows the amplitude gain and phase change due to a sinusoidal input
at different frequencies.

tems are neither linear nor time-invariant, they can often be approximated by such
models, often by looking at perturbations of the system from its nominal behavior,
in a fixed context.

One of the reasons that linear time-invariant systems are so prevalent in model-
ing of input/output systems is that a large number of tools have been developed to
analyze them. One such tool is thestep response, which describes the relationship
between an input that changes from zero to a constant value abruptly (astep input)
and the corresponding output. The step response is very useful in characterizing
the performance of a dynamical system, and it is often used to specify the desired
dynamics. A sample step response is shown in Figure1.12a.

Another way to describe a linear time-invariant system is to represent it by its
response to sinusoidal input signals. This is called thefrequency response, and a
rich, powerful theory with many concepts and strong, useful results has emerged
for systems that can be described by their frequency response. The results are based
on the theory of complex variables and Laplace transforms. The basic ideabehind
frequency response is that we can completely characterize the behaviorof a system
by its steady-state response to sinusoidal inputs. Roughly speaking, this isdone
by decomposing any arbitrary signal into a linear combination of sinusoids (e.g.,
by using the Fourier transform) and then using linearity to compute the output by
combining the response to the individual frequencies. A sample frequency response
is shown in Figure1.12b.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.
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The control view

When control theory emerged as a discipline in the 1940s, the approach to dy-
namics was strongly influenced by the electrical engineering (input/output) view.
A second wave of developments in control, starting in the late 1950s, was inspired
by mechanics, where the state space perspective was used. The emergence of space
flight is a typical example, where precise control of the orbit of a spacecraft is es-
sential. These two points of view gradually merged into what is today the state
space representation of input/output systems.

The development of state space models involved modifying the models from
mechanics to include external actuators and sensors and utilizing more general
forms of equations. In control, models often take the form

dx
dt
= f (x,u), y = h(x,u), (1.1)

wherex is a vector of state variables,u is a vector of control signals andy is a
vector of measurements. The termdx/dt (sometimes also written as ˙x) represents
the derivative ofx with respect to time, now considered a vector, andf and h
are (possibly nonlinear) mappings of their arguments to vectors of the appropriate
dimension.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice ofu (reachability) and if the measurementy
contains enough information to reconstruct the state (observability). These topics
are addressed in greater detail in AM08.

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives anatural
connection between prediction and control. The dual views of input/output repre-
sentations and state space representations are particularly useful whenmodeling
uncertainty since state models are convenient to describe a nominal model but un-
certainties are easier to describe using input/output models (often via a frequency
response description).

An interesting observation in the design of control systems is that feedbacksys-
tems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precomputethe inputs
that cause the system to respond in a certain way. Another area is system valida-
tion, where one wishes to verify that the detailed response of the system performs
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as it was designed. Because of these different uses of models, it is common to use
a hierarchy of models having different complexity and fidelity.

State space systems

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a biochemical systemthe state
is composed of the variables required to account for the current context of the cell,
including the concentrations of the various species and complexes that arepresent.
It may also include the spatial locations of the various molecules. A key issue in
modeling is to decide how accurately this information has to be represented. The
state variables are gathered in a vectorx ∈ Rn called thestate vector. The control
variables are represented by another vectoru ∈ Rp, and the measured signal by the
vectory ∈ Rq. A system can then be represented by the differential equation

dx
dt
= f (x,u), y = h(x,u), (1.2)

where f : Rn×Rp→ Rn andh : Rn×Rp→ Rq are smooth mappings. We call a
model of this form astate space model.

The dimension of the state vector is called theorder of the system. The sys-
tem (1.2) is called time-invariantbecause the functionsf and h do not depend
explicitly on timet; there are more general time-varying systems where the func-
tions do depend on time. The model consists of two functions: the functionf gives
the rate of change of the state vector as a function of statex and controlu, and the
functionh gives the measured values as functions of statex and controlu.

A system is called alinear state space system if the functionsf andh are linear
in x andu. A linear state space system can thus be represented by

dx
dt
= Ax+Bu, y =Cx+Du, (1.3)

whereA, B, C andD are constant matrices. Such a system is said to belinear and
time-invariant, or LTI for short. The matrixA is called thedynamics matrix, the
matrix B is called thecontrol matrix, the matrixC is called thesensor matrixand
the matrixD is called thedirect term. Frequently systems will not have a direct
term, indicating that the control signal does not influence the output directly.

1.5 From Systems to Synthetic Biology

The rapidly growing field of synthetic biology seeks to use biological principles
and processes to build useful engineering devices and systems. Applications of
synthetic biology range from materials production (drugs, biofuels) to biological
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Figure 1.13: Milestones in the history of synthetic biology.

sensing and diagnostics (chemical detection, medical diagnostics) to biological ma-
chines (bioremediation, nanoscale robotics). Like many other fields at the timeof
their infancy (electronics, software, networks), it is not yet clear where synthetic
biology will have its greatest impact. However, recent advances such asthe abil-
ity to “boot up” a chemically synthesized genome [28] demonstrate the ability to
synthesize systems that offer the possibility of creating devices with substantial
functionality. At the same time, the tools and processes available to design systems
of this complexity are much more primitive, andde novosynthetic circuits typi-
cally use a tiny fraction of the number of genetic elements of even the smallest
microorganisms [74].

Several scientific and technological developments over the past four decades
have set the stage for the design and fabrication of early synthetic biomolecular
circuits (see Figure1.13). An early milestone in the history of synthetic biology
can be traced back to the discovery of mathematical logic in gene regulation. In
their 1961 paper, Jacob and Monod introduced for the first time the idea ofgene
expression regulation through transcriptional feedback [45]. Only a few years later
(1969),restriction enzymesthat cut double-stranded DNA at specific recognition
sites were discovered by Arber and co-workers [4]. These enzymes were a major
enabler of recombinant DNA technology, in which genes from one organism are
extracted and spliced into the chromosome of another. One of the most celebrated
products of this technology was the large scale production of insulin by employing
E. coli bacteria as a cell factory [94].

Another key innovation was the development of the polymerase chain reac-
tion (PCR), devised in the 1980s, which allows exponential amplification of small
amounts of DNA and can be used to obtain sufficient quantities for use in a variety
of molecular biology laboratory protocols where higher concentrations ofDNA are
required. Using PCR, it is possible to “copy” genes and other DNA sequences out
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of their host organisms.
The developments of recombinant DNA technology, PCR and artificial synthe-

sis of DNA provided the ability to “cut and paste” natural or synthetic promoters
and genes in almost any fashion. This cut and paste procedure is calledcloning
and traditionally consists of four primary steps:fragmentation, ligation, transfec-
tion andscreening. The DNA of interest is first isolated using restriction enzymes
and/or PCR amplification. Then, a ligation procedure is employed in which the
amplified fragment is inserted into a vector. The vector is often a piece of circular
DNA, called a plasmid, that has been linearized by means of restriction enzymes
that cleave it at appropriate restriction sites. The vector is then incubated with the
fragment of interest with an enzyme calledDNA ligase, producing a single piece
of DNA with the target DNA inserted. The next step is to transfect (or transform)
the DNA into living cells, where the natural replication mechanisms of the cell will
duplicate the DNA when the cell divides. This process does not transfect all cells,
and so a selection procedure if required to isolate those cells that have the desired
DNA inserted in them. This is typically done by using a plasmid that gives the cell
resistance to a specific antibiotic; cells grown in the presence of that antibioticwill
only live if they contain the plasmid. Further selection can be done to insure that
the inserted DNA is also present.

Once a circuit has been constructed, its performance must be verified and, if
necessary, debugged. This is often done with the help offluorescent reporters. The
most famous of these is GFP, which was isolated from the jellyfishAequorea vic-
toria in 1978 by Shimomura [82]. Further work by Chalfie and others in the 1990s
enabled the use of GFP inE. colias a fluorescent reporter by inserting it into an ap-
propriate point in an artificial circuit [16]. By using spectrofluorometry, fluorescent
microscopy or flow cytometry, it is possible to measure the amount of fluorescence
in individual cells or collections of cells and characterize the performanceof a
circuit in the presence of inducers or other factors.

Two early examples of the application of these technologies were therepressila-
tor [23] and a synthetic genetic switch [27].

The repressilator is a synthetic circuit in which three proteins each repress an-
other in a cycle. This is shown schematically in Figure1.14a, where the three pro-
teins are TetR,λ cI and LacI. The basic idea of the repressilator is that if TetR is
present, then it represses the production ofλ cI. If λ cI is absent, then LacI is pro-
duced (at the unregulated transcription rate), which in turn represses TetR. Once
TetR is repressed, thenλ cI is no longer repressed, and so on. If the dynamics of
the circuit are designed properly, the resulting protein concentrations willoscillate,
as shown in Figure1.14b.

The repressilator can be constructed using the techniques described above. First,
we can make copies of the individual promoters and genes that form our circuit by
using PCR to amplify the selected sequences out of the original organisms in which
they were found. TetR is the tetracycline resistance repressor protein that is found
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Figure 1.14: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well
as the circuit diagram (center). The flat headed arrow between the protein names represents
repression. (b) A simulation of a simple model for the repressilator, showing the oscillation
of the individual protein concentrations. (Figure courtesy M. Elowitz.)

in gram-negative bacteria (such asE. coli) and is part of the circuitry that provides
resistance to tetracycline. LacI is the gene that produceslac repressor, responsible
for turning off the lac operon in the lactose metabolic pathway inE. coli (see Sec-
tion 5.1). And λ cI comes fromλ phage, where it is part of the regulatory circuitry
that regulates lysis and lysogeny.

By using restriction enzymes and related techniques, we can separate the nat-
ural promoters from their associated genes, and then ligate (reassemble)them in
a new order and insert them into a “backbone” vector (the rest of the plasmid, in-
cluding the origin of replication and appropriate antibiotic resistance). This DNA
is then transformed into cells that are grown in the presence of an antibiotic, so
that only those cells that contain the represilator can replicate. Finally, we can take
individual cells containing our circuit and let them grow under a microscope to
image fluorescent reporters coupled to the oscillator.

Another early circuit in the synthetic biology toolkit is a genetic switch built
by Gardneret al. [27]. The genetic switch consists of two repressors connected
together in a cycle, as shown in Figure1.15a. The intuition behind this circuit is
that if the gene A is being expressed, it will repress production of B and maintain
its expression level (since the protein corresponding to B will not be present to re-
press A). Similarly, if B is being expressed, it will repress the production of A and
maintain its expression level. This circuit thus implements a type ofbistability that
can be used as a simple form of memory. Figure1.15bshows the time traces for
a system, illustrating the bistable nature of the circuit. When the initial condition
starts with a concentration of protein B greater than that of A, the solution con-
verges to the equilibrium point where B is on and A is off. If A is greater than B,
then the opposite situation results.
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Figure 1.15: Stability of a genetic switch. The circuit diagram in (a) represents two proteins
that are each repressing the production of the other. The inputsu1 andu2 interfere with this
repression, allowing the circuit dynamics to be modified. The simulation in (b) shows the
time response of the system starting from two different initial conditions. The initial portion
of the curve corresponds to protein B having higher concentration than A, and converges to
an equilibrium where A is off and B is on. At timet = 10, the concentrations are perturbed,
moving the concentrations into a region of the state space where solutions converge to the
equilibrium point with the A on and B off.

These seemingly simple circuits took years of effort to get to work, but showed
that it was possible to synthesize a biological circuit that performed a desired func-
tion that was not originally present in a natural system. Today, commercial synthe-
sis of DNA sequences and genes has become cheaper and faster, with aprice often
below $0.20 per base pair.3 The combination of inexpensive synthesis technolo-
gies, new advances in cloning techniques, and improved devices for imaging and
measurement has vastly simplified the process of producing a sequence ofDNA
that encodes a given set of genes, operator sites, promoters and other functions.
These techniques are a routine part of undergraduate courses in molecular and syn-
thetic biology.

As illustrated by the examples above, current techniques in synthetic biology
have demonstrated the ability to program biological function by designing DNA
sequences that implement simple circuits. Most current devices make use oftran-
scriptional or post-transcriptional processing, resulting in very slow timescales (re-
sponse times typically measured in tens of minutes to hours). This restricts their
use in systems where faster response to environmental signals is needed,such as
rapid detection of a chemical signal or fast response to changes in the internal envi-
ronment of the cell. In addition, existing methods for biological circuit designhave
limited modularity (reuse of circuit elements requires substantial redesign or tun-
ing) and typically operate in very narrow operating regimes (e.g., a single species
grown in a single type of media under carefully controlled conditions). Further-

3As of this writing; divide by a factor of two for every two years after the publication date.
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Figure 1.16: Expression of a protein using an inducible promoter [15]. (a) The circuit
diagram indicates the DNA sequences that are used to construct the part (chosen from the
BioBrick library). (b) The measured response of the system to a step change in the inducer
level (HSL).

more, engineered circuits inserted into cells can interact with the host organism
and have other unintended interactions.

As an illustration of the dynamics of synthetic devices, Figure1.16 shows a
typical response of a genetic element to an inducer molecule [15]. In this circuit,
an external signal of homoserine lactone (HSL) is applied at time zero and the
system reaches 10% of the steady state value in approximately 15 minutes. This
response is limited in part by the time required to synthesize the output protein
(GFP), including delays due to transcription, translation and folding. Sincethis
is the response time for the underlying “actuator”, circuits that are composed of
feedback interconnections of such genetic elements will typically operate at5–10
times slower speeds. While these speeds are appropriate in many applications(e.g.,
regulation of steady state enzyme levels for materials production), in the context
of biochemical sensors or systems that must maintain a steady operating pointin
more rapidly changing thermal or chemical environments, this response time is too
slow to be used as an effective engineering approach.

By comparison, the input/output response for the signaling component inE. coli
chemotaxis is shown in Figure1.17[81]. Here the response of the kinase CheA is
plotted in response to an exponential ramp in the ligand concentration. The re-
sponse is extremely rapid, with the timescale measured in seconds. This rapid re-
sponse is implemented by conformational changes in the proteins involved in the
circuit, rather than regulation of transcription or other slower processes.

The field of synthetic biology has the opportunity to provide new approaches
to solving engineering and scientific problems. Sample engineering applications
include the development of synthetic circuits for producing biofuels, ultrasensitive
chemical sensors, or production of materials with specific properties that are tuned
to commercial needs. In addition to the potential impact on new biologically engi-
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Figure 1.17: Responses ofE. coli chemotaxis signaling network to exponential ramps in
ligand concentration. Time responses of the “sensing” subsystem (from Shimizu, Tu and
Berg; Molecular Systems Biology, 2010), showing the response to exponential inputs.

neered devices, there is also the potential for impact in improved understanding of
biological processes. For example, many diseases such as cancer andParkinson’s
disease are closely tied to kinase dysfunction. Our analysis of robust systems of
kinases and the ability to synthesize systems that support or invalidate biological
hypotheses may lead to a better systems understanding of failure modes that lead
to such diseases.

1.6 Further Reading

There are numerous survey articles and textbooks that provide more detailed intro-
ductions to the topics introduced in this chapter. In the field of systems biology,the
textbook by Alon [3] provides a broad view of some of the key elements of mod-
ern systems biology. A more comprehensive set of topics is covered in the recent
textbook by Klipp [52], while a more engineering-oriented treatment of modeling
of biological circuits can be found in the text by Myers [69]. Two other books that
are particularly noteworthy are Ptashne’s book on the phageλ [73] and Madhani’s
book on yeast [58], both of which use well-studied model systems to describe a
general set of mechanisms and principles that are present in many different types
of organisms.

Several textbooks and research monographs provide excellent resources for
modeling and analysis of biomolecular dynamics and regulation. J. D. Murray’s
two-volume text [67] on biological modeling is an excellent reference with many
examples of biomolecular dynamics. The textbook by Phillips, Kondev and The-
riot [72] provides a quantitative approach to understanding biological systems, in-
cluding many of the concepts discussed in this chapter. Courey [17] gives a detailed
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description of mechanisms transcriptional regulation.
The topics in dynamical systems and control theory that are briefly introduced

here are covered in more detail in AM08 [1]. Other books that introduce tools for
modeling and analysis of dynamical systems with applications in biology include
J. D. Murray’s text [67] and the recent text by and Ellner and Guckenheimer [22].

Synthetic biology is a rapidly evolving field that includes many different sub-
areas of research, but few textbooks are currently available. In the specific area of
biological circuit design that we focus on here, there are a number of good survey
and review articles. The article by Bakeret al. [7] provides a high level description
of the basic approach and opportunities. Recent survey and review papers include
Voigt [95] and Khalil and Collins [50].



Chapter 2
Dynamic Modeling of Core Processes

The goal of this chapter is to describe basic biological mechanisms in a way that
can be represented by simple dynamical models. We begin the chapter with a dis-
cussion of the basic modeling formalisms that we will utilize to model biomolecu-
lar feedback systems. We then proceed to study a number of core processes within
the cell, providing different model-based descriptions of the dynamics that will
be used in later chapters to analyze and design biomolecular systems. The focus
in this chapter and the next is on deterministic models using ordinary differential
equations; Chapter4 describes how to model the stochastic nature of biomolecular
systems.

Prerequisites.Readers should have some basic familiarity with cell biology, at the
level of the description in Section1.2 (see also Appendix??), and a basic under-
standing of ordinary differential equations, at the level of Chapter 2 of AM08.

2.1 Modeling Techniques

In order to develop models for some of the core processes of the cell, we will need
to build up a basic description of the biochemical reactions that take place, includ-
ing production and degradation of proteins, regulation of transcription and transla-
tion, intracellular sensing, action and computation, and intercellular signaling.As
in other disciplines, biomolecular systems can be modeled in a variety of different
ways, at many different levels of resolution, as illustrated in Figure2.1. The choice
of which model to use depends on the questions that we want to answer, and good
modeling takes practice, experience, and iteration. We must properly capture the
aspects of the system that are important, reason about the appropriate temporal
and spatial scales to be included, and take into account the types of simulation
and analysis tools to be applied. Models that are to be used for analyzing existing
systems should make testable predictions and provide insight into the underlying
dynamics. Design models must additionally capture enough of the important be-
havior to allow decisions to be made regarding how to interconnect subsystems,
choose parameters and design regulatory elements.

In this section we describe some of the basic modeling frameworks that we will
build on throughout the rest of the text. We begin with brief descriptions of the
relevant physics and chemistry of the system, and then quickly move to models
that focus on capturing the behavior using reaction rate equations. In this chapter
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Figure 2.1: Different methods of modeling biomolecular systems.

our emphasis will be on dynamics with time scales measured in seconds to hours
and mean behavior averaged across a large number of molecules. We touch only
briefly on modeling in the case where stochastic behavior dominates and defer a
more detailed treatment until Chapter4.

Statistical mechanics and chemical kinetics

At the fine end of the modeling scale depicted in Figure2.1, we can attempt to
model themolecular dynamicsof the cell, in which we attempt to model the indi-
vidual proteins and other species and their interactions via molecular-scaleforces
and motions. At this scale, the individual interactions between protein domains,
DNA and RNA are resolved, resulting in a highly detailed model of the dynamics
of the cell.

For our purposes in this text, we will not require the use of such a detailed scale.
Instead, we will start with the abstraction of molecules that interact with each other
through stochastic events that are guided by the laws of thermodynamics. We begin
with an equilibrium point of view, commonly referred to asstatistical mechanics,
and then briefly describe how to model the (statistical) dynamics of the system
using chemical kinetics. We cover both of these points of view very briefly here,
primarily as a stepping stone to deterministic models, and present a more detailed
description in Chapter4.

The underlying representation for both statistical mechanics and chemical ki-
netics is to identify the appropriatemicrostatesof the system. A microstate cor-
responds to a given configuration of the components (species) in the system rela-
tive to each other and we must enumerate all possible configurations between the
molecules that are being modeled.
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Figure 2.2: Microstates for RNA polymerase. Each microstate of the system corresponds
to the RNA polymerase being located at some position in the cell. If we discretize the
possible locations on the DNA and in the cell, the microstates corresponds to all possi-
ble non-overlapping locations of the RNA polymerases. Figure from Phillips, Kondev and
Theriot [72]; used with permission of Garland Science.

s an example, consider the distribution of RNA polymerase in the cell. It is
known that most RNA polymerases are bound to the DNA in a cell, either as they
produce RNA or as they diffuse along the DNA in search of a promoter site. Hence
we can model the microstates of the RNA polymerase system as all possible lo-
cations of the RNA polymerase in the cell, with the vast majority of these corre-
sponding to the RNA polymerase at some location on the DNA. This is illustrated
in Figure2.2. In statistical mechanics, we model the configuration of the cell by
the probability that the system is in a given microstate. This probability can be
calculated based on the energy levels of the different microstates. The laws of sta-
tistical mechanics state that if we have a set of microstatesQ, then the steady state
probability that the system is in a particular microstateq is given by

P(q) =
1
Z

e−Eq/(kBT), (2.1)

whereEq is the energy associated with the microstateq ∈ Q, kB is the Boltzmann
constant,T is the temperature in degrees Kelvin, andZ is a normalizing factor,
known as thepartition function,

Z =
∑

q∈Q
e−Eq/(kBT).

(These formulas are described in more detail in Chapter4.)
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By keeping track of those microstates that correspond to a given system state
(also called amacrostate), we can compute the overall probability that a given
macrostate is reached. Thus, if we have a set of statesS ⊂ Q that correspond to a
given macrostate, then the probability of being in the setS is given by

P(S) =
1
Z

∑

q∈S
e−Eq/(kBT) =

∑

q∈S e−Eq/(kBT)

∑

q∈Qe−Eq/(kBT)
. (2.2)

This can be used, for example, to compute the probability that some RNA poly-
merase is bound to a given promoter, averaged over many independent samples,
and from this we can reason about the rate of expression of the corresponding
gene. More details and several examples will be illustrated in Chapter4.

Statistical mechanics describes the steady state distribution of microstates, but
does not tell us how the microstates evolve in time. To include the dynamics, we
must consider thechemical kineticsof the system and model the probability that
we transition from one microstate to another in a given period of time. Letq rep-
resent the microstate of the system, which we shall take as a vector of integers that
represents the number of molecules of a specific types in given configurations or
locations. Assume we have a set ofM reactionsRj , j = 1, . . . ,M, with ξ j represent-
ing the change in stateq associated with reactionRj . We describe the kinetics of
the system by making use of thepropensity function aj(q, t) associated with reac-
tion Rj , which captures the instantaneous probability that at timet a system will
transition between stateq and stateq+ ξ j .

More specifically, the propensity function is defined such that

a j(q, t)dt = Probability that reactionRj will occur between timet
and timet+dt given that the microstate isq.

We will give more detail in Chapter4 regarding the validity of this functional form,
but for now we simply assume that such a function can be defined for our system.

Using the propensity function, we can keep track of the probability distribu-
tion for the state by looking at all possible transitions into and out of the current
state. Specifically, givenP(q, t), the probability of being in stateq at timet, we can
compute the time derivativedP(q, t)/dt as

dP
dt

(q, t) =
M∑

j=1

(

a j(q− ξ j)P(q− ξ j , t)−a j(q)P(q, t)
)

. (2.3)

This equation (and its many variants) is called thechemical master equation(CME).
The first sum on the right hand side represents the transitions into the stateq from
some other stateq− ξ j and the second sum represents that transitions out of the
stateq. The variableξ j in the sum ranges over all possible reactions.
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Clearly the dynamics of the distributionP(q, t) depend on the form of the propen-
sity functionsa j(q). Consider a simple reaction of the form

A +B −−−⇀↽−−− AB ≡
Rf : A +B −−→ AB

Rr : AB −−→ A +B.
(2.4)

We assume that the reaction takes place in a well-stirred volumeΩ and let the
configurationsq be represented by the number of each species that is present. The
forward reactionRf is a bimolecular reaction and we will see in Chapter4 that it
has a propensity function

af(q) =
kf

Ω
nAnB,

wherekf is a parameter that depends on the forward reaction, andnA andnB are
the number of molecules of each species. The reverse reactionRr is a unimolecular
reaction and we will see that it has a propensity function

ar(q) = kr nAB ,

wherekr is a parameter that depends on the reverse reaction andnAB is the number
of molecules of AB that are present.

If we now letq= (nA ,nB,nAB) represent the microstate of the system, then we
can write the chemical master equation as

dP
dt

(nA ,nB,nAB) = krnABP(nA −1,nB−1,nAB +1)−kfnAnBP(nA ,nB,nAB).

The first term on the right hand side represents the transitions into the microstate
q= (nA ,nB,nAB) and the second term represents the transitions out of that state.

The number of differential equations depends on the number of molecules of
A, B and AB that are present. For example, if we start with 1 molecules of A, 1
molecule of B, and 3 molecules of AB, then the possible states and dynamics are

q0 = (1,0,4) dP0/dt= 3krP1

q1 = (2,1,3) dP1/dt= 4krP0−2(kf/Ω)P1

q2 = (3,2,2) dP2/dt= 3krP1−6(kf/Ω)P2

q3 = (4,3,1) dP3/dt= 2krP2−12(kf/Ω)P3

q4 = (5,4,0) dP4/dt= 1krP3−20(kf/Ω)P4,

wherePi = P(qi , t). Note that the states of the chemical master equation are the
probabilities that we are in a specific microstate, and the chemical master equation
is a linear differential equation (we see from equation (2.3) that this is true in
general).

The primary difference between the statistical mechanics description given by equa-
tion (2.1) and the chemical kinetics description in equation (2.3) is that the master
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equation formulation describes how the probability of being in a given microstate
evolves over time. Of course, if the propensity functions and energy levels are mod-
eled properly, the steady state, average probabilities of being in a given microstate
should be the same for both formulations.

Reaction rate equations

Although very general in form, the chemical master equation suffers from being a
very high dimensional representation of the dynamics of the system. We shallsee
in Chapter4 how to implement simulations that obey the master equation, but in
many instances we will not need this level of detail in our modeling. In particular,
there are many situations in which the number of molecules of a given species
is such that we can reason about the behavior of a chemically reacting system
by keeping track of theconcentrationof each species as a real number. This is
of course an approximation, but if the number of molecules is sufficiently large,
then the approximation will generally be valid and our models can be dramatically
simplified.

To go from the chemical master equation to a simplified form of the dynam-
ics, we begin by making a number of assumptions. First, we assume that we can
represent the state of a given species by its concentrationnA/Ω, wherenA is the
number of molecules of A in a given volumeΩ. We also treat this concentration
as a real number, ignoring the fact that the real concentration is quantized. Finally,
we assume that our reactions take place in a well-stirred volume, so that the rate of
interactions between two species is solely determined by the concentrations ofthe
species.

Before proceeding, we should recall that in many (and perhaps most) situations
inside of cells, these assumptions arenot particularly good ones. Biomolecular
systems often have very small molecular counts and are anything but well mixed.
Hence, we should not expect that models based on these assumptions should per-
form well at all. However, experience indicates that in many cases the basic form
of the equations provides a good model for the underlying dynamics and hence we
often find it convenient to proceed in this manner.

Putting aside our potential concerns, we can now proceed to write the dynamics
of a system consisting of a set of species Si , i = 1, . . . ,n undergoing a set of reac-
tionsRj , j = 1, . . . ,m. We writexi = [Si ] = nSi/Ω for the concentration of speciesi
(viewed as a real number). Because we are interested in the case wherethe number
of molecules is large, we no longer attempt to keep track of every possible con-
figuration, but rather simply assume that the state of the system at any giventime
is given by the concentrationsxi . Hence the state space for our system is given by
x ∈ Rn and we seek to write our dynamics in the form of a differential equation

dx
dt
= f (x, θ),
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where f : Rn→ Rn describes the rate of change of the concentrations as a function
of the instantaneous concentrations andθ represents the parameters that govern the
dynamic behavior.

To illustrate the general form of the dynamics, we consider again the case of a
basic bimolecular reaction

A +B −−−⇀↽−−− AB.

Each time the forward reaction occurs, we decrease the number of molecules of A
and B by 1 and increase the number of molecules of AB (a separate species) by 1.
Specifically, here AB denotes the complex formed by species A bound to species
B. Similarly, each time the reverse reaction occurs, we decrease the numberof
molecules of AB by one and increase the number of molecules of A and B.

Using our discussion of the chemical master equation, we know that the likeli-
hood that the forward reaction occurs in a given intervaldt is given byaf(q)dt =
(kf/Ω)nAnBdt and the reverse reaction has likelihoodar(q) = krnAB . It follows that
the concentration of the complex AB satisfies

[AB]( t+dt)− [AB]( t) = E(nAB(t+dt)/Ω−nAB(t)/Ω)

=
(

af(q− ξ f , t)−ar(q)
)

/Ω ·dt

=
(

kfnAnB/Ω
2−krnAB/Ω

)

dt

=
(

kf [A][B] −kr[AB]
)

dt,

in which E(x) denotes the expected value ofx. Taking the limit asdt approaches
zero (but remains large enough that we can still average across multiple reactions,
as described in more detail in Chapter4), we obtain

d
dt

[AB] = kf [A][B] −kr[AB] .

In a similar fashion we can write equations to describe the dynamics of A and
B and the entire system of equations is given by

d
dt

[A] = kr[AB] −kf [A][B]

d
dt

[B] = kr[AB] −kf [A][B]

d
dt

[AB] = kf [A][B] −kr[AB]

or

dA
dt
= krC−kfA·B

dB
dt
= krC−kfA·B

dC
dt
= kfA·B−krC,

whereC = [AB], A = [A], and B = [B]. These equations are known as themass
action kineticsor thereaction rate equationsfor the system. The parameterskf and
kr are called therate constantsand they match the parameters that were used in the
underlying propensity functions.
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Note that the same rate constants appear in each term, since the rate of pro-
duction of AB must match the rate of depletion of A and B and vice versa. We
adopt the standard notation for chemical reactions with specified rates andwrite
the individual reactions as

A +B
kf−→ AB, AB

kr−→ A +B,

wherekf andkr are the reaction rates. For bidirectional reactions we can also write

A +B
kf−−⇀↽−−
kr

AB.

It is easy to generalize these dynamics to more complex reactions. For example,
if we have a reversible reaction of the form

A +2B
kf−−⇀↽−−
kr

2C+D,

where A, B, C and D are appropriate species and complexes, then the dynamics for
the species concentrations can be written as

d
dt

A= krC
2 ·D−kfA·B2,

d
dt

C = 2kfA·B2−2krC
2 ·D,

d
dt

B= 2krC
2 ·D−2kfA·B2,

d
dt

D = kfA·B2−krC
2 ·D.

(2.5)

Rearranging this equation, we can write the dynamics as

d
dt




A
B
C
D




=




−1 1
−2 2
2 −2
1 −1







kfA·B2

krC2 ·D



. (2.6)

We see that in this decomposition, the first term on the right hand side is a matrix
of integers reflecting the stoichiometry of the reactions and the second term isa
vector of rates of the individual reactions.

More generally, given a chemical reaction consisting of a set of speciesSi ,
i = 1, . . . ,n and a set of reactionsRj , j = 1, . . . ,m, we can write the mass action
kinetics in the form

dx
dt
= Nv(x),

whereN ∈ Rn×m is thestoichiometry matrixfor the system andv(x) ∈ Rm is the
reaction flux vector. Each row ofv(x) corresponds to the rate at which a given
reaction occurs and the corresponding column of the stoichiometry matrix corre-
sponds to the changes in concentration of the relevant species. For example, for the
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system in equation (2.6) we have

x= (A,B,C,D), N =




−1 1
−2 2
2 −2
1 −1




, v(x) =




kfA·B2

krC2 ·D



.

As we shall see in the next chapter, the structured form of this equation willallow us
to explore some of the properties of the dynamics of chemically reacting systems.

Sometimes, the following notation will be used to denote birth and death of
species

∅
kf−→ A, A

kr−→ ∅.

We attach to the first reaction the differential equation

dA
dt
= kf ,

and to the second reaction we attach the differential equation

dA
dt
= −kr,A.

From a physical point of view, these reactions simplify the representation of more
complex processes, such as production of proteins or degradation of proteins due
to proteases.

Example 2.1(Covalent modification of a protein). Consider the set of reactions
involved in the phosphorylation of a protein by a kinase, as shown in Figure2.23.
Let S represent the substrate, K represent the kinase and S* represent the phospho-
rylated (activated) substrate. The sets of reactions illustrated in Figure2.23are

R1 : K +ATP−−→ K:ATP

R2 : K:ATP −−→ K +ATP

R3 : S+K:ATP −−→ S:K:ATP

R4 : S:K:ATP−−→ S+K:ATP

R5 : S:K:ATP−−→ S∗:K:ADP

R6 : S∗:K:ADP −−→ S∗+K:ADP

R7 : K:ADP −−→ K +ADP

R8 : K +ADP−−→ K:ADP.

We now write the kinetics for each reaction:

v1 = k1 [K][ATP] ,

v2 = k2 [K:ATP] ,

v3 = k3 [S][K:ATP] ,

v4 = k4 [S:K:ATP],

v5 = k5 [S:K:ATP],

v6 = k6 [S∗:K:ADP],

v7 = k7 [K:ADP] ,

v8 = k8 [K][ADP] .

We treat [ATP] as a constant (regulated by the cell) and hence do not directly
track its concentration. (If desired, we could similarly ignore the concentration of
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ADP since we have chosen not to include the many additional reactions in which
it participates.)

The kinetics for each species are thus given by

d
dt

[K] = −v1+v2+v7−v8
d
dt

[K:ATP] = v1−v2−v3+v4

d
dt

[S] = −v3+v4
d
dt

[S:K:ATP] = v3−v4−v5

d
dt

[S∗] = v6
d
dt

[S∗:K:ADP] = v5−v6

d
dt

[ADP] = v7−v8
d
dt

[K:ADP] = v6−v7+v8.

Collecting these equations together and writing the state as a vector, we obtain

d
dt




[K]
[K:ATP]

[S]
[S:K:ATP]

[S∗]
[S∗:K:ADP]

[ADP]
[K:ADP]




︸             ︷︷             ︸

x

=




−1 1 0 0 0 0 1 −1
1 −1 1 −1 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 1 −1 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 1 −1 1




︸                                                 ︷︷                                                 ︸

N




v1

v2

v3

v4

v5

v6

v7

v8




,

︸︷︷︸

v(x)

which is in standard stoichiometric form. ∇

Reduced order mechanisms

In this section, we look at the dynamics of some common reactions that occur in
biomolecular systems. Under some assumptions on the relative rates of reactions
and concentrations of species, it is possible to derive reduced order expressions for
the dynamics of the system. We focus here on an informal derivation of the relevant
results, but return to these examples in the next chapter to illustrate that the same
results can be derived using a more formal and rigorous approach.

Simple binding reaction.Consider the reaction in which two species A and B bind
reversibly to form a complex C=AB:

A +B
a−⇀↽−
d

C, (2.7)

wherea is the association rate constant andb is the dissociation rate constant.
Assume that B is a species that is controlled by other reactions in the cell and that
the total concentration of A is conserved, so thatA+C = [A] + [AB] = Atot. If the
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dynamics of this reaction are fast compared to other reactions in the cell, thenthe
amount of A and C present can be computed as a (steady state) function ofB.

To compute howA andC depend on the concentration of B at the steady state,
we must solve for the equilibrium concentrations of A and C. The rate equation for
C is given by

dC
dt
= aB· (Atot−C)−dC.

By settingdC/dt= 0 and lettingKd := d/a, we obtain the expressions

C =
Atot(B/Kd)
1+ (B/Kd)

, A=
Atot

1+ (B/Kd)
.

The constantKd is called thedissociation constantof the reaction. Its inverse mea-
sures the affinity of A binding to B. The steady state value ofC increases withB
while the steady state value ofA decreases withB as more of A is found in the
complex C.

Note that whenB ≈ Kd, A and C have roughly equal concentration. Thus the
higher the value ofKd, the moreB is required forA to form the complex C.Kd

has the units of concentration and it can be interpreted as the concentrationof B at
which half of the total number of molecules of A are associated with B. Therefore
a highKd represents a weak affinity between A and B, while a lowKd represents a
strong affinity.

Cooperative binding reaction.Assume now that B binds to A only after dimeriza-
tion, that is, only after binding another molecule of B. Then, we have that reac-
tions (2.7) become

B+B
k1−−⇀↽−−
k2

B2, B2+A
a−⇀↽−
d

C, A+C = Atot,

in which B2 denotes the dimer of B. The corresponding ODE model is given by

dB2

dt
= 2k1B2−2k2B2−aB2 · (Atot−C)+dC,

dC
dt
= aB2 · (Atot−C)−dC.

By settingdB2/dt= 0, dC/dt= 0, and by definingKm := k2/k1, we we obtain that

B2 = B2/Km, C =
Atot(B2/Kd)
1+ (B2/Kd)

, A=
Atot

1+ (B2/Kd)
,

so that

C =
AtotB2/(KmKd)
1+B2/(KmKd)

, A=
Atot

1+B2/(KmKd)
.

As an exercise, the reader can verify that if B binds to A only as a complex of n
copies of B, that is,

B+B+ · · ·+B
k1−−⇀↽−−
k2

Bn, Bn+A
a−⇀↽−
d

C, A+C = Atot,
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Figure 2.3: Steady state concentrations of the complex C andof A as functions of the
concentration of B.

then we have that

C =
AtotBn/(KmKd)
1+Bn/(KmKd)

, A=
Atot

1+Bn/(KmKd)
.

In this case, one says that the binding of B to A iscooperativewith cooperativityn.
Figure2.3shows the above functions, which are often referred to asHill functions.

Another type of cooperative binding is when a species R can bind A only after
another species B as bound. In this case, the reactions are given by

B+A
a−⇀↽−
d

C, R+C
a′−−⇀↽−−
d′

C′, A+C+C′ = Atot.

Proceeding as above by writing the ODE model and equating the time derivatives
to zero to obtain the equilibrium, one obtains

C =
1
Kd

B(Atot−C−C′), C′ =
1

K′dKd
R(Atot−C−C′).

By solving this system of two equations for the unknownsC′ andC, one obtains

C′ =
Atot(B/Kd)(R/K′d)

1+ (B/Kd)+ (B/Kd)(R/K′d)
, C =

Atot(B/Kd)
1+ (B/Kd)+ (B/Kd)(R/K′d)

.

In the case in which B would first bind cooperatively with other copies of B with
cooperativity n, the above expressions would modify to

C′ =
Atot(Bn/KdKm)(R/K′d)

1+ (Bn/KdKm)(R/K′d)+ (Bn/KdKm)
, C=

Atot(Bn/KdKm)
1+ (Bn/KdKm)(R/K′d)+ (Bn/KdKm)

.

Competitive binding reaction.Finally, consider the case in which two species Ba
and Br both bind to A competitively, that is, they cannot be bound to A at the same
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time. Let Ca be the complex formed between Ba and A and let Cr be the complex
formed between Br and A. Then, we have the following reactions

Ba+A
a−⇀↽−
d

Ca, Br+A
a′−−⇀↽−−
d′

Cr, A+Ca+Cr = Atot,

for which we can write the dynamics as

dCa

dt
= aBa · (Atot−Ca−Cr )−dCa,

dCr

dt
= a′Br · (Atot−Ca−Cr )−d′Cr .

By setting the derivatives to zero, we obtain that

Ca(aBa+d) = aBa(Atot−Cr ), Cr (a
′Br +d′) = a′Br (Atot−Ca),

so that

Cr =
Br (Atot−Ca)

Br +K′d
, Ca

(

Ba+Kd−
BaBr

Br +K′d

)

= Ba

(
K′d

Br +K′d

)

Atot,

from which we finally obtain that

Ca =
Atot(Ba/Kd)

1+ (Ba/Kd)+ (Br/K′d)
, Cr =

Atot(Br/K′d)

1+ (Ba/Kd)+ (Br/K′d)
.

In this derivation, we have assumed that both Ba and Br bind A as monomers. If
they were binding as dimers, the reader should verify as an exercise (see Exercises)
that they would appear in the final expressions with a power of two.

Note also that in this derivation we have assumed that the binding is competi-
tive, that is, Ba and Br cannot simultaneously bind to A. If they were binding simul-
taneously to A, we would have included another complex comprising Ba, Br and
A. Denoting this new complex by C′, we would have added also the two additional
reactions

Ca+Br
ā−⇀↽−̄
d

C
′
, Cr+Ba

ā′−−⇀↽−−̄
d′

C
′

and we would have modified the conservation law for A toAtot = A+Ca+Cr +C′.
The reader can verify as an exercise (see Exercises) that in this casea mixed term
Br Ba would appear in the equilibrium expressions.

Enzymatic reaction.A general enzymatic reaction can be written as

E+S
a−⇀↽−
d

C
k−→ E+P,

in which E is an enzyme, S is the substrate to which the enzyme binds to form
the complex C=ES, and P is the product resulting from the modification of the
substrate S due to the binding with the enzyme E. The parametera is referred to as
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association rate constant,d as dissociation rate constant, andk as the catalytic rate
constant. Enzymatic reactions are very common and we will see specific instances
of them in the sequel, e.g., phosphorylation and dephosphorylation reactions. The
corresponding ODE system is given by

dS
dt
= −aE·S+dC,

dC
dt
= aE·S− (d+k)C,

dE
dt
= −aE·S+dC+kC,

dP
dt
= kC.

The total enzyme concentration is usually constant and denoted byEtot, so that
E+C = Etot. Substituting in the above equationsE = Etot−C, we obtain

dE
dt
= −a(Etot−C) ·S+dC+kC,

dC
dt
= a(Etot−C) ·S− (d+k)C,

dS
dt
= −a(Etot−C) ·S+dC,

dP
dt
= kC.

This system cannot be solved analytically, therefore assumptions have been used
in order to reduce it to a simpler form. Michaelis and Menten assumed that the
conversion of E and S to C andvice versais much faster than the decomposition
of C into E and P. Under this assumption and lettingS(0) be sufficiently large
(see Example3.13), C immediately reaches its steady state value (whileP is still
changing). This approximation is called thequasi-steady state assumptionand the
mathematical conditions on the parameters that justify it will be dealt with in Sec-
tion 3.6. The steady state value ofC is given by solvinga(Etot−C)S− (d+k)C = 0
for C, which gives

C =
EtotS

S+Km
, with Km=

d+k
a

,

in which the constantKm is called theMichaelis-Menten constant. LettingVmax=

kEtot, the resulting kinetics

dP
dt
= k

EtotS
S+Km

= Vmax
S

S+Km

is calledMichaelis-Menten kinetics.
The constantVmax is called the maximal velocity (or maximal flux) of modifi-

cation and it represents the maximal rate that can be obtained when the enzymeis
completely saturated by the substrate. The value ofKm corresponds to the value of
S that leads to a half-maximal value of theP production rate. When the enzyme
complex can be neglected with respect to the total substrate amountStot, we have
thatStot ≈ S+P, so that the above equation can be also re-written as

dP
dt
=

Vmax(Stot−P)
(Stot−P)+Km

.
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Figure 2.4: Enzymatic reactions. (a) Transfer curve showing the production rate forP as a
function of substrate concentration. (b) Time plots of product P(t) for different values of
the Km. In the plotsStot = 1 andVmax= 1. The black plot shows the behavior for a value
of Km much smaller that the total substrate amountStot. This corresponds to a constant
product formation rate (at least before the substrate is almost all converted to product, that
is, Stot−P≈ Km), which is referred tozero-order kinetics.

WhenKm≪ Stot and the substrate has not yet been all converted to product,
that is,Stot−P≫ Km, we have that the rate of product formation becomes approx-
imately dP/dt ≈ Vmax, which is the maximal speed of reaction. Since this rate is
constant and does not depend on the reactant concentrations, it is usually referred
to zero-order kinetics. In this case, the system is said to operate in the zero-order
regime (see Figure2.4).

2.2 Transcription and Translation

In this section we consider the processes of transcription and translation,using the
modeling techniques described in the previous section to capture the fundamental
dynamic behavior. Models of transcription and translation can be done at avariety
of levels of detail and which model to use depends on the questions that one wants
to consider. We present several levels of modeling here, starting with a fairly de-
tailed set of reactions and ending with highly simplified models that can be used
when we are only interested in average production rate of proteins at relatively long
time scales.

The central dogma: production of proteins

The genetic material inside a cell, encoded in its DNA, governs the responseof a
cell to various conditions. DNA is organized into collections of genes, with each
gene encoding a corresponding protein that performs a set of functions in the cell.
The activation and repression of genes are determined through a seriesof complex
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(a) Base pairs (b) Double stranded

Figure 2.5: Molecular structure of DNA. (a) Individual bases (nucleotides) that make up
DNA: adenine (A), cytocine (C), guanine (G) and thymine (T).(b) Double stranded DNA
formed from individual nucleotides, with A binding to T and Cbinding to G. Each strand
contains a 5’ and 3’ end, determined by the locations of the carbons where the next nu-
cleotide binds. Figure from Phillips, Kondev and Theriot [72]; used with permission of
Garland Science.

interactions that give rise to a remarkable set of circuits that perform the functions
required for life, ranging from basic metabolism to locomotion to procreation.Ge-
netic circuits that occur in nature are robust to external disturbances and can func-
tion in a variety of conditions. To understand how these processes occur(and some
of the dynamics that govern their behavior), it will be useful to present arelatively
detailed description of the underlying biochemistry involved in the production of
proteins.

DNA is double stranded molecule with the “direction” of each strand specified
by looking at the geometry of the sugars that make up its backbone (see Figure2.5).
The complementary strands of DNA are composed of a sequence of nucleotides
that consist of a sugar molecule (deoxyribose) bound to one of 4 bases: adenine
(A), cytocine (C), guanine (G) and thymine (T). The coding strand (by convention
the top row of a DNA sequence when it is written in text form) is specified fromthe
5’ end of the DNA to the 3’ end of the DNA. (As described briefly in Appendix ??,
5’ and 3’ refer to carbon locations on the deoxyribose backbone that are involved
in linking together the nucleotides that make up DNA.) The DNA that encodes
proteins consists of a promoter region, regulator regions (described in more detail
below), a coding region and a termination region (see Figure2.6). We informally
refer to this entire sequence of DNA as a gene.

Expression of a gene begins with thetranscriptionof DNA into mRNA by RNA
polymerase, as illustrated in Figure2.7. RNA polymerase enzymes are present in
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Figure 2.6: Geometric structure of DNA. The layout of the DNAis shown at the top. RNA
polymerase binds to the promoter region of the DNA and transcribes the DNA starting at
the+1 side and continuing to the termination site.
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Figure 2.7: Production of messenger RNA from DNA. RNA polymerase, along with other
accessory factors, binds to the promoter region of the DNA and then “opens” the DNA to
begin transcription (initiation). As RNA polymerase movesdown the DNA, producing an
RNA transcript (elongation), which is later translated into a protein. The process ends when
the RNA polymerase reaches the terminator (termination). Reproduced from Courey [17];
permission pending.
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the nucleus (for eukaryotes) or cytoplasm (for prokaryotes) and must localize and
bind to the promoter region of the DNA template. Once bound, the RNA poly-
merase “opens” the double stranded DNA to expose the nucleotides that make up
the sequence. This reversible reaction, calledisomerization, is said to transform
the RNA polymerase and DNA from aclosed complexto anopen complex. Af-
ter the open complex is formed, RNA polymerase begins to travel down the DNA
strand and constructs an mRNA sequence that matches the 5’ to 3’ sequence of
the DNA to which it is bound. By convention, we number the first base pair that
is transcribed as ‘+1’ and the base pair prior to that (which is not transcribed) is
labeled as ‘-1’. The promoter region is often shown with the -10 and -35 regions
indicated, since these regions contain the nucleotide sequences to which theRNA
polymerase enzyme binds (the locations vary in different cell types, but these two
numbers are typically used).

The RNA strand that is produced by RNA polymerase is also a sequence ofnu-
cleotides with a sugar backbone. The sugar for RNA is ribose instead of deoxyri-
bose and mRNA typically exists as a single stranded molecule. Another difference
is that the base thymine (T) is replaced by uracil (U) in RNA sequences. RNA
polymerase produces RNA one base pair at a time, as it moves from in the 5’ to3’
direction along the DNA coding strand. RNA polymerase stops transcribing DNA
when it reaches atermination region(or terminator) on the DNA. This termination
region consists of a sequence that causes the RNA polymerase to unbind from the
DNA. The sequence is not conserved across species and in many cells the termi-
nation sequence is sometimes “leaky”, so that transcription will occasionally occur
across the terminator.

Once the mRNA is produced, it must be translated into a protein. This process
is slightly different in prokaryotes and eukaryotes. In prokaryotes, there is a region
of the mRNA in which the ribosome (a molecular complex consisting of of both
proteins and RNA) binds. This region, called theribosome binding site (RBS), has
some variability between different cell species and between different genes in a
given cell. The Shine-Delgarno sequence, AGGAGG, is the consensussequence
for the RBS. (A consensus sequence is a pattern of nucleotides that implements
a given function across multiple organisms; it is not exactly conserved, sosome
variations in the sequence will be present from one organism to another.)

In eukaryotes, the RNA must undergo several additional steps beforeit is trans-
lated. The RNA sequence that has been created by RNA polymerase consists of
introns that must be spliced out of the RNA (by a molecular complex called the
spliceosome), leaving only theexons, which contain the coding sequence for the
protein. The termpre-mRNAis often used to distinguish between the raw transcript
and the spliced mRNA sequence, which is calledmature mRNA. In addition to
splicing, the mRNA is also modified to contain apoly(A) (polyadenine)tail, con-
sisting of a long sequence of adenine (A) nucleotides on the 3’ end of the mRNA.
This processed sequence is then transported out of the nucleus into the cytoplasm,
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Figure 2.8: Translation is the process of translating the sequence of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protein synthesis. The genetic
code describes the relationship between the sequence of base pairs in a gene and the cor-
responding amino acid sequence that it encodes. In the cell cytoplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assemble the protein. Figure and
caption courtesy the National Human Genome Research Institute.

where the ribosomes can bind to it.
Unlike prokaryotes, eukaryotes do not have a well defined ribosome binding se-

quence and hence the process of the binding of the ribosome to the mRNA is more
complicated. TheKozak sequenceA/GCCACCAUGG is the rough equivalent of
the ribosome binding site, where the underlined AUG is the start codon (described
below). However, mRNA lacking the Kozak sequence can also be translated.

Once the ribosome is bound to the mRNA, it begins the process oftranslation.
Proteins consist of a sequence of amino acids, with each amino acid specified by
a codon that is used by the ribosome in the process of translation. Each codon
consists of three base pairs and corresponds to one of the 20 amino acidsor a
“stop” codon. The genetic code mapping between codons and amino acids is shown
in Table??. The ribosome translates each codon into the corresponding amino acid
using transfer RNA (tRNA) to integrate the appropriate amino acid (which binds
to the tRNA) into the polypeptide chain, as shown in Figure2.8. The start codon
(AUG) specifies the location at which translation begins, as well as coding for the
amino acid methionine (a modified form is used in prokaryotes). All subsequent
codons are translated by the ribosome into the corresponding amino acid untilit
reaches one of the stop codons (typically UAA, UAG and UGA).
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Table 2.1: Rates of core processes involved in the creation of proteins from DNA inE. coli.

Process Characteristic rate Source
mRNA transcription rate 24-29 bp/sec BioNumbers [11]
Protein translation rate 12–21 aa/sec BioNumbers [11]
Maturation time (fluorescent proteins)6–60 min BioNumbers [11]
mRNA half life ∼ 100 sec YM03 [99]
E. coli cell division time 20–40 min BioNumbers [11]
Yeastcell division time 70–140 min BioNumbers [11]
Protein half life ∼ 5×104 sec YM03 [99]
Protein diffusion along DNA up to 104 bp/sec PKT [72]

The sequence of amino acids produced by the ribosome is a polypeptide chain
that folds on itself to form a protein. The process of folding is complicated and
involves a variety of chemical interactions that are not completely understood. Ad-
ditional post-translational processing of the protein can also occur at thisstage,
until a folded and functional protein is produced. It is this molecule that is able to
bind to other species in the cell and perform the chemical reactions that underly
the behavior of the organism. Thematuration timeof a protein is the time required
for the polypeptide chain to fold into a functional protein.

Each of the processes involved in transcription, translation and folding ofthe
protein takes time and affects the dynamics of the cell. Table2.1shows the rates of
some of the key processes involved in the production of proteins. It is important to
note that each of these steps is highly stochastic, with molecules binding together
based on some propensity that depends on the binding energy but also theother
molecules present in the cell. In addition, although we have described everything
as a sequential process, each of the steps of transcription, translation and folding
are happening simultaneously. In fact, there can be multiple RNA polymerasesthat
are bound to the DNA, each producing a transcript. In prokaryotes, assoon as
the ribosome binding site has been transcribed, the ribosome can bind and begin
translation. It is also possible to have multiple ribosomes bound to a single piece of
mRNA. Hence the overall process can be extremely stochastic and asynchronous.

Reaction models

The basic reactions that underly transcription include the diffusion of RNA poly-
merase from one part of the cell to the promoter region, binding of an RNA poly-
merase to the promoter, isomerization from the closed complex to the open com-
plex, and finally the production of mRNA, one base pair at a time. To capture this
set of reactions, we keep track of the various forms of RNA polymerase accord-
ing to its location and state: RNAPc represents RNA polymerase in the cytoplasm,
RNAPp represents RNA polymerase in the promoter region, and RNAPd is RNA
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polymerase non-specifically bound to DNA. We must similarly keep track of the
state of the DNA, to insure that multiple RNA polymerases do not bind to the same
section of DNA. Thus we can write DNAp for the promoter region, DNAg,i for the
ith section of a geneg (whose length can depend on the desired resolution) and
DNA t for the termination sequence. We write RNAP:DNA to represent RNA poly-
merase bound to DNA (assumed closed) and RNAP:DNAo to indicate the open
complex. Finally, we must keep track of the mRNA that is produced by transcrip-
tion: we write mRNAi to represent an mRNA strand of lengthi and assume that
the length of the gene of interest isN.

Using these various states of the RNA polymerase and locations on the DNA,
we can write a set of reactions modeling the basic elements of transcription as

Binding to DNA: RNAPc −−−⇀↽−−− RNAPd

Diffusion along DNA: RNAPd −−−⇀↽−−− RNAPp

Binding to promoter: RNAPp+DNA p −−−⇀↽−−− RNAP:DNAp

Isomerization: RNAP:DNAp −−→ RNAP:DNAo

Start of transcription: RNAP:DNAo −−→ RNAP:DNAg,1+DNA p

mRNA creation: RNAP:DNAg,1 −−→ RNAP:DNAg,2+mRNA1
k

Elongation: RNAP:DNAg,i+1+mRNAi
k

−−→ RNAP:DNAg,i+2+mRNAi+1
k

Binding to terminator: RNAP:DNAg,N+mRNAN−1
k

−−→ RNAP:DNAt+mRNAN
k

Termination: RNAP:DNAt −−→ RNAPc

Degradation: mRNANk −−→ ∅.
(2.8)

Not all these reactions occur on the same time scale. For example, the binding
to promoter reaction is usually much faster than the isomerization reaction. Note
that at the start of transcription we “release” the promoter region of the DNA,
thus allowing a second RNA polymerase to bind to the promoter while the first
RNA polymerase is still transcribing the gene. These reactions have been written
for prokaryotes, but a similar set of reactions could be written for eukaryotes: the
main differences would be that the RNA polymerase remains in the nucleus and
the mRNA must be spliced and transported to the cytosol.

A similar set of reactions can be written to model the process of translation.
Here we must keep track of the binding of the ribosome to the mRNA, translation
of the mRNA sequence into a polypeptide chain, and folding of the polypeptide
chain into a functional protein. Let Ribo:mRNARBS indicate the ribosome bound
to the ribosome binding site, Ribo:mRNAAA i the ribosome bound to theith codon,
Ribo:mRNAstart and Ribo:mRNAstop for the start and stop codons, and PPCi for a
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polypeptide chain consisting ofi amino acids. The reactions describing translation
can then be written as

Binding to RBS: Ribo+mRNARBS
k
−−−⇀↽−−− Ribo:mRNARBS

k

Start of translation: Ribo:mRNARBS
k −−→ Ribo:mRNAstart

k +mRNARBS
k

Polypeptide chain creation: Ribo:mRNAstart
k −−→ Ribo:mRNAAA2

k +PPC1

Elongation,i = 1, . . . ,M: Ribo:mRNAAA(i+1)
k +PPCi

−−→ Ribo:mRNAAA(i+2)
k +PPCi+1

Stop codon: Ribo:mRNAMk +PPCM−1

−−→ Ribo:mRNAstop
k +ppcM

Release of mRNA: Ribo:mRNAstop
k −−→ Ribo

Folding: PPCM −−→ protein

Degradation: protein−−→ ∅.

As in the case of transcription, we see that these reactions allow multiple ribosomes
to translate the same piece of mRNA by freeing up the ribosome binding site (RBS)
when translation begins.

As complex as these reactions are, they are still missing many important ef-
fects. For example, we have not accounted for the existence and effects of the 5’
and 3’ untranslated regions (UTRs) of a gene and we have also left outvarious error
correction mechanisms in which ribosomes can step back and release an incorrect
amino acid that has been incorporated into the polypeptide chain. We have also left
out the many chemical species that must be present in order for a variety of the
reactions to happen (NTPs for mRNA production, amino acids for protein produc-
tion, etc). Incorporation of these effects requires additional reactions that track the
many possible states of the molecular machinery that underlies transcription and
translation.

When the details of the isomerization, start of transcription (translation), elon-
gation, and terminaion are not relevant for the pheomenon to be studied, thetran-
scription and translation reactions are lumped into much simpler reduced reactions.
For the transcription process, these reduced reactions take the form:

RNAP:DNAp kf−→mRNA+RNAP+DNA p

mRNA
δ−→ ∅,

(2.9)

in which the first reaction lumps together isomerization, start of transcription,elon-
gation, mRNA creation, and termination. Similarly, for the translation process, the



2.2. TRANSCRIPTION AND TRANSLATION 51

reduced reactions take the form:

Ribo+mRNA−−−⇀↽−−− Ribo:mRNA

Ribo:mRNA−−→ protein+mRNA+Ribo

Ribo:mRNA−−→ Ribo

protein−−→ ∅,

(2.10)

in which the second reaction lumps the start of translation, elongation, folding, and
termination. The third reaction models the fact that mRNA can also be degraded
when bound to ribosomes. The process of mRNA degradation occurs through RNAse
enzymes binding to the ribosome binding site and cleaving the mRNA strand. It is
known that ribosome binding site cannot be both bound to the ribosome and to the
RNase [62]. However, the species Ribo:mRNA is a lumped species encompassing
also configurations in which ribosomes are bound on the mRNA strand but not on
the ribosome binding site. Hence, we also let this species be degraded by RNase.

Reaction rate equations

Given a set of reactions, the various stochastic processes that underly detailed mod-
els of transcription and translation can be specified using the stochastic modeling
framework described briefly in the previous section. In particular, usingeither mod-
els of binding energy or measured rates, we can construct propensity functions for
each of the many reactions that lead to production of proteins, including the motion
of RNA polymerase and the ribosome along DNA and RNA. For many problems
in which the detailed stochastic nature of the molecular dynamics of the cell are
important, these models are the most relevant and they are covered in some detail
in Chapter4.

Alternatively, we can move to the reaction rate formalism and model the reac-
tions using differential equations. To do so, we must compute the various reaction
rates, which can be obtained from the propensity functions or measured experimen-
tally. In moving to this formalism, we approximate the concentrations of various
species as real numbers, which may not be accurate since some species exist at
low molecular counts in the cell. Despite all of these approximations, in many sit-
uations the reaction rate equations are perfectly sufficient, particularly if we are
interested in the average behavior of a large number of cells.

In some situations, an even simpler model of the transcription, translation and
folding processes can be utilized. Let the “active” mRNA be the mRNA that is
available for translation by the ribosome. We model its concentration through a
simple time delay of lengthτm that accounts for the transcription of the ribosome
binding site in prokaryotes or splicing and transport from the nucleus in eukary-
otes. If we assume that RNA polymerase binds to DNA at some average rate (which
includes both the binding and isomerization reactions) and that transcription takes
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some fixed time (depending on the length of the gene), then the process of tran-
scription can be described using the delay differential equation

dmP

dt
= α−µmP− δ̄mP, m∗P(t) = e−µτ

m
mP(t−τm), (2.11)

wheremP is the concentration of mRNA for protein P,m∗P is the concentration
of active mRNA,α is the rate of production of the mRNA for protein P,µ is the
growth rate of the cell (which results in dilution of the concentration) andδ̄ is the
rate of degradation of the mRNA. Since the dilution and degradation terms are of
the same form, we will often combine these terms in the mRNA dynamics and use
a single coefficientδ= µ+ δ̄. The exponential factor accounts for dilution due to the
change in volume of the cell, whereµ is the cell growth rate. The constantsα and
δ capture the average rates of production and degradation, which in turn depend on
the more detailed biochemical reactions that underlie transcription.

