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Preface

This text serves as a supplemenfaedback Systenty Astrom and Murray {]
(refered to throughout the text as AM08) and is intended for reseesdhterested

in the application of feedback and control to biomolecular systems. The @sxt h
been designed so that it can be used in parallel Rédback Systenas part of a
course on biomolecular feedback and control systems, or as a stamdeflerence
for readers who have had a basic course in feedback and contooy.tfigne full
text for AM08, along with additional supplemental material and a copy ofethes
notes, is available on a companion web site:

http://www.cds.caltech.edu/~murray/amwiki/BFS

The text is intended to be useful to three overlapping audiences: deastua
dents in biology and bioengineering interested in understanding the roéedf f
back in natural and engineered biomolecular systems; advanced radietps
and graduate students in engineering disciplines who are interested thfdersd-
back in biological circuit design; and established researchers in thadlogical
sciences who want to explore the potential application of principles andftoats
control theory to biomolecular systems. We have written the text assuming famil-
iarity with the material in AM08, but have tried to provide insights and motivation
so that the material can be learned in parallel. We also assume some familiarity
with cell biology, at the level of a first course for non-majors. The iitilial chap-
ters in the text indicate the pre-requisites in more detail, most of which areszbve
either in AMO8 or in the supplemental information available from the companion
web site.


http://www.cds.caltech.edu/~murray/amwiki/BFS
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Notation

This is an internal chapter that is intended for use by the authors in fixinptiae
tion that is used throughout the text. In the first pass of the book we acgating
several conflicts in notation and the notes here may be useful to earlyafdbe
text.

Protein dynamics

For a gene ‘genX’, we writgenXfor the gene, ., for the mRNA and GenX
for the protein when they appear in text or chemical formulas. We usessuijpgs
to differentiate between isomers, sgem( might be used to refer to mature RNA

or GenX to refer to the folded versions of a protein, if required. Mathematical
formulas use italic version of the variable name, but roman font for the gene
isomeric state. The concentration of mRNA is written in text or formulasgsx
(m*g‘enxfor mature) and the concentration of proteirpgsnx (pfgenx for folded). The
same naming conventions are used for common /geoiein combinations: the
mMRNA concentration ofetRis m,., the concentration of the associated protein is
Pretr @Nd parameters argeir, dtetr, €1tC.

For generic genes and proteins, use X to refer to a protejrtpmefer to the
MRNA associated with that protein ardo refer to the gene that encodes X. The
concentration of X can be written either s py or [X], with that order of pref-
erence. The concentration of,man be written either asy (preferred) or [m].
Parameters that are specific to genare written with a subscripted py, Jp, etc.
Note that although the protein is capitalized, the subscripts are lower @ase (s
dexed by the gene, not the protein) and also in roman font (since theyotige
variable).

The dynamics of protein production are given by

dm, dpP
ot = apo —HMp —YpMp, at = BpMp — P —6pP,

whereay o is the (constitutive) rate of productiop, parameterizes the rate of dilu-
tion and degradation of the mMRNAJYB, is the kinetic rate of protein production,
uis the growth rate that leads to dilution of concentrations@nEhrameterizes the
rate of degradation of the protein P. Since dilution and degradation entsiriri-a

lar fashion, we usg = y + u ands = ¢ + u to represent the aggregate degradationa
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and dilution rate. If we are looking at a single g#retein, the various subscripts
can be dropped.
When we ignore the mRNA concentration, we write the simplified protein dy-
namics as 4P
gt = Pro— 0P,
Assuming that the mRNA dynamics are fast compared to protein production, the
the constang, o is given by

p
ﬁp,o =ﬁp_-
a’p,o

For regulated production of proteins using Hill functions, we modify the-con
stitutive rate of production to b&(Q) instead ofwp or Bp as appropriate. The
Hill function is written in the form

Fog(Q) = _ %a
p.q - Kp,q + an,q :
The notation fol mirrors that of transfer function&;, 4 represents the inplatutput
relationship between inp@ and outpuP (rate). The comma can be dropped when
the genes in question are single letters:

F _
pq(Q) = qu+ anq.

The subscripts can be dropped completely if there is only one Hill functiosen u

Chemical reactions

We write the symbol for a chemical species A using roman type. The number of
molecules of a species A is written ag The concentration of the species is oc-
casionally written as [A], but we more often use the nota#oras in the case of
proteins, orx,. For a reaction A B «— C, we use the notation

f
R1:A+B\L—IC d—C:IgflAB—k{lC
Ky dt

This notation is primarily intended for situations where we have multiple reactions
and need to distinguish between manffatient constants. For a small number of
reactions, the reaction number can be dropped or replaced with a singlé@ig

K}, etc).

It will often be the case that two species A and B will form a covalent bond,
in which case we write the resulting species as AB. We will distinguish covalent
bonds from much weaker hydrogen bonding by writing the latter as A:Blliiima
some situations we will have labeled section of DNA that are connected togethe
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which we write as A-B, where here A represents the first portion of the DNA
strand and B represents the second portion. When describing (sitrgliejls of
DNA, we write A to represent the Watson-Crick complement of the strand A.
Thus A-B:B’—A’ would represent a double stranded length of DNA with domains
A and B.

The choice of representing covalent molecules using the convential cilemic
notation AB can lead to some confusion when writing the reaction dynamics using
A andB to represent the concentrations of those species. Namely, the syBbol
could represent either the concentration of A times the concentration otligor
concentration of AB. To remove this ambiguity, when using this notation we will
write [A][B] as A-B.

When working with a system of chemical reactions, we wrijté S 1,...,nfor
the species and;Rj = 1,...,mfor the reactions. We writs; to refer to the molecu-
lar count for speciesandx; = [Si] to refer to the concentration of the species. The
individual equations for a given species are written

Missing. Figure out notation here. BST?

The collection of reactions are written as

% = NV(X, 1), Xi = Nijvj(X, 1)

wherex; is the concentration of species 8 € R™™ is the stochiometry matrix;;
is the reaction flux vector for reactignandu is the collection of parameters that
the define the reaction rates.

Figures

In the public version of the text, certain copyrighted figures are missingsdfile-
names for these figures are listed and the figures can be looked up itidherfg
references:

e Cou08 - Mechanisms in Transcriptional Regulatibgy A. J. Courey 11]
GNM93 - J. Greenblatt, J. R. Nodwell and S. W. Maséh [

Mad®7 - From a to alpha: Yeast as a Model for Cellular fRirentiationby
H. Madhani R8§]

MBoC - The Molecular Biology of the Cellly Alberts et al. 2]
PKTO8 - Physical Biology of the Ce[B5]

The remainder of the filename lists the chapter and figure number.


Cou08
GNM93
Mad07
MBoC
PKT08
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Chapter 1
Cell Biology Primer

Note The text and figures in this chapter are basedAdBcience Primeby the
National Center for Biotechnology Information (NCBI) of the National laky
of Medicine (NLM) at the National Institutes of Health (NIH33]. The text in
this chapter is not subject to copyright and may be used freely for ampppe, as
described by the NLM:

Information that is created by or for the US government on this site is
within the public domain. Public domain information on the National
Library of Medicine (NLM) Web pages may be freely distributed and
copied. However, it is requested that in any subsequent use of this
work, NLM be given appropriate acknowledgment.

Some minor modifications have been made, including insertion of additional fig-
ures (from the NHGRI Talking Glossarg4]), deletion of some of the text not
needed here, and minor editorial changes to maintain consistency with the main
text.

The original material included here can be retrieved from the following web
sites:

e http://www.ncbi.nlm.nih.gov/About/primer/genetics.html
e http://www.genome.gov/glossary

We gratefully acknowledge the National Library of Medicine for this material.


http://www.ncbi.nlm.nih.gov/About/primer/genetics.html
http://www.genome.gov/glossary
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Eukaryote Prokaryote

4.5 billion years ago Earth Formed

3.5 billion years ago First Life -- Prokaryotic
Bacteria Dominate

1.5 billion years ago Nucleated Cells Arise

Flagellum 0.5 billion years ago Multi-Cellular
Eukaryotes Arise
Cell Membrane
(a) Cell types (b) Timeline

Figure 1.1: Eukaryotes and prokaryotes. (a) This figurestithtes a typical human cell
(eukaryotg and a typical bacteriunpokaryot§. The drawing on the left highlights the
internal structures of eukaryotic cells, including the leus (light blue), the nucleolus
(intermediate blue), mitochondria (orange), and riboso(dark blue). The drawing on the
right demonstrates how bacterial DNA is housed in a strectatled the nucleoid (very
light blue), as well as other structures normally found irr@karyotic cell, including the
cell membrane (black), the cell wall (intermediate blubg tapsule (orange), ribosomes
(dark blue), and a flagellum (also black). (b) History of lifie earth. Figures courtesy the
National Library of Medicine.

1.1 Whatis a Cell

Cells are the structural and functional units of all living organisms. Some or
ganisms, such as bacteria, are unicellular, consisting of a single cell. @ther
ganisms, such as humans, are multicellular, or have many cells—an estimated
100,000,000,000,000 cells! Each cell is an amazing world unto itself: it caririak
nutrients, convert these nutrients into energy, carry out specializedidns, and
reproduce as necessary. Even more amazing is that each cell stores getomf
instructions for carrying out each of these activities.

Cell Organization

Before we can discuss the various components of a cell, it is important i@ kno
what organism the cell comes from. There are two general categories|lsf
prokaryotesandeukaryotegsee Figurel.13.

Prokaryotic Organisms

It appears that life arose on earth about 4 billion years ago (see FigLlieThe
simplest of cells, and the first types of cells to evolve, were prokaryotis—ee
organisms that lack a nuclear membrane, the membrane that surroundsléhesnu
of a cell. Bacteria are the best known and most studied form of proiarge
ganisms, although the recent discovery of a second group of ptkatycalled
archaea has provided evidence of a third cellular domain of life and new insights
into the origin of life itself.
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Prokaryotes are unicellular organisms that do not developfterditiate into
multicellular forms. Some bacteria grow in filaments, or masses of cells, but each
cell in the colony is identical and capable of independent existence. &lle ¢
may be adjacent to one another because they did not separate aftavisahd
or because they remained enclosed in a common sheath or slime secreted by the
cells. Typically though, there is no continuity or communication between the cells.
Prokaryotes are capable of inhabiting almost every place on the eanth,tfie
deep ocean, to the edges of hot springs, to just about every soffaaebodies.

Prokaryotes are distinguished from eukaryotes on the basis of nwctpami-
zation, specifically their lack of a nuclear membrane. Prokaryotes als@igckf
the intracellular organelles and structures that are characteristic af/etikaells.
Most of the functions of organelles, such as mitochondria, chloroplaststhe
Golgi apparatus, are taken over by the prokaryotic plasma membraheriRytc
cells have three architectural regions: appendages dipellaandpili—proteins
attached to the cell surfacerell envelopeonsisting of a capsule,cell wall, and
aplasma membranand acytoplasmic regiothat contains theell genomé&DNA)
and ribosomes and various sorts of inclusions.

Eukaryotic Organisms

Eukaryotednclude fungi, animals, and plants as well as some unicellular organ-
isms. Eukaryotic cells are about 10 times the size of a prokaryote and can be
as much as 1000 times greater in volume. The major and extremely significant
difference between prokaryotes and eukaryotes is that eukaryotic cathsirco
membrane-bound compartments in which specific metabolic activities take place.
Most important among these is the presence of a nucleus, a membranatgeline
compartment that houses the eukaryotic cell’s DNA. It is this nucleus thes the
eukaryote—literally, true nucleus—its name.

Eukaryotic organisms also have other specialized structures, catjadelles
which are small structures within cells that perform dedicated functionghés
name implies, you can think of organelles as small organs. There are ia dibze
ferent types of organelles commonly found in eukaryotic cells. In this primer
will focus our attention on only a handful of organelles and will examineghes
organelles with an eye to their role at a molecular level in the cell.

The origin of the eukaryotic cell was a milestone in the evolution of life. Al-
though eukaryotes use the same genetic code and metabolic processdans p
otes, their higher level of organizational complexity has permitted the develop
ment of truly multicellular organisms. Without eukaryotes, the world would lack
mammals, birds, fish, invertebrates, mushrooms, plants, and complex sitigkk-c
organisms.
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Organelles

Nucleus —

Nucleolus

e

Ribosomes
Rough ———7 .1
Endoplasmic

Reticulum Mitochondrion

Lysosomes

Smooth —— 7
Endoplasmic
Reticulum

Golgi Body

Microtubule
Centrioles

—cel

Figure 1.2: An organelle is a subcellular structure that ¢v@s or more specific jobs to
perform in the cell, much like an organ does in the body. Amttregmore important cell
organelles are the nuclei, which store genetic informatioitochondria, which produce
chemical energy; and ribosomes, which assemble proteins.

Cell Structures: The Basics
The Plasma Membrane—A Cell’s Protective Coat

The outer lining of a eukaryotic cell is called tipglasma membranelhis mem-
brane serves to separate and protect a cell from its surroundingpemént and

is made mostly from a double layer of proteins and lipids, fat-like molecules. Em-
bedded within this membrane are a variety of other molecules that act asethann
and pumps, moving ftierent molecules into and out of the cell. A form of plasma
membrane is also found in prokaryotes, but in this organism it is usuallyreefe

to as thecell membrane

The Cytoskeleton—A Cell’'s Scaffold

Thecytoskeletoris an important, complex, and dynamic cell component. It acts to
organize and maintain the cell's shape; anchors organelles in place;chelpg
endocytosisthe uptake of external materials by a cell; and moves parts of the cell
in processes of growth and motility. There are a great number of protspsiated
with the cytoskeleton, each controlling a cell’s structure by directing, bugchind
aligning filaments.
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Nucleus

Il | cell
fl | Membrane

Figure 1.3: The cell membrane, also called the plasma merapia found in all cells
and separates the interior of the cell from the outside enuient. The cell membrane
consists of a lipid bilayer that is semipermeable. The celinbrane regulates the transport
of materials entering and exiting the cell.

The Cytoplasm—A Cell’s Inner Space

Inside the cell there is a large fluid-filled space called ¢giiplasm sometimes
called thecytosol In prokaryotes, this space is relatively free of compartments. In
eukaryotes, theytosolis the “soup” within which all of the cell’s organelles reside.

It is also the home of the cytoskeleton. The cytosol contains dissolved mistrie
helps break down waste products, and moves material around the celyjlthao
process calledytoplasmic streamingrhe nucleus often flows with the cytoplasm
changing its shape as it moves. The cytoplasm also contains many salts and is a
excellent conductor of electricity, creating the perfect environment éontechan-

ics of the cell. The function of the cytoplasm, and the organelles which resitje

are critical for a cell’'s survival.

Genetic Material

Two different kinds of genetic material existeoxyribonucleic acid (DNAgndri-
bonucleic acid (RNA)Most organisms are made of DNA, but a few viruses have
RNA as their genetic material. The biological information contained in an onganis
is encoded in its DNA or RNA sequence. Prokaryotic genetic material is gz

in a simple circular structure that rests in the cytoplasm. Eukaryotic genetic mate-
rial is more complex and is divided into discrete units caiedesHuman genetic
material is made up of two distinct components: iielear genomand themito-
chondrial genomeThe nuclear genome is divided into 24 linear DNA molecules,
each contained in a flierentchromosomeThe mitochondrial genomés a circu-

lar DNA molecule separate from the nuclear DNA. Although the mitochondrial
genome is very small, it codes for some very important proteins.
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Nucleus

Nuclear Membrane

Nucleolus —#=
> Nucleopore

Chromatin

Figure 1.4: A nuclear membrane is a double membrane thabsexlthe cell nucleus.
It serves to separate the chromosomes from the rest of theTbel nuclear membrane
includes an array of small holes or pores that permit thegugesef certain materials, such
as nucleic acids and proteins, between the nucleus andagiop

Organelles

The human body contains manyfférent organs, such as the heart, lung, and kid-
ney, with each organ performing af@irent function. Cells also have a set of “little
organs”, calledrganellesthat are adapted afuit specialized for carrying out one
or more vital functions. Organelles are found only in eukaryotes andlesmzys
surrounded by a protective membrane. It is important to know some basic fa
about the following organelles.

The Nucleus—A Cell's CenteFhe nucleusis the most conspicuous organelle
found in a eukaryotic cell. It houses the cell's chromosomes and is the\plaere
almost all DNA replication and RNA synthesis occur. The nucleus is smghero
in shape and separated from the cytoplasm by a membrane calleuithesar
envelope The nuclear envelope isolates and protects a cell’s DNA from various
molecules that could accidentally damage its structure or interfere with itsgsroce
ing. During processing, DNA igranscribed or synthesized, into a special RNA,
called mRNA. This mRNA is then transported out of the nucleus, where it istran
lated into a specific protein molecule. In prokaryotes, DNA processing teliaee

in the cytoplasm.

The Ribosome—The Protein Production Machine. Ribosaredound in both
prokaryotes and eukaryotes. The ribosome is a large complex composehy
molecules, including RNAs and proteins, and is responsible for procettsrge-

netic instructions carried by an mRNA. The process of converting an mRNA
genetic code into the exact sequence of amino acids that make up a protein is
calledtranslation Protein synthesis is extremely important to all cells, and there-
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Mitochondria

Outer membrane

Inner membrane

Figure 1.5: Mitochondria are membrane-bound cell orgasdlinitochondrion, singular)
that generate most of the chemical energy needed to poweelitsshiochemical reactions.
Chemical energy produced by the mitochondria is stored mallsnolecule called adeno-
sine triphosphate (ATP). Mitochondria contain their owraimmhromosomes. Generally,
mitochondria, and therefore mitochondrial DNA, are intestionly from the mother.

fore a large number of ribosomes—sometimes hundreds or even thouszamls
be found throughout a cell.

Ribosomes float freely in the cytoplasm or sometimes bind to another organelle
called the endoplasmic reticulum. Ribosomes are composed of one largeeand on
small subunit, each having affiirent function during protein synthesis.

Mitochondria and Chloroplasts—The Power Generators. Mitochondria self-
replicating organelles that occur in various numbers, shapes, andrsthescyto-
plasm of all eukaryotic cells. As mentioned earlier, mitochondria contain their o
genome that is separate and distinct from the nuclear genome of a cell. btitoch
dria have two functionally distinct membrane systems separated by a space: th
outer membranewhich surrounds the whole organelle; and iieer membrange
which is thrown into folds or shelves that project inward. These inwaikfare
called cristae The number and shape of cristae in mitochondrigedi depend-
ing on the tissue and organism in which they are found, and serve to $ecttea
surface area of the membrane.

Mitochondria play a critical role in generating energy in the eukaryotic cell,
and this process involves a number of complex pathways. Let’s breai dagh
of these steps so that you can better understand how food and nutreetisreed
into energy packets and water. Some of the best energy-supplying thatiwe
eat contain complex sugars. These complex sugars can be brokenimowan
less chemically complex sugar molecule caltgdcose Glucose can then enter
the cell through special molecules found in the membrane, cgllezbse trans-
porters Once inside the cell, glucose is broken down to ma#tenosine triphos-
phate (ATP)a form of energy, via two dierent pathways.

The first pathwayglycolysis requires no oxygen and is referred taaserobic
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./cellbio/figures/MBoC_02_70.dps

./cellbio/figures/MBoC_02_82.eps

(a) Glycolysis (b) Kreb's cycle

Figure 1.6: Cell energy production. Reproduced from Akbettal. P]; permission pend-
ing.

metabolismGlycolysis occurs in the cytoplasm outside the mitochondria. During
glycolysis, glucose is broken down into a molecule cafigduvate Each reaction

is designed to produce some hydrogen ions that can then be used to mele en
packets ATP). However, only four ATP molecules can be made from one molecule
of glucose in this pathway. In prokaryotes, glycolysis is the only method fose
converting energy.

The second pathway, called tikeeb’s cycle or thecitric acid cycle occurs
inside the mitochondria and is capable of generating enough ATP to run aklihe
functions. Once again, the cycle begins with a glucose molecule, whichgdinen
process of glycolysis is stripped of some of its hydrogen atoms, transfgrimén
glucose into two molecules gfyruvic acid Next, pyruvic acid is altered by the
removal of a carbon and two oxygens, which go on to form carbon dtoXihen
the carbon dioxideis removed, energy is giverffpand a molecule called NAD
is converted into the higher energy form, NADH. Another molecatesnzyme A
(CoA), then attaches to the remaining acetyl unit, formacgtyl CoA

Acetyl CoAenters the Kreb'’s cycle by joining to a four-carbon molecule called
oxaloacetateOnce the two molecules are joined, they make a six-carbon molecule
called citric acid. Citric acid is then broken down and modified in a stepwise fash
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ion. As this happens, hydrogen ions and carbon molecules are rel&agsachrbon
molecules are used to make more carbon dioxide. The hydrogen ionsled pjT

by NAD and another molecule calldlivin-adenine dinucleotide (FADEventu-
ally, the process produces the four-carbon oxaloacetate againgamuiwhere it
started €. All in all, the Kreb's cycle is capable of generating from 24 to 28 ATP
molecules from one molecule of glucose converted to pyruvate. Therafds
easy to see how much more energy we can get from a molecule of glucase if o
mitochondria are working properly and if we have oxygen.

Chloroplastsare similar to mitochondria but are found only in plants. Both
organelles are surrounded by a double membrane with an intermembraee spa
both have their own DNA and are involved in energy metabolism; and both have
reticulations, or many foldings, filling their inner spaces. Chloroplastsarbtight
energy from the sun into ATP through a process cagbledtosynthesis

The Endoplasmic Reticulum and the Golgi Apparatus—Macromoleculedé¢ana
Theendoplasmic reticulum (ER the transport network for molecules targeted for
certain modifications and specific destinations, as compared to moleculeslthat w
float freely in the cytoplasm. The ER has two forms: thegh ERand thesmooth
ER The rough ER is labeled as such because it has ribosomes adheringiteiits o
surface, whereas the smooth ER does not. Translation of the mRNA fer pinos
teins that will either stay in the ER or lexportedmoved out of the cell) occurs at
the ribosomes attached to the rough ER. The smooth ER serves as the tdoipien
those proteins synthesized in the rough ER. Proteins to be exportedsaeziia
the Golgi apparatus sometimes called a Golgi body or Golgi complex, for further
processing, packaging, and transport to a variety of other cellulaidosa

Lysosomes and Peroxisomes—The Cellular Digestive System. Lysesuiper-
oxisomesare often referred to as the garbage disposal system of a cell. Both or-
ganelles are somewhat spherical, bound by a single membrane, and rigksn d
tive enzymes, naturally occurring proteins that speed up biochemiced$ses.
For example, lysosomes can contain more than three dozen enzymesraaidgg
proteins, nucleic acids, and certain sugars called polysaccharidex.tAése en-
zymes work best at a low pH, reducing the risk that these enzymes willtdiggs
own cell should they somehow escape from the lysosome. Here we cdhesee
importance behind compartmentalization of the eukaryotic cell. The cell cotld no
house such destructive enzymes if they were not contained in a mentiwand-
system.

One function of a lysosome is to digest foreign bacteria that invade a cedir Oth
functions include helping to recycle receptor proteins and other memboamgoes
nents and degrading worn out organelles such as mitochondria. logegscan
even help repair damage to the plasma membrane by serving as a membrane patch
sealing the wound.

Peroxisomes function to rid the body of toxic substances, such as lgrdrog
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Rough
Endoplasmic

Reticulum
5 ' /
)

Smooth

Endoplasmic
/ Reticulum

Figure 1.7: Endoplasmic reticulum is a network of membransisle a cell through which
proteins and other molecules move. Proteins are assentiegbaelles called ribosomes.
(a) When proteins are destined to be part of the cell membraegpworted from the cell,
the ribosomes assembling them attach to the endoplasnitlteh, giving it a rough
appearance. (b) Smooth endoplasmic reticulum lacks rihes@nd helps synthesize and
concentrate various substances needed by the cell.

peroxide, or other metabolites and contain enzymes concerned with ouiijea

tion. High numbers of peroxisomes can be found in the liver, where toxicooly

ucts are known to accumulate. All of the enzymes found in a peroxisome are im-
ported from the cytosol. Each enzyme transferred to a peroxisime hascelsp
sequence at one end of the protein, calldlT&or peroxisomal targeting signal

that allows the protein to be taken into that organelle, where they then furtotion
rid the cell of toxic substances.

Peroxisomes often resemble a lysosome. However, peroxisomes arepself r
cating, whereas lysosomes are formed in the Golgi complex. Peroxisonees als
have membrane proteins that are critical for various functions, suar &sort-
ing proteins into their interiors and to proliferate and segregate into daugiter

Where Do Viruses Fit?

Viruses are not classified as cells and therefore are neither unicelturlanuti-
cellular organisms. Most people do not even classify viruses as “liiiregause
they lack a metabolic system and are dependent on the host cells that gatytonf
reproduce. Viruses have genomes that consist of either DNA or RiRtheere are
examples of viruses that are either double-stranded or single-strangextantly,
their genomes code not only for the proteins needed to package its genetiama
but for those proteins needed by the virus to reproduce during its ivdenjtcle.
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Golgi Body
Golgi Body

Cell

Figure 1.8: A Golgi body, also known as a Golgi apparatus,dslborganelle that helps
process and package proteins and lipid molecules, eslyepiateins destined to be ex-
ported from the cell. Named after its discoverer, Camilldggahe Golgi body appears as
a series of stacked membranes.

Making New Cells and Cell Types

For most unicellular organisms, reproduction is a simple matteelbtiuplication

also known ageplication But for multicellular organisms, cell replication and
reproduction are two separate processes. Multicellular organismseefdataged

or worn out cells through a replication process calteidosis the division of a
eukaryotic cell nucleus to produce two identickughter nuclei To reproduce,
eukaryotes must first create special cells cajathetes-eggs and sperm—that
then fuse to form the beginning of a new organism. Gametes are but one of th
many unique cell types that multicellular organisms need to function as a complete
organism.

Making New Cells

Most unicellular organisms create their next generation by replicating &tledf

parts and then splitting into two cells, a typeasfexual reproductionalledbinary
fission This process spawns not just two new cells, but also two new organisms.
Multicellullar organisms replicate new cells in much the same way. For example,
we produce new skin cells and liver cells by replicating the DNA found in¢kkt
through mitosis. Yet, producing a whole new organism requsexsial reproduc-

tion, at least for most multicellular organisms. In the first step, specialized cells
called gametes—eggs and sperm—are created through a process called meiosis.
Meiosisserves to reduce the chromosome number for that particular organism by
half. In the second step, the sperm and egg join to make a single cell, whioha®
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Figure 1.9: Mitosis is a cellular process that replicategiosomes and produces two
identical nuclei in preparation for cell division. Gendyamitosis is immediately followed
by the equal division of the cell nuclei and other cell cotdento two daughter cells.

the chromosome number. This joined cell then divides affér@ntiates into dif-
ferent cell types that eventually form an entire functioning organism.

Mitosis. Every time a cell divides, it must ensure that its DNA is shared between
the two daughter cells. Mitosis is the process of “divvying up” the genortvedsmn

the daughter cells. To easier describe this process, let’'s imagine a cellmyth o
one chromosome. Before a cell enters mitosis, we say the cellrigerphasethe
state of a eukaryotic cell when not undergoing division. Every time a sétles, it
must first replicate all of its DNA. Because chromosomes are simply DNA veichpp
around protein, the cell replicates its chromosomes also. These two cluoess
positioned side by side, are callsidter chromatidend are identical copies of one
another. Before this cell can divide, it must separate these sister diderfram

one another. To do this, the chromosomes have to condense. This stagesi$

is calledprophase Next, the nuclear envelope breaks down, and a large protein
network, called thespindle attaches to each sister chromatid. The chromosomes
are now aligned perpendicular to the spindle in a process calégdphaseNext,
“molecular motors” pull the chromosomes away from the metaphase plate to the
spindle poles of the cell. This is calleshaphaseOnce this process is completed,
the cells divide, the nuclear envelope reforms, and the chromosomesaredax
decondense durintglophase The cell can now replicate its DNA again during
interphase and go through mitosis once more.

Meiosis. Meiosiss a specialized type of cell division that occurs during the forma-
tion of gametes. Although meiosis may seem much more complicated than mitosis,
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Figure 1.10: Meiosis is the formation of egg and sperm cétissexually reproducing
organisms, body cells are diploid, meaning they containgets of chromosomes (one set
from each parent). To maintain this state, the egg and sgetnhite during fertilization
must be haploid, meaning they each contain a single set ofrddsomes. During meiosis,
diploid cells undergo DNA replication, followed by two radsiof cell division, producing
four haploid sex cells.

it is really just two cell divisions in sequence. Each of these sequendesama
strong similarities to mitosis.

Meiosis Irefers to the first of the two divisions and is often calledréduction
division This is because it is here that the chromosome complement is reduced
from diploid (two copies) tchaploid (one copy). Interphase in meiosis is identical
to interphase in mitosis. At this stage, there is no way to determine what type of
division the cell will undergo when it divides. Meiotic division will only oacin
cells associated with male or female sex orgdephase lis virtually identical
to prophase in mitosis, involving the appearance ofd®mosomeshe devel-
opment of the spindle apparatus, and the breakdown of the nuclear nmeambra
Metaphase | is where the criticalffirence occurs between meiosis and mitosis.
In mitosis, all of the chromosomes line up on the metaphase plate in no particu-
lar order. In Metaphase |, the chromosome pairs are alighed on eitheofdide
metaphase plate. It is during this alignment that the chromatid arms may overlap
and temporarily fuse, resulting in what is callesbssoversDuring Anaphase ||
the spindle fibers contract, pulling the homologous pairs away from eaehant
toward each pole of the cell. [felophase ,la cleavage furrow typically forms,
followed by cytokinesisthe changes that occur in the cytoplasm of a cell during
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nuclear division; but the nuclear membrane is usually not reformed, anchtio-
mosomes do not disappear. At the end of Telophase |, each daughteasa
single set of chromosomes, half the total number in the original cell, that ike wh
the original cell was diploid; the daughter cells are now haploid.

Meiosis Ilis quite simply a mitotic division of each of the haploid cells pro-
duced in Meiosis I. There is no Interphase between Meiosis | and MeiRsis |
and the latter begins witRrophase Il At this stage, a new set of spindle fibers
forms and the chromosomes begin to move toward the equator of the cell. During
Metaphase |l all of the chromosomes in the two cells align with the metaphase
plate. InAnaphase lIthe centromeres split, and the spindle fibers shorten, drawing
the chromosomes toward each pole of the cellTdtophase lla cleavage furrow
develops, followed by cytokinesis and the formation of the nuclear membraee
chromosomes begin to fade and are replaced bygthaular chromatin a char-
acteristic of interphase. When Meiosis Il is complete, there will be a totalwf fo
daughter cells, each with half the total number of chromosomes as the original
cell. In the case afmale structuresall four cells will eventually develop intsperm
cells In the case of théemale life cyclesn higher organisms, three of the cells
will typically abort, leaving a single cell to develop into an egg cell, which is much
larger than a sperm cell.

Recombination—The Physical Exchange of DIA.organisms sifer a certain
number of smalimutations or random changes in a DNA sequence, during the
process of DNA replication. These are callggbntaneous mutatiorend occur

at a rate characteristic for that organisBenetic recombinationefers more to a
large-scale rearrangement of a DNA molecule. This process involvesgphe-
tween complementary strands of two parental duplex, or double-strddidad,

and results from a physical exchange of chromosome material.

The position at which a gene is located on a chromosome is caleia In a
given individual, one might find two €fierent versions of this gene at a particular
locus. These alternate gene forms are cadléeles During Meiosis |, when the
chromosomes line up along the metaphase plate, the two strands of a chromosome
pair may physically cross over one another. This may cause the strandsato b
apart at the crossover point and reconnect to the other chromosesuétjng in
the exchange of part of the chromosome.

Recombination results in a new arrangement of maternal and paternal alleles
on the same chromosome. Although the same genes appear in the same erder, th
alleles are dferent. This process explains whifspring from the same parents can
look so diferent. In this way, it is theoretically possible to have any combination
of parental alleles in anftspring, and the fact that two alleles appear together in
one dfspring does not have any influence on the statistical probability that anothe
offspring will have the same combination. This theoryioffependent assortmént
of alleles is fundamental to genetic inheritance. However, having said the, ith
an exception that requires further discussion.
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The frequency of recombination is actually not the same for all gene combi-
nations. This is because recombination is greatly influenced by the proximity of
one gene to another. If two genes are located close together on a coromdbe
likelihood that a recombination event will separate these two genes is less than
they were farther apart.inkagedescribes the tendency of genes to be inherited
together as a result of their location on the same chromosioimieage disequilib-
rium describes a situation in which some combinations of genes or genetic markers
occur more or less frequently in a population than would be expected freim th
distances apart. Scientists apply this concept when searching for dahgémeay
cause a particular disease. They do this by comparing the occurreacpetific
DNA sequence with the appearance of a disease. When they find a higlaton
between the two, they know they are getting closer to finding the appropéate g
sequence.

Binary Fission—How Bacteria ReproducBacteria reproduce through a fairly
simple process calldninary fission or the reproduction of a living cell by division
into two equal, or near equal, parts. As just noted, this type of asexuraldection
theoretically results in two identical cells. However, bacterial DNA has divelg
high mutation rate. This rapid rate of genetic change is what makes bacteaia ca
ble of developing resistance to antibiotics and helps them exploit invasion into a
wide range of environments.

Similar to more complex organisms, bacteria also have mechanisms for ex-
changing genetic material. Although not equivalent to sexual reprodudtie
end result is that a bacterium contains a combination of traits from tftereint
parentalcells. Three dierent modes of exchange have thus far been identified in
bacteria.

Conjunctioninvolves the direct joining of two bacteria, which allows their cir-
cular DNAs to undergo recombination. Bacteria can also undeagsformation
by absorbing remnants of DNA from dead bacteria and integrating theg@ménts
into their own DNA.. Lastly, bacteria can exchange genetic material thropgb-a
cess calledransduction in which genes are transported into and out of the cell
by bacterial viruses, calleblacteriophagesor by plasmids an autonomous self-
replicating extrachromosomal circular DNA.

Viral ReproductionBecause viruses are acellular and do not use ATP, they must
utilize the machinery and metabolism of a host cell to reproduce. For thisimeas
viruses are calledbligate intracellular parasitesBefore a virus has entered a host
cell, it is called a virion—a package of viral genetic matefiations—infectious

viral particles—can be passed from host to host either through dicetact or
through a vector, or carrier. Inside the organism, the virus can entf & war-

ious ways. Bacteriophages—bacterial viruses—attach to the cell wédicsuin
specific places. Once attached, enzymes make a small hole in the cell wall, and
the virus injects its DNA into the cell. Other viruses (such as HIV) enter the hos
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Animal Virus
Retrovirus

fadl

Figure 1.11: Types of viruses. This illustration depictsethtypes of viruses: a bacterial
virus, otherwise called a bacteriophage (left center); mimal virus (top right); and a

retrovirus (bottom right). Viruses depend on the host dadlt tthey infect to reproduce.
When found outside of a host cell, viruses, in their simplestf, consist only of genomic
nucleic acid, either DNA or RNA (depicted as blue), surrceshdy a protein coat, or

capsid.

via endocytosisthe process whereby cells take in material from the external envi-
ronment. After entering the cell, the virus’s genetic material begins the dégé&u
process of taking over the cell and forcing it to produce new viruses.

There are three fferent ways genetic information contained in a viral genome
can be reproduced. The form of genetic material contained imithecapsid the
protein coat that surrounds the nucleic acid, determines the exact tigplipgo-
cess. Some viruses have DNA, which once inside the host cell is replicatie
host along with its own DNA. Then, there are twdtdrent replication processes
for viruses containing RNA. In the first process, the viral RNA is directipied
using an enzyme calleleNA replicaseThis enzyme then uses that RNA copy as
a template to make hundreds of duplicates of the original RNA. A secongbgrou
of RNA-containing viruses, called thretroviruses uses the enzyme reverse tran-
scriptase to synthesize a complementary strand of DNA so that the virugsge
information is contained in a molecule of DNA rather than RNA. The viral DNA
can then be further replicated using the host cell machinery.

Steps Associated with Viral Reproduction.

1. Attachmentsometimes calledbsorption The virus attaches to receptors on
the host cell wall.

2. Penetration The nucleic acid of the virus moves through the plasma mem-
brane and into the cytoplasm of the host cell. The capsid of a phagetea bac
rial virus, remains on the outside. In contrast, many viruses that infengan
cells enter the host cell intact.