Once the active mRNA is produced, the process of translation can be described
via a similar ordinary differential equation that describes the production of a func-
tional protein:

dP
dt
= κm∗P−γP, Pf (t) = e−µτ

f
P(t−τ f ). (2.12)

HereP represents the concentration of the polypeptide chain for the protein,Pf

represents the concentration of functional protein (after folding). Theparameters
that govern the dynamics areκ, the rate of translation of mRNA;γ, the rate of
degradation and dilution of P; andτ f , the time delay associated with folding and
other processes required to make the protein functional. The exponential term again
accounts for dilution due to cell growth. The degradation and dilution term, param-
eterized byγ, captures both rate at which the polypeptide chain is degraded and the
rate at which the concentration is diluted due to cell growth.

It will often be convenient to write the dynamics for transcription and transla-
tion in terms of the functional mRNA and functional protein. Differentiating the
expression form∗P, we see that

dm∗P(t)

dt
= e−µτ

m
ṁP(t−τm)

= e−µτ
m(
α−δmP(t−τm)

)

= ᾱ−δm∗P(t),
(2.13)

whereᾱ = e−µτ
m
α. A similar expansion for the active protein dynamics yields

dPf (t)
dt

= κ̄m∗P(t−τ f )−γPf (t), (2.14)

where κ̄ = e−µτ
f
κ. We shall typically use equations (2.13) and (2.14) as our (re-

duced) description of protein folding, dropping the superscriptf and overbars
when there is no risk of confusion. Also, in the presence of different proteins, we
will attach subscripts to the parameters to denote the protein they refer to.
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In many situations the time delays described in the dynamics of protein pro-
duction are small compared with the time scales at which the protein concentration
changes (depending on the values of the other parameters in the system). In such
cases, we can simplify our model of the dynamics of protein production evenfur-
ther and write

dmP

dt
= α−δmP,

dP
dt

= κmP−γP. (2.15)

Note that we here have dropped the superscripts∗ and f since we are assuming
that all mRNA is active and proteins are functional and dropped the overbar onα
andκ since we are assuming the time delays are negligible.

Finally, the simplest model for protein production is one in which we only keep
track of the basal rate of production of the protein, without including the mRNA
dynamics. This essentially amounts to assuming the mRNA dynamics reach steady
state quickly and replacing the first differential equation in equation (2.15) with its
equilibrium value. This is often a good assumption as mRNA degration is usually
about 100–1000 times faster than protein degradation (see Table2.1). Thus we
obtain

dP
dt
= β−γP, β := κ

α

δ
.

This model represents a simple first order, linear differential equation for the rate of
production of a protein. In many cases this will be a sufficiently good approximate
model, although we will see that in many cases it is too simple to capture the
observed behavior of a biological circuit.

2.3 Transcriptional Regulation

The operation of a cell is governed in part by the selective expression of genes in
the DNA of the organism, which control the various functions the cell is able to
perform at any given time. Regulation of protein activity is a major componentof
the molecular activities in a cell. By turning genes on and off, and modulating their
activity in more fine-grained ways, the cell controls the many metabolic pathways,
responds to external stimuli, differentiates into different cell types as it divides, and
maintains the internal state of the cell required to sustain life.

The regulation of gene expression and protein activity is accomplished through
a variety of molecular mechanisms, as discussed in Section1.2 and illustrated in
Figure2.9. At each stage of the processing from a gene to a protein, there are po-
tential mechanisms for regulating the production processes. The remainderof this
section will focus on transcriptional control and the next section on selected post-
transcriptional control mechanisms. We will focus on prokaryotic mechanisms.
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Figure 2.9: Regulation of proteins. Figure from Phillips, Kondev and Theriot [72]; used
with permission of Garland Science.

Transcriptional regulation of protein production

There are a variety of mechanisms in the cell to regulate the production of proteins.
These regulatory mechanisms can occur at various points in the overall process that
produces the protein. Figure2.9shows some of the common points of regulation in
the protein production process. We focus first ontranscriptional regulation, which
refers to regulatory mechanisms that control whether or not a gene is transcribed.

The simplest forms of transcriptional regulation are repression and activation,
which are controlled throughtranscription factors. In the case ofrepression, the
presence of a transcription factor (often a protein that binds near the promoter)
turns off the transcription of the gene and this type of regulation is often called
negative regulation or “down regulation”. In the case ofactivation(or positive reg-
ulation), transcription is enhanced when an activator protein binds to the promoter
site (facilitating binding of the RNA polymerase).

Represession.A common mechanism for repression is that a protein binds to a re-
gion of DNA near the promoter and blocks RNA polymerase from binding. The
region of DNA to which the repressor protein binds is called anoperator region
(see Figure2.10a). If the operator region overlaps the promoter, then the presence
of a protein at the promoter can “block” the DNA at that location and transcrip-
tion cannot initiate, as illustrated in Figure2.10a. Repressor proteins often bind to
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(a) Repression of gene expression

./coreproc/figures/PKT08_19_06.eps

(b) Examples of repressors

Figure 2.10: Repression of gene expression. Figure from Phillips, Kondev and Theriot [72];
used with permission of Garland Science.

DNA as dimers or pairs of dimers (effectively tetramers). Figure2.10bshows some
examples of repressors bound to DNA.

A related mechanism for repression isDNA looping. In this setting, two repres-
sor complexes (often dimers) bind in different locations on the DNA and then bind
to each other. This can create a loop in the DNA and block the ability of RNA poly-
merase to bind to the promoter, thus inhibiting transcription. Figure2.11shows an
example of this type of repression, in thelac operon. (Anoperonis a set of genes
that is under control of a single promoter.)

Activation.The process of activation of a gene requires that an activator protein be

(a) DNA looping

./coreproc/figures/PKT08_08_19.eps

(b) lac repressor

Figure 2.11: Repression via DNA looping. Figure from Phillips, Kondev and Theriot [72];
used with permission of Garland Science.
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(a) Activation mechanism

./coreproc/figures/PKT08_19_08.eps

(b) Examples of activators

Figure 2.12: Activation of gene expression. (a) Conceptualoperation of an activator. The
activator binds to DNA upstream of the gene and attracts RNA polymerase to the DNA
strand. (b) Examples of activiators: catablite activator protein (CAP), p53 tumor supressor,
zinc finger DNA binding domain and leucine zipper DAN bindingdomain. Figure from
Phillips, Kondev and Theriot [72]; used with permission of Garland Science.

present in order for transcription to occur. In this case, the protein mustwork to
either recruit or enable RNA polymerase to begin transcription.

The simplest form of activation involves a protein binding to the DNA near
the promoter in such a way that the combination of the activator and the promoter
sequence bind RNA polymerase. Figure2.12 illustrates the basic concept. Like
repressors, many activators have inducers, which can act in either a positive or
negative fashion (see Figure2.14b). For example, cyclic AMP (cAMP) acts as a
positive inducer for CAP.

Another mechanism for activation of transcription, specific to prokaryotes, is
the use ofsigma factors. Sigma factors are part of a modular set of proteins that
bind to RNA polymerase and form the molecular complex that performs transcrip-
tion. Different sigma factors enable RNA polymerase to bind to different promot-
ers, so the sigma factor acts as a type of activating signal for transcription. Table2.2
lists some of the common sigma factors in bacteria. One of the uses of sigma fac-
tors is to produce certain proteins only under special conditions, such aswhen the
cell undergoesheat shock. Another use is to control the timing of the expression of
certain genes, as illustrated in Figure2.13.

Inducers.A feature that is present in some types of transcription factors is the ex-
istence of aninducer moleculethat combines with the protein to either activate or
inactivate its function. Apositive induceris a molecule that must be present in order
for repression or activation to occur. Anegative induceris one in which the pres-
ence of the inducer molecule blocks repression or activation, either by changing the
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Table 2.2: Sigma factors inE. coli [2].

Sigma factor Promoters recognized
σ70 most genes
σ32 genes associated with heat shock
σ28 genes involved in stationary phase and stress response
σ28 genes involved in motility and chemotaxis
σ24 genes dealing with misfolded proteins in the periplasm

shape of the transcription factor protein or by blocking active sites on the protein
that would normally bind to the DNA. Figure2.14a summarizes the various possi-
bilities. Common examples of repressor-inducer pairs includelacI and lactose (or
IPTG), tetRand aTc, and tryptophan repressor and tryptophan. Lactose/IPTG and
aTc are both negative inducers, so their presence causes the otherwise repressed
gene to be expressed, while tryptophan is a positive inducer.

Combinatorial promoters.In addition to promoters that can take either a repressor
or an activator as the sole input transcription factor, there arecombinatorial pro-
motersthat can take both repressors and activators as input transcription factors.
This allows genes to be switched on and off based on more complex conditions,
represented by the concentrations of two or more activators or repressors.

Figure2.15shows one of the classic examples, a promoter for thelac system.
In the lac system, the expression of genes for metabolizing lactose are under the
control of a single (combinatorial) promoter. CAP, which is positively induced by
cAMP, acts as an activator and LacI (also called “lac repressor”), which is neg-
atively induced by lactose, acts as a repressor. In addition, the inducercAMP is
expressed only when glucose levels are low. The resulting behavior is that the pro-
teins for metabolizing lactose are expressed only in conditions where there isno
glucose (so CAP is active)and lactose is present.

More complicated combinatorial promoters can also be used to control tran-

./coreproc/figures/MBoC09_07_43.eps

Figure 2.13: Use of sigma factors to controlling the timing of expression. Reproduced from
Alberts et al. [2]; permission pending.
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./coreproc/figures/MBoC09_07_37.eps

Figure 2.14: Effects of inducers. Reproduced from Alberts et al. [2]; permission pending.

scription in two different directions, an example that is found in some viruses.

Antitermination.A final method of activation in prokaryotes is the use ofantiter-
mination. The basic mechanism involves a protein that binds to DNA and deacti-
vates a site that would normally serve as a termination site for RNA polymerase.
Additional genes are located downstream from the termination site, but without a
promoter region. Thus, in the presence of the anti-terminator protein, thesegenes
are not expressed (or expressed with low probability). However, when the antiter-
mination protein is present, the RNA polymerase maintains (or regains) its contact
with the DNA and expression of the downstream genes is enhanced. In thisway,
antitermination allows downstream genes to be regulated by repressing “prema-
ture” termination. An example of an antitermination protein is the protein N in
phageλ, which binds to a region of DNA labeled Nut (for N utilization), as shown
in Figure2.16[35].

Reaction models

We can capture this set of molecular interactions by modifying the RNA poly-
merase binding reactions in equation (2.8). For a repressor (Rep), we simply have
to add a reaction that represents the repressor bound to the promoter DNAp:

Repressor binding: DNAp+Rep−−−⇀↽−−− DNA:Rep
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Figure 2.15: Combinatorial logic for thelac operator. Figure from Phillips, Kondev and
Theriot [72]; used with permission of Garland Science.

This reaction acts to “sequester” the DNA promoter site so that it is no longer avail-
able for binding by RNA polymerase. The strength of the repressor is reflected
in the reaction rate constants for the repressor binding reaction. Sometimes,the
RNA polymerase can bind to the promoter even when the repressor is bound, usu-
ally with lower association rate constant. In this case, the repressor still allows
some transcription even when bound to the promoter and the repressor is said to be
“leaky”.

The modifications for an activator (Act) are a bit more complicated, since we
have to modify the reactions to require the presence of the activator before RNA

./coreproc/figures/GNM93-antitermination.eps

Figure 2.16: Antitermination. Reproduced from [35]; permission pending.
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polymerase can bind the promoter. One possible mechanism, also known as the
recruitment model, is given by

Activator binding: DNAp+Act −−−⇀↽−−− DNA p:Act

RNAP binding w/ activator: RNAPp+DNA p:Act −−−⇀↽−−− RNAP:DNAp:Act

Isomerization: RNAP:DNAp:Act −−→ RNAP:DNAo:Act

Start of transcription: RNAP:DNAo:Act −−→ RNAP:DNAg,1+DNA p:Act.
(2.16)

In this model, RNA polymerase cannot bind to the promoter unless the activator
is already bound to it. More generally, one can model both the enhanced binding
of the RNA polymerase to the promoter in the presence of the activator, as well as
the possibility of binding without an activator. This translates into the additional
reaction RNAPp+DNA p −−−⇀↽−−− RNAP:DNAp. The relative reaction rates determine
how strong the activator is and the “leakiness” of transcription in the absence of
the activator. A different model of activation, calledallosteric, is one in which the
RNAP binding to DNA is not enhanced by the presence of the activator bound to
the promoter, but the open complex (and hence start of transcription) formation can
occur only (is enhanced) in the presence of the activator.

A simplified ordinary differential equation model can be obtained by account-
ing for the fact that transcription factors and RNAP bind to the DNA rapidly when
compared to other reactions, such as isomerization, so that they can be wellap-
proximated by their quasi-steady state values. In this case, we can make useof
the reduced order models described in Section2.1. We can consider the compet-
itive binding case to model a strong repressor that prevents RNAP from binding
to the DNA. In the sequel, we remove the superscripts “p” and “d” from RNAP
to simplify notation. The quasi-steady state concentration of the complex of DNA
promoter bound to the repressor will have the expression

[DNA p:Rep]=
[DNA]([Rep]/Kd)

1+ [Rep]/Kd+ [RNAP]/K′d

and the steady state amount of DNA promoter bound to the RNA polymerase will
be given by

[RNAP:DNAp] =
([RNAP]/K′d)[DNA]

1+ [RNAP]/K′d+ [Rep]/Kd
,

in which K′d is the dissociation constant of RNAP from the promoter whileKd is
the dissociation constant of Rep from the promoter. The free promoter DNAwith
RNAP bound will allow transcription, while the complex DNAp:Rep will not allow
transcription as it is not bound to RNAP. Using the lumped reactions (2.9), this can
be modeled as

d[mRNA]
dt

= F([Rep])−δ[mRNA],
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in which the production rate is given by

F([Rep])= kf
[DNA]([RNAP] /K′d)

1+ [RNAP]/K′d+ [Rep]/Kd
.

If the repressor binds to the promoter with cooperativityn, the above expression
becomes (see Section2.1)

F([Rep])= kf
[DNA]([RNAP] /K′d)

1+ [RNAP]/K′d+ [Rep]n/(KdKm)
,

in which Km is the dissociation constant of the reaction ofn molecules of Rep
binding together. The functionF is usually denoted by the standard Hill function
form

F([Rep])=
α

1+ ([Rep]/K)n ,

in whichα andK are implicitly defined.
Finally, if the repressor allows RNAP to still bind to the promoter at a small

rate (leaky repressor), the above expression can be modified to take theform (see
Section2.1)

F([Rep])=
α

1+ ([Rep]/K)n +α0, (2.17)

in which α0 is the basal expression level when the promoter is fully repressed,
usually referred to as “leakiness”.

To model the production rate of mRNA in the case in which an activator Act is
required, we can consider first the case in which RNAP binds only when the activa-
tor is already bound to the promoter. To simplify the mathematical derivation, we
re-write the reactions (2.16) involving the activator with the lumped transcription
reaction (2.9) into the following:

DNA p+Act −−−⇀↽−−− DNA p:Act

RNAP+DNA p:Act −−−⇀↽−−− RNAP:DNAp:Act

RNAP:DNAp:Act
kf−→mRNA+RNAP+DNA p:Act.

(2.18)

The first and second reactions fit the structure of the cooperative binding model
illustrated in Section2.1. Also, since the third reaction is much slower compared
to the first two, the complex RNAP:DNAp:Act concentration can be well approxi-
mated at its quasi-steady state. The expression of this quasi-steady state was given
in Section2.1 in correspondence to the cooperative binding model and takes the
form:

[RNAP:DNAp:Act] =
([RNAP][Act])/(KdK′d)[DNA]

1+ ([Act]/Kd)(1+ [RNAP]/K′d)
,

in which K′d is the dissociation constant of RNAP with the complex of DNA bound
to Act andKd is the dissociation constant of Act with DNA. When the activator Act
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Figure 2.17: Hill function for an activator (left) and a repressor (right).

binds to the promoter with cooperativityn, the above expression will be modified
to (see Section??):

[RNAP:DNAp:Act] =
([RNAP][Act]n)/(KdK′dKm)[DNA]

1+ ([Act]n/KdKm)(1+ [RNAP]/K′d)
,

in which Km is the dissociation constant of the reaction ofn molecules of Act
binding together.

In order to write the differential equation for the mRNA concentration, we con-
sider the third reaction in (2.18) along with the above quasi-steady state expressions
of [RNAP:DNAp:Act] to obtain

d [mRNA]
dt

= F([Act]) −δ[mRNA],

in which

F([Act]) = kf
([RNAP][Act]n)/(KdK′dKm)[DNA]

1+ ([Act]n/KdKm)(1+ [RNAP]/K′d)
=:

α([Act]/K)n

1+ ([Act]/K)n ,

in which α andK are implicitly defined. The right-hand side expression is in the
standard Hill function form. Figure2.17shows the shape of these Hill functions
for both an activator and a repressor. If we assume that RNAP can still bind to
DNA even when the activator is not bound, we have an additional basal expression
rateα0 so that the new form of the production rate is given by

F([Act]) =
α([Act]/K)n

1+ ([Act]/K)n +α0.
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As indicated earlier, many activators and repressors operate in the presence of
inducers. To incorporate these dynamics in our description, we simply haveto add
the reactions that correspond to the interaction of the inducer with the relevant
protein. For a negative inducer, we can simply add a reaction in which the inducer
binds the regulator protein and effectively sequesters it so that it cannot interact
with the DNA. For example, a negative inducer operating on a repressor could be
modeled by adding the reaction

Rep+ Ind−−−⇀↽−−− Rep:Ind.

Since the above reactions are very fast compared to transcription, they can be as-
sumed at the quasi-steady state. Hence, the free amount of repressor that can still
bind to the promoter can be calculated by writing the ODE model corresponding
to the above reactions and by setting the time derivatives to zero. This yields

[Rep]=
[Rep]tot

1+ [Ind]/K̄d
,

in which [Rep]tot = [Rep]+ [Rep:Ind] is the total amount of repressor (bound and
unbound to the inducer) and̄Kd is the dissociation constant of Ind binding to Rep.
This expression of the repressor concentration needs to be substituted inthe ex-
pression of the production rateF([Rep]).

Positive inducers can be handled similarly, except now we have to modify the
binding reactions to only work in the presence of a regulatory protein bound to an
inducer. For example, a positive inducer on an activator would have the modified
reactions

Inducer binding: Act+ Ind−−−⇀↽−−− Act:Ind

Activator binding: DNAp+Act:Ind−−−⇀↽−−− DNA p:Act:Ind

RNAP binding w/ activator: RNAP+DNA p:Act:Ind−−−⇀↽−−− RNAP:DNAp:Act:Ind

Isomerization: RNAP:DNAp:Act:Ind−−→ RNAP:DNAo:Act:Ind

Start of transcription: RNAP:DNAo:Act:Ind−−→ RRNAP:DNAg,1+

DNA p:Act:Ind.

Hence, in the expression of the production rateF([Act]), we should substitute the
concentration [Act:Ind] in place of [Act]. This concentration, in turn, is well ap-
proximated by its quasi-steady state value since binding reactions are much faster
than isomerization and transcription.

Example 2.2(Autoregulation of gene expression). Consider the three circuits shown
in Figure2.18, representing a unregulated gene, a negatively autoregulated gene
and a positively autoregulated gene. We want to model the dynamics of the protein
A starting from zero initial conditions for the three different cases to understand
how the three different circuit topologies affect dynamics.
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Figure 2.18: Autoregulation of gene expression. The three circuits control the expression
of gene regulation using (a) unregulated, (b) negative autoregulation and (c) positive au-
toregulation.

The dynamics of the three circuits can be written in a common form,

dmA

dt
= F(A)−δmA,

dA
dt

= κmA−γA, (2.19)

whereF(A) has the form

Funreg(A)=αB, Frepress(A)=
αB

1+ (A/K)n +α0, Factivate(A)=
αA(A/K)n

1+ (A/K)n +αB

We choose the parameters to be

αA = 1/3, αB = 1/2, α0 = 5×10−4,

κ = 20log(2)/120, δ = log(2)/120, γ = log(2)/600,

K = 104, n= 2,

corresponding to biologically plausible values. Note that the parameters arechosen
so thatf (0)≈ αB for each circuit.

Figure2.19a shows the results of the simulation. We see that initial increase
in protein concentration is identical for each circuit, consistent with our choice
of Hill functions and parameters. As the expression level increases, theeffects of
positive and negative are seen, leading to different steady state expression levels.
In particular, the negative feedback circuit reaches a lower steady state expression
level while the positive feedback circuit settles to a higher value.

In some situations, it makes sense to ask whether different circuit topologies
have different properties that might lead us to choose one over another. In the case
where the circuit is going to be used as part of a more complex pathway, it may
make the most sense to compare circuits that produce the same steady state concen-
tration of the protein A. To do this, we must modify the parameters of the individual
circuits, which can be done in a number of different ways: we can modify the pro-
moter strengths, degradation rates, or other molecular mechanisms reflectedin the
parameters.
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Figure 2.19: Simulations for autoregulated gene expression. (a) Non-normalized expres-
sion levels. (b) Normalized expression.

The steady state expression level for the negative autoregulation case can be
adjusted by using a stronger promoter (modeled byαB) or ribosome binding site
(modeled byκ). The equilibrium point for the negative autoregulation case is given
by the solution of the equations

mA,e=
αKn

δ(Kn+An
e)
, Ae=

κ

γ
mA,e.

These coupled equations can be solved formA,e andAe, but in this case we simply
need to find valuesα′B andκ′ that give the same values as the unregulated case. For
example, if we equate the mRNA levels of the unregulated system with that of the
negatively autoregulated system, we have

αB

δ
=

1
δ

(
α′BKn

Kn+An
e
+α0

)

=⇒ α′B = (αB−α0)
Kn+An

e

Kn , Ae=
αBκ

δγ
,

whereAe is the desired equilibrium value (which we choose using the unregulated
case as a guide).

A similar calculation can be done for the case of positive autoregulation, in
this case decreasing the promoter parametersαA andαB so that the steady state
values match. A simple way to do this is to leaveαA unchanged and decreaseαB

to account for the positive feedback. Solving forα′B to give the same mRNA levels
as the unregulated case yields

α′B = αB−αA
An

e

Kn+An
e
.

Figure2.19b shows simulations of the expression levels over time for the mod-
ified circuits. We see now that the expression levels all reach the same steady state
value. The negative autoregulated circuit has the property that it reaches the steady
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state more quickly, due to the increased rate of protein expression whenA is small
(α′B > αB). Conversely, the positive autoregulated circuit has a slower rate of ex-
pression than the constitutive case, since we have lowered the rate of protein ex-
pression whenA is small. The initial higher and lower expression rates are com-
pensated for via the autoregulation, resulting in the same expression level insteady
state. ∇

We have described how the Hill function can model the regulation of a gene
by a single transcription factor. However, genes can also be regulated by multiple
transcription factors, some of which may be activators and some may be repres-
sors. In this case, the promoter controlling the expression of the gene is called a
combinatorial promoter. The mRNA production rate can thus take several forms
depending on the roles (activators versus repressors) of the various transcription
factors [3]. In general, the production rate resulting from a promoter that takes as
input transcription factors Pi for i ∈ {1, ...,N} will be denotedF(P1, ...,Pn).

Thus, the dynamics of a transcriptional module is often well captured by the
ordinary differential equations

dmPi

dt
= F(P1, ...,Pn)−δPi mPi ,

dPi

dt
= κPi mPi −γPi Pi . (2.20)

For a combinatorial promoter with two input proteins, an activator Pa and a
repressor Pr, in which the activator cannot bind if the repressor is bound to the
promoter, the functionF(Pa,Pr ) can be obtained by employing the competitive
binding in the reduced order models of Section2.1. In this case, assuming the
activator has cooperativity n and the repressor has cooperativity m, weobtain the
expression

F(Pa,Pr ) = α
(Pa/Ka)n

1+ (Pa/Ka)n+ (Pr/Kr )m. (2.21)

Here, we have thatKa = (Km,aKd,a)(1/n), Kr = (Km,r Kd,r)(1/m), in which Kd,a and
Kd,r are the dissociation constants of the activator and repressor, respectively, from
the DNA promoter site, whileKm,a andKm,r are the dissociation constants for the
cooperative binding reactions for the activator and repressor, respectively. In the
case in which the activator is “leaky”, that is, some transcription still occurseven
when there is no activator, the above expression will be modified to

F(Pa,Pr ) = α
(Pa/Ka)n

1+ (Pa/Ka)n+ (Pr/Kr )m +α0,

in which ᾱ is the basal transcription rate when no activator is present. If such a
basal rate can still be repressed by the repressor, the above expression modifies to
the form

F(Pa,Pr ) =
α(Pa/Ka)n+α0

1+ (Pa/Ka)n+ (Pr/Kr )m.
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Figure 2.20: The incoherent feed-forward loop (type I). (a)A schematic diagram of the
circuit. (b) A simulation of a the model in equation (2.22) with αA = 0.01,γ = 0.01,αB = 1,
αC = 100,KB = 0.001, andKA = 1.

Example 2.3 (Incoherent Feed-forward Loops). Combinatorial promoters with
two inputs are often used in systems where a logical “and” is required. As an
example, we illustrate here an incoherent feed-forward loop (type I) [3]. Such a
circuit is composed of three transcription factors A, B, and C, in which A directly
activates C and B while B represses C. This is illustrated in Figure2.20(a). This
is different from a coherent feed-forward loop in which both A and B activate C.
In the incoherent feed-forward loop, if we would like C to be high only when A
is high and R is low (“and” gate), we can consider a combinatorial promoter in
which the activator A and the repressor B competitively bind to the promoter ofC.
The resulting Hill function is given by the expression in (2.21). Depending on the
values of the constants, the expression of C is low unless A is high and B is low.
The resulting ODE model is given by the system

dA
dt
= αA −γA

dB
dt
= αB

A/KA

1+ (A/KA)
−γB

dC
dt
= αC

A/KA

1+ (A/KA)+ (B/KB)
−γC

(2.22)

in which we have assumed no cooperativity of binding for both the activatorand
the repressor. Upon a step ofαA , protein A binds to the promoter of C initiating
transcription, so that protein C starts getting produced. At the same time, protein
B is produced and accumulates until it reaches a large enough value to repress
C. Hence, we can expect a pulse of C production for suitable parameter values.
This is shown in Figure2.20. In addition to being pulse generators, incoherent
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feed-forward loops can accelerate the response time to step inputs, in whichthe
response time is measured by the time the system takes to reach 90% of the steady
state. ∇

Finally, a simple regulation mechanism is based on altering the half life of a pro-
tein. Specifically, the degradation rate of a protein is determined by the amountsof
proteases present, which bind to recognition sites (degradation tags) andthen de-
grade the protein. Degradation of a protein A by a protease P can then be modeled
by the following two-step reaction

A +P
a−⇀↽−
d

C
k−→ P,

in which C=AP is the complex of the protease Y bound to protein X. By the end of
the reaction, protein X has been degraded to nothing, so that this reaction isoften
simplified to X−−→ ∅.

2.4 Post-Transcriptional Regulation

In addition to regulation of expression through modifications of the processof tran-
scription, cells can also regulate the production and activity of proteins via acol-
lection of other post-transcriptional modifications. These include methods ofmod-
ulating the translation of proteins, as well as affecting the activity of a protein via
changes in its conformation, as shown in Figure2.9.

Allosteric modifications to proteins

In allosteric regulation, a regulatory molecule, called allosteric effector, binds to a
site separate from the catalytic site (active site) of an enzyme. This binding causes
a change in the three dimension conformation of the protein, turning off (or turning
on) the catalytic site (Figure2.21).

An allosteric effector can either be an activator or an inhibitor, just like inducers
work for activation or inhibition of transcription factors. Inhibition can either be
competitive or not competitive. In the case of competitive inhibition, the inhibitor
competes with the substrate for binding the enzyme; that is, the substrate can bind
to the enzyme only if the inhibitor is not bound. In the case of non-competitive
inhibition, the substrate can be bound to the enzyme even if the latter is bound to
the inhibitor. In this case, however, the product may not be able to form ormay
form at a lower rate, in which case, we have partial inhibition.

Activation can be absolute or not. Specifically, an activator is absolute when the
enzyme can bind to the substrate only when bound to the activator. Otherwise, the
activator is not absolute. In this section, we derive the expressions forthe produc-
tion rate of the active protein in an enzymatic reaction in the two most common
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./coreproc/figures/Allosteric-diagram.eps

Figure 2.21: In allosteric regulation, a regulatory molecule binds to a site separate from the
catalytic site (active site) of an enzyme. This binding causes a change in the three dimen-
sion conformation of the protein, turning off (or turning on) the catalytic site. Permission
pending.

cases: when we have a (non-competitive) inhibitor I or an (absolute) activator A of
the enzyme.

Allosteric inhibition

Consider the standard enzymatic reaction

E+S
a−⇀↽−
d

ES
k−→ E+P

in which enzyme E binds to substrate S and transforms it into the product P. Let I be
a (non-competitive) inhibitor of enzyme E so that when E is bound to I, the complex
EI can still bind to substrate S, however, the complex EIS is non-productive, that
is, it does not produce P. Then, we have the following additional reactions:

E+ I
k+−−⇀↽−−
k−

EI ES+ I
k+−−⇀↽−−
k−

EIS EI+S
a−⇀↽−
d

EIS,

with the conservation laws (assumingStot is in much greater amounts thanEtot)

Etot = E+ [ES]+ [EI] + [EIS], Stot = S+P+ [ES]+ [EIS] ≈ S+P.

The production rate of P is given bydP/dt = k[ES]. Since binding reactions are
very fast, we can assume all the complexes to be at the quasi-steady state. This
gives

[EIS] =
a
d

[EI] ·S, [EI] =
k+
k−

E · I , [ES]=
1

Km
S ·E,
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in whichKm= (d+k)/a is the Michaelis-Menten constant. Using these expressions,
the conservation law for the enzyme, and the fact thata/d ≈ 1/Km, we obtain

E =
Etot

(I/Kd+1)(1+S/Km)
, with Kd = k−/k+,

so that

[ES]=
S

S+Km

Etot

1+ I/Kd

and, as a consequence,

dP
dt
= k1Etot

(

1
1+ I/Kd

)(

S
S+Km

)

.

Using the conservation law forS, this is also equivalent to

dP
dt
= k1Etot

(

1
1+ I/Kd

)(

(Stot−P)
(Stot−P)+Km

)

.

In our earlier derivations of the Michaelis-Menten kineticsVmax= k1Etot was called
the maximal speed of modification, which occurs when the enzyme is completely
saturated by the substrate (Section2.1). Hence, the effect of a non-competitive
inhibitor is to decrease the maximal speed of modification by a factor 1/(1+ I/Kd).

Another type of inhibition occurs when the inhibitor is competitive, that is, whenI
is bound to E, the complex EI cannot bind to protein S. Since E can either bind to
I or S (not both), I competes against S for binding to E. See Exercise2.10.

Allosteric activation

In this case, the enzyme E can transform S to its active form only when it is bound
to A. Also, we assume that E cannot bind S unless E is bound to A (from here, the
name absolute activator). The reactions are therefore modified to be

E+A
k+−−⇀↽−−
k−

EA

and
EA+S

a−⇀↽−
d

EAS
k−→ P+EA,

with conservation laws

Etot = E+ [EA] + [EAS], Stot ≈ S+P.

The production rate of P is given bydP/dt = k[EAS]. Assuming as above that the
complexes are at the quasi-steady state, we have that

[EA] =
E ·A
Kd

, [EAS] =
S · [EA]

Km
,
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Figure 2.22: Enzyme activity in the presence of allosteric effectors (activators or in-
hibitors). The red plots show the enzyme activity in the presence of an inhibitor as a
function of the inhibitor concentration. The green plots show the enzyme activity in the
presence of an activator as a function of the activator concentration. The different plots
show the effect of the dissociation constant.

which, using the conservation law for E, leads to

E =
Etot

(1+S/Km)(1+A/Kd)
and [EAS]=

(

A
A+Kd

)(

S
S+Km

)

Etot.

Hence, we have that
dP
dt
= kEtot

(

A
A+Kd

)(

S
S+Km

)

.

Using the conservation law for S, this is also equivalent to

dP
dt
= kEtot

(

A
A+Kd

)(

(Stot−P)
(Stot−P)+Km

)

.

The effect of an absolute activator is to modulate the maximal speed of modification
by a factorA/(A+Kd).

Figure 2.22 shows the behavior of the enzyme activity as a function of the
allosteric effector. As the dissociation constant decreases, that is, the affinity of the
effector increases, a very small amount of effector will cause the enzyme activity
to be completely “on” in the case of the activator and completely “off” in the case
of the inhibitor.

Another type of activation occurs when the activator is not absolute, thatis, when
E can bind to S directly, but cannot activate S unless the complex ES first binds A
(see Exercise2.11).
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Figure 2.23: Phosphorylation of a protein via a kinase. Reproduced from Madhani [58];
permission pending.

Covalent modifications to proteins

In addition to regulation that controls transcription of DNA into mRNA, a variety
of mechanisms are available for controlling expression after mRNA is produced.
These include control of splicing and transport from the nucleus (in eukaryotes),
the use of various secondary structure patterns in mRNA that can interfere with
ribosomal binding or cleave the mRNA into multiple pieces, and targeted degrada-
tion of mRNA. Once the polypeptide chain is formed, additional mechanisms are
available that regulate the folding of the protein as well as its shape and activity
level. We briefly describe some of the major mechanisms here.

Material to be written: sRNA, riboswitches.Review

One of the most common types of post-transcriptional regulation is through the
phosphorylationof proteins. Phosphorylation is an enzymatic process in which a
phosphate group is added to a protein and the resulting conformation of the protein
changes, usually from an inactive configuration to an active one. The enzyme that
adds the phosphate group is called akinase(or sometimes aphosphotransferase)
and it operates by transferring a phosphate group from a bound ATP molecule to the
protein, leaving behind ADP and the phosphorylated protein.Dephosphorylation
is a complementary enzymatic process that can remove a phosphate group from
a protein. The enzyme that performs dephosphorylation is called aphosphatase.
Figure2.23shows the process of phosphorylation in more detail.

Phosphorylation is often used as a regulatory mechanism, with the phosphory-
lated version of the protein being the active conformation. Since phosphorylation
and dephosphorylation can occur much more quickly than protein production and
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degradation, it is used in biological circuits in which a rapid response is required.
One common pattern is that a signaling protein will bind to a ligand and the result-
ing allosteric change allows the signaling protein to serve as a kinase. The newly
active kinase then phosphorylates a second protein, which modulates other func-
tions in the cell. Phosphorylation cascades can also be used to amplify the effect of
the original signal; we will describe this in more detail in Section2.5.

Kinases in cells are usually very specific to a given protein, allowing detailed
signaling networks to be constructed. Phosphatases, on the other hand,are much
less specific, and a given phosphatase species may desphosphorylatemany different
types of proteins. The combined action of kinases and phosphatases is important in
signaling since the only way to deactivate a phosphorylated protein is by removing
the phosphate group. Thus phosphatases are constantly “turning off” proteins, and
the protein is activated only when sufficient kinase activity is present.

Phosphorylation of a protein occurs by the addition of a charged phosphate
(PO4) group to the serine (Ser), threonine (Thr) or tyrosine (Tyr) amino acids. Sim-
ilar covalent modifications can occur by the attachment of other chemical groups
to select amino acids.Methylationoccurs when a methyl group (CH3) is added
to lysine (Lys) and is used for modulation of receptor activity and in modifying
histones that are used in chromatin structures.Acetylationoccurs when an acetyl
group (COCH3) is added to lysine and is also used to modify histones.Ubiquitina-
tion refers to the addition of a small protein, ubiquitin, to lysine; the addition of a
polyubiquitin chain to a protein targets it for degradation.

Covalent modification is a post-translational protein modification that affects
the activity of the protein. It plays an important role both in the control of metabolism
and in signal transduction. Here, we focus onreversiblecycles of modification, in
which a protein is interconverted between two forms that differ in activity either
because of effects on the kinetics relative to substrates or for altered sensitivity to
effectors.

At a high level, a covalent modification cycle involves a target protein X, an
enzyme Z for modifying it, and a second enzyme Y for reversing the modifica-
tion (see Figure2.24). We call X∗ the activated protein. There are often allosteric
effectors or further covalent modification systems that regulate the activity of the
modifying enzymes, but we do not consider this added level of complexity here.
There are several types of covalent modification, depending on the typeof acti-
vation of the protein.Phosphorylationis a covalent modification that takes place
mainly in eukaryotes and involves activation of the inactive protein X by addition
of a phosphate group, PO4. In this case, the enzyme Z is called akinasewhile the
enzyme Y is calledphosphatase. Another type of covalent modification, which is
very common in both procaryotes and eukaryotes, ismethylation. Here, the inactive
protein is activated by the addition of a methyl group, CH3.

The reactions describing this system are given by the following two enzymatic
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Figure 2.24: (Left) General diagram representing a covalent modification cycle. (Right)
Detailed view of a phoshorylation cycle including ATP, ADP,and the exchange og the
phosphate group “p”.

reactions, also called a two step reaction model,

Z+X
a1−−⇀↽−−
d1

C1
k1−→ X ∗+Z, Y +X ∗

a2−−⇀↽−−
d2

C2
k2−→ X +Y,

in which we have let C1=ZX be the kinase/protein complex and C2=X * Y be the
active protein/phosphatase complex. The corresponding ODE model is given by

dZ
dt
= −a1Z ·X+ (k1+d1)C1,

dX∗

dt
= k1C1−a2Y ·X∗+d2C2,

dX
dt
= −a1Z ·X+d1C1+k2C2,

dC2

dt
= a2Y ·X∗− (d2+k2)C2,

dC1

dt
= a1Z ·X− (d1+k1)C1,

dY
dt
= −a2Y ·X∗+ (d2+k2)C2.

Furthermore, we have that the total amounts of enzymes Z and Y are conserved.
Denote the total concentrations of Z and Y byZtot, Ytot, respectively. Then, we
have also the conservation lawsZ+C1 = Ztot andY+C2 = Ytot. We can thus reduce
the above system of ODE to the following one, in which we have substitutedZ =
Ztot−C1 andY= Ytot−C2:

dC1

dt
= a1(Ztot−C1) ·X− (d1+k1)C1,

dX∗

dt
= k1C1−a2(Ytot−C2) ·X∗+d2C2,

dC2

dt
= a2(Ytot−C2) ·X∗− (d2+k2)C2.

As for the case of the enzymatic reaction, this system cannot be analytically
integrated. To simplify it, we can perform a similar approximation as done for the



2.4. POST-TRANSCRIPTIONAL REGULATION 75

enzymatic reaction. In particular, the complexes C1 and C2 are often assumed to
reach their steady state values very quickly becausea1,d1,a2,d2≫ k1,k2. There-
fore, we can approximate the above system by substituting forC1 andC2 their
steady state values, given by the solutions to

a1(Ztot−C1) ·X− (d1+k1)C1 = 0

and
a2(Ytot−C2) ·X∗− (d2+k2)C2 = 0.

By solving these equations, we obtain that

C2 =
YtotX∗

X∗+Km,2
, with Km,2 =

d2+k2

a2

and

C1 =
ZtotX

X+Km,1
, with Km,1 =

d1+k1

a1
.

As a consequence, the ODE model of the phosphorylation system can be well
approximated by

dX∗

dt
= k1

ZtotX
X+Km,1

−a2
YtotKm,2

X∗+Km,2
·X∗+d2

YtotX∗

X∗+Km,2
,

which, considering thata2Km,2−d2 = k2, leads finally to

dX∗

dt
= k1

ZtotX
X+Km,1

−k2
YtotX∗

X∗+Km,2
. (2.23)

We will come back to the modeling of this system after we have introduced sin-
gular perturbation theory, through which we will be able to perform a formal anal-
ysis and mathematically characterize the assumptions needed for approximating
the original system by the first order ODE model (2.23). In the model of equation
(2.23), we have thatX = Xtot−X∗ −C1−C2 by the conservation laws. A standard
assumption is that the amounts of enzymes are small compared to the amount of
substrate, so thatX ≈ Xtot−X∗ [33].

Ultrasensitivity

One relevant aspect of the response of the covalent modification cycle toits input is
the sensitivity of the steady state characteristic curve. Specifically, what parameters
affect the shape of the steady state response is a crucial question. To determine the
steady state characteristics, which shows how the steady state ofX∗ changes when
the input stimulusZtot is changed, we setdX∗/dt= 0 in equation (2.23). Using the
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Figure 2.25: Steady state characteristic curve showing therelevance of the response coef-
ficient for ultrasensitivity. AsR→ 1, the pointsy10 andy90 tend to each other.

approximationX ≈ Xtot−X∗, denotingV1 := k1Ztot, V2 := k2Ytot, K̄1 := Km,1/Xtot,
andK̄2 := Km,2/Xtot, we obtain

y :=
V1

V2
=

X∗/Xtot

(

K̄1+ (1−X∗/Xtot)
)

(K̄2+X∗/Xtot) (1−X∗/Xtot)
. (2.24)

We are interested in the shape of the steady state curve ofX∗ as function ofy.
This shape is usually characterized by two key parameters: the responsecoefficient,
denotedR, and the point of half maximal induction, denotedy50. Let yα denote the
value of y corresponding to havingX∗ equalα% of the maximum value ofX∗

obtained fory=∞, which is equal toXtot. Then, the response coefficient is defined
as

R :=
y90

y10
,

and measures how switch-like the response is (Figure2.25). WhenR→ 1 the re-
sponse becomes switch-like. In the case in which the steady state characteristic is a
Hill function, we have thatX∗ = (y/K)n/(1+ (y/K)n), so thatyα = (α/(100−α))(1/n)

and as a consequence

R= (81)(1/n), or equivalentlyn=
log(81)
log(R)

.

Hence, whenn= 1, that is, the characteristic is of the Michaelis-Menten type, we
have thatR= 81, while whenn increases,R decreases. Usually, whenn > 1 the
response is referred to asultrasensitive. The formulan = log(81)/log(R) is often
employed to estimate theapparent Hill coefficientof a dose response curve (the in-
put/output steady state characteristic curve obtained from experimental data)since
Rcan be calculated for any response curve directly from the data points.

In the case of the current system, from equation (2.24), we have that

y90=
(K̄1+0.1) 0.9

(K̄2+0.9) 0.1
and y10=

(K̄1+0.9) 0.1

(K̄2+0.1) 0.9
,
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Figure 2.26: Steady state characteristics of a covalent modification cycle as a function of
the Michaelis-Menten constantsKm,1 andKm,2.

so that

R= 81
(K̄1+0.1)(K̄2+0.1)

(K̄2+0.9)(K̄1+0.9)
. (2.25)

As a consequence, when̄K1, K̄2≫ 1, we have thatR→ 81, which gives a Michaelis-
Menten type of response. If instead̄K1, K̄2≪ 0.1, we have thatR→ 1, which cor-
responds to a theoretic Hill coefficientn≫ 1, that is, a switch-like response (Figure
2.26). In particular, if we have, for example,̄K1 = K̄2 = 10−2, we obtain an appar-
ent Hill coefficient grater than 13. This type of ultrasensitivity is usually referred
to aszero-order ultrasensitivity. The reason of this name is due to the fact that
whenKm,1 is much smaller than the amount of protein substrateX, we have that
ZtotX/(Km,1+X) ≈ Ztot. Hence, the forward modification rate is “zero order” in the
substrate concentration (no free enzyme is left, all is bound to the substrate).

One can study the behavior also of the point of half maximal induction

y50=
K̄1+0.5

K̄2+0.5
,

to find that asK̄2 increases, it decreases and that asK̄1 increases, it increases.

Phosphotransfer systems

Phosphotransfer systems are also a common motif in cellular signal transduction.
These structures are composed of proteins that can phosphorylate each other. In
contrast to kinase-mediated phosphorylation, where the phosphate donor is usually
ATP, in phosphotransfer the phosphate group comes from the donor protein itself
(Figure2.27). Each protein carrying a phosphate group can donate it to the next
protein in the system through a reversible reaction. In this section, we describe a
module extracted from the phosphotransferase system [87].
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Figure 2.27: (a) Diagram of a phosphotransfer system. (b) Proteins X and Z are transferring
the phosphate group p to each other.

Let X be a transcription factor in its inactive form and let X∗ be the same tran-
scription factor once it has been activated by the addition of a phosphate group.
Let Z∗ be a phosphate donor, that is, a protein that can transfer its phosphate group
to the acceptor X. The standard phosphotransfer reactions [78] can be modeled
according to the two-step reaction model

Z∗+X
k1−−⇀↽−−
k2

C1

k3−−⇀↽−−
k4

X ∗+Z,

in which C1 is the complex of Z bound to X bound to the phosphate group. Ad-
ditionally, protein Z can be phosphorylated and protein X∗ dephosphorylated by
other phosphotransfer interactions. These reactions are modeled as one step reac-
tions depending only on the concentrations of Z and X∗, that is,

Z
π1−−→ Z∗, X ∗

π2−−→ X.

Protein X is assumed to be conserved in the system, that is,Xtot = X+C1+X∗.
We assume that protein Z is produced with time-varying production ratek(t) and
decays with rateγ. The ODE model corresponding to this system is thus given by
the equations

dZ
dt
= k(t)−γZ+k3C1−k4X∗Z−π1Z

dC1

dt
= k1Xtot

(

1− X∗

Xtot
− C1

Xtot

)

Z∗−k3C1−k2C1+k4X∗Z

dZ∗

dt
= π1Z+k2C1−k1Xtot

(

1− X∗

Xtot
− C1

Xtot

)

Z∗

dX∗

dt
= k3C1−k4X∗Z−π2X∗.

(2.26)
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Figure 2.28: Output response of the phosphotransfer systemwith a step signalk(t) = 1+
0.5sin(ωt). The parameters are given byγ = 0.01, Xtot = 5000,k1 = k2 = k3 = k4 = π1 =

π2 = 0.01.

Sample simulation results when the input is a time-varying (periodic) stimulus are
shown in Figure2.28. The outputX∗ well “tracks” the input stimulus by virtue of
the fast phosphotransfer reactions.

This model will be considered again in Chapter 7 when the phosphotransfer sys-
tem is proposed as a possible realization of an insulation device to buffer systems
from retroactivity effects.

2.5 Cellular Subsystems

In the previous section we have studied how to model a variety of core processes
that occure in cells. In this section we consider a few common “subsystems” in
which these processes are combined for specific purposes.

Intercellular signaling: MAPK cascades

The Mitogen Activated Protein Kinase (MAPK) cascade is a recurrent structural
motif in several signal transduction pathways (Figure2.29). The cascade consists
of a MAPK kinase kinase (MAPKKK), denoted X0, a MAPK kinase (MAPKK),
denoted X1, and a MAPK, denoted X2. MAPKKKs activate MAPKKs by phospho-
rylation at two conserved sites and MAPKKs activate MAPKs by also phosphory-
lation at conserved sites. The cascade relays signals from the plasma membrane
to targets in the cytoplasm and nucleus. It has been extensively studied and mod-
eled. Here, we provide two different models. First, we build a modular model by
viewing the system as the composition of single phosphorylation cycle modules
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Figure 2.29: Schematic representing the MAPK cascade. It has three levels: the first one
has a single phosphorylation, while the second and the thirdones have a double phospho-
rylation.

(whose ODE model was derived earlier) and double phosphorylation cycle mod-
ules, whose ODE model we derive here. Then, we provide the full list ofreactions
describing the cascade and construct a mechanistic ODE model from scratch. We
will then highlight the difference between the two derived models.

Double phosphorylation model.Consider the double phosphorylation motif in Fig-
ure2.30. The reactions describing the system are given by

E1+X
a1−−⇀↽−−
d1

C1
k1−→ X ∗+E1, E2+X ∗

a2−−⇀↽−−
d2

C2
k2−→ X +E2,

X ∗+E1

a∗1−−⇀↽−−
d∗1

C3

k∗1−→ X ∗∗+E1, E2+X ∗∗
a∗2−−⇀↽−−
d∗2

C4

k∗2−→ X ∗+E2,

in which C1 is the complex of E1 with X, C2 is the complex of E2 with X * , C3 is the
complex of E1 with X * , and C4 is the complex of E2 with X ** . The conservation
laws are given by

E1+C1+C3 = E1,tot, E2+C2+C4 = E2,tot,

Xtot = X+X∗+X∗∗+C1+C2+C3+C4 ≈ X+X∗+X∗∗,
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Figure 2.30: Schematic representing a double phosphorylation cycle.E1 is the input and
X∗∗ is the output.

in which we have assumed the the total amounts of enzymes are small compared
to the total amount of substrate as we have explained earlier. As performedearlier,
we assume that the complexes are at the quasi-steady state since binding reactions
are very fast compared to the catalytic rates. This gives the Michaelis-Menten form
for the amount of formed complexes:

C1 = E1,tot
K∗1 X

K∗1X+K1X∗+K1K∗1
, C3 = E1,tot

K1 X∗

K∗1X+K1X∗+K1K∗1
,

C2 = E2,tot
K∗2 X∗

K∗2X∗+K2X∗∗+K2K∗2
, C4 = E2,tot

K2 X∗∗

K∗2X∗+K2X∗∗+K2K∗2
,

in whichKi = (di +ki)/ai andK∗i = (d∗i +k∗i )/a∗i are the Michaelis-Menten constants
for the enzymatic reactions. Since the complexes are at the quasi-steady state, it
follows that

d
dt

X∗ = k1C1−k2C2−k∗1C3+k∗2C4,

d
dt

X∗∗ = k∗1C3−k∗2C4,

from which, substituting the expressions of the complexes, we obtain that

d
dt

X∗ = E1,tot
k1XK∗1−k∗1X∗K1

K∗1X+K1X∗+K∗1K1
+E2,tot

k∗2X∗∗K2−k2X∗K∗2
K∗2X∗+K2X∗∗+K2K∗2

d
dt

X∗∗ = k∗1E1,tot
K1X∗

K∗1X+K1X∗+K1K∗1
−k∗2E2,tot

K2 X∗∗

K∗2X∗+K2X∗∗+K2K∗2
,

in which X = Xtot−X∗−X∗∗.
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Modular model of MAPK cascades

In this section, to simplify notation, we denote “MAPK” by X2. In a modular com-
position framework, the output of one stage becomes an input to the next stage
downstream of it. Hence, X*0 becomes the input enzyme that activates the phos-
phorylation of X1, and X**

1 becomes the input enzyme that activates the phospho-
rylation of X2. Let (a1,i ,d1,i ,k1,i) and (a2,i ,d2,i ,k2,i) be the association, dissociation,
and catalytic rates for the forward and backward enzymatic reactions, respectively,
for the first cycle at stagei ∈ {0,1,2}. Similarly, let (a∗1,i ,d

∗
1,i ,k

∗
1,i) and (a∗2,i ,d

∗
2,i ,k

∗
2,i)

be the association, dissociation, and catalytic rates for the forward and backward
enzymatic reactions, respectively, for the second cycle at stagei ∈ {1,2}. Also, de-
note byK1,i andK2,i for i ∈ {0,1,2} the Michaelis-Menten constants of the forward
and backward enzymatic reactions, respectively, of the first cycle at stagei. Sim-
ilarly, denoteK∗1,i andK∗2,i for i ∈ {1,2} be the Michaelis-Menten constants of the
forward and backward enzymatic reactions, respectively, of the second cycle at
stagei. Let P1,tot andP2,tot be the total amounts of the X1 and X2 phosphatases,
respectively. Then, the modular ODE model of the MAPK cascade is given by

d
dt

X∗0 = k1,0E1,tot
X0

X0+K1,0
−k2,0P0,tot

X∗0
X∗0+K2,0

d
dt

X∗1 = X∗0
k1,1 X0 K∗1,1−k∗1,1 X∗1 K1,1

K∗1,1 X1+K1,1 X∗1+K1,1K∗1,1
+P1,tot

k∗2,1 K2,1 X∗∗1 −k2,1 X∗1 K∗2,1
K∗2,1 X∗1+K2,1 X∗∗1 +K2,1K∗2,1

d
dt

X∗∗1 = k∗1,1 X∗0
X∗1 K1,1

K∗1,1 X1+K1,1 X∗1+K1,1K∗1,1
−k∗2,1 P1,tot

X∗∗1 K2,1

K∗2,1 X∗1+K2,1 X∗∗1 +K2,1K∗2,1

d
dt

X∗2 = X∗∗1
k1,2X2 K∗1,2−k∗1,2 X∗2 K1,2

K∗1,2 X2+K1,2 X∗2+K∗1,2 K1,2
+P2,tot

k∗2,2 K2,2 X∗∗2 −k2,2 X∗2 K∗2,2
K∗2,2 X∗2+K2,2 X∗∗2 +K2,2 K∗2,2

d
dt

X∗∗2 = k∗1,2 X∗∗1
X∗2 K1,2

K∗1,2 X2+K1,2 X∗2+K∗1,2 K1,2
−k∗2,2 P2,tot

X∗∗2 K2,2

K∗2,2 X∗2+K2,2 X∗∗2 +K2,2 K∗2,2

(2.27)

in which, lettingX0,tot,X1,tot and X2,tot represent the total amounts of each stage
protein, we haveX0 = X0,tot−X∗0, X1 = X1,tot−X∗1−X∗∗1 andX2 = X2,tot−X∗2−X∗∗2 .
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Mechanistic model of the MAPK cascade

We now give the entire set of reactions for the MAPK cascade of Figure2.29as
they are found in standard references (Huang-Ferrell model [41]):

E1+X0

a1,0−−−⇀↽−−−
d1,0

C1

k1,0−−→ X ∗0 +E1 P0+X ∗0
a2,0−−−⇀↽−−−
d2,0

C2

k2,0−−→ X0+P0

X ∗0 +X1

a1,1−−−⇀↽−−−
d1,1

C3

k1,1−−→ X ∗1 +X ∗0 X ∗1 +P1

a2,1−−−⇀↽−−−
d2,1

C4

k2,1−−→ X1+P1

X ∗0 +X ∗1
a∗1,1−−−⇀↽−−−
d∗1,1

C5

k∗1,1−−→ X ∗∗1 +X ∗0 X ∗∗1 +P1

a∗2,1−−−⇀↽−−−
d∗2,1

C6

k∗2,1−−→ X ∗1 +P1

X ∗∗1 +X2

a1,2−−−⇀↽−−−
d1,2

C7

k1,2−−→ X ∗2 +X ∗∗1 X ∗2 +P2

a2,2−−−⇀↽−−−
d2,2

C8

k2,2−−→ X2+P2

X ∗∗1 +X ∗2
a∗1,2−−−⇀↽−−−
d∗1,2

C9

k∗1,2−−→ X ∗∗2 +X ∗∗1 X ∗∗2 +P2

a∗2,2−−−⇀↽−−−
d∗2,2

C10

k∗2,2−−→ X ∗2 +P2,

with conservation laws

X0,tot = X0+X∗0+C1+C2+C3+C5

X1,tot = X1+X∗1+C3+X∗∗1 +C4+C5+C6+C7+C9

X2,tot = X2+X∗2+X∗∗2 +C7+C8+C9+C10

E1,tot = E1+C1, P0,tot = P0+C2

P1,tot = P1+C4+C6

P2,tot = P2+C8+C10.
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The corresponding ODE model is given by

d
dt

C1 = a1,0E1 X0− (d1,0+k1,0) C1

d
dt

X∗0 = k1,0 C1+d2,0 C2−a2,0 P0 X∗0+ (d1,1+k1,1) C3−a1,1 X1 X∗0

+ (d∗1,1+k∗1,1) C5−a∗1,1 X∗0 X∗1
d
dt

C2 = a2,0 P0 X∗0− (d2,0+k2,0) C2

d
dt

C3 = a1,1 X1 X∗0− (d1,1+k1,1) C3

d
dt

X∗1 = k1,1 C3+d2,1 C4−a2,1 X∗1 P1+d∗1,1C5−a∗1,1 X∗1 X∗0+k∗2,1 C6

d
dt

C4 = a2,1 X∗1 P1− (d2,1+k2,1) C4

d
dt

C5 = a∗1,1 X∗0 X∗1− (d∗1,1+k∗1,1) C5

d
dt

X∗∗1 = k∗1,1 C5−a∗2,1 X∗1 P1+d∗2,1 C6−a1,2 X∗∗1 X2

+ (d1,2+k1,2) C7−a∗1,2 X∗∗1 X∗2+ (d∗1,2+k∗1,2) C9

d
dt

C6 = a∗2,1 X∗∗1 P1− (d∗2,1+k∗2,1) C6

d
dt

C7 = a∗1,2 X∗1 X2− (d∗1,2+k∗1,2) C7

d
dt

X∗2 = −a2,2 X∗2 P2+d2,2 C8−a∗1,2 X∗2 X∗∗2 +d∗1,2 C9+C10 K10

d
dt

C8 = a∗2,2 X∗2 P2− (d2,2+k2,2) C8

d
dt

X∗∗2 = k∗1,2 C9−a∗2,2 X∗∗2 P2+d∗2,2 C10

d
dt

C9 = a∗1,2 X∗∗1 X∗2− (d∗1,2+k∗1,2) C9

d
dt

C10= a∗2,2 X∗∗2 P2− (d∗2,2+k∗2,2) C10.

Assuming as before that the total amounts of enzymes are much smaller than
the total amounts of substrates (E1,tot,P0,tot,P1,tot,P2,tot ≪ X0,tot,X1,tot,X2,tot), we
can approximate the conservation laws as

X0,tot ≈ X0+X∗0+C3+C5,

X1,tot ≈ X1+X∗1+C3+X∗∗1 +C5+C7+C9,

X2,tot ≈ X2+X∗2+X∗∗2 +C7+C9.
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Using these and assuming that the complexes are at the quasi-steady state, we ob-
tain the following functional dependencies:

C1 = f1(X∗0,X
∗
1,X

∗∗
1 ,X

∗
2,X

∗∗
2 ), C2 = f2(X∗0),

C3 = f3(X∗0,X
∗
1,X

∗∗
1 ,X

∗
2,X

∗∗
2 ), C5 = f5(X∗0,X

∗
1),

C7 = f7(X∗1,X
∗∗
1 ,X

∗
2,X

∗∗
2 ), C9 = f9(X∗∗1 ,X

∗
2).

The fact thatC7 depends onX∗2 andX∗∗2 illustrates that the dynamics of the second
stage are influenced by those of the third stage. Similarly, the fact thatC3 depends
on X∗1,X

∗∗
1 ,X

∗
2,X

∗∗
2 indicates that the dynamics of the first stage are influenced by

those of the second stage and by that of the third stage. The phenomenon by which
the behavior of a “module” is influenced by that of its downstream clients is called
retroactivity, which is a phenomenon similar to impedance in electrical systems
and to back-effect in mechanical systems. It will be studied at length in Chapter 7.

This fact is in clear contrast with the ODE model obtained by modular compo-
sition, in which each stage dynamics depended upon the variables of the upstream
stages and not upon those of the downstream stages. That is, from equations (2.27),
it is apparent that the dynamics ofX∗0 (first stage) do not depend on the variables of
the second stage (X1,X∗1,X

∗∗
1 ). In turn, the dynamics ofX∗1 andX∗∗1 (second stage)

do not depend on the variables of the third stage (X∗2 andX∗∗2 ). Indeed modular com-
position does not consider the fact that the proteins of each stage are “used-up” in
the process of transmitting information to the downstream stages. This backward
effect has been theoretically shown to lead to sustained oscillations in the MAPK
cascade [76]. By contrast, the modular ODE model of MAPK cascades does not
give rise to sustained oscillations.

Properties of the MAPK Cascade

The stimulus-response curve obtained with the mechanistic model predicts thatthe
response of the MAPKKK to the stimulusE1,tot is of the Michaelis-Menten type.
By contrast, the stimulus-response curve obtained for the MAPKK and MAPK
are sigmoidal and show high Hill coefficients, which increases from the MAPKK
response to the MAPK response. That is, an increase ultrasensitivity is observed
moving down in the cascade (Figure2.31). These model observations persist when
key parameters, such as the Michaelis-Menten constants are changed [41]. Fur-
thermore, zero-order ultrasensitivity effects can be observed. Specifically, if the
amounts of MAPKK were increased, one would observe a higher apparent Hill
coefficient for the response of MAPK. Similarly, if the values of theKm for the re-
actions in which the MAPKK takes place were decreased, one would also observe
a higher apparent Hill coefficient for the response of MAPK. Double phosphory-
lation is also key to obtain a high apparent Hill coefficient. In fact, a cascade in
which the double phosphorylation was assumed to occur through a one-step model
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Figure 2.31: Dose response of the MAPK cascade for every stage. Simulations from the
model of [76].

(similar to single phosphorylation) predicted substantially lower apparent Hillco-
efficients.

Additional topics to be added later:Review

1. Transport across the membrane

2. Membrane receptors, ligand binding, G-proteins

Exercises

2.1 (BE 150, Winter 2011) Consider a cascade of three activators X→Y→ Z. Pro-
tein X is initially present in the cell in its inactive form. The input signal of X,Sx,
appears at time t=0. As a result, X rapidly becomes active and binds the promoter
of gene Y, so that protein Y starts to be produced at rateβ. When Y levels exceed
a thresholdK, gene Z begins to be transcribed and translated at rateβ. All proteins
have the same degradation/dilution rateγ.

(a) What are the concentrations of proteins Y and Z as a function of time?

(b) What is the minimum duration of the pulseSx such that Z will be produced?

(c) What is response time of protein Z with respect to the time of addition ofSx?
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2.2(Hill function for a cooperative repressor) Consider a repressor that binds to an
operator site as a dimer:

R1: R+R−−−⇀↽−−− R2

R2: R2+DNA p −−−⇀↽−−− R2:DNA

R3: RNAP+DNA p −−−⇀↽−−− RNAP:DNAp

Assume that the reactions are at equilibrium and that the RNA polymerase con-
centration is large (so that [RNAP] is roughly constant). Show that the ratioof the
concentration of RNA:DNAp to the total amount of DNA,Dtot, can be written as a
Hill function

f (R) =
[RNAP:DNA]

Dtot
=

α

K +R2

and give expressions forα andK.

2.3 (Switch-like behavior in cooperative binding) Derive the expressions of C and
A at the steady state when you have the cooperative binding reactions

B+B+ ...+B
k1−−⇀↽−−
k2

Bn, Bn+A
a−⇀↽−
d

C, and A+C = Atot.

Make MATLAB plots of the expressions that you obtain and verify that asn in-
creases the functions become more switch-like.

2.4 Consider the following modification of the competitive binding reactions:

Ba+A
a−⇀↽−
d

C, Br+A
ā−⇀↽−̄
d

C̄,

and

C+Br
a′−−⇀↽−−
d′

C
′
, andC̄+Ba

ā′−−⇀↽−−̄
d′

C
′

with Atot = A+C+ C̄+C′. What are the steady state expressions forA andC?
What information do you deduce from these expressions if A is a promoter,Ba
is an activator protein, and C is the activator/DNA complex that makes the gene
transcriptionally active?

2.5 Consider the case of a competitive binding of an activator A and a repressor
R with D and assume that before they can bind D they have to cooperatively bind
according to the following reactions:

A +A + ...+A
k1−−⇀↽−−
k2

An, R+R+ ...+R
k̄1−−⇀↽−−
k̄2

Rm,
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in which the complex An contains n molecules of A and the complex Rm contains
m molecules of R. The competitive binding reactions with A are given by

An+D
a−⇀↽−
d

C, Rm+D
a′−−⇀↽−−
d′

C′,

andDtot = D+C+C′. What are the steady state expressions forC andD?

2.6 Assume that we have an activator Ba and a repressor protein Br. We want to
obtain an input function such that when a lot of Ba is present, the gene is tran-
scriptionally active only if there is no Br, when low amounts of Ba are present, the
gene is transcriptionally inactive (with or without Br). Write down the reactions
among Ba, Br, and complexes with the DNA (A) that lead to such an input func-
tion. Demonstrate that indeed the set of reactions you picked leads to the desired
input function.

2.7 Consider the phosphorylation reactions described in Section2.4, but suppose
that the kinase concentrationZ is not constant, but is produced and decays accord-

ing to the reaction Z
γ
−−−⇀↽−−−
k(t)
∅. How should the system in equation (2.23) be modified?

Use a MATLAB simulation to apply a periodic input stimulusk(t) using parameter
values:k1 = k2 = 1, a1 = a2 = d1 = d2 = 10,γ = 0.01. Is the cycle capable of “track-
ing” the input stimulus? If yes, to what extent? What are the tracking properties
depending on?

2.8 Another model for the phosphorylation reactions, referred to as one step re-
action model, is given by Z+X −−→ X ∗+Z and Y+X ∗ −−→ X +Y, in which the
complex formations are neglected. Write down the ODE model and comparing the
differential equation ofX∗ to that of equation (2.23), list the assumptions under
which the one step reaction model is a good approximation of the two step reaction
model.

2.9 (Transcriptional regulation with delay) Consider a repressor or activator B∗

modeled by a Hill functionF(B). Show that in the presence of transcriptional delay
τm, the dynamics of the active mRNA can be written as

dm∗(t)
dt

= e−τ
m
F(B(t−τm))− δ̄m∗.

2.10(Competitive Inhibition) Derive the expression of the production rate ofX∗ in
the phosphorylation cycle in the presence of a competitive inhibitor I.

2.11(Non-absolute activator) Derive the expression of the production rateof X∗ in
the phosphorylation cycle in the presence of a non-absolute activator A.



Chapter 3
Analysis of Dynamic Behavior

In this chapter, we describe some of the tools from dynamical systems and feed-
back control theory that will be used in the rest of the text to analyze and design
biological circuits, building on tools already described in AM08. We focus here on
deterministic models and the associated analyses; stochastic methods are givenin
Chapter4.

Prerequisites.Readers should have a understanding of the tools for analyzing sta-
bility of solutions to ordinary differential equations, at the level of Chapter 4 of
AM08. We will also make use of linearized input/output models in state space,
based on the techniques described in Chapter 5 of AM08 and the frequency do-
main techniques described in Chapters 8–10.

3.1 Analysis Near Equilibria

As in the case of many other classes of dynamical systems, a great deal ofinsight
into the behavior of a biological system can be obtained by analyzing the dynamics
of the system subject to small perturbations around a known solution. We begin by
considering the dynamics of the system near an equilibrium point, which is oneof
the simplest cases and provides a rich set of methods and tools.

In this section we will model the dynamics of our system using the input/output
modeling formalism described in Chapter1:

ẋ= f (x, θ,u), y= h(x, θ), (3.1)

wherex ∈ Rn is the system state,θ ∈ Rp are the system parameters andu ∈ Rq is
a set of external inputs (including disturbances and noise). The systemstatex is a
vector whose components will represent concentration of species, such as proteins,
kinases, DNA promoter sites, inducers, allosteric effectors, etc. The system param-
etersθ is also a vector, whose components will represent biochemical parameters
such as association and dissociation rates, production rates, decay rates, dissoci-
ation constants, etc. The inputu is a vector whose components will represent a
number of possible physical entities, including the concentration of transcription
factors, DNA concentration, kinases concentration, etc. The outputy ∈ Rm of the
system represents quantities that can be measured or that are used to interconnect
subsystem models to form larger models.
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Example 3.1(Transcriptional component). Consider a promoter controlling a gene
g that can be regulated by a transcription factor Z. Let mG and G represent the
mRNA and protein expressed by gene g. This system can be viewed as a system,
in which u= Z is the concentration of transcription factor regulating the promoter,
the statex= (x1, x2) is such thatx1 =mG is the concentration of mRNA andx2 =G
is the concentration of protein, andy = G = x2 is the concentration of protein G.
Assuming that the transcription factor regulating the promoter is a repressor, the
system dynamics can be described by the following system

dx1

dt
=

α

1+ (u/K)n −δx1,
dx2

dt
= κx1−γx2, y= x2 (3.2)

in which θ = (α,K, δ, κ,γ,n) is the vector of system parameters. In this case, we
have that

f (x, θ,u) =




α

1+ (u/K)n −δx1

κx1−γx2




, h(x, θ) = x2.

∇

Note that we have chosen to explicitly model the system parametersθ, which
can be thought of as an additional set of (mainly constant) inputs to the system.

Equilibrium points and stability [AM08]

We begin by considering the case where the inputu and parametersθ in equa-
tion (3.1) are fixed and hence we can write the dynamics of the system as

dx
dt
= f (x). (3.3)

An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a statexe is an equilibrium point for a dynamical system
if f (xe) = 0. If a dynamical system has an initial conditionx(0) = xe, then it will
stay at the equilibrium point:x(t) = xe for all t ≥ 0.

Equilibrium points are one of the most important features of a dynamical sys-
tem since they define the states corresponding to constant operating conditions. A
dynamical system can have zero, one or more equilibrium points.

Thestabilityof an equilibrium point determines whether or not solutions nearby
the equilibrium point remain close, get closer or move further away. An equilibrium
point xe is stableif solutions that start nearxe stay close toxe. Formally, we say
that the equilibrium pointxe is stable if for allǫ > 0, there exists aδ > 0 such that

‖x(0)− xe‖ < δ =⇒ ‖x(t)− xe‖ < ǫ for all t > 0,

where x(t) represents the solution the the differential equation (3.3) with initial
conditionx(0). Note that this definition does not imply thatx(t) approachesxe as
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Figure 3.1: Phase portrait (trajectories in the state space) on the left and time domain sim-
ulation on the right for a system with a single stable equilibrium point. The equilibrium
point xe at the origin is stable since all trajectories that start near xe stay nearxe.

time increases but just that it stays nearby. Furthermore, the value ofδ may depend
on ǫ, so that if we wish to stay very close to the solution, we may have to start
very, very close (δ≪ ǫ). This type of stability, which is illustrated in Figure3.1,
is also calledstability in the sense of Lyapunov. If an equilibrium point is stable in
this sense and the trajectories do not converge, we say that the equilibriumpoint is
neutrally stable.

An example of a neutrally stable equilibrium point is shown in Figure3.1. From
the phase portrait, we see that if we start near the equilibrium point, then we stay
near the equilibrium point. Indeed, for this example, given anyǫ that defines the
range of possible initial conditions, we can simply chooseδ = ǫ to satisfy the defi-
nition of stability since the trajectories are perfect circles.

An equilibrium pointxe is asymptotically stableif it is stable in the sense of
Lyapunov and alsox(t)→ xe ast→∞ for x(0) sufficiently close toxe. This corre-
sponds to the case where all nearby trajectories converge to the stable solution for
large time. Figure3.2 shows an example of an asymptotically stable equilibrium
point.

Note from the phase portraits that not only do all trajectories stay near the equi-
librium point at the origin, but that they also all approach the origin ast gets large
(the directions of the arrows on the phase portrait show the direction in which the
trajectories move).

An equilibrium pointxe is unstableif it is not stable. More specifically, we say
that an equilibrium pointxe is unstable if given someǫ > 0, there doesnot exist a
δ > 0 such that if‖x(0)− xe‖ < δ, then‖x(t)− xe‖ < ǫ for all t. An example of an
unstable equilibrium point is shown in Figure3.3.

The definitions above are given without careful description of their domain of
applicability. More formally, we define an equilibrium point to belocally stable
(or locally asymptotically stable) if it is stable for all initial conditionsx ∈ Br (a),
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Figure 3.2: Phase portrait and time domain simulation for a system with a single asymp-
totically stable equilibrium point. The equilibrium pointxe at the origin is asymptotically
stable since the trajectories converge to this point ast→∞.

where
Br (a) = {x : ‖x−a‖ < r}

is a ball of radiusr arounda andr > 0. A system isglobally stableif it is stable for
all r > 0. Systems whose equilibrium points are only locally stable can have inter-
esting behavior away from equilibrium points, as we explore in the next section.

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called theregion of attractionfor the equilibrium point. In general,
computing regions of attraction is difficult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable equilibria
that are attracting. This gives partial information about the behavior of thesystem.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes anattractor. An unstable equilibrium point can be either a
source, if all trajectories lead away from the equilibrium point, or asaddle, if some
trajectories lead to the equilibrium point and others move away (this is the situ-
ation pictured in Figure3.3). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as the one in Figure3.1) is called
acenter.

Example 3.2(Bistable gene circuit). Consider a system composed of two genes
that express transcription factors that repress each other as shown inFigure3.4.
Denoting the concentration of protein A byx1 and that of protein B byx2 and
neglecting the mRNA dynamics, the system can be modeled by the following dif-
ferential equations:

dx1

dt
=

α1

1+ (x2/K2)n −γx1,
dx2

dt
=

α2

1+ (x1/K1)n −γx2.
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Figure 3.3: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium pointxe at the origin is unstable since not all trajectories
that start nearxe stay nearxe. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

Figure3.4(b) shows the phase portrait of the system. This system is bi-stable be-
cause there are two (asymptotically) stable equilibria. Specifically, the trajectories
converge to either of two possible equilibria: one wherex1 is high andx2 is low
and the other wherex1 is low andx2 is high. A trajectory will approach the first
one if the initial condition is below the dashed line, called the separatrix, while it
will approach the second one if the initial condition is above the separatrix. Hence,
the region of attraction of the first equilibrium is the region of the plane below the
separatrix and the region of attraction of the second one is the portion of theplane
above the separatrix. ∇

Nullcline Analysis

Nullcline analysis is a simple and intuitive way to determine the stability of an
equilibrium point for systems inR2. Consider the system withx = (x1, x2) ∈ R2

described by the differential equations

dx1

dt
= f1(x1, x2),

dx2

dt
= f2(x1, x2).

The nullclines of this system are given by the two curves in thex1, x2 plane in
which f1(x1, x2) = 0 and f2(x1, x2) = 0. The nullclines intersect at the equilibria of
the systemxe. Figure3.5shows an example in which there is a unique equilibrium.

The stability of the equilibrium is deduced by inspecting the direction of the
trajectory of the system starting at initial conditionsx close to the equilibriumxe.
The direction of the trajectory can be obtained by determining the signs off1 and
f2 in each of the regions in which the nullclines partition the plane around the
equilibrium xe. If f1 < 0 ( f1 > 0), we have thatx1 is going to decrease (increase)
and similarly if f2 < 0 ( f2 > 0), we have thatx2 is going to decrease (increase). In
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Figure 3.4: (a) Diagram of a bistable gene circuit composed of two genes. (b) Phase plot
showing the trajectories converging to either one of the twopossible stable equilibria de-
pending on the initial condition. The parameters areα1 = α2 = 1, K1 = K2 = 0.1, andγ = 1.

Figure3.5, we show a case in whichf1 < 0 on the right-hand side of the nullcline
f1 = 0 and f1 > 0 on the left-hand side of the same nullcline. Similarly, we have
chosen a case in whichf2 < 0 above the nullclinef2 = 0 and f2 > 0 below the same
nullcline. Given these signs, it is clear (see the figure) that starting from any point
x close toxe the vector field will always point toward the equilibriumxe and hence
the trajectory will tend toward such equilibrium. In this case, it then follows that
the equilibriumxe is asymptotically stable.

Example 3.3 (Negative autoregulation). As an example, consider expression of
a gene with negative feedback. Letx1 represent the mRNA concentration andx2

represent the protein concentration. Then, a simple model (in which for simplicity
we have assumed all parameters to be 1) is given by

dx1

dt
=

1
1+ x2

− x1,
dx2

dt
= x1− x2,

so that f1(x1, x2) = 1/(1+ x2)− x1 and f2(x1, x2) = x1− x2. Figure3.5(a) exactly
represents the situation for this example. In fact, we have that

f1(x1, x2) < 0 ⇐⇒ x1 >
1

1+ x2
, f2(x1, x2) < 0 ⇐⇒ x2 > x1,

which provides the direction of the vector field as shown in Figure3.5. As a con-
sequence, the equilibrium point is stable. The phase plot of Figure3.5(b) confirms
this fact since the trajectories all converge to the unique equilibrium point.∇

Stability analysis via linearization

For systems with more than two states, the graphical technique of nullcline analysis
cannot be used. Hence, we must resort to other techniques to determine stability.
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Figure 3.5: (a) Example of nullclines for a system with a single equilibrium pointxe. To
understand the stability of the equilibrium pointxe, one traces the direction of the vec-
tor field (f1, f2) in each of the four regions in which the nullcline partitionthe plane. If
in each region the vector field points toward the equilibriumpoint, then such a point is
asymptotically stable. (b) Phase plot diagram for the negative autoregulation example.

Consider a linear dynamical system of the form

dx
dt
= Ax, x(0)= x0, (3.4)

whereA ∈ Rn×n. For a linear system, the stability of the equilibrium at the origin
can be determined from the eigenvalues of the matrixA:

λ(A) = {s∈ C : det(sI−A) = 0}.

The polynomial det(sI− A) is thecharacteristic polynomialand the eigenvalues
are its roots. We use the notationλ j for the jth eigenvalue ofA andλ(A) for the
set of all eigenvalues ofA, so thatλ j ∈ λ(A). For each eigenvalueλ j there is a
corresponding eigenvectorv j ∈ Rn, which satisfies the equationAvj = λ jv j .

In generalλ can be complex-valued, although ifA is real-valued, then for any
eigenvalueλ, its complex conjugateλ∗ will also be an eigenvalue. The origin is al-
ways an equilibrium point for a linear system. Since the stability of a linear system
depends only on the matrixA, we find that stability is a property of the system. For
a linear system we can therefore talk about the stability of the system rather than
the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose system matrices
are in diagonal form. In this case, the dynamics have the form

dx
dt
=




λ1 0
λ2

. . .

0 λn




x. (3.5)
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It is easy to see that the state trajectories for this system are independent of each
other, so that we can write the solution in terms ofn individual systems ˙x j = λ j x j .
Each of these scalar solutions is of the form

x j(t) = eλ j tx j(0).

We see that the equilibrium pointxe= 0 is stable ifλ j ≤ 0 and asymptotically stable
if λ j < 0.

Another simple case is when the dynamics are in the block diagonal form

dx
dt
=




σ1 ω1 0 0
−ω1 σ1 0 0

0 0
. . .

...
...

0 0 σm ωm

0 0 −ωm σm




x.

In this case, the eigenvalues can be shown to beλ j = σ j ± iω j . We once again can
separate the state trajectories into independent solutions for each pair of states, and
the solutions are of the form

x2 j−1(t) = eσ j t(x2 j−1(0)cosω j t+ x2 j(0)sinω j t
)

,

x2 j(t) = eσ j t(−x2 j−1(0)sinω j t+ x2 j(0)cosω j t
)

,

where j = 1,2, . . . ,m. We see that this system is asymptotically stable if and only
if σ j = Reλ j < 0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some systemscan
be transformed into these forms via coordinate transformations. One such class
of systems is those for which the dynamics matrix has distinct (non-repeating)
eigenvalues. In this case there is a matrixT ∈ Rn×n such that the matrixT AT−1 is
in (block) diagonal form, with the block diagonal elements corresponding tothe
eigenvalues of the original matrixA. If we choose new coordinatesz= T x, then

dz
dt
= Tẋ= T Ax= T AT−1z

and the linear system has a (block) diagonal dynamics matrix. Furthermore,the
eigenvalues of the transformed system are the same as the original system since
if v is an eigenvector ofA, thenw = Tv can be shown to be an eigenvector of
T AT−1. We can reason about the stability of the original system by noting that
x(t) = T−1z(t), and so if the transformed system is stable (or asymptotically stable),
then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the stabil-
ity of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we make use of the
following theorem, proved in the next chapter:
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Theorem 3.1(Stability of a linear system). The system

dx
dt
= Ax

is asymptotically stable if and only if all eigenvalues of A all have a strictly negative
real part and is unstable if any eigenvalue of A has a strictly positive real part.

In the case in which the system state is two-dimensional, that is,x∈R2, we have
a simple way of determining the eigenvalues of a matrixA. Specifically, denote by
tr(A) the trace ofA, that is, the sum of the diagonal terms, and let det(A) be the
determinant ofA. Then, we have that the two eigenvalues are given by

λ1,2 =
1
2

(

tr(A)±
√

tr(A)2−4det(A)
)

.

Both eigenvalues have negative real parts when (1) tr(A) < 0 and (2) det(A) > 0. By
contrast, if condition (2) is satisfied but tr(A) > 0, the eigenvalues have positive real
parts.

An important feature of differential equations is that it is often possible to de-
termine the local stability of an equilibrium point by approximating the system by
a linear system. Suppose that we have a nonlinear system

dx
dt
= f (x)

that has an equilibrium point atxe. Computing the Taylor series expansion of the
vector field, we can write

dx
dt
= f (xe)+

∂ f
∂x

∣
∣
∣
∣
∣
xe

(x− xe)+higher-order terms in (x− xe).

Since f (xe) = 0, we can approximate the system by choosing a new state variable
z= x− xe and writing

dz
dt
= Az, where A=

∂ f
∂x

∣
∣
∣
∣
∣
xe

. (3.6)

We call the system (3.6) the linear approximationof the original nonlinear system
or the linearizationat xe. We also refer to matrixA as theJacobian matrixof the
original nonlinear system.

The fact that a linear model can be used to study the behavior of a nonlinear
system near an equilibrium point is a powerful one. Indeed, we can takethis even
further and use a local linear approximation of a nonlinear system to designa feed-
back law that keeps the system near its equilibrium point (design of dynamics).
Thus, feedback can be used to make sure that solutions remain close to the equilib-
rium point, which in turn ensures that the linear approximation used to stabilize it
is valid.
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Example 3.4(Negative autoregulation). Consider again the negatively autoregu-
lated gene modeled by the equations

dx1

dt
=

1
1+ x2

− x1,
dx2

dt
= x1− x2.

In this case,

f (x) =

( 1
1+x2
− x1

x1− x2

)

,

so that, lettingxe= (x1,e, x2,e), the Jacobian matrix is given by

A=
∂ f
∂x

∣
∣
∣
∣
∣
xe

=





−1 − 1
(1+x2,e)2

1 −1



 .

In this case, we have that tr(A) = −2< 0 and that det(A) = 1+ 1
(1+x2,e)2 > 0. Hence,

independently of the value of the equilibrium point, the eigenvalues have bothneg-
ative real parts, which implies that the equilibrium pointxe is asymptotically sta-
ble. ∇

Frequency domain analysis

Frequency domain analysis is a way to understand how well a system can respond
to rapidly changing input stimuli. As a general rule, most physical systems display
an increased difficulty in responding to input stimuli as the frequency of variation
increases: when the input stimulus changes faster than the natural time scales of the
system, the system becomes incapable of responding. If instead the input stimulus
is changing much slower than the natural time scales of the system, the system
will respond very accurately. That is, the system behaves like a “low-pass filter”.
The cut-off frequency at which the system does not display a significant response
is called thebandwidthand quantifies the dominant time scale. To identify this
dominant time scale, we can perform input/output experiments in which the system
is excited with periodic input at various frequencies.

Example 3.5(Phosphorylation cycle). To illustrate the basic ideas, we consider
the frequency response of a phosphorylation cycle, in which enzymatic reactions
are modeled by a first order reaction. Referring to Figure3.6a, we have that the one
step reactions involved are given by

Z+X
k1−→ Z+X ∗, Y +X ∗

k2−→ Y +X,

with conservation lawX+X∗ = Xtot. Let Ytot be the total amount of phosphatase.
We assume that the kinase Z has a time-varying concentration, which we view as
the input to the system, whileX∗ is theoutputof the system.
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Figure 3.6: (a) Diagram of a phosphorylation cycle, in whichZ is the kinase, X is the
substrate, and Y is the phosphatase. (b) Bode plot showing the magnitude and phase lag
for the frequency response of a one step reaction model of thephosphorylation system
on the left. The magnitude is plotted in decibels (dB), in which M|dB = 20log10(M). The
parameters areβ = γ = 1.

The differential equation model is given by

dX∗

dt
= k1Z(t)(Xtot−X∗)−k2YtotX

∗,

If we assume that the cycle is weakly activated (X∗ ≪ Xtot), the above equation is
well approximated by

dX∗

dt
= βZ(t)−γX∗, (3.7)

whereβ = k1Xtot andγ = k2Ytot. To determine the frequency response, we set the
inputZ(t) to a periodic function. It is customary to take sinusoidal functions as the
input signal as they lead to an easy way to calculate the frequency response. Let
thenZ(t) = A0sin(ωt).

Since equation (3.7) is linear in the stateX∗ and inputZ, it can be directly
integrated to lead to

X∗(t) =
A0β

√

ω2+γ2
sin(ωt− tan−1(ω/γ))− A0βω

(ω2+γ2)
e−γt.

The second term dies out fort large enough. Hence, the steady state response is
given by the first term. The amplitude of response is thus given byA0β/

√

ω2+γ2,
in which the gainβ/

√

ω2+γ2 depends on the system parameters and on the fre-
quency of the input stimulation.

As this frequency increases, the amplitude decreases and approacheszero for
infinite frequencies. Also, the argument of the sine function shows a negative phase
shift of tan−1(ω/γ), which indicates that there is an increased delay in responding
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to the input as the frequency increases. Hence, the key quantities in the frequency
response are the magnitudeM(ω), also called gain of the system, and phase lag
φ(ω) given by

M(ω) =
β

√

ω2+γ2
, φ(ω) = tan−1

(

ω

γ

)

.

These are plotted in Figure3.6b, a type of figure known as aBode plot.
The bandwidth of the system, denotedωB is the frequency at which the gain

drops belowM(0)/
√

2. In this case, the bandwidth is given byωB = γ = k2Ytot,
which implies that the bandwidth of the system can be made larger by increasing
the amount of phosphatase. However, note that sinceM(0)= β/γ = k1Xtot/(k2Ytot),
increased phosphatase will also result in decreased amplitude of response. Hence,
if one wants to increase the bandwidth of the system while keeping the value of
M(0) (also called thezero frequency gain) unchanged, one should increase the total
amounts of substrate and phosphatase in comparable proportions. Fixing the value
of the zero frequency gain, the bandwidth of the system increases with increased
amounts of phosphatase and kinase. ∇

More generally, thefrequency responseof a linear system with one input and
one output

ẋ= Ax+Bu, y =Cx+Du

is the response of the system to a sinusoidal inputu= asinωt with input amplitude
a and frequencyω. Thetransfer functionfor a linear system is given by

Gyu(s) =C(sI−A)−1B+D

and represents the response of a system to an exponential signal of theform u(t) =
est wheres ∈ C. In particular, the response to a sinusoidu = asinωt is given by
y= Masin(ωt+φ) where the gainM and phase shiftφ can be determined from the
transfer function evaluated ats= iω:

Gyu(iω) = Meiφ,

M(ω) = |Gyu(iω)| =
√

Im(Gyu(iω))2+Re(Gyu(iω))2

φ(ω) = tan−1
(
Im(Gyu(iω))

Re(Gyu(iω))

)

,

where Re(· ) and Im(· ) represent the real and imaginary parts of a complex number.
For finite dimensional linear (or linearized) systems, the transfer function be

written as a ratio of polynomials ins:

G(s) =
b(s)
a(s)

.

The values ofsat which the numerator vanishes are called thezerosof the transfer
function and the values ofsat which the denominator vanishes are called thepoles.
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The transfer function representation of an input/output linear system is essen-
tially equivalent to the state space description, but we reason about the dynamics
by looking at the transfer function instead of the state space matrices. For example,
it can be shown that the poles of a transfer function correspond to the eigenval-
ues of the matrixA, and hence the poles determine the stability of the system.
In addition, interconnections between subsystems often have simple representa-
tions in terms of transfer functions. For example, two systemsG1 andG2 in series
(with the output of the first connected to the input of the second) have a combined
transfer functionGseries(s) = G1(s)G2(s) and two systems in parallel (a single in-
put goes to both systems and the outputs are summed) has the transfer function
Gparallel(s) =G1(s)+G2(s).

Transfer functions are useful representations of linear systems because the prop-
erties of the transfer function can be related to the properties of the dynamics. In
particular, the shape of the frequency response describes how the system response
to inputs and disturbances, as well as allows us to reason about the stability of
interconnected systems. The Bode plot of a transfer function gives the magnitude
and phase of the frequency response as a function of frequency and theNyquist
plot can be used to reason about stability of a closed loop system from the open
loop frequency response (AM08, Section 9.2).

Returning to our analysis of biomolecular systems, suppose we have a systems
whose dynamics can be written as

ẋ= f (x, θ,u)

and we wish to understand how the solutions of the system depend on the param-
etersθ and input disturbancesu. We focus on the case of an equilibrium solution
x(t; x0, θ0) = xe. Let z= x− xe, ũ= u−u0 and θ̃ = θ− θ0 represent the deviation of
the state, input and parameters from their nominal values. Linearization canbe per-
formed in a way similar to the way it was performed for a system with no inputs.
Specifically, we can write the dynamics of the perturbed system using its lineariza-
tion as

dz
dt
=

(

∂ f
∂x

)

(xe,θ0,u0)
·z +

(

∂ f
∂θ

)

(xe,θ0,u0)
· θ̃ +

(

∂ f
∂w

)

(xe,θ0,u0)
· ũ.

This linear system describes small deviations fromxe(θ0,w0) but allowsθ̃ andw̃ to
be time-varying instead of the constant case considered earlier.

To analyze the resulting deviations, it is convenient to look at the system in the
frequency domain. Lety=Cx be a set of values of interest. The transfer functions
betweeñθ, w̃ andy are given by

Hyθ̃(s) =C(sI−A)−1Bθ, Hyw̃(s) =C(sI−A)−1Bw,

where

A=
∂ f
∂x

∣
∣
∣
∣
∣
(xe,θ0,w0)

, Bθ =
∂ f
∂θ

∣
∣
∣
∣
∣
(xe,θ0,w0)

, Bw =
∂ f
∂w

∣
∣
∣
∣
∣
(xe,θ0,w0)

.
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Note that if we lets= 0, we get the response to small, constant changes in
parameters. For example, the change in the outputsy as a function of constant
changes in the parameters is given by

Hyθ̃(0)=CA−1Bθ =CSx,θ.

Example 3.6(Transcriptional regulation). Consider a genetic circuit consisting of
a single gene. The dynamics of the system are given by

dmP

dt
= F(P)−δmP,

dP
dt
= κmP−γP,

wheremP is the mRNA concentration andP is the protein concentration. Suppose
that the mRNA degradation rateδ can change as a function of time and that we
wish to understand the sensitivity with respect to this (time-varying) parameter.
Linearizing the dynamics around an equilibrium point

A=




−δ F′(Pe)
κ −γ



, Bδ =




−mP,e

0



.

For the case of no feedback we haveF(P) = α, and the system has an equilib-
rium point atmP,e = α/δ, Pe = κα/(γδ). The transfer function fromδ to P, after
linearization about the steady state, is given by

Gol
Pδ(s) =

−κmP,e

(s+δ)(s+γ)
,

whereδ0 represents the nominal value ofδ around which we are linearizing. For
the case of negative regulation, we have

F(P) =
α

1+ (P/K)n +α0,

and the resulting transfer function is given by

Gcl
Pδ(s) =

βmP,e

(s+δ0)(s+γ)+ κσ
, σ = −F′(Pe) =

nαPn−1
e /Kn

(1+Pn
e/Kn)2

.

Figure3.7 shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to perturbations with low-
frequency content but slightly amplifies perturbations at high frequency (compared
to the open loop system). ∇

3.2 Robustness

The term “robustness” refers to the general ability of a system to continueto func-
tion in the presence of uncertainty. In the context of this text, we will want to be
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Figure 3.7: Attenuation of perturbations in a genetic circuit.

more precise. We say that a given function (of the circuit) is robust with respect
to a set of specified perturbations if the sensitivity of that function to perturba-
tions is small. Thus, to study robustness, we must specify both the function weare
interested in and the set of perturbations that we wish to consider.

In this section we study the robustness of the system

ẋ= f (x, θ,u), y= h(x, θ)

to various perturbations in the parametersθ and disturbance inputsu. The function
we are interested in is modeled by the outputsy and hence we seek to understand
how y changes if the parametersθ are changed by a small amount or if external
disturbancesu are present. We say that a system is robust with respect to these
perturbations ify undergoes little changes as these perturbations are introduced.

Parametric uncertainty

In addition to studying the input/output transfer curve and the stability of a given
equilibrium point, we can also study how these features change with respect to
changes in the system parametersθ. Let ye(θ0,u0) represent the output correspond-
ing to an equilibrium pointxe with fixed parametersθ0 and external inputu0, so
that f (xe, θ0,u0) = 0. We assume that the equilibrium point is stable and focus here
on understanding how the value of the output, the location of the equilibrium point
and the dynamics near the equilibrium point vary as a function of changes inthe
parametersθ and external inputsw.

We start by assuming thatu= 0 and investigating howxe andye depend onθ.
The simplest approach is to analytically solve the equationf (xe, θ0) = 0 for xe and
then setye = h(xe, θ0). However, this is often difficult to do in closed form and so
as an alternative we instead look at the linearized response given by

Sx,θ :=
dxe

dθ

∣
∣
∣
∣
∣
θ0

, Sy,θ :=
dye

dθ0

∣
∣
∣
∣
∣
θ0

,
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which is the (infinitesimal) change in the equilibrium state and the output due to
a change in the parameter. To determineSx,θ we begin by differentiating the rela-
tionship f (xe(θ), θ) = 0 with respect toθ:

d f
dθ
=
∂ f
∂x

dxe

dθ
+
∂ f
∂θ
= 0 =⇒ Sx,θ =

dxe

dθ
= −

(

∂ f
∂x

)−1
∂ f
∂θ

∣
∣
∣
∣
∣
(xe,θ0)

. (3.8)

Similarly, we can compute the change in the output sensitivity as

Sy,θ =
dye

dθ
=
∂h
∂x

dxe

dθ
+
∂h
∂θ
= −





∂h
∂x

(

∂ f
∂x

)−1
∂ f
∂θ
+
∂h
∂θ





∣
∣
∣
∣
∣
∣
∣
(xe,θ0)

.

These quantities can be computed numerically and hence we can evaluate the effect
of small (but constant) changes in the parametersθ on the equilibrium statexe and
corresponding output valueye.

A similar analysis can be performed to determine the effects of small (but con-
stant) changes in the external inputu. Suppose thatxe depends on bothθ andu,
with f (xe, θ0,u0) = 0 andθ0 andu0 representing the nominal values. Then

dxe

dθ
= −

(

∂ f
∂x

)−1
∂ f
∂θ

∣
∣
∣
∣
∣
(xe,θ0,u0)

,
dxe

du
= −

(

∂ f
∂x

)−1
∂ f
∂u

∣
∣
∣
∣
∣
(xe,θ0,u0)

.

The sensitivity matrix can be normalized by dividing the parameters by their
nominal values and rescaling the outputs (or states) by their equilibrium values. If
we define the scaling matrices

Dxe = diag{xe}, Dye = diag{ye}, Dθ = diag{θ},

Then the scaled sensitivity matrices can be written as

S̄x,θ = (Dxe)−1Sx,θD
θ, S̄y,θ = (Dye)−1Sy,θD

θ. (3.9)

The entries in this matrix describe how a fractional change in a parameter gives
a fractional change in the output, relative to the nominal values of the parameters
and outputs.

Example 3.7 (Transcriptional regulation). Consider again the case of transcrip-
tional regulation described in Example3.6. We wish to study the response of
the protein concentration to fluctuations in its parameters in two cases: aconstitu-
tive promoter(no regulation) and self-repression (negative feedback), illustratedin
Figure3.8. For the case of no feedback we haveF(p) = α, and the system has an
equilibrium point atme = α/δ, Pe = κα/(γδ). The parameter vector can be taken
asθ = (α,δ,κ,γ). Since we have a simple expression for the equilibrium concentra-
tions, we can compute the sensitivity to the parameters directly:

∂xe

∂θ
=




1
δ
− α
δ2 0 0

κ
γδ
− βα

γδ2
α
γδ
− κα
δγ2



,



3.2. ROBUSTNESS 105

A

RNAP

(a) Open loop

RNAP

A

(b) Negative feedback

Figure 3.8: Parameter sensitivity in a genetic circuit. Theopen loop system (a) consists
of a constitutive promoter, while the closed loop circuit (b) is self-regulated with negative
feedback (repressor).

where the parameters are evaluated at their nominal values, but we leave off the
subscript 0 on the individual parameters for simplicity. If we choose the parame-
ters asθ0 = (0.00138,0.00578,0.115,0.00116), then the resulting sensitivity matrix
evaluates to

Sopen
xe,θ
≈




170 −41 0 0
17000 −4100 210 −21000



. (3.10)

If we look instead at the scaled sensitivity matrix, then the open loop nature ofthe
system yields a particularly simple form:

S̄open
xe,θ
=




1 −1 0 0
1 −1 1 −1



. (3.11)

In other words, a 10% change in any of the parameters will lead to a comparable
positive or negative change in the equilibrium values.

For the case of negative regulation, we have

F(P) =
α

1+ (P/K)n +α0,

and the equilibrium points satisfy

me=
γ

β
Pe,

α

1+Pn
e/Kn +α0 = δme=

δγ

β
Pe. (3.12)

In order to make a proper comparison with the previous case, we need to becareful
to choose the parameters so that the equilibrium concentrationPe matches that of
the open loop system. We can do this by modifying the promoter strengthα or
the RBS strengthκ so that the second formula in equation (3.12) is satisfied or,
equivalently, choose the parameters for the open loop case so that they match the
closed loop steady state protein concentration (see Example2.2).

Rather than attempt to solve for the equilibrium point in closed form, we instead
investigate the sensitivity using the computations in equation (3.12). The state,
dynamics and parameters are given by

x=

m P


 , f (x, θ) =




F(P)−δm
κm−γP



, θ =


α0 δ κ γ α n K


 .
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Note that the parameters are ordered such that the first four parametersmatch the
open loop system. The linearizations are given by

∂ f
∂x
=




−δ F′(Pe)
β −γ



,

∂ f
∂θ
=




1 −m 0 0 1
1+(P/K)n

KnαPn log(P)
(Kn+Pn)2

α
(1+(P/K)n)2

0 0 m −P 0 0 0



,

where again the parameters are taken to be their nominal values. From this wecan
compute the sensitivity matrix as

Sx,θ =




− γ

γδ−κF′
γm

γδ−κF′ −
mF′

γδ−κF′
PF′

γδ−κF′ −
γ ∂F
∂α1

γδ−κF′ −
γ ∂F
∂n

γδ−κF′ −
γ ∂F
∂K

γδ−κF′

− κ
γδ−κF′

κm
γδ−κF′ −

δm
γδ−κF′

δP
γδ−κF′ −

κ ∂F
∂α1

γδ−κF′ −
κ ∂F
∂n

γδ−κF′ −
κ ∂F
∂K

γδ−κF′




,

whereF′ = ∂F/∂P and all other derivatives ofF are evaluated at the nominal pa-
rameter values.

We can now evaluate the sensitivity at the same protein concentration as we use
in the open loop case. The equilibrium point is given by

xe=




me

Pe



=




α
δ
ακ
γδ



=




0.239
23.9




and the sensitivity matrix is

Sclosed
xe,θ

≈



76.1 −18.2 −1.16 116. 0.134 −0.212 −0.000117
7610. −1820. 90.8 −9080. 13.4 −21.2 −0.0117



.

The scaled sensitivity matrix becomes

S̄closed
xe,θ

≈



0.16 −0.44 −0.56 0.56 0.28 −1.78 −3.08×10-7

0.16 −0.44 0.44 −0.44 0.28 −1.78 −3.08×10-7



. (3.13)

Comparing this equation with equation (3.11), we see that there is reduction in the
sensitivity with respect to most parameters. In particular, we become less sensitive
to those parameters that are not part of the feedback (columns 2–4), but there is
higher sensitivity with respect to some of the parameters that are part of thefeed-
back mechanisms (particularlyn). ∇

More generally, we may wish to evaluate the sensitivity of a (non-constant) so-
lution to parameter changes. This can be done by computing the functiondx(t)/dθ,
which describes how the state changes at each instant in time as a function of
(small) changes in the parametersθ.

Let x(t, θ0) be a solution of the nominal system

ẋ= f (x, θ0,u), x(0)= x0.
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To computedx/dθ, we write a differential equation for how it evolves in time:

d
dt

(

dx
dθ

)

=
d
dθ

(

dx
dt

)

=
d
dθ

( f (x, θ,u)) =
∂ f
∂x

dx
dθ
+
∂ f
∂θ
.

This is a differential equation withn×m states given by the entries of the ma-
trix Sx,θ(t) = dxi(t)/dθ j and with initial conditionSx,θ(0)= 0 (since changes to the
parameters to not affect the initial conditions).

To solve these equations, we must simultaneously solve for the statex and the
sensitivitySx,θ (whose dynamics depend onx). Thus, letting

M(t, θ0) :=
∂ f
∂x

(x, θ,u)
∣
∣
∣
∣
∣
x=x(t,θ0),θ=θ0

, N(t, θ0) :=
∂ f
∂θ

(x, θ,u)
∣
∣
∣
∣
∣
x=x(t,θ0),θ=θ0

,

we solve the set ofn + nmcoupled differential equations

dx
dt
= f (x, θ0,u),

dSx,θ

dt
= M(t, θ0)Sx,θ +N(t, θ0), (3.14)

with initial conditionx(0)= x0 andSx,θ(0)= 0.
This differential equation generalizes our previous results by allowing us to

evaluate the sensitivity around a (non-constant) trajectory. Note that in thespe-
cial case that we are at an equilibrium point and the dynamics forSx,θ are stable,
the steady state solution of equation (3.14) is identical to that obtained in equa-
tion (3.8). However, equation (3.14) is much more general, allowing us to deter-
mine the change in the state of the system at a fixed timeT, for example. This
equation also does not require that our solution stay near an equilibrium point, it
only requires that our perturbations in the parameters are sufficiently small.

Several simulation tools include the ability to do sensitivity analysis of this sort,
includingCOPASI.

Adaptation and disturbance rejection

A system is said to adapt to the inputu when the steady state value of its output
y is independent of the actual (constant) non-zero value of the input (Figure3.9).
Basically, after the input changes to a constant non-zero value, the output returns
to its original value after a transient perturbation. Adaptation corresponds to the
concept ofdisturbance rejectionin control theory. The full notion of disturbance
rejection is more general and depends on the specific disturbance input and it is
studied using the internal model principle [83].

For example, for adaptation to constant signals, the internal model principlere-
quires integral feedback. The internal model principle is a powerful wayto uncover
biochemical structures in natural networks that are known to have the adaptation
property. An example of this is the bacterial chemotaxis described in more detail
in Chapter5.
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u y

Adaptation 

Not adaptation 

Figure 3.9: Adaptation property. The system is said to have the adaptation property if the
steady state value of the output does not depend on the steadystate value of the input.
Hence, after a constant input perturbation, the output returns to its original value.

We illustrate two main mechanisms to attain adaptation: integral feedback and
incoherent feedforward loops (IFFLs). We next study these two mechanisms from a
mathematical standpoint to illustrate how they achieve adaptation. Possible biomolec-
ular implementations are presented in later chapters.

Integral feedback

In integral feedback systems, a “memory” variablezkeeps track of the accumulated
difference betweeny(t) and its nominal steady state valuey0. A comparison is
performed between this memory variable and the current inputu, providing an
error term that is used to drive the feedback mechanism that brings the system
output back to the desired valuey0 (Figure3.10).

In this system, the outputy(t), after any constant input perturbationu, tends to

+ + 
- 

 

- 

u y1

z

y0

k
y

Figure 3.10: Basic block diagram representing a system withintegral action.
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u x1 x2

Figure 3.11: Incoherent feedforward loop. The inputu affects the output through two chan-
nels. It indirectly represses it through an intermediate variablex1 and it activates it directly.

y0 for t→∞ independently of the (constant) value ofu. The equations representing
the system are given by:

dz
dt
= y1, y1 = y−y0, y= k(u−z),

so that the equilibrium is obtained by setting ˙z= 0, from which we obtainy= y0.
That is, the steady state ofy does not depend onu. The additional question to
answer is whether, after a perturbationu occurs,y1(t) tends to zero fort → ∞.
This is the case if and only if ˙z→ 0 ast→∞, which is satisfied if the equilibrium
of the system ˙z= −kz+ ku− y0 is asymptotically stable. This, in turn, is satisfied
wheneverk> 0 andu is a constant. Hence, after a constant perturbationu is applied,
the system outputy approaches back its original steady state valuey0, that is,y is
robust to constant perturbations.

More generally, a system with integral action can take the form

dx
dt
= f (x,u,k), y= h(x),

dz
dt
= y−y0, k= k(x,z),

in which the steady state value ofy, being the solution toy−y0= 0, does not depend
on u. In turn, y tends to this steady state value fort→∞ if and only if ż→ 0 as
t→∞. This, in turn, is the case ifz tends to a constant value fort→∞, which is
satisfied ifu is a constant and the steady state of the above system is asymptotically
stable.

Integral feedback is recognized as a key mechanism of perfectly adapting bio-
logical systems, both at the physiological level and at the cellular level, such as in
blood calcium homeostasis [21], in the regulation of tryptophan inE. coli [90], in
neuronal control of the prefrontal cortex [65], and inE. coli chemotaxis [98].

Incoherent feedforward loops

Feedforward motifs (Figure3.11) are common in transcriptional networks and it
has been shown they are over-represented inE. coli gene transcription networks,
compared to other motifs composed of three nodes [3]. These are systems in which
the inputu directly helps promote the production of the outputx2 and also acts as a
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delayed inhibitor of the output through an intermediate variablex1. This incoherent
counterbalance between positive and negative effects gives rise, under appropriate
conditions, to adaptation. A large number of incoherent feedforward loops partici-
pate in important biological processes such as the EGF to ERK activation [70], the
glucose to insulin release [71], ATP to intracellular calcium release [61], micro-
RNA regulation [89], and many others.

Several variants of incoherent feedforward loops exist for perfect adaptation.
The “sniffer”, for example, is one in which the intermediate variable promotes
degradation:

dx1

dt
= αu−γx1,

dx2

dt
= βu−δx1x2. (3.15)

In this system, the steady state value of the outputx2 is obtained by setting the time
derivatives to zero. Specifically, we have that ˙x1 = 0 given x1 = αu/γ and ẋ2 = 0
gives x2 = βu/(δx1). IN the case in whichu , 0, these can be combined to yield
x2 = (βγ)/(δα), which is a constant independent of the inputu. The linearization of
the system at the equilibrium is given by

A=




−γ 0
−δ(βγ)/(δα) −δ(αu/γ)



,

which has eigenvalues−γ and−δ(αu/γ). Since these are both negative, the equi-
librium point is asymptotically stable. The sniffer appears in models of neutrophil
motion andDictyosteliumchemotaxis [97]. Note that in the case in which, for ex-
ample,u goes back to zero after a perturbation, as it is in the case of a pulse, the
outputx2 does not reach back necessarily its original steady state. That is, this sys-
tem “adapts” only to constant non-zero input stimuli but is not capable of adapting
to pulses. This can be seen from equation (3.15), which, whenu = 0 admits mul-
tiple steady states. For more details on this “memory” effect, the reader is referred
to [85].

Another form for a feedforward loop is one in which the intermediate variable
x1 inhibits production of the outputx2, such as in the system:

dx1

dt
= αu−γx1,

dx2

dt
= β

u
x1
−δx2. (3.16)

The equilibrium point of this system for a constant non-zero inputu is given by
setting the time derivatives to zero. From ˙x1 = 0, one obtainsx1 = αu/γ and from
ẋ2 = 0 one obtains thatx2 = βu/(δx1), which combined together result inx2 =

(βγ)/(δα), which is a constant independent of the inputu.
By calculating the linearization at the equilibrium, one obtains

A=




−γ 0
− u

x2
1
−δ



,
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Figure 3.12: Fold-change detection. The output response does not depend on the absolute
magnitude of the input but only on the fold change of the input.

whose eigenvalues are given by−γ and−δ. Hence, the equilibrium point is asymp-
totically stable. Further, one can show that the equilibrium point is globally asymp-
totically stable because thex1 subsystem is linear, stable, andx1 approaches a con-
stant value (for constantu) and thex2 subsystem, in whichβu/x1 is viewed as an
external input is also linear and exponentially stable.

Scale Invariance and fold-change detection

Scale invariance is the property by which the outputx2(t) of the system does not
depend on the amplitude of the inputu(t) (Figure3.12). Specifically, consider an
adapting system and assume that it pre-adapted to a constant background valuea,
then apply inputa+ b and letx2(t) be the resulting output. Now consider a new
background valuep a for the input and let the system pre-adapt to it. Then apply
the inputp(a+ b) and let x̄2(t) be the resulting output. The system has the scale
invariance property ifx2(t) = x̄2(t). This also means that the output responds in the
same way to inputs changing by the same multiplicative factor (fold), hence this
property is also called fold-change detection. Looking at Figure3.12, the output
would present different pulses for different fold changesb/a.

Some incoherent feedforward loops can implement the fold-change detection
property [32]. As an example, consider the feedforward motif represented by equa-
tions (3.16) and consider two inputs:u1(t)= a+b1(t− t0) andu2(t)= pa+pb1(t− t0).
Assume also, as said above, that at timet0 the system is at the steady state, that is,
it pre-adapted. Hence, we have that the two steady states from which the system
starts att = t0 are given byx1,1 = aα/γ and x1,2 = paα/γ for the x1 variable and
by x2,1 = x2,2 = (βγ)/(δα) for thex2 variable. Integrating system (??) starting from
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Figure 3.13: (a) Disturbance attenuation. A system is said to have the disturbance attenua-
tion property if there is an internal system parameterG such that the system output response
becomes arbitrarily close to a nominal output (independentof the inputu) by increasing the
value ofG. (b) High gain feedback. A possible mechanism to attain disturbance attenuation
is to feedback the error between the nominal outputy0 and the actual outputy through a
large gainG.

these initial conditions, we obtain fort ≥ t0

x1,1(t) = a
α

γ
e−γ(t−t0)+ (a+b)(1−e−γ(t−t0)) and

x1,2(t) = pa
α

γ
e−γ(t−t0)+ p(a+b)(1−e−γ(t−t0)).

Using these in the expression of ˙x2 in equation (??) gives the differential equa-
tions to whichx2,1(t) andx2,2(t) obey fort ≥ t0 as

dx2,1

dt
=

β(a+b)
aα
γ
e−γ(t−t0)+ (a+b)(1−e−γ(t−t0))

−δx2,1, x2,1(t0) = (βγ)/(δα)

and

dx2,2

dt
=

pβ(a+b)
paα

γ
e−γ(t−t0)+ p(a+b)(1−e−γ(t−t0))

−δx2,2, x2,2(t0) = (βγ)/(δα),

which give x2,1(t) = x2,2(t) for all t ≥ t0. Hence, the system responds exactly the
same way after changes in the input of the same fold. The output responseis not
dependent on the scale of the input but only on its shape.

Disturbance attenuation

A system has the property of disturbance attenuation if there is a system parameter
G such that the output responsey(t) to the inputu(t) can be made arbitrarily small as
G is increased (Figure3.13a). A possible mechanism for disturbance attenuation is
high gain feedback (Figure3.13b). In a high gain feedback configuration, the error
between the outputy, perturbed by some exogenous disturbanceu, and a desired
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nominal outputy0 is fed back with a negative sign to produce the outputy itself. If
y0 > y, this will result in an increase ofy, otherwise it will result in a decrease ofy.
Mathematically, one obtains from the block diagram that

y=
u

1+G
+y0

G
1+G

,

so that asG increases the (relative) contribution ofu on the output of the system
can be arbitrarily reduced.

High gain feedback can take a much more general form. Consider a system
with x ∈ Rn in the form ẋ = f (x, t). We say that this system iscontractingif any
two trajectories starting from different initial conditions tend to each other as time
increase to infinity. A sufficient condition for the system to be contracting is that in
some set of coordinates, with matrix transformation denotedΘ, the symmetric part
of the linearization matrix (Jacobian) is negative definite. That is, that the largest
eigenvalue of

1
2

(

∂ f
∂x
+
∂ f
∂x

T)

,

is negative. We denote this eigenvalue by−λ for λ > 0 and call it the contraction
rate of the system.

Now, consider the nominal system ˙x=G f(x, t) for G > 0 and its perturbed ver-
sionẋp=G f(xp, t)+u(t). Assume that the inputu(t) is bounded everywhere in norm
by a constantC > 0. If the system is contracting, we have the following robustness
result:

‖x(t)− xp(t)‖ ≤ χ‖x(0)− xp(0)‖e−Gλt +
χC
λG

,

in which χ is an upper bound on the condition number (ratio between the largest
and the smallest eigenvalue ofΘTΘ) of the transformation matrixΘ [57]. Hence,
if the perturbed and the nominal systems start from the same initial conditions, the
difference between their states can be made arbitrarily small by increasing the gain
G. Hence, the system has the disturbance attenuation property.

A comprehensive treatment of concepts of stability and robustness can befound
in standard references [51, 84].

3.3 Analysis of Reaction Rate Equations

The previous section considered analysis techniques for general dynamical sys-
tems with small perturbations. In this section, we specialize to the case where the
dynamics have the form of a reaction rate equation:

ds
dt
= Nv(x, θ), (3.17)

wherex is the vector of species concentrations,θ is the vector of reaction parame-
ters,N is the stoichiometry matrix andv(x, θ) is the reaction rate (or flux) vector.
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Reduced reaction dynamics

When analyzing reaction rate equations, it is often the case that there are conserved
quantities in the dynamics. For example, conservation of mass will imply that if all
compounds containing a given species are captured by the model, the total mass
of that species will be constant. This type of constraint will then give a conserved
quantity of the formci = Hi x whereHi represents that combinations of species in
which the given element appears. Sinceci is constant, it follows thatdci/dt = 0
and, aggregating the set of all conserved species, we have

0=
dc
dt
= H

ds
dt
= HNv(x, θ) for all x.

If we assume that the vector of fluxes spansRm (the range ofv : Rn×Rp→ Rm),
then this implies that the conserved quantities correspond to the left null space of
the stoichiometry matrixN.

It is often useful to remove the conserved quantities from the description of the
dynamics and write the dynamics for a set of independent species. To do this, we
transform the state of the system into two sets of variables:




xi

xd



=




P
H




x. (3.18)

The vectorxi = Px is the set of independent species and is typically chosen as
a subset of the original species of the model (so that the rowsP consists of all
zeros and a single 1 in the column corresponding to the selected species). The
matrix H should span the left null space ofN, so thatxd represents the set of
dependent concentrations. These dependent species do not necessarily correspond
to individual species, but instead are often combinations of species (forexample,
the total concentration of a given element that appears in a number of molecules
that participate in the reaction).

Given the decomposition (3.18), we can rewrite the dynamics of the system in
terms of the independent variablesxi . We start by noting that givenxi andxd, we
can reconstruct the full set of speciesx:

x=




P
H




−1


xi

xd



= Lxi +c0, L =




P
H




−1


I
0



, c0 =




P
H




−1


0
c




wherec0 represents the conserved quantities. We now write the dynamics forxi as

dxi

dt
= P

dx
dt
= PNv(Lxi +c0, θ) = Nrvr (xi ,c0, θ), (3.19)

whereNr is the reduced stoichiometry matrixand vr is the rate vector with the
conserved quantities separated out as constant parameters.
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The reduced order dynamics in equation (3.19) represent the evolution of the
independent species in the reaction. Givenxi , we can reconstruct the full set of
species from the dynamics of the independent species by writingx= Lxi +c0. The
vectorc0 represents the values of the conserved quantities, which must be specified
in order to compute the values of the full set of species. In addition, sincex =
Lxi +c0, we have that

dx
dt
= L

dxi

dt
= LNrvr (xi ,c0, p) = LNrv(x, θ),

which implies that
N = LNr .

Thus,L also reconstruct the reduced stoichiometry matrix from the reduced space
to the full space.

Example 3.8(Enzyme kinetics). Consider an enzymatic reaction

E+S
a−⇀↽−
d

C
k−→ E+P,

whose full dynamics can be written as

d
dt




S
E
C
P




=




−1 1 0
−1 1 1
1 −1 −1
0 0 1







aE·S
dC
kC




.

The conserved quantities are given by

H =




0 1 1 0
1 −1 0 1



.

The first of these is the total enzyme concentrationEtot = E+C, while the second
asserts that the concentration of productP is equal to the free enzyme concentration
E minus the substrate concentrationS. If we assume that we start with substrate
concentrationS0, enzyme concentrationEtot and no product or bound enzyme, then
the conserved quantities are given by

c=




E+C
S−E+P



=




Etot

S0−Etot



.

There are many possible choices for the set of independent speciesxi = Px, but
since we are interested in the substrate and the product, we chooseP as

P=




1 0 0 0
0 0 0 1



.
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Figure 3.14: Enzyme dynamics. The simulations were carriedout a= d = 10, k = 1, S0 =

500 andEtot = 5,1020. The top plot shows the concentration of substrateS and product
P, with the fastest case corresponding toEtot = 20. The figures on the lower left zoom in
on the substrate and product concentrations at the initial time and the figures on the lower
right at one of the transition times.

OnceP is chosen then we can compute

L =




P
H




−1


I
0



=




1 0
1 1
−1 −1
0 1




, c0 =




P
H




−1


0
c



=




0
Etot−S0

S0

0




,

The resulting reduced order dynamics can be computed to be

d
dt




S
P



=




−1 1 0
0 0 1







a(P+S+Etot−S0)S
d(−P−S+S0)
k(−P−S+S0)




=




−a(P+S+Etot−S0)S−d(P+S−S0)
k(S0−S−P)



.

A simulation of the dynamics is shown in Figure3.14. We see that the dynamics
are very well approximated as being a constant rate of production until weexhaust
the substrate (consistent with the Michaelis-Menten approximation).

∇

Metabolic control analysis

Metabolic control analysis (MCA) focuses on the study of the sensitivity ofsteady
state concentrations and fluxes to changes in various system parameters.The basic
concepts are equivalent to the sensitivity analysis tools described in Section 3.1,
specialized to the case of reaction rate equations. In this section we providea brief
introduction to the key ideas, emphasizing the mapping between the general con-
cepts and MCA terminology (as originally done by [43]).
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Consider the reduced set of chemical reactions

dxi

dt
= Nrvr (xi , θ) = Nrv(Lxi +c0, θ).

We wish to compute the sensitivity of the equilibrium concentrationsxe and equi-
librium fluxesve to the parametersθ. We start by linearizing the dynamics around
an equilibrium pointxe. Definingz= x− xe, u= θ−θ0 and f (z,u) = Nrv(xe+z, θ0+

u), we can write the linearized dynamics as

dx
dt
= Ax+Bu, A=

(

Nr
∂v
∂s

L

)

, B=

(

Nr
∂v
∂p

)

, (3.20)

which has the form of a linear differential equation with statez and inputu.
In metabolic control analysis, the following terms are defined:

ǭθ =
dv
dθ

∣
∣
∣
∣
∣
xe,θo

ǭθ = flux control coefficients

R̄x
θ =

∂xe

∂θ
= C̄xǭθ

R̄x
θ =

C̄x = concentration control coefficients

R̄v
θ =

∂ve

∂θ
= C̄vǭθ

R̄v
θ =

C̄v = rate control coefficients

These relationships describe how the equilibrium concentration and equilibrium
rates change as a function of the perturbations in the parameters. The two control
matrices provide a mapping between the variation in the flux vector evaluated at
equilibrium,

(

∂v
∂θ

)

xe,θ0

,

and the corresponding differential changes in the equilibrium point,∂xe/∂θ and
∂ve/∂θ. Note that

∂ve

∂θ
,

(

∂v
∂θ

)

xe,θ0

.

The left side is the relative change in the equilibrium rates, while the right sideis
the change in the rate functionv(x, θ) evaluated at an equilibrium point.

To derive the coefficient matricesC̄x andC̄v, we simply take the linear equa-
tion (3.20) and choose outputs corresponding tosandv:

yx = Ix, yv =
∂v
∂x

Lx+
∂v
∂θ

u.

Using these relationships, we can compute the transfer functions

Hx(s) = (sI−A)−1B=
[(

sI−Nr
∂v
∂x

L
)−1Nr

]∂v
∂θ
,

Hv(s) =
∂v
∂s

L(sI−A)−1B+
∂v
∂p
=

[∂v
∂x

L
(

sI−Nr
∂v
∂x

L
)−1Nr + I

]∂v
∂θ
.
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./dynamics/figures/fluxbalance.eps

Figure 3.15: Flux balance analysis.

Classical metabolic control analysis considers only the equilibrium concentrations,
and so these transfer functions would be evaluated atx= 0 to obtain the equilibrium
equations.

These equations are often normalized by the equilibrium concentrations and
parameter values, so that all quantities are expressed as fractional quantities. If we
define

Dx = diag{xe}, Dv = diag{v(xe, θ0)}, Dθ = diag{θ0},

then the normalized coefficient matrices (without the overbar) are given by

Cx = (Dx)−1C̄xDv, Cv = (Dv)−1C̄vDv,

Rx
θ = (Dx)−1R̄x

θD
θ, Rv

θ = (Dv)−1R̄v
θD

θ.

Flux balance analysis

Flux balance analysis is a technique for studying the relative rate of different reac-
tions in a complex reaction system. We are most interested in the case where there
may be multiple pathways in a system, so that the number of reactionsm is greater
than the number of speciesn. The dynamics

dx
dt
= Nv(x, θ)

thus have the property that the matrixN has more columns that rows and hence
there are multiple reactions that can produce a given set of species. Fluxbalance is
often applied to pathway analysis in metabolic systems to understand the limiting
pathways for a given species and the the effects of changes in the network (e.g.,
through gene deletions) to the production capacity.