3. Replication The viral genome contains all the information necessary to pro-
duce new viruses. Once inside the host cell, the virus induces the Hdst ce
synthesize the necessary components for its replication.
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4. AssemblyThe newly synthesized viral components are assembled into new
viruses.

5. Release Assembled viruses are released from the cell and can now infect
other cells, and the process begins again.

When the virus has taken over the cell, it immediately directs the host to begin
manufacturing the proteins necessary for virus reproduction. Thiepnoduces
three kinds of proteinsearly proteins enzymes used in nucleic acid replication;
late proteins proteins used to construct the virus coat; &t proteing enzymes
used to break open the cell for viral exit. The final viral product ieadgsded spon-
taneously, that is, the parts are made separately by the host and areiggjetuer
by chance. This self-assembly is often aided by moleahiaperonesor proteins
made by the host that help the capsid parts come together.

The new viruses then leave the cell either by exocytosis or by lysis. Bpe«lo
bound animal viruses instruct the host’s endoplasmic reticulum to make certain
proteins, calledylycoproteins which then collect in clumps along the cell mem-
brane. The virus is then discharged from the cell at these exit sitestadfto as
exocytosis. On the other hand, bacteriophages must break odgse dhe cell to
exit. To do this, the phages have a gene that codes for an enzymelgatizgme
This enzyme breaks down the cell wall, causing the cell to swell and burst. T
new viruses are released into the environment, killing the host cell in thegsoc

One family of animal viruses, called the retroviruses, contains RNA genomes
in their virus particles but synthesize a DNA copy of their genome in infected
cells. Retroviruses provide an excellent example of how viruses camaplegypor-
tant role as models for biological research. Studies of these viruseghatefirst
demonstrated the synthesis of DNA from RNA templates, a fundamental mode fo
transferring genetic material that occurs in both eukaryotes and patkar

Why Study Viruses?. Virusese important to the study oholecular and cellu-

lar biology because they provide simple systems that can be used to manipulate
and investigate the functions of many cell types. We have just discusseditab
replication depends on the metabolism of the infected cell. Therefore, tte stu

of viruses can provide fundamental information about aspects of cédigyiand
metabolism. The rapid growth and small genome size of bacteria make them excel-
lent tools for experiments in biology. Bacterial viruses have also furihgsldied

the study of bacterial genetics and have deepened our understafdiregbasic
mechanisms of molecular genetics. Because of the complexity of an animal cell
genome, viruses have been even more important in studies of animal cells than
in studies of bacteria. Numerous studies have demonstrated the utility of animal
viruses as probes for investigatingtdrent activities of eukaryotic cells. Other
examples in which animal viruses have provided important models for biologica
research of their host cells include studieDiNA replication transcription RNA
processingandprotein transport
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Deriving New Cell Types

Look closely at the human body, and it is clear that not all cells are alike. Fo
example, cells that make up our skin are certainffedént from cells that make

up our inner organs. Yet, all of theftirent cell types in our body are alérived

or arise, from a single, fertilized egg cell throughfeientiation.Differentiation

is the process by which an unspecialized cell becomes specialized intd thee o
many cells that make up the body, such as a heart, liver, or muscle cell. During
differentiation, certain genes are turned on, or becactigated while other genes

are switched f§, orinactivated This process is intricately regulated. As a result, a
differentiated cell will develop specific structures and perform certairtifums

Mammalian Cell TypesThree basic categories of cells make up the mammalian
body: germ cells somatic cellsand stem cells Each of the approximately 100
trillion cells in an adult human has its own copy, or copies, of the genome, with the
only exception being certain cell types that lack nuclei in their fuljedentiated
state, such as red blood cells. The majority of these celldliateid, or have two
copies of each chromosome. These cells are cabheaktic cellsThis category of
cells includes most of the cells that make up our body, such as skin and muscle
cells. Germ line cellsare any line of cells that give rise wametes-eggs and
sperm—and are continuous through the generati®tesn cellson the other hand,
have the ability to divide for indefinite periods and to give rise to specialie8g.c
They are best described in the context of normal human development.

Human developmertegins when a sperm fertilizes an egg and creates a sin-
gle cell that has the potential to form an entire organism. In the first hdtes a
fertilization, this cell divides into identical cells. Approximately 4 days after fe
tilization and after several cycles of cell division, these cells begin toiasles
forming a hollow sphere of cells, calledodastocyst The blastocyst has an outer
layer of cells, and inside this hollow sphere, there is a cluster of cells caked th
inner cell mass The cells of the inner cell mass will go on to form virtually all
of the tissues of the human body. Although the cells of the inner cell mass can
form virtually every type of cell found in the human body, they cannoimf@n
organism. Therefore, these cells are referred fg@aspotent that is, they can give
rise to many types of cells but not a whole organism. Pluripotent stem cells un-
dergo further specialization into stem cells that are committed to give rise to cells
that have a particular function. Examples include blood stem cells that igive r
to red blood cells, white blood cells, and platelets, and skin stem cells that give
rise to the various types of skin cells. These more specialized stem cellsllack ¢
multipotert—capable of giving rise to several kinds of cells, tissues, or structures.
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Figure 1.12: Dfferentiation of human tissues. Human development beging alsperm
fertilizes an egg and creates a single cell that has the paitémform an entire organism,
called the zygote (top panel, mauve). In the first hours déteilization, this cell divides
into identical cells. These cells then begin to speciafiaening a hollow sphere of cells,
called a blastocyst (second panel, purple). The blastd@san outer layer of cells (yel-
low), and inside this hollow sphere, there is a cluster ofscedlled the inner cell mass
(light blue). The inner cell mass can give rise to the gerriseeéggs and sperm—as well
as cells derived from all three germ layers (ectoderm, lijbe; mesoderm, light green;
and endoderm, light yellow), depicted in the bottom panwlluding nerve cells, muscle
cells, skin cells, blood cells, bone cells, and cartilagepi@duced with permission from
the Office of Science Policy, the National Institutes of Health.

The Working Cell: DNA, RNA, and Protein Synthesis
DNA Replication

DNA replication or the process of duplicating a cell's genome, is required every
time a cell divides. Replication, like all cellular activities, requires specialmzed
teins for carrying out the job. In the first step of replication, a specdtkm, called

a helicase unwinds a portion of the parental DNA double helix. Next, a molecule
of DNA polymerase-a common name for two categories of enzymes that influ-
ence the synthesis of DNA— binds to one strand of the DNA. DNA polymerase
begins to move along the DNA strand in the 3’ to 5’ direction, using the single-
stranded DNA as a template. This newly synthesized strand is callddatimg
strandand is necessary for forming new nucleotides and reforming a double helix
Because DNA synthesis can only occur in the 5’ to 3’ direction, a secdwd D
polymerase molecule is used to bind to the other template strand as the double he-
lix opens. This molecule synthesizes discontinuous segments of polynuekotid
calledOkazaki fragmentsAnother enzyme, calleBNA ligase is responsible for
stitching these fragments together into what is calledabging strand
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Figure 1.13: An overview of DNA replication. Before a cellncdivide, it must first du-
plicate its DNA. This figure provides an overview of the DNAplieation process. In the
first step, a portion of the double helix (blue) is unwound byeticase. Next, a molecule
of DNA polymerase (green) binds to one strand of the DNA. livemalong the strand,
using it as a template for assembling a leading strand (fetl@eotides and reforming a
double helix. Because DNA synthesis can only occur 5’ to 3ee@ond DNA polymerase
molecule (also green) is used to bind to the other templedadts the double helix opens.
This molecule must synthesize discontinuous segmentsyrfipcieotides (called Okazaki
Fragments). Another enzyme, DNA Ligase (yellow), therchs these together into the
lagging strand.

The average human chromosome contains an enormous number of nucleotide
pairs that are copied at about 50 base pairs per second. Yet, thereptication
process takes only about an hour. This is because there areremioation ori-
gin siteson a eukaryotic chromosome. Therefore, replication can begin at some
origins earlier than at others. As replication nears completion, “bubbfasdwly
replicated DNA meet and fuse, forming two new molecules.

With multiple replication origin sites, one might ask, how does the cell know
which DNA has already been replicated and which still awaits replicationafe d
two replication control mechanisntsave been identified: one positive and one neg-
ative. For DNA to be replicated, each replication origin site must be boural by
set of proteins called th@rigin Recognition ComplexThese remain attached to
the DNA throughout the replication process. Specific accessory psotafedi-
censing factorsmust also be present for initiation of replication. Destruction of
these proteins after initiation of replication prevents further replication syoben
occurring. This is because licensing factors are only produced wigenutiear
membrane of a cell breaks down during mitosis.

DNA Transcription—Making mRNA

DNA transcriptionrefers to the synthesis of RNA from a DNA template. This pro-
cess is very similar to DNA replication. Of course, there affedent proteins that
direct transcription. The most important enzymeRiNA polymerasean enzyme
that influences the synthesis of RNA from a DNA template. For transcription to
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TACTG TAGTCGGCGTTCG TTAA GCTGTATT

Figure 1.14: Transcription is the process of making an RNpyaaf a gene sequence. This
copy, called a messenger RNA (mMRNA) molecule, leaves tHenoeleus and enters the
cytoplasm, where it directs the synthesis of the proteiricivti encodes.

be initiated, RNA polymerase must be able to recognize the beginning sequenc
of a gene so that it knows where to start synthesizing an mRNA. It is dir¢ote
this initiation site by the ability of one of its subunits to recognize a specific DNA
sequence found at the beginning of a gene, callepthmoter sequencdhe pro-
moter sequence is a unidirectional sequence found on one strand oNhéhBt
instructs the RNA polymerase in both where to start synthesis and in which di-
rection synthesis should continue. The RNA polymerase then unwinds tixtedo
helix at that point and begins synthesis of a RNA strand complementary tofone
the strands of DNA. This strand is called thetisenser template strangdwhereas

the other strand is referred to as thenseor coding strand. Synthesis can then
proceed in a unidirectional manner.

Although much is known about transcript processing, the signals amdsethat
instruct RNA polymerase to stop transcribing and dréjtlee DNA template re-
main unclear. Experiments over the years have indicated that procesgsagaic
messages contairpaly(A) addition signal]AAUAAA) at their 3’ end, followed by
a string of adenines. This poly(A) addition, also calledbéy/(A) site contributes
not only to the addition of the poly(A) tail but also to transcription termination and
the release of RNA polymerase from the DNA template. Yet, transcription does
not stop here. Rather, it continues for another 200 to 2000 basesd#yis site
before it is aborted. It is either before or during this termination processttie
nascent transcript isleaved or cut, at the poly(A) site, leading to the creation of
two RNA molecules. The upstream portion of the newly formedascentRNA
then undergoes further modifications, calpest-transcriptional modificatigrand
becomes mRNA. The downstream RNA becomes unstable and is rapidlylddgra

Although the importance of the poly(A) addition signal has been established,
the contribution of sequences further downstream remains uncertaneAtrstudy
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Figure 1.15: Translation is the process of translating #opience of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protgihesis. The genetic
code describes the relationship between the sequence®phas in a gene and the cor-
responding amino acid sequence that it encodes. In theyteflasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assemelgbedtein.

suggests that a defined region, calledt#renination regionis required for proper
transcription termination. This study also illustrated that transcription termination
takes place in two distinct steps. In the first step, the nascent RNA is dledve
specific subsections of the termination region, possibly leading to its release f
RNA polymerase. In a subsequent step, RNA polymerase disengamasttie
DNA. Hence, RNA polymerase continues to transcribe the DNA, at leasa fo
short distance.

Protein Translation—How Do Messenger RNAs Direct Protein Synthesis?

The cellular machinery responsible for synthesizing proteins isiltlesome The
ribosome consists of structural RNA and about &Bedent proteins. In its inactive
state, it exists as two subunitstaaige subunitand asmall subunitWhen the small
subunit encounters an mMRNA, the procesgrahnslatingan mRNA to a protein
begins. In the large subunit, there are two sites for amino acids to bind asd thu
be close enough to each other to form a bond. Thsite’ accepts a neviransfer

RNA or tRNA—the adaptor molecule that acts as a translator between mRNA and
protein—bearing an amino acid. The “P sieSitebinds the tRNA that becomes
attached to the growing chain.

As we just discussed, the adaptor molecule that acts as a translator between
MRNA and protein is a specific RNA molecule, the tRNA. Each tRNA has a spe-
cific acceptor sitethat binds a particular triplet of nucleotides, calle¢@lon
and ananti-codon sitethat binds a sequence of three unpaired nucleotides, the
anti-codon, which can then bind to the the codon. Each tRNA also has #ispec
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Figure 1.16: Transfer RNA (tRNA) is a small RNA molecule tipatrticipates in protein
synthesis. Each tRNA molecule has two important areasnadieotide region called the
anticodon and a region for attaching a specific amino acidinguranslation, each time
an amino acid is added to the growing chain, a tRNA molecute$obase pairs with
its complementary sequence on the messenger RNA (mRNA)coieleensuring that the
appropriate amino acid is inserted into the protein.

charger protein called anaminoacyl tRNA synthetas€his protein can only bind
to that particular tRNA and attach the correct amino acid to the acceptor site.

Thestart signalfor translation is the codon ATG, which codes for methionine.
Not every protein necessarily starts with methionine, however. Oftentime# sis
amino acid will be removed in later processing of the protein. A tRNA charged
with methionine binds to the translation start signal. The large subunit binds to
the mRNA and the small subunit, and so begisngation the formation of the
polypeptide chain. After the first charged tRNA appears in the A site, thsoiine
shifts so that the tRNA is now in the P site. New charged tRNAs, correspgndin
the codons of the mRNA, enter the A site, and a bond is formed between the two
amino acids. The first tRNA is now released, and the ribosome shifts agtiatso
a tRNA carrying two amino acids is now in the P site. A new charged tRNA then
binds to the A site. This process of elongation continues until the ribosoroleega
what is called astop codona triplet of nucleotides that signals the termination of
translation. When the ribosome reaches a stop codon, no aminoacyl tRN#\ bind
to the empty A site. This is the ribosome signal to break apart into its large and
small subunits, releasing the new protein and the mRNA. Yet, this isn't althays
end of the story. A protein will often undergo further modification, calbedt-
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Figure 1.17: A stop codon is a trinucleotide sequence withinessenger RNA (mMRNA)
molecule that signals a halt to protein synthesis. The geoetle describes the relationship
between the sequence of DNA bases (A, C, G, and T) in a genehancbtresponding
protein sequence that it encodes. The cell reads the segjoétie gene in groups of three
bases. Of the 64 possible combinations of three bases, 6fyspe amino acid, while the
remaining three combinations are stop codons.

translational modificationFor example, it might be cleaved by a protein-cutting
enzyme, called a protease, at a specific place or have a few of its amirs acid
altered.

DNA Repair Mechanisms

Maintenance of the accuracy of the DNA genetic code is critical for botlotige
and short-term survival of cells and species. Sometimes, normal celttiétias,
such as duplicating DNA and making new gametes, introduce changestar
tionsin our DNA. Other changes are caused by exposure of DNA to chemicals,
radiation, or other adverse environmental conditions. No matter the sgeretic
mutations have the potential for both positive and negatiiects on an individ-
ual as well as its species. A positive change results in a slighfilgrdnt version
of a gene that might eventually prove beneficial in the face of a new dismas
changing environmental conditions. Such beneficial changes are thersione
of evolution. Other mutations are considedileterious or result in damage to a
cell or an individual. For example, errors within a particular DNA seqeenay
end up either preventing a vital protein from being made or encoding atokefe
protein. It is often these types of errors that lead to various diseass.state

The potential for DNA damage is counteracted by a vigorous surveillamte a
repair system. Within this system, there are a number of enzymes capable of re
pairing damage to DNA. Some of these enzymes are specific for a particodar ty
of damage, whereas others can handle a range of mutation types. Ve&sass
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Figure 1.18: A peptide is one or more amino acids linked byrgbhal bonds. The term also
refers to the type of chemical bond that joins the amino attigsther. A series of linked
amino acids is a polypeptide. The cell’s proteins are maat® fvne or more polypeptides.
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Figure 1.19: Proteins are an important class of moleculesdan all living cells. A protein
is composed of one or more long chains of amino acids, theesegof which corresponds
to the DNA sequence of the gene that encodes it. Proteinsaplagiety of roles in the cell,
including structural (cytoskeleton), mechanical (musddochemical (enzymes), and cell
signaling (hormones). Proteins are also an essential pdi¢o
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also difer in the degree to which they are able to restore the normaililditype
sequence.

Categories of DNA Repair Systems.

Photoreactivatioris the process whereby genetic damage caused by ultra-
violet radiation is reversed by subsequent illumination with visible or near-
ultraviolet light.

Nucleotide excision repais used to fix DNA lesions, such as single-stranded
breaks or damaged bases, and occurs in stages. The first stagesmeaiog-
nition of the damaged region. In the second stage, two enzymatic reactions
serve to remove, or excise, the damaged sequence. The third stagesnvolv
synthesis by DNA polymerase of the excised nucleotides using the second
intact strand of DNA as a template. Lastly, DNA ligase joins the newly syn-
thesized segment to the existing ends of the originally damaged DNA strand.

Recombination repajror post-replication repair fixes DNA damage by a
strand exchange from the other daughter chromosome. Because iesvolv
homologous recombination, it is largely error free.

Base excision repaiallows for the identification and removal of wrong
bases, typically attributable tieaminatior—the removal of an amino group
(NH2)—of normal bases as well as from chemical modification.

Mismatch repairis a multi-enzyme system that recognizes inappropriately
matched bases in DNA and replaces one of the two bases with one that
“matches” the other. The major problem here is recognizing which of the
mismatched bases is incorrect and therefore should be removed argdepla

Adaptivdnducible repairdescribes several protein activities that recognize
very specific modified bases. They then transfer this modifying group fro
the DNA to themselves, and, in doing so, destroy their own function. These
proteins are referred to as inducible because they tend to regulate thmeir ow
synthesis. For example, exposure to modifying agents induces, or turns on
more synthesis and therefore adaptation.