To perform a flux balance analysis, we begin by separating the reactionsof
the pathway into internal fluxesvi versus exchanges fluxve, as illustrated in Fig-
ure3.15. The dynamics of the resulting system now be written as
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dx
dt
= Nv(x, θ) = N




vi

ve



= Nvi(x, θ)−be,

wherebe= −Nve represents the effects of external fluxes on the species dynamics.
Since the matrixN has more columns that rows, it has aright null space and hence
there are many different internal fluxes that can produce a given change in species.

In particular, we are interested studying the steady state properties of the sys-
tem. In this case, we have thatdx/dt= 0 and we are left with an algebraic system

Nvi = be.

Material to be completed. Review

3.4 Oscillatory Behavior

In addition to equilibrium behavior, a variety of cellular procesess involve oscilla-
tory behavior in which the system state is constantly changing, but in a repeating
pattern. Two examples of biological oscillations are the cell cycle and circadian
rhythm. Both of these dynamic behaviors involve repeating changes in the con-
centrations of various proteins, complexes and other molecular species in the cell,
though they are very different in their operation. In this section we discuss some of
the underlying ideas for how to model this type of oscillatory behavior, focusing
on those types of oscillations that are most common in biomolecular systems.

Biomolecular oscillators

Biological systems have a number of natural oscillatory processes that govern the
behavior of subsystems and whole organisms. These range from internal oscilla-
tions within cells to the oscillatory nature of the beating heart to various tremors
and other undesirable oscillations in the neuro-muscular system. At the biomolec-
ular level, two of the most studied classes of oscillations are the cell cycle and
circadian rhythm.

The cell cycle consists of a set “phases” that govern the duplication anddivision
of cells into two new cells:

• G1 phase - gap phase, terminated by “G1 checkpoint”

• S phase - synthesis phase (DNA replication)

• G2 phase - gap phase, terminated by “G2 checkpoint”

• M - mitosis (cell division)

The cell goes through these stages in a cyclical fashion, with the different enzymes
and pathways active in different phases. The cell cycle is regulated by many differ-
ent proteins, often divided into two major classes.Cyclinsare a class of proteins
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(b) Molecular mechanisms

Figure 3.16: TheCaulobacter crescentuscell cycle. (a)Caulobactercells divide asym-
metrically into a stalked cell, which is attached to a surface, and a swarmmer cell, that is
motile. The swarmer cells can become stalked cells in a new location and begin the cell
cycle anew. The transcriptional regulators CtrA, DnaA and GcrA are the primary factors
that control the various phases of the cell cycle. (b) The genetic circuitry controlling the
cell cycle consists of a large variety of regulatory mechanisms, described in more detail in
the text. Figure obtained from [54] (permission TBD).

that sense environmental conditions internal and external to the cell and are also
used to implement various logical operations that control transition out of theG1
and G2 phases.Cyclin dependent kinases(CDKs) are proteins that serve as “actu-
ators” by turning on various pathways during different cell cycles.

An example of the control circuitry of the cell cycle for the bacteriumCaulobac-
ter crescentus(henceforthCaulobacter) is shown in Figure3.16 [54]. This or-
ganism uses a variety of different biomolecular mechanisms, including transcrip-
tional activation and represssion, positive autoregulation (CtrA), phosphotransfer
and methlylation of DNA.

The cell cycle is an example of an oscillator that does not have a fixed pe-
riod. Instead, the length of the individual phases and the transitioning of thediffer-
ent phases are determined by the environmental conditions. As one example, the
cell division time forE. coli can vary between 20 minutes and 90 minutes due to
changes in nutrient concentrations, temperature or other external factors.

A different type of oscillation is the highly regular pattern encoding in circa-
dian rhythm, which repeats with a period of roughly 24 hours. The observation
of circadian rhythms dates as far back as 400 BCE, when Androsthenesdescribed
observations of daily leaf movements of the tamarind tree [63]. There are three
defining characteristics associated with circadian rhythm: (1) the time to complete
one cycle is approximately 24 hours, (2) the rhythm is endogenously generated and
self-sustaining and (3) the period remains relatively constant under changes in am-
bient temperature. Oscillations that have these properties appear in many different
organisms, including micro-organisms, plants, insects and mammals. Some com-
mon features of the circuitry implementing circadian rhythms in these organisms is
the combination of positive and negative feedback loops, often with the positive el-
ements activating the expression of clock genes and the negative elements repress-
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Figure 3.17:Caption omitted pending permission.(Figure and caption from [10])

ing the positive elements [10]. Figure3.17shows some of the different organisms
in which circadian oscillations can be found and the primary genes responsible for
different positive and negative factors.

Clocks, oscillators and limit cycles

To begin our study of oscillators, we consider a nonlinear model of the system
described by the differential equation

dx
dt
= f (x,u, θ), y= h(x, θ)

wherex∈ Rn represents the state of the system (typically concentrations of various
proteins and other species and complexes),u∈Rq represents the external inputs,y∈
R

p represents the (measured) outputs andθ ∈ RK represents the model parameters.
We say that a solution (x(t),u(t)) is oscillatory with period Tif y(t+T) = y(t). For
simplicity, we will often assume thatp = q = 1, so that we have a single input
and single output, but most of the results can be generalized to the multi-input,
multi-output case.

There are multiple ways in which a solution can be oscillatory. One of the sim-
plest is that the inputu(t) is oscillatory, in which case we say that we have aforced
oscillation. In the case of a linear system, an input of the formu(t) = Asinωt then
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we know already the output will be of the formy(t) = M ·Asin(ωt+ φ) whereM
andφ represent the gain and phase of the system (at frequencyω). In the case of a
nonlinear system, if the output is periodic then we can write it in terms of a set of
harmonics,

y(t) = B0+B1sin(ωt+φ1)+B2sin(2ωt+φ2)+ · · ·

The termB0 represents the average value of the output (also called the bias), the
termsBi are the magnitudes of theith harmonic andφi are the phases of the har-
monics (relative to the input). Theoscillation frequencyω is given byω = 2π/T
whereT is the oscillation period.

A different situation occurs when we have no input (or a constant input) and still
obtain an oscillatory output. In this case we say that the system has aself-sustained
oscillation. This type of behavior is what is required for oscillations such as the
cell cycle and circadian rhythm, where there is either no obvious forcing function
or the forcing function is removed but the oscillation persists. If we assume that the
input is constant,u(t) = A0, then we are particularly interested in how the periodT
(or equivalently frequencyω), amplitudesBi and phasesφi depend on the inputA0

and system parametersθ.
To simplify our notation slightly, we consider a system of the form

dx
dt
= f (x, θ), y= h(x, θ) (3.21)

where the input is ignored (or taken to be one of the constant parameters)in the
analysis that follows. We have focused on the oscillatory nature of the output y(t)
thus far, but we note that if the statesx(t) are periodic then the output is as well,
as this is the most common case. Hence we will often talk about thesystembeing
oscillatory, by which we mean that there is a solution for the dynamics in which
the state satisfiesx(t+T) = x(t).

More formally, we say that a closed curveΓ ∈ Rn is anorbit if trajectories that
start onΓ remain onΓ for all time and ifΓ is not an equilibrium point of the system.
As in the case of equilibrium points, we say that the orbit isstableif trajectories
that start nearΓ stay nearΓ, asymptotically stableif in addition nearby trajectories
approachΓ as t→∞ andunstableif it is not stable. The orbitΓ is periodic with
periodT if for any x(t) ∈ Γ, x(t+T) = x(t).

There are many different types of periodic orbits that can occur in a system
whose dynamics are modeled as in equation (3.21). A harmonic oscillatorrefer-
ences to a system that oscillates around an equilibrium point, but does not (usually)
get near the equilibrium point. The classical harmonic oscillator is a linear system
of the form

d
dt




0 ω

−ω 0







x1

x2



,
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(b) Nonlinear harmonic oscillator

Figure 3.18: Examples of harmonic oscillators.
.

whose solutions are given by



x1(t)
x2(t)



=




cosωt sinωt
−sinωt cosωt







x1(0)
x2(0)



.

The frequency of this oscillation is fixed, but the amplitude depends on the values
of the initial conditions, as shown in Figure3.18. Note that this system has a single
equilibrium point atx = (0,0) and the eigenvalues of the equilibrium point have
zero real part, so trajectories neither expand nor contract, but simply oscillate.

An example of a nonlinear harmonic oscillator is given by the equation

dx1

dt
= x2+ x1(1− x2

1− x2
2),

dx2

dt
= −x1+ x2(1− x2

1− x2
2). (3.22)

This system has an equilibrium point atx= (0,0), but the linearization of this equi-
librium point is unstable. The phase portrait in Figure3.18bshows that the solu-
tions in the phase plane converge to a circular trajectory. In the time domain this
corresponds to an oscillatory solution. Mathematically the circle is called alimit
cycle. Note that in this case, the solution for any initial condition approaches the
limit cycle and the amplitude and frequency of oscillation “in steady state” (once
we have reached the limit cycle) are independent of the initial condition.

A different type of oscillation can occur in nonlinear systems in which the equi-
librium points are saddle points, having both stable and unstable eigenvalues. Of
particular interest is the case where the stable and unstable orbits of one ormore
equilibrium points join together. Two such situations are shown in Figure3.19. The
figure on the left is an example of ahomoclinic orbit. In this system, trajectories
that start near the equilibrium point quickly diverge away (in the directionscor-
responding to the unstable eigenvalues) and then slowly return to the equilibrium
point along the stable directions. If the initial conditions are chosen to be precisely
on the homoclinic orbitΓ then the system slowly converges to the equilibrium
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Figure 3.19: Homoclinic and heteroclinic orbits.

point, but in practice there are often disturbances present that will perturb the sys-
tem off of the orbit and trigger a “burst” in which the system rapidly escapes from
the equilibrium point and then slowly converges again.

A somewhat similar type of orbit is aheteroclinic orbit, in which the orbit
connects two different equilibrium points, as shown in Figure3.19b.

An example of a system with a homoclinic orbit is given by the system

dx1

dt
= x2,

dx2

dt
= x1− x3

1. (3.23)

The phase portrait and time domain solutions are shown in Figure3.20. In this
system, there are periodic orbits both inside and outside the two homoclinic cy-
cles (left and right). Note that the trajectory we have chosen to plot in the time
domain has the property that it rapidly moves away from the equilibrium point
and then slowly re-converges to the equilibrium point, before begin carried away
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Figure 3.20: Example of a homoclinic orbit.
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Figure 3.21: (a) The glycolysis pathway. “S” is a substrate,which is converted into product
“P”. This, in turn, is activating its own production by enhancing the ratev2. (b) Oscillations
in the glycolysis pathway. Parameters arev0 = 1, k1 = 1, andk2 = 1.00001.

again. This type of oscillation, in which one slowly returns to an equilibrium point
before rapidly diverging is often called arelaxation oscillation. Note that for this
system, there are also oscillations that look more like the harmonic oscillator case
described above, in which we oscillate around the unstable equilibrium pointsat
x= (±1,0).

Example 3.9(Glycolytic oscillations). Glycolysis is one of the principal metabolic
networks involved in energy production. It is a sequence of enzyme-catalyzed reac-
tions that coverts sugar into pyruvate, which is then further degraded to alcohol (in
yeast fermentation) and lactic acid (in muscles) in anaerobic conditions, andATP
(the cell’s major energy supply) is produced as a result. Both damped and sustained
oscillations have been observed. Damped oscillations were first reportedby [20]
while sustained oscillations in yeast cell free extracts were observed when glucose-
6-phosphate (G6P), fructose-6-phosphate (F6P) [39] or trehalose [75] were used as
substrates.

Here, we introduce the fundamental motif that is known to be at the core of
these oscillatory phenomenon. This is depicted in Figure3.21(a). A simple model
for the system is given by the two differential equations

dS
dt
= v0−v1,

dP
dt
= v1−v2,

in which

v1 = S F(P), F(P) =
α(P/K)2

1+ (P/K)2
, v2 = k2P,

whereF(P) is the Hill function. Under the assumption thatK≫P2, we haveF(P)≈
k1P2, in which we have definedk1 :=α/K. This second order system admits a stable
limit cycle under suitable parameter conditions (Figure3.21b). ∇
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The example above illustrates some of the types of questions we would like to
answer for oscillatory systems. For example, under what parameter conditions do
oscillations occur in the glycolytic system? How much can the parameter change
before the limit cycle disappears? To analyze these sorts of questions, weneed
to introduce tools that allow to infer the existence and robustness of limit cycle
behavior from a differential equation model. The objective of this section is to
address these questions.

Consider the system ˙x = f (x) and letx(t, x0) denote its solution starting atx0

at timet = 0, that is, ˙x(t, x0) = f (x(t, x0)) andx(0, x0) = x0. We say thatx(t, x0) is a
periodic solutionif there isT > 0 such thatx(t, x0) = x(t+T, x0) for all t ∈ R. Here,
we seek to answer two questions: (a) when does a system ˙x= f (x) admit periodic
solutions? (b) When are these periodic solutions stable or asymptotically stable?

In order to provide the main result to state the existence of a stable periodic
solution, we need the concept of omega-limit set of a pointp, denotedω(p). Basi-
cally, the omega-limit setω(p) denotes the set of all points to which the trajectory
of the system starting fromp tends as time approaches infinity. This is formally
defined in the following definition.

Definition 3.1. A point x̄ ∈ Rn is called anomega-limit pointof p∈ Rn if there is a
sequence of times{ti} with ti →∞ for i →∞ such thatx(ti , p)→ x̄ asi →∞. The
omega-limit setof p, denotedω(p), is the set of all omega-limit points ofp.

The omega-limit set of a system has several relevant properties, among which
the fact that it cannot be empty and that it must be a connected set.

Limit cycles in the plane

Before studying periodic behavior of systems inRn, we study the behavior of sys-
tems inR2 as several high dimensional systems can be often well approximated by
systems in two dimensions by, for example, employing quasi-steady state approxi-
mations. For systems inR2, we will see that there are easy-to-check conditions that
guarantee the existence of a limit cycle.

The first result that we next give provides a simple check to rule out periodic
solutions for system inR2. Specifically, letx ∈ R2 and consider

ẋ1 = f1(x1, x2) ẋ2 = f2(x1, x2), (3.24)

in which the functionsfi : R2 → R2 for i = 1,2 are smooth. Then, we have the
following result:

Theorem 3.2(Bendixson’s criterion). If on a simply connected region D⊂R2 (i.e.,
there are no holes in it) the expression

∂ f1
∂x1
+
∂ f2
∂x2
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is not identically zero and does not change sign, then system(3.24) has no closed
orbits that lie entirely in D.

Example 3.10.Consider the system

ẋ1 = −x3
2+δx3

1, ẋ2 = x3
1,

with δ ≥ 0. We can compute∂ f1
∂x1
+

∂ f2
∂x2
= 3δx2

1, which is positive in allR2 if δ , 0. If
δ , 0, we can thus conclude from Bendixson’s criterion that there are no periodic
solutions. Investigate as an exercise what happens whenδ = 0. ∇

The following theorem, completely characterizes the omega-limit set of any
point for a system inR2.

Theorem 3.3 (Poincar̀e-Bendixson). Let M be a bounded and closed positively
invariant region for the systeṁx= f (x) with x∈ (i.e., any trajectory that starts in
M stays in M for all t≥ 0). Assume that there are finitely many steady states in M.
Let p∈ M, then one of the following possibilities holds forω(p):

(i) ω(p) is a steady state;

(ii) ω(p) is a closed orbit;

(iii) ω(p) consists of a finite number of steady states and orbits, each starting (for
t = 0) and ending (for t→∞) at one of the fixed points.

This theorem has two important consequences:

1. If the system does not have steady states inM, sinceω(p) is not empty, it
must be a periodic solution;

2. If there is only one steady state inM and it is unstable and not a saddle (i.e.,
the eigenvalues of the linearization at the steady state are both positive), then
ω(p) is a periodic solution.

We will employ this result in Chapter6 to determine conditions under which
the activator-repressor clock of Atkinsonet al. [5] admits sustained oscillations.

Limit cycles in R
n

The results above holds only for systems in two dimensions. However, therehave
been recent extensions of this theorem to systems with special structure inR

n. In
particular, we have the following result due to Hastings et al. (1977).

Theorem 3.4(Hastings et al. 1977). Consider a systeṁx = F(x), which is of the
form

ẋ1 = f1(xn, x1)

ẋ j = f j(x j−1, x j), 2≤ j ≤ n
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on the set M defined by xi ≥ 0 for all i with the following inequalities holding in
M:

(i) ∂ fi
∂xi

< 0 and ∂ fi
∂xi−1

> 0, for 2≤ i ≤ n, and ∂ f1
∂xn

< 0;

(ii) f i(0,0)≥ 0 and f1(xn,0)> 0 for all xn ≥ 0;

(iii) The system has a unique steady state x∗ = (x∗1, ..., x
∗
n) in M such that f1(xn, x1)<

0 if xn > x∗n and x1 > x∗1, while f1(xn, x1) > 0 if xn < x∗n and x1 < x∗1;

(iv) ∂ f1
∂x1

is bounded above in M.

Then, if the Jacobian of f at x∗ has no repeated eigenvalues and has any eigenvalue
with positive real part, then the system has a non-constant periodic solutionin M.

This theorem states that for a system with cyclic structure in which the cy-
cle “has negative gain”, the instability of the steady state (under some technical
assumption) is equivalent to the existence of a periodic solution. This theorem,
however, does not provide information about whether the orbit is attractive or not,
that is, of whether it is an omega-limit set of any point inM. This stability result is
implied by a more recent theorem due to Mallet-Paret and Smith (1990), for which
we provide a simplified statement as follows.

Theorem 3.5(Mallet-Paret and Smith, 1990). Consider the systeṁx= F(x) with
the following cyclic feedback structure

ẋ1 = f1(xn, x1)

ẋ j = f j(x j−1, x j), 2≤ j ≤ n

on a set M defined by xi ≥ 0 for all i with all trajectories starting in M bounded for
t ≥ 0. Then, theω-limit setω(p) of any point p∈ M can be one of the following:

(a) A steady state;

(b) A non-constant periodic orbit;

(c) A set of steady states connected by homoclinic or heteroclinic orbits.

As a consequence of the theorem, we have that for a system with cyclic feed-
back structure that admits one steady state only and at which the linearization has
all eigenvalues with positive real part, the omega-limit set must be a periodic orbit.

Let for someδi ∈ {1,−1} be δi
∂ fi (x,xi−1)
∂xi−1

> 0 for all 0≤ i ≤ n and define∆ :=
δ1 · ... ·δn . One can show that the sign of∆ is related to whether the system has one
or multiple steady states.

In Chapter6, we will apply these results in Chapter6 to determine the parameter
space that makes the repressilator [23] oscillate.
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Figure 3.22: Phase portraits for a simple bifurcation.

3.5 Bifurcations

Another important property of nonlinear systems is how their behavior changes as
the parameters governing the dynamics change. We can study this in the context of
models by exploring how the location of equilibrium points, their stability, their re-
gions of attraction and other dynamic phenomena, such as limit cycles, vary based
on the values of the parameters in the model.

Parametric stability

Consider a differential equation of the form

dx
dt
= F(x, θ), x ∈ Rn, θ ∈ Rk, (3.25)

wherex is the state andθ is a set of parameters that describe the family of equations.
The equilibrium solutions satisfy

F(x, θ) = 0,

and asθ is varied, the corresponding solutionsxe(θ) can also vary. We say that
the system (3.25) has abifurcationat θ = θ∗ if the behavior of the system changes
qualitatively atθ∗. This can occur either because of a change in stability type or a
change in the number of solutions at a given value ofθ.

As an example of a bifurcation, consider the linear system

dx1

dt
= x2,

dx2

dt
= −kx1−µx2,

wherek > 0 is fixed andθ is our bifurcation parameter. Figure3.22 shows the
phase portraits for different values ofθ. We see that atθ = 0 the system transitions
from a single stable equilibrium point at the original to having an unstable equilib-
rium. Hence, asθ goes from negative to positive values, the behavior of the system
changes in a significant way, indicating a bifurcation.
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Figure 3.23: Bifurcation diagrams for some common bifurcations

A common way to visualize a bifurcation is through the use of abifurcation
diagram. To create a bifurcation diagram, we choose a functiony= h(x) such that
the value ofy at an equilibrium point has some useful meaning for the question
we are studying. We then plot the value ofye = h(xe(θ)) as a function ofθ for all
equilibria that exist for a given parameter valueθ. By convention, we use dashed
lines if the corresponding equilibrium point is unstable and solid lines otherwise.
Figure3.23shows examples of some common bifurcation diagrams. Note that for
some types of bifurcations, such as the pitchfork bifurcation, there existvalues of
θ where there is more than one equilibrium point. A system that exhibits this type
of behavior is said to bemultistable. A common case is that there are two stable
equilibria, in which case the system is said to bebistable.

Another type of diagram that is useful in understanding parametric dependence
is a parametric stability diagram, an example of which was shown in Figure??.
In this type of diagram, we pick one or two (or sometimes three) parameters in the
system and then analyze the stability type for the system over all possible combina-
tions of those parameters. The resulting diagram shows those regions in parameter
space where the system exhibits qualitatively different behaviors; an example is
shown in Figure3.24a.

A particular form of bifurcation that is very common when controlling linear
systems is that the equilibrium remains fixed but the stability of the equilibrium
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Figure 3.24: Stability plots a nonlinear system. The plot in(a) shows the real part of the
system eigenvalues as a function of the parameterθ. The system is stable when all eigenval-
ues have negative real part (shaded region). The plot in (b) shows the locus of eigenvalues
on the complex plane as the parameterθ is varied and gives a different view of the stability
of the system. This type of plot is called aroot locus diagram.

changes as the parameters are varied. In such a case it is revealing to plot the eigen-
values of the system as a function of the parameters. Such plots are calledroot locus
diagramsbecause they give the locus of the eigenvalues when parameters change.
An example is shown in Figure3.24b. Bifurcations occur when parameter values
are such that there are eigenvalues with zero real part. Computing environments
such LabVIEW, MATLAB and Mathematica have tools for plotting root loci.

Parametric stability diagrams and bifurcation diagrams can provide valuable
insights into the dynamics of a nonlinear system. It is usually necessary to carefully
choose the parameters that one plots, including combining the natural parameters
of the system to eliminate extra parameters when possible. Computer programs
such asAUTO, LOCBIF andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.

Hopf bifurcation

The bifurcations discussed above involved bifurcation of equilibrium points. An-
other type of bifurcation that can occur is that a system with an equilibrium point
admits a limit cycle as a parameter is changed through a critical value. The Hopf
bifurcation theorem provides a technique that is often used to understandwhether
a system admits a periodic orbit when some parameter is varied. Usually, suchan
orbit is a small amplitude periodic orbit that is present in the close vicinity of an
unstable steady state.

Consider the system dependent on a parameterα:

dx
dt
= g(x,α), x ∈ Rn, α ∈ R,
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./dynamics/figures/hopf-bifurcation.eps

Figure 3.25: Hopf Bifurcation. On the left hand, asθ increases a stable limit cycle appears.
On the right hand side, asθ increases a limit cycle appears but it is unstable.

and assume that at the steady state ¯x corresponding toα = ᾱ (i.e., g(x̄, ᾱ) = 0),
the linearization∂g/∂x(x̄, ᾱ) has a pair of (non zero) imaginary eigenvalues with
the remaining eigenvalues having negative real parts. Define the new parameter
θ := α− ᾱ and re-define the system as

dx
dt
= f (x, θ) =: g(x, θ+ ᾱ),

so that the linearization∂ f /∂x(x̄,0) has a pair of (non zero) imaginary eigenvalues
with the remaining eigenvalues having negative real parts. Denote byλ(θ) = β(θ)+
iω(θ) the eigenvalue such thatβ(0)= 0. Then, if∂β/∂θ(0), 0 the system admits a
small amplitude almost sinusoidal periodic orbit forθ small enough and the system
is said to go through a Hopf bifurcation atθ = 0. If the small amplitude periodic
orbit is stable, the Hopf bifurcation is saidsupercritical, while if it is unstable it is
saidsubcritical. Figure3.25shows diagrams corresponding to these bifurcations.

In order to determine whether a Hopf bifurcation is supercritical or subcritical,
it is necessary to calculate a “curvature” coefficient, for which there are formu-
las (Marsden and McCrocken, 1976) and available bifurcation software, such as
AUTO. In practice, it is often enough to calculate the value ¯α of the parameter at
which Hopf bifurcation occurs and simulate the system for values of the parameter
α close toᾱ. If a small amplitude limit cycle appears, then the bifurcation must be
supercritical.

Example 3.11(Glycolytic oscillations). Recalling the model (3.9) for the gly-
colytic oscillator, we ask whether such an oscillator goes through a Hopf bifur-
cation. In order to answer this question, we consider again the expression of the
eigenvalues

λ1,2 =
tr(J)±

√

tr(J)2−4det(J)
2

,
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in which

tr(J) = k2−k1

(

v0

k2

)2

and det(J) = k1

(

v0

k2

)2

.

The eigenvalues are imaginary if tr(J) = 0, that is, ifk1 = k3
2/v

2
0. Furthermore, the

frequency of oscillations is given byω=
√

4det(J)= 4k1(v0/k2)2. Whenk1≈ k3
2/v

2
0,

an approximately sinusoidal oscillation appears. Whenk1 is large, the Hopf bifur-
cation theorem does not imply the existence of a periodic solution. This is because
the Hopf theorem provides only local results. ∇

The Hopf bifurcation theorem is based on center manifold theory for nonlinear
dynamical systems. For a rigorous treatment of Hopf bifurcation is thus necessary
to study center manifold theory first, which is outside the scope of this text. For
details, the reader is referred to standard text in dynamical systems [96, 37].

3.6 Model Reduction Techniques

The techniques that we have developed in this chapter can be applied to a wide
variety of dynamical systems. However, many of the methods require significant
computation and hence we would like to reduce the complexity of the models as
much as possible before applying them. In this section, we review methods for
doing such a reduction in the complexity of the models. Most of the techniques
are based on the common idea that if we are interested in the slower time scale
dynamics of a system, the fast time scale dynamics can be approximated by their
equilibrium solutions. This idea was introduced in Chapter2 in the context of re-
duced order mechanisms; we present a more mathematical analysis of such systems
here.

Singular perturbation analysis

Singular perturbation techniques apply to systems that have processes that evolve
on both fast and slow time scales and that can be written in a standard form, which
we now introduce. Let (x,y) ∈ D := Dx×Dy ⊂Rn×Rm and consider the vector field

dx
dt
= f (x,y, ǫ), x(0)= x0

ǫ
dy
dt
= g(x,y, ǫ), y(0)= y0

in which 0< ǫ ≪ 1 is a small parameter and bothf (x,y,0) andg(x,y,0) are well
defined. Sinceǫ ≪ 1, the rate of change ofy can be much larger than the rate of
change ofx, resulting iny dynamics that are much faster than thex dynamics. That
is, this system has a slow time scale evolution (inx) and a fast time-scale evolution
(in y), so thatx is called the slow variable andy is called the fast variable.
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If we are interested only in the slower time scale then the above system can be
approximated (under suitable conditions) by thereduced system

dx̄
dt
= f (x̄, ȳ,0), x̄(0)= x0,

0= g(x̄, ȳ,0).

Let y = h(x) denote the locally unique solution ofg(x,y,0) = 0. The manifold of
(x,y) points wherey= h(x) is called theslow manifold. Theimplicit function theo-
rem[60] shows that this solution exists whenever∂g/∂y is non singular and that in
such a case

dh
dx
= −∂g

∂y

−1∂g
∂x
.

We can now re-write the dynamics ofx in the reduced system as

dx̄
dt
= f (x̄,h(x̄),0), x̄(0)= x0.

We seek to determine under what conditions the solutionx(t) is “close” to the
solution x̄(t) of the reduced system. This problem can be addressed by analyzing
the fast dynamics, that is the dynamics of the system in the fast time scaleτ = t/ǫ.
In this case, we have that

dx
dτ
= ǫ f (x,y, ǫ),

dy
dτ
= g(x,y, ǫ), (x(0),y(0))= (x0,y0),

so that whenǫ≪ 1, x(τ) does not appreciably change. Therefore, the above system
in theτ time scale can be well approximated by the system

dy
dτ
= g(x0,y,0), y(0)= y0,

in which x is “frozen” at the initial conditionx0. This system is usually referred
to as theboundary layersystem. For this system, the pointy = h(x0) is an equi-
librium point. Such an equilibrium point is asymptotically stable ify(τ) converges
to h(x0) asτ→∞. In this case, the solution (x(t),y(t)) of the original system ap-
proaches ( ¯x(t),h(x̄(t))). This qualitative explanation is more precisely captured by
the following theorem [51].

Theorem 3.6. Assume that

Real



λ

(

∂

∂y
g(x,y)

∣
∣
∣
∣
∣
y=h(x)







 < 0

uniformly for x∈ Dx. Let the solution of the reduced system be uniquely defined for
t ∈ [0, t f ]. Then, for all tb ∈ (0, t f ] there is a constantǫ∗ > 0 and setΩ ⊆ D such that

x(t)− x̄(t) =O(ǫ) uniformly for t∈ [0, t f ],

y(t)−h(x̄(t)) =O(ǫ) uniformly for t∈ [tb, t f ],

providedǫ < ǫ∗ and(x0,y0) ∈Ω.
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Example 3.12(Hill function). In Section2.1, we obtained the expression of the
Hill function by making a quasi-steady state approximation on the dynamics of
binding. Here, we illustrate how Hill function expressions can be derivedby a for-
mal application of singular perturbation. Specifically, consider the simple binding
scenario of a transcription factor X with DNA promoter sites p. Assume that such
a transcription factor is acting as an activator of the promoter and let Y be thepro-
tein expressed under promoter p. Assume further that X dimerizes beforebinding
to promoter p. The reaction equations describing this system are given by

X +X
k1−−⇀↽−−
k2

X2, X2+p
a−⇀↽−
d

C, C
kf−→mY +C,

mY
κ−→mY +Y, mY

δ−→ ∅, Y
γ
−→ ∅, p+C = ptot.

The corresponding differential equation model is given by

dX2

dt
= k1X2−k2X2−aX2(ptot−C)+dC

dC
dt
= aX2(ptot−C)−dC

dmY

dt
= kfC−δmY

dY
dt
= κmY−γY.

Since all the binding reactions are much faster than mRNA and protein production
and decay, we have thatk2,d≫ kf , κ,δ,γ. Let Km := k2/k1, Kd := d/a, c := k2/d,
andǫ := γ/d. Then, we can re-write the above system by using the substitutions

d =
γ

ǫ
, a=

γ

Kdǫ
, k2 = c

γ

ǫ
, k1 = c

γ

Kmǫ
,

so that we obtain

ǫ
dX2

dt
= c

γ

Km
X2−cγX2−

γ

Kd
X2(ptot−C)+γC

ǫ
dC
dt
=

γ

Kd
X2(ptot−C)−γC

dmY

dt
= kfC−δmY

dY
dt
= κmY−γY.

This system is in the standard singular perturbation form (3.6). As an exercise,
the reader can verify that the slow manifold is locally asymptotically stable (see
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Exercises). The slow manifold is obtained by settingǫ = 0 and determinesX2 and
C as functions ofX. These functions are given by

X2 =
X2

Km
, C =

ptotX2/(KmKd)
1+X2/(KmKd)

.

As a consequence, the reduced system becomes

dmY

dt
= kf

ptotX2/(KmKd)
1+X2/(KmKd)

−δmY

dY
dt
= κmY−γY,

which is the familiar expression for the dynamics of gene expression with an acti-
vator as derived in Section2.1and lettingα = kf ptot, we have that

F(X) = α
X2/(KmKd)

1+X2/(KmKd)

is the standard Hill function expression.
. ∇

Example 3.13(Enzymatic reaction). Let’s go back to the enzymatic reaction

E+S
a−⇀↽−
d

C
k−→ E+P,

in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the substrate
S due to the binding with the enzyme E. The corresponding system of differential
equations is given by

dE
dt
= −aE·S+dC+kC,

dC
dt
= aE·S− (d+k)C, (3.26)

dS
dt
= −aE·S+dC,

dP
dt
= kC. (3.27)

By considering that binding and unbinding reactions are much faster than the
catalytic rates, mathematically expressed byd≫ k, we obtained before that ap-
proximatelydC/dt = 0 and thus thatC = EtotS/(S+Km), with Km = (d+k)/a and
dP/dt= VmaxS/(S+Km) with Vmax= kEtot. From this, it also follows that

dE
dt
≈ 0 and

dS
dt
≈ −dP

dt
. (3.28)

How good is this approximation? By applying the singular perturbation method,
we will obtain a clear answer to this question. Specifically, defineKd := d/a and
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take the system to standard singular perturbation form by defining the small pa-
rameterǫ := k/d, so thatd = k/ǫ, a= k/(Kdǫ), and the system becomes

ǫ
dE
dt
= − k

Kd
E ·S+kC+ ǫkC, ǫ

dC
dt
=

k
Kd

E ·S−kC− ǫkC,

ǫ
dS
dt
= − k

Kd
E ·S+kC,

dP
dt
= kC.

One cannot directly apply singular perturbation theory on this system because
one can verify from the linearization of the first three equations that the boundary
layer dynamics are not locally exponentially stable since there are two zero eigen-
values. This is because the three variablesE,S,C are not independent. Specifically,
E=Etot−C andS+C+P=S(0)=Stot, assuming that initially we have S in amount
S(0) and no amount of P and C in the system. Given these conservation laws,the
system can be re-written as

ǫ
dC
dt
=

k
Kd

(Etot−C) · (Stot−C−P)−kC− ǫkC,
dP
dt
= kC.

Under the assumption made in the analysis of the enzymatic reaction thatStot≫
Etot, we have thatC≪ Stot so that the equations finally become

ǫ
dC
dt
=

k
Kd

(Etot−C) · (Stot−P)−kC− ǫkC,
dP
dt
= kC.

One can verify (see Exercises) that in this system, the boundary layer dynamics
is locally exponentially stable, so that settingǫ = 0 one obtains

C̄ =
Etot(Stot− P̄)

(Stot− P̄)+Km
=: h(P̄)

and thus that the reduced system is given by

dP̄
dt
= Vmax

(Stot− P̄)

(Stot− P̄)+Km
.

This system is the same as that obtained in Chapter2. However,dC(t)/dt and
dE(t)/dt are not close to zero as obtained earlier. In fact, from the conservationlaw
S̄+C̄+ P̄=S(0)=Stot, we obtain thatdS̄

dt =−
dP̄
dt −

dC̄
dt , in which nowdC̄

dt =
∂h
∂P(P̄) · dP

dt .
Therefore

dS̄
dt
= −dP̄

dt
(1+

∂h
∂P

(P̄)), S̄(0)= Stot−h(P̄(0))− P̄(0) (3.29)

and
dĒ
dt
= −dC̄

dt
= − ∂h

∂P
(P̄)

dP̄
dt
, E(0)= Etot−h(P̄(0)), (3.30)

which are different from expressions (3.28).
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Figure 3.26: Simulation results for the enzymatic reactioncomparing the approximations
from singular perturbation and from the quasi-steady stateapproximation (QSSA). Here,
we haveStot = 100, Etot = 1, a = d = 10, andk = 0.1. The full model is the one in equa-
tions (3.27).

These expressions are close to those in equation (3.28) only when∂h/∂P(P̄) is
small enough. In the plots of Figure3.26, we show the time trajectories of the orig-
inal system, of the Michaelis-Menten quasi-steady state approximation (QSSA),
and of the singular perturbation approximation. In the full model (solid line in Fig-
ure3.26), E(t) starts from a unit concentration and immediately collapses to zero
as the enzyme is all consumed to form the complex C by the substrate, which is
in excess. Similarly,C(t) starts from zero and immediately reaches the maximum
possible value of one.

In the QSSA, bothE(t) andC(t) are assumed to stabilize immediately to their
(quasi) steady state and then stay constant. This is depicted by the dotted plotsin
Figure3.26, in which E(t) stays at zero for the whole time andC(t) stays at one
for the whole time. This approximation is fairly good as long as there is an excess
of substrate. When the substrate concentration goes to zero as it is all converted
to product, also the complex concentrationC goes to zero (see solid line of Fig-
ure 3.26). At this time, the concentrations of complex and enzyme substantially
change with time and the QSSA is unsatisfactory. By contrast, the reduced dynam-
ics obtained from the singular perturbation approach well represent thedynamics
of the full system even during this transient behavior. Hence, while the QSSA is a
good approximation only as long as there is excess of substrate in the system,the
reduced dynamics obtained by singular perturbation is a good approximationeven
when the substrate concentration goes to zero.

In Figure3.27, we show the curveC = h(P) (in red) and the trajectories of the
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Figure 3.27: The slow manifold of the systemC = h(P) is shown in red. In black, we show
the trajectories of the the full system. These trajectoriescollapse into anǫ-neighbor of the
slow manifold. Here, we haveStot = 100,Etot = 1, a= d = 10, andk= 0.1.

full system in black. All of the trajectories of the system immediately collapse into
anǫ-neighbor of the curveC = h(P). From this plot, it is clear that∂h/∂P is small
as long as the product concentrationP is small enough, which corresponds to a
substrate concentrationS large enough. This confirms that the QSSA is good only
as long as there is excess of substrateS. ∇

Exercises

3.1 (BE 150, Winter 2011)File missing: ./dynamics/exercises/dual-activation

3.2 (BE 150, Winter 2011)File missing: ./dynamics/exercises/posfbk-cascade

3.3 (Frequency response of a phosphorylation cycle) Consider the modelof a co-
valent modification cycle as illustrated in Chapter2 in which the kinase Z is not

constant, but it is produced and decays according to the reaction Z
u(t)
−−−⇀↽−−−
γ

. Let u(t)

be the input stimulus of the cycle and letX∗ be the output. Determine the fre-
quency response ofX∗ to u, determine its bandwidth, and make plots of it. What
parameters can be used to tune the bandwidth?

3.4 (Design for robustness) Consider a one-step reaction model for a phosphoryla-
tion cycle as seen in Homework 1, in which the input stimulus is the time-varying
concentration of kinaseZ(t). When found in the cellular environment, this cycle is
subject to possible interactions with other cellular components, such as the non-
specific or specific binding of X* to target sites, to noise due to stochasticity of
the cellular environment, and to other cross-talk phenomena. We will come back to
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these “disturbances” later during the course. For now, we can think of these distur-
bances as acting like an aggregate rate of change on the output protein X*, which
we calld(t). Hence, we can model the “perturbed” cycle by

Ẋ∗ = Z(t)k1Xtot

(

1− X∗

Xtot

)

−k2YtotX
∗+d(t),

which is the same as you found in Homework 1, except for the presence ofthe
disturbanced(t). Assume that you can tune all the parameters in this system (we
will see later that this is actually possible to large extent by suitably fabricating
genetic circuits). Can you tune these parameters so that the response ofX∗(t) to
d(t) is arbitrarily attenuated while the response ofX∗(t) to Z(t) remains arbitrarily
large? If yes, explain how these parameters should be tuned to reach this design
objective and justify your answer through a careful mathematical reasoning using
the tools introduced in class.

3.5 (Adaptation) Show that the equation of the sniffer (3.15) can be taken into the
standard integral feedback form through a suitable change of coordinates.

3.6 (Design limitations) This problem is meant to have you think about possible
trade-offs and limitations that are involved in any realistic design question (we will
come back to this when we start design). Here, we examine this through the open
loop and negative feedback transcriptional component seen in class (see Figure 3-8
in the Lecture Notes). Specifically, we want to compare the robustness of these two
topologies to cellular noise, crosstalk, and other cellular interactions. As performed
in Problem 1, we model these phenomena as a time-varying disturbance affecting
the production rate of mRNA m and protein P. To slightly simplify the problem,
we focus only on disturbances affecting the production of protein. The open loop
model becomes

ṁP= α0−δmP Ṗ= κmP−γP+d(t)

and the negative feedback system becomes

ṁP= α0+
α

1+ (P/K)n −δmP Ṗ= βmP−γP+d(t).

Answer the following questions:

(a) After performing linearization about the equilibrium point, determine ana-
lytically the frequency response ofP to d for both systems.

(b) Sketch the magnitude plot of this response by hand for both systems, com-
pare them, and determine what happens asκ andα increase (note: if your
calculations are correct, you should find that what really matters for the neg-
ative feedback system is the productακ, which we can view as thefeedback
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gain). So, is increasing the feedback gain to arbitrarily large values the best
strategy to decrease the sensitivity of the system to the disturbance? Com-
ment.

(c) Pick parameter values and use Matlab to draw Bode plots as the feedback
gain increases and validate your predictions of (b). (Suggested parameters:
δ = 1, γ = 1, K = 1, n= 1, ακ = {1,10,100,1000, ...}). Note: in Matlab, once
you have determined the matricesA, B, C, andD for the linearization, you
can just do:SYS=ss(A,B,C,D); bode(SYS) and the Bode plot will pop
up.

(d) Investigate the answer to (c) when you haveδ = 20, that is, the timescale of
the mRNA dynamics becomes faster than that of the protein dynamics. What
does change with respect to what you found in (c)? Note: whenδ increases
you are reducing the (phase) lag within the negative feedback loop...

(e) Whenδ is at least 10 times larger thanγ, you can approximate them dy-
namics to the quasi-steady state. So, the two above systems can be reduced
to one differential equation each for the protein concentrationP. For these
two reduced systems, determine analytically the frequency response tod and
use it to find out whether arbitrarily increasing the feedback gain is a good
strategy to decrease the sensitivity of response to the disturbance.

3.7(Bendixson criterion) Consider the possible circuit topologies of Figure3.28, in
which A and B are transcriptional components. Model each transcriptional compo-
nent by a first order system, in which you have approximated the mRNA dynamics
at the quasi-steady state. Hence, each topology will be represented by adynamical
system in the planeR2. Use Bendixson criterion to rule out topologies that cannot
give rise to closed orbits.

3.8 (Two gene oscillator) Consider the feedback system composed of two genes
expressing proteins A (activator) and R (repressor), in which we denote byA, R,
mA, andmR, the concentrations of the activator protein, the repressor protein, the
mRNA for the activator protein, and the mRNA for the repressor protein, respec-
tively. The ODE model corresponding to this system is given by

dmA

dt
=

α

1+ (R/K1)n −δmA

dA
dt
= κmA−γA

dmR

dt
=

α(A/K2)m

1+ (A/K2)m −δmR

dR
dt
= κmR−γR.

Determine parameter conditions under which this system admits a stable limit cy-
cle. Validate your finding through simulation.

3.9 (Goodwin oscillator) Consider the simple set of reactions

X1
k−→ X2

k−→ X3....
k−→ Xn.
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Figure 3.28: Circuit topologies with two components (proteins): A and B.

Assume further that Xn is a transcription factor that represses the production of pro-
tein X1 through transcriptional regulation (assume simple binding of X1 to DNA).
Neglecting the mRNA dynamics of X1, write down the ODE model of this sys-
tem and determine conditions on the length n of the cascade for which the system
admits a stable limit cycle. Validate your finding through simulation.

3.10 (Phosphorylation via singular perturbation) Consider again the model of a
covalent modification cycle as illustrated in Chapter2 in which the kinase Z is not

constant, but it is produced and decays according to the reaction Z
γ
−−−⇀↽−−−
u(t)
∅.

(a) Consider thata,d≫ k,γ,u(t) and employ singular perturbation with small pa-
rameter, for example,ǫ = γ/d to obtain the approximated dynamics ofZ(t) and
X∗(t). How is this different from the result obtained in Exercise2.8? Explain.

(b) Simulate these approximated dynamics whenu(t) is a periodic signal with fre-
quencyω and compare the responses of Z of this approximated dynamics to those
obtained in Exercise2.8as you changeω. What do you observe? Explain.

3.11 (Hill function via singular perturbation) Show that the slow manifold of the
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following system is asymptotically stable:

ǫ
dX2

dt
= c

γ

Km
X2−cγX2−

γ

Kd
X2(ptot−C)+γC,

dmY

dt
= αC−δmY,

ǫ
dC
dt
=

γ

Kd
X2(ptot−C)−γC,

dY
dt
= βmY−γY.

3.12(Enzyme dynamics via singular perturbation) Show that the slow manifold of
the following system is asymptotically stable:

ǫ
dC
dt
=

k
Kd

(Etot−C) · (Stot−P)−kC− ǫkC,
dP
dt
= kC.

3.13(BE 150, Winter 2011; Based on Alon 4.6—Shaping the pulse) Consider a sit-
uation where X in an I1-FFL begins to be produced at time t=0, so that the level of
protein X gradually increases. The input signalSx andSy are present throughout.

(a) How does the pulse shape generated by the I1-FFL depend on the thresholds
Kxz, Kxy, andKyz, and onβ, the production rate of protein X? (i.e. How does in-
creasing or decreasing these parameters change the height or position of the pulse
peak, the slope of the rise of the pulse, etc?)

(b) Analyze a set of genesZ1,Z2, ...,Zn, all regulated by the same X and Y in I1-
FFLs. Design thresholds such that the genes are turned ON in the rising phase of
the pulse in a certain temporal order and turned OFF in the declining phase ofthe
pulse with the same order.

(c) Design thresholds such that the turn-OFF order is opposite the turn-ON order.
Plot the resulting dynamics.

3.14(BE 150, Winter 2011; Based on Alon 5.6—Bi-fan dynamics) Consider a bi-
fan in which activatorsX1 andX2 regulate genesZ1 andZ2. The input signal of
X1,SX2, appears at time t=0 and vanishes at time t=D. The input signal ofX2,SX2,
appears at time t=D/2 and vanishes at t=2D. Plot the dynamics of the promoter
activity of Z1 andZ2 given that the input functions ofZ1 andZ2 are AND and OR
logic, respectively.

3.15 (BE 150, Winter 2011; Based on Alon 6.1—Memory in the regulated-feed-
back network motif) Transcription factor X activates transcription factorY1 andY2.
Y1 andY2 mutually activate each other. The input function at theY1 andY2 pro-
moters is an OR gate (Y2 is activated when either X orY1 binds the promoter). At
time t=0, X begins to be produced from an initial concentration of X=0. Initially
Y1 = Y2 = 0. All production rates areβ = 1 and degradation rates areα = 1. All of
the activation thresholds are K=0.5. At time t=3, production of X stops.
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(a) Plot the dynamics ofX,Y1,Y2. What happens toY1 andY2 after X decays away?

(b) Consider the same problem, but nowY1 andY2 repress each other and X ac-
tivatesY1 and repressesY2. At time t=0, X begins to be produced and the initial
levels areX = 0,Y1 = 0,Y2 = 1. At time t=3, X production stops. Plot the dynamics
of the system. What happens after X decays away?

3.16(BE 150, Winter 2011; Repressilator) Simulate the following simplified ver-
sion of the repressilator:

dm1

dt
=

kp

1+ ( p3
KM

)n
−kmdegm1

dp1

dt
= ktransm1−kpdegp1

dm2

dt
=

kp

1+ ( p1
KM

)n
−kmdegm2

dp2

dt
= ktransm2−kpdegp2

dm3

dt
=

kp

1+ ( p2
KM

)n
−kmdegm3

dp3

dt
= ktransm3−kpdegp3

(a) Simulate the system using the following parameters:kp = 0.5,n = 2,KM =

40,kmdeg= 0.0058,kpdeg= 0.0012,ktrans= 0.116.

(b) Suppose the protein half-life suddenly decreases by half. Which parameter(s)
will change and how? Simulate what happens. What if the protein half-life is dou-
bled? How do these two changes affect the oscillatory behavior?

(c) Now assume that there is leakiness in the transcription process. How does the
system’s ODE change? Simulate the system with a small leakiness (say, 5e-3) and
comment on how it affects the oscillatory behavior.

3.17(BE 150, Winter 2011; Glycolytic oscillations) In almost all living cells, glu-
cose is broken down into the cell’s energy currency, ATP, via the glycolysis path-
way. Glycolysis is autocatalytic in the sense that ATP must first be consumed inthe
early steps before being produced later and oscillations in glycolytic metabolites
have been observed experimentally. We will look at a minimal model of glycolysis:

dX
dt
=

2Vya

1+yh
−kx

dY
dt
= (q+1)kx−q

2Vya

1+yh
−1
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Note that this system has been normalized such thatYss= 1.

(a) While a system may have the potential to oscillate, the behavior still depends
on the parameter values. The glycolysis system undergoes multiplebifurcations
as the parameters are varied. Using linear stability analysis, find the parameter
conditions where the system is stable vs. unstable. Next, find the conditions where
the system has eigenvalues with nonzero imaginary parts.

(b) Letq=k=V=1. Find the relationship betweenh anda where the system is stable
or not. Draw the stability diagram and mark the regions where the system is stable
vs. unstable. In the same plot, mark the regions where the system has eigenvalues
with nonzero imaginary parts.

(c) Letq=k=V=1. Chooseh anda such that the eigenvalues are unstable and have
nonzero imaginary parts. Use these parameter values and simulate the nonlinear
system in MATLAB. Sketch the time response of the system starting with initial
condition X(0)=1.2, Y(0)= 0.5 (you may use MATLAB or sketch by hand). Com-
ment on what you see compared to what linear stability analysis told you aboutthe
system.

3.18(BE 150, Winter 2011) Finding limit cycles for nonlinear systems and under-
standing how changes in parameters affect the amplitude and period of the oscil-
lation is difficult to do in analytical form. A graphical technique that gives some
insight into this problem is the use ofdescribing functions, which is described in
Feedback Systems, Section 9.5. In this problem we will use describing functions for
a simple feedback system to approximate the amplitude and frequency of a limit
cycle in analytical form.

Consider the system with the block diagram shown below. The blockR is a relay

with hysteresis whose input/output response is shown on the right and the process
transfer function isP(s) = e−sτ/s. Use describing function analysis to determine
frequency and amplitude of possible limit cycles. Simulate the system and compare
with the results of the describing function analysis.

3.19(BE 150, Winter 2011) In this problem we will compare the model with single
methylation site vs. double methylation sites. The model with a single methylation
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site is given by:
d(X+X∗)

dt
= VRR− VBBX∗

K +X∗
where theactivity is given byA = X∗. The model with two methylation sites is
given by

d(X2+X2∗)
dt

=
RVRX1

X1+X0
−BVBX2∗

d(X1+X1∗)
dt

= BVBX2 ∗+
RVRX0

X1+X0
− RVRX1

X1+X0
−BVBX1∗

dX0

dt
= − RVRX0

X0+X1
+BVBX1∗

and the activity is given byA = X1 ∗+X2∗. Let K = 10,VRR= 1,VBB= 2. Derive
the parameter sensitivities of the activities (dA

dpi
) for both the single and double

methylation models. Comment on which parameter each model is most robust and
most sensitive to.

3.20(BE 150, Winter 2011) Consider a toy model of protein production:

dm
dt
= f (p)−δm dp

dt
= g(p)−γp

(a) Assume that there is transcriptional self-regulation (f (p) = α
K+pn ). We now

know that the mRNA transcription process and thus we want to understand the
sensitivity with respect to the mRNA transcription rateα0. Compute the trans-
fer function fromα to p. Plot this transfer function forα = 0.002,β0 = 0.1, δ =
0.005,γ = 0.001,K = 0.002. Compare it with the transfer function fromα0 to p
without regulation (f (p) = α0 = 0.001). (Note: As a reminder on how to compute
these transfer functions, see BFS chapter 3 page 3-11).

(b) Now assume that there is no transcriptional regulation (f (p) = α0) but there is
translational self-regulation such thatg(p) = βm

K+pn . Computer the transfer function
from α0 to p whenβ = 0.2. Compare again with the case with no regulation.

3.21(BE 150, Winter 2011) Consider a simple model of chemotaxis:

dXm

dt
= kRR+k f (L)X∗m−kr Xm

dX∗m
dt
= −kBBp X∗m

KX∗m+X∗m
−k f (L)X∗m+kr Xm

whereXm is the concentration of methylated receptor complex, andX∗m is the con-
centration of activated, methylated receptor complex. Ligand concentrationenters
into the equation through the ratek f (L). In this model,CheR(R) andCheBP (BP)
concentrations are constant. (BFS, Section 5)
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(a) Pick parameter values such thatkBBp > kRR and plot the dynamics, doubling
the ligand concentration at time t=20. Compare to figure 5.12 in BFS.

(b) Now assume that CheR no longer acts in saturation. Rederive the dynamics
and plot. Comment on how this assumption affects adaptation.
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Chapter 4
Stochastic Modeling and Analysis

In this chapter we explore stochastic behavior in biomolecular systems, building
on our preliminary discussion of stochastic modeling in Section2.1. We begin by
reviewing the various methods for modeling stochastic processes, includingthe
chemical master equation (CME), the chemical Langevin equation (CLE) andthe
Fokker-Planck equation (FPE). Given a stochastic description, we canthen analyze
the behavior of the system using a variety of stochastic simulation and analysis
tools.

Prerequisites.This chapter makes use of a variety of topics in stochastic processes
that are not covered in AM08. Readers should have a good working knowledge of
basic probability and some exposure to simple stochastic processes (e.g., Brownian
motion), at the level of the material presented in Appendix?? (drawn from [68]).

4.1 Stochastic Modeling of Biochemical Systems

Biomolecular systems are inherently noisy due to the random nature of molecular
reactions. When the concentrations of molecules are high, the deterministic models
we have used in the previous chapters provide a good description of the dynamics
of the system. However, if the molecular counts are low then it is often necessary to
explictly account for the random nature of events. In this case, th chemical reactions
in the cell can be modeled as a collection of stochastic events correspondingto
chemical reactions between species, including binding and unbinding of molecules
(such as RNA polymerase and DNA), conversion of one set of speciesinto another,
and enzymatically controlled covalent modifications such as phosphorylation. In
this section we will briefly survey some of the different representations that can be
used for stochastic models of biochemical systems, following the material in the
textbooks by Phillipset al. [72], Gillespie [29] and Van Kampen [49].

Statistical mechanics

At the core of many of the reactions and multi-molecular interactions that take
place inside of cells is the chemical physics associated with binding between two
molecules. One way to capture some of the properties of these interactions is
through the use of statistical mechanics and thermodynamics.
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As described briefly already in Chapter2, the underlying representation for
both statistical mechanics and chemical kinetics is to identify the appropriate mi-
crostates of the system. A microstate corresponds to a given configurationof the
components (species) in the system relative to each other and we must enumerate
all possible configurations between the molecules that are being modeled.

In statistical mechanics, we model the configuration of the cell by the probabil-
ity that system is in a given microstate. This probability can be calculated basedon
the energy levels of the different microstates. Consider a setting in which our sys-
tem is contained within a reservoir. LetEr represent the energy in the resevoir,Es

the energy in the system andEtot = Er +Esthe total (conserved) energy. Given two
different energy levelsE(1)

s andE(2)
s for the system of interest, letWr (Etot−E(i)

s )
be the number of possible microstates of the reservoir with energyEr = Etot−E(i)

s ,
i = 1,2. The laws of statistical mechanics state that the ratio of probabilities of be-
ing at the energy levelsE(1)

s andE(2)
s is given by the ratio of number of possible

states of the reservoir:
P(E(1)

s )

P(E(2)
s )
=

Wr (Etot−E(1)
s )

Wr (Etot−E(2)
s )

. (4.1)

Defining the entropy of the system asS= kB lnW, wherekB is Boltmann’s constant,
we can rewrite equation (4.1) as

Wr (Etot−E(1)
s )

Wr (Etot−E(2)
s )
=

eSr (Etot−E(1)
s )/kB

eSr (Etot−E(2)
s )/kB

.

We now approximateSr (Etot−Es) in a Taylor series expansion aroundEtot, under
the assumption thatEr ≫ Es:

Sr (Etot−Es) ≈ Sr (Etot)−
∂Sr

∂E
Es.

From the properties of thermodynamics, if we hold the volume and number of
molecules constant, then we can define the temperature as

∂S
∂E

∣
∣
∣
∣
∣
V,N
=

1
T

and we obtain
P(E(1)

s )

P(E(2)
s )
=

e−E(1)
s /kBT

e−E(2)
s /kBT

.

This implies that

P(E(q)
s ) ∝ e−E(q)

s /(kBT)

and hence the probability of being in a microstateq is given by

P(q) =
1
Z

e−Eq/(kBT), (4.2)
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where we have writtenEq for the energy of the microstate andZ is a normalizing
factor, known as thepartition function, defined by

Z =
∑

q∈Q
e−Eq/(kBT).

By keeping track of those microstates that correspond to a given system state
(also called a macrostate), we can compute the overall probability that a given
macrostate is reached.

In order to determine the energy levels associated with different microstates,
we will often make use of thefree energyof the system. Consider an elementary
reaction A+B −−−⇀↽−−− AB. Let E be the energy of the system, taken to be operating
at pressureP in a volumeV. Theenthalpyof the system is defined asH = E+PV
and theGibbs free energyis defined asG = H−TS whereT is the temperature of
the system andS is its entropy (defined above). The change in bond energy due to
the reaction is given by

∆H = ∆G+T∆S,

where the∆ represents the change in the respective quantity.−∆H represents the
amount of heat that is absorbed from the reservoir, which then affects the entropy
of the reservoir.

Derivation to be added later. Review
The resulting formula for the probability of being in a microstateq is given by

P(q) =
1
Z

e−∆G/kBT .

Example 4.1(Transcription factor binding). Suppose that we have a transcription
factor R that binds to a specific target region on a DNA strand (such as thepro-
moter region upstream of a gene). We wish to find the probabilityPbound that the
transcription factor will be bound to this location as a function of the number of
transcription factor moleculesnR in the system. If the transcription factor is a re-
pressor, for example, knowingPbound(nR) will allow us to calculate the likelihood
of transcription occurring.

To compute the probability of binding, we assume that the transcription factor
can bind non-specifically to other sections of the DNA (or other locations in the
cell) and we letNns represent the number of such sites. We letEboundrepresent the
free energy associated with R bound to its specified target region andEns represent
the free energy forR in any other non-specific location, where we assume that
Ebound< Ens. The microstates of the system consist of all possible assignments of
thenR transcription factors to either a non-specific location or the target region of
the DNA. Since there is only one target site, there can be at most one transcription
factor attached there and hence we must count all of the ways in which either zero
or one molecule of R are attached to the target site.
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If none of thenR copies of R are bound to the target region then these must be
distributed between theNns non-specific locations. Each bound protein has energy
Ens, so the total energy for any such configuration isnREns. The number of such
combinations is

(
Nns
nR

)

and so the contribution to the partition function from these
microstates is

Zns=

(

Nns

nR

)

e−nREns/(kBT) =
Nns!

nR!(Nns−nR)!
e−nREns/(kBT)

For the microstates in which one molecule of R is bound at a target site and the
othernR−1 molecules are at the non-specific locations, we have a total energy of
Ebound+ (nR−1)Ens and

(
Nns

(nR−1)

)

possible such states. The resulting contribution to
the partition function is

Zbound=
Nns!

(nR−1)!(Nns−nR+1)!
e−(Ebound−(nR−1)Ens)/(kBT).

The probability that the target site is occupied is now computed by looking at
the ratio of theZboundto Z= Zns+Zbound. After some basic algebraic manipulations,
it can be shown that

Pbound(nR) =

(
nR

Nns−nR+1

)

exp
[−(Ebound+Ens)/(kBT)

]

1+
(

nR
Nns−nR+1

)

exp
[−(Ebound+Ens)/(kBT)

] .

If we assume thatNns≫ nR thenNns−nR+1≈ Nns, and we can write

Pbound(nR) ≈ knR

1+knR
, where k=

1
Nns

exp
[−(Ebound−Ens)/(kBT)

]

.

As we would expect, this says that for very small numbers of repressors, Pbound

is close to zero, while for large numbers of repressors,Pbound→ 1. The point at
which we get a binding probability of 0.5 is whennR = 1/k, which depends on the
relative binding energies and the number of non-specific binding sites. ∇

Example 4.2(Combinatorial promoter). A combinatorial promoter is a region of
DNA in which multiple transcription factors can bind and influence the subsequent
binding of RNA polymerase. Combinatorial promoters appear in a number of nat-
ural and engineered circuits and represent a mechanism for creating switch-like
behavior, for example by having a gene that controls expression of its own tran-
scription factors.

One method to model a combinatorial promoter is to use the binding energies
of the different combinations of proteins to the operator region, and then compute
the probability of being in a given promoter state given the concentration of each of
the transcription factors. Table4.1shows the possible states of a notional promoter
that has two operator regions—one that binds a repressor protein R andanother
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Table 4.1: Configurations for a combinatorial promoter withan activator and a repres-
sor. Each row corresponds to a specific macrostate of the promoter in which the listed
molecules are bound to the target region. The relative energy of state compared with the
ground state provides a measure of the likelihood of that state occurring, with more nega-
tive numbers corresponding to more energetically favorable configurations.

State OR1 OR2 Prom Eq (∆G) Comment

S1 – – – 0 No binding (ground state)
S2 – – RNAP −5 RNA polymerase bound
S3 R – – −10 Repressor bound
S4 – A – −12 Activator bound
S5 – A RNAP −15 Activator and RNA polymerase

that binds an activator protein A. As indicated in the table, the promoter has three
(possibly overlapping) regions of DNA: OR1 and OR2 are binding sites forthe
repressor and activator proteins, and Prom is the location where RNA polymerase
binds. (The individual labels are primarily for bookkeeping purposes and may not
correspond to physically separate regions of DNA.)

To determine the probabilities of being in a given macrostate, we must compute
the individual microstates that occur at a given concentrations of repressor, ac-
tivator and RNA polymerase. Each microstate corresponds to an individual set of
molecules binding in a specific configuration. So if we havenR repressor molecules,
then there is one microstate corresponding toeachdifferent repressor molecule that
is bound, resulting innR individual microstates. In the case of configurationS5,
where two different molecules are bound, the number of combinations is given by
the product of the numbers of individual molecules,nA ·nRNAP, reflecting the pos-
sible combinations of molecules that can occupy the promoter sites. The overall
partition function is given by summing up the contributions from each microstate:

Z = e−E0/(kBT)+nRNAPe−ERNAP/(kBT)+nRe−ER/(kBT)

+nA e−EA/(kBT)+nAnRNAPe−EA:RNAP/(kBT). (4.3)

The probability of a given macrostate is determined using equation (2.2). For
example, if we define the promoter to be “active” if RNA polymerase is bound
to the DNA, then the probability of being in this macrostate as a function of the
various molecular counts is given by

Pactive(nR,nA ,nRNAP) =
1
Z

(

nRNAPe−ERNAP/(kBT)+nA nRNAPe−EA:RNAP/(kBT)
)

=
kA:RNAPnA +kRNAP

1+kRNAP+kRnR+ (kA +kA:RNAP)nA
,
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where

kX = e−(EX−E0)/(kBT).

From this expression we see that ifnR≫ nA thenPactive tends to 0 while ifnA ≫ nR

thenPactive tends to 1, as expected. ∇

Chemical master equation (CME)

The statistical physics model we have just considered gives a descriptionof the
steady stateproperties of the system. In many cases, it is clear that the system
reaches this steady state quickly and hence we can reason about the behavior of
the system just by modeling the free energy of the system. In other situations,
however, we care about the transient behavior of a system or the dynamics of a
system that does not have an equilibrium configuration. In these instances, we must
extend our formulation to keep track of how quickly the system transitions from
one microstate to another, known as thechemical kineticsof the system.

To model these dynamics, we return to our enumeration of all possible mi-
crostates of the system. LetP(q, t) represent the probability that the system is in
microstateq at a given timet. Hereq can be any of the very large number of
possible microstates for the system, which for chemical reaction systems we can
represent in terms of a vector consisting of the number of molecules of eachspecies
that is present. We wish to write an explicit expression for howP(q, t) varies as a
function of time, from which we can study the stochastic dynamics of the system.

We begin by assuming we have a set ofM reactions Rj , j = 1, . . . ,M, with ξ j

representing the change in state associated with reaction Rj . Specifically,ξ j is given
by the jth column of the stoichiometry matrixN. Thepropensity functiondefines
the probability that a given reaction occurs in a sufficiently small time stepdt:

a j(q, t)dt = Probability that reaction Rj will occur between timet

and timet+dt given that the microstate isq.

The linear dependence ondt relies on the fact thatdt is chosen sufficiently small.
We will typically assume thata j does not depend on the timet and writea j(q)dt
for the probability that reactionj occurs in stateq.

Using the propensity function, we can compute the distribution of states at time
t+dt given the distribution at timet:

P(q, t+dt) = P(q, t)
(

1−
M∑

j=1

a j(q)dt
)

+

M∑

j=1

P(q− ξ j)a j(q− ξ j)dt

= P(q, t)+
M∑

j=1

(

a j(q− ξ j)P(q− ξ j , t)−a j(q)P(q, t)
)

dt.

(4.4)



4.1. STOCHASTIC MODELING OF BIOCHEMICAL SYSTEMS 155

Sincedt is small, we can take the limit asdt→ 0 and we obtain thechemical master
equation(CME):

∂P
∂t

(q, t) =
M∑

j=1

(

a j(q− ξ j)P(q− ξ j , t)−a j(q)P(q, t)
)

(4.5)

This equation is also referred to as theforward Kolmogorov equationfor a discrete
state, continuous time random process.

Despite its complexity, the master equation does capture many of the important
details of the chemical physics of the system and we shall use it as our basicrepre-
sentation of the underlying dynamics. As we shall see, starting from this equation
we can then derive a variety of alternative approximations that allow us to answer
specific equations of interest.

The key element of the master equation is the propensity functiona j(q, t), which
governs the rate of transition between microstates. Although the detailed valueof
the propensity function can be quite complex, its functional form is often relatively
simple. In particular, for a unimolecular reaction of the form A→ B, the propensity
function is proportional to the number of molecules of A that are present:

a j(q, t) = k jnA. (4.6)

This follows from the fact that each reaction is independent and hence the likeli-
hood of a reaction happening depends directly on the number of copies ofA that
are present.

Similarly, for a bimolecular reaction, we have that the likelihood of a reaction
occurring is proportional to the product of the number of molecules of each type
that are present (since this is the number of independent reactions that can occur)
and inversely proportional to the volumeΩ. Hence, for a reaction of the form A+
B −−→ C we have

a j(q, t) =
k j

Ω
nAnB. (4.7)

The rigorous verification of this functional form is beyond the scope of this text, but
roughly we keep track of the likelihood of a single reaction occurring between A
and B and then multiply by the total number of combinations of the two molecules
that can react (nA ·nB).

A special case of a bimolecular reaction occurs when A=B, so that our reaction
is given by A+A→ B. In this case we must take into account that a molecule
cannot react with itself, and so the propensity function is of the form

ai(q, t) =
1
2

ki

Ω
nA(nA−1). (4.8)

The termnA(nA− 1) represents the number of ways that two molecules can be
chosen from a collection ofnA identical molecules.
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Table 4.2: Examples of propensity functions for some commoncases [31]. Here we takera

andrb to be the effective radii of the molecules,m∗ =mamb/(ma+mb) is the reduced mass
of the two molecules,Ω is the volume over which the reaction occurs,T is temperature,kB

is Boltzmann’s constant andnA, nB are the numbers of molecules ofA andB present.

Reaction type Propensity function coefficient,ki

Reaction occurs if molecules “touch”
(

8kBT
πm∗

)1/2
π(ra+ rb)2

Reaction occurs if molecules collide with energyǫ
(

8kBT
πm∗

)1/2
π(ra+ rb)2 ·e−ǫ/kBT

Steady state transcription factor PboundkocnRNAP

Note that the use of the parameterki in the propensity functions above is in-
tentional since it corresponds to the reaction rate parameter that is present in the
reaction rate equation model. The factor ofΩ for biomolecular reactions models
the fact that the propensity of a biomolecular reaction occurring dependsexplicitly
on the volume in which the reaction takes place.

Although it is tempting to extend the formula for a biomolecular reaction to the
case of more than two species being involved in a reaction, usually such reactions
actually involve combinations of bimolecular reactions, e.g.:

A +B+C−−→ D =⇒ A +B −−→ AB AB +C−−→ D

This more detailed description reflects that fact that it is extremely unlikely that
three molecules will all come together at precisely the same instant, versus the
much more likely possibility that two molecules will initially react, followed be a
second reaction involving the third molecule.

The propensity functions for these cases and some others are given in Table4.2.

Example 4.3 (Repression of gene expression). We consider a simple model of
repression in which we have a promoter that contains binding sites for RNA poly-
merase and a repressor protein R. RNA polymerase only binds when the repressor
is absent, after which it can undergo an isomerization reaction to form an open
complex and initiate transcription. Once the RNA polymerase begins to create
mRNA, we assume the promoter region is uncovered, allowing another repressor
or RNA polymerase to bind.

The following reactions describe this process:

R1 : R+DNA −−→ R:DNA

R2 : R:DNA −−→ R+DNA

R3 : RNAP+DNA −−→ RNAP:DNAc

R4 : RNAP:DNAc −−→ RNAP+DNA

R5 : RNAP:DNAc −−→ RNAP:DNAo

R6 : RNAP:DNAo −−→ RNAP+DNA +mRNA,
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where RNAP:DNAc represents the closed complex and RNAP:DNAo represents
the open complex. The states for the system depend on the number of molecules
of each species that are present. If we assume that we start withnR repressors and
nRNAP RNA polymerases, then the possible states for our system are given by

State DNA R RNAP R:DNA RNAP:DNAc RNAP:DNAo

q1 1 nR nRNAP 0 0 0
q2 0 nR−1 nRNAP 1 0 0
q3 0 nR nRNAP−1 0 1 0
q4 0 nR nRNAP−1 0 0 1

Note that we do not keep track of each individual repressor or RNA polymerase
molecule that binds to the DNA, but simply keep track of whether they are bound
or not.

We can now rewrite the chemical reactions as a set of transitions between the
possible microstates of the system. Assuming that all reactions take place in a vol-
umeΩ, we use the propensity functions for unimolecular and bimolecular reactions
to obtain:

R1 : q1 −−→ q2; a1(q1) = (k1/Ω)nR R2 : q2 −−→ q1; a2(q2) = k2

R3 : q1 −−→ q3; a3(q1) = (k3/Ω)nRNAP R4 : q3 −−→ q1; a4(q3) = k4

R5 : q3 −−→ q4; a5(q3) = k5 R6 : q4 −−→ q1; a6(q4) = k6

The chemical master equation can now be written down using the propensity func-
tions for each reaction:

d
dt




P(q1, t)
P(q2, t)
P(q3, t)
P(q4, t)




=




−(k1/Ω)nR− (k3/Ω)nRNAP k2 k4 k6

(k1/Ω)nR −k2 0 0
(k3/Ω)nRNAP 0 −k4−k5 0

0 0 k5 −k6







P(q1, t)
P(q2, t)
P(q3, t)
P(q4, t)




.

The initial condition for the system can be taken asP(q,0)= (1,0,0,0), correspond-
ing to the stateq1. A simulation showing the evolution of the probabilities is shown
in Figure4.1.

The equilibrium solution for the probabilities can be solved by settingṖ = 0,
which yields:

Pe(q1) =
k2k4Ω(k4+k5)

k1k6nR(k4+k5)+k2k3nRNAP(k5+k6)+k2k6Ω(k4+k5)

Pe(q2) =
k1k6nR(k4+k5)

k1k6nR(k4+k5)+k2k3nRNAP(k5+k6)+k2k6Ω(k4+k5)

Pe(q3) =
k2k3k6nRNAP

k1k6nR(k4+k5)+k2k3nRNAP(k5+k6)+k2k6Ω(k4+k5)

Pe(q4) =
k2k3k5nRNAP

k1k6nR(k4+k5)+k2k3nRNAP(k5+k6)+k2k6Ω(k4+k5)
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Figure 4.1: Numerical solution of chemical master equationfor simple repression model.

We see that the functional dependencies are similar to the case of the combinatorial
promoter of Example4.2, but with the binding energies replaced by kinetic rate
constants. ∇

Example 4.4(Transcription of mRNA). Consider the production of mRNA from
a single copy of DNA. We have two basic reactions that can occur: mRNA can
be produced by RNA polymerase transcribing the DNA and producing an mRNA
strand, or mRNA can be degraded. We represent the microstateq of the system in
terms of the number of mRNA’s that are present, which we write asn for ease of
notation. The reactions can now be represented asξ1 = +1, corresponding to tran-
scription andξ2 = −1, corresponding to degradation. We choose as our propensity
functions

a1(n, t) = α, a2(n, t) = δn,

by which we mean that the probability of that a gene is transcribed in timedt is
αdt and the probability that a transcript is created in timedt is δndt (proportional
to the number of mRNA’s).

We can now write down the master equation as described above. Equation (4.4)
becomes

P(n, t+dt) = P(n, t)
(

1−
∑

i=1,2

ai(n, t)dt
)

+
∑

i=1,2

P(n− ξi , t)ai(q− ξi)dt

= P(n, t)−a1(n, t)P(n, t)−a2(n, t)P(n, t)

+a1(n−1, t)P(n−1, t)+a2(n+1, t)P(n+1)

= P(n, t)+αP(n−1, t)dt− (α−δn)P(n, t)dt+δ(n+1)P(n+1, t)dt.

This formula holds forn> 0, with then= 0 case satisfying

P(0, t+dt) = P(0, t)−αP(0, t)dt+δP(1, t)dt.

Notice that we have an infinite number of equations, sincen can be any positive
integer.
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We can write the differential equation version of the master equation by sub-
tracting the first term on the right hand side and dividing bydt:

d
dt

P(n, t) = αP(n−1, t)− (α+δn)P(n, t)+δ(n+1)P(n+1, t), n> 0

d
dt

P(0, t) = −αP(0, t)dt+δP(1, t).

Again, this is an infinite number of differential equations, although we could take
some limitN and simply declare thatP(N, t) = 0 to yield a finite number.

One simple type of analysis that can be done on this equation without truncating
it to a finite number is to look for a steady state solution to the equation. In this
case, we seṫP(n, t) = 0 and look for a constant solutionP(n, t) = pe(n). This yields
an algebraic set of relations

0= −αpe(0)+δpe(1) =⇒ αpe(0)= δpe(1)

0= αpe(0)− (α+δ)pe(1)+2δpe(2) αpe(1)= 2δpe(2)

0= αpe(1)− (α+2δ)pe(2)+3δpe(3) αpe(1)= 3δpe(3)
...

...

αp(n−1)= nδp(n).

It follows that the distribution of steady state probabilities is given by the Poisson
distribution

p(n) = eα/δ
(α/δ)n

n!
,

and the mean, variance and coefficient of variation are thus

µ =
α

δ
, σ2 =

α

δ
, CV=

µ

σ
=

1
√
µ
=

√

δ

α
.

Note taht the coefficient of variation increases ifµ decreases. ∇

Chemical Langevin equation (CLE)

The chemical master equation gives a complete description of the evolution of the
distribution of a system, but it can often be quite cumbersome to work with directly.
A number of approximations to the master equation are thus used to provide more
tractable formulations of the dynamics. The first of these that we shall consider is
known as thechemical Langevin equation(CLE).

To derive the chemical Langevin equation, we start by assuming that the number
of molecules in the system is large and that we can therefore represent thesystem
using a vector of real numbersX, with Xi representing the (real-valued) number
of molecules in Si . (OftenXi will be divided by the volume to give a real-valued
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concentration of species Si .) In addition, we assume that we are interested in the
dynamics on time scales in which individual reactions are not important and so
we can look at how the system state changes over time intervals in which many
reactions occur and hence the system state evolves in a smooth fashion.

Let X(t) be the state vector for the system, where we assume now that the ele-
ments ofX are real-valued rather than integer valued. We make the further approx-
imation that we can lump together multiple reactions so that instead of keeping
track of the individual reactions, we can average across a number of reactions over
a timeτ to allow the continuous state to evolve in continuous time. The resulting
dynamics can be described by a stochastic process of the form

Xi(t+τ) = Xi(t)+
M∑

j=1

ξi j a j(X(t))τ+
M∑

j=1

ξi j a
1/2
j (X(t))N j(0,

√
τ),

wherea j are the propensity functions for the individual reactions,ξi j are the corre-
sponding changes in the system statesXi andN j are a set of independent Gaussian
random variables with zero mean and varianceτ.

If we assume thatτ is small enough that we can use the derivative to approxi-
mate the previous equation (but still large enough that we can average over multiple
reactions), then we can write

dXi(t)
dt
=

M∑

j=1

ξ ji a j(X(t))+
M∑

j=1

ξ ji a
1/2
j (X(t))Γ j(t) =: Ai(X(t))+

M∑

j=1

Bi j (X(t))Γ j(t),

(4.9)
whereΓ j are white noise processes (see Appendix??). This equation is called the
chemical Langevin equation(CLE).

Example 4.5(Protein production). Consider a simplified two-step model of pro-
tein production in which mRNA is produced by DNA and protein by mRNA. We
do not model the detailed processes of isomerization and elongation of the mRNA
and polypeptide chains. We can capture the state of the system by keeping track of
the number of copies of DNA, mRNA, and protein, which we denote byXD, Xm

andXP, respectively, so thatX = (XD,Xm,XP).
The simplified reactions with the corresponding propensity functions are given

by

R1 : DNA
α−→mRNA ξ1 = (1,0) a1(X) = α XD

R2 : mRNA
δ−→ φ ξ2 = (−1,0) a2(X) = δ Xm

R3 : mRNA
κ−→mRNA+protein ξ3 = (0,1) a3(X) = κ Xm

R4 : protein
γ
−→ φ ξ4 = (0,−1) a4(X) = γ XP.
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Using these, we can write the Langevin equation as

dXm

dt
= αXD−δXm+

√

αXDΓ1(t)−
√

δXmΓ2(t)

dXP

dt
= κXm−γXP+

√

κXmΓ3(t)−
√

γXpΓ4(t).

We can keep track of the species concentration by dividing the number of molecules
by the volumeΩ. Letting m= Xm/Ω, P = XP/Ω, andα0 = αXD/Ω, we obtain the
final expression

d
dt




m
P



=




−δ 0
κ −γ







m
P



+




α0

0



+

1
√
Ω




(√
α0+δm

)

Γm
(√
κm+γP

)

ΓP



,

whereΓm andΓP are independent white noise processes with unit variance (note
that here we have used that ifΓ1 andΓ2 are Gaussian white noises with unit vari-
ance, then

√
aΓ1+

√
bΓ2 =

√
a+bΓ with Γ also a Gaussian white noise with unit

variance). ∇

Fokker-Planck equations (FPE)

The chemical Langevin equation provides a stochastic ordinary differential equa-
tion that describes the evolution of the system state. A slightly different (but com-
pletely equivalent) representation of the dynamics is to model how the probabil-
ity distribution P(x, t) evolves in time. As in the case of the chemical Langevin
equation, we will assume that the system state is continuous and write down a
formula for the evolution of the density functionp(x, t). This formula is known
as theFokker-Planck equations(FPE) and is essentially an approximation on the
chemical master equation.

Consider first the case of a random process in one dimension. We assumethat
the random process is in the same form as the previous section:

dX(t)
dt
= A(X(t))+B(X(t))Γ(t). (4.10)

The functionA(X) is called thedrift term and B(X) is thediffusion term. It can
be shown that the probability density function forX, p(x, t), satisfies the partial
differential equation

∂p
∂t

(x, t) = − ∂
∂x

(

A(x, t)p(x, t)
)

+
1
2
∂2

∂x2

(

B2(x, t)p(x, t)
)

(4.11)

Note that here we have shifted to the probability density function since we are
consideringX to be a continuous state random process.
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In the multivariate case, a bit more care is required. Using the chemical Langevin
equation (4.9), we define

Di(x, t) =
M∑

j=1

B2
i j (x, t), Ci j (x, t) =

M∑

k=1

Bik(x, t)Bjk(x, t), i < j = 1, . . . ,M.

The Fokker-Planck equation now becomes

∂p
∂t

(x, t) = −
M∑

i=1

∂

∂xi

(

Ai(x, t)p(x, t)
)

+
1
2

M∑

i=1

∂

∂xi

∂2

∂x2

(

Di(x, t)p(x, t)
)

+

M∑

i, j = 1
i < j

∂2

∂xi∂x j

(

Ci j (x, t)p(x, t)
)

. (4.12)

Note that the Fokker-Planck equation is very similar to the chemical master
equation: both provide a description of how the probability distribution variesas a
function of time. In the case of the Fokker-Planck equation, we regard thestate as
a continuous set of variables and we write a partial differential equation for how
the probability density function evolves in time. In the case of the chemical master
equation, we have a discrete state (microstates) and we write an ordinary differ-
ential equation for how the probability distribution (formally the probability mass
function) evolves in time. Both formulations contain the same basic information,
just using slightly different representations of the system and the probability of
being in a given state.

Linear noise approximation (LNA)

The chemical Langevin equation and the Fokker-Planck equation provideapprox-
imations to the chemical master equation. A slightly different approximation can
be obtained by expanding the density function in terms of a size parameterΩ. This
approximation is know as thelinear noise approximation(LNA) or theΩ expan-
sion[49].

We begin with the master equation for acontinuousrandom variableX. For-
mally deriving this requires a considerable effort since we have to extend our pre-
vious discussions to the case where the random variable has a continuousset of
values. To do this, we rewrite the propensity functionai(q, t) asaξ(q, t;Ω), where
q ∈ Rn is a vector of continuous states andξ ∈ Rn is a vector of continuous “incre-
ments” (the analog of reactions). We also explicitly keep track of the dependence
of the propensity function on a parameterΩ (the volume in our case).

Using this notation, we can write the master equation for the random variable
X as

∂P
∂t

(x, t) =
∫

(

aξ(x− ξ, t;Ω)P(x− ξ, t)−aξ(x, t;Ω)P(x, t)
)

dξ.
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Since we are working with continuous variables, we now have an integral inplace
of our previous sum. In addition, if we take the derivative ofP(x, t) with respect to
the continuous variablex, we can obtain the pdf of the distributionp(x, t) and this
satisfies the equation

∂p
∂t

(x, t) =
∫

(

aξ(x− ξ, t;Ω)p(x− ξ, t)−aξ(x, t;Ω)p(x, t)
)

dξ.

Although we are skipping important theoretical details, the basic idea of this for-
mulation is the same as the discrete chemical master equation: we keep track of
how the probability density changes by “summing” (integrating) over all (incre-
mental) reactions going into and out of that particular state.

We now assume that the mean ofX can be written asΩφ(t) whereφ(t) is a
continuous function of time that represents the evolution of the mean ofX/Ω. To
understand the fluctuations of the system about this mean, we write

X = Ωφ+Ω
1
2 Z,

whereZ is a new variable representing the perturbations of the system about its
mean. We can write the distribution forZ as

pZ(z, t) = pX(Ωφ(t)+Ω
1
2 z, t)

and it follows that the derivatives ofpZ can be written as

∂νpZ

zν
= Ω

1
2ν
∂νpX

xν

∂pZ

∂t
=
∂pX

∂t
+Ω

dφ
dt
∂pX

∂x
=
∂pX

∂t
+Ω

1
2
dφ
dt
∂pZ

∂z
.

We further assume that theΩ dependence of the propensity function is such that

aξ(Ωφ, t;Ω) = f (Ω)ãξ(φ),

whereã is not dependent on the parameterΩ or the timet. From these relations,
we can now derive the master equation forpZ in terms of powers ofΩ (derivation
omitted).

TheΩ1/2 term in the expansion turns out to yield

dφ
dt
=

∫

ξaξ(Ωφ)dξ, φ(0)=
X(0)
Ω

,

which is precisely the equation for the mean of the concentration. It can further be
shown that the terms inΩ0 are given by

∂pZ(z, τ)
∂τ

= −α′1(φ)
∂

∂z
(zpZ(z, t))+

1
2
α2(φ)

∂2pZ(z, t)
∂z2

, (4.13)
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where

αv(x) =
∫

ξvãξ(x)dξ, τ = Ω−1 f (Ω)t.

Notice that in the case thatφ(t)= φ0 (a constant), this equation becomes the Fokker-
Planck equation derived previously.

Higher order approximations to this equation can also be carried out by keeping
track of the expansion terms in higher order powers ofΩ. In the case whereΩ
represents the volume of the system, the next term in the expansion isΩ−1 and this
represents fluctuations that are on the order of a single molecule, which can usually
be ignored.

Reaction rate equations (RRE)

As we already saw in Chapter2, the reaction rate equations can be used to describe
the dynamics of a chemical system in the case where there are a large numberof
molecules whose state can be approximated using just the concentrations of the
molecules. We re-derive the results from Section2.1 here, being more careful to
point out what approximations are being made.

We start with the chemical Langevin equations (4.9), from which we can write
the dynamics for the average quantity of the each species at each point in time:

d〈Xi(t)〉
dt

=

M∑

j=1

ξ ji 〈a j(X(t))〉, (4.14)

where the second order term drops out under the assumption that theΓ j ’s are inde-
pendent processes with zero mean. We see that the reaction rate equations follow
by definingxi = 〈Xi〉/Ω andassumingthat 〈a j(X(t))〉 = a j(〈X(t)〉). This relation-
ship is true whena j is linear (e.g., in the case of a unimolecular reaction), but is an
approximation otherwise.

4.2 Simulation of Stochastic Systems

Suppose that we want to generate a collection of sample trajectories for a stochastic
system whose evolution is described by the chemical master equation (4.5):

d
dt

P(q, t) =
∑

i

ai(q− ξi)P(q− ξi , t)−
∑

i

ai(q)P(q, t),

whereP(q, t) is the probability of being in a microstateq at time t (starting from
q0 at time t0) and ai(q) is the propensity function for a reactioni starting at a
microstateq and ending at microstateq+ ξi . Instead of simulating the distribution
function P(q, t), we wish to simulate a specific instanceq(t) starting from some
initial conditionq0(t0). If we simulate many such instances ofq(t), their distribution
at timet should matchP(q, t).
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A naive algorithm for stochastic simulation

The Stochastic Simuilation Algorithm

To illustrate the basic ideas that we will use, consider first a simple birth process in
which the microstate is given by an integerq ∈ {0,1,2, . . . } and we assume that the
propensity function is given by

a(q)dt= λdt, ξ = +1.

Thus the probability of transition increases linearly with the time incrementdt
(so birth events occur at rateλ, on average). If we assume that the birth events are
independent of each other, then it can be shown (see Appendix??) that this process
has Poisson distribution with parameterλτ:

P(q(t+τ)−q(t) = ℓ) =
(λτ)ℓ

ℓ!
e−λτ,

whereτ is the difference in time andℓ is the difference in countq. In fact, this
distribution is a joint distribution in timeτ and countℓ, and by settingℓ = 1 it can
be seen that the time to the next reactionT follows an exponential distribution and
has density function

pT(τ) = λe−λτ.

The exponential distribution has expectation 1/λ and so we see that the average
time between events is inversely proportional to the reaction rateλ.

Consider next a more general case in which we have a countable number of mi-
crostatesq ∈ {0,1,2, . . . } and we letk ji represent the transition probability between
a microstatei and microstatej. The birth process is a special case given byki+1,i = λ

and all otherk ji = 0. The chemical master equation describes the joint probability
that we are in stateq= i at a particular timet. We would like to know the probabil-
ity that we transition to a new stateq= j at timet+dt. Given this probability, we
can attempt to generate an instance of the variableq(t) by first determining which
reaction occurs and then when the reaction occurs.

Let P( j, τ) := P( j, t+ τ+dτ | i, t+ τ) represent the probability that we transition
from the statei to the statej in the time interval [t+τ, t+τ+dτ]. For simplicity and
ease of notation, we will taket = 0. LetT := T j,i be the time at which the reaction
first occurs. We can write the probability that we transition to statej in the interval
[τ,τ+dτ] as

P( j, τ) = P(T > τ) k ji dτ, (4.15)

whereP(T > τ) is the probability that no reaction occurs in the time interval [0, τ]
andk ji dτ is the probability that the reaction taking statei to state j occurs in the
next dτ seconds (assumed to be independent events, giving the product of these
probabilities).
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To computeP(T > τ), define

k̄i =
∑

j

k ji

so that (1− k̄i)dτ is the probability that no transition occurs from statei in the next
dτ seconds. Then, the probability that no reaction occurs in the interval [τ,τ+dτ]
can be written as

P(T > τ+dτ) = P(T > τ) (1− k̄i) dτ. (4.16)

It follows that

d
dτ

P(T > τ) = lim
dτ→0

P(T > τ+dτ)−P(T > τ)
dτ

= −P(T > τ) k̄i .

Solving this differential equation, we obtain

P(T > τ) = e−k̄iτ, (4.17)

so that the probability that no reaction occurs in timeτ decreases exponentially with
the amount of time that we wait, with rate given by the sum of all the reactions that
can occur from statei.

We can now combine equation (4.17) with equation (4.15) to obtain

P( j, τ) = P( j, τ+dτ | i,0)= k ji e−k̄iτ dτ.

We see that this has the form of a density function in time and hence the probability
that the next reaction is reactionj, independent of the time in which it occurs, is

P ji =

∫ ∞

0
k ji e

−k̄iτdτ =
k ji

k̄i
. (4.18)

Thus, to choose the next reaction to occur from a statei, we choose betweenN
possible reactions, with the probability of each reaction weighted byk ji/k̄i .

To determine the time that the next reaction occurs, we sum over all possible
reactionsj to get the density function for the reaction time:

pT(τ) =
∑

j

k ji e
−k̄iτ = k̄ie

−k̄iτ.

This is the density function associated with a Poisson distribution. To compute a
time of reaction∆t that draws from this distribution, we note that the cumulative
distribution function forT is given by

∫ ∆t

0
fT(τ)dτ =

∫ ∆t

0
k̄ie
−k̄iτdτ = 1−e−k̄i∆t.
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The cumulative distribution function is always in the range [0,1] and hence we can
compute∆t by choosing a (uniformly distributed) random numberr in [0,1] and
then computing

∆t =
1

k̄i
ln

1
1− r

. (4.19)

(This equation can be simplified somewhat by replacing 1− r with r ′ and noting
thatr ′ can also be drawn from a uniform distribution on [0,1].)

Note that in the case of a birth process, this computation agrees with our ear-
lier analysis. Namely,̄ki = λ and hence the (only) reaction occurs according to an
exponential distribution with parameterλ.

This set of calculations gives the following algorithm for computing an instance
of the chemical master equation:

1. Choose an initial conditionq at timet = 0.

2. Calculate the propensity functionsai(q) for each possible reactionq.

3. Choose the time for the reaction according to equation (4.19), wherer ∈ [0,1]
is chosen from a uniform distribution.

4. Use a weighted random number generator to identify which reaction will
take place next, using the weights in equation (4.18).

5. Updateq by implementing the reactionξ and update the timet by δt

6. If T < Tstop, goto step2.

This method is sometimes called “Gillespie’s direct method” [29, 30], but we shall
refer to it here as the “stochastic simulation algorithm” (SSA). We note that the re-
action number in step4 can be computed by calculating a uniform random number
on [0,1], scaling this by the total propensity

∑

i ai(ξi ,q), and then finding the first
reactioni such that

∑i
j=0a(ξ j ,q) is larger than this scaled random number.

Example 4.6(Transcription). To be completed. ∇ Review

4.3 Input/Output Linear Stochastic Systems

In many situations, we wish to noise how noise propogates through a biomolecular
system. For example, we may wish to understand how stochastic variations in RNA
polymerase concentraton affect gene expression. In order to analyze these cases, we
specialize to the case of a biomolecular system operating around a fixed operating
point.

We now consider the problem of how to compute the response of a linear system
to a random process. We assume we have a linear system described in statespace
as

Ẋ = AX+FW, Y =CX (4.20)
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Given an “input” W, which is itself a random process with meanµ(t), variance
σ2(t) and correlationr(t, t+τ), what is the description of the random processY?

Let W be a white noise process, with zero mean and noise intensityQ:

r(τ) = Qδ(τ).

We can write the output of the system in terms of the convolution integral

Y(t) =
∫ t

0
h(t−τ)W(τ)dτ,

whereh(t−τ) is the impulse response for the system

h(t−τ) =CeA(t−τ)B+Dδ(t−τ).

We now compute the statistics of the output, starting with the mean:

E(Y(t)) = E(
∫ t

0
h(t−η)W(η)dη )

=

∫ t

0
h(t−η)E(W(η))dη = 0.

Note here that we have relied on the linearity of the convolution integral to pullthe
expectation inside the integral.

We can compute the covariance of the output by computing the correlationrY(τ)
and settingσ2

Y = rY(0). The correlation function fory is

rY(t, s) = E(Y(t)Y(s)) = E(
∫ t

0
h(t−η)W(η)dη ·

∫ s

0
h(s− ξ)W(ξ)dξ )

= E(
∫ t

0

∫ s

0
h(t−η)W(η)W(ξ)h(s− ξ)dηdξ )

Once again linearity allows us to exchange expectation and integration

rY(t, s) =
∫ t

0

∫ s

0
h(t−η)E(W(η)W(ξ))h(s− ξ)dηdξ

=

∫ t

0

∫ s

0
h(t−η)Qδ(η− ξ)h(s− ξ)dηdξ

=

∫ t

0
h(t−η)Qh(s−η)dη

Now letτ = s− t and write

rY(τ) = rY(t, t+τ) =
∫ t

0
h(t−η)Qh(t+τ−η)dη

=

∫ t

0
h(ξ)Qh(ξ+τ)dξ (settingξ = t−η)
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Finally, we lett→∞ (steady state)

lim
t→∞

rY(t, t+τ) = r̄Y(τ) =
∫ ∞

0
h(ξ)Qh(ξ+τ)dξ (4.21)

If this integral exists, then we can compute the second order statistics for theoutput
Y.

We can provide a more explicit formula for the correlation functionr in terms of
the matricesA, F andC by expanding equation (4.21). We will consider the general
case whereW ∈ Rp andY ∈ Rq and use the correlation matrixR(t, s) instead of the
correlation functionr(t, s). Define thestate transition matrixΦ(t, t0) = eA(t−t0) so
that the solution of system (4.20) is given by

x(t) = Φ(t, t0)x(t0)+
∫ t

t0
Φ(t,λ)Fw(λ)dλ

Proposition 4.1 (Stochastic response to white noise). Let E(X(t0)XT(t0)) = P(t0)
and W be white noise withE(W(λ)WT(ξ)) = RWδ(λ− ξ). Then the correlation ma-
trix for X is given by

RX(t, s) = P(t)ΦT(s, t)

where P(t) satisfies the linear matrix differential equation

Ṗ(t) = AP+PAT +FRWF, P(0) = P0.

Proof. Using the definition of the correlation matrix, we have

E(X(t)XT(s)) = E
(

Φ(t,0)X(0)XT(0)ΦT(t,0)+cross terms

+

∫ t

0
Φ(t, ξ)FW(ξ)dξ

∫ s

0
Wt(λ)FTΦ(s,λ)dλ

)

= Φ(t,0)E(X(0)XT(0))Φ(s,0)

+

∫ t

0

∫ s

0
Φ(t, ξ)FE(W(ξ)WT(λ))FTΦ(s,λ)dξdλ

= Φ(t,0)P(0)φT(s,0)+
∫ t

0
Φ(t,λ)FRW(λ)FTΦ(s,λ)dλ.

Now use the fact thatΦ(s,0)= Φ(s, t)Φ(t,0) (and similar relations) to obtain

RX(t, s) = P(t)ΦT(s, t)

where

P(t) = Φ(t,0)P(0)ΦT(t,0)+
∫ T

0
Φ(t,λ)FRWFT(λ)ΦT(t,λ)dλ

Finally, differentiate to obtain

Ṗ(t) = AP+PAT +FRWF, P(0) = P0

(see Friedland [26] for details).
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The correlation matrix for the outputY can be computed using the fact that
Y = CX and henceRY = CTRXC. We will often be interested in the steady state
properties of the output, which are given by the following proposition.

Proposition 4.2(Steady state response to white noise). For a time-invariant linear
system driven by white noise, the correlation matrices for the state and output
converge in steady state to

RX(τ) = RX(t, t+τ) = PeATτ, RY(τ) =CRX(τ)CT

where P satisfies the algebraic equation

AP+PAT +FRWFT = 0 P> 0. (4.22)

Equation (4.22) is called theLyapunov equationand can be solved in MATLAB
using the functionlyap.

Example 4.7(First-order system). Consider a scalar linear process

Ẋ = −aX+W, Y= cX,

whereW is a white, Gaussian random process with noise intensityσ2. Using the
results of Proposition4.1, the correlation function forX is given by

RX(t, t+τ) = p(t)e−aτ

wherep(t) > 0 satisfies
p(t) = −2ap+σ2.

We can solve explicitly forp(t) since it is a (non-homogeneous) linear differential
equation:

p(t) = e−2atp(0)+ (1−e−2at)
σ2

2a
.

Finally, making use of the fact thatY= cX we have

r(t, t+τ) = c2(e−2atp(0)+ (1−e−2at)
σ2

2a
)e−aτ.

In steady state, the correlation function for the output becomes

r(τ) =
c2σ2

2a
e−aτ.

Note correlation function has the same form as the Ornstein-Uhlenbeck process in
Example?? (with Q= c2σ2). ∇



4.3. INPUT/OUTPUT LINEAR STOCHASTIC SYSTEMS 171

As in the case of deterministic linear systems, we can analyze a stochastic linear
system either in the state space or the frequency domain. The frequency domain ap-
proach provides a very rich set of tools for modeling and analysis of interconnected
systems, relying on the frequency response and transfer functions to represent the
flow of signals around the system.

Given a random processX(t), we can look at the frequency content of the prop-
erties of the response. In particular, if we letρ(τ) be the correlation function for a
(scalar) random process, then we define thepower spectral density functionas the
Fourier transform ofρ:

S(ω) =
∫ ∞

−∞
ρ(τ)e− jωτdτ, ρ(τ) =

1
2π

∫ ∞

−∞
S(ω)ejωτdτ.

The power spectral density provides an indication of how quickly the values of
a random process can change through the frequency content: if thereis high fre-
quency content in the power spectral density, the values of the random variable can
change quickly in time.

Example 4.8 (Ornstein-Uhlenbeck process). To illustrate the use of these mea-
sures, consider a first-order Markov process where the correlationfunction is

ρ(τ) =
Q

2ω0
e−ω0(τ).

This correspnds to Example4.7 (also called anOrnstein-Uhlenbeck process). The
power spectral density becomes

S(ω) =
∫ ∞

−∞

Q
2ω0

e−ω|τ|e− jωτdτ

=

∫ 0

−∞

Q
2ω0

e(ω− jω)τdτ+
∫ ∞

0

Q
2ω0

e(−ω− jω)τdτ =
Q

ω2+ω2
0

.

We see that the power spectral density is similar to a transfer function and we
can plotS(ω) as a function ofω in a manner similar to a Bode plot, as shown in
Figure4.2. Note that althoughS(ω) has a form similar to a transfer function, it is a
real-valued function and is not defined for complexs. ∇

Using the power spectral density, we can more formally define “white noise”:
a white noise processis a zero-mean, random process with power spectral density
S(ω) = W = constant for allω. If X(t) ∈ Rn (a random vector), thenW ∈ Rn×n.
We see that a random process is white if all frequencies are equally represented in
its power spectral density; this spectral property is the reason for the terminology
“white”.

Given a linear system

Ẋ = AX+FW, Y=CX,
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logω

logS(ω)

ω0

Figure 4.2: Spectral power density for a first-order Markov process.
.

with W given by white noise, we can compute the spectral density function cor-
responding to the outputY. We start by computing the Fourier transform of the
steady state correlation function (4.21):

SY(ω) =
∫ ∞

−∞

[∫ ∞

0
h(ξ)Qh(ξ+τ)dξ

]

e− jωτdτ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

−∞
h(ξ+τ)e− jωτdτ

]

dξ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

0
h(λ)e− jω(λ−ξ) dλ

]

dξ

=

∫ ∞

0
h(ξ)ejωξ dξ ·QH( jω) = H(− jω)QH( jω).

This is then the (steady state) response of a linear system to white noise.
As with transfer functions, one of the advantages of computations in the fre-

quency domain is that the composition of two linear systems can be represented
by multiplication. In the case of the power spectral density, if we pass white noise
through a system with transfer functionH1(s) followed by transfer functionH2(s),
the resulting power spectral density of the output is given by

SY(ω) = H1(− jω)H2(− jω)QuH2( jω)H1( jω).

As stated earlier, white noise is an idealized signal that is not seen in practice.
One of the ways to produced more realistic models of noise and disturbancesis
to apply a filter to white noise that matches a measured power spectral density
function. Thus, we wish to find a covarianceW and filterH(s) such that we match
the statisticsS(ω) of a measured noise or disturbance signal. In other words, given
S(ω), find W > 0 andH(s) such thatS(ω) = H(− jω)WH( jω). This problem is
know as thespectral factorization problem.

Figure 4.3 summarizes the relationship between the time and frequency do-
mains.
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p(v) =
1

√
2πRV

e
− v2

2RV

SV(ω) = RV

V −→ H −→ Y
p(y) =

1
√

2πRY
e
− y2

2RY

SY(ω) = H(− jω)RVH( jω)

ρV(τ) = RVδ(τ)
Ẋ = AX+FV

Y=CX

ρY(τ) = RY(τ) =CPe−A|τ|CT

AP+PAT +FRVFT = 0

Figure 4.3: Summary of steady state stochastic response.

Exercises

4.1 (BE 150, Winter 2011) For this problem, we return to our standard model of
transcription and transcription process with probabilistic creation and degradation
of discrete mRNA and protein molecules. Thepropensity functionsfor each reac-
tion are as follows:
Probability of transcribing 1 mRNA molecule: 0.2dt
Probability of degrading 1 mRNA molecule: 0.5dt and is proportional to the num-
ber of mRNA molecules.
Probability of translating 1 protein: 5dt and is proportional to the number of mRNA
molecules.
Probability of degrading 1 protein molecule: 0.5dt and is proportional to the num-
ber of protein molecules.
dt is the time step chosen for your simulation. Here we choosedt= 0.05.

(a) Simulate the stochastic system above until timeT = 100. Plot the resulting
number of mRNA and protein over time.

(b) Now assume that the proteins are degraded much more slowly than mRNA and
the propensity function of protein degradation is now 0.05dt. To maintain similar
protein levels, the translation probability is now 0.5dt (and still proportional to the
number of mRNA molecules). Simulate this system as above. What difference do
you see in protein level? Comment on the effect of protein degradation rates on
noise.

4.2 (BE 150, Winter 2011) Compare a simple model of negative autoregulation
with one without autoregulation:

dX
dt
= β0−γX

and
dX
dt
=

β

1+ X
K

−γX

(a) Assume that the basal transcription ratesβ andβ0 vary between cells, following
a Gaussian distribution withσ

2

<X> = 0.1. Simulate time courses of both models for
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100 different ”cells” using the following parameters:β= 2,β0= 1,γ = 1,K = 1. Plot
the nonregulated and autoregulated systems in two separate plots. Comment onthe
variation you see in the time courses.

(b) Calculate the deterministic steady state for both models above. How does vari-
ation in the basal transcription rateβ or β0 enter into the steady state and relate it
to what you see in part (a).

4.3 Consider gene expression:φ
α−→m, m

κ−→m+P, m
δ−→ φ, and P

γ
−→ ∅. Answer the

following questions:

(a) Use the stochastic simulation algorithm (SSA) to obtain realizations of the
stochastic process of gene expression and numerically compare with the determin-
istic ODE solution. Explore how the realizations become close to or apart fromthe
ODE solution when the volume is changed. Determine the stationary probability
distribution for the protein (you can do this numerically, but note that this process is
linear, so you can compute the probability distribution analytically in closed form).

(b) Now consider the additional binding reaction of protein P with downstream

DNA binding sites D: P+D
kon−−−⇀↽−−−
ko f f

C. Note that the system no longer linear due to

the presence of a bi-molecular reaction. Use the SSA algorithm to obtain sample
realizations and numerically compute the probability distribution of the protein and
compare it to what you obtained in part (a). Explore how this probability distribu-
tion and the one of C change as the rateskon andko f f become larger and larger
with respect toγ,α,κ,δ. Do you think we can use a QSS approximation similar to
what we have done for ODE models?

(c) Determine the Langevin equation for the system in part (b) and obtain sample
realizations. Explore numerically how good this approximation is when the volume
decreases/increases.

4.4 Consider the bi-molecular reaction A+B
k1−−⇀↽−−
k2

C, in whichA andB are in total

amountsAT and BT , respectively. Compare the steady state value ofC obtained
from the deterministic model to the mean value ofC obtained from the stochastic
model as the volume is changed in the stochastic model. What do you observe?
You can perform this investigation through numerical simulation.

4.5 Consider the simple birth and death process: Z
k2G−−−⇀↽−−−
k1G
∅, in whichG is a “gain”.

Assume that the reactions are catalyzed by enzymes and that the gainG can be
tuned by changing the amounts of these enzymes. A deterministic ODE model for
this system incorporating noise and disturbances due to the stochasticity of the
cellular environment is given by

Ż = k1G−k2GZ+d(t),
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in whichd(t) incorporates noise, as seen in the previous homework. Determine the
Langevin equation for this birth and death process and compare its form to the
deterministic one. Also, determine the frequency response ofZ to noise for both
the deterministic model and for the Langevin model. Does increasing the gainG
has the same effect in both models? Explain.

4.6 Consider a second order system with dynamics



Ẋ1

Ẋ2



=




−a 0
0 −b







X1

X2



+




1
1




v, Y =

1 1







X1

X2




that is forced by Gaussian white noise with zero mean and varianceσ2. Assume
a,b> 0.

(a) Compute the correlation functionρ(τ) for the output of the system. Your an-
swer should be an explicit formula in terms ofa, b andσ.

(b) Assuming that the input transients have died out, compute the mean and vari-
ance of the output.
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Chapter 5
Feedback Examples

In this chapter we present a collection of examples that illustrate some of the mod-
eling and analysis tools covered in the preceding chapters. Each of theseexamples
represents a more complicated system than we have considered previous and to-
gether they are intended to demonstrate both the role of feedback in biological
systems and how tools from control and dynamical systems can be applied to pro-
vide insight and understanding. Each of the sections below is indepedentof the
others and they can be read in any order (or skipped entirely).

Pagination in this chapter is broken down by section to faciliate author editing.Review
Some extraneous blank pages may be included due to LaTeX processing.
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5.1 The lac Operon

The lac operon is one of the most studied regulatory networks in molecular bi-
ology. Its function is to determine when the cell should produce the proteins and
enzymes necessary to import and metabolize lactose from its external environment.
Since glucose is a more efficient source of carbon, the lactose machinery is not pro-
duced unless lactose is present and glucose is not present. Thelac control system
implements this computation.

In this section we construct a model for the lac operon and use that model toun-
derstand how changes of behavior can occur for large changes in parameters (e.g.,
lactose/glucose concentrations) and also the sensitivity of the phenotypic response
to changes in individual parameter values in the model. The basic model and much
of the analysis in this section is drawn from the work of Yildirim and Mackey [99].

Modeling

In constructing a model for thelac system, we need to decide what questions we
wish to answer. Here we will attempt to develop a model that allows us to under-
stand what levels of lactose are required for thelac system to become active in the
absence of glucose. We will focus on the so-called “bistability” of thelac operon:
there are two steady operating conditions—at low lactose levels the machinery
is off and at high lactose levels the machinery is on. The system has hysteresis,
so once the operon is actived, it remains active even if the lactose concentration
descreases. We will construct a differential equation model of the system, with
various simplifying assumptions along the way.

A schematic diagram of thelac control system is shown in Figure5.1. Starting
at the bottom of the figure, lactose permease is an integral membrane protein that
helps transport lactose into the cell. Once in the cell, lactose is converted to allolac-
tose, and allolactose is then broken down into glucose and galactose, both with the
assistance of the enzymeβ-galactosidase (β-gal for short). From here, the glucose
is processed using the usual glucose metabolic pathway and the galactose.

The control circuitry is implemented via the reactions and transcriptional reg-
ulation shown in the top portion of the diagram. Thelac operon, consisting of the
geneslacZ (coding forβ-gal), lacY(coding for lactose permease) andlacA (coding
for a transacetylase), has a combinatorial promoter. Normally, lac repressor (lacI)
is present and the operon is off. The activator for the operon is CAP, which has
a positive inducer cAMP. The concentration of cAMP is controlled by glucose:
when glucose is present, there is very little cAMP available in the cell (and hence
CAP is not active).

The bistable switching behavior in thelac control system is implemented with a
feedback circuit involving thelac repressor. Allolactose bindslac repressor and so
when lactose is being metabolized, then the repressor is sequestered by allolactose
and thelac operon is no longer repressed.
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Figure 5.1: Schematic diagram for thelac system [99]. Permission pending.

To model this circuit, we need to write down the dynamics of all of the reactions
and protein production. We will denote the concentration of theβ-gal mRNA and
protein asmb andB. We assume that the internal concentration of lactose is given
by L, ignoring the dynamics of lactose permease and transport of lactose into the
cell. Similarly, we assume that the concentration of repressor protein, denotedR, is
constant.

We start by keeping track of the concentration of free allolactoseA. The relevant
reactions are given by the transport of lactose into the cell, the conversion of lactose
into allolactose and then into glucose and lactose and finally the sequestration of
repressorR by allolactose:

Transport : L e+P−−−⇀↽−−− L eP−−→ L +P

Conversion : L +B −−−⇀↽−−− LB −−→ A +B

Conversion : A +B −−−⇀↽−−− AB −−→Glu+Gal+B

Sequestration : A +R−−−⇀↽−−− AR

We see that the dynamics involve a number of enzymatic reactions and hence we
can use Michaelis-Menten kinetics to model the response at a slightly reducedlevel
of detail.

Given these reactions, we can write the reaction rate equations to describe the
time evolution of the various species concentrations. LetαX andKX represent the
parameters of the Michaelis-Menten functions andγX represent the dilution and
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degradation rate for a given species X. The differential equation for the internal
lactose concentrationL becomes

dL
dt
= αLL eP

Le

KL e+Le −αAL B
L

KAL +L
−γLL, (5.1)

where the first term arises from the transport of lactose into the cell, the second
term is the conversion of lactose to allolactose, and the final term is due to degra-
dation and dilution. Similarly, the dynamics for the allolactose concentration can
be modeled as

dA
dt
= αAL B

L
KAL +L

−αAB B
A

KA+A
+kr

AR[AR] −kf
AR[A][R] −γAA.

The dynamics of the production ofβ-gal and lactose permease are given by
the transcription and translational dynamics of protein production. These genes
are both part of the same operon (along withlacA) and hence the use a single
mRNA strand for translation. To determine the production rate of mRNA, we need
to determine the amount of repression that is present as a function of the amount of
repressor, which in turn depends on the amount of allolactose that is present. We
make the simplifying assumption that the sequestration reaction is fast, so that it is
in equilibrium and hence

[AR] = kAR[A][R] , kAR = kf
AR/k

r
AR.

We also assume that the total repressor concentration is constant (production matches
degradation and dilution). LettingRtot = [R] + [AR] represent the total repressor
concentration, we can write

[R] = Rtot−kAR[A][R] =⇒ [R] =
Rtot

1+kAR[A]
. (5.2)

The simplification that the sequestration reaction is in equilibrium also simplifies
the reaction dynamics for allolactose, which becomes

dA
dt
= αAL B

L
KAL +L

−αAB
A

KA+A
−γAA. (5.3)

We next need to compute the effect of the repressor on the production ofβ-gal
and lactose permease. It will be useful to express the promoter state in termsof
the allolactose concentrationA rather thanR, using equation (5.2). We model this
using a Hill function of the form

FBA(A) =
αR

KR+Rn =
αR(1+KARA)n

KR(1+KARA)n+Rn
tot
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Table 5.1: Parameter values forlac dynamics (from [99]).

Parameter Value Description
µ̄ 3.03×10−2 min−1 dilution rate
αM 997 nMmin−1 production rate ofβ-gal mRNA
βB 1.66×10−2 min−1 production rate ofβ-galactosidase
βP ??? min−1 production rate of lactose permease
αA 1.76×104 min−1 production rate of allolactose
δ̄M 0.411 min−1 degradation and dilution ofβ-gal mRNA
γ̄B 8.33×10−4 min−1 degradation and dilution ofβ-gal
γ̄P ?? min−1 degradation and dilution of lactose permease
γ̄A 1.35×10−2 min−1 degradation and dilution of allolactose
n 2 Hill coefficient for repressor
K 7200
k1 2.52×10−2 (µM)−2

KL 0.97µM
KA 1.95µM
βA 2.15×104 min−1

τM 0.10 min
τB 2.00 min
τP ??? min

Letting M represent the concentration of the (common) mRNA, the resulting form
of the protein production dynamics becomes

dM
dt
= e−µτM FBA(A(t−τm))− δ̄M M,

dB
dt
= βBe−µτBM(t−τB)− γ̄BB,

dP
dt
= βPe−µ(τM+τP)M(t−τM −τP)− γ̄PP.

(5.4)

This model includes the degradation and dilution of mRNA (δ̄M), the transcrip-
tional delaysβ-gal mRNA (τM), the degradation and dilution of the proteins (¯γB,
γ̄P) and the delays in the translation and folding of the final proteins (τB, τP).

To study the dynamics of the circuit, we consider a slightly simplified situa-
tion in which we study the response to the internal lactose concentrationL. In this
case, we can takeL(t) as a constant and ignore the dynamics of the permeaseP.
Figure5.2a shows the time response of the system for an internal lactose concen-
tration of 100µM. As a test of the effect of time delays, we consider in Figure5.2b
the case when we set the delaysτM andτB to both be zero. We see that the re-
sponse has very little difference, consistent with our intuition that the delays are
short compared to the dynamics of the underlying processes.



5.1. THE lAC OPERON 183

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25
Lac operon simulation (YSHM04)

time (min)

 

 
M
B

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25
Lac operon simulation (no time delays)

time (min)

 

 
M
B

Figure 5.2: Time response of the Lac system.

Bifurcation analysis

To further explore the different types of dynamics that can be exhibited by the
Lac system, we make use of bifurcation analysis. If we vary the amount of lactose
present in the environent, we expect that the lac circuitry will turn on at some point.
Figure5.3ashows the concentration of allolactoseA as a function of the internal
lactose concentrationL. We see that the behavior of thelac system depends on
the amount of lactose that is present in the cell. At low concentrations of lactose,
the lac operon is turned off and the proteins required to metabolize lactose are not
expressed. At high concentrations of lactose, thelac operon is turned on and the
metabolic machinery is activated. In our model, these two operating conditions are
measured by the concentration ofβ-galactosidaseB and allolactoseA. At interme-
diate concentrations of lactose, the system has multiple equilibrium points, with
two stable equilibrium points corresponding to high and low concentrations ofA
(andB, as can be verified separately).

The parametric stability plot in Figure5.3bshows the different types of behav-
ior that can result based on the dilution rateµ and the lactose concentrationL. We
see that we get bistability only in a certain range of these parameters. Otherwise,
we get that the circuitry is either uninduced or induced.

Sensitivity analysis

We now explore how the equilibrium conditions vary if the parameters in our model
are changed.

For the genelacZ (which encodes the proteinβ-galactosidase), we letB repre-
sent the protein concentration andM represent the mRNA concentration. We also
consider the concentration of the lactoseL inside the cell, which we will treat as an
external input, and the concentration of allolactose,A. Assuming that the time de-
lays considered previously can be ignored, the dynamics in terms of these variables
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(a) Bifurcation diagram
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(b) Stability diagram

Figure 5.3: Bifurcation and stability diagram for the lac system. Figures from [100].

are

dM
dt
= FBA(A, θ)−δbM, FBA(A, θ) = αAB

1+k1An

K +k1An ,

dB
dt
= βBM−γBB, FAL(L, θ) = αA

L
kL+L

,

dA
ddt
= BFAL(L, θ)−BFAA(A, θ)−δAA, FAA(A, θ) = βA

A
kA+A

.

(5.5)

Here the state isx= (M,B,A) ∈ R3, the input isw= L ∈ R and the parameters are
θ = (αB,βB,αA, δB,γB, δA,n,k,k1,kL,kA,βA) ∈R12. The values for the parameters are
listed in Table5.1.

We investigate the dynamics around one of the equilibrium points, correspond-
ing to an intermediate input ofL = 40µM. There are three equilibrium points at
this value of the input:

x1,e= (0.000393,0.000210,3.17), x2,e= (0.00328,0.00174,19.4), x3,e= (0.0142,0.00758,42.1).

We choose the third equilibrium point, corresponding to the lactose metabolic ma-
chinery being activitated and study the sensitivity of the steady state concentrations
of allolactose (A) andβ-galactosidase (B) to changes in the parameter values.

The dynamics of the system can be represented in the formdx/dt = f (x, θ,L)
with

f (x, θ,L) =




FBA(A, θ)−δBM−µM
βBM−γBB−µB

FAL (L, θ)B−FAA (A, θ)B−γAA−µA




.

To compute the sensitivity with respect to the parameters, we compute the deriva-
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tives of f with respect to the statex,

∂ f
∂x
=




−δB−µ 0 ∂FBA
∂A

βB −γB−µ 0
0 FAL−FAA −B∂FAA

∂A




and the parametersθ,

∂ f
∂θ
=


FBA 0 0 −M 0 0 ∂FBA

∂n
∂FBA
∂k

∂FBA
∂k1

0 0 0

 .

Carrying out the relevant computations and evaluating the resulting expression nu-
merically, we obtain

∂

∂θ




Be

Ae


 =




−1.21 0.0243 −3.35×10-6 0.935 1.46 . . . 0.00115
−2720. 47.7 −0.00656 1830. 2860. . . . 3.27


 .

We can also normalize the sensitivity computation, as described in equation (3.9):

S̄xeθ =
∂xe/xe

∂θ/θ0
= (Dx)−1SxeθD

θ,

whereDx = diag{xe} andDθ = diag{θ0}, which yields

S̄yeθ =




−4.85 3.2 −3.18 3.11 3.2 6.3 −6.05 −4.1 4.02 6.05
−1.96 1.13 −1.12 1.1 1.13 3.24 −3.11 −2.11 2.07 3.11




where
θ =


µ αM K K1 βB αA KL βA KA L


 .

We see from this computation that increasing the growth rate decreases the equilib-
rium concentation ofB andA, while increasing the lactose concentration by 2-fold
increases the equilibriumβ-gal concentration 12-fold (6X) and the allolactose con-
centration by 6-fold (3X).

5.2 Bacterial Chemotaxis

Chemotaxisrefers to the process by which micro-organisms move in response to
chemical stimuli. Examples of chemotaxis include the ability of organisms to move
in the direction of nutrients or move away from toxins in the environment. Chemo-
taxis is calledpositive chemotaxisif the motion is in the direction of the stimulus
andnegative chemotaxisif the motion is away from the stimulant, as shown in Fig-
ure5.4. Many chemotaxis mechanisms are stochastic in nature, with biased random
motions causing the average behavior to be either positive, negative or neutral (in
the absence of stimuli).

In this section we look in some detail at bacterial chemotaxis, whichE. coli use
to move in the direction of increasing nutrients. The material in this section is based
primarily on the work of Barkai and Leibler [8] and Rao, Kirby and Arkin [77].
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Figure 5.4: Examples of chemotaxis. Figure from Phillips, Kondev and Theriot [72]; used
with permission of Garland Science.

Control system overview

The chemotaxis system inE. coli consists of a sensing system that detects the
presence of nutrients, and actuation system that propels the organism in itsenvi-
ronment, and control circuitry that determines how the cell should move in the
presence of chemicals that stimulate the sensing system.

The actuation system in theE. coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown
in Figure5.5a. When the flagella all spin in the counter clockwise direction, the
individual flagella form a bundle and cause the organism to move roughly ina
straight line. This behavior is called a “run” motion. Alternatively, if the flagella
spin in the clockwise direction, the individual flagella do not form a bundle and the
organism “tumbles”, causing it to rotate (Figure5.5b). The selection of the motor
direction is controlled by the protein CheY: if phosphorylated CheY binds to the
motor complex, the motor spins clockwise (tumble), otherwise it spins counter-
clockwise (run).

Because of the size of the organism, it is not possible for a bacterium to sense
gradients across its length. Hence, a more sophisticated strategy is used, inwhich
the organism undergoes a combination of run and tumble motions. The basic idea
is illustrated in Figure5.5c: when high concentration of ligand (nutrient) is present,
the CheY protein is left unphosphorylated and does not bind to the actuationcom-
plex, resulting in a counter-clockwise rotation of the flagellar motor (run). Con-
versely, if the ligand is not present then the molecular machinery of the cell causes
CheY to be phosphorylated and this modifies the flagellar motor dynamics so thata
clockwise rotation occurs (tumble). The net effect of this combination of behaviors
is that when the organism is traveling through regions of higher nutrient concen-
tration, it continues to move in a straight line for a longer period before tumbling,
causing it to move in directions of increasing nutrient concentration.

A simple model for the molecular control system that regulates chemotaxis is
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(a) (b) (c)

Figure 5.5: Bacterial chemotaxis. Figures from Phillips, Kondev and Theriot [72]; used
with permission of Garland Science.

shown in Figure5.6. We start with the basic sensing and and actuation mechanisms.
A membrane bound protein MCP (methyl-accepting chemotaxis protein) that is
capable of binding to the external ligand serves as a signal transducing element
from the cell exterior to the cytoplasm. Two other proteins, CheW and CheA,form
a complex with MCP. This complex can either be in an active or inactive state. In
the active state, CheA is autophosphorylated and serves as a phosphotransferase
for two additional proteins, CheB and CheY. The phosphorylated form of CheY
then binds to the motor complex, causing clockwise rotation of the motor.

The activity of the receptor complex is governed by two primary factors: the
binding of a ligand molecule to the MCP protein and the presence or absence of up
to 4 methyl groups on the MCP protein. The specific dependence on each of these
factors is somewhat complicated. Roughly speaking, when the ligandL is bound
to the receptor then the complex is less likely to be active. Furthermore, as more
methyl groups are present, the ligand binding probability increases, allowing the
gain of the sensor to be adjusted through methylation. Finally, even in the absence
of ligand the receptor complex can be active, with the probability of it being active
increasing with increased methylation. Figure5.7 summarizes the possible states,
their free energies and the probability of activity.