SOS repairor inducible error-prone repairis a repair process that occurs

in bacteria and is induced, or switched on, in the presence of potentially
lethal stresses, such as UV irradiation or the inactivation of genestdsen
for replication. Some responses to this type of stress incluatagenesis-

the production of mutations—or cell elongation without cell division. In this
type of repair process, replication of the DNA template is extremely inac-
curate. Obviously, such a repair system must be a desperate refmuts

cell, allowing replication past a region where the wild-type sequence has
been lost.
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From Cells to Genomes

Understanding what makes up a cell and how that cell works is fundahtenta
all of the biological sciences. Appreciating the similarities arftedeénces between
cell types is particularly important to the fields of cell and molecular biologgs€h
fundamental similarities and fiierences provide a unifying theme, allowing the
principles learned from studying one cell type to be extrapolated andajzee
to other cell types.

Perhaps the most fundamental property of all living things is their ability to re-
produce. All cells arise from pre-existing cells, that is, their genetic matauat
be replicated and passed from parent cell to progeny. Likewise, all reliuter
organisms inherit their genetic information specifying structure and funéitoon
their parents. The next section of the genetics primer, What is a Genotaéds de
how genetic information is replicated and transmitted from cell to cell and ergan
ism to organism.
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Figure 1.20: The four DNA bases. Each DNA base is made up afufar 2’-deoxyribose
linked to a phosphate group and one of the four bases depbi@eb: adenine (top left),
cytosine (top right), guanine (bottom left), and thyminet{bm right).

1.2 Whatis a Genome

Life is specified bygenomesEvery organism, including humans, has a genome
that contains all of the biological information needed to build and maintain a liv-
ing example of that organism. The biological information contained in a genome
is encoded in itgleoxyribonucleic acid (DNAxnd is divided into discrete units
calledgenes Genes code for proteins that attach to the genome at the appropriate
positions and switch on a series of reactions called gene expression.

The Physical Structure of the Human Genome
Nuclear DNA

Inside each of our cells liesraucleus a membrane-bounded region that provides
a sanctuary for genetic information. The nucleus contains long stranD$lAf
that encode this genetic information.[2NA chain is made up of four chemical
basesadening/A) andguanineg(G), which are calleghurines andcytosingC) and
thymine(T), referred to apyrimidines Each base has a slightlyfiirent composi-
tion, or combination of oxygen, carbon, nitrogen, and hydrogen. IINA Bhain,
every base is attached to a sugar molecule (deoxyribose) and a pteosytecule,
resulting in a nucleic acid arucleotide Individual nucleotides are linked through
the phosphate group, and it is the precise order, or sequence, lebtides that
determines the product made from that gene.

A DNA chain, also called a strand, has a sense of direction, in which ahe en
is chemically dfferent than the other. The so-called 5’ end terminates in a 5’ phos-
phate group (-PO4); the 3’ end terminates in a 3’ hydroxyl group (-Hjs is
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Figure 1.21: A nucleotide is the basic building block of miclacids. RNA and DNA are
polymers made of long chains of nucleotides. A nucleotidesigis of a sugar molecule (ei-
ther ribose in RNA or deoxyribose in DNA) attached to a pha@éplyroup and a nitrogen-
containing base. The bases used in DNA are adenine (A),ingt¢€), guanine (G), and
thymine (T). In RNA, the base uracil (U) takes the place ohtime.

important because DNA strands are always synthesized in the 5’ to 8tidine

The DNA that constitutes a gene is a double-stranded molecule consisting of
two chains running in opposite directions. The chemical nature of the lases
double-stranded DNA creates a slight twisting force that gives DNA itsaciber-
istic gently coiled structure, known as the double helix. The two strandsoare ¢
nected to each other by chemical pairing of each base on one strandeoificsp
partner on the other strand. Adenine (A) pairs with thymine (T), and gedi@h
pairs with cytosine (C). Thu®-T andG-C base pairsare said to beomplemen-
tary. This complementary base pairing is what makes DNA a suitable molecule
for carrying our genetic information—one strand of DNA can act sanagplateto
direct the synthesis of a complementary strand. In this way, the information in a
DNA sequence is readily copied and passed on to the next generatieltsof ¢

Organelle DNA

Not all genetic information is found in nuclear DNA. Both plants and animals hav
an organelle—a “little organ” within the cell— called tmitochondrion Each
mitochondrion has its own set of genes. Plants also have a second gt
chloroplast which also has its own DNA. Cells often have multiple mitochon-
dria, particularly cells requiring lots of energy, such as active muscle ddiis is
because mitochondria are responsible for converting the energy $toneakcro-
molecules into a form usable by the cell, namely,@ldenosine triphosphate (ATP)
molecule. Thus, they are often referred to as the power generators célth

Unlike nuclear DNA(the DNA found within the nucleus of a cell), half of which
comes from our mother and half from our father, mitochondrial DNA is orttein
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Base Pairs

Figure 1.22: A base pair is two chemical bases bonded to cot@nforming a "rung of
the DNA ladder.” The DNA molecule consists of two strandd thismd around each other
like a twisted ladder. Each strand has a backbone made ofiaiteg sugar (deoxyribose)
and phosphate groups. Attached to each sugar is one of feasbadenine (A), cytosine
(C), guanine (G), or thymine (T). The two strands are helettiogr by hydrogen bonds
between the bases, with adenine forming a base pair withitiejrand cytosine forming a
base pair with guanine.

ited from our mother. This is because mitochondria are only found in the female
gametes or “eggs” of sexually reproducing animals, not in the male gamete, or
sperm. Mitochondrial DNA also does not recombine; there is néfiahg of genes

from one generation to the other, as there is with nuclear genes.

Large numbers of mitochondria are found in the tail of sperm, providing them
with an engine that generates the energy needed for swimming toward the egg
However, when the sperm enters the egg during fertilization, the tail félia&ing
away the father’s mitochondria.

Why Is There a Separate Mitochondrial Genome?

The energy-conversion process that takes place in the mitochondisglakeaer-
obically, in the presence of oxygen. Other energy conversion processesgglth
take placeanaerobically or without oxygen. The independent aerobic function of
these organelles is thought to have evolved from bacteria that lived iosatber
simple organisms in a mutually beneficial, ®ymbioti¢ relationship, providing
them with aerobic capacity. Through the process of evolution, these tijayisms
became incorporated into the cell, and their genetic systems and cellular fisnctio
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Mitochondria

Mitochondrial DNA

Figure 1.23: Mitochondrial DNA is the small circular chrosamme found inside mitochon-
dria. The mitochondria are organelles found in cells thathe sites of energy production.
The mitochondria, and thus mitochondrial DNA, are passeuwhfmother to @spring.

became integrated to form a single functioning cellular unit. Because mitodhond
have their own DNA, RNA, and ribosomes, this scenario is quite possibigtd:
ory is also supported by the existence of a eukaryotic organism, callecthtieba,
which lacks mitochondria. Therefore, amoeba must always have a symigiatic
tionship with an aerobic bacterium.

Why Study Mitochondria?

There are many diseases caused by mutatiomaitochondrial DNA (mtDNA)
Because the mitochondria produce energy in cells, symptoms of mitochondrial
diseases often involve degeneration or functional failure of tissue. eme,
mtDNA mutations have been identified in some forms of diabetes, deafness, and
certain inherited heart diseases. In addition, mutations in mtDNA are able to ac-
cumulate throughout an individual's lifetime. This igfdrent from mutations in
nuclear DNA, which has sophisticated repair mechanisms to limit the accumula-
tion of mutations. Mitochondrial DNA mutations can also concentrate in the mi-
tochondria of specific tissues. A variety of deadly diseases are attributata

large number of accumulated mutations in mitochondria. There is even a theory,
the Mitochondrial Theory of Agingthat suggests that accumulation of mutations
in mitochondria contributes to, or drives, the aging process. Thesetdai® asso-
ciated with Parkinson’s and Alzheimer’s disease, although it is not kndwattver
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the defects actually cause or are a direct result of the diseases. efpeedence
suggests that the mutations contribute to the progression of both diseases.

In addition to the critical cellular energy-related functions, mitochondriaége
are useful to evolutionary biologists because of their maternal inheritartthigh
rate of mutation. By studying patterns of mutations, scientists are able to recon-
struct patterns of migration and evolution within and between species. &,
MtDNA analysis has been used to trace the migration of people from Asiasacros
the Bering Strait to North and South America. It has also been used to idantify
ancient maternal lineage from which modern man evolved.

Ribonucleic Acids

Just like DNA,ribonucleic acid (RNA)s a chain, or polymer, of nucleotides with
the same 5’ to 3’ direction of its strands. However, the ribose sugar cagnpon
of RNA is slightly different chemically than that of DNA. RNA has a 2’ oxygen
atom that is not present in DNA. Other fundamental structurdéiinces exist.
For example, uracil takes the place of the thymine nucleotide found in DN&, an
RNA is, for the most part, a single-stranded molecule. DNA directs the syisthe
of a variety of RNA molecules, each with a unique role in cellular function. For
example, all genes that code for proteins are first made into an RNA strand
the nucleus called messenger RNA (mMRNA)he mRNA carries the information
encoded in DNA out of the nucleus to the protein assembly machinery, cafled th
ribosome in the cytoplasm. The ribosome complex uses mRNA as a template to
synthesize the exact protein coded for by the gene.

In addition to mMRNA, DNA codes for other forms of RNA, including riboso-
mal RNAs (rRNAs), transfer RNAs (tRNAs), and small nuclear RNASR(SAS).
rRNAs and tRNAs participate in protein assembly whereas snRNAs aid in-a pro
cess called splicing —the process of editing of mMRNA before it can be usad a
template for protein synthesis.

Proteins

Although DNA is the carrier of genetic information in a cell, proteins do the bulk
of the work. Proteins are long chains containing as many as 2€relit kinds
of amino acids. Each cell contains thousands diedent proteinsenzymeshat
make new molecules and catalyze nearly all chemical processes ingstalis;
tural componentshat give cells their shape and help them move; hormones that
transmit signals throughout the bodntibodiesthat recognize foreign molecules;
andtransport moleculeshat carry oxygen. The genetic code carried by DNA is
what specifies the order and number of amino acids and, therefore,ahe ahd
function of the protein.

The “Central Dogm&—a fundamental principle of molecular biology—states
that genetic information flows from DNA to RNA to protein. Ultimately, however,
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Figure 1.24: Messenger RNA (mRNA) is a single-stranded RNAecule that is comple-
mentary to one of the DNA strands of a gene. The mRNA is an RNA&iee of the gene
that leaves the cell nucleus and moves to the cytoplasm wgneteins are made. During
protein synthesis, an organelle called a ribosome movegydlee mRNA, reads its base
sequence, and uses the genetic code to translate eactbés®ériplet, or codon, into its
corresponding amino acid.

Polypeptide Chain
m Amino Acids
Amino Acids
Amino Acids
Ala: Alanine GlIn: Glutamine Leu: Leucine Ser: Serine
Arg: Arginine Glu: Glutamic acid ~ Lys: Lysine Thr: Threonine
Asn: Asparagine Gly: Glycine Met: Methionine Trp: Tryptophane
Asp:Aspartic acid His: Histidine Phe: Phenylalanine  Tyr: Tyrosisne
Cys:Cysteine Ile: Isoleucine Pro: Proline Val: Valine

Figure 1.25: Amino acids are a set of 2@dient molecules used to build proteins. Proteins
consist of one or more chains of amino acids called polydepti The sequence of the
amino acid chain causes the polypeptide to fold into a shagded biologically active. The
amino acid sequences of proteins are encoded in the genes.
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Amino acids

Met Thr ‘Asp GIn 'Pro GIn Ala Glu Leu

e ——— ———————— —— —
AUGACGGAUCAGCCGCAAGCGGAAUUG UAA

| Codon2 Stop
Codon1 Codon3 Codon

mRNA

Figure 1.26: A codon is a trinucleotide sequence of DNA or RiAt corresponds to
a specific amino acid. The genetic code describes the netdip between the sequence
of DNA bases (A, C, G, and T) in a gene and the correspondintgipreéequence that
it encodes. The cell reads the sequence of the gene in grotipee bases. There are 64
different codons: 61 specify amino acids while the remaininegtire used as stop signals.

the genetic code resides in DNA because only DNA is passed from giemet@
generation. Yet, in the process of making a protein, the encoded infornmatish

be faithfully transmitted first to RNA then to protein. Transferring the codenfr
DNA to RNA is a fairly straightforward process call&@nscription Deciphering

the code in the resulting mRNA is a little more complex. It first requires that the
MRNA leave the nucleus and associate with a large complex of specialized RNAs
and proteins that, collectively, are called ttigosome Here the mRNA is trans-
lated into protein by decoding the mRNA sequence in blocks of three RNApase
calledcodonswhere each codon specifies a particular amino acid. In this way, the
ribosomal complexuilds a protein one amino acid at a time, with the order of
amino acids determined precisely by the order of the codons in the mRNA.

A given amino acid can have more than one codon. These redundasriscod
usually difer at the third position. For example, the amino acid serine is encoded
by UCU, UCC, UCA, antr UCG. This redundancy is key to accommodating
mutations that occur naturally as DNA is replicated and new cells are prdduce
By allowing some of the random changes in DNA to have fieat on the ultimate
protein sequence, a sort of genetic safety net is created. Some amlonscode
for an amino acid at all but instruct the ribosome when to stop adding new amino
acids.

The Core Gene Sequence: Introns and Exons

Genes make up about 1 percent of the total DNA in our genome. In the human
genome, the coding portions of a gene, caigdns are interrupted by intervening
sequences, callédtrons In addition, a eukaryotic gene does not code for a protein
in one continuous stretch of DNA. Both exons and introns &@nscribed into
MRNA, but before itis transported to the ribosome, the primary mRNA trarissrip
edited. This editing process removes the introns, joins the exons togettiadds
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Table 1.1: RNA triplet codons and their corresponding anaicids.

U C A G
UUU Phenylalaningl UCU Serine UAU Tyrosine UGU Cysteine
UUC Phenylalaningl UCC Serine UAC Tyrosine UGC Cysteine
UUA Leucine UCA Serine UAA Stop UGA Stop
UUG Leucine UCG Serine UAG Stop UGG Tryptophan
CUU Leucine CCU Proline CAU Histidine CGU Arginine
CUC Leucine CCC Proline CAC Histidine CGC Arginine
CUA Leucine CCA Proline CAA Glutamine | CGA Arginine
CUG Leucine CCG Proline CAG Glutamine | CGG Arginine
AUU lIsoleucine ACU Threonine| AAU Asparagine| AGU Serine
AUC Isoleucine ACC Threonine| AAC Asparagine| AGC Serine
AUA lIsoleucine ACA Threonine| AAA Lysine AGA Arginine
AUG Methionine ACG Threonine| AAG Lysine AGG Arginine
GUU Valine GCU Alanine GAU Aspartate | GGU Glycine
GUC Valine GCC Alanine GAC Aspartate | GGC Glycine
GUA Valine GCA Alanine GAA Glutamate | GGA Glycine
GUG Valine GCG Alanine | GAG Glutamate | GGG Glycine

Chromosome

DNA (Double Helix)

Figure 1.27: An exon is the portion of a gene that codes fonaracids. In the cells of
plants and animals, most gene sequences are broken up by om@e DNA sequences
called introns. The parts of the gene sequence that aressquré the protein are called ex-
ons, because they are expressed, while the parts of the ggmerse that are not expressed
in the protein are called introns, because they come in letwar interfere with—the ex-
ons. In the cells of plants and animals, most gene sequerebsaken up by one or more
introns.
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Parental DNA Molecules
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Figure 1.28: Recombination. Recombination involves pgirbetween complementary
strands of two parental duplex DNAs (top and middle pandi)s process creates a stretch
of hybrid DNA (bottom panel) in which the single strand of aheplex is paired with its
complement from the other duplex.

unique features to each end of the transcript to makeattireé mRNA. One might
then ask what the purpose of an intron is if it is spliced out after it is tréveat?

It is still unclear what all the functions of introns are, but scientists belibat
some serve as the site frecombination the process by which progeny derive a
combination of genes flerent from that of either parent, resulting in novel genes
with new combinations of exons, the key to evolution.

Gene Prediction Using Computers

When the complete mRNA sequence for a gene is known, computer programs ar
used to align the mRNA sequence with the appropriate region of the genomic DNA
sequence. This provides a reliable indication of the beginning and ene cdtling
region for that gene. In the absence of a complete mMRNA sequence uhédrees

can be estimated by ever-improving, but still inexact, gene prediction seftWae
problem is the lack of a single sequence pattern that indicates the begim®ingd o

of a eukaryotic gene. Fortunately, the middle of a gene, referred to asthgene
sequencehas enough consistent features to allow more reliable predictions.
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Figure 1.29: An overview of transcription and translatidhis drawing provides a graphic
overview of the many steps involved in transcription andgtation. Within the nucleus of
the cell (light blue), genes (DNA, dark blue) are transadibéo RNA. This RNA molecule
is then subject to post-transcriptional modification anatiam, resulting in a mature mRNA
molecule (red) that is then transported out of the nucledsirto the cytoplasm (peach),
where it undergoes translation into a protein. mMRNA molesalre translated by ribosomes
(purple) that match the three-base codons of the mRNA middouthe three-base anti-
codons of the appropriate tRNA molecules. These newly ggitled proteins (black) are
often further modified, such as by binding to affieetor molecule (orange), to become
fully active.

From Genes to Proteins: Start to Finish

We just discussed that the journey from DNA to mRNA to protein requires that
a cell identify where a gene begins and ends. This must be done botly doein
transcription and the translation process.

Transcription

Transcription the synthesis of an RNA copy from a sequence of DNA, is carried
out by an enzyme calleBNA polymeraseThis molecule has the job of recogniz-
ing the DNA sequence where transcription is initiated, callegpthenoter siteIn
general, there are two “promoter” sequences upstream from the begifrevery
gene. The location and base sequence of each promoter site vamplfaryotes
(bacteria) an@ukaryoteghigher organisms), but they are both recognized by RNA
polymerase, which can then grab hold of the sequence and drive tthegtion of

an mRNA.

Eukaryotic cells have threeftierent RNA polymerases, each recognizing three
classes of gene®NA polymerase lis responsible for synthesis of mMRNAs from
protein-coding genes. This polymerase requires a sequence resefilifg,
commonly referred to as thRATA boxwhich is found 25-30 nucleotides upstream
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of the beginning of the gene, referred to asittigator sequence

Transcription terminates when the polymerase stumbles upon a termination,
or stop signal. In eukaryotes, this process is not fully understoodkaBrotes,
however, tend to have a short region composed of G’s and C’s thaleisafold
in on itself and form complementary base pairs, creating a stem in the new mRNA.
This stem then causes the polymerase to trip and releaseagoent or newly
formed, mRNA.