Several other elements are contained in the chemotaxis control circuit. The most
important of these are implemented by the proteins CheR and CheB, both of which
affect the receptor complex. CheR, which is constitutively produced in the cell,
methylates the receptor complex at one of the four different methylation sites. Con-
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Figure 5.6: Control system for chemotaxis. Figure from Raoet al. [77] (Figure 1A).

versely, the phosphorylated form of CheB demethylates the receptor complex. As
described above, the methylation patterns of the receptor complex affect its activ-
ity, which affects the phosphorylation of CheA and, in turn, phosphorylation of
CheY and CheB. The combination of CheA, CheB and the methylation of the re-
ceptor complex forms a negative feedback loop: if the receptor is active,then CheA
phosphorylates CheB, which in turn demethylates the receptor complex, making it
less active. As we shall see when we investigate the detailed dynamics below,this
feedback loop corresponds to a type of integral feedback law. This integral action
allows the cell to adjust to different levels of ligand concentration, so that the be-
havior of the system is invariant to the absolute nutrient levels.

Modeling

The detailed reactions that implement chemotaxis are illustrated in Figure5.8.
Letting T represent the receptor complex and TA represent an active form, the
basic reactions can be written as

TA +A −−−⇀↽−−− TA :A −−→ A p+TA

A p+B −−−⇀↽−−− A p:B −−→ A +Bp Bp+P−−−⇀↽−−− Bp:P−−→ B+P

A p+Y −−−⇀↽−−− A p:Y −−→ A +Y p Y p+Z −−−⇀↽−−− Y p:Z −−→ Y +Z

(5.6)

where CheA, CheB, CheY and CheZ are written simply as A, B, Y and Z for
simplicity and P is a non-specific phosphatase. We see that these are basically
three linked sets of phosphorylation and dephosphorylation reactions, with CheA
serving as a phosphotransferase and P and CheZ serving as phosphatases.

The description of the methylation of the receptor complex is a bit more com-
plicated. Each receptor complex can have multiple methyl groups attached andthe
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Figure 5.7: Receptor complex states. The probability of a given state being in an active
configuration is given byp. Figure obtained from [66].

activity of the receptor complex depends on both the amount of methylation and
whether a ligand is attached to the receptor site. Furthermore, the binding proba-
bilities for the receptor also depend on the methylation pattern. To capture this,we
use the set of reactions that are illustrated in Figures5.6 and5.8. In this diagram,
T s

i represents a receptor that hasi methylation sites filled and ligand state s (which
can be either u if unoccupied or o if occupied). We letM represent the maximum
number of methylation sites (M = 4 for E. coli).

Using this notation, the transitions between the states correspond to the reac-
tions shown in Figure5.9:

Tx
i +Bp −−−⇀↽−−− Tx

i :Bp −−→ Tx
i−1+Bp i > 0, x ∈ {u,0}

Tx
i +R−−−⇀↽−−− Tx

i :R−−→ Tx
i+1+R i < M, x ∈ {u,0}

Tu
i +L −−−⇀↽−−− To

i

We now must write reactions for each of the receptor complexes with CheA. Each
form of the receptor complex has a different activity level and so the most complete
description is to write a separate reaction for each To

i and Tu
i species:

Tx
i +A

k f ,o
i−−−⇀↽−−−

kr,o
i

Tx
i :A

kc,o
i−−→ A p+Tx

i ,

where x∈ {o,u} and i= 0, . . . ,M. This set of reactions replaces the placeholder
reaction TA +A −−−⇀↽−−− T A :A −−→ A p+T A used earlier.

Approximate model

The detailed model described above is sufficiently complicated that it can be dif-
ficult to analyze. In this section we develop a slightly simpler model that can be
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Figure 5.8: Circuit diagram for chemotaxis.

used to explore the adaptation properties of the circuit, which happen on a slower
time-scale.

We begin by simplifying the representation of the receptor complex and its
methylation pattern. LetL(t) represent the ligand concentration andTi represent
the concentration of the receptor complex withi sides methylated. If we assume
that the binding reaction of the ligand L to the complex is fast, we can write the
probability that a receptor complex withi sites methylated is in its active state as a
static functionαi(L), which we take to be of the form

αi(L) =
αo

i L

KL+L
+
αiKL

KL+L
.

The coefficientsαo
i andαi capture the effect of presence or absence of the ligand on

the activity level of the complex. Note thatαi has the form of a Michaelis-Menten
function, reflecting our assumption that ligand binding is fast compared to therest

./fbkexamps/figures/chemotaxis-methylation.eps

Figure 5.9: Methylation model for chemotaxis. Figure from Barkai and Leibler [8] (Box
1). Note: the figure uses the notation Es

i for the receptor complex instead of Ts
i .
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Figure 5.10: Probability of activity.

of the dynamics in the model. Following [77], we take the coefficients to be

a0 = 0, a1 = 0.1, a2 = 0.5, a3 = 0.75, a4 = 1,

ao
0 = 0, ao

1 = 0, ao
2 = 0.1, ao

3 = 0.5, ao
4 = 1.

and chooseKL = 10µM. Figure5.10shows how eachαi varies withL.
The total concentration of active receptors can now be written in terms of the

receptor complex concentrationsTi and the activity probabilitiesαi(L). We write
the concentration of activated complex TA and inactivated complex TI as

TA =

4∑

i=0

αi(L)Ti , T I =

4∑

i=0

(1−αi(L))Ti .

These formulas can now be used in our dynamics as an effective concentration of
active or inactive receptors, justifying the notation that we used in equation(5.6).

We next model the transition between the methylation patterns on the receptor.
We assume that the rate of methylation depends on the activity of the receptor
complex, with active receptors less likely to be demethylated and inactive receptors
less likely to be methylated [77, 66]. Let

rB = kB
Bp

KB+TA
, rR= kR

R

KR+T I
,

represent rates of the methylation and demethylation reactions. We choose the co-
efficients as

kB = 0.5, KB = 5.5, kR= 0.255, KR= 0.251,

We can now write the methylation dynamics as

d
dt

Ti = rR
(

1−αi+1(L)
)

Ti−1 + rBαi+1(L)Ti+1 − rR
(

1−αi(L)
)

Ti − rBαi(L)Ti ,
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Figure 5.11: Simulation and analysis of reduced-order chemotaxis model.

where the first and second terms represent transitions into this state via methyla-
tion or demethylation of neighboring states (see Figure5.9) and the last two terms
represent transitions out of the current state by methylation and demethylation, re-
spectively. Note that the equations forT0 andT4 are slightly different since the
demethylation and methylation reactions are not present, respectively.

Finally, we write the dynamics of the phosphorylation and dephosphorylation
reactions, and the binding of CheYp to the motor complex. Under the assumption
that the concentrations of the phosphorylated proteins are small relative tothe total
protein concentrations, we can approximate the reaction dynamics as

d
dt

Ap = 50TAA−100ApY−30ApB,

d
dt

Yp = 100ApY−0.1Yp−5[M]Yp+19[M:Y p] −30Yp,

d
dt

Bp = 30ApB−Bp,

d
dt

[M:Y p] = 5[M]Yp−19[M:Y p].

The total concentrations of the species are given by

A+Ap = 5 nM, B+Bp = 2 nM, Y+Yp+ [M:Y p] = 17.9 nM,

[M] + [M:Y p] = 5.8 nM, R= 0.2 nM,
∑4

i=0Ti = 5 nM.

The reaction coefficients and concentrations are taken from Raoet al. [77].
Figure5.11ashows a the concentration of the phosphorylated proteins based on

a simulation of the model. Initially, all species are started in their unphosphorylated
and demethylated states. At timeT = 500 s the ligand concentration is increased to
L= 10µM and at timeT = 1000 it is returned to zero. We see that immediately after
the ligand is added, the CheYp concentration drops, allowing longer runs between
tumble motions. After a short period, however, the CheYp concentration adapts to
the higher concentration and the nominal run versus tumble behavior is restored.
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Figure 5.12: Reduced order model of receptor activity. Obtained from [3], Figure 7.9.

Similarly, after the ligand concentration is decreased the concentration of CheYp

increases, causing a larger fraction of tumbles (and subsequent changes in direc-
tion). Again, adaptation over a longer time scale returns that CheY concentration
to its nominal value.

Figure 5.11bhelps explain the adaptation response. We see that the average
amount of methylation of the receptor proteins increases when the ligand concen-
tration is high, which decreases the activity of CheA (and hence decreases the
phosphorylation of CheY).

Integral action

The perfect adaptation mechanism in the chemotaxis control circuitry has thesame
function as the use of integral action in control system design: by includinga feed-
back on the integral of the error, it is possible to provide exact cancellation to
constant disturbances. In this section we demonstrate that a simplified versionof
the dynamics can indeed be regarded as integral action of an appropriatesignal.
This interpretation was first pointed out by Yiet al [98].

We begin by formulating an even simpler model for the system dynamics that
captures the basic features required to understand the integral action. Let X repre-
sent the receptor complex and assume that it is either methylated or not. We let Xm
represent the methylated state and we further assume that this methylated state can
be activated, which we write as X*m. This simplified description replaces the multi-
ple statesTi and probabilitiesαi(L). We also ignore the additional phosphorylation
dynamics of CheY and simply take the activated receptor concentrationX∗m as our
measure of overall activity.

Figure5.12shows the transitions between the various formsX. As before, CheR
methylates the receptor and CheBp demethylates it. We simplify the picture by only
allowing CheBp to act on the active state X*m and CheR to act on the inactive state.
We take the ligand into account by assuming that the transition between the active
form X *

m and the inactive form Xm depends on the ligand concentration: higher
ligand concentration will increase the rate of transition to the inactive state.

This model is a considerable simplification from the ligand binding model that
is illustrated in Figures5.7 and5.9. In the previous models, there is some prob-
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ability of activity with or without methylation and with or without ligand. In this
simplified model, we assume that only three states are of interest: demethylated,
methylated/inactive and methylated/active. We also modify the way that that lig-
and binding is captured and instead of keeping track of all of the possibilitiesin
Figure5.7, we assume that the ligand transitions us from an active state X*

m to an
inactive Xm. These states and transitions are roughly consistent with the different
energy levels and probabilities in Figure5.7, but it is clearly a much coarser model.

Accepting these approximations, the model illustrated in Figure5.12results in
a set of chemical reactions of the form

R1 : X +R−−−⇀↽−−− X:R −−→ Xm+R methylation

R2 : X ∗m+Bp −−−⇀↽−−− X ∗m:Bp −−→ X +Bp demethylation

R3 : X ∗m
k f (L)
−−−−⇀↽−−−−

kr
Xm activation/deactivation

For simplicity we take both R and Bp to have constant concentration.
We can approximate the first and second reactions by their Michaelis-Menten

forms, which yield net methylation and demethylation rates (for those reactions)

v+ = kRR
X

KX+X
, v− = kBBp X∗m

KX∗m+X∗m
.

If we further assume thatX≫ KX > 1, then the methylation rate can be further
simplified:

v+ = kRR
X

KX+X
≈ KRR.

Using these approximations, we can write the resulting dynamics for the overall
system as

d
dt

Xm= kRR+k f (L)X∗m−kr Xm

d
dt

X∗m= −kBBp X∗m
KX∗m+X∗m

−k f (L)X∗m+kr Xm.

We wish to use this model to understand how the steady state activity levelX∗m
depends on the ligand concentrationL (which enters through the deactivation rate
k f (L)).

It will be useful to rewrite the dynamics in terms of the activated complex con-
centrationX∗m and thetotal methylated complex concentrationXt

m = Xm+X∗m. A
simple set of algebraic manipulations yields

dX∗m
dt
= kr (Xt

m−X∗m)−kBBp X∗m
KX∗m+X∗m

−k f (L)X∗m,

dXt
m

dt
= kRR−kBBp X∗m

KX∗m+X∗m
.
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From the second equation, we see that the the concentration of methylated complex
X t

m is a balance between the action of the methylation reaction (R1, characterized
by v+) and the demethylation reaction (R2, at ratev−). Since the action of a ligand
binding to the receptor complex increases the rate of deactivation of the complex
(R3), in the presence of a ligand we will increase the amount of methylated com-
plex (and, via reaction R1) eventually restore the amount of the activated complex.
This represents the adaptation mechanism in this simplified model.

To further explore the effect of adaptation, we compute the equilibrium points
for the system. Setting the time derivatives to zero, we obtain

X∗m,e=
KX∗mkRR

kBBp−kRR

Xt
m,e=

1
kr

(

kr X∗m+kBBp X∗m
KX∗m+X∗m

+k f (L)X∗m

)

.

Note that the solution for the active complexX∗m,e in the first equation does not
depend onk f (L) (or kr ) and hence the steady state solution is independent of the
ligand concentration. Thus, in steady state, the concentration of activatedcomplex
adapts to the steady state value of the ligand that is present, making it insensitive
to the steady state value of this input.

The dynamics forXt
m can be viewed as an integral action: when the concen-

tration of X∗m matches its reference value (with no ligand present), the quantity of
methylated complexXt

m remains constant. But ifXt
m does not match this reference

value, thenXt
m increases at a rate proportional to the methylation “error” (measured

here by difference in the nominal reaction ratesv+ andv−). It can be shown that
this type of integral action is necessary to achieve perfect adaptation in a robust
manner [98].
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Chapter 6
Biological Circuit Components

In this chapter, we describe some simple circuits components that have been con-
structed inE. coli cells using the technology of synthetic biology. We will analyze
their behavior employing mainly the tools from Chapter3 and some of the tools
from Chapter4. The basic knowledge of Chapter2 will be assumed.

6.1 Introduction to Biological Circuit Design

In Chapter2 we have introduced a number of core processes and their modeling.
These include gene expression, transcriptional regulation, post-translational regu-
lation such as covalent modification of proteins, allosteric regulation of enzymes,
activity regulation of transcription factors through inducers, etc. Thesecore pro-
cesses provide a rich set of functional building blocks, which can be combined
together to create circuits with prescribed functionalities.

For example, if we want to create an inverter, a device that returns high output
when the input is low and vice versa, we can use a gene regulated by a transcrip-
tion repressor. If we want to create a signal amplifier, we can employ a cascade
of covalent modification cycles. Specifically, if we want the amplifier to be lin-
ear, we should tune the amounts of protein substrates to be in smaller values than
the Michaelis-Menten constants. If instead we are looking for an almost digital
response, we could employ a covalent modification cycle with high amounts of
substrates compared to the Michaelis-Menten constants. Furthermore, if weare
looking for a fast input/output response, phosphorylation cycles are better candi-
dates than transcriptional systems.

In this chapter and in the next one, we illustrate how one can build circuits with
prescribed functionality using some of the building blocks of Chapter2 and the
design techniques illustrated in Chapter3. We will focus on two types of circuits:
gene circuits and signal transduction circuits. In some cases, we will illustrate de-
signs that incorporate both.

A gene circuit is usually depicted by a set of nodes, each representing agene,
connected by unidirectional edges, representing a transcriptional activation or a re-
pression. Inducers will often appear as additional nodes, which activate or inhibit
a specific edge. Early examples of such circuits include an activator-repressor sys-
tem that can display toggle switch or clock behavior [5], a loop oscillator called
the repressilator obtained by connecting three inverters in a ring topology [23], a
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c) Activator-repressor clock

A
A B

A B

B

A C

a) Self repression b) Toggle switch

d) Repressilator

Figure 6.1: Early gene circuits that have been fabricated inbacteriaE. coli: the negatively
autoregulated gene [9], the toggle switch [27], the activator-repressor clock [5], and the
repressilator [23].

toggle switch obtained by connecting two inverters in a ring fashion [27], and an
autorepressed circuit [9] (Figure6.1). Each node represents a gene and each arrow
from node Z to node X indicates that the transcription factor encoded in gene z,
denoted Z, regulates gene x [3]. If z represses the expression of x, the interaction is
represented by Z⊣X. If z activates the expression of x, the interaction is represented
by Z→X [3].

Basic synthetic biology technology

Simple synthetic gene circuits can be constituted from a set of (connected) tran-
scriptional components, which are made up by the DNA base-pair sequences that
compose the desired promoters, ribosome binding sites, gene coding region, and
terminators. We can choose these components from a library of basic interchange-
able parts, which are classified based on biochemical properties such asaffinity
(of promoter, operator, or ribosome binding sites), strength (of a promoter), and
efficiency (of a terminator).

The desired sequence of parts is usually assembled on plasmids, which arecir-
cular pieces of DNA, separate from the host cell chromosome, with their own origin
of replication. These plasmids are then inserted, through a process calledtransfor-
mation in bacteria and transfection in yeast, in the host cell. Once in the host cell,
they express the proteins they code for by using the transcription and translation
machinery of the cell. There are three main types of plasmids: low copy number
(5-10 copies), medium copy number (15-20 copies), and high copy number (up to
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hundreds). The copy number reflects the average number of copies ofthe plasmid
inside the host cell. The higher the copy number, the more efficient the plasmid is
at replicating itself. The exact number of plasmids in each cell fluctuates stochas-
tically and cannot be exactly controlled.

In order to measure the amounts of proteins of interest, we make use ofreporter
genes. A reporter gene codes for a protein that fluoresces in a specific color(red,
blue, green, yellow, etc.) when it is exposed to light of the correct wave-length. For
instance, green fluorescent protein (GFP) is a protein with the property that it fluo-
resces in green when exposed to UV light. It is produced by the jellyfishAequoria
victoria, and its gene has been isolated so that it can be used as a reporter. Other
fluorescent proteins, such as yellow fluorescent protein (YFP) and red fluorescent
protein (RFP) are genetic variations of GFP.

A reporter gene is usually inserted downstream of the gene expressing the pro-
tein whose concentration we want to measure. In this case, both genes areunder
the control of the same promoter and are transcribed into a single mRNA molecule.
The mRNA is then translated to protein and the two proteins will be fused together.
This technique sometimes affects the functionality of the protein of interest because
some of the regulatory sites may be occluded by the fluorescent protein. Toprevent
this, another viable technique is to clone after the protein of interest the reporter
gene under the control of a copy of the same promoter that also controls theexpres-
sion of the protein. This way the protein is not fused to the reporter protein,which
guarantees that the protein function is not affected. Also, the expression levels of
both proteins should be close to each other since they are controlled by (different
copies of) the same promoter.

Just as fluorescent proteins can be used as a read out of a circuit, inducers func-
tion as external inputs that can be used to probe the system. Inducers function
by either disabling repressor proteins (negative inducers) or by enabling activa-
tor proteins (positive inducers). Two commonly used negative inducers are IPTG
and aTc. Isopropyl-β-D-1-thiogalactopyranoside (IPTG) induces activity of beta-
galactosidase, which is an enzyme that promotes lactose utilization, through bind-
ing and inhibiting thelac repressor LacI. The anhydrotetracycline (aTc) binds the
wild-type repressor (TetR) and prevents it from binding to the Tet operator. Two
common positive inducers are arabinose and AHL. Arabinose activates the tran-
scriptional activator AraC, which activates the pBAD promoter. Similarly, AHL is
a signaling molecule that activates the LuxR transcription factor, which activates
the pLux promoter.

Protein dynamics can be usually altered by the addition of a degradation tag at
the end of the coding region. A degradation tag is a sequence of base pairs that adds
an amino acid sequence to the functional protein that is recognized by proteases.
Proteases then bind to the protein, degrading it into a non-functional molecule. As
a consequence, the half life of the protein decreases, resulting in an increased decay
rate. Degradation tags are often employed to obtain a faster response of the protein
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concentration to input stimulation and to prevent protein accumulation.

6.2 Negative Autoregulation

In this section, we analyze the negatively autoregulated gene of Figure6.1 and
focus on analyzing how the presence of the negative feedback affects the dynamics
of the system and how the negative feedback affects the noise properties of the
system. This system was introduced in Example3.6.

Let A denote the concentration of protein A and let A be a transcriptional
repressor for its own production. Assuming that the mRNA dynamics are at the
quasi-steady state, the ODE model describing the negatively autoregulatedsystem
is given by

dA
dt
=

β

1+ (A/K)n −γA. (6.1)

We seek to compare the behavior of this autoregulated system to the behaviorof
the unregulated one:

dA
dt
= β0−γA,

in whichβ0 is the unrepressed production rate. We refer to this system as the open
loop system.

Dynamic effects of negative autoregulation

As we showed via simulation in Example2.2, negative autoregulation speeds up the
response to perturbations. Hence, the time the system takes to reach its steady state
decreases with negative feedback. In this section, we show this result analytically
by employing linearization about the steady state and by explicitly calculating the
time the system takes to reach it.

Let Ae = β0/γ be the steady state of the unregulated system and letz= A−Ae

denote the perturbation with respect to such a steady state. The dynamics ofz are
given by

dz
dt
= −γz.

Given a small initial perturbationz0, the response time ofz is given by the expo-
nential

z(t) = z0e−γt.

The “half-life” of the signalz(t) is the time it takes to reach half ofz0. This is a
common measure for the speed of response of a system to an initial perturbation.
Simple mathematical calculation shows thatthalf = ln(2)/γ. Note that the half-life
does not depend on the production rateβ0 and only depends on the protein decay
rate constantγ.



6.2. NEGATIVE AUTOREGULATION 201

Let now Ae be the steady state of the negatively autoregulated system (6.1).
Assuming that the perturbationzwith respect to such a steady state is small enough,
we can employ linearization to describe the dynamics ofz. These dynamics are
given by

dz
dt
= −γz,

in which

γ = γ+β
nAn−1

e /Kn

(1+ (Ae/K)n)2
.

In this case, we have thatthalf = ln(2)/γ.
Sinceγ > γ (independently of the steady stateAe), we have that the dynamic

response to a perturbation is faster in the system with negative autoregulation. This
confirms the simulation findings of Example2.2.

Noise filtering

In this section, we investigate the effect of the negative autoregulation on the noise
of the system. In order to do this, we employ the Langevin modeling framework
and determine the frequency response to the intrinsic noise on the various reactions.
We perform two different studies. In the first one, we assume that the decay rate of
the protein is much smaller than that of the mRNA. As a consequence, the mRNA
can be well approximated by its quasi-steady state and we focus on the dynamics
of the protein only. In the second study, we investigate the consequence of having
the mRNA and protein decay rates in the same range so that the quasi-steady state
assumption cannot be made. This is the case, for example, when degradation tags
are added to the protein to make its decay rate larger. In either case, we study
both the open loop system and the closed loop system (the system with negative
autoregulation) and compare the corresponding frequency responses to noise.

Assuming that mRNA is at its quasi-steady state

In this case, the reactions for the open loop system are given by

R1: p
β0−−→ A +p, R2: A

γ
−→ ∅,

in which β0 is the constitutive production rate, p is the DNA promoter, andγ is
the decay rate of the protein. Since the concentration of DNA promoter p is not
changed by these reactions, it is a constant, which we callptot.

Employing the Langevin equation (4.9) of Section4.1 and lettingnA denote
the real-valued number of molecules of A and bynp the real-valued number of
molecules of p, we obtain

dnA

dt
= β0np−γnA+

√

β0npΓ1−
√
γnAΓ2,
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in whichΓ1 andΓ2 are the noises on the production reaction and on the decay reac-
tion, respectively. By denotingA= nA/Ω the concentration of A andp= np/Ω= ptot

the concentration of p, we have that

dA
dt
= β0ptot−γA+

1
√
Ω

(
√

β0ptotΓ1−
√

γAΓ2).

This is a linear system and therefore we can calculate the frequency response to
any of the two inputsΓ1 andΓ2. The frequency response to inputΓ1 has magnitude
given by

M(ω) =

√

β0ptot/Ω
√

ω2+γ2
.

We now consider the autoregulated system. The reactions are given by

R1: p
β
−→ A +p, R2: A

γ
−→ ∅,

R3: A +p
a−→ C, R4: C

d−→ A +p, ptot = p+C.

Employing the Langevin equation (4.9) of Section4.1, we obtain

dp
dt
= −aAp+d(ptot− p)+

1
√
Ω

(−
√

aApΓ3+
√

d(ptot− p)Γ4)

dA
dt
= βp−γA−aAp+d(ptot− p)+

1
√
Ω

(
√

βpΓ1−
√

γAΓ2−
√

aApΓ3+

√

d(ptot− p)Γ4),

in which Γ3 andΓ4 are the noises on the association and on the dissociation reac-
tions, respectively. LettingKd = d/a, N1 =

1√
Ω

(−
√

Ap/KdΓ3+
√

(ptot− p)Γ4), and

N2=
1√
Ω

(
√
βpΓ1−

√
γAΓ2), we can rewrite the above system in the following form:

dp
dt
= −aAp+d(ptot− p)+

√
dN1(t)

dA
dt
= βp−γA−aAp+d(ptot− p)+N2(t)+

√
dN1(t).

Sinced≫ γ,β, this system displays two time scales. Lettingǫ := γ/d and defining
y := A− p, the system can be rewritten in standard singular perturbation form (3.6):

ǫ
dp
dt
= −γAp/Kd+γ(ptot− p)+

√
ǫ
√
γN1(t)

dy
dt
= βp−γ(y+ p)+N2(t).
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By settingǫ = 0, we obtain the quasi-steady state valuep= ptot/(A/Kd+1). Writing
Ȧ= ẏ+ ṗ, using the chain rule for ˙p, and assuming thatptot/Kd is sufficiently small,
we obtain the reduced system describing the dynamics ofA as

dA
dt
= β

ptot

A/Kd+1
−γA+

1
√
Ω

(
√

βpΓ1−
√

γAΓ2) =: f (A,Γ1,Γ2).

The equilibrium point for this system corresponding to the mean valuesΓ1 = 0
andΓ2 = 0 of the inputs is given by

Ae=
1
2

(√

K2
d +4βptotKd/γ−Kd

)

.

The linearization of the system about this equilibrium point is given by

∂ f
∂A

∣
∣
∣
∣
∣
Ae,Γ1=0,Γ2=0

= −β ptot/Kd

(Ae/Kd+1)2
−γ =: −γ,

b1=
∂ f
∂Γ1

∣
∣
∣
∣
∣
Ae,Γ1=0,Γ2=0

=
1
√
Ω

√

βptot

Ae/Kd+1
, b2=

∂ f
∂Γ2

∣
∣
∣
∣
∣
Ae,Γ1=0,Γ2=0

=− 1
√
Ω

√

γAe.

Hence, the frequency response toΓ1 has magnitude given by

Mc(ω) =
b1

√

ω2+γ2
.

In order to make a fair comparison between this response and that of the open
loop system, we need the steady states of both systems to be the same. In orderto
guarantee this, we set

β0 =
β

Ae/Kd+1
.

This can be attained by properly adjusting the strength of the promoter and ofthe
ribosome binding site. As a consequence, we have thatb1 =

√

β0ptot/Ω. Since we
also have thatγ > γ, it follows that Mc(ω) < M(ω) for all ω. That is, the gain of
the closed loops system is smaller than that of the open loop system. This result
implies that negative autoregulation attenuates noise at all frequencies. Thetwo
frequency responses are plotted in Figure6.2(a).

mRNA decay close to protein decay

In the case in which mRNA and protein decay rates are comparable, we needto
model both the processes of transcription and translation. Letting mA denote the
mRNA of A, the reactions describing the open loop system modify to

R1: mA
κ−→mA +A, R2: A

γ
−→ ∅, R5: p

α0−−→mA +p, R6: mA
δ−→ ∅,
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Figure 6.2: (a) Magnitude of the frequency response to noiseΓ1(t) for both open loop and
closed loop for the model in which mRNA is assumed at its quasi-steady state. The param-
eters areptot = 10, Kd = 10,β = 0.001,γ = 0.01,Ω = 1, andβ0 = 0.00092. (b) Frequency
response to noiseΓ6(t) for both open loop and closed loop for the model in which mRNA
decay is close to protein decay. The parameters areptot = 10,Kd = 10,α = 0.001,β = 0.01,
δ = 0.01,γ = 0.01, andα0 = 0.0618.

while those describing the closed loop system modify to

R1: mA
κ−→mA +A, R2: A

γ
−→ ∅,

R3: A +p
a−→ C, R4: C

d−→ A +p,

R5: p
α−→mA +p, R6: mA

δ−→ ∅, ptot = p+C.

Employing the Langevin equation, and applying singular perturbation as performed
before, we obtain the dynamics of the system as

dmA

dt
= F(A)−δmA+

1
√
Ω

(
√

F(A)Γ5−
√

δmAΓ6)

dA
dt
= κmA−γA+

1
√
Ω

(
√
κmAΓ1−

√

γAΓ2),

in whichΓ5 andΓ6 are the noise on the production reaction and decay reaction of
mRNA, respectively. For the open loop system we haveF(A) = α0ptot, while for
the closed loop system we have the Hill function

F(A) =
αptot

A/Kd+1
.

The steady state for the open loop system is given by

mo
e =

α0ptot

δ
, Ao

e =
κα0ptot

δγ
.
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ConsideringΓ6 as the input of interest, the linearization of the system at this equi-
librium is given by

Ao =

(

−δ 0
κ −γ

)

, Bo =

( √

δmo
e/Ω

0

)

.

Letting K = κ/(γKd), the steady state for the closed loop system is given by

Ac
e=

κme

γ
, mc

e=
1
2

(

−1/K +
√

(1/K)2+4αptot/(Kδ)

)

.

The linearization of the closed loop system at this equilibrium point is given by

Ac =

(

−δ −g
κ −γ

)

, Bc =

( √

δmc
e/Ω

0

)

,

in which g = (αptot/Kd)/(Ac
e/Kd+ 1)2 represents the contribution of the negative

autoregulation. The larger the value ofg the stronger the negative autoregulation.
In order to make a fair comparison between the two systems, we let the steady

states be the same. To do this, we setα0 = α/(Ac
e/Kd+1), which can be done by

suitably changing the strengths of the promoter and ribosome binding site.
The open loop and closed loop transfer functions are given by

Go
AΓ6

(s) =
κ
√
δme/Ω

(s+δ)(s+γ)
,

and by

Gc
AΓ6

(s) =
κ
√
δme/Ω

s2+ s(δ+γ)+δγ+ κg
,

respectively. By looking at these expressions, it is clear that the open loop trans-
fer function has two real poles, while the closed loop transfer function can have
complex conjugate poles wheng is sufficiently large. As a consequence, noiseΓ6

can be amplified at sufficiently high frequencies. Figure6.2(b) shows the magni-
tude M(ω) of the corresponding frequency responses for both the open loop and
the closed loop system.

It is clear that the presence of negative autoregulation attenuates noise with
respect to the open loop system at low frequency, but it amplifies it at higher fre-
quency. This is a very well known effect known as the “water bed effect”, according
to which negative feedback decreases the effect of disturbances at low frequency,
but it can amplify it at higher frequency. This effect is not found in first order model,
as demonstrated by the derivations when mRNA is at the quasi-steady state. This
illustrates the spectral shift of the frequency response to intrinsic noise towards the
high frequency, as also experimentally reported [6].
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Figure 6.3: (a) Nullclines for the toggle switch. By analyzing the direction of the vector
field in the proximity of the equilibria, one can deduce theirstability as described in Section
3.1. (b) Time traces forA(t) andB(t) when inducer concentrationsu1 andu2 are changed.
In the simulation, we haven= 2, Kd,1 = Kd,2 = 1, K2 = 0.1, β = 1, andγ = 1. The inducers
are such thatu1 = 100 for t < 100 andu1 = 0 for t ≥ 100, whileu2 = 0 for t < 100 and
u2 = 100 fort ≥ 100.

6.3 The Toggle Switch

The toggle switch is composed of two genes that mutually repress each other,as
shown in the diagram of Figure6.1 [27]. We start by describing a simple model
with no inducers. By assuming that the mRNA dynamics are at the quasi-steady
state, we obtain a two dimensional differential equation model given by

dA
dt
=

β

1+ (B/K)n −γA,
dB
dt

=
β

1+ (A/K)n −γB,

in which we have assumed for simplicity that the parameters of the repression
functions are the same for A and B.

The number and stability of equilibria can be analyzed by performing nullcline
analysis since the system is two-dimensional. Specifically, by settingdA/dt = 0
anddB/dt = 0 and lettingn ≥ 2, we obtain the nullclines shown in Figure6.3a.
The nullclines intersect at three points, which determine the steady states of this
system. The stability of these steady states can be determined as follows.

The nullclines partition the plane into six regions. By determining the sign of
dA/dt anddB/dt in each of these six regions, one determines the direction in which
the vector field is pointing in each of these regions. From these directions, one
deduces that the steady state at whichA = B is unstable while the other two are
stable. Hence, this is a bistable system.

The system’s trajectory converges to one steady state or the other depending
on the initial condition. Specifically, a trajectory starting at an initial condition in
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the region of attraction of steady stateS, converges to this steady state. The 45
degree line divides the plane into the two regions of attraction of the stable steady
states. Once the system’s trajectory has converged to one of the two steadystates,
it cannot switch to the other unless an external stimulation is applied.

In the toggle switch by [27], external stimulations were added in the form of
negative inducers for A and B. Specifically, let u1 be the negative inducer for A
and u2 be the negative inducer for B. Then, as we have seen in Section2.3, the
expressions of the Hill functions need to be modified to replaceA by A(1/(1+
u1/Kd,1)) andB by B(1/(1+u2/Kd,2)), in which Kd,1 andKd,2 are the dissociation
constants of u1 with A and of u2 with B, respectively. Hence, the system becomes

dA
dt
=

β

1+ (B/KB)n −γA,
dB
dt

=
β

1+ (A/KA)n −γB,

in which we have letKB = K(1+ u2/Kd,2) and KA = K(1+ u1/Kd,1) denote the
effective K values of the Hill functions. We show in Figure6.3b time traces for
A(t) and B(t) when the inducer concentrations are changed. Initially,u1 is high
until time 100 whileu2 is low until this time. As a consequence, A does not repress
B while B represses A. Accordingly, the concentration of A stays low until time
100 and the concentration of B stays high. After time 100,u2 is high andu1 is low.
As a consequence B does not repress A while A represses B. In this situation, A
switches to its high value and B switches to its low value.

Note that the effect of the inducers in this model is that of changing the shape
of the nullclines by changing the values ofKA andKB. Specifically, high values of
u1 andu2 = 0 will lead to increased values ofKA, which will shift the point of half-
maximal value of the Hill functionβ/(1+ (A/KA)n) to the right. As a consequence,
the nullclines will intersect at one point only, in which the value ofB is high and
the value ofA is low. The opposite will occur whenu2 is high andu1 = 0, leading
to only one intersection point in whichB is low andA is high.

6.4 The Repressilator

Elowitz and Leibler [23] constructed the first operational oscillatory genetic circuit
consisting of three repressors arranged in ring fashion, and coined itthe “repres-
silator” (Figure6.1d). The repressilator exhibits sinusoidal, limit cycle oscillations
in periods of hours, slower than the cell-division life cycle. Therefore,the state of
the oscillator is transmitted between generations from mother to daughter cells.

The dynamical model of the repressilator can be obtained by composing three
transcriptional modules in a loop fashion. The dynamics can be written as

dmA

dt
= F1(C)−δmA

dA
dt
= κmA−γA

dmB

dt
= F2(A)−δmB

dB
dt
= κmB−γB

dmC

dt
= F3(B)−δmC

dC
dt
= κmC−γC,

(6.2)
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where we take
F1(P) = F2(P) = F3(P) =

α

1+ (P/K)n .

This structure belongs to the class of cyclic feedback systems that we havestudied
in Section3.4. In particular, the Mallet-Paret and Smith theorem and Hastings the-
orem (see Section3.4for the details) can be applied to infer that if the system has a
unique equilibrium point and this equilibrium is unstable, then the system admits a
periodic solution. Therefore, to apply these results, we first determine thenumber
of equilibria and their stability.

The equilibria of the system can be found by setting the time derivatives to zero.
Lettingβ = (κ/δ), we obtain

A=
βF1(C)
γ

, B=
βF2(A)
γ

, C =
βF3(B)
γ

,

which combined together yield

A=
β

γ
F1

(

β

γ
F3

(

β

γ
F2(A)

))

=: g(A).

The solution to this equation determines the set of steady states of the system. The
number of steady states is given by the number of crossings of the two functions
h1(A) = g(A) andh2(A) = A. Sinceh2 is strictly monotonically increasing, we ob-
tain a unique steady state ifh1 is monotonically decreasing. This is the case when
g′(A) = dg(A)

dA < 0, otherwise there could be multiple steady states. Since we have
that

sign(g′(A)) = Π3
i=1sign(F′i (P)),

it follows that ifΠ3
i=1sign(F′i (P)) < 0 the system has a unique steady state. We call

the productΠ3
i=1sign(F′i (P)) the loop gain.

Thus, any cyclic feedback system with negative loop gain will have a unique
steady state. It can be shown that a cyclic feedback system with positive loop gain
belongs to the class of monotone systems and hence cannot have periodic orbits
[59]. In the present case, system (6.2) is such thatF′i < 0, so that the loop gain is
negative and there is a unique steady state. We next study the stability of this steady
state by studying the linearization of the system.

Letting P denote the steady state value of the protein concentrations for A, B,
and C, the linearization of the system is given by

J =




−δ 0 0 0 0 F′1(P)
κ −γ 0 0 0 0
0 F′2(P) −δ 0 0 0
0 0 κ −γ 0 0
0 0 0 F′3(P) −δ 0
0 0 0 0 κ −γ




,
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Figure 6.4: Space of parameters that give rise to oscillations for the repressilator in equa-
tion (6.2). Here, we have setK = 1 for simplicity.

whose characteristic polynomial is given by

det(λI − J) = (λ+γ)3(λ+δ)3− κ3Π3
i=1F′i (P).

The roots of this characteristic polynomial are given by

(λ+γ)(λ+δ) = s,

in which s∈ {κF′(P), (κF′(P)/2)(1+ i
√

3), (κF′(P)/2)(1− i
√

3)}. For being able to
invoke Hastings Theorem to infer the existence of a periodic orbit, it is sufficient
that one of the roots of the characteristic polynomial has positive real part. This is
the case if

κ|F′(P)| > γδ, |F′(P)| = α n(Pn−1/Kn)
(1+ (P/K)n)2

,

in which P is the equilibrium value satisfying the equilibrium condition

P=
β

γ

α

1+ (P/K)n .

One can plot the pair of values (n,β/γ) for which the above two conditions are
satisfied. This leads to the plot of Figure6.4. Whenn increases, the existence of
an unstable equilibrium point is guaranteed for larger ranges ofβ/γ. Of course,
this “behavioral” robustness does not guarantee that other important features of the
oscillator, such as the period, are not changed when parameters vary.

A similar result for the existence of a periodic solution can be obtained when
two of the Hill functions are monotonically increasing and only one is monotoni-
cally decreasing:

F1(P) =
α

1+ (P/K)n , F2(P) =
α(P/K)n

1+ (P/K)n , F3(P) =
α(P/K)n

1+ (P/K)n .
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Figure 6.5: Space of parameters that give rise to oscillations for the repressilator (non-
symmetric design). As the value ofn is increased, the range of the other parameter for
which a periodic cycle exists become larger. Here, we have set K = 1.

That is, two interactions are activations and one only is a repression. We refer to
this as the “non-symmetric” design. Since the loop gain is still negative, there is
only one equilibrium point. We can thus obtain the condition for oscillations again
by establishing conditions on the parameters that guarantee that at least one root of
the characteristic polynomial (6.4) has positive real part, that is,

κ(|F′1(P3)F′2(P1)F′3(P2)|)(1/3) > γδ, (6.3)

in which P1,P2,P3 are the equilibrium values ofA, B, andC. These satisfy:

P2 =
β

γ

(P1/K)n

1+ (P1/K)n , P3 =
β

γ

(P2/K)n

1+ (P2/K)n , P1(1+ (P3/K)n) =
β

γ
.

Using these expressions numerically and checking for each combination ofthe pa-
rameters (n,β/γ) whether (6.3) is satisfied, we can plot the combinations ofn and
β/γ values that lead to an unstable equilibrium. This is shown in Figure6.5. From
this figure, we can deduce that the qualitative shape of the parameter space that
leads to a limit cycle is the same in the repressilator and in the non-symmetric de-
sign. One can conclude that it is then possible to “over design” the circuit such that
the parameters land in the filled region of the plots. In practice, values of the Hill
coefficient n between one and two can be obtained by employing repressors that
have cooperativity higher than or equal to two. There are plenty of suchrepressors,
including those originally used in the repressilator design [23]. However, values of
n greater than two may be hard to reach in practice. To overcome this problem, one
can include more elements in the loop. In fact, it is possible to show that the value
of n sufficient for obtaining an unstable equilibrium decreases when the number of
elements in the loop is increased (see Exercises).
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Figure 6.6: (a) Repressilator proteins as functions of time. (b) Repressilator sensitivity
plots. The most important parameters are the protein and mRNA decay ratesγ andδ.

Example 6.1 (Repressilator Parameter Sensitivity). In this example, we use the
parameter sensitivity analysis tools of Chapter3 to investigate the sensitivity of
the protein concentrations to changes in the parameters. In this case, we model the
repressilator Hill functions adding the basal expression rate as it was originally
done in [23]:

F1(P) = F2(P) = F3(P) =
α

1+ (P/K)n +α0.

Letting x= (mA,A,mB,B,mC,C) andθ = (α0, δ, κ,γ,α,K), we can compute the sen-
sitivity Sx,θ along the limit cycle corresponding to nominal parameter vectorθ0 as
illustrated in Chapter3:

dSx,θ

dt
= M(t, θ0)Sx,θ +N(t, θ0),

whereM(t, θ0) andN(t, θ0) are both periodic in time. If the dynamics ofSx,θ are
stable then the resulting solutions will be periodic, showing how the dynamics
around the limit cycle depend on the parameter values. The results are shown in
Figure6.6b, where we plot the steady state sensitivity ofA as a function of time. We
see, for example, that the limit cycle depends strongly on the protein degradation
and dilution rateδ, indicating that changes in this value can lead to (relatively)
large variations in the magnitude of the limit cycle.

∇

6.5 Activator-Repressor Clock

Consider the activator-repressor clock diagram shown in Figure6.1(c). The tran-
scriptional module A has an input function that takes two inputs: an activatorA and
a repressor B. The transcriptional module B has an input function that takes only
an activator A as its input. LetmA andmB represent the concentration of mRNA
of the activator and of the repressor, respectively. LetA andB denote the protein
concentration of the activator and of the repressor, respectively. Then, we consider
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the following four-dimensional model describing the rate of change of the species
concentrations:

dmA

dt
= −δAmA+F1(A,B),

dA
dt
= −γAA+ κAmA,

dmB

dt
= −δBmB+F2(A),

dB
dt
= −γBB+ κBmB,

in which the functionsF1 andF2 are Hill functions and given by

F1(A,B) =
αA(A/KA)n+αA0

1+ (A/KA)n+ (B/KB)m, F2(A) =
αB(A/KA)n+αB0

1+ (A/KA)n .

The Hill function F1 can be obtained through a combinatorial promoter, where
there are sites both for an activator and for a repressor (see Section2.3).

Two-dimensional analysis

We first assume the mRNA dynamics to be at the quasi-steady state so that we
can perform two dimensional analysis and invoke the Poincarè-Bendixson theo-
rem (Section3.4). Then, we analyze the four dimensional system and perform a
bifurcation study.

We let f1(A,B) := (κA/δA)F1(A,B) and f2(A) := (κB/δB)F2(A). For simplicity,
we also denotef (A,B) := −γAA+ f1(A,B) andg(A,B) := −γBB+ f2(A) so that the
two-dimensional system is given by

dA
dt
= f (A,B),

dB
dt

= g(A,B). (6.4)

For simplifying notation, we assumem= 1 andKA = KB = 1.
We first study whether the system admits a periodic solution forn= 1. To do so,

we analyze the nullclines to determine the number and location of steady states. Let
αA = αA(κA/δA), αB = αB(κB/δB), αA0 = αA0(κA/δA), andαB0 = αB0(κB/δB). Then,
g(A,B) = 0 leads to

B=
αBA+αB0

(1+A)γB
,

which is an increasing function ofA. Setting f (A,B) = 0, we obtain that

B=
αAA+αA0−γAA(1+A)

γAA
,

which is a monotonically decreasing function of A. These nullclines are displayed
in Figure6.7(a).

We see that we have one equilibrium only. To determine the stability of such
an equilibrium, we calculate the linearization of the system at such an equilibrium.
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Figure 6.7: Nullclines for the two-dimensional system (6.4). (a) shows the only possi-
ble configuration of the nullclines whenn = 1. (b) shows a possible configuration of the
nullclines whenn = 2. In this configuration, there is a unique equilibrium, which can be
unstable.

This is given by the Jacobian matrix

J =





∂ f
∂A

∂ f
∂B

∂g
∂A

∂g
∂B





.

In order for the equilibrium to be unstable and not a saddle, it is necessary and
sufficient that tr(J) > 0 and det(J) > 0. Graphical inspection of the nullclines at the
equilibrium (see Figure6.7(a)) shows that

dB
dA

∣
∣
∣
∣
∣
f (A,B)=0

< 0.

By the implicit function theorem (Chapter3, Section3.6), we further have that

dB
dA

∣
∣
∣
∣
∣
f (A,B)=0

= −∂ f /∂A
∂ f /∂B

,

so that∂ f /∂A < 0 because∂ f /∂B < 0. As a consequence, we have that tr(J) < 0
and hence the equilibrium point is either stable or a saddle.

To determine the sign of det(J), we further inspect the nullclines and find that

dB
dA

∣
∣
∣
∣
∣
g(A,B)=0

>
dB
dA

∣
∣
∣
∣
∣
f (A,B)=0

.

Again using the implicit function theorem we have that

dB
dA

∣
∣
∣
∣
∣
g(A,B)=0

= −∂g/∂A
∂g/∂B

,
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Figure 6.8: Effect of the trace of the Jacobian on the stability of the equilibrium. The
above plots illustrate the trajectories of system (6.4) for both a functional (tr(J) > 0) and
a non-functional (tr(J) < 0) clock. The parameters in the simulation areδA = δB = 1, αA =

αB = 100,αA0 = .04,αB0 = .004,γA = 1, κA = κB = 1, andKA = KB = 1. In the Functional
Clock, γB = 0.5 whereas in the Non-Functional Clock,γB = 1.5. ParametersαA andαB

were chosen to give about 500-2000 copies of protein per cellfor activated promoters.
ParametersαA0 andαB0 were chosen to give about 1-10 copies per cell for non-activated
promoters.

so that det(J) > 0. Hence, theω-limit set (Chapter3, Section3.4) of any point in
the plane is not necessarily a periodic orbit. It follows that to guarantee that any
initial condition converges to a periodic orbit, we need to require thatn> 1.

We now study the casen= 2. In this case, the nullclinef (A,B) = 0 changes and
can have the shape shown in Figure6.7 (b). In the case in which, as in the figure,
there is only one equilibrium point and the nullclines intersect both with positive
slope (equivalent to det(J) > 0), the equilibrium is unstable and not a saddle if
tr(J) > 0, which is satisfied if

γB

∂ f1/∂A−γA
< 1.

This condition reveals the crucial design requirement for the functioning of the
clock. Specifically the repressor B time scale must be sufficiently slower than the
activator A time scale. This point is illustrated in the simulations of Figure6.8, in
which we see that ifγB is too large, the trace becomes negative and oscillations
disappear.

Four-dimensional analysis

In order to deepen our understanding of the role of time scale separation between
activator and repressor dynamics, we perform a time scale analysis employing the
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bifurcation tools described in Section3.5. To this end, we consider the following
four-dimensional model describing the rate of change of the species concentrations:

dmA

dt
= −(δA/ǫ) mA+F1(A,B),

dA
dt
= ν(−γAA+ (κA/ǫ) mA),

dmB

dt
= −(δB/ǫ) mB+F2(A),

dB
dt
= −γBB+ (κB/ǫ) mB.

This system is the same as system (6.5) where we have explicitly introduced
two parameters,ν andǫ, which model time scale differences as follows. The pa-
rameterν determines the relative time scale between the activator and the repressor
dynamics. Asν increases, the activator dynamics become faster compared to the
repressor dynamics. The parameterǫ determines the relative time scale between
the protein and mRNA dynamics. Asǫ becomes smaller, the mRNA dynamics be-
come faster compared to protein dynamics and model (6.5) becomes close to the
two-dimensional model (6.4), in which the mRNA dynamics are considered at the
quasi-steady state. Thus,ǫ is a singular perturbation parameter. In particular, equa-
tions (6.5 can be taken to standard singular perturbation form by considering the
change of variablesmA=mA/ǫ andmB=mB/ǫ. The details on singular perturbation
can be found in Section3.6.

The values ofǫ and ofν do not affect the number of equilibria of the system. We
then perform bifurcation analysis withǫ andν as the two bifurcation parameters.
The bifurcation analysis results are summarized by Figure6.9. In terms of theǫ
andν parameters, it is thus possible to “over design” the system: if the activator
dynamics are sufficiently sped up with respect to the repressor dynamics, the sys-
tem undergoes a Hopf bifurcation (Hopf bifurcation was introduced in Section3.4)
and stable oscillations will arise.

From a fabrication point of view, the activator dynamics can be sped up by
adding suitable degradation tags to the activator protein. Similarly, the repressor
dynamics can be slowed down by adding repressor DNA binding sites (seeChapter
7 and the effects of retroactivity on dynamic behavior).

6.6 An Incoherent Feedforward Loop (IFFL)

In Section3.2, we described various mechanisms to obtain robustness to external
perturbations. In particular, one such mechanism is provided by incoherent feed-
forward loops. Here, we describe an implementation that was proposed for making
the steady state levels of protein expression robust to perturbations in DNAplas-
mid copy number [12]. In this implementation, the inputu is the amount of DNA
plasmid coding for both the intermediate regulator A and the output protein B.
The intermediate regulator A represses through transcriptional repression the ex-
pression of the output protein B (Figure6.10). The expectation is that the steady
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Figure 6.9: Design chart for the relaxation oscillator. We obtain sustained oscillations past
the Hopf bifurcation point, for values ofν sufficiently large independently of the difference
of time scales between the protein and the mRNA dynamics. We also notice that there are
values ofν for which a stable equilibrium point and a stable orbit coexist and values of
ν for which two stable orbits coexist. The interval ofν values for which two stable orbits
coexist is too small to be able to numerically setν in such an interval. Thus, this interval is
not practically relevant. The values ofν for which a stable equilibrium and a stable periodic
orbit coexist is instead relevant. This situation corresponds to thehard excitationcondition
[55] and occurs for realistic values of the separation of time-scales between protein and
mRNA dynamics. Therefore, this simple oscillator motif described by a four-dimensional
model can capture the features that lead to the long term suppression of the rhythm by
external inputs.

state value ofB is independent of the concentrationu of the plasmid. That is, the
concentration of B should adapt to the copy number of its own plasmid.

In order to analyze whether the adaptation property holds, we write the differ-
ential equation model describing the system, assuming that the mRNA dynamics
are at the quasi-steady state. This model is given by

dA
dt
= k0u−γA,

dB
dt
=

k1u
1+ (A/Kd)

−γB, (6.5)

in whichk0 is the constitutive rate at which A is expressed andKd is the dissociation
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u

Figure 6.10: The incoherent feedforward motif with a possible implementation. The circuit
is integrated on a DNA plasmid denoted u. Protein A is under the control of a constitutive
promoter in the DNA plasmid u, while B is repressed by A. Protein B, in turn, is also
expressed by a gene in the plasmid u. Hence B is also “activated” by u.

constant of the binding of A with the promoter. This implementation has been
called the sniffer in Section3.2. The steady state of the system is obtained by
setting the time derivatives to zero and gives

A=
k0

γ
u, B=

k1u
γ+k0u/Kd

.

From this expression, one can easily note that asKd decreases, the denominator
of the right-side expression tends tok0u/Kd resulting into the steady state value
B= k1Kd/k0, which does not depend on the inputu. Hence, in this case, adaptation
would be reached. This is the case if the affinity of LacI to its operator sites is
extremely high, resulting also in a strong repression and hence a lower value of
B. In practice, however, the value ofKd is non-zero, hence the adaptation is not
perfect. We show in Figure6.11the behavior of the steady state ofB as a function
of the inputu for different values ofKd. Ideally, for perfect adaptation, this should
be a horizontal line.

In this study, we have not modeled the cooperativity of the binding of protein
A to the promoter. If A is LacI, for example, the cooperativity of binding isn= 4.
We leave as an exercise to show that the adaptation behavior persists in this case
(see Exercises).

For engineering a system with prescribed behavior, one has to be able to change
the physical features so as to change the values of the parameters of the model.
This is often possible. For example, the binding affinity (1/Kd in the Hill function)
of a transcription factor to its site on the promoter can be weakened by single
or multiple base pairs substitutions. The protein decay rate can be increasedby
adding degradation tags at the end of the gene expressing protein Y. Promoters that
can accept multiple transcription factors (combinatorial promoters) to implement
regulation functions that take multiple inputs can be realized by combining the
operator sites of several simple promoters [18].
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Figure 6.11: Behavior of the steady state value ofB as a function of the inputu.

Exercises

6.1 Consider the negatively autoregulated system:

dA
dt
=

β

1+ (A/K)n −γA.

Explore through linearization how increasing the Hill coefficient affects the re-
sponse time of the system. Also, compare the results of the linearization analysis
to the behavior of the nonlinear system obtained through simulation.

6.2 Consider the toggle switch:

dA
dt
=

βA

1+ (B/K)n −γA,
dB
dt
=

βB

1+ (A/K)m −γB.

Here, we are going to explore the parameter space that makes the system work as
a toggle. To do so, answer the following questions:

(a) Considerm= n= 1. Determine the number and stability of the equilibria.

(b) Considerm= 1 andn> 1 and determine the number and stability of the equi-
libria (as other parameters change).

(c) Considerm= n= 2. Determine parameter conditions onβA,βB,γ,K for which
the system is bistable, i.e., there are two stable steady states.

6.3 Consider the repressilator model and the parameter space for oscillations pro-
vided in Figure6.4. Determine how this parameter space changes if the value ofK
in the Hill function is changed.
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6.4 Consider the “generalized” model of the repressilator in which we havem
repressors (withman odd number) in the loop. Explore via simulation the fact that
whenm is increased, the system oscillates for smaller values of the Hill coefficient
n.

6.5 Consider the oscillator design of Stricker et al. [86]. Build a four dimensional
model including mRNA concentration and protein concentration. Then reduce this
fourth order model to a second order model using the QSS approximation for the
mRNA dynamics. Explore through simulation conditions for oscillations and com-
pare the behavior of the reduced model to that of the original model.

6.6 Consider the feedforward circuit shown in Figure6.10. Assume now to model
cooperativity such that the model modifies to

dA
dt
= k0u−γA,

dB
dt
=

k1u

1+ (A/Kd)4
−γB.

Show that the adaptation property still holds under suitable parameter conditions.
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Chapter 7
Interconnecting Components

In Chapter2 and Chapter6, we studied the behavior of simple biomolecular mod-
ules, such as oscillators, toggles, self repressing circuits, signal transduction and
amplification systems, based on reduced order models. One natural step forward is
to create larger and more complex systems by composing these modules together.
In this chapter, we illustrate problems that need to be overcome when interconnect-
ing components and propose a number of engineering solutions based on the feed-
back principles introduced in Chapter3. Specifically, we explain how impedance-
like effects arise at the interconnection between modules, which change the ex-
pected circuit behavior. These impedance problems appear in several other engi-
neering domains, including electrical, mechanical, and hydraulic systems, and have
been largely addressed by the respective engineering communities. In thischapter,
we explain how similar engineering solutions can be employed in biomolecular
systems to defeat impedance effects and guarantee “modular” interconnection of
circuits. In Chapter8, we further study loading of the cellular environment by syn-
thetic circuits employing the same framework developed in this chapter.

7.1 Input/Output Modeling and the Modularity Assumption

The input/output modeling introduced in Chapter1 and further developed in Chap-
ter 3 has been employed so far to describe the behavior of various modules and
subsystems. This input/output description of a system allows to connect systems
together by setting the inputu2 of a downstream system equal to the outputy1 of

u1 u2 = y1 y2

u1 y1 y2u2

Figure 7.1: In the input/output modeling framework, systems are interconnected by stati-
cally assigning to the input of the downstream system the value of the output of the up-
stream system.
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the upstream system (Figure7.1) and has been extensively used in the previous
chapters.

Each node of a gene circuit, such as those in Figure6.1, has been modeled as
an input/output system taking the concentrations of transcription factors as input
and giving, through the processes of transcription and translation, the concentration
of another transcription factor as an output. For example, node C in the repressi-
lator has been modeled as a second order system that takes the concentration of
transcription factor B as an input through the Hill function and gives transcription
factor C as an output. This is of course not the only possible choice for delimiting
a system. We could in fact let the mRNA or the RNA polymerase flowing along the
DNA, called PoPS (polymerase per second) [25], play the role of input and output
signals. Similarly, a signal transduction network is usually composed by protein
covalent modification modules, which take a modifying enzyme (a kinase in the
case of phosphorylation) as an input and gives the modified protein as anoutput.
Accordingly, one of the models of the MAPK cascade considered in Section2.5
is obtained by setting the value of the kinase concentration of a downstream cy-
cle equal to the value of the concentration of the modified protein of the upstream
cycle.

This input/output modeling framework is extremely useful because it allows
to predict the behavior of an interconnected system from the behavior ofthe iso-
lated modules. For example, the location and number of steady states in the toggle
switch of Section6.3 were predicted by intersecting the steady state input/output
characteristics, determined by the Hill functions, of the isolated modules A andB.
Similarly, the number of steady states in the repressilator was predicted by modu-
larly composing the input/output steady state characteristics, again determined by
the Hill functions, of the three modules composing the circuit.

For this input/output interconnection framework to reliably predict the behav-
ior of connected modules, it is necessary that the input/output (dynamic) behavior
of a system does not change upon interconnection to another system. We refer to
the property by which a system input/output behavior does not change upon inter-
connection asmodularity. All the designs and modeling described in the previous
chapter assume that the modularity property holds. In this chapter, we question
this assumption and investigate when modularity holds in gene and in signal trans-
duction circuits. Further, we illustrate design methods, based on the techniques of
Chapter3, to create functionally modular systems.

7.2 Introduction to Retroactivity

The modularity assumption implies that when two modules are connected together,
their behavior does not change because of the interconnection. However, a funda-
mental systems-engineering issue that arises when interconnecting subsystems is
how the process of transmitting a signal to a “downstream” component affects the
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Figure 7.2: (a)-(b) show the activator-repressor clock topology and the time behavior of the
activator and repressor concentrations. (c)-(d) show thatwhen a load is connected to the
clock, sustained oscillations disappear.

dynamic state of the sending component. This issue, the effect of “loads” on the
output of a system, is well-understood in many engineering fields such as electrical
engineering. It has often been pointed out that similar issues may arise forbiolog-
ical systems. These questions are especially delicate in design problems, such as
those described in Chapter6.

For example, consider a biomolecular clock, such as the activator-repressor
clock introduced in Section6.5and shown in Figure7.2awith simulations in Figure
7.2b. Assume that the activator protein concentrationA(t) is now used as a commu-
nicating species to synchronize or time a downstream system D (Figure7.2c). From
a systems/signals point of view,A(t) becomes aninput to the downstream system
D. The terms “upstream” and “downstream” reflect the direction in which we think
of signals as traveling,from the clockto the systems being synchronized. However,
this is only an idealization because when A is taken as an input by the downstream
system it binds to (and unbinds from) the promoter that controls the expression
of D. These additional binding/unbinding reactions compete with the biochemical
interactions that constitute the upstream clock and may therefore disrupt theoper-
ation of the clock itself (Figure??(d)). We call this “back-effect” retroactivity to
extend the notion of impedance or loading to non-electrical systems and in partic-
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Figure 7.3: A systemS input and output signals. Ther ands signals denote signals origi-
nating by retroactivity upon interconnection [19].

ular to biomolecular systems. This phenomenon, while in principle may be used
in an advantageous way by natural systems, can be deleterious when designing
synthetic systems.

One possible approach to avoid disrupting the behavior of the clock is to in-
troduce a gene coding for a new protein X, placed under the control of the same
promoter as the gene for A, and using the concentration of X, which presumably
mirrors that of A, to drive the downstream system. This approach, however, still
has the problem that the behavior of the X concentration may be altered and even
disrupted by the addition of downstream systems that drain X, as we shall see in
the next section. The net result is that the downstream systems are not properly
timed as X does not transmit the desired signal.

To model a system with retroactivity, we add to the input/output modeling
framework used so far, an additional input, calleds, to model any change that
may occur upon interconnection with a downstream system. That is,s models the
fact that whenevery is taken as an input to a downstream system the value ofy
may change, because of the physics of the interconnection. This phenomenon is
also called in the physics literature “the observer effect”, implying that no phys-
ical quantity can be measured without being altered by the measurement device.
Similarly, we add a signalr as an additional output to model the fact that when a
system is connected downstream of another one, it will send a signal upstream that
will alter the dynamics of that system. More generally, we define a systemS to
have internal statex, two types of inputs, and two types of outputs: an input “u”,
an output “y” (as before), aretroactivity to the input“ r”, and aretroactivity to the
output“ s” (Figure7.3). We will thus represent a systemS by the equations

dx
dt
= f (x,u, s), y= h(x,u, s), r = R(x,u, s), (7.1)

where f , g, andR are arbitrary functions and the signalsx, u, s, r, andy may be
scalars or vectors. In such a formalism, we define the input/output model of the
isolated system as the one in equation (7.1) without r in which we have also set
s= 0.

Let Si be a system with inputsui andsi and with outputsyi andr i . LetS1 andS2

be two systems with disjoint sets of internal states. We define the interconnection
of an upstream systemS1 with a downstream systemS2 by simply settingy1 = u2
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Figure 7.4: A transcription component takes as inputu protein concentrationZ and gives as
outputy protein concentrationX. The downstream transcription component takes protein
concentrationX as its input.

ands1 = r2. For interconnecting two systems, we require that the two systems do
not have internal states in common.

It is important to note that while retroactivitys is a back-action from the down-
stream system to the upstream one, it is conceptually different from feedback. In
fact, retroactivitys is non-zero any timey is transmitted to the downstream system,
that is, it is not possible to send signaly to the downstream system without retroac-
tivity s. By contrast, feedback from the downstream system can be removed even
when the upstream system sends signaly.

7.3 Retroactivity in Gene Circuits

In the previous section, we have introduced retroactivity as a general concept mod-
eling the fact that when an upstream system is input/output connected to a down-
stream one, its behavior can change. In this section, we focus on gene circuits and
show what form retroactivity takes and what its effects are.

Consider the interconnection of two transcription components illustrated in Fig-
ure 7.4. A transcription component is an input/output system that takes the tran-
scription factor concentrationZ as input and gives the transcription factor concen-
tration X as output. The activity of the promoter controlling genex depends on
the amount of Z bound to the promoter. IfZ = Z(t), such an activity changes with
time. To simplify notation, we denote it byk(t). We assume here that the mRNA
dynamics are at their quasi-steady state. The reader can verify that all the results
hold unchanged when the mRNA dynamics are included (see exercises). We write
the dynamics of X as

dX
dt
= k(t)−γX, (7.2)

in which γ is the decay rate constant of the protein. We refer to equation (7.2) as
the isolated system dynamics.



226 CHAPTER 7. INTERCONNECTING COMPONENTS

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

Time (min)

P
ro

te
in

 X
  C

on
ce

nt
ra

tio
n

 

 

connected
Isolated

(a)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

P
ro

te
in

 X
 C

on
ce

nt
ra

tio
n

Time (min)

 

 

connected
isolated

(b)

Figure 7.5: The effect of retroactivity. The solid line representsX(t) originating by equa-
tions (7.2), while the dashed line representsX(t) obtained by equation (7.3). Both transient
and permanent behaviors are different. Here,k(t) = 0.01(1+ sin(ωt)) with ω = 0.005 in (a)
andω = 0 in (b),kon = 10, koff = 10,γ = 0.01, ptot = 100,X(0)= 5. The choice of protein
decay rate (in min−1) corresponds to a half life of about one hour. The frequency of oscil-
lations is chosen to have a period of about 12 times the protein half life in accordance to
what is experimentally observed in the synthetic clock of [5].

Now, assume that X drives a downstream transcription module by binding to a
promoter p with concentrationp (Figure7.4). The reversible binding reaction of X
with p is given by

X +p
kon−−−⇀↽−−−
koff

C

in which C is the complex protein-promoter andkon andkoff are the association and
dissociation rate constants of protein X to promoter site p. Since the promoter is
not subject to decay, its total concentrationptot is conserved so that we can write
p+C = ptot. Therefore, the new dynamics of X are governed by the equations

dX
dt
= k(t)−γX+ [koffC−kon(ptot−C)X],

dC
dt
= −koffC+kon(ptot−C)X. (7.3)

We refer to this system as theconnectedsystem. Comparing the rate of change
of X in the connected system to that in the isolated system (7.2), we notice the
additional rate of change [koffC− kon(ptot −C)X] of X in the connected system.
Hence, we have

s= [koffC−kon(ptot−C)X],

and s= 0 when the system is isolated. We can interprets as being a mass flow
between the upstream and the downstream system, similar to a current in electrical
circuits.

How large is the effect of retroactivityson the dynamics ofX and what are the
biological parameters that affect it? We focus on the retroactivity to the outputsas
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we can analyze the effect of the retroactivity to the inputr on the upstream system
by simply analyzing the dynamics ofZ in the presence of the promoter regulating
the expression ofx.

The effect of retroactivityson the behavior ofX can be very large (Figure7.5).
By looking at Figure7.5, we notice that the effect of retroactivity is to “slow down”
the dynamics ofX(t) as the response time to a step input increases and the response
to a periodic signal appears attenuated and phase-shifted. We will come back to this
more precisely in the next section.

These effects are undesirable in a number of situations in which we would like
an upstream system to “drive” a downstream one as is the case, for example, when
a biological oscillator has to time a number of downstream processes. If, due to
the retroactivity, the output signal of the upstream process becomes too low and/or
out of phase with the output signal of the isolated system (as in Figure7.5), the
coordination between the oscillator and the downstream processes will be lost. We
next provide a procedure to obtain an operative quantification of the effect of the
retroactivity on the dynamics of the upstream system.

Quantification of the retroactivity to the output

In this section, we provide a general approach to quantify the retroactivity to the
output. To do so, we quantify the difference between the dynamics ofX in the iso-
lated system (7.2) and the dynamics ofX in the connected system (7.3) by estab-
lishing conditions on the biological parameters that make the two dynamics close
to each other. This is achieved by exploiting the difference of time scales between
the protein production and decay processes and binding/unbinding reactions, math-
ematically described bykoff ≫ k(t),γ. By virtue of this separation of time scales,
we can approximate system (7.3) by a one dimensional system describing the evo-
lution of X on the slow manifold (see Section3.6).

To this end, note that (7.3) is not in standard singular perturbation form: while
C is a fast variable,X is neither fast nor slow since its differential equation includes
both fast and slow terms. To explicitly model the difference of time scales, we let
z= X+C be the total amount of protein X (bound and free) and re-write system
(7.3) in the new variables (z,C). Letting ǫ = γ/koff, Kd = koff/kon, koff = γ/ǫ, and
kon= γ/(ǫKd), system (7.3) can be re-written as

dz
dt
= k(t)−γ(z−C), ǫ

dC
dt
= −γC+

γ

Kd
(ptot−C)(z−C), (7.4)

in which z is a slow variable. The reader can check as an exercise that the slow
manifold of system (7.4) is locally exponentially stable (see Exercises).

We can obtain an approximation of the dynamics ofX in the limit in whichǫ is
very small, by settingǫ = 0. This leads to

−γC+
γ

Kd
(ptot−C)X = 0→C = g(X) with g(X) =

ptotX
X+Kd

.
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Sincedy/dt = dX/dt+ dC/dt, we have thatdy/dt = dX/dt+ (dg/dX)dX/dt. This
along withdy/dt= k(t)−γX lead to

dX
dt
= (k(t)−γX)

(

1
1+dg/dX

)

. (7.5)

The difference between the dynamics in equation (7.5) (the connected system
after a fast transient) and the dynamics in equation (7.2) (the isolated system) is
zero when the termdg(X)

dX in equation (7.5) is zero. We thus consider the termdg(X)
dX

as a quantification of the retroactivitys after a fast transient in the approximation
in which ǫ ≈ 0. We can also interpret the termdg(X)

dX as a percentage variation of
the dynamics of the connected system with respect to the dynamics of the isolated
system at the quasi-steady state. We next determine the physical meaning ofsuch a
term by calculating a more useful expression that is a function of key biochemical
parameters.

By using the implicit function theorem, one can compute the following expres-
sion fordg(X)/dX:

dg(X)
dX

=
ptot/Kd

(X/Kd+1)2
=: R(X). (7.6)

The retroactivity measureR is low whenever the ratioptot/Kd, which can be seen
as an effective load, is low. This is the case if the affinity of the binding sites p is
small (Kd large) or if ptot is low. Also, the retroactivity measure is dependent onX
in a nonlinear fashion and it is such that it is maximal when X is the smallest. The
expression ofR(X) provides an operative quantification of retroactivity: such an
expression can in fact be evaluated once the dissociation constant of X isknown,
the concentration of the binding sitesptot is known, andX is also measured. From
(7.5) and from (7.6), it follows that the rate of change ofX in the connected system
is smaller than that in the isolated system, that is, retroactivity slows down the
dynamics of the transcription system. This has been also experimentally reported
in [46].

Summarizing, the modularity assumption introduced in Section7.1holds only
when the value ofR(X) is small enough. As a consequence, the design of a simple
circuit can assume modularity if the interconnections among the composing mod-
ules can be designed so that the value ofR(X) is low. From a design point of view,
low retroactivity can be obtained by either choosing low-affinity binding sites p or
by making sure that the amounts of p is not too high compared toX. This can be
guaranteed by placing the promoter sites p on low copy number plasmids or even
on the chromosome (with copy number equal to 1). High copy number plasmids
are expected to lead to non-negligible retroactivity effects on X.

In the presence of very low affinity and/or very low amount of promoter sites,
the amount of complex C will be very low. As a consequence, the amplitude of
the transmitted signal to downstream systems may also be very small and, as a
consequence, noise may become a bottleneck. A better approach may be to design



7.3. RETROACTIVITY IN GENE CIRCUITS 229

insulation devices (as opposed to designing the interconnection for low retroac-
tivity) to buffer systems from possibly large retroactivity as explained later in the
chapter.

Effects of retroactivity on the frequency response

How do we explain the amplitude attenuation and phase shift due to retroactiv-
ity observed in Figure7.5? In order to answer this question, we can linearize the
system about its steady state and determine the effect of retroactivity on the fre-
quency response. To this end, consider the input in the formk(t) = k̄+A0sin(ωt).
Let X̄ = k̄/γ andC̄ = ptotX̄/(X̄+Kd) be the equilibrium values corresponding tok̄.
The isolated system is already linear, so there is no need to perform linearization
and the transfer function fromk to X is given by

GI
Xk(s) =

1
s+γ

.

For the connected system (7.5), let (k̄, X̄) denote the steady state, which is the same
as for the isolated system, and letk̃= k− k̄ andx= X− X̄ denote small perturbations
about this steady state. Then, the linearization of system (7.5) about (̄k, X̄) is given
by (see Section3.1):

dx
dt
= (k̃(t)−γx)

1

1+ (ptot/Kd)/(X̄/Kd+1)2
.

Letting R̄ := (ptot/Kd)/(X̄/Kd+1)2, we obtain the transfer function from̃k to x of
the connected system linearization as

GC
Xk =

1

1+ R̄

1

s+γ/(1+ R̄)
.

Hence, we have the following result for the frequency response gain and phase
shift:

MI (ω) =
1

√

ω2+γ2
, φI (ω) = tan−1(−ω/γ),

MC(ω) =
1

1+ R̄

1
√

ω2+γ2/(1+ R̄)2
, φC(ω) = tan−1(−ω(1+ R̄)/γ),

from which one obtains thatMI (0) = MC(0) and, sinceR̄> 0, the bandwidth of
the connected systemγ/(1+ R̄) is lower than that of the isolated systemγ. As a
consequence, we have thatMI (ω) > MC(ω) for all ω > 0. Also, the phase shift of
the connected system is larger than that of the isolated system. This explains why
the plots of Figure7.5show a lag, an attenuation, and a phase shift in the response
of the connected system.
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Figure 7.6: Covalent modification cycle with its input, output, and downstream system.

This fact further indicates that if the frequency of the input stimulationk(t)
is sufficiently lower than the bandwidth of the connected systemγ/(1+ R̄), then
the connected and isolated systems will respond similarly. Hence, the effects of
retroactivity are tightly related to the time scale properties of the input signals
and of the system, These effects will be negligible when the input stimulation is
sufficiently slow (see exercises), and mitigation of retroactivity is required only
when the frequency range of the signals of interest is larger than the connected
system bandwidthγ/(1+ R̄).

7.4 Retroactivity in Signaling Systems

Signaling systems are circuits that take external stimuli as inputs and, througha
sequence of biolmolecular reactions, transform them to useful signals that deter-
mine how cells respond to their environment. These systems are usually composed
of covalent modification cycles (phosphorylation, methylation, urydylilation,etc.)
connected in cascade fashion, in which each cycle has multiple downstreamtargets
(or substrates). An example is the MAPK cascade, which we have analyzed in Sec-
tion 2.5. Since covalent modification cycles always have downstream targets, such
as DNA binding sites or other substrates, it is particularly important to understand
whether and how retroactivity from these downstream systems affects the response
of the upstream cycles to input stimulation. In this section, we study this question
both for the steady state and dynamic response of a covalent modification cycle to
its input (refer to Figure7.6).
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Steady state effects of retroactivity

We have seen in Section2.4 that one important characteristic of signaling systems
and, in particular, of covalent modification cycles, is the steady state characteris-
tic or dose response curve. In particular, we showed in Section2.4 that when the
Michaelis-Menten constants are sufficiently small compared to the total protein
amount, the cycle characteristics becomes ultrasensitive, a condition called zero-
order ultrasensitivity. When the cycle is connected to its downstream targets, this
steady state characteristics changes. In order to understand how this happens, we
rewrite the reaction rates and the corresponding differential equation model for the
covalent modification cycle of Section2.4 adding the binding of X∗ to its down-
stream target S. Referring to Figure7.6, we have the following reactions:

Z+X
a1−−⇀↽−−
d1

C1
k1−→ X ∗+Z, Y +X ∗

a2−−⇀↽−−
d2

C2
k2−→ X +Y,

to which we add the binding reaction of X* with its substrates S:

X ∗+S
kon−−−⇀↽−−−
koff

C,

in which C is the complex of X* with S. In addition to this, we have the conserva-
tion lawsXtot = X∗+X+C1+C2+C, Z+C1 = Ztot, andY+C2 = Ytot.

The rate equations governing the system are given by

dC1

dt
= a1XZ− (d1+k1)C1

dX∗

dt
= −a2X∗Y+d2C2+k1C1−konS X∗+koffC

dC2

dt
= a2X∗Y− (d2+k2)C2

dC
dt
= konX

∗S−koffC.

The input/output characteristics are found by solving this system for the equilib-
rium. In particular, by settingdC1/dt= 0, dC2/dt= 0, using thatZ = Ztot−C1 and
thatY= Ytot−C2, we obtain the familiar expressions for the complexes:

C1=
ZtotX

K1+X
, C2=

YtotX∗

K2+X∗
, with K1=

d1+k1

a1
and K2=

d2+k2

a2
.

By settingdX∗/dt+dC2/dt+dC/dt= 0, we obtaink1C2 = k2C2, which leads to

V1
X

K1+X
= V2

X∗

K2+X∗
, V1 = k1Ztot and V2 = k2Ytot. (7.7)

By assuming that the substrateXtot is in excess compared to the enzymes, we have
thatC1,C2≪ Xtot so thatX ≈ Xtot−X∗−C, in which (from settingdC/dt= 0) C =
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Figure 7.7: The addition of downstream target sites make theinput/output characteristics
more linear-like, that is, retroactivity makes a switch-like response into a more graded
response.

X∗S/Kd with Kd = koff/kon, leading toX ≈ Xtot−X∗(1+S/Kd). Callingλ = S/Kd,
equation (7.7) finally leads to

y :=
V1

V2
=

X∗ ((K1/1+λ)+ ((Xtot/1+λ)−X∗))
(K2+X∗) ((Xtot/(1+λ))−X∗)

. (7.8)

Here, we can interpretλ as an effective load, which increases with the amount of
targets of X∗ but also with the affinity of these targets (1/Kd).

We are interested in how the shape of the steady state characteristics ofX∗ as
function ofy change when the effective loadλ is changed. As seen in Section2.4,
a way to quantify the sensitivity of the steady state characteristics is to calculate
the response coefficientR= y90/y10. The maximal value ofX∗ obtained asy→∞
is given byXtot/(1+λ). Hence, from equation (7.8), we have that

y90=
(K̄1+0.1)0.9

(K̄2(1+λ)+0.9)0.1
, y10=

(K̄1+0.9)0.1

(K̄2(1+λ)+0.1)0.9
,

K̄1 :=
K1

Xtot
, K2 =

K2

Xtot
,

so that

R= 81
(K̄1+0.1)(K̄2(1+λ)+0.1

(K̄2(1+λ)+0.9)(K̄1+0.9)
.

Comparing this expression with the one obtained in equation (2.25) for the isolated
covalent modification cycle, we see that the net effect of the downstream target S is
that of increasing the Michaelis-Menten constantK2 by the factor (1+λ). Hence,
we should expect that with increasing load, the steady state characteristicsshould
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Figure 7.8: (a) Step response of the cycle in the presence of apositive step. The response
time is not affected by the load. (b) Response to a negative step. The presence of the load
makes the response slower. Here,Xtot = 1, K1 = K2 = 0.1, k1 = k2 = 1, andλ = 5.

be more linear-like. This is confirmed by the simulations shown in Figure7.7and it
was also experimentally demonstrated in signal transduction circuits reconstituted
in vitro [91].

One can check thatR is a monotonically increasing function ofλ. In particular,
asλ increases, the value ofR tends to 81(̄K1+0.1)/(K̄2+0.9), which, in turn, tends
to 81 for K̄1, K̄2→∞. Whenλ = 0, we recover the results of Section2.4.

Dynamic effects of retroactivity

In order to understand the dynamic effects of retroactivity on the signaling module,
we seek a one dimensional approximation of theX∗ dynamics, which can be easily
analyzed. To do so, we exploit time scale separation and apply singular perturbation
analysis.

Specifically, we have thatdi ,koff≫ k1,k2, so we can choose as a small parameter
ǫ = k1/koff and slow variablew = X∗ +C+C2. By settingǫ = 0, we obtain that
C1 = ZtotX/(K1+X), C2 = YtotX∗/(K2+X∗) =: g(X∗), andC = λX∗, in whichZtot is
time-varying input signal. Hence, the dynamics of the slow variablew on the slow
manifold are given by

dw
dt
= k1

Ztot(t)X
K1+X

−k2Ytot
X∗

X∗+K2
.

Usingdw/dt=dX∗/dt+dC/dt+dC2/dt, dC/dt= λdX∗/dt, dC2/dt= ∂g/∂X∗dX∗/dt,
and the conservation lawX = Xtot−X∗(1+λ), we finally obtain the approximated
X∗ dynamics as

dX∗

dt
=

1
1+λ

(

k1
Ztot(t)(Xtot−X∗(1+λ))
K1+ (Xtot−X∗(1+λ))

−k2Ytot
X∗

X∗+K2

)

, (7.9)
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Figure 7.9: Behavior of the bandwidth as a function of the load for different values of the
Michaelis-Menten constantsK1,K2. Here,Xtot = 1.

where we have assumed that thatYtot/K2≪ S/Kd, so that the effect of the binding
dynamics of X* with Y (modeled by∂g/∂X∗) is negligible with respect toλ. The
reader can verify this derivation as an exercise (see exercises).

From this expression, one can understand the effect of the loadλ on the rise
time and decay time in response to large step input stimuliZtot. For the decay time,
one can assume an initial conditionX∗(0), 0 andZtot(t) = 0 for all t. In this case,
we have that

dX∗

dt
= −k2Ytot

X∗

X∗+K2

1
1+λ

,

from which, sinceλ > 0, it follows that the transient will be slower than whenλ = 0
and hence that the system will have an increased decay time due to retroactivity.
For the rise time, one can assumeZtot ≈ ∞ and X∗(0) = 0. In this case, at least
initially we have that

(1+λ)
dX∗

dt
=

(

k1
Ztot(Xtot−X∗(1+λ))

K1+ (Xtot−X∗(1+λ))

)

,

which is the same expression for the isolated system in whichX∗ is scaled by
(1+λ). So, the rise time is not affected. The response of the cycle to positive and
negative steps changes of the input stimulusZ are shown in Figure7.8.

In order to understand how the bandwidth of the system is affected by retroac-
tivity, we considerZtot(t) = Z̄+A0sin(ωt). Let X̄ be the equilibrium ofX∗ corre-
sponding toZ̄. Let z= Ztot− Z̄ andx= X∗− X̄ denote small perturbations about the
equilibrium. The linearization of system (7.9) is given by

dx
dt
= −a(λ)x+b(λ)z(t),
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in which

a(λ) =
1

1+λ

(

k1Z̄
K1(1+λ)

(K1+ (Xtot− X̄(1+λ)))2
+k2Ytot

K2

(K2+ X̄)2

)

and

b(λ) =
k1

1+λ

(

Xtot− X̄(1+λ)

K1+ (Xtot− X̄(1+λ))

)

,

so that the bandwidth of the system is given byωB = a(λ).
Figure7.9shows the behavior of the bandwidth as a function of the load. When

the isolated system static characteristics are linear-like (K1,K2≫ Xtot), the band-
width monotonically decreases with the load. By contrast, when the isolated system
static characteristics are ultrasensitive (K1,K2≪ Xtot), the bandwidth of the con-
nected system can be larger than that of the isolated system for sufficiently large
amounts of loads. In these conditions, one should expect that the response of the
connected system becomes faster than that of the isolated system. These theoreti-
cal predictions have been experimentally validated in a covalent modification cycle
reconstitutedin vitro [48].

7.5 Insulation Devices: Retroactivity Attenuation

As explained in the previous section, it is not always possible or advantageous to
design the downstream system so that it applies low retroactivity because,for ex-
ample, the downstream system may already have been designed and optimizedfor
other purposes. A better approach, in analogy to what is performed in electrical cir-
cuits, is to design a device to be placed between the upstream system (the oscillator,
for example) and the downstream load so that the device output is not changed by
the load and the device does not affect the behavior of the upstream system. That
is, the output of the device should follow the prescribed behavior independently of
any loading applied by a downstream system.

Specifically, consider a systemS such as the one shown in Figure7.3. We would
like to design such a system such that

(a) the retroactivityr to the input is very small;

(b) the effect of the retroactivitys to the output on the internal dynamics of the
system is very small independently ofs itself (retroactivity attenuation).

Such a system is said to have theinsulationproperty and will be called an insulation
device. Indeed, such a system will not affect an upstream system becauser ≈ 0 and
it will keep the same output signaly independentlyof any connected downstream
system. Of course, other requirements may be important, such as the stability of
the device and the speed of response.
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Figure 7.10: The diagram in (a) shows the basic high-gain feedback mechanism to attenuate
the contribution of disturbances on the outputy. The diagram in (b) shows an alternative
representation, which will be employed to design biological insulation devices.

Equation (7.6) quantifies the effect of retroactivity on the dynamics ofX as a
function of biochemical parameters. These parameters are the affinity of the bind-
ing site 1/Kd, the total concentration of such binding siteptot, and the level of the
signalX(t). Therefore, to reduce retroactivity, we can choose parameters such that
(7.6) is small. A sufficient condition is to chooseKd large (low affinity) and ptot

small, for example. Having small value ofptot and/or low affinity implies that there
is a small “flow” of protein X toward its target sites. Thus, we can say that a low
retroactivity to the input is obtained when the “input flow” to the system is small. In
the next sections, we focus on the retroactivity to the output, that is, on the retroac-
tivity attenuation problem, and illustrate how the problem of designing a device
that is robust toscan be formulated as a classical disturbance attenuation problem
(Section3.2). We provide two main design techniques to attenuate retroactivity:
the first one (principle 1) is based on the idea of high-gain feedback (Section 3.2),
while the second one uses time-scale separation and leverages the structure of the
interconnection.

Attenuation of retroactivity to the output: Principle 1

The basic mechanism for retroactivity attenuation is based on the concept of dis-
turbance attenuation through high-gain feedback presented in Section3.2. In its
simplest form, it can be illustrated by the diagram of Figure7.10a, in which the
retroactivity to the outputs plays the same role as an additive disturbance. For
large gainsG, the effect of the retroactivitys to the output is negligible as the
following simple computation shows. The outputy is given by

y=G(u−Ky)+ s,

which leads to

y= u
G

1+KG
+

s
1+KG

.
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As G grows,y tends tou/K, which is independent of the retroactivitys.
Figure7.10billustrates an alternative representation of the diagram depicting

high-gain feedback. This alternative depiction is particularly useful as ithighlights
that to attenuate retroactivity we need to (1) amplify the input of the system through
a large gain and (2) apply a similarly large negative feedback on the output.The
question of how to realize a large input amplification and a similarly large nega-
tive feedback on the output through biomolecular interactions is the subjectof the
next section. In what follows, we fist illustrate how this strategy also worksfor a
dynamical system of the form of (7.5).

Consider the dynamics of the connected transcription system (7.5). Assume that
we can apply a gainG to the inputk(t) and a negative feedback gainG′ to X with
G′ = KG. This leads to the new differential equation for the connected system (7.5)
given by

dX
dt
=

(

Gk(t)− (G′+γ)X
)

(1−d(t)), (7.10)

in which we have definedd(t) = R(X)/(1+R(X)). Sinced(t) < 1, lettingG′ = KG,
we can verify (see exercises) that asG grows X(t) tends tok(t)/K for both the
connected system (7.10) and the isolated system

dX
dt
=Gk(t)− (G′+γ)X. (7.11)

Specifically, we have the following fact:

Proposition 7.1. Consider the scalar systeṁx=G(t)(k(t)−Kx) with G(t) ≥G0 > 0
andk̇(t) bounded. Then, there are positive constants C0 and C1 such that

|x(t)−k(t)/K| ≤C0e−G0Kt +
C1

G0
.

As a consequence, the solutionsX(t) of the connected and isolated systems tend
to each other asG increases. Hence, the presence of the disturbanced(t) will not
significantly affect the time behavior ofX(t). It follows that the effect of retroactiv-
ity can be arbitrarily attenuated by increasing gainsG andG′.

The next questions we address is how we can implement such amplification and
feedback gains in a biomolecular system.

Biomolecular realizations of Principle 1

In this section, we illustrate two possible biomolecular implementations to obtain a
large input amplification gain and a similarly large negative feedback on the output.
Both implementations realize the negative feedback through enhanced degradation.
The first design realizes amplification through transcription activation, whilethe
second design uses phosphorylation.
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Figure 7.11: Design 1. The inputZ(t) is amplified by virtue of a strong promoter p0. The
negative feedback on the output X is obtained by enhancing its degradation through the
protease Y.

Design 1: Amplification through transcription activation

This design is depicted in Figure7.11. We implement a large amplification of the
input signalZ(t) by having Z be a transcription activator for protein X, such that
the promoter p0 controlling the expression of X is a strong, non-leaky promoter.
The signalZ(t) can be further amplified by increasing the strength of the ribosome
binding site of gene x. The negative feedback mechanism on X relies on enhanced
degradation of X. Since this must be large, one possible way to obtain an enhanced
degradation for X is to have a specific protease, called Y, be expressedby a strong
constitutive promoter.

To investigate whether such a design realizes a large amplification and a large
negative feedback onX as needed to attenuate retroactivity to the output, we con-
struct a model. The reaction of the protease Y with protein X is modeled as the two-

step reaction X+Y
a−⇀↽−
d

W
k̄−→ Y (see Section2.3). The input/output system model of

the insulation device that takesZ as an input and givesX as an output is given by
the following equations

dZ
dt

= k(t)−γZZ+
[

k− C̄−k+ Z(p0,tot− C̄)
]

(7.12)

dC̄
dt

= k+Z(p0,tot− C̄)−k−C̄ (7.13)

dmX

dt
= GC̄−δmX (7.14)

dW
dt

= aXY−dW− k̄W (7.15)

dY
dt

= −aYX+ k̄W+αG−γYY+dW (7.16)

dX
dt

= κmX−aYX+dW−γXX+
[

koffC−konX(ptot−C)
]

(7.17)

dC
dt

= −koffC+konX(ptot−C), (7.18)
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in which we have assumed that the expression of gene z is controlled by a promoter
with activity k(t). In this system, we have denoted byk+ andk− the association and
dissociation rates constants of Z with its promoter site p0 in total concentration
p0,tot. Also, C̄ is the complex of Z with such a promoter site. Here, mX is the
mRNA of X, and C is the complex of X bound to the downstream binding sites p
with total concentrationptot. The promoter controlling geney has strengthαG, for
some constantα, and it has about the same strength as the promoter controllingx.

The terms in the square brackets in equation (7.12) represent the retroactivityr
to the input of the insulation device in Figure7.11. The terms in the square brackets
in equation (7.17) represent the retroactivitys to the output of the insulation device.
The dynamics of equations (7.12)–(7.18) withoutsdescribe the dynamics ofX with
no downstream system (isolated system).

Equations (7.12) and (7.13) determine the signal̄C(t) that is the input to equa-
tions (7.14)–(7.18). For the discussion regarding the attenuation of the effect ofs, it
is not relevant what the specific form of signalC̄(t) is. Let thenC̄(t) be any bounded
signal. Since equation (7.14) takesC̄(t) as an input, we will have thatmX(t)=Gv(t),
for a suitable signalv(t). Let us assume for the sake of simplifying the analysis that

the protease reaction is a one step reaction, that is, X+Y
k̄′−→ Y. Therefore, equation

(7.16) simplifies to
dY
dt
= αG−γYY

and equation (7.17) simplifies to

dX
dt
= κmX− k̄′YX−γXX+koffC−konX(ptot−C).

If we further consider the protease to be at its equilibrium, we have thatY(t) =
αG/γY.

As a consequence, theX dynamics become

dX
dt
= κGv(t)− (k̄′αG/γY+γX)X+koffC−konX(ptot−C),

with C determined by equation (7.18). By using the same singular perturbation
argument employed in the previous section, we obtain that the dynamics ofX can
be reduced to

dX
dt
= (κGv(t)− (k̄′αG/γY+γX)X)(1−d(t)), (7.19)

in which 0< d(t) < 1 is the retroactivity term given byR(X)/(1+R(X)). Then, as
G increases,X(t) becomes closer to the solution of the isolated system

dX
dt
= κGv(t)− (k̄′αG/γY+γX)X,

as explained in the previous section be virtue of Proposition7.1.
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Figure 7.12: Design 1: results for different gainsG. In all plots,k(t) = 0.01(1+ sin(ωt)),
ptot = 100,koff = kon = 10, γZ = 0.01= γY, andω = 0.005. The parameter values areδ =
0.01, p0,tot = 1, a = d = k̄′ = 0.01, k− = 200,k+ = 10,α = 0.1, γX = 0.1, κ = 0.1, andG =
1000,100,10,1. The retroactivity to the output is not well attenuated forvalues of the gain
G = 1 and the attenuation capability begins to worsen forG = 10. Protein decay rates of
0.01min−1 correspond to a protein half life of about one hour. We consider a periodic
forcing k(t) = 0.01(1+sin(ωt)) with a period that is about 12 times the protein half life in
accordance to what is experimentally observed in the synthetic clock of [5].

We now turn to the question of minimizing the retroactivity to the inputr be-
cause its effect can alter the input signalZ(t). In order to decreaser, we must guar-
antee that the retroactivity measure given in equation (7.6), in which we substitute
Z in place ofX, p0,tot in place ofptot, andK̄d = k+/k− in place ofKd, is small. This
is the case ifK̄d≫ Z andp0,tot/K̄d≪ 1.

Simulation results for (7.12)–(7.18) are shown in Figure7.12. For large gains
(G= 1000,G= 100), the performance considerably improves compared to the case
in which X was generated by a transcription component acceptingZ as an input
(Figure7.5). For lower gains (G = 10, G = 1), the performance starts to degrade
for G = 10 and becomes poor forG = 1. Since we can viewG as the number of
transcripts produced per unit time (one minute) per complex of protein Z bound
to promoter p0, valuesG = 100,1000 may be difficult to realizein vivo, while the
valuesG = 10,1 could be more easily realized. However, the value ofκ increases
with the strength of the ribosome binding site and therefore the gain may be further
increased by picking strong ribosme binding sites forx. The values of the param-
eters chosen in Figure7.12are such thatK̄d≫ Z and p0,tot≪ K̄d. This is enough
to guarantee that there is small retroactivityr to the input of the insulation device
independently of the value of the gainG. The poorer performance of the device
for G = 1 is therefore entirely due to poor attenuation of the retroactivitys to the
output. To obtain a large negative feedback gain, we also require high expression
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Figure 7.13: Phosphorylation cycle with a downstream DNA target. Amplification of Z
occurs through the phosphorylation of substrate X. Negative feedback occurs through a
phosphatase Y that converts the active form X* back to its inactive formX.

of the protease. It is therefore important that the protease is highly specificto its
target X.

Design 2: Amplification through phosphorylation

In this design, the amplification gainG of Z is obtained by havingZ be a kinase
that phosphorylates a substrate X, which is available in abundance. The negative
feedback gainG′ on the phosphorylated proteinX∗ is obtained by having a phos-
phatase Y dephosphorylate the active protein X∗. Protein Y should also be available
in abundance in the system. This implementation is depicted in Figure7.13.

To illustrate what the key parameters are that enable retroactivity attenuation,
we first consider a simplified model for the phosphorylation and dephosphorylation
processes. This model will help in obtaining a conceptual understanding of what
reactions are responsible in realizing the desired gainsG andG′. The one step
model that we consider is the same as considered in Chapter 2 (Exercise2.8):

Z+X
k1−→ Z+X∗, Y +X∗

k2−→ Y +X.

We assume that there is an abundance of protein X and of phosphatase Y inthe
system and that these quantities are conserved. The conservation of X gives X+
X∗ +C = Xtot, in which X is the inactive protein, X∗ is the phosphorylated protein
that binds to the downstream sites p, and C is the complex of the phosphorylated
protein X∗ bound to the promoter p. TheX∗ dynamics can be described by the
following model

dX∗

dt
= k1XtotZ(t)

(

1− X∗

Xtot
−

[

C
Xtot

])

−k2YX∗+ [koffC−konX
∗(ptot−C)] (7.20)

dC
dt
= −koffC+konX

∗(ptot−C). (7.21)
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The terms in the square brackets represent the retroactivitys to the output of the
insulation device of Figure7.13. For a weakly activated pathway [38], X∗ ≪ Xtot.
Also, if we assume that the total concentration of X is large compared to the con-
centration of the downstream binding sites, that is,Xtot≫ ptot, equation (7.20) is
approximatively equal to

dX∗

dt
= k1XtotZ(t)−k2YX∗+koffC−konX

∗(ptot−C).

Let G = k1Xtot and G′ = k2Y. Exploiting again the difference of time scales
between theX∗ dynamics and theC dynamics, the dynamics ofX∗ can be reduced
to

dX∗

dt
= (GZ(t)−G′X∗)(1−d(t)),

in which 0< d(t)< 1 is the retroactivity term. Therefore, forG andG′ large enough,
X∗(t) tends to the solutionX∗(t) of the isolated systemdX∗

dt =GZ(t)−G′X∗, as ex-
plained before by virtue of Proposition7.1. As a consequence, the effect of the
retroactivity to the outputs is attenuated by increasing the effective ratesk1Xtot and
k2Y. That is, to obtain large input and negative feedback gains, one shouldhave
large phosphorylation/dephosphorylation rates and/or a large amount of protein X
and phosphatase Y in the system. This reveals that the values of the phosphory-
lation/dephosphorylation rates cover an important role toward the retroactivity at-
tenuation property of the module of Figure7.13. The reader can verify through
simulation how increasing the phosphatase and substrate amounts the effect of
retroactivity can be attenuated (see exercises).

From a practical point of view, the effective rates can be increased by increasing
the total amounts of X and Y. These amounts can be tuned, for example, by placing
thex andy genes under the control of inducible promoters. Experiments performed
on a covalent modification cycle reconstitutedin vitro, showed that increasing these
protein amounts is an effective means to attain retroactivity attenuation [48].

A design similar to the one illustrated can be proposed in which a phosphory-
lation cascade, such as the MAPK cascade, realizes the input amplification and an
explicit feedback loop is added from the product of the cascade to its input [79].
The design presented here is simpler as it involves only one phosphorylation cycle
and does not require any explicit feedback loop. In fact, a strong negative feedback
can be realized by the action of the phosphatase that converts the active protein
form X∗ back to its inactive form X.

Attenuation of retroactivity to the output: Principle 2

In this section, we present a more general mechanism for retroactivity attenuation,
which can be applied to systems of differential equations of arbitrary dimension.
This will allow us to consider more complex and realistic models of the phospho-
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Figure 7.14: Interconnection of a device with inputu and outputx to a downstream system
with internal statev applying retroactivitys.

rylation reactions and investigate the key parameters that control the retroactivity
attenuation property.

For this purpose, consider Figure7.14. We illustrate next how systemS can at-
tenuate retroactivitys by employing the principle of time scale separation. Specif-
ically, when the internal dynamics of the system are much faster compared to the
input u, the system immediately reaches its quasi-steady state with respect to the
input. This quasi-steady state, in turn, is basically independent ofs due to the in-
terconnection structure between the systems. To illustrate this idea mathematically,
consider the following simple structure in which (for simplicity) we assume that
all variables are scalar:

du
dt
= f0(u, t)+ r(u, x)

dx
dt
=G f1(x,u)+Ḡs(x,v) (7.22)

dv
dt
= −Ḡs(x,v).

Here letG≫ 1 to model the fact that the internal dynamics of the system are much
faster than that of the input. Similarly,̄G≫ 1 models the fact that the dynamics
of the interconnection with downstream systems is also very fast. This is usually
the case since the reactions ins are due to binding/unbinding reactions which are
much faster than most of other biochemical processes, including gene expression
and phosphorylation. The claim that we make about this system is the following.

If G≫ 1 and the Jacobian off1 has eigenvalues with negative real part,
thenx(t) is not affected by retroactivitysafter a short initial transient,
independently of the value of̄G.

This result states that independently of the characteristics of the downstream sys-
tem, systemS can be tuned (by makingG large enough) such that it attenuates
the retroactivity to the output. To clarify why this would be the case, it is useful to
rewrite system (7.22) in standard singular perturbation form by employingǫ := 1/G
as a small parameter and ˜x := x+v as the slow variable. Hence, it can be re-written
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as

du
dt
= f0(u, t)+ r(u, x)

ǫ
dx̃
dt
= f1(x̃−v,u) (7.23)

dv
dt
= −Ḡs(x̃−v,v).

Since∂ f1/∂x̃ has eigenvalues with negative real part, one can apply standard singu-
lar perturbation to show that after a very fast transient, the trajectories are attracted
to the slow manifold given byf1(x̃− v,u) = 0. This is locally given byx = g(u)
solving f1(x,u) = 0. Hence, on the slow manifold we have thatx(t) = g(u(t)), which
is independent of the downstream system, that is, it is not affected by retroactivity.

The same result holds for a more general class of systems in which the variables
u, x,v are vectors:

du
dt
= f0(u, t)+ r(u, x)

dx
dt
=G f1(x,u)+ḠAs(x,v) (7.24)

dv
dt
= −ḠBs(x,v)

as long as there are matricesT andM such thatT A+MB= 0 andT is invertible. In
fact, one can take the system to new coordinatesu, x̃,v with x̃= T x+Mv, in which
the system will have the form (7.23).

Biomolecular realizations of Principle 2

We next consider possible biomolecular structures that realize Principle 2.Since
this principle is based on a fast time scale of the device dynamics when compared
to that of the device input, we focus on signaling systems, which are known to
evolve on faster time scales than those of protein production and decay.

Design 1: Implementation through phosphorylation

We consider now a more realistic model for the phosphorylation and dephosphory-
lation reactions in a phosphorylation cycle than those considered in Section7.5. In
particular, we consider a two-step reaction model as seen in Section2.4. Accord-
ing to this model, we have the following two reactions for phosphorylation and
dephosphorylation:

X +Z
a1−−⇀↽−−
d1

C1
k1−→ X∗+Z, Y +X∗

a2−−⇀↽−−
d2

C2
k2−→ X +Y. (7.25)
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Additionally, we have the conservation equationsYtot = Y+C2, Xtot = X+ X∗ +
C1+C2+C, because proteins X and Y are not degraded. Therefore, the differential
equations modeling the system of Figure7.13become

dZ
dt
= k(t)−γZ

[

−a1ZXtot(1−
X∗

Xtot
− C1

Xtot
− C2

Xtot
−

[

C
Xtot

]

)+ (d1+k1)C1

]

(7.26)

dC1

dt
= −(d1+k1)C1+a1ZXtot(1−

X∗

Xtot
− C1

Xtot
− C2

Xtot
−

[

C
Xtot

]

) (7.27)

dC2

dt
= −(k2+d2)C2+a2YtotX

∗(1− C2

Ytot
) (7.28)

dX∗

dt
= k1C1+d2C2−a2YtotX

∗(1− C2

Ytot
)+

[

koffC−konX
∗(ptot−C)

]

(7.29)

dC
dt
= −koffC+konX

∗(ptot−C), (7.30)

in which the expression of Z is controlled by a promoter with activityk(t). The
terms in the large square bracket in equation (7.26) represent the retroactivityr
to the input, while the terms in the square brackets of equations (7.27) and (7.29)
represent the retroactivitys to the output.

We assume thatXtot≫ ptot so that in equations (7.26) and (7.27) we can neglect
the termC/Xtot sinceC < ptot. Phosphorylation and dephosphorylation reactions
in equations (7.25) can occur at a much faster rate than protein production and
decay processes (see Chapter2). ChooseXtot andYtot to be sufficiently large, let
G = k1Xtot/γ andḠ = koff/γ. Then, we can re-write the system withkon = koff/Kd,
b1 = a1Xtot/(γG), a1 = a2Ytot/(γG), b2 = d1/(γG), a2 = d2/(γG), ci = ki/(γG), and
kon= Ḡγ/Kd. Lettingz= Z+C1 we obtain the system in the form

dz
dt
= k(t)−γ(z−C1)

dC1

dt
=G

(

−γ(b2+c1)C1+γb1(z−C1)

(

1− X∗

Xtot
− C1

Xtot
− C2

Xtot
)

))

dC2

dt
=G

(

−γ(c2+a2)C2+γa1X∗
(

1− C2

Ytot

))

(7.31)

dX∗

dt
=G

(

γc1C1+γa2C2−γa1X∗
(

1− C2

Ytot

))

+Ḡ
(

γC−γ/Kd(ptot−C)X∗
)

dC
dt
= −Ḡ

(

γC−γ/Kd(ptot−C)X∗
)

,

which is in the form of system (7.24) with u = z, x = (C1,C2,X∗), andv = C, in
which one can chooseT as the 3 by 3 identity matrix andM = (0 0 1)′. Hence,
this system, forG sufficiently larger than 1 attenuates the effect of the retroactiv-
ity to the outputs. For G to be large, one has to require thatk1Xtot is sufficiently
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large and thata2Ytot is also comparatively large. These are the same design require-
ments obtained in the previous section based on the one-step reaction model of the
enzymatic reactions.

In order to understand the effect of retroactivity to the input on theZ dynamics,
one can consider the reduced system describing the dynamics on the time scale
of Z. To this end, letKm,1 = (d1 + k1)/a1 and Km,2 = (d2 + k2)/a2 represent the
Michaelis-Menten constants of the forward and backward enzymatic reactions, let
G = 1/ǫ in (7.31), and takeǫ to the left-hand side. Settingǫ = 0 in the third and
fourth equations of (7.31) the following relationships can be obtained:

C1 = g1(X∗) =
(X∗Ytotk2)/(Km,2k1)

1+X∗/Km,2
, C2 = g2(X∗) =

(X∗Ytot)/Km,2

1+X∗/Km,2
. (7.32)

Using expressions (7.32) in the second of equations (7.31) with ǫ = 0 leads to

g1(X∗)

(

b2+c1+
b1Z
Xtot

)

= b1Z

(

1− X∗

Xtot
− g2(X∗)

Xtot

)

. (7.33)

Assuming for simplicity thatX∗≪Km,2, we obtain thatg1(X∗)≈X∗Ytotk2/Km,2k1

and thatg2(X∗) ≈ X∗/Km,2Ytot. As a consequence of these simplifications, equation
(7.33) leads to

X∗(Z) =
b1Z

b1Z
Xtot

(1+Ytot/Km,2+ (Ytotk2)/(Km,2k1))+ Ytotk2
Km,2k1

(b2+c1)
.

In order not to have distortion fromZ to X∗, we require that

Z≪
Ytot

k2
k1

Km
Km,2

1+ Ytot
Km,2
+

Ytot
Km,2

k2
k1

, (7.34)

so thatX∗(Z) ≈ ZXtotKm,2k1/YtotKm,1k2 and therefore we have a linear relationship
betweenX∗ andZ with gain fromZ to X∗ given byXtotKm,2k1/YtotKm,1k2. In order
not to have attenuation fromZ to X∗ we require that the gain is greater than or
equal to one, that is,

input/output gain≈
XtotKm,2k1

YtotKm,1k2
≥ 1. (7.35)

Requirements (7.34), (7.35) andX∗≪ Km,2 are enough to guarantee that we do
not have nonlinear distortion betweenZ andX∗ and thatX∗ is not attenuated with
respect toZ. In order to guarantee that the retroactivityr to the input is sufficiently
small, we need to quantify the retroactivity effect on theZ dynamics due to the
binding of Z with X. To achieve this, we proceed as in Section7.3 by computing
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the Z dynamics on the slow manifold, which gives a good approximation of the
dynamics ofZ if ǫ ≈ 0. These dynamics are given by

dZ
dt
= (k(t)−γZ)

(

1− dg1

dX∗
dX∗

dz

)

,

in which dg1
dX∗

dX∗
dz measures the effect of the retroactivityr to the input on theZ

dynamics. Direct computation ofdg1
dX∗ and of dX∗

dz along withX∗ ≪ Km,2 and with

(7.34) leads todg1
dX∗

dX∗
dz ≈ Xtot/Km,1, so that in order to have small retroactivity to the

input, we require that
Xtot

Km,1
≪ 1. (7.36)

Hence, a design trade-off appears:Xtot should be sufficiently large to provide a gain
G large enough to attenuate the retroactivity to the output. Yet,Xtot should be small
enough compared toKm,1 so to apply minimal retroactivity to the input.

Concluding, for having attenuation of the effect of the retroactivity to the out-
put s, we require that the time scale of the phosphorylation/dephosphorylation re-
actions is much faster than the production and decay processes of Z (the input
to the insulation device) and thatXtot ≫ ptot, that is, the total amount of protein
X is in abundance compared to the downstream binding sites p. To obtain also a
small effect of the retroactivity to the input, we require thatKm,1 ≫ Xtot. This is
satisfied if, for example, kinase Z has low affinity to binding with X. To keep the
input/output gain betweenZ andX∗ close to one (from equation (7.35)), one can
chooseXtot = Ytot, and equal coefficients for the phosphorylation and dephospho-
rylation reactions, that is,Km,1 = Km,2 andk1 = k2.

System in equations (7.26–7.30) was simulated with and without the down-
stream binding sites p, that is, with and without, respectively, the terms in the small
box of equation (7.26) and in the boxes in equations (7.29) and (7.27). This is
performed to highlight the effect of the retroactivity to the outputs on the dynam-
ics of X∗. The simulations validate our theoretical study that indicates that when
Xtot ≫ ptot and the time scales of phosphorylation/dephosphorylation are much
faster than the time scale of decay and production of the protein Z, the retroactivity
to the outputs is very well attenuated (Figure7.15a). Similarly, the time behavior
of Z was simulated with and without the terms in the large box in equation (7.26),
that is, with and without X to which Z binds, to verify whether the insulation device
exhibits retroactivity to the inputr.

In particular, the accordance of the behaviors ofZ(t) with and without its down-
stream binding sites on X (Figure7.15a), indicates that there is no substantial
retroactivity to the inputr generated by the insulation device. This is obtained be-
causeXtot≪ Km,1 as indicated in equation (7.36), in which 1/Km can be interpreted
as the affinity of the binding of X to Z.

Our simulation study also indicates that a faster time scale of the phosphory-
lation/dephosphorylation reactions is necessary, even for high values ofXtot and
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Figure 7.15: (a) Performance with fast phosphorylation cycle. Simulation results for system
in equations (7.26–7.30). In all plots,ptot = 100,koff = kon = 10,γ = 0.01, k(t) = 0.01(1+
sin(ωt)), andω= 0.005. In subplots A and B,k1 = k2 = 50,a2 = a1 = 0.01,d1 = d2 = 10, and
Ytot=Xtot= 1500. In the upper plot, the isolated system is without downstream binding sites
p and the connected system is with binding sites p. The small error shows that the effect
of the retroactivity to the outputs is attenuated very well. In the lower plot, the isolated
system stands for the case in which Z does not have X to bind to,while the connected
system stands for the case in which Z binds to substrate X (Xtot = 1500). The small error
confirms a small retroactivity to the inputr. (b) Performance with a slow phosphorylation
cycle. Phosphorylation and dephosphorylation rates are slower than the ones in (a), that is,
k1 = k2 = 0.01, while the other parameters are left the same, that is,d2 = d1 = 10,a2 = a1 =

0.01, andYtot = Xtot = 1500.

Ytot, to maintain perfect attenuation of the retroactivity to the outputs and small
retroactivity to the outputr. In fact, slowing down the time scale of phosphorylation
and dephosphorylation, the system looses its insulation property (Figure7.15b). In
particular, the attenuation of the effect of the retroactivity to the outputs is lost
because there is not enough separation of time scales between theZ dynamics and
the internal device dynamics. The device also displays a non negligible amount of
retroactivity to the input because the conditionKm≪ Xtot is not satisfied anymore.

Design 2: Realization through phosphotransfer

Let X be a transcription factor in its inactive form and let X∗ be the same tran-
scription factor once it has been activated by the addition of a phosphate group.
Let Z∗ be a phosphate donor, that is, a protein that can transfer its phosphate group
to the acceptor X. The standard phosphotransfer reactions (see Section 2.4) can be
modeled according to the two-step reaction model

Z∗+X
k1−−⇀↽−−
k2

C1
k3−−⇀↽−−
k4

X∗+Z,
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Z Z*

X X*

Input

Insulation device

p

Figure 7.16: SystemS is a phosphotransfer system. The output X* activates transcription
through the reversible binding of X* to downstream DNA promoter sites p.

in which C1 is the complex of Z bound to X bound to the phosphate group. Ad-
ditionally, protein Z can be phosphorylated and protein X∗ dephosphorylated by
other phosphotransfer interactions. These reactions are modeled as one-step reac-

tions depending only on the concentrations of Z and X∗, that is, Z
π1−−→ Z∗, X∗

π2−−→ X.
Protein X is assumed to be conserved in the system, that is,Xtot = X+C1+X∗+C.
We assume that protein Z is produced with time-varying production ratek(t) and
decays with rateγ. The active transcription factor X∗ binds to downstream DNA
binding sites p with total concentrationptot to activate transcription through the

reversible reaction p+X∗
kon−−−⇀↽−−−
koff

C. Since the total amount of p is conserved, we also

have thatC+ p= ptot. The ODE model corresponding to this system is thus given
by the equations

dZ
dt
= k(t)−γZ+k3C1−k4X∗Z−π1Z

dC1

dt
= k1Xtot

(

1− X∗

Xtot
− C1

Xtot
−

[

C
Xtot

])

Z∗−k3C1−k2C1+k4X∗Z

dZ∗

dt
= π1Z+k2C1−k1Xtot

(

1− X∗

Xtot
− C1

Xtot
−

[

C
Xtot

])

Z∗

dX∗

dt
= k3C1−k4X∗Z+

[

koffC−konX
∗(ptot−C)

]−π2X∗

dC
dt
= konX

∗(ptot−C)−koffC.

(7.37)

Since phosphotransfer reactions are faster than protein production and decay,
defineG := Xtotk1/γ so thatk̄1 := Xtotk1/G= γ, k̄2 := k2/G, k̄3 := k3/G, k̄4 := k4/G,
π̄1 := π1/G, π̄2 := π2/G are of the same order ofk(t) andγ. Similarly, the process
of protein binding and unbinding to promoter sites is much faster than protein
production and decay. Let̄G := koff/γ andKd := koff/kon. Assuming also thatptot≪
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Figure 7.17: Output response of the phosphotransfer systemwith a periodic signalk(t) =
γ(1+0.5sinωt). The parameters are given byγ = 0.01,Xtot = 5000,k1 = k2 = k3 = k4 = π1 =

π2 = 0.01G in which G = 1 (a), andG = 100 (b). The downstream system parameters are
given byKd = 1 andkoff = 0.01Ḡ, in whichḠ assumes the values indicated on the legend.
The isolated system (s= 0) corresponds toptot = 0 while the connected system (s, 0)
corresponds toptot = 100.

Xtot, we have thatC≪ Xtot so that system (7.37) can be rewritten as

dZ
dt
= k(t)−γZ+G

(

k̄3C1− k̄4ZX∗− π̄1Z
)

dC1

dt
=G

(

k̄1

(

1− X∗

Xtot
− C1

Xtot

)

Z∗− k̄3C1− k̄2C1+ k̄4X∗Z

)

dZ∗

dt
=G

(

π̄1Z+ k̄2C1− k̄1

(

1− X∗

Xtot
− C1

Xtot

)

Z∗
)

dX∗

dt
=G

(

k̄3C1− k̄4X∗Z− π̄2X∗
)

−Ḡ

(

γ

Kd
X∗(ptot−C)+γC

)

dC
dt
= Ḡ(

γ

Kd
X∗(ptot−C)−γC).

(7.38)

TakingT = I3×3, the 3 by 3 identity matrix, andM = (0,0,1)T , the coordinate trans-
formation x̃= T x+Mv brings the system to the form of system (7.24) with u= Z,
x= (C1,Z∗,X∗), andv=C.

Figure7.17ashows that, for a periodic inputk(t), the system with low value for
G suffers from retroactivity to the output. However, for a large value ofG (Figure
7.17b), the permanent behavior of the connected system becomes similar to that of
the isolated system, whetherG≫ Ḡ, G= Ḡ orG≪ Ḡ. This confirms the theoretical
result that, independently of the order of magnitude ofḠ, the system can arbitrarily
attenuate retroactivity for large enoughG.
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Exercises

7.1 Include in the study of retroactivity in transcription systems the mRNA dy-
namics and demonstrate how/whether the results change. Specifically, consider the
following model of a connected transcription system

mX

dt
= k(t)−δmX

dX
dt

= κmX−γX+ [koffC−kon(ptot−C)X],

dC
dt

= −koffC+kon(ptot−C)X,

7.2 Consider the system in standard singular perturbation form, in whichǫ ≪ 1.
Demonstrate that the slow manifold is locally exponentially stable.

dz
dt
= k(t)−γ(z−C), ǫ

dC
dt
= −γC+

γ

kd
(ptot−C)(z−C).

7.3 The characterization of retroactivity effects in a transcription module was based
on the following model of the interconnection:

dX
dt

= k(t)−γX+ [koffC−kon(ptot−C)X],

dC
dt

= −koffC+kon(ptot−C)X,

in which it was implicitly assumed that the complex C does not dilute. This is
often a fair assumption. However, depending on the experimental conditions, a
more appropriate model may include dilution for the complex C. In this case, the
model modifies to

dX
dt

= k(t)− (µ+ γ̄)X+ [koffC−kon(ptot−C)X],

dC
dt

= −koffC+kon(ptot−C)X−µC,

in which µ represents decay due to dilution and ¯γ represents protein degradation.
Employ singular perturbation to determine the reducedX dynamics and the effects
of retroactivity in this case. Is the steady state characteristic of the transcription
module affected by retroactivity? How?

7.4 In this problem, we are going to study the frequency-dependent effects of
retroactivity in gene circuits through simulation to validate the findings obtained
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through linearization in Section7.3. In particular, consider the model of a con-
nected transcription component (7.3). Consider the parameters provided in Figure
7.5and simulate the system with inputk(t) = γ(1+ sin(ωt)) with ω = 0.005. Then,
decrease and increase the frequency progressively and make a frequency/amplitude
plot for both connected and isolated systems. Increaseγ and re-do the frequency/amplitude
plot. Comment on the retroactivity effects that you observe.

7.5 Consider the negatively autoregulated gene illustrated in Section6.2. Instead
of modeling negative autoregulation using the Hill function, explicitly model the
binding of A with its own promoter. In this case, the formed complex C will be
transcriptionally inactive (see Section2.3). Explore through simulation how the
response of the system without negative regulation compares to that with negative
regulation when the copy number of the A gene is increased and the unrepressed
expression rateβ is decreased.

7.6 We have illustrated that the expression of the point of half-maximal induction
in a covalent modification cycle is affected by the effective loadλ as follows:

y50=
K̄1+0.5

K̄2(1+λ)+0.5
.

Study the behavior of this quantity when the effective loadλ is changed.

7.7 Show how equation (7.9) is derived in Section7.4.

7.8 Demonstrate through a mathematical proof that in the following system

dX
dt
=G(k(t)−KX) (1−d(t)),

in whichd(t) < 1, we have thatX(t)−k(t)/K becomes smaller asG is increased.

7.9 Consider the one-step reaction model of the phosphorylation cycle with down-
stream binding sites given in (7.21). Simulate the system and determine how the
behavior of the connected system compares to that of the isolated system when the
amounts of substrate and phosphataseXtot andYtot are increased.

7.10 Consider the activator-repressor clock described in Section6.5 and take the
parameter values of Figure6.8 that result in a limit cycle. Then, assume that the
activator A connects to another transcription circuit through the reversible bind-

ing of A with operator sites p to form activator-operator complex C: A+p
kon−−−⇀↽−−−
ko f f

C

(connected clock). Answer the following questions:

(i) Simulate the connected clock and vary the total amount of p, that is,ptot.
Explore how this affects the behavior of the clock.
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(ii) Give a mathematical explanation of the phenomenon you saw in (i). To do
so, use singular perturbation to approximate the dynamics of the clock with
downstream binding on the slow manifold (here,kon,koff≫ γA,γB).

(iii) Assume now that A does not bind to sites p, while the repressor B does. Take
the parameter values of Figure6.8that result in a stable equilibrium. Explore
how increasingptot affects the clock trajectories.



254 CHAPTER 7. INTERCONNECTING COMPONENTS



Chapter 8
Design Tradeoffs

In this chapter, we describe a couple of design tradeoffs arising from the interaction
between synthetic circuits and the host organism. We specifically focus on two is-
sues. The first issue is concerned with the effects of competition for shared cellular
resources on circuits’ behavior. In particular, circuits (endogenousand exogenous)
share a number of cellular resources, such as RNA polymerase, ribosomes, ATP,
nucleotides, etc. The insertion (induction) of synthetic circuits in the cell environ-
ment increases (changes) the demand for these resources, with possibly undesired
repercussions on the functioning of the circuits themselves. Independent circuits
may become actually coupled when they share common resources that are not in
overabundence. This fact leads to constraints among the concentrationsof proteins
in synthetic circuits, which should be accounted for in the design phase. The second
issue we consider, is the effect of biological noise on the design of devices requiring
high gains. Specifically, we illustrate possible design tradeoffs between retroactiv-
ity attenuation, requiring high gains, and noise amplification, which emerge dueto
the intrinsic noise of biomolecular reactions.

8.1 Competition for Shared Cellular Resources

Exogenous circuits, just like the endogenous ones, use cellular resources, such as
ribosomes, RNA polymerase, and ATP, that are shared among all the circuitry of
the cell. From a systems and signals point of view, these interactions can be de-
picted as in Figure8.1. The cell endogenous circuitry system produces resources
as output and exogenous circuits take these resources as inputs. As a consequence,
as seen in Chapter7, there is retroactivity from the exogenous circuits to the en-
goneous circuitry system. This retroactivity creates indirect coupling between the
exogenous circuits and can, in principle, lead to undesired crosstalk. Inthis chap-
ter, we study the effect of the retroactivity from the synthetic circuits to shared
resources in the cellular environment by focusing on the effect on availability of
RNA polymerase and ribosomes, for simplicity. We then study the consequence
of this retroactivity, illustrating how the behavior of unconnected circuits becomes
coupled. These effects are significant for any resource whose availability is not in
substantial excess compared to the demand of exogeous circuits.