Translation

The beginning oftranslation the process in which the genetic code carried by
MRNA directs the synthesis of proteins from amino acid$eds slightly for prokary-
otes and eukaryotes, although both processes always initiate at a foodoe-
thionine. For prokaryotes, the ribosome recognizes and attaches aqhense
AGGAGGU on the mRNA, called th€hine-Delgarno sequenciat appears just
upstream from the methionine (AUG) codon. Curiously, eukaryotes la&kdbog-
nition sequence and simply initiate translation at the amino acid methionine, usu-
ally coded for by the bases AUG, but sometimes GUG. Translation is terminated
for both prokaryotes and eukaryotes when the ribosome reached tmetoree

stop codons.

Structural Genes, Junk DNA, and Regulatory Sequences

Over 98 percent of the genome is of unknown function. Although oftfarned to
as “junk” DNA, scientists are beginning to uncover the function of many e$¢h
intergenic sequences—the DNA found between genes.

Structural GenesSequences that code for proteins are calledctural genesAl-
though it is true that proteins are the major components of structural elements in
cell, proteins are also the real workhorses of the cell. They perfocm fsunctions

as transporting nutrients into the cell; synthesizing new DNA, RNA, and iprote
molecules; and transmitting chemical signals from outside to inside the cell, as
well as throughout the cell—both critical to the process of making proteins.

Regulatory Sequence.class of sequences callegjulatory sequencesakes up

a numerically insignificant fraction of the genome but provides critical tions.

For example, certain sequences indicate the beginning and end of gikegsor
initiating replication and recombination, or provide landing sites for proteirts tha
turn genes on andfo Like structural genes, regulatory sequences are inherited,;
however, they are not commonly referred to as genes.

Other DNA Regiong-orty to forty-five percent of our genome is made up of short
sequences that are repeated, sometimes hundreds of times. Therenareus
forms of this ‘repetitive DNA, and a few have known functions, such as stabiliz-
ing the chromosome structure or inactivating one of the two X chromosomes in
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Figure 1.30: A chromosome. A chromosome is composed of alsagymolecule of DNA
and associated proteins that carry hereditary informafidve centromere, shown at the
center of this chromosome, is a specialized structure th@tas during cell division and
ensures the correct distribution of duplicated chromosotoadaughter cells. Telomeres
are the structures that seal the end of a chromosome. Tedsmlkay a critical role in chro-
mosome replication and maintenance by counteracting tiuetey of the chromosome to
otherwise shorten with each round of replication.

developing females, a process calkdhactivation The most highly repeated se-
guences found so far in mammals are callsaltéllite DNA because their unusual
composition allows them to be easily separated from other DNA. Thesersszgie
are associated with chromosome structure and are found a&etiteomereqor
centers) andelomeregends) of chromosomes. Although they do not play a role
in the coding of proteins, they do play a significant role in chromosome steyctu
duplication, and cell division. The highly variable nature of these sexpsemakes
them an excellentrfarker by which individuals can be identified based on their
unique pattern of their satellite DNA.

Another class of non-coding DNA is th@$eudogerie so named because it is
believed to be a remnant of a real gene that hfesed mutations and is no longer
functional. Pseudogenes may have arisen through the duplication ottofuad
gene, followed by inactivation of one of the copies. Comparing the pcesen
absence of pseudogenes is one method used by evolutionary genetigisigfo
species and to determine relatedness. Thus, these sequences drnetthoagy a
record of our evolutionary history.

How Many Genes Do Humans Have?

In February 2001, two largely independent draft versions of the hugemome
were published. Both studies estimated that there are 30,000 to 40,000rgdTees
human genome, roughly one-third the number of previous estimates. Merelse
scientists estimated that there are less than 30,000 human genes. Hoveestil, w
have to make guesses at the actual number of genes, because ntihakhoman
genome sequence is annotated and not all of the known sequencehasbigned
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a particular position in the genome.

So, how do scientists estimate the number of genes in a genome? For the most
part, they look for tell-tale signs of genes in a DNA sequence. These gicpén
reading framesstretches of DNA, usually greater than 100 bases, that are not in-
terrupted by a stop codon such as TAA, TAG or TG#art codonssuch as ATG;
specific sequences foundsglice junctionsa location in the DNA sequence where
RNA removes the non-coding areas to form a continuous gene tranecripgns-
lation into a protein; andene regulatory sequencékhis process is dependent on
computer programs that search for these patterns in various sequadalcases and
then make predictions about the existence of a gene.

From One Gene—One Protein to a More Global Perspective

Only a small percentage of the 3 billion bases in the human genome becomes an
expressed gene product. However, of the approximately 1 percent gemome

that is expressed, 40 percent is alternatively spliced to produce multiptieins

from a single geneAlternative splicingrefers to the cutting and pasting of the
primary mRNA transcript into various combinations of mature mRNA. Therefore
the one gene—one protein theory, originally framed as “one gene—ayane,

does not precisely hold.

With so much DNA in the genome, why restrict transcription to a tiny portion,
and why make that tiny portion work overtime to produce many alternate tran-
scripts? This process may have evolved as a way to limit the deleteffecsseof
mutations. Genetic mutations occur randomly, and ffeceof a small number of
mutations on a single gene may be minimal. However, an individual having many
genes each with small changes could weaken the individual, and thussitiesp
On the other hand, if a single mutatiofiexts several alternate transcripts at once,
it is more likely that the ffect will be devastating—the individual may not survive
to contribute to the next generation. Thus, alternate transcripts from le gjege
could reduce the chances that a mutated gene is transmitted.

Gene Switching: Turning Genes On and Off

The estimated number of genes for humans, less than 30,000, is ndfeserdi
from the 25,300 known genes of Arabidopsis thaliana, commonly called rdustar
grass. Yet, we appear, at least at first glance, to be a far more coogl@xism.

A person may wonder how this increased complexity is achieved. One alssve

in the regulatory system that turns genes on affidTthis system also precisely
controls the amount of a gene product that is produced and can fumibeify

the product after it is made. This exquisite control requires multiple regylater
put points. One veryf@&cient point occurs at transcription, such that an mRNA is
produced only when a gene product is needed. Cells also regulateegpres-
sion bypost-transcriptional maodificatigrby allowing only a subset of the mRNAs
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to go on to translation; or by restricting translation of specific mMRNAs to only
when the product is needed. At other levels, cells regulate gene siqréisrough
DNA folding, chemical modification of the nucleotide bases, and intrickted-
back mechanismig which some of the gene’s own protein product directs the cell
to cease further protein production.

Controlling Transcription

Promoters and Regulatory SequencEsnscription is the process whereby RNA
is made from DNA. It is initiated when an enzymNA polymerasebinds to

a site on the DNA called aromoter sequencén most cases, the polymerase is
aided by a group of proteins callettdnscription factoréthat perform specialized
functions, such as DNA sequence recognition and regulation of the prageis
enzyme activity. Other regulatory sequences incladivators repressors and
enhancersThese sequences candis-acting(affecting genes that are adjacent to
the sequence) drans-acting(affecting expression of the gene from a distant site),
even on another chromosome.

The Globin Genes: An Example of Transcriptional Regulatiin.example of
transcriptional control occurs in the family of genes responsible for thdye-
tion of globin. Globin is the protein that complexes with the iron-containing heme
molecule to make hemoglobiflemoglobintransports oxygen to our tissues via
red blood cells. In the adult, red blood cells do not contain DNA for makivg ne
globin; they are ready-made with all of the hemoglobin they will need.

During the first few weeks of life, embryonic globin is expressed in the yolk
sac of the egg. By week five of gestation, globin is expressed in earlydaits.
By birth, red blood cells are being produced, and globin is expresse ibahe
marrow. Yet, the globin found in the yolk is not produced from the same gene
is the globin found in the liver or bone marrow stem cells. In fact, at eagesta
of development, dierent globin genes are turned on arititbrough a process of
transcriptional regulation callegtvitching.

To further complicate matters, globin is made from twietient protein chains:
an alpha-like chain coded for on chromosome 16; and a beta-like chagd ¢od
on chromosome 11. Each chromosome has the embryonic, fetal, and adult fo
lined up on the chromosome in a sequential order for developmental sipres
The developmentally regulated transcription of globin is controlled by a nuatber
cis-acting DNA sequences, and although there remains a lot to be ledmedize
interaction of these sequences, one known control sequence is amcenlgalled
the Locus Control Region (LCRYhe LCR sits far upstream on the sequence and
controls the alpha genes on chromosome 16. It may also interact with othansfa
to determine which alpha gene is turned on.

Thalassemiaare a group of diseases characterized by the absence or decreased
production of normal globin, and thus hemoglobin, leading to decreasggnxn



1-42 CHAPTER 1. CELL BIOLOGY PRIMER

the system. There are alpha and beta thalassemias, defined by the dafenty

and there are variations of each of these, depending on whether thygoenabfe-

tal, or adult forms areféected angbr expressed. Although there is no known cure
for the thalassemias, there are medical treatments that have been devwlepdd

on our current understanding of both gene regulation and didrdntiation. Treat-
ments include blood transfusions, iron chelators, and bone marrow laatsp
With continuing research in the areas of gene regulation and digrelntiation,

new and more fective treatments may soon be on the horizon, such as the advent
of gene transfer therapies.

The Influence of DNA Structure and Binding Domaisquences that are im-
portant in regulating transcription do not necessarily code for trarigmrifiac-
tors or other proteins. Transcription can also be regulated by subtldioasian
DNA structure and by chemical changes in the bases to which transcriptitor$
bind. As stated previously, the chemical properties of the four DNA bdisks
slightly, providing each base with unique opportunities to chemically react with
other molecules. One chemical modification of DNA, calheethylation involves

the addition of amethyl group (-CH3)Methylation frequently occurs at cytosine
residues that are preceded by guanine bases, oftentimes in the vicinignudter
sequences. The methylation status of DNA often correlates with its functonal
tivity, where inactive genes tend to be more heavily methylated. This is betais
methyl group serves to inhibit transcription by attracting a protein that bjmetsifs
ically to methylated DNA, thereby interfering with polymerase binding. Methyla-
tion also plays an important role genomic imprintingwhich occurs when both
maternal and paternal alleles are present but only one allele is expresie the
other remains inactive. Another way to think of genomic imprinting is@arént

of origin differences in the expression of inherited traits. Considerable intrigue
surrounds theféects of DNA methylation, and many researchers are working to
unlock the mystery behind this concept.

Controlling Translation

Translationis the process whereby the genetic code carried by an mRNA directs
the synthesis of proteingranslational regulationoccurs through the binding of
specific molecules, calletepressor proteinsto a sequence found on an RNA
molecule. Repressor proteins prevent a gene from being expréssed: have
just discussed, the default state for a gene is that of being expreissi vecog-
nition of its promoter by RNA polymerase. Close to the promoter region is another
cis-acting site called theperator, the target for the repressor protein. When the re-
pressor protein binds to the operator, RNA polymerase is preventedriitating
transcription, and gene expression is turnéd o

Translational control plays a significant role in the process of embrymviel-
opment and cell dierentiation. Upon fertilization, an egg cell begins to multiply
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to produce a ball of cells that are all the same. At some point, howeveg, teds

begin todifferentiate or change into specific cell types. Some will become blood
cells or kidney cells, whereas others may become nerve or brain cells) ¥he

of the cells formed are alike, the same genes are turned on. Howeverdifiec-
entiation begins, various genes irffdrent cells must become active to meet the
needs of that cell type. In some organisms, the egg houses store immatufessmRN
that become translationally active only after fertilization. Fertilization theneserv

to trigger mechanisms that initiate th&ieient translation of mRNA into proteins.
Similar mechanisms serve to activate mRNAs at other stages of development and
differentiation, such as when specific protein products are needed.

Molecular Genetics: The Study of Heredity, Genes, and DNA

As we have just learned, DNA provides a blueprint that directs all celadtivi-

ties and specifies the developmental plan of multicellular organisms. Therafor
understanding of DNA, gene structure, and function is fundamentarf@ppre-
ciation of the molecular biology of the cell. Yet, it is important to recognize that
progress in any scientific field depends on the availability of experimenttd too
that allow researchers to make new scientific observations and conuledtex-
periments. The last section of the genetic primer concludes with a discugsion o
some of the laboratory tools and technologies that allow researchers yocstisl

and their DNA.
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1.3 Molecular Genetics: Piecing It Together

Molecular genetics is the study of the agents that pass information frommagene
tion to generation. These molecules, genesare long polymers adeoxyribonu-
cleic acid or DNA. Just four chemical building blocks—guanine (G), adening (A)
thymine (T), and cytosine (C)—are placed in a unique order to code fof #ie
genes in all living organisms.

Genes determinbereditary traits such as the color of our hair or our eyes.
They do this by providing instructions for how every activity in every célbor
body should be carried out. For example, a gene may tell a liver cell to emov
excess cholesterol from our bloodstream. How does a gene do thigRitistvuct
the cell to make a particular protein. It is this protein that then carries out the
actual work. In the case of excess blood cholesterol, it is the receitaigs on
the outside of a liver cell that bind to and remove cholesterol from the blDoel
cholesterol molecules can then be transported into the cell, where theyrtier f
processed by other proteins.

Many diseases are caused foytations or changes in the DNA sequence of
a gene. When the information coded for by a gene changes, the resutiteinp
may not function properly or may not even be made at all. In either caseglise
containing that genetic change may no longer perform as expected. Wienow
that mutations in genes code for ttleolesterol receptor proteiassociated with a
disease callefamilial hypercholesterolemiarhe cells of an individual with this
disease end up having reduced receptor function and cannot rensaffecent
amount of low density lipoprotein (LDL), or bad cholesterol, from their kloo
stream. A person may then develop dangerously high levels of cholegtettohg
them at increased risk for both heart attack and stroke.

How do scientists study and find these genetic mutations? They have available
to them a variety of tools and technologies to compare a DNA sequence isolated
from a healthy person to the same DNA sequence extracted frofil@ted per-
son. Advanced computer technologies, combined with the explosion ofigene
data generated from the various whole genome sequencing projedik soci@n-
tists to use these molecular genetic tools to diagnose disease and to design new
drugs and therapies. Below is a review of some common laboratory methads tha
geneticists— scientists who study the inheritance pattern of specific traitsusean
to obtain and work with DNA, followed by a discussion of some applications.

Laboratory Tools and Techniques

The methods used by molecular geneticists to obtain and study DNA have been
developed through keen observation and adaptation of the chemictibnsaand
biological processes that occur naturally in all cells. Many of the enzytimags
copy DNA, make RNA from DNA, and synthesize proteins from an RNA tem-
plate were first characterized in bacteria. These basic researdts teste become
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Polymerase Chain Reaction
N

457,

8 copies

Millions and Millions of copies

Figure 1.31: Polymerase chain reaction (PCR) is a labgrdémhnique used to amplify
DNA sequences. The method involves using short DNA seqeralied primers to select
the portion of the genome to be amplified. The temperaturd@sample is repeatedly
raised and lowered to help a DNA replication enzyme copydhget DNA sequence. The
technique can produce a billion copies of the target sequienjcist a few hours.

fundamental to our understanding of the function of human cells and hdve le
immense practical applications for studying a gene and its corresponditejmr
For example, large-scale protein production now provides an inexgewsty to
generate abundant quantities of certain therapeutic agents, such lasfimstne
treatment of diabetes. As science advances, so do the number of talalblawaat
are applicable to the study of molecular genetics.

Obtaining DNA for Laboratory Analysis

Isolating DNA from just a single cell provides a complete set of all a pesson
genes, that is, two copies of each gene. However, many laboratomjidaels re-
quire that a researcher have access to hundreds of thousandsies oba par-
ticular gene. One way to obtain this many copies is to isolate DNA from millions
of cells grown artificially in the laboratory. Another method, cal#oning, uses
DNA manipulation procedures to produce multiple copies of a single gengyor se
ment of DNA. Thepolymerase chain reactio(PCR) is a third method whereby

a specific sequence within a double-stranded DNA is copiednwlified PCR
amplification has become an indispensable tool in a great variety of appliation

Methods for Amplifying DNA

Cloning DNA in BacteriaThe word ‘cloning’ can be used in many ways. In this
document, it refers to making multiple, exact copies of a particular sequance
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DNA. To make a clone, a target DNA sequence is inserted into what is called
a cloning vector A cloning vector is a DNA molecule originating from a virus,
plasmid, or the cell of a higher organism into which another DNA fragmeapef
propriate size can be integrated without interfering with the vector's dgpfac
self-replication. The target and vector DNA fragments are {igated, or joined
together, to create what is calledewombinant DNA molecul®ecombinant DNA
molecules are usually introduced into Escherichia coli, or E. coli—a common lab-
oratory strain of a bacterium— hyansformation the natural DNA uptake mech-
anism possessed by bacteria. Within the bacterium, the vector directs the multipli-
cation of the recombinant DNA molecule, producing a number of identicaésop
The vector replication process is such that only one recombinant DNA mielec
can propagate within a single bacterium; therefore, each resulting clonaits®
multiple copies of just one DNA insert. The DNA can then be isolated using the
techniques described earlier.

A restriction enzymés a protein that binds to a DNA molecule at a specific
sequence and makes a double-stranded cut at, or near, that sadRestiction
enzymes have specialized applications in various scientific techniquesasuta-
nipulating DNA molecules during cloning. These enzymes can cut DNA in two
different ways. Many make a simple double-stranded cut, giving a sequérate
are calledblunt or flush endsOthers cut the two DNA strands atfidrent posi-
tions, usually just a few nucleotides apart, such that the resulting DNAniats
have short single-stranded overhangs, cadktkyor cohesive endBy carefully
choosing the appropriate restriction enzymes, a researcher cart aitioget DNA
sequence, open up a cloning vector, and join the two DNA fragments todaan
combinant DNA molecule.