In order to illustrate the problem, we consider the simple system shown in Fig-
ure8.2, in which two modules, a constitutively expressed gene (Module 1) and a
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Circuit 1 Circuit 2 Circuit n

Shared resources

ATP, Ribosomes, RNAP,...

r1 r2 rn

s

Figure 8.1: The cell environment provides resources to synthetic circuits, such as RNA
polymerase, ribosomes, ATP, nucleotides, proteases, etc.These resources can be viewed
as an “output” of the cell endogenous circuitry and an input to the exogenous circuits.
Circuit i takes these resources as input and, as a consequence, it causes a retroactivityr i

to its input. Hence, the endogenous circuitry system has a retroactivity to the outputs that
encompasses all the retroactivities applied by the exogenous circuits.

gene activated by a transcription activator A (Module 2), are both present in the cel-
lular environment. In theory, Module 2 should respond to changes in the activator
A concentration, while Module 1, having a constitutively active promoter, should
display a constant expression level that is independent of the activatorA concen-
tration. Experimental results, however, indicate that this is not the case: Module
1’s output protein P1 concentration also responds to changes in the activator A
concentration. In particular, as the activator A concentration is increased, the con-
centration of protein P1 can substantially decrease. This fact can be qualitatively
explained by the following reasoning. When A is added, RNAP can bind to DNA
promoter D2 and start transcription, so that the free available RNAP decreases as
some is bound on DNA D2. Transcription of Module 2 generates mRNA and hence
ribosomes will have more ribosome binding sites to which they can bind, so that
less ribosomes will be free and available for other reactions. It follows that the ad-
dition of activator A leads to an overall decrease of the free RNAP and ribosomes
that can take part in the transcription and translation reactions of Module 1.The
net effect is that less P1 protein will be produced.

The extent of this effect will depend on the overall availability of the shared
resources and whether they are regulated. It is known that RNAP and ribosomes
are internally regulated by a combination of feedback interactions [47, 56]. This,
of course, may help compensating for changes in the demand of these resources.

In this chapter, we illustrate how this effect can be mathematically explained
by explicitly accounting for the usage of RNAP and ribosomes in the transcription
and translation models of the circuits. To simplify the mathematical analysis and
to gather analytical understanding of the key parameters at the basis of thisphe-
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D1

P1

Module 1 Module 2

D2

A P2

X=RNAP

Y=Ribo

Figure 8.2: Module 1 has a constitutively active promoter that controls the expression of
protein P1, while Module 2 has a promoter activated by activator A, which controls the
expression of protein P2. The two modules do not share any transcription factors, so they
are not “connected”. Both of them use RNAP (X) and ribosomes (Y) for the transcription
and translation processes.

nomenon, we first focus on the usage of RNAP, neglecting the usage of ribosomes.
We then provide a computational model that accounts for both RNAP and ribosome
utilization and illustrate quantitative simulation results.

Analytical study

To illustrate the essence of the problem, we assume that gene expression is aone-
step process, in which the RNA polymerase binds to the promoter region of a gene
resulting in a transcriptionally active complex, which, in turn, produces the protein.
That is, we will be using the lumped reactions (2.9), in which on the right-hand side
of the reaction we have the protein instead of the mRNA.

By virtue of this simplification, we can write the reactions describing Module
1 as:

D1+X
a1−−⇀↽−−
d1

D1:X
k1−→ D1+X +P1, P1

γ
−→ ∅.

The reactions describing Module 2 can be written similarly recalling that in the
presence of an activator the reactions modify according to (2.18). Taking this into
account, the reactions of Module 2 are given by

A +D2

a0−−⇀↽−−
d0

A:D2, A:D2+X
a2−−⇀↽−−
d2

A:D2:X
k2−→ A:D2+X +P2, P2

γ
−→ ∅.

We let Dtot,1 andDtot,2 denote the total concentration of DNA for Module 1 and
Module 2, respectively, and we letKd = d0/a0, K1 = d1/a1, andK2 = d2/a2. By
approximating the complexes concentrations with their quasi-steady state values
as illustrated in Section2.3, we obtain the expressions

[D1:X] = Dtot,1
X/K1

1+X/K1
, [A:D2:X] = Dtot,2

(A/Kd)(X/K2)
1+ (A/Kd)(1+X/K2)

. (8.1)



258 CHAPTER 8. DESIGN TRADEOFFS

As a consequence, the differential equation model for the system is given by

dP1

dt
= k1Dtot,1

X/K1

1+X/K1
−γP1

dP2

dt
= k2Dtot,2

(A/Kd)(X/K2)
1+ (A/Kd)(1+X/K2)

−γP2,

so that the steady state values ofP1 andP2 are given by

P1 =
k1Dtot,1

γ

X/K1

1+X/K1
, P2 =

k2Dtot,2

γ

(A/Kd)(X/K2)
1+ (A/Kd)(1+X/K2)

.

These two values are indirectly coupled through the conservation law of RNAP.
Specifically, we letXtot denote the total concentration of RNAP. This value is
mainly determined by the cell growth rate and for a given growth rate it is about
constant. Then, we have thatXtot = X+ [D1:X] + [A:D2:X], which, considering the
expressions of the quasi-steady state values of the complexes concentrations in
(8.1), leads to

Xtot = X+Dtot,1
X/K1

1+X/K1
+Dtot,2

(A/Kd)(X/K2)
1+ (A/Kd)(1+X/K2)

. (8.2)

We next study how the steady state value ofX is affected by the activator concen-
tration A and how this effect reflects into a dependency ofP1 on A. To perform
this study, it is useful to writeα := (A/Kd) and note that forα sufficiently small
(sufficiently small amounts of activator A), we have that

(α(X/K2))/(1+α(1+X/K2)) ≈ α(X/K2).

Also, to simplify the derivations, we assume that the binding of X to D1 is suffi-
ciently weak, that is,X≪ K1. In light of this, we can re-write the conservation law
(8.2) as

Xtot = X+Dtot,1
X
K1
+Dtot,2α

X
K2
.

This equation can be explicitly solved forX to yield

X =
Xtot

1+ (Dtot,1/K1)+α(Dtot,2/K2)
.

This expression depends onα, and hence on the activator concentrationA. Specifi-
cally, as the activator is increased, the value of free X concentration monotonically
decreases. As a consequence, the equilibrium valueP1 will also depend onA ac-
cording to

P1 =
k1Dtot,1

γ

Xtot/K1

1+ (Dtot,1/K1)+α(Dtot,2/K2)
,
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so that alsoP1 monotonically decreases asA is increased. That is, Module 1 re-
sponds to changes in the activator of Module 2. From these expressions, we can
also deduce that ifDtot,1/K1≫αDtot,2/K2, that is, the demand for RNAP in Module
1 is much larger than that of Module 2, then changes in the activator concentration
will lead to small changes in the free amount of RNAP and inP1.

This analysis illustrates that forcing an increase in the expression of any protein
causes an overall decrease in available resources, which leads to decrease of ex-
pression of other proteins. As a consequence there is a tradeoff between how much
protein we can have in a circuit, which is crucial, for example, for the insulation
devices designs, and how much the expression of other circuit proteins isreduced.
In addition to a design tradeoff, this analysis illustrates that “unconnected” circuits
can affect each other because they share common resources. This can, in principle,
lead to a dramatic departure of a circuit’s behavior from its nominal one.

As an exercise, the reader can verify that similar results would hold in the case
in which Module 2 has a repressible promoter instead of one that can be activated
(see Exercise8.1).

The model that we have presented here contains many simplifications. In ad-
dition to the mathematical approximations performed and to the fact that it does
not account for ribosomes, it does not account for the transcription of endogenous
genes. In fact, RNAP is also being used for transcription of chromosomalgenes.
While the qualitative behavior of the coupling between Module 1 and Module 2
is not going to be affected by including endogenous transcription, the extent of
this coupling may be substantially impacted by endogenous transcription. In par-
ticular, the quantitative impact of endogenous transcription on this coupling highly
depends on the effective demand for RNAP of endogenous genes. This is briefly
illustrated in the next section.

Estimates of the effects of adding external plasmids on the a vailability of
RNAP

In the previous section, we illustrated qualitatively the mechanism by which the
change in the availability of a shared resouce, due to the addition of syntheticcir-
cuits, can cause unexpected crosstalk between unconnected circuits. The extent of
this crosstalk depends on the amount by which the shared resource changes. This
amount, in turn, depends on the specific values of the dissociation constants, the
total resource amounts, and the fraction of resource that is used already by natural
circuits.

In E. coli, the amount of RNA polymerase and its partitioning mainly depends
on the growth rate of the cell [13]: with 0.6 doublings/hour there are only 1500
molecules/ cell, but with 2.5 doublings/hour this number is 11400. The fraction of
active RNA polymerase molecules also increases with the growth rate. For illustra-
tion purposes, we assume here that the growth rate is the lowest considered in [13].
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Therefore, a reasonable estimate is that the total number of RNA polymeraseis
about 1000. Since the fraction of immature core enzyme at low growth rate is only
a few percent [14], we assume that the total number of functional RNA polymerase
is about 1000 per cell, that is, we setXtot = 1000nM (recalling that 1 molecule cor-
responds to a concentration of about 1.6 nM). Based on the data presented in [14],
a reasonable partitioning of RNA polymerase is the following:

active core enzyme: 15% (150 molecules/cell or Xa= 150nM),

promoter-bound holoenzyme: 15% (150 molecules/cell or Xp = 150nM),

free holoenzyme: 5% (50 molecules/cell or Xf = 50nM),

inactive DNA-bound core: 65% (650 molecules/cell Xi = 650nM).

There are about 1000 genes expressed in exponential growth phase[44], hence
we approximate the number of binding sites for X to 1000, orDtot = 1000nM,
and we assume that all the 150 promoter-bound holoenzymes are bound to these
promoters. The binding reaction is of the form

D+Xf

a−⇀↽−
d

D:X,

in which D is the DNA promoter in total concentrationDtot. Consequently, we
haveDtot = D+ [D : X]. At the equilibrium, we have [D : X] = Xp = 150nM and
D = Dtot − [D : X] = Dtot − Xp = 850nM. With dissociation constantKd =

d
a the

equilibrium is given by 0= XfD−KdD:X, hence we have that

Kd =
D

[D : X]
Xf ≈ 300nM,

which is interpreted as an “effective” dissociation constant. This is in the range
1−1000nM suggested by [36] for specific binding of RNA polymerase to DNA.
Therefore, we are going to model the binding of RNA polymerase to the promoters
of the chromosome ofE. coli in exponential phase as one promoter with concen-
trationDtot and effective dissociation constantKd.

Furthermore, we have to take into account the rather significant amount ofRNA
polymerase bound to the DNA other than at the promoter region (Xa+Xi = 800nM).
To do so, we assume that the fractionm= Xa+Xi +Xp/Xp is approximately con-
stant at the equilibrium.

Now, we can consider the addition of synthetic plasmids. Specifically, we con-
sider the plasmid pSB1AK3 (copy number 100− 300) with one copy of a gene
under the control of a constitutive promoter. The binding of RNA polymerase to
the constitutive promoter is modeled by

D′+Xf

a′−−⇀↽−−
d′

D′:X
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where D’ is the RNA polymerase-free promoter and D′:X is the RNA polymerase:
promoter complex. Consequently, we haveD′tot = D′ + [D′ : X]. The dissociation
constant is given byK′d =

d′

a′ . The total concentration of promotersD′tot can be
determined by considering the copy number of the plasmid, which is 100− 300
plasmids/cell, so that we setD′tot ≈ 200nM. At the equilibrium, we have

[D′ : X] = D′tot
Xf

K′d+Xf
.

We also have

[D : X] = Dtot
Xf

Kd+Xf
.

The conservation law for RNA polymerase must be now considered in order to
determine the equilibrium concentrations:

Xf +m [D : X] + [D′ : X] = Xtot. (8.3)

Here, we did not account for RNA polymerase molecules paused, queuing and
actively transcribing on the plasmid, moreover, we also neglected the resistance
genes on the pSB1AK3 plasmid. Hence, we are underestimating the effect of load
presented by the plasmid.

Solving equation (8.3) for the free RNA polymerase amountXf gives the fol-
lowing results. These results depend on the ratio between the effective dissociation
constantKd and the dissociation constantK′d of RNA polymerase from the plasmid
promoter:

K′d = 0.1Kd (RNA polymerase binds better to the plasmid promoter) results
in Xf = 21nM, [D : X] = 69nM and [D′ : X] = 85nM. Hence, the concentration
of free RNA polymerase decreases by about 60%;

K′d = Kd (binding is the same) results inXf = 41nM, [D : X] = 126nM and
[D′ : X] = 25nM. Hence, the concentration of free RNA polymerase de-
creases by about 20%;

K′d = 10Kd (RNA polymerase binds better to the chromosome) results in
Xf = 49nM, [D : X] = 147nM and [D′ : X] = 3nM. Hence, the concentration
of free RNA polymerase decreases by about 2%.

We conclude that if the promoter on the synthetic plasmids has a dissociation
constant for RNA polymerase that is in the range of the effective one calculated
above, the perturbation on the available free RNA polymerase is abut 20%.This
perturbation, even if fairly small, may in practice result into large effects on the
protein concentration. This is because it may cause a large perturbation in the con-
centration of free ribosomes. In fact, one added copy of an exogenous plasmid will
lead to transcription of several mRNA molecules, which will demand ribosomes
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for translation. Hence, a small increase in the demand for RNAP may lead to a
dramatically larger increase in the demand for ribosomes. This is illustrated in the
next section through a computational model including ribosome sharing.

Computational model and numerical study

In this section, we introduce a model of the system in Figure8.2, in which we con-
sider both the RNA polymerase and the ribosome usage. We let the concentration
or RNA polymerase be denoted byX and the concentration of ribosomes be de-
noted byY. We letm1 andP1 denote the concentrations of the mRNA and protein
in Module 1 and letm2 andP2 denote the concentrations of the mRNA and protein
in Module 2. The reactions of the transcription process in Module 1 are given by
(see Section2.2):

X +D1

a1−−⇀↽−−
d1

X:D1, X:D1
k1−→m1+X +D1, m1

δ−→ ∅,

while the translation reactions are given by

Y +m1

a′1−−⇀↽−−
d′1

Y:m1, Y:m1

k′1−→ P1+Y +m1, P1

γ
−→ ∅, Y:m1

δ−→ Y.

The resulting system of differential equations is given by

d
dt

[X:D1] = a1 X D1− (d1+k1) [X:D1]

d m1

dt
= k1 [X:D1] −a′1 Y m1+d′1 [Y:m1] −δm1+k′1 [Y:m1] (8.4)

d
dt

[Y:m1] = a′1 Y m1− (d′1+k1; ) [Y:m1]

d P1

dt
= k′1 [Y:m1] −γ P1,

in which D1 = Dtot,1− [X:D1] from the conservation law of DNA in Module 1.
The reactions of the transcription process in Module 2 are given by (seeSection

2.3)

A +D2

a0−−⇀↽−−
d0

A:D2, A:D2+X
a2−−⇀↽−−
d2

A:D2:X
k2−→ A:D2+X +m2, m2

δ−→ ∅,

while the translation reactions are given by

Y +m2

a′2−−⇀↽−−
d′2

Y:m2, Y:m2

k′2−→ P2+Y +m2, Y:m2
δ−→ Y P2

γ
−→ ∅.
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The resulting system of differential equations is given by

d
dt

[A:D2] = a0 A D2−d0 [A:D2] −a2 X [A:D2] + (d2+k2)[A:D2:X]

d
dt

[A:D2:X] = a2 X [A:D2] − (d2+k2) [A:D2:X]

d m2

dt
= k2 [A:D2:X] −a′2 Y m2+d′2 [Y:m2] −δm2+k′2 [Y:m2] (8.5)

d
dt

[Y:m2] = a′2 Y m2− (d′2+k′2) [Y:m2] −δ[Y:m2]

d P2

dt
= k′2 [Y:m2] −γ P2,

in which, we have thatD2 = Dtot,2− [A:D2] − [A:D2:X] by the conservation law of
DNA in Module 2.

The two modules are coupled by the conservation laws for RNAP and ribo-
somes given by

Xtot = X+ [X:D1] + [A:D2:X] , Ytot = Y+ [Y:m1] + [Y:m2],

which are employed in systems (8.4)-(8.5) by writing

X = Xtot− [X:D1] − [A:D2:X] , Y= Ytot− [Y:m1] − [Y:m2].

The results are shown in Figure8.3a-8.3d. In the simulations, we have chosen
Xtot = 1µM to account for the fact that the total amount of RNAP in wild type cells
at fast division rate i is given by about 10µM of which only 1µM is free, while
the rest is bound to the endogenous DNA. Since in the simulations we did not
account for endogenous DNA, we assumed that only 1µM is available in total to
the two exogenous modules. A similar reasoning was employed to setYtot = 10µM.
In exponential growth, we have about 34µM of total ribosomes concentration, but
only about 30% of this is free, resulting in about 10µM concentration of ribosomes
available to the exogenous modules.

Figure8.3aillustrates that as the activator concentrationA increases, there is
no substantial perturbation on the free amount of RNAP. However, because the
resulting perturbation on the free amount of ribosomes (8.3a) is significant, the
resulting decrease ofP1 is substantial.

8.2 Stochastic Effects: Design Tradeoffs in Systems with Large
Gains

1As we have seen in Chapter 7, a biomolecular system can be rendered insensi-
tive to retroactivity by implementing a large input amplification gain in a negative

1This section is extracted from Jayanthi and Del Vecchio CDC 2009.
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Figure 8.3: Simulation results for the ordinary differential equation
model (8.5)-(8.4). For this model, the parameter values were taken from
http://bionumbers.hms.harvard.edu/ as follows. For the concentrations, we
haveXtot = 1µM, Ytot = 10µM, Dtot,1 = Dtot,2 = 0.2µM. The values of the association and
dissociation rate constants were chosen such that the corresponding dissociation constants
were in the range of specific binding dissociation constants. Specifically, we have
a0 = 10µM−1min−1, d0 = 1min−1, a2 = 10µM−1min−1, d2 = 1min−1, a′2 = 100µM−1min−1,
d′2 = 1min−1, a1 = 10µM−1min−1, d1 = 1min−1, a′1 = 10µM−1min−1, and d′1 = 1min−1.
The transcription and translation rate constants were calculated based on the elongation
speeds, the average length of a gene, and the average number of RNAP per gene and of
ribosomes per transcript. The resulting values chosen are given byk1 = k2 = 40min−1 and
k′1 = k′2 = 6min−1. Finally, the decay rates are given byγ = 0.01min−1 corresponding to a
protein half life of about 70 minutes andδ = 0.1min−1 corresponding to a mRNA half life
of about 7 minutes.

feedback loop. However, relying on a large negative feedback, this type of design
may have undesired effects in the presence of noise as seen in a different context
in Section6.2. Also, it is not clear so far what the effect of retroactivity is on the
noise content of the upstream system. Here, we employ the Langevin equation in-
troduced in Chapter 4 to address these questions.
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Consider a transcription system that takes a transcription factor U as inputand
produces a transcription factor Z as output. The transcription rate of the genez,
which expresses the protein Z, is given by a time varying functionGk(t) that de-
pends on the transcription factor U. This dependency is not modeled, sinceit is
not central to our discussion. The parameterG models the input amplification gain.
The degradation rate of protein Z is also assumed to be tunable and thus identified
by Gγ. The variable gain parameterG will be adjusted to improve the retroactivity
attenuation.

The transcription factor Z is also an input to the downstream load through the
reversible binding of Z to promoter sites p. Neglecting the Z messenger RNA dy-
namics, the system can be modeled by the chemical equations

0
G k(t)
−−−−⇀↽−−−−

Gγ
Z, Z+p

kon−−−⇀↽−−−
koff

C.

We assume thatk(t) and γ are of the same order and denoteKd = koff/kon. We
also assume that the production and decay processes are slower than binding and
unbinding reactions, that is,koff≫Gγ, kon≫Gγ as performed before. Let the total
concentration of promoter beptot. The deterministic ordinary differential equation
model is given by

dZ
dt

= Gk(t)−GγZ+koffZ−kon(ptot−C)Z,

dC
dt

= −koffC+kon(ptot−C)Z. (8.6)

To identify by what amountsG should be increased to compensate the retroac-
tivity effect, we perform a linearized analysis of (8.6) aboutk(t) = k̄, and the corre-
sponding equilibrium̄Z= k̄/γ andC̄= Z̄ptot/(Z̄+Kd). By performing the linearized
analysis as in Section7.3, lettingz= Z− Z̄ andk̃= k− k̄, we obtain

dz
dt
=

G
1+Rl

(k̃(t)−γz), Rl =
Kdptot

(k̄/γ+Kd)2
. (8.7)

Thus, we should chooseG ≈ 1+Rl to compensate for retroactivity from the load.
In real systems, however, there are practical limitations on how much the gaincan
be increased so that retroactivity may not be completely rejected.

We have shown that increasing the gainG is beneficial for rejecting retroactivity
to the upstream component. However, as shown in Figure8.4, increasing the gain
G impacts the frequency content of the noise in a single realization. For low values
of G, the error signal between a realization and the mean is of lower frequency
when compared to a higher gain.
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Figure 8.4: Increasing the value ofG produces a disturbance signal of higher frequency.
Two realizations are shown with different values forG without load. The parameters used in
the simulations areγ = 0.01s−1, Kd = 20nM,koff = 50s−1,ω= 0.005rad/s andΩ= 10nM−1.
The input signal used isk(t) = γ(1+ 0.8sin(ωt))s−1. The mean of the signal is given as
reference.

To study this problem, we employ the Langevin equation (Section4.1). For our
system, we obtain

dZ
dt
=Gk(t)−GγZ−kon(ptot−C)Z+koffC+

√

Gk(t) N1(t)−
√

GγZ N2(t) (8.8)

−
√

kon(ptot−C)Z N3(t)+
√

koffC N4(t),

dC
dt
= kon(ptot−C)Z−koffC+

√

kon(ptot−C)Z N3(t)−
√

koffC N4(t).

The above system can be viewed as a non-linear system with five inputs,k(t)
andNi(t) for i = 1,2,3,4. Letk(t) = k̄, N1(t) = N2(t) = N3(t) = N4(t) = 0 be constant
inputs and letZ̄ andC̄ be the corresponding equilibrium points. Then for small
amplitude signals̃k(t) the linearization of the system (8.8) leads, with abuse of
notation, to

dZ
dt
=Gk̃(t)−GγZ−kon(ptot− C̄)Z+konZ̄C+koffC

+
√

Gk̄ N1(t)−
√

γZ̄ N2(t)−
√

koffC̄ N3(t)+
√

kon(ptot− C̄)Z̄ N4(t)

dC
dt
= kon(ptot− C̄)Z−konZ̄C−koffC+

√

koffC̄ N3(t)−
√

kon(ptot− C̄)Z̄ N4(t).

(8.9)

We can further simplify the above expressions by noting thatγZ̄=Gk̄ andkon(ptot−
C̄)Z̄ = koffC̄. Also, sinceN j are independent identical Gaussian white noises, we
can writeN1(t)−N2(t) =

√
2Γ1(t) andN3(t)−N4(t) =

√
2Γ2(t), in whichΓ1(t) and

Γ2(t) are independent Gaussian white noises identical toN j(t). This simplification
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leads to the system

dZ
dt
=Gk̃(t)−GγZ−kon(ptot− C̄)Z+konZ̄C+koffC+

√

2Gk̄Γ1(t)−
√

2koffC̄Γ2(t),

dC
dt
= kon(ptot− C̄)Z−konZ̄C−koffC+

√

2koffC̄Γ2(t). (8.10)

This is a system with three inputs: the deterministic inputk̃(t) and two inde-
pendent white noise sourcesΓ1(t) andΓ2(t). One can interpretΓ1 as the source of
the fluctuations caused by the production and degradation reactions whileΓ2 is the
source of fluctuations caused by binding and unbinding reactions. Sincethe system
is linear, we can analyze the different contributions of each noise source separately
and independent from the signalk̃(t).

The transfer function fromΓ1 to Z is (after settingγ/koff = ǫ = 0)

HZΓ1(s) =

√
2Gk̄

s(1+Rl)+Gγ
. (8.11)

The zero frequency gain of this transfer function is equal toHZΓ1(0)=
√

2k̄/
√

Gγ.
Thus, asG increases, the zero frequency gain decreases. But for large enough fre-
quenciesω, jω(1+Rl)+Gγ ≈ jω(1+Rl), and the amplitude|HZΓ1( jω)| ≈

√
2k̄G/

ω(1+Rl) becomes a monotone function ofG. This effect is illustrated in Figure8.5.
The frequency at which the amplitude of|HZΓ1( jω)| computed withG= 1 intersects
the amplitude|HZΓ1( jω)| computed withG> 1 is given by the expression

ωe=
γ
√

G
(1+Rl)

.

Thus, when increasing the gain from 1 toG> 1, we reduce the noise at frequencies
lower thanωe but we increase it at frequencies larger thanωe. Note , in particular,
that there is an increase of the amplitude at the frequency of interestω = 0.01.

While retroactivity contributes to filtering noise in the upstream system as it
decreases the bandwidth of the noise transfer function, high gains contribute to
increasing noise at frequencies higher thanωe. In particular, when increasing the
gain from 1 toG > 1 we reduce the noise in the frequency ranges belowωe =

γ
√

G/(Rl +1), but the noise at frequencies aboveωe increases. If we were able to
indefinitely increaseG, we could sendG to infinity attenuating the deterministic
effects of retroactivity while amplifying noise only at very high, hence not relevant,
frequencies.

In practice, however, the value ofG is limited. For example, in the insulation
device based on phosphorylation,G is limited by the amounts of substrate and
phosphatase that we can have in the system. Hence, a design tradeoff needs to
be considered when designing insulation devices: placing the largest possible G
attenuates retroactivity but it may increase noise in a possibly relevant frequency
range.
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Figure 8.5: MagnitudeM of the transfer functionsHZΓ1(s) as a function of the input
frequencyω. The parameters used in this plot areγ = 0.01s−1, Kd = 1nM, koff = 50s−1,
ω = 0.005rad/s, ptot = 100nM. WhenG increases from 1 to 1+Rl = 25, the contribution
from Γ1 decreases at low frequency but it spreads to a higher range ofthe frequency.

Exercises

8.1 In the case of a repressor, a similar derivation to what was performed in the
text can be carried if R were a repressor of the transcription of Module 2. Using
a one-step reaction model for gene expression, write down the reaction equations
for this case and the reaction rate equations describing the rate of changeof P1 and
P2. Then, determine how the free concentration of RNAP is affected by changes in
Rand howP1 is affected by changes inR.

8.2 Consider again the case of a repressor as considered in the previous example.
Now, consider a two-step reaction model for transcription and build a simulation
model with parameter values as indicated in the text and determine the extent of
coupling between Module 1 and Module 2 when the repressor is increased.



Appendix A
A Primer on Control Theory

This appendix provides a brief primer on some of the key topics in control theory
that are used in the text. The material here is drawn fromFeedback Systemsby
Åström and Murray.

A.1 System Modeling

A model is a precise representation of a system’s dynamics used to answer ques-
tions via analysis and simulation. The model we choose depends on the questions
we wish to answer, and so there may be multiple models for a single physical sys-
tem, with different levels of fidelity depending on the phenomena of interest. In
this chapter we provide an introduction to the concept of modeling, and provide
some basic material on two specific methods that are commonly used in feedback
and control systems: differential equations and difference equations.

1. A model is a mathematical representation of a system that can be used to
answer question about that system. The choice of the model depends on
the questions one wants to ask. Models for control systems are typically
input/output models and combine techniques from mechanics and electrical
engineering.

2. Thestateof a system is a collection of variables that summarize the past
history of the system for the purpose of predicting the future. Astate space
modelis one that describe how the state of a system evolves over time.

3. We can model the evolution of the state using aordinary differential equa-
tionsof the form

ẋ= f (x,u)

y= h(x,u)

ẋ= Ax+Bu

y=Cx+Du
(A.1)

wherex represents the state of the system, ˙x is the time derivative of the state,
u are the external inputs andy are the measured outputs. For the linear form,
A, B, C andD are matrices of the appropriate dimension and the model is
linear time invariant(LTI).

4. Three common questions that can be answered using state space models are
(1) how the system state evolves from a given initial condition, (2) the stabil-
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ity of an equilibrium point from nearby initial conditions and (3) the steady
state response of the system to sinusoidal forcing at different frequencies.

5. Models can be constructed from experiments by measuring the response of
a system and determining the parameters in the model that correspond to
features in the response. Examples include measuring the period of oscilla-
tion, the rate of damping and the steady state amplitude of the response of a
system to a step input.

6. Schematic and block diagrams are common tools for modeling large, com-
plex systems. The following symbols are some of the ones commonly used
for modeling control systems:

Nonlinear map

u

∫ t

0
u(t)dt

System
u y

Input/output system

Gain block

kuu
k

u2

u1+u2u1

Σ

Summing junction

Integrator

∫

Saturation

sat(u)u

f (u)u

Computer packages such as LabView, MATLAB/SIMULINK and Modelica
can be used to construct models for complex, multi-component systems.

A.2 Dynamic Behavior

In this chapter we give a broad discussion of the behavior of dynamical systems,
focused on systems modeled by nonlinear differential equations. This allows us to
discuss equilibrium points, stability, limit cycles and other key concepts of dynam-
ical systems. We also introduce some methods for analyzing global behaviorof
solutions.

1. We say thatx(t) is a solution of a differential equation on the time intervalt0
to t f with initial valuex0 if it satisfies

x(t0) = x0 and ẋ(t) = F(x(t)) for all t0 ≤ t ≤ t f . (A.2)

We will usually assumet0 = 0. For most differential equations we will en-
counter, there is a unique solution for a given initial condition. Numerical
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Figure A.1: Basic features of dynamical systems. (a) An asymptotically stable equilibrium
point at x = (0,0). (b) A limit cycle of radius one, with an unstable equilibrium point at
x= (0,0). (c) A stable equlibirum point atx= (0,0) (nearby initial conditions stay nearby).]

tools such as MATLAB and Mathematica can be used to obtain numerical
solutions forx(t) given the functionF(x).

2. An equilibrium pointfor a dynamical system represents a pointxe such that
if x(0) = xe then x(t) = xe for all t. Equilibrium points represent stationary
conditions for the dynamics of a system. Alimit cyclefor a dynamical system
is a solutionx(t) which is periodic with some periodT, so thatx(t+T) = x(t)
for all t.

3. An equilibrium point is (locally)stable if initial conditions that start near
an equilibrium point stay near that equilibrium point. A equilibrium point is
(locally) asymptotically stableif it is stable and, in addition, the state of the
system converges to the equilibrium point as time increases. An equilibrium
point isunstableif it is not stable. Similar definitions can be used to define
the stability of a limit cycle.

4. Phase portraits provide a convenient way to understand the behaviorof 2-
dimensional dynamical systems. A phase portrait is a graphical representa-
tion of the dynamics obtained by plotting the statex(t) = (x1(t), x2(t)) in the
plane. This portrait is often augmented by plotting an arrow in the plane cor-
responding toF(x), which shows the rate of change of the state. FigureA.1
illustrates some of the basic features of a dynamical systems.

5. A linear system
dx
dt
= Ax (A.3)

is asymptotically stable if and only if all eigenvalues ofA all have strictly
negative real part and is unstable if any eigenvalue ofA has strictly positive
real part. A nonlinear system can be approximated by a linear system around
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an equilibrium point by using the relationship

ẋ= F(xe)+
∂F
∂x

∣
∣
∣
∣
∣
xe

(x− xe)+higher order terms in (x− xe). (A.4)

SinceF(xe) = 0, we can approximate the system by choosing a new state
variablez= x− xe and writing the dynamics as ˙z= Az. The stability of the
nonlinear system can be determined in a local neighborhood of the equilib-
rium point through its linearization.

6. A Lyapunov functionis an energy-like functionV : Rn→ R that can be used
to reason about the stability of an equilibrium point. We define the derivative
of V along the trajectory of the system as

V̇(x) =
∂V
∂x

ẋ=
∂V
∂x

F(x) (A.5)

Assumingxe= 0 andV(0)= 0, the following conditions hold:

Condition onV Condition onV̇ Stability
V(x) > 0, x, 0 V̇(x) ≤ 0 for all x xe stable
V(x) > 0, x, 0 V̇(x) < 0, x, 0 xe asymptotically stable

Stability of limit cycles can also be studied using Lyapunov functions.

7. Theglobal behaviorof a nonlinear system refers to dynamics of the system
far away from equilibrium points. Theregion of attractionof an asymptot-
ically stable equilirium point refers to the set of all initial conditions that
converge to that equilibrium point. An equilibrium point is said to beglob-
ally asymptotically stableif all initial conditions converge to that equilibrium
point. Global stability can be checked by finding a Lyapunov function that is
globally positive definition with time derivative globally negative definite.

A.3 Linear Systems

Previous chapters have focused on the dynamics of a system with relatively little at-
tention to the inputs and outputs. This chapter gives an introduction to input/output
behavior for linear systems and shows how a nonlinear system can be approximated
near an equilibrium point by a linear model.

1. A linear systemis one in which the output is jointly linear in the intitial
condition for the system and the input to the system. In particular, a linear
system has the property that if we apply an inputu(t) = αu1(t)+βu2(t) with
zero initial condition, the corresponding output will bey(t) = αy1(t)+βy2(t),
whereyi is the output associated with the inputui . This propery is called
linearsuperposition.
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2. A differential equation of the form

ẋ= Ax+Bu x∈ Rn,u ∈ R

y=Cx+Du y∈ R
(A.6)

is asingle-input, single-output(SISO)linear differential equation. Its solu-
tion can be written in terms of thematrix exponential

eAt = I +At+
1
2

A2t2+
1
3!

A3t3+ · · · =
∞∑

k=0

1
k!

Aktk. (A.7)

The solution to the differential equation is given by theconvolution equation

y(t) =CeAtx(0)+
∫ t

0
CeA(t−τ)Bu(τ)dτ+Du(t). (A.8)

3. A linear system
ẋ= Ax (A.9)

is asymptotically stableif and only if all eigenvalues ofA all have strictly
negative real part and is unstable if any eigenvalue ofA has strictly posi-
tive real part. For systems with eigenvalues having zero real-part, stabilityis
determined by using the Jordan normal form associated with the matrix. A
system with eigenvalues that have no strictly positive real part is stable if and
only if the Jordan block corresponding to each eigenvalue with zero partis a
scalar (1x1) block.

4. The input/output response of a (stable) linear system contains a transient
region portion, which eventually decays to zero, and a steady state portion,
which persists over time. Two special responses are thestep response, which
is the output corresponding to an step input applied att = 0 and thefrequency
response, which is the response of the system to a sinusoidal input at a given
frequency.

5. The step response is characterized by the following parameters:

• The steady state value, yss, of a step response is the final level of the
output, assuming it converges.

• The rise time, Tr , is the amount of time required for the signal to go
from 10value.

• The overshoot, Mp, is the percentage of the infal value by which the
signal initially rises above the final value.

• The settling time, Ts, is the amount of time required for the signal to
stay within 5times.
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6. The frequency response is given by

y(t) =CeAt
(

x(0)− (sI−A)−1B
)

︸                         ︷︷                         ︸

transient

+
(

D+C(sI−A)−1B
)

est

︸                      ︷︷                      ︸

steady state

, (A.10)

where cosωt = 1
2

(

ejωt +e− jωt
)

and s= jω. The gain and phase of the fre-
quency response are given by

gain(ω) =
Ay

Au
= M phase(ω) = φ−ψ = θ. (A.11)

7. A nonlinear system of the form

ẋ= f (x,u) x ∈ Rn,u ∈ R

y= h(x,u) y ∈ R
(A.12)

is a single-input, single-output (SISO) nonlinear system. It can be linearized
about an equibrium pointx= xe, u= ue, y= ye by defining new variables

z= x− xe v= u−ue w= y−h(xe,ue). (A.13)

The dynamics of the system near the equilibrium point can then be approxi-
mated by the linear system

ẋ= Ax+Bu

y=Cx+Du
(A.14)

where

A=
∂ f (x,u)
∂x

∣
∣
∣
∣
∣
xe,ue

B=
∂ f (x,u)
∂u

∣
∣
∣
∣
∣
xe,ue

C =
∂h(x,u)
∂x

∣
∣
∣
∣
∣
xe,ue

D =
∂y(x,u)
∂u

∣
∣
∣
∣
∣
xe,ue

(A.15)

The equilibrium point for a nonlinear system is locally asymptotically stable
if the real part of the eigenvalues of the linearization about that equilibrium
point have strictly negative real part.

A.4 Reachability and observability

The concept of reachability is introduced and used to investigate how to “design”
the dynamics of a system through placement of its eigenvalues. In particular, it will
be shown that under certain conditions it is possible to assign the system eigenval-
ues to arbitrary values by appropriate feedback of the system state. We introduce
the concept of observability and show that if a system is observable, it is possible
to recover the state from measurements of the inputs and outputs to the system.
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1. A linear system with dynamics

ẋ= Ax+Bu x∈ Rn,u ∈ R

y=Cx+Du y∈ R
(A.16)

is said to bereachableif we can find an inputu(t) defined on the interval
[0,T] that can steer the system from a given final pointx(0)= x0 to a desired
final pointx(T) = xf .

2. Thereachability matrixfor a linear system is given by

Wr =
[

B AB · · · An−1B
]

. (A.17)

A linear system is reachable if and only if the reachability matrixWr is in-
vertible (assuming a single intput/single output system). Systems that are
not reachable have states that are constrained to have a fixed relationship
with each other.

3. Integral feedbackcan be used to provide zero steady state error instead of
careful calibration of the gainKr . An integral feedback controller has the
form

u= −kp(x− xe)−kiz+kr r. (A.18)

where
ż= y− r (A.19)

is the integral error. The gainskp, ki andkr can be found by designing a sta-
bilizing state feedback for the system dynamics augmented by the integrator
dynamics.

4. A linear system with dynamics

ẋ= Ax+Bu x∈ Rn,u ∈ R

y=Cx+Du y∈ R
(A.20)

is said to beobservableif we can determine the state of the system through
measurements of the inputu(t) and the outputy(t) over a time interval [0,T].

5. Theobservability matrixfor a linear system is given by

Wo =




C
CA
...

CAn−1




. (A.21)

A linear system is observable if and only if the observability matrixWo is
full rank. Systems that are not reachable have ”hidden” states that cannot be
determined by looking at the inputs and outputs.
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6. An observeris a dynamical system that estimates the state of another system
through measurement of inputs and outputs. For a linear system, the observer
given by

dx̂
dt
= Ax̂+Bu+L(y−Cx̂) (A.22)

generates an estimate of the state that converges to the actual state ifA−LC
is has eigenvalues with negative real part. If a system is observable, then
there exists a anobserver gain Lsuch that the observer error is governed
by a linear differential equation with an arbitrary characteristic polynomial.
Hence the eigenvalues of the error dynamics for an observable linear system
can be placed arbitrarily through the use of an appropriate observer gain.

7. A discrete time, linear process with noise is given by

x(k+1)= Ax(k)+Bu(k)+v(k) x ∈ Rn,u ∈ R

y(k) =Cx(k)+Du(k)+w(k) y ∈ R
(A.23)

wherev is a vector, white, Gaussian random process with mean 0, autoco-
varianceRw, w is a white, Guassian random process with mean 0, variance
Rv. We take the initial condition to be random with mean 0 and covariance
P0. The optimal estimator is given by

x̂(k+1)= Ax̂(k)+Bu(k)+L(y(k)−Cx̂(k)) (A.24)

where the observer gain satisfies

P(k+1)= ATP(k)AT +Rv−AP(k)CT(Rw+CPCT)−1CPT(k)AT

P(0)= P0

L = ATP(k)CT(Rw+CPCT)−1

(A.25)

This estimator is an example of aKalman filter.

A.5 Transfer Functions

This chapter introduces the concept of the transfer function, which is a compact
description of the input-output relation for a linear system. Combining transfer
functions with block diagrams gives a powerful method of dealing with complex
systems. The relationship between transfer functions and other system descriptions
of dynamics is also discussed.

1. Thefrequency responseof a linear system

ẋ= Ax+Bu

y=Cx+Du
(A.26)
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G1 G2
u y

(a)Gyu=G2G1

G2

Σ
u y

G1

(b) Gyu=G1+G2

−G2

Σ
eu y

G1

(c) Gyu=
G1

1+G1G2

Figure A.2: Interconnections of linear systems. Series (a), parallel (b) and feedback (c)
connections are shown. The transfer functions for the composite systems can be derived by
algebraic manipulations assuming exponential functions for all signals.

is the response of the system to a sinusoidal input at a given frequency. Due
to linearity, the response of a system to a more complicated input can be
constructed by decomposing the input into the sum of sines and cosines

u(t) =
∞∑

k=1

ak sin(kωt)+bk cos(kωt). (A.27)

2. Thetransfer functionfor a linear system is given by

Gyu(s) =C(sI−A)−1B+D. (A.28)

The transfer function represents the steady state response of the system to
an exponential input. The transfer function is independent of the choiceof
coordinates for the state space.

3. Thezero frequency gainof a system is given by the magnitude of the trans-
fer function at s = 0. It represents the ratio of the steady state value of
the output with respect to a step input. For a transfer function of the form
G(s) = b(s)/a(s), the roots of the polynomiala(s) are called thepolesof the
system and the roots of the polynomialb(s) are called thezerosof the sys-
tem. A polep is also called amodeof the system. The poles correspond to
the eigenvalues of the dynamics matrixA and determine the stability of the
system. The zeros of a transfer function correspond to exponential signals
whose transmission is blocked by the system.

4. Block diagrams that consist of transfer functions can be manipulated us-
ing block diagram algebra. FigureA.2 gives the transfer functions for some
common interconnections of linear systems.

5. A Bode plotis a plot of the magnitude and phase of the frequency response:
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The top plot is the gain curve; the frequency and magnitude are both plotted
using a logarithmic scale. The bottom plot is the phase curve and uses a log-
linear scale. The dashed lines show straight line approximations of the gain
curve and the corresponding phase curve.

6. The transfer function for a system can be determined from experimentsby
measuring the frequency response and fitting a transfer function to the data.
Formally, the transfer function corresponds to the ratio of the Laplace trans-
forms of the output to the input.

A.6 Frequency Domain Analysis

In this chapter we study how how stability and robustness of closed loop systems
can be determined by investigating how signals propagate around the feedback
loop. The Nyquist stability theorem is a key result that provides a way to analyze
stability and introduce measures of degrees of stability.

1. Theloop transfer functionof a feedback system represents the transfer func-
tion obtained by breaking the feedback loop and computing the resulting
transfer function of the open loop system. For a simple feedback system

−1

Σ

r e u
P(s)

y
C(s)

the loop transfer function is given byL = PC
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2. TheNyquist criterionprovides a way to check the stability of a closed loop
system by looking at the properties of the loop transfer function. For a stable
open loop system, the Nyquist criterion states that the system is stable if the
contour of the loop transfer function plotted froms= − j∞ to s= j∞ has
no net encirclements of the points= −1 when it is plotted on the complex
plane.

3. The general Nyquist criterion uses the image of the loop transfer function
applied to theNyquist countour

Re

Im

R

r

Gamma

The number of unstable poles of the closed loop system is given by the num-
ber of open loop unstable poles plus the number of clockwise encirclements
of the points= −1.

4. Stability margins describe the robustness of a system to perturbations in the
dynamics. We define thephase crossover frequency, ω180 as the smallest
frequency where the phase of the loop transfer function is−180◦ and the
gain crossover frequency,ωgc as the small frequency where the loop transfer
function has unit magnitude. Thegain marginandphase marginare given
by

gm=
1

|L( jω180)|
ϕm= π+argL( jωgc) (A.29)

These margins describe the the maximum variation in gain and phase in the
loop transfer function under which the system remains stable. Two other
margins are thestability margin, which is the shortest distance frmo the
Nyquist curve to the critical points= −1, and thedelay margin, which is
the smallest time delay required to make the system unstable.

5. Bode’s relationsrelate the gain and phase of a transfer function with no poles
or zeros in the right half plane. They show that

argG( jω0) ≈ π
2

d log|G( jω)|
d logω

. (A.30)
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A non-minimum phasesytem is one for which there is more phase lag than
the amount given by Bode’s relations. Systems with right have plane poles
or zeros are non-minimum phase.

6. Thegainof an input/output system is defined as

γ = sup
u∈U

‖y‖
‖u‖ , (A.31)

where sup is the supremum. Thesmall gain theoremstates that if two sys-
tems with gainsγ1 andγ2 are connected in a feedback loop, then the closed
loop system is stable ifγ1γ2.

A.7 PID Control

This chapter describes the use of proportional integral derivative (PID) feedback
for control systems design. We discuss the basic concepts behind PID control and
the methods for choosing the PID gains.

1. The basic PID controller as the form

u(t) = kpe(t)+ki

∫ t

0
e(τ)dτ+kd

de
dt
, (A.32)

whereu is the control signal ande is the control error. The control signal
is thus a sum of three terms: a proportional term that is proportional to the
error, an integral term that is proportional to the integral of the error, and a
derivative term that is proportional to the derivative of the error.

Time

Error Present

FuturePast

t t+Td

2. Integral actionguarantees that the process output agrees with the reference
in steady state and provides an alternative to including a feedforward term
for tracking a constant reference input. Integral action can be implemented
usingautomatic reset, where the output of a proportional controller is fed
back to its input through a low pass filter:

u= kpe+
1

1+ sTi
u, (A.33)
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3. Derivative actionprovides a method for predictive action. The input-output
relation of a controller with proportional and derivative action is

u= kpe+kd
de
dt
= k

(

e+Td
de
dt

)

, (A.34)

whereTd = kd/kp is the derivative time constant. The action of a controller
with proportional and derivative action can be interpreted as if the control
is made proportional to the predicted process output, where the prediction
is made by extrapolating the errorTd time units into the future using the
tangent to the error curve.

A.8 Limits of Performance

In this chapter we continue to explore the use of frequency domain techniques for
design of feedback systems. We begin with a more thorough description of the
performance specifications for controls systems, and then introduce the concept of
”loop shaping” as a mechanism for designing controllers in the frequencydomain.
We also introduce some fundamental limitations to performance for systems with
right half plane poles and zeros.

1. The primary transfer functions that define the input/output characteristics of
the system are called theGang of Six:

T F =
PCF

1+PC
, T =

PC
1+PC

, PS=
P

1+PC
,

CFS=
CF

1+PC
, CS=

C
1+PC

, S =
1

1+PC
.

(A.35)

The transfer functions in the first column give the response of the process
output and control signal to the reference signal. The second column gives
the response of the control variable to the load disturbance and the noise,
and the final column gives the response of the process output to those two
inputs. WhenF(s) = 1, the system is said to have pure error feedback and the
relevant input/output transfer functions are given by theGang of Four, given
by the transfer functions in the right two columns.

2. The performance of a system can be given in terms of the characteristics
of the frequency response between an input and output. Aresonant peakis
a maximum of the gain, and the peak frequency is the corresponding fre-
quency.

3. Thesensitivity function S= 1/(1+PC) describes how disturbances are at-
tenuated by closing the feedback loop. Disturbances with frequencies such
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that |S(iω)| < 1 are attenuated, but disturbances with frequencies such that
|S(iω)| > 1 are amplified by feedback. The maximum sensitivityMs, which
occurs at the frequencyωms, is a measure of the largest amplification of
the disturbances. Thecomplementary sensitivity function T= PC/(1+PC)
describes how well the controller tracks a references signal. Themaximum
complementary sensitivity, Mt, which occurs at the frequencyωmt, is the
peak value of the magnitude of the complementary sensitivity function. It
provides the maximum amplification from the reference signal to the output
signal.

4. Feedback control systems have a number of fundamental limits, usually ex-
acerbated by the presence of right half plane poles and zeros. For systems
with right half plane poles or zeros, we can decompose the process dynamics
into a minimum phase transfer function (no right half plane poles or zeros)
and an all pass transfer function (gain= 1):

P(s) = Pmp(s)Pap(s), (A.36)

5. Another fundamental limit is given byBode’s integral formula, which states
that for systems with a loop transfer function that goes to zero faster than 1/s
ass→∞, the sensitivity function must satisfy

∫ ∞

0
log|S(iω)|dω =

∫ ∞

0
log

1
|1+L(iω)| dω = π

∑

pk, (A.37)

wherepk are the poles in the right half-plane. This conservation law shows
that to get lower sensitivity in one frequency range, we must get higher sen-
sitivity in some other region. An analogous formula exists for the comple-
mentary sensitivity function in the presence of right half plane zeros.

A.9 Robust Performance

This chapter focuses on the analysis of robustness of feedback systems. We con-
sider the stability and performance of systems who process dynamics are uncertain
and derive fundamental limits for robust stability and performance. We alsodiscuss
how to design controllers to achieve robust performance.

1. Uncertainty can enter a model in many forms.Parametric uncertaintyoccurs
when the values of the parameters in the model are not precisely known or
may vary.Unmodeled dynamicsare a more general class of uncertainty in
which some portions of the systems behavior are not included in the model,
either due to lack of knowledge or simplicity. Unmodeled dynamics can be
taken into consideration by incorporating an uncertainty block with bounded
input/output response. Common types of unmodeled dynamics includead-
ditive uncertainty, multiplicative uncertaintyandfeedback uncertainty.
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2. TheVinnicombe metric(or ν-gap metric) provides a measure of the distance
between two transfer functions. It is defined as

δν(P1,P2) =






d(P1,P2), if (P1,P2) ∈ C
1, otherwise,

(A.38)

whered(P1,P2) is a distance measure between the two transfer function

d(P1,P2) = sup
ω

|P1(iω)−P2(iω)|
√

(1+ |P1(iω)|2)(1+ |P2(iω)|2)
, (A.39)

andC is the set of all pairs (P1,P2) such that the functionsf1=1+P1(s)P1(−s)
and f2 = 1+P2(s)P1(−s) have the same number of zeros in the right half-
plane

3. Robust stability can be determined through the use of the Nyquist plot. The
stability margin sm, defined as the shortest distanced from -1 to the Nyquist
curve, provides a measure of robustness. For an additive perturbation ∆(s),
the system is robustly stable if

|∆| <
∣
∣
∣
∣

1+PC
C

∣
∣
∣
∣ or |δ| =

∣
∣
∣
∣

∆

P

∣
∣
∣
∣ <

1
|T | . (A.40)

This condition can be derived using thesmall gain theoremand allows us to
reason about uncertainty without exact knowledge of the process perturba-
tions.

4. In addition to stability, uncertainty can also affect the performance of a sys-
tem. For additive uncertainty, the load response satisfies

dGyd

Gyd
= S

dP
P
. (A.41)

The response to load disturbances is thus insensitive to process variations for
frequencies where the magnitude of the sensitivity function|S(iω)| is small.
Similarly, the response of the controller to noise in the presence of additive
uncertainty satisfies

dGun

Gun
= T

dP
P
, (A.42)

indicating that the controller is insensitive to noise when the complementary
sensitivity is small. Control design in the presence of uncertainty can be done
by using the Gang of Four to insure that the appropriate sensitivity functions
are all well behaved.



284 APPENDIX A. A PRIMER ON CONTROL THEORY



Bibliography

[1] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2008. Available at
http://www.cds.caltech.edu/∼murray/amwiki.

[2] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson.The Molecular
Biology of the Cell. Garland Science, fifth edition edition, 2008.

[3] U. Alon. An introduction to systems biology. Design principles of biological circuits.
Chapman-Hall, 2007.

[4] W. Arber and S. Linn. DNA modification and restriction.Annual Review of Bio-
chemistry, 38:467–500, 1969.

[5] M. R. Atkinson, M. A. Savageau, J. T. Meyers, and A. J. Ninfa. Development of
genetic circuitry exhibiting toggle switch or oscillatorybehavior inEscherichia coli.
Cell, pages 597–607, 2003.

[6] D. W. Austin, M. S. Allen, J. M. McCollum, R. D. Dar, J. R. Wilgus, G. S. Sayler,
N. F. Samatova, C. D. Cox, and M. L. Simpson. Gene network shaping of inherent
noise spectra.Nature, 2076:608–611, 2006.

[7] D. Baker, G. Church, J. Collins, D. Endy, J. Jacobson, J. Keasling, P. Modrich,
C. Smolke, and R. Weiss. ENGINEERING LIFE: Building a FAB forbiology.
Scientific American, June 2006.

[8] N Barkai and S Leibler. Robustness in simple biochemicalnetworks. Nature,
387(6636):913–7, 1997.

[9] A. Becskei and L. Serrano. Engineering stability in genenetworks by autoregula-
tion. Nature, 405:590–593, 2000.

[10] D. Bell-Pedersen, V. M. Cassone, D. J. Earnest, S. S. Golden, P. E. Hardin, T. L.
Thomas, and M. J. Zoran. Circadian rhythms from multiple oscillators: lessons
from diverse organisms.Nature Reviews Genetics, 6(7):544, 2005.

[11] BioNumbers: The database of useful biological numbers. http://bionumbers.org,
2012.

[12] L Bleris, Z. Xie, D. Glass, A. Adadey, E. Sontag, and Y. Benenson. Synthetic inco-
herent feedforward circuits show adaptation to the amount of their genetic template.
Molecular Systems Biology, 7:519, 2011.

[13] H. Bremer and P. Dennis. Modulation of chemical composition and other parame-
ters of the cell by growth rate.In: Escherichia coli and Salmonella: Cellular and
Molecular Biology (edited by Neidhart F. C. et al.), ASM Press, Washington DC,
183:1553–1569, 1996.

http://www.cds.caltech.edu/~murray/amwiki
http://bionumbers.org


286 BIBLIOGRAPHY

[14] H Bremer, P Dennis, and M Ehrenberg. Free rna polymeraseand modeling global
transcription inescherichia coli. Biochimie, 85:597–609, 2003.

[15] B. Canton, A. Labno, and D. Endy. Refinement and standardization of synthetic
biological parts and devices.Nature Biotechnology, 26(7):787–93, 2008.

[16] M. Chalfie, Y. Tu, G. Euskirchen, W. Ward, and D. Prasher.Green fluorescent
protein as a marker for gene expression.Science, 263(5148):802–805, 1994.

[17] A. J. Courey.Mechanisms in Transcriptional Regulation. Wiley-Blackwell, 2008.

[18] R. S. III Cox, M. G. Surette, and M. B. Elowitz. Programming gene expression with
combinatorial promoters.Mol Syst Biol, page 3:145, 2007.

[19] D. Del Vecchio, A. J. Ninfa, and E. D. Sontag. Modular cell biology: Retroactivity
and insulation.Nature/EMBO Molecular Systems Biology, 4:161, 2008.

[20] L. N. M. Duysens and J. Amesz. Fluorescence spectrophotometry of reduced
phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region.
Biochim. Biophys. Acta, 24:19–26, 1957.

[21] H. El-Samad, J. P. Goff, and M. Khammash. Calcium homeostasis and parturient
hypocalcemia: An integral feedback perspective.J. Theoret. Biol., 214:17–29, 2002.

[22] S. P. Ellner and J. Guckenheimer.Dynamic Models in Biology. Princeton University
Press, Princeton, NJ, 2005.

[23] M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional
regulators.Nature, 403(6767):335–338, 2000.

[24] Michael B Elowitz, Arnold J Levine, Eric D Siggia, and Peter S Swain. Stochastic
gene expression in a single cell.Science (New York, NY), 297(5584):1183–1186,
2002.

[25] D. Endy. Foundations for engineering biology.Nature, 438:449–452, 2005.

[26] B. Friedland. Control System Design: An Introduction to State Space Methods.
Dover, New York, 2004.

[27] T.S. Gardner, C.R. Cantor, and J.J. Collins. Construction of the genetic toggle switch
in Escherichia Coli. Nature, page 339342, 2000.

[28] Daniel G. Gibson, John I. Glass, Carole Lartigue, Vladimir N. Noskov, Ray-
Yuan Chuang, Mikkel A. Algire, Gwynedd A. Benders, Michael G. Montague,
Li Ma, Monzia M. Moodie, Chuck Merryman, Sanjay Vashee, Radha Krishnaku-
mar, Nacyra Assad-Garcia, Cynthia Andrews-Pfannkoch, Evgeniya A. Denisova,
Lei Young, Zhi-Qing Qi, Thomas H. Segall-Shapiro, Christopher H. Calvey,
Prashanth P. Parmar, Clyde A. Hutchison, Hamilton O. Smith,and J. Craig Ven-
ter. Creation of a Bacterial Cell Controlled by a ChemicallySynthesized Genome.
Science, 329(5987):52–56, 2010.

[29] D. T. Gillespie. Markov Processes: An Introduction For Physical Scientists. Aca-
demic Press, 1976.

[30] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions.Journal
of Physical Chemistry, 81(25):2340–2361, 1977.



BIBLIOGRAPHY 287

[31] D. T. Gillespie. A rigorous derivation of the chemical master equation.Physica A,
188:404–425, 1992.

[32] L. Goentoro, O. Shoval, M. W. Kirschner, and U. Alon. Theincoherent feedforward
loop can provide fold-change detection in gene regulation.Molecular Cell, 36:894–
899, 2009.

[33] A. Goldbeter and D. E. Koshland. An amplified sensitivity arising from covalent
modification in biological systems.PNAS, pages 6840–6844, 1981.

[34] J. Greenblatt, J. R. Nodwell, and S. W. Mason. Transcriptional antitermination.
Nature, 364(6436):401–406, 1993.

[35] J. Greenblatt, J. R. Nodwell, and S. W. Mason. Transcriptional antitermination.
Nature, 364(6436):401–406, 1993.

[36] I.L. Grigiriva, N.J. Phleger, V.K. Mutalik, and C.A. Gross. Insights into transcrip-
tional regulation andσ competition from an equilibrium model of RNA polymerase
binding to DNA. PNAS, 103(14):5332–5337, 2006.

[37] J. Guckenheimer and P. Holmes.Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields. Springer, 1983.

[38] R. Heinrich, B. G. Neel, and T. A. Rapoport. Mathematical models of protein kinase
signal transduction.Molecular Cell, 9:957–970, 2002.

[39] B. Hess, A. Boiteux, and J. Kruger. Cooperation of glycolytic enzymes.Adv. En-
zyme Regul, 7:149–167, 1969.

[40] Andreas Hilfinger and Johan Paulsson. Separating intrinsic from extrinsic fluctu-
ations in dynamic biological systems.Proceedings of the National Academy of
Sciences, 108(29):12167–12172, 2011.

[41] C. F. Huang and J. E. Ferrell. Ultrasensitivity in the mitogen-activated proteinkinase
cascade.Proc. Natl. Acad. Sci., 93(19):10078–10083, 1996.

[42] T. P. Hughes.Elmer Sperry: Inventor and Engineer. John Hopkins University Press,
Baltimore, MD, 1993.

[43] B. Ingalls. A frequency domain approach to sensitivityanalysis of biochemical
networks. Journal of Physical Chemistry B-Condensed Phase, 108(3):143–152,
2004.

[44] A Ishihama. Functional modulation ofe. coli rna polymerase.Ann. Rev. Microbiol,
54:499–518, 2000.

[45] F. Jacob and J. Monod. Genetic regulatory mechanisms inthe synthesis of proteins.
J. Mol. Biol., 3:318–56, 1961.

[46] S. Jayanthi, K. Nilgiriwala, and D. Del Vecchio. Retroactivity controls the temporal
dynamics of gene transcription.ACS Synthetic Biology, DOI: 10.1021/sb300098w,
2013.

[47] K. F. Jensen and S. Pedersenz. Metabolic growth rate control inescherichia coli
may be a consequence of subsaturation of the macromolecularbiosynthetic appa-
ratus with substrates and catalytic components.MICROBIOLOGICAL REVIEWS,
54(2):89–100, 1990.



288 BIBLIOGRAPHY

[48] P. Jiang, A. C. Ventura, S. D. Merajver, E. D. Sontag, A. J. Ninfa, and D. Del Vec-
chio. Load-induced modulation of signal transduction networks.Science Signaling,
4(194):ra67, 2011.

[49] N. G. Van Kampen.Stochastic Processes in Physics and Chemistry. Elsevier, 1992.

[50] A. S. Khalil and J. J. Collins. Synthetic biology: applications come of age.Nature
Reviews Genetics, 11(5):367, 2010.

[51] H. K. Khalil. Nonlinear Systems. Macmillan, 1992.

[52] E. Klipp, W. Liebermeister, C. Wierling, A. Kowald, H. Lehrach, and R. Herwig.
Systems Biology: A Textbook. Wiley-VCH, 2009.

[53] P. Kundur.Power System Stability and Control. McGraw-Hill, New York, 1993.

[54] M. T. Laub, L. Shapiro, and H. H. McAdams. Systems biology of caulobacter.
Annual Review of Genetics, 51:429–441, 2007.

[55] J.-C. Leloup and A. Goldbeter. A molecular explanationfor the long-term supres-
sion of circadian rhythms by a single light pulse.American Journal of Physiology,
280:1206–1212, 2001.

[56] J. J. Lemke, P. Sanchez-Vazquez, H. L. Burgos, G. Hedberg, W. Ross, and R. L.
Gourse. Direct regulation ofEscherichia coliribosomal protein promoters by the
transcription factors ppGpp and DksA.PNAS, pages 1–6, 2012.

[57] W. Lohmiller and J. J. E. Slotine. On contraction analysis for non-linear systems.
Automatica, 34:683–696, 1998.

[58] H. Madhani.From a to alpha: Yeast as a Model for Cellular Differentiation. CSHL
Press, 2007.

[59] J. Mallet-Paret and H.L. Smith. The Poincaré-Bendixson theorem for monotone
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