More on Cloning Vectordn general, a bacterial genome consists of a single, cir-
cular chromosome. They can also contain much smaller extrachromosoratitgen
elements, calleglasmids that are distinct from the normal bacterial genome and
are nonessential for cell survival under normal conditions. Plasmédsagable of
copying themselves independently of the chromosome and can easily move fro
one bacterium to another. In addition, some plasmids are capable of intggratin
into a host genome. This makes them an excellent vehichedor, for shuttling
target DNA into a bacterial host. By cutting both the target and plasmid DNA with
the same restriction enzyme, complementary base pairs are formed on eAch DN
fragment. These fragments may then be joined together, creating a nevarcircu
plasmid that contains the target DNA. Thicombinant plasmids then coaxed
into a bacterial host where it is copied, mplicated as though it were a normal
plasmid.

Bacterial plasmidswvere the first vectors used to transfer genetic information
and are still used extensively. However, their use is sometimes limited by the
amount of target DNA they can accept, approximately 15,000 bases Kdr. 18ith
DNA sequences beyond this size, thiBatency of the vector decreases because it
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now has trouble entering the cell and replicating itself. However, othéorsekave
been discovered or created that can accept larger target DNA inglus#interio-
phages bacterial viruses that accept inserts up to 20 E@ismids recombinant
plasmids with bacteriophage components that accept inserts up to 4aétbrial
artificial chromosome¢BACS) that accept inserts up to 150 Kb; ayehst arti-
ficial chromosomeg§YACs) that accept inserts up to 1000 kb. Many viruses have
also been modified for use as cloning vectors.

Polymerase Chain Reaction (PCR)he polymerase chain reaction (PCHEy an
amazingly simple technique that results in the exponeatiglificationof almost
any region of a selected DNA molecule. It works in a way that is similar to DNA
replication in nature. The primary materials, or reagents, used in PCR are:

e DNA nucleotidesthe building blocks for the new DNA
e Template DNAthe DNA sequence that you want to amplify

e Primers single-stranded DNAs between 20 and 50 nucleotides long that are
complementary to a short region on either side of the template DNA

e Tag polymerasea heat stable enzyme that drives, or catalyzes, the synthesis
of new DNA

Taq polymerase was first isolated from a bacterium that lives in the hiogsgn
Yellowstone National Park. The Taq polymerase enzyme has evolved tdamiths
the extreme temperatures in which the bacteria live and can therefore retaain in
during the high temperatures used in PCR.

The PCR reaction is carried out by mixing together in a small test tube the
template DNA, DNA nucleotides, primers, and Taq polymerase. The primefts mus
anneal, or pair to, the template DNA on either side of the region that is to be am-
plified, or copied. This means that the DNA sequences of these bordstsheu
known so that the appropriate primers can be made. These oligonuclesstiges
to initiate the synthesis of the new complementary strand of DNA. Because Taq
polymerase, a form of DNA polymerase that catalyzes the synthesis oDy
is incredibly heat stable (thermostable), the reaction mixture can be heatpd to a
proximately 90 degrees centigrade without destroying the molecules’ etizyma
activity. At this temperature, the newly created DNA strands detach frorrethe
plate DNA.

The reaction mixture is then cooled again, allowing more primers to anneal to
the template DNA and also to the newly created DNA. The Taq polymerase can
now carry out a second cycle of DNA synthesis. This cycle of heatioglirt,
and heating is repeated over and over. Because each cycle doubéesdbnt of
template DNA in the previous cycle, one template DNA molecule rapidly becomes
hundreds of thousands of molecules in just a couple of hours.
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PCR has many applications in biology. It is used in DNA mapping, DNA se-
guencing, and molecular phylogenetics. A modified version of PCR canbalso
used to amplify DNA copies of specific RNA molecules. Because PCR reqjuire
very little starting material, or template DNA, it is frequently used in forensic sci-
ence and clinical diagnosis.

Preparing DNA for Experimental Analysis

Gel Electrophoresis: Separating DNA Molecules off@ent Lengths. Gelare
usually made fronagarose—a chain of sugar molecules extracted from seaweed—
or some other synthetic molecule. Purified agarose is generally purchased
powdered form and is dissolved in boiling water. While the solution is still hot,
it is poured into a special gel casting apparatus that contains three laatsc
tray, a support, and a comb. The tray serves as the mold that will providddpe
and size for the gel. The support prevents the liquid agarose from ggakinof
the mold during the solidification process. As the liquid agarose starts to cool, it
undergoes what is known a®lymerization Rather than staying dissolved in the
water, the sugar polymers crosslink with each other, causing the solugehitio
a semi-solid matrix much like Jello, only more firm. The support also allows the
polymerized gel to be removed from the mold without breaking. The job of the
comb is to generate smailellsinto which a DNA sample will be loaded.

Once a gel has polymerized, it is lifted from the casting tray, placed into a
running tank, and submerged in a special aqueotiehwalled arunning byfer.
The gel apparatus is then connected to a power supply via two plugleadrodes
Each plug leads to a thin wire at opposite ends of the tank. Because otredsdec
is positive and the other is negative, a strong electric current will flowutiinahe
tank when the power supply is turned on.

Next, DNA samples of interest are dissolved in a tiny volume of liquid contain-
ing a small amount of glycerol. Because glycerol has a density greatenthar,
it serves to weight down the sample and stops it from floating away oncaurine s
ple has been loaded into a well. Also, because it is helpful to be able to monitor a
DNA sample as it migrates across a gel, charged molecules, ebleegare also
added to the sample fiar. These dyes are usually of twdfdrent colors and two
differentmolecular weightsor sizes. One of the dyes is usually smaller than most,
if not all, of the sample DNA fragments and will migrate faster than the smallest
DNA sample. The other dye is usually large and will migrate with the larger DNA
samples. It is assumed that most of the DNA fragments of interest will migrate
somewhere in between these two dyes. Therefore, when the small djesdhe
end of the gel, electrophoresis is usually stopped.

Once the gel has been prepared and loaded, the power supply is turned
The electric current flowing through the gel causes the DNA fragments t@taigr
toward the bottom, opositively chargeand, of the gel. This is because DNA has
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an overall negative charge because of the combination of molecules initgisé:.
Smaller fragments of DNA are less impeded by the crosslinks formed within the
polymerized gel than are larger molecules. This means that smaller DNA fragme
tend to move faster and farther in a given amount of time. The result is & sbrea
gradient of larger to smaller DNA pieces. In those instances where multiple copies
of DNA all have the same length, a concentration of DNA occurs at thatigos

in the gel, called a band. Bands can result from a restriction enzyme difjast
sample containing thousands of copies of plasmid DNA, or PCR amplification of
a DNA sequence. The banded DNA is then detected by soaking the géf bria
solution containing a dye callesthidium bromid€EtBr). EtBr is anintercalating
agent which means that it is capable of wedging itself into the grooves of DNA,
where it remains. The more base pairs present within a DNA fragment, theegre
the number of grooves available for EtBr to insert itself. EtBr also flu@esader
ultraviolet (UV) light. Therefore, if a gel soaked in a solution containingrB$B
placed under a UV source, a researcher can actually detect DNA balizisg
where the EtBr fluoresces. Because a scientist always loads and faostrol”
sample that contains multiple fragments of DNA with known sizes, the sizes of
the sample DNA fragments can be estimated by comparing the control and sample
bands.

DNA Blotting. The porous and thin nature of a gel is ideal for separating DNA
fragments using electrophoresis, but as we mentioned earlier, these@élsl-a
icate and rarely usable for other techniques. For this reason, DNA #sabéen
separated by electrophoresis is transferred from a gel to an e&sytthe inert
membrane, a process callplbtting. The term “blotting” describes the overlaying

of the membrane on the gel and the application of a pad to ensure eventcontac
without disturbing the positions of the DNA fragments. In the first step, th& DN
trapped in the gel islenaturee—the double-stranded DNA is broken into single
strands by soaking the gel in an alkaline solution. This readies the DNAyfor h
bridization with aprobe a piece of DNA that is complementary to the sequence
under investigation. A membrane, usually made of a compound aaitiedellu-

lose is then placed on top of the gel and compressed with a heavy weight. The
DNA is transferred from the gel to the membrane by simple capillary action. This
procedure reproduces the exact pattern of DNA captured in the gibleomem-
brane. The membrane can then be probed with a DNA marker to verify theme

of a target sequence.

Southern blottings the name of the procedure for transferring denatured DNA
from an agarose gel to a solid support membrane. This procedureaidkastage
of a special property of nitrocellulose, its ability to bind very strongly to single
stranded DNA but not double-stranded DNA. On the other hilodthern blotting
refers to any blotting procedure in which electrophoresis is performead &NA.
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Figure 1.32: Chain termination DNA sequencing. Chain teatibn sequencing involves
the synthesis of new strands of DNA complementary to a sisggended template (step I).
The template DNA is supplied with a mixture of all four deoxgieotides, four dideoxynu-
cleotides (each labeled with afdirent colored fluorescent tag), and DNA polymerase (step
II). Because all four deoxynucleotides are present, chkingation proceeds until, by
chance, DNA polymerase inserts a dideoxynucleotide. Theltrés a new set of DNA
chains, all of diferent lengths (step IIl). The fragments are then separatsize using gel
electrophoresis (step 1V). As each labeled DNA fragmens@as detector at the bottom
of the gel, the color is recorded. The DNA sequence is theonstcucted from the pattern

of colors representing each nucleotide sequence (step V).

Methods for Analyzing DNA

Once DNA has been isolated and purified, it can be further analyzedanetyof
ways, such as to identify the presence or absence of specific segumrto locate
nucleotide changes, called mutations, within a specific sequence.

DNA SequencingThe process of determining the order of the nucleotide bases
along a DNA strand is calledequencingln 1977, 24 years after the discovery

of the structure of DNA, two separate methods for sequencing DNA weavrel-d
oped: thechain termination methodnd thechemical degradation metho&oth
methods were equally popular to begin with, but, for many reasons, the chain te
mination method is the method more commonly used today. This method is based
on the principle that single-stranded DNA molecules th&ediin length by just

a single nucleotide can be separated from one another using polyacrylgelid
electrophoresis, described earlier.

The DNA to be sequenced, called teenplate DNAis first prepared as a single-
stranded DNA. Next, a short oligonucleotideasnealed or joined, to the same
position on each template strand. The oligonucleotide acts as a primer fonthe sy
thesis of a new DNA strand that will be complementary to the template DNA. This
technique requires that four nucleotide-specific reactions—one each, fA, C,
and T—be performed on four identical samples of DNA. The four segjogme-
actions require the addition of all the components necessary to synthedilzbal
new DNA, including:
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A A A | i
DNA sequence data from an automated sequencing machine

Figure 1.33: DNA sequencing is a laboratory technique usetetermine the exact se-
guence of bases (A, C, G, and T) in a DNA molecule. The DNA bageeance carries the
information a cell needs to assemble protein and RNA moéscNA sequence informa-
tion is important to scientists investigating the functai genes. The technology of DNA
sequencing was made faster and less expensive as a parttirtieen Genome Project.

A DNA template

A primertagged with a mildly radioactive molecule or a light-emitting chem-
ical

DNA polymerasgean enzyme that drives the synthesis of DNA

Fourdeoxynucleotide&G, A, C,and T)
¢ Onedideoxynucleotideeither ddG, ddA, ddC, or ddT

After the first deoxynucleotide is added to the growing complementary seque
DNA polymerase moves along the template and continues to add base after base
The strand synthesis reaction continues until a dideoxynucleotide is ,duldek-

ing further elongation. This is because dideoxynucleotides are missingcéakp
group of molecules, called a 3’-hydroxyl group, needed to form aection with

the next nucleotide. Only a small amount of a dideoxynucleotide is addeclo ea
reaction, allowing dterent reactions to proceed for various lengths of time until
by chance, DNA polymerase inserts a dideoxynucleotide, terminating ttigorea
Therefore, the result is a set of new chains, all difedlent lengths.

To read the newly generated sequence, the four reactions are reinysige
on a polyacrylamide sequencing gel. The family of molecules generated in the
presence of ddATP is loaded into one lane of the gel, and the other timde$a
generated with ddCTP, ddGTP, and ddTTP, are loaded into three atljanes.

After electrophoresis, the DNA sequence can be read directly fronoiiggns of
the bands in the gel.

Variations of this method have been developed for automated sequencing ma-
chines. In one method, callexycle sequencinghe dideoxynucleotides, not the
primers, are tagged with fiierent colored fluorescent dyes; thus, all four reac-
tions occur in the same tube and are separated in the same lane on the gel. As
each labeled DNA fragment passes a detector at the bottom of the geljdhésco
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recorded, and the sequence is reconstructed from the pattern of cepoesenting
each nucleotide in the sequence.

Impact of Molecular Genetics

Most sequencing and analysis technologies were developed fromssafdien-
human genomes, notably those of the bacterium Escherichia coli, the peabbS
romyces cerevisiae, the fruit fly Drosophila melanogaster, the roumd@aenorhab-
ditis elegans, and the laboratory mouse Mus musculus. These simpler sysbems p
vide excellent models for developing and testing the procedures neadstidy-

ing the much more complex human genome.

A large amount of genetic information has already been derived frone thes
organisms, providing valuable data for the analysis of normal human ggntar
tion, genetic diseases, and evolutionary processes. For exampbrchess have
already identified single genes associated with a number of diseaseasstydtic
fibrosis. As research progresses, investigators will also uncovargbbanisms for
diseases caused by several genes or by single genes interactingvivitimerental
factors. Genetic susceptibilities have been implicated in many major disabling and
fatal diseases including heart disease, stroke, diabetes, and &&weésaf cancer.
The identification of these genes and their proteins will pave the way to more ef
fective therapies and preventive measures. Investigators determinimgdésying
biology of genome organization and gene regulation will also begin to uiaehers
how humans develop, why this process sometimes goes awry, and whagesha
take place as people age.
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Chapter 2
Core Processes

The goal of this chapter is to describe basic biological mechanisms in a wiay tha
can be represented by simple dynamic models. We begin the chapter witivizaver

of the dynamics of protein production and control, focused on the psesdabat
determine the properties of genetic networks, followed by a discussiore difeth

sic modeling formalisms that we will utilize. We then proceed to study a number
of core processes within the cell, providingtdrent model-based descriptions of
the dynamics that will be used in later chapters to analyze and design biomolec-
ular systems. The focus in this chapter is on deterministic models using ordinary
differential equations; Chaptdrdescribes how to model the stochastic nature of
biomolecular systems.

PrerequisitesReaders should have a basic understanding of ordinéigreintial
eqguations, at the level of Chapter 2 of AM08, and some basic familiarity with ce
biology, at the level of the description in Chapier

2.1 Dynamics and Control in the Cell

The molecular processes inside a cell determine its behavior and arasésedor
metabolizing nutrients, generating motion, enabling procreation and cawying
the other functions of the organism. In complex, multi-cellular organisnigrdnt
types of cells work together to enable more complex functions. In this chapter
we briefly describe the role of dynamics and control within a cell and dsstes
basic processes that govern its behavior and its interactions with its ema@nn
(including other cells). We build on the description of cell biology provided in
Chapterl; a much more detailed introduction to the biology of the cell and some
of the processes described here can be found in standard textboo&h biology

such as Albertst al.[2] or Phillipset al.[35).

The central dogma: production of proteins

The genetic material inside a cell, encoded in its DNA, governs the respbase
cell to various conditions. DNA is organized into collections of genes, with ea
gene encoding a corresponding protein that performs a set of fuaatidhe cell.
The activation and repression of genes are determined through acfargaaplex
interactions that give rise to a remarkable set of circuits that perform tietiduns
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Figure 2.1: Molecular structure of DNA. (a) Individual bag@ucleotides) that make up
DNA: adenine (A), cytocine (C), guanine (G) and thymine ((B). Double stranded DNA
formed from individual nucleotides, with A binding to T ando@hding to G. Each strand
contains a 5" and 3’ end, determined by the locations of thbares where the next nu-
cleotide binds. Figure from Phillips, Kondev and Theri8§]f used with permission of
Garland Science.

required for life, ranging from basic metabolism to locomotion to procreaGen.
netic circuits that occur in nature are robust to external disturbancesaanfunc-
tion in a variety of conditions. To understand how these processes @rlisome

of the dynamics that govern their behavior), it will be useful to presestigatly
more detailed description of the underlying biochemistry involved in the produc
tion of proteins.

DNA is double stranded molecule with the “direction” of each strand specified
by looking at the geometry of the sugars that make up its backbone (see Eigju
The complementary strands of DNA are composed of a sequence of tideteo
that consist of a sugar molecule (deoxyribose) bound to one of 4:badesine
(A), cytocine (C), guanine (G) and thymine (T). The coding strand ¢owention
the top row of a DNA sequence when it is written in text form) is specified from
the 5’ end of the DNA to the 3’ end of the DNA. (As described briefly in Gleap,
5" and 3’ refer to carbon locations on the deoxyribose backbone thaheolved
in linking together the nucleotides that make up DNA.) The DNA that encodes
proteins consists of a promoter region, regulator regions (described & dptail
below), a coding region and a termination region (see Fig.Ze

RNA polymerase enzymes are present in the nucleus (for eukaryoteyoe
plasm (for prokaryotes) and must localize and bind to the promoter regithre o
DNA template. Once bound, the RNA polymerase “opens” the double stlande
DNA to expose the nucleotides that make up the sequence, as shown i@ ZERyur
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Figure 2.2: Geometric structure of DNA. The layout of the DNAhown at the top. RNA
polymerase binds to the promoter region of the DNA and tnéinss the DNA starting at
the+1 side and continuing to the termination site.

This reversible reaction, calladomerizationis said to transform the RNA poly-
merase and DNA from elosed completo anopen complexAfter the open com-
plex is formed, RNA polymerase begins to travel down the DNA strand anéd co
structs an mRNA sequence that matches the 5’ to 3’ sequence of the DNAdio wh
it is bound. By convention, we number the first base pair that is transkcaidg-1’

and the base pair prior to that (which is not transcribed) is labeled asThE
promoter region is often shown with the -10 and -35 regions indicated, giase
regions contain the nucleotide sequences to which the RNA polymerasmenzy
binds (the locations vary in fierent cell types, but these two numbers are typically
used).

The RNA strand that is produced by RNA polymerase is also a sequence of
nucleotides with a sugar backbone. The sugar for RNA is ribose instede-o
oxyribose and mRNA typically exists as a single stranded molecule. Another dif
ference is that the base thymine (T) is replaced by uracil (U) in RNA sexpse
RNA polymerase produces RNA one base pair at a time, as it moves from5h the
to 3’ direction along the DNA coding strand. RNA polymerase stops trariagrib
DNA when it reaches &ermination region(or terminatof on the DNA. This ter-
mination region consists of a sequence that causes the RNA polymerag®rd un
from the DNA. The sequence is not conserved across species andyrcells the
termination sequence is sometimes “leaky”, so that transcription will occdlsiona
occur across the terminator (we will see examples of this imtphkage circuitry
described in the next chapter).

Once the mRNA is produced, it must be translated into a protein. This process
is slightly different in prokaryotes and eukaryotes. In prokaryotes, there isanreg
of the mRNA in which the ribosome (a molecular complex consisting of of both
proteins and RNA) binds. This region, called titeosome binding site (RB)as
some variability between fierent cell species and betweelifelient genes in a
given cell. The Shine-Delgarno sequence, AGGAGG, is the conseaesjugnce
for the RBS.

In eukaryotes, the RNA must undergo several additional steps hiefeteans-
lated. The RNA sequence that has been created by RNA polymerassteais
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Figure 2.3: Production of messenger RNA from DNA. RNA polyase, along with other
accessory factors, binds to the promoter region of the DNd\than “opens” the DNA to
begin transcription (initiation). As RNA polymerase movksvn the DNA, producing an
RNA transcript (elongation), which is later translateaiatprotein. The process ends when
the RNA polymerase reaches the terminator (terminatioajpr&duced from Coureyi[l];
permission pending.

introns that must be spliced out of the RNA (by a molecular complex called the
spliceosome), leaving only the exons. The tepre*mRNA is often used to dis-
tinguish between the raw transcript and the spliced mRNA sequence, which is
called ‘mature RNA In addition to splicing, the mRNA is also modified to con-
tain a poly(A) (polyadenine) tail, consisting of a long sequence of ad€Aneu-
cleotides on the 3’ end of the mMRNA. This processed sequence is thepdreats

out of the nucleus into the cytoplasm, where the ribosomes can bind to it.

Unlike prokaryotes, eukaryotes do not have a well defined ribosondéigise-
guence and hence the process of the binding of the ribosome to the mRNAgs mor
complicated. Th&kozak sequencd/GCCACCAUGEG is the rough equivalent of
the ribosome binding site, where the underlined AUG is the start codon. \owe
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Figure 2.4: Translation is the process of translating trgusece of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protgimhesis. The genetic

code describes the relationship between the sequence@phas in a gene and the cor-
responding amino acid sequence that it encodes. In theyteplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assehgbfmdtein. Figure and

caption courtesy the National Human Genome Researchutestit

MRNA lacking the Kozak sequence can also be translated.

Once the ribosome is bound to the mRNA, it begins the process of translation.
Proteins consist of a sequence of amino acids, with each amino acid gpégifie
a codon that is used by the ribosome in the process of translation. Each cod
consists of three base pairs and corresponds to one of the 20 aminorazigsop”
codon. The genetic code mapping between codons and amino acids is ishown
Table1.1 The ribosome translates each codon into the corresponding amino acid
using transfer RNA (tRNA) to integrate the appropriate amino acid (whichsbind
to the tRNA) into the polypeptide chain, as shown in FigRr4 The start codon
(AUG) specifies the location at which translation begins, as well as codimpé
amino acid methionine (a modified form is used in prokaryotes). All subsgque
codons are translated by the ribosome into the corresponding amino acid until
reaches one of the stop codons (typically UAA, UAG and UGA).

The sequence of amino acids produced by the ribosome is a polypeptide cha
that folds on itself to form a protein. The process of folding is complicatet an
involves a variety of chemical interactions that are not completely underséab
ditional post-translational processing of the protein can also occur asttie,
until a folded and functional protein is produced. It is this molecule thatles tab
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Table 2.1: Rates of core processes involved in the creatiproteins from DNA inE. coli.

Process Characteristic rate Source

MRNA production 10-30 bpsec Vogel and Jensen
Protein production 10-30 agsec PKTO08

Protein folding ???

MRNA half life ~ 100 sec YMO3

Cell division time ~ 3000 sec ?2??

Protein half life ~5x10* sec YMO03

Protein difusion along DNA| up to 1¢ bp/sec

bind to other species in the cell and perform the chemical reactions thatlynd
the behavior of the organism.

Each of the processes involved in transcription, translation and foldirigeof
protein takes time andi&cts the dynamics of the cell. Tal#el shows the rates of
some of the key processes involved in the production of proteins. It is tando
note that each of these steps is highly stochastic, with molecules binding togethe
based on some propensity that depends on the binding energy but alsihéne
molecules present in the cell. In addition, although we have describeytieney
as a sequential process, each of the steps of transcription, transladidol&ng
are happening simultaneously. In fact, there can be multiple RNA polymeteades
are bound to the DNA, each producing a transcript. In prokaryotespas as
the ribosome binding site has been transcribed, the ribosome can bindgind be
translation. Itis also possible to have multiple ribosomes bound to a single piece o
MRNA. Hence the overall process can be extremely stochastic and asyouahk.

Transcriptional regulation of protein production

There are a variety of mechanisms in the cell to regulate the productiontefrqso
These regulatory mechanisms can occur at various points in the ovexagigsrthat
produces the proteifranscriptional regulatiorrefers to regulatory mechanisms
that control whether or not a gene is transcribed.

The simplest forms of transcriptional regulation are repression and &atiya
which are controlled througtranscription factors In the case of repression, the
presence of a transcription factor (often a protein that binds near tmeqgper)
turns df the transcription of the gene and this type of regulation is often called
negative regulation or “down regulation”. In the case of activation ¢(@itpve reg-
ulation), transcription is enhanced when an activator protein binds to theopeo
site (facilitating binding of the RNA polymerase).

A common mechanism for repression is that a protein binds to a region of DNA
near the promoter and blocks RNA polymerase from binding. The regitiNaf
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Figure 2.5: Repression of gene expression. Figure fronlipiKondev and Theriot35);
used with permission of Garland Science.

in which the repressor protein binds is calledaperator region(see Figure2.2

If the operator region overlaps the promoter, then the presence ofeamab the
promoter “blocks” the DNA at that location and transcription cannot initiage, a
illustrated in Figure2.5a Repressor proteins often bind to DNA as dimers or pairs
of dimers (dfectively tetramers). Figur2.5b shows some examples of repressors
bound to DNA.

A related mechanism for repressiorDBlA looping In this setting, two repres-
sor complexes (often dimers) bind irfiidirent locations on the DNA and then bind
to each other. This can create a loop in the DNA and block the ability of RNA poly
merase to bind to the promoter, thus inhibiting transcription. FiguBeshows an
example of this type of repression, in tla& operon. (Anoperonis a set of genes
that is under control of a single promoter; this is discussed in more detailhelo

A feature that is present in some types of repressor proteins is the edgien
aninducer moleculehat combines with the protein to either activate or inactivate
its repression function. Avositive inducelis a molecule that must be present in
order for repression to occur. Aegative induceis one in which the presence of
the inducer molecule blocks repression, either by changing the shaperepttes-
sor protein or by blocking active sites on the repressor protein that vimoufdally
bind to the DNA. Figure2.7a summarizes the various possibilities. Common ex-
amples of repressor-inducer pairs incllae and lactose (or IPTG)etRand ATc,
and tryptophan repressor and tryptophan. La¢tB3& and ATc are both negative
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Figure 2.6: Repression via DNA looping. Figure from Phsligkondev and Theriot35];
used with permission of Garland Science.

inducers, so their presence causes the otherwise repressed genexioréssed,
while tryptophan is a positive inducer.

The process of activation of a gene requires that an activator pragirelsent
in order for transcription to occur. In this case, the protein must work t@eith
recruit for enable RNA polymerase to begin transcription.

The simplest form of activation involves a protein binding to the DNA near
the promoter in such a way that the combination of the activator and the promoter
sequence bind RNA polymerase. One of the most well-studied examples is the
catabolite activator protein (CAPR}-also sometimes called ticdMP receptor pro-
tein (CRP}—shown in Figure2.8. Like repressors, many activators have inducers,
which can act in either a positive or negative fashion (see Figim®. For exam-
ple, cyclic AMP (CAMP) acts as a positive inducer for CAP.

Another mechanism for activation of transcription, specific to prokasyage
the use ofsigma factors Sigma factors are part of a modular set of proteins that
bind to RNA polymerase and form the molecular complex that performs tignscr
tion. Different sigma factors enable RNA polymerase to bind fi@dint promot-
ers, so the sigma factor acts as a type of activating signal for transcripéble2.2
lists some of the common sigma factors in bacteria. One of the uses of sigma fac-
tors is to produce certain proteins only under special conditions, sushesthe

Table 2.2: Sigma factors iB. coli[2].

Sigma factor Promoters recognized
a0 most genes
o2 genes associated with heat shock
o8 genes involved in stationary phase and stress response
o8 genes involved in motility and chemotaxis
o4 genes dealing with misfolded proteins in the periplasm
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Figure 2.7: Hects of inducers. Reproduced from Alberts et 2], permission pending.

cell undergoeseat shocKdiscussed in more detail in Chap®@r Another use is
to control the timing of the expression of certain genes, as illustrated in FR2g@ire

In addition to repressors and activators, many genetic circuits also mek# us
combinatorial promotershat can act as either repressors or activators for genes.
This allows genes to be switched on arffl lmased on more complex conditions,
represented by the concentrations of two or more activators or repsess

Figure2.10shows one of the classic examples, a promoter fotabesystem.

In thelac system, the expression of genes for metabolizing lactose are under the
control of a single (combinatorial) promoter. CAP, which is positively induicg
cAMP, acts as an activator and Lacl (also called “repressor”), wisiciegatively
induced by lactose, acts as a repressor. In addition, the inducer cAd4PBrisssed

only when glucose levels are low. The resulting behavior is that the prdimins
metabolizing lactose are expressed only in conditions where there is nsgluco
(so CAP is activepndlactose is present.

More complicated combinatorial promoters can also be used to control tran-
scription in two diferent directions, a example that is found in some viruses.

A final method of activation in prokaryotes is the useaotitermination The
basic mechanism involves a protein that binds to DNA and deactivates a site tha
would normally serve as a termination site for RNA polymerase. Additionalggene
are located downstream from the termination site, but without a promotemnregio
Thus, in the presence of the anti-terminator protein, these genes angpnessed
(or expressed with low probability). However, when the antitermination jrote
is present, the RNA polymerase maintains (or regains) its contact with the DNA
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Figure 2.8: Activation of gene expression. Figure from lis| Kondev and Theriot35);
used with permission of Garland Science.

and expression of the downstream genes is enhanced. In this way;naimion

allows downstream genes to be regulated by repressing “premature” &ionin
An example of an antitermination protein is the protein N in phgsehich binds
to a region of DNA labeled Nut (for N utilization)?], as shown in Figur@.11

Post-transcriptional regulation of protein production
Post-translation regulation of protein activity

One of the most common types of post-transcriptional regulation is through the
phosphorylatiorof proteins. Phosphorylation is an enzymatic process in which a
phosphate group is added to a protein and the resulting conformation abtieap
changes, usually from an inactive configuration to an active one. e that
adds the phosphate group is callegresphotransferaser akinaseand it oper-
ates by transferring a phosphate group from a bound ATP molecule todtep

./coreproc/figures/MBoC09_07_43.eps

Figure 2.9: Use of sigma factors to controlling the timingempression. Reproduced from
Alberts et al. B]; permission pending.



2.1. DYNAMICS AND CONTROL IN THE CELL 2-11

RNA

CAP- polymerase-
binding binding site start site for RNA synthesis

site (promoter) |

1 1 L
operator lacZ gene

-80 -40 1 40 80 . .
1 1 1 1 j nucleotide pairs
HGLUCOSE e SPERON&F:
+LACTOSE Teause
not bound

repressor
OPERON OFF both
+ GLUCOSE

I D DO because Lacrepressor

~LACTOSE bound and because
CAP not bound

-~ Zﬁ%&
—GLUCOSE OPERON OFF because
—LACTOSE Lac repressor bound

RNA polymerase
2
- GLUCOSE
+ LACTOSE OFERONON
mRNA T 8

Figure 4.15 Physical Biology of the Cell (© Garland Science 2009)

Figure 2.10: Combinatorial logic for tHac operator. Figure from Phillips, Kondev and
Theriot [35]; used with permission of Garland Science.

leaving behind ADP and the phosphorylated protBiephosphorylatiors a com-
plementary enzymatic process that can remove a phosphate group froteia.p
The enzyme that performs dephosphorylation is callp@sphotasda-igure2.12
shows the process of phosphorylation in more detail.

Phosphorylation is often used as a regulatory mechanism with the phgsphor
lated version of the protein being the active conformation. Since phogation
and dephosphorylation can occur much more quickly than protein produsic
degradation, it is used in my biological circuits in which a rapid response-is re
quired. One common motif is that a signaling protein will bind to a ligand and the

./coreproc/figures/GNM93-antitermination.eps

Figure 2.11: Antitermination. Reproduced fro&0[; permission pending.
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Figure 2.12: Phosphorylation of a protein via a kinase. Béypced from MadhaniZg];
permission pending

resulting allosteric change allows the signaling protein to serve as a kinhse. T
newly active kinase then phosphorylates a second protein, which maozlotatr
functions in the cell. Phosphorylation cascades can also be used to amplify th
effect of the original signal; we will describe this in more detail in Secf2dh

Kinases in cells are usually very specific to a given protein, allowing detailed
signaling networks to be constructed. Phosphotases, on the otheranamduch
less specific, and a given phosphotase species may desphosphoryigtelifna
ferent types of proteins. The combined action of kinases and phosglsataim-
portant in signaling since the only way to deactivate a phosphorylatedrpiste
by removing the phosphate group. Thus phosphotases are constamiggtaf”
proteins, and the protein is activated only whefiisient kinase activity is present.

Phosphorylation of a protein occurs by the addition of a charged phtsph
(PQ,) group to the serine (Ser), threonine (Thr) or tyrosine (Tyr) aminosaSam-
ilar covalent modifications can occur by the attachment of other chemicapgro
to select amino aciddviethylationoccurs when a methyl group (GHis added
to lysine (Lys) and is used for modulation of receptor activity and in modifying
histones that are used in chromatin structufesetylationoccurs when an acetyl
group (COCH) is added to lysine and is also used to modify histohdsquitina-
tion refers to the addition of a small protein, ubiquitin, to lysine; the addition of a
polyubiquitin chain to a protein targets it for degradation.
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Figure 2.13: Diferent methods of modeling biomolecular systems.

2.2 Modeling Techniques

In order to develop models for some of the core processes of the cellilwead

to build up a basic description of the biochemical reactions that take platgginc
ing production and degradation of proteins, regulation of transcriptidriransla-
tion, intracellular sensing, action and computation, and intercellular sign&sg.

in other disciplines, biomolecular systems can be modeled in a varietyffef-di
ent ways, at many eferent levels of resolution, as illustrated in Fig@.&3 The
choice of which model to use depends on the questions that you wantteraaad
good modeling takes practice, experience and iteration. One must propptiyre

the aspects of the system that are important, reason about the apprtripte

ral and spatial scales to be included, and take into account the types dditsdmu
and analysis tools be be applied. Models that are to be used for analyistige
systems should make testable predictions and provide insight into the underlyin
dynamics. Design models must additionally capture enough of the important be-
havior to allow decisions to be made regarding how to interconnect subsgste
choose parameters and design regulatory elements.

In this section we describe some of the basic modeling frameworks that we will
build on throughout the rest of the text. We begin with brief descriptions @f th
relevant physics and chemistry of the system, and then quickly move to models
that focus on capturing the behavior using reaction rate equations. Irhtyser
our emphasis will be on dynamics with time scales measured in seconds to hours
and mean behavior averaged across a large number of molecules. \Weotdyic
briefly on modeling in the case where stochastic behavior dominates andadefe
more detailed treatment until Chapter
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Statistical mechanics and chemical kinetics

At the fine end of the modeling scale depicted in FigrE3 we can attempt to
model themolecular dynamicsf the cell, in which we attempt to model the indi-
vidual proteins and other species and their interactions via molecularfeceds

and motions. At this scale, the individual interactions between protein domains
DNA and RNA are resolved, resulting in a highly detailed model of the dynamics
of the cell.

For our purposes in this text, we will not require the use of such a detaildel. s
Instead, we will start with the abstraction of molecules that interact with ethehn o
through stochastic events that are guided by the laws of thermodynamicegdi¥ie b
with an equilibrium point of view, commonly referred to as statistical mechanics
and then briefly describe how to model the (statistical) dynamics of the system
using chemical kinetics. We cover both of these points of view very briefte,h
primarily as a stepping stone to more deterministic models, and present a more
detailed description in Chaptdr

The underlying representation for both statistical mechanics and chengical k
netics is to identify the appropriate microstates of the system. A microstate cor-
responds to a given configuration of the components (species) in ttersysla-
tive to each other and we must enumerate all possible configurations bettveece
molecules that are being modeled. As an example, consider the distributibvfof R
polymerase in the cell. It is known that most RNA polymerases are bound to the
DNA in a cell, either as they produce RNA or as theffuie along the DNA in
search of a promoter site. Hence we can model the microstates of the RNA poly
merase system as all possible locations of the RNA polymerase in the cell, with the
vast majority of these corresponding to the RNA polymerase at some location o
the DNA. This is illustrated in Figurg2.14

In statistical mechanics, we model the configuration of the cell by the proba-
bility that system is in a given microstate. This probability can be calculatedibase
on the energy levels of theftlerent microstates. The laws of statistical mechanics
state if we have a set of microstat@s then the steady state probability that the
system is in a particular microstagas given by

1
P(g) = Se =/teh), (2.1)

whereE is the energy associated with the microstpgeQ andZ is a normalizing
factor, known as theartition function

7= Z g Ea/(keT)
geQ

By keeping track of those microstates that correspond to a given sy&ésn s
(also called a macrostate), we can compute the overall probability that a give
macrostate is reached. This can be used, for example, to compute thbilisoba
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Figure 2.14: Microstates for RNA polymerase. Each micitesté the system corresponds
to the RNA polymerase being located at some position in ttie IEeve discretize the
possible locations on the DNA and in the cell, the microstaigrresponds to all possi-
ble non-overlapping locations of the RNA polymerases. fédgtom Phillips, Kondev and
Theriot [35]; used with permission of Garland Science.

that some RNA polymerase is bound to a given promoter, averaged ovgr man
independent samples, and from this we can reason about the ratee$srp of
the corresponding gene.

Statistical mechanics averages about the steady state distribution of microstates
but does not tell us how the microstates evolve in time. To include the dynamics,
we must consider thehemical kineticef the system and model the probability that
we transition from one microstate to another in a given period of time. Weitlescr
the kinetics of the system by making use of fiepensity function @;q,t), which
captures the instantaneous probability that a system will transition betwéenq sta
and state + £. More specifically, the propensity function is defined such that

aé; x,t)ydt = Probability that the microstate will transition from
stateq to stateq+ & between timé and timet + dt.

We will give more detail in Chaptetregarding the validity of this functional form,
but for now we simply assume that such a function can be defined foystars.

Using the propensity function, we can keep track of the probability distribu-
tion for the state by looking at all possible transitions into and out of the curre
state. Specifically, giveR(qg,t), the probability of being in statgat timet, we can
compute the time derivative(q, t) as

2pa- Deleia-cPa-69- PaGaPan. (2

This equation (and its many variants) is called¢hemical master equatiq€ME).
The first sum on the right hand side represents the transitions into thej $tate
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some other statg— ¢ and the second sum represents that transitions out of the state
ginto some other statg+£. The variable in the sum ranges over all possible tran-
sitions between microstates.

Clearly the dynamics of the distributioR(g,t) depends on the form of the
propensity functiora(¢). Consider a simple reaction of the form

Ri: A+B—AB
A+B=AB = (2.3)
R: AB— A+B.

We assume that the reaction takes place in a well-stirred volume and let the con-
figurationsq be represented by the number of each species that is present. The
forward reactiorRs is a bimolecular reaction and we will see in Chaptehat it

has a propensity function

a(&";0) = canans,

Wheregf represents the forward reactiom, andng are the number of molecules
of each species ang}s is a constant cdcient that depends on the properties of
the specific molecules involved. The reverse readfois a unimolecular reaction
and we will see that it has a propensity function

a(¢',q) = cgnpg,

where¢' represents the reverse reaction,is a constant cdicient andnag is the
number of molecules of AB that are present.

The primary diference between the statistical mechanics description in equétiich (
and the chemical kinetics description in equatiar®) is that the master equation
formulation describes how the probability of being in a given microstate esolve
over time. Of course, if the propensity functions and energy levels areletbd
properly, the steady state, average probabilities of being in a given natros
should be the same for both formulations.

Mass action kinetics

Although very general in form, the chemical master equatidfessifrom being a

very high dimensional representation of the dynamics of the system. Wesskall

in Chapter4 how to implement simulations that obey the master equation, but in
many instances we will not need this level of detail in our modeling. In particula
there are many situations in which the number of molecules of a given species
is such that we can reason about the behavior of a chemically reactitegnsys
by keeping track of theoncentrationof each species as a real number. This is
of course an approximation, but if the number of molecules ficsently large,

then the approximation will generally be valid and our models can be dramatically
simplified.
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To go from the chemical master equation to a simplified form of the dynam-
ics, we begin by making a number of assumptions. First, we assume that we can
represent the state of a given species by its concentragienna /Q, wherena
is the number of molecules of A in a given volufe We also treat this concen-
tration as a real number, ignoring the fact that the real concentratioraigiged.
Finally, we assume that our reactions take place in a well-stirred volume, tso tha
the rate of interactions between two species is determined by the concestrtion
the species.

Before proceeding, we should recall that in many (and perhaps mostjaits
inside of cells, these assumptions a@ particularly good ones. Biomolecular
systems often have very small molecular counts and are anything but wed.mixe
Hence, we should not expect that models based on these assumptioluspsTe
form well at all. However, experience indicates that in many cases the foas
of the equations provides a good model for the underlying dynamics auoe lnee
often find it convenient to proceed in this manner.

Putting aside our potential concerns, we can now proceed to write thendyna
ics of a system consisting of a set of specigs S 1,...,N undergoing a set of
reactionsR;j, j = 1,...,M. We write X, = [S] for the concentration of specigs
(viewed as a real number). Because we are interested in the casethvéeuenber
of molecules is large, we no longer attempt to keep track of every possiflig-co
uration, but rather simply assume that the state of the system at any given time is
given by concentrationg. Hence the state space for our system is giver &N
and we seek to write our dynamics in the form of fietiential equation

x=f(x.p)

wheref : RN — RN describes the rate of change of the concentrations as a function
of the instantaneous concentrations amdpresents the parameters that govern the
dynamic behavior.

To illustrate the general form of the dynamics, we consider again the €ase o
basic bimolecular reaction

A+B=AB.

Each time the forward reaction occurs, we decrease the number of maledule
A and B by 1 and increase the number of molecules of AB (a separate specie
by 1. Similarly, each time the reverse reaction occurs, we decrease thenafmb
molecules of AB by one and increase the number of molecules of A and B.

Using the discussion from the chemical master equation, we know that the like-
lihood that the reaction occurs in a given interdilis given bya(&'; x, t)dt =
CaNangdt wherec, is a constant. Another way of viewing this equation is that
the rate at which reactions occur is givendgy; x,t). Looking first at the species
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AB, we can thus write

%[AB] = Cé_-f NaNB — CerNaB
= (CfoZ)[A][B] — (c=Q)[AB] =: ka[A][B] —k«[AB],

where we have used the fact that [AJna/Q and similarly for B and AB. The
constants, andkg are therate constantgor the reaction and can be computed
from the codficients of the propensity functions:

ket = C4 Q7 bimolecular reaction 2.4)
ker = CorQ unimolecular reaction '

In a similar fashion we can write equations to describe the dynamics of A and B
and the entire system of equations is given by

d
GilAl = ke[AB] — ke [A][B] A=KsC—ksA-B

dgt[B]:kfr[AB]—kff[A][B] or  B=keC—ksA-B

C = ksA-B—keC,
dgt[AB] = Ka[A][B] —ke[AB] ¢ ke

whereC = [AB]. These equations are known as thmass action kineticsr the
reaction rate equationfr the system.

Note that the same rate constants appear in each term, since the rate af produ
tion of AB must match the rate of depletion of A and B and vice versa. We adopt
the standard notation for chemical reactions and write the individual reaci®

kgf kfr
A+B — AB, AB — A +B,
wherek,s andkg are the reaction rates. For bidirectional reactions we can also write

K.f

A+B— AB.
Ker

It is easy to generalize this equation to more general reactions. For exaimple
we have a reversible reaction of the form

k
A+2B—=2C+D,

ko

where A, B, C and D are appropriate species, then the dynamics for ¢aeesp
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concentrations can be written as

d
—A=k,C?.D-k;A-B?
dt 2 1 5
dgsz 2k,C?-D - 2k; A- B,

dt (2.5)
d—tc = 2k;A- B? - 2k,C?- D,
d
—D =kA-B2—k,C2.D.
dt 1 2

Rearranging this equation, we can write the dynamics as

Al (-1 1

d[B| |-2 2|(kA-B?

daijc| 2 -2 [kZCZ-D]' (26)
D) (1 -1

We see that in this composition, the first term on the right hand side is a matrix
of integers reflecting the stoichiometry of the reactions and the second texrm is
vector of rates of the individual reactions.

More generally, given a chemical reaction consisting of a set of sp&gies
i=1,...,nand a set of reactiong;, j = 1,...,M, we can write the mass action
kinetics in the form

% = NV(X)

dt ’
whereN € R™™ js the stoichiometry matrixor the system ana(x) € RM is the
reaction flux vectarEach row ofv(x) corresponds to the rate at which a given
reaction occurs and the corresponding column of the stoichiometry matri-cor
sponds to the changes in concentration of the relevant species. Asalveeshin
the next chapter, the structured form of this equation will allow us to exslonge
of the properties of the dynamics of chemically reacting systems.

We will often find it convenient to represent collections of chemical reastio
using simple diagrams, so that we can see the basic interconnection bet@veen v
ious chemical species and properties. A standard chemical reactiorardidgr
shown in Figure2.15

Reduced order mechanisms

In this section, we look at the dynamics associated with enzymatically controlled
reactions, which occur frequently in biomolecular systems. Under sormenpss
tions on the relative rates or reactions and concentrations of speciegp#isible

to derive reduced order expressions for the dynamics of the systefiocehere

on an informal derivation of the relevant results, but return to thesmpbes in the
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A A C
AB A@B

B B 2 D

A+B=—=AB A—B A+2B=—=C+D

Figure 2.15: Diagrams for chemical reactions.

next chapter to illustrate that the same results can derived using a moré &muna
rigorous approach.

Simple binding reactionConsider again the reaction

k
A+B%C, @2.7)

in which we now assume that the total amount of A is conserved and we denote
total concentration by, so thatA+ C = Ait. The corresponding rate equation
for C is given by

dC

o = KB (A= C) —kC.

We are interested in determining the steady state value of the complex C concen-
tration C and of the concentration of the free species A, ibfeas a function of
the concentratiorB. By settingC = 0 and denotinKp := k;/ks, we obtain the
expressions:
— BAtot i andA = AtotKD‘
B+ KD B+ KD

The constanKp is the inverse of thefinity of A to B. The steady state value ©f
increases withlB while the steady state value Afdecreases witB as more of A is
found in the complex C.

E
X¢€ X!
S F
P
S+E=ES—E+P Xe+P=X%P— X' +P
(a) Enzymatic reaction (b) Permease-modulated transport

Figure 2.16: Diagrams for enzymatic reactions.
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Cooperative binding reactiossume now that B binds to A only after a dimeriza-
tion, that is, only after binding another molecule of B. Then, we have tlaations
(2.7) become

B+B = Bd,Bd+A C, andA+C = Ay,

in which By denotes the dlmer of B. The corresponding ODE model is given by

dBy | dc
T k1B —koBy, s K¢ By - (Aot —C) —k:C.
By settingBy = 0, C = 0, and by denotingiy = ki/ko, we we obtain that
BaA AwtKp
_ 2 _ d /Mot _
By =kyB°, C= By Ko’ andA = Byt Kp’
so that ) 5
MAtotB AtotKD
= dA: -~ . .
kMBZ+KD,an kMBz+KD

As an exercise, the reader can verify that if B binds to A only as a comflax o
copies of B, that is,

B+B+.. +B Bn,B +A - C, andA+C = A,

then we have that
n
kMAtotB i andA = AtotKD )
kMBn+KD k|\/|Bn+KD
In this case, one says that the binding of B to A is cooperative with cotiypera

ity n. Figure2.17 shows the above functions, which are often referred to as Hill
functions.

C=

Competitive binding reactiorConsider finally the case in which two species B
and B both bind to A competitively, that is, they cannot be bound to A at the same
time. Let C be the complex formed betweep &d A and letC be the complex
formed between Band A. Then, we have the following reactions

Ba+A C, B, +A—\CandA+C+C Avot,

ke
for which, we can write the ODE system as

dc . dCc - - -
E =kaa'(Atot_C_C)_er, a =kar'(Atot_C_C)_er-

By setting the derivatives to zero, we obtain that

C(kBa+kr) = Kkt Ba(Awot — C), C(ksBr + ki) = k¢ Br (Aot —C),
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LA
tot

L -
o Atotlz n <
n=1
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n=4

0 0.5 15 2

n, 1 i
B lﬁw/KD B" KKy

Figure 2.17: Steady state concentrations of the complexdCom\ as functions of the
concentration of B.

which, lettingKp := k; /ks, leads to

c=BWa-0) 4 C(Ba+ Kp— -2 )= Ba( “o_ )Atot’

from which we finally obtain that
c_ BaAotKp and€ = Br AwiKp _
KDBa+KDBr+KDKD KDBr+KDBa+KDKD

Note that in this derivation, we have assumed that boithaBd B bind A as
monomers. If they were binding as dimers, the reader should verify thaivied
appear in the final expressions with a power of two. Note also that in thigaeer
tion we have assumed thag Bnd B cannot simultaneously bind to A. If they were
binding simultaneously to A, we would have included another complex comprising
B, and B and A. Denoting this new complex 1§/, we would have added also the
two additional reactions

Ko K
C+B,=C,andC+B,=C
ke kr

and we would have modified the conservation law for AMtg = A+C+C +C'.
The reader can verify that in this case a mixed t&yB, would appear in the
equilibrium expressions.

add. In principle, one could consider all possible combinations of monomer,
dimer, tetramer, etc. and activator, repressor, ANEedént occupation states for
the promoter, i.e., to consider exclusive binding or competitive binding. Tioisld
be doneina

Enzymatic reactionA general enzymatic reaction can be written as

k Keat
E+S—=C—=E+P,
ke
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in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the sub&rate
due to the binding with the enzyme E. The rktés referred to as association con-
stantk; as dissociation constant, akg; as the catalytic rate. Enzymatic reactions
are very common and we will see specific instances of them in the sequa$,that
phosphorylation and dephosphorylation reactions. The correspp@dhiE system

is given by

C:j—ltz = —kiE-S+kC+keaC
ds

=2 _ _KE-

at tE-S+kC

dC

ot = kiE-S—(k +kea)C
dP

a = kcatC-

The total enzyme concentration is usually constant and denotég,Hgo that
E + C = E¢ot. Substituting in the above equatioBis= Ei; — C, we obtain

dE

i —Kf(Etot—C)- S+ ki C + kcatlC
ds

i —K¢(Etot—C)-S+kC

dC

a = Kkf(Etot—C)-S—(kr +Kea)C
dP

a = k‘:atC-

This system cannot be solved analytically, therefore assumptions haxeubed
in order to reduce it to a simpler form. Michaelis and Menten assumed that the
conversion of E and S to C awite versds much faster than the decomposition of
C into E and P. This approximation is called tipgasi-equilibriumapproximation
between the enzyme and the complex. This assumption can be translated in the
condition

K, Kr > Keat

on the rate constants. Under this assumption and assuming that (at least at
time 0),C immediately reaches its steady state value (wRilis still changing).
The steady state value Gfis given by solvings (Eiot — C)S — (ki + Keat)C = 0O for
C, which gives E o otk
tot : + Keat

= S+—Km with Ky = P
in which the constany, is called theMichaelis constantletting Vimax = KcatEtot,
the resulting kinetics

d_P_ VimaxS
dt  S+Kpm
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is called Michaelis-Menten kinetics. The const&ht,x is called the maximal ve-
locity and it represents the maximal rate that can be obtained when the enzyme is
completely saturated by the substrate.

Chemical reaction networks

2.3 Modeling Transcription and Translation

In this section we consider the processes of transcription and translatoare
detail, using the modeling techniques described in the previous section toecaptu
the fundamental dynamic behavior. Models of transcription and translaiobe
done at a variety of levels of detail and which model to use depends onéiséans

that one wants to analyze. We present several levels of modeling tatmgwith

a relatively detailed set of reactions and ending with highly simplified models that
can be used when we are only interested in average production rateteigrat
relatively long time scales.

The basic reactions that underly transcription include tHBusion of RNA
polymerase from one part of the cell to the promoter region, binding offéA R
polymerase to the promoter, isomerization from the closed complex to the open
complex and finally the production of mMRNA, one base pair at a time. To capture
this set of reactions, we keep track of the various forms of RNA polyreezesord-
ing to its location and state: RNARepresents RNA polymerase in the cytoplasm
and RNAP! is non-specific binding of RNA polymerase to the DNA. We must sim-
ilarly keep track of the state of the DNA, to insure that multiple RNA polymerases
do not bind to the same section of DNA. Thus we can write 'Ni#x the promoter
region, DNAY' for theith section of a geng (whose length can depend on the de-
sired resolution) and DNAfor the termination sequence. We write RNAP:DNA to
represent RNA polymerase bound to DNA (assumed closed) and RNA® BN
indicate the open complex. Finally, we must keep track of the mRNA that is pro-
duced by transcription: we write mRNAo represent an mRNA strand of length
and assume that the length of the gene of interdst is

Using these various states of the RNA polymerase and locations on the DNA,
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we can write a set of reactions modeling the basic elements of transcription as

RNAP¢ = RNAPY  binding to DNA;
RNAPY = RNAPP diffusion along DNA;
RNAPP + DNAP = RNAP:DNAP binding to promoter;
RNAP:DNAP — RNAP:DNA?° isomerization;
RNAP:DNA° — RNAP:DNAY%! + DNAP start of transcription;
RNAP:DNA%! — RNAP:DNA%?+ mRNA!  creation of mRNA;
RNAP:DNA%*1 + mMRNA' — RNAP:DNA%*2+ mRNA*!  elongationj =1,...,N;
RNAP:DNA%N + mRNAN-1 — RNAP:DNA!'+ mRNAN  binding to terminator;
RNAP:DNA! — RNAP®  termination;

mRNAN — ¢ degradation

(2.8)
This reaction has been written for prokaryotes, but a similar set of resatiould
be written for eukaryotes: the mainfidirences would be that the RNA polymerase
remains in the nucleus and the mRNA must be spliced and transported to the cy-
tosol. Note that at the start of transcription we “release” the promotermeyitne
DNA, thus allowing a second RNA polymerase to bind to the promoter while the
first RNA polymerase is still transcribing the gene.

A similar set of reactions can be written to model the process of translation.
Here we must keep track of the binding of the ribosome to the mRNA, translation
of the mRNA sequence into a polypeptide chain and folding of the polypeptide
chain into a functional protein. Let Ribo:mRN&S indicate the ribosome bound
to the ribosome binding site, Ribo:mRN#Ahe ribosome bound to tHéh codon,
Ribo:mRNAS for the stop codon, and PP@r a polypeptide chain consisting bf
amino acids. The reactions describing translation can then be written as

Ribo® == Ribo™®  binding to RNA;
Ribo™@+ mRNARBS — Ribo:mRNARBS  binding to RBS;
Ribo:mRNARBS —; Ribo:mRNA! + mRNARBS  start of translation;
Ribo:mRNA! — Ribo:mRNA?+ppct  creation of polypeptide chain;
Ribo:mRNA*! + ppcd — Ribo:mRNA*2+ppcd*  elongationj = 1,..., M;
Ribo:mRNAV + ppc"-1 — Ribo:mRNAS+ppc”  stop codon;
Ribo:mRNASP — Ribo® release of MRNA;
ppc" — protein  folding;
protein— @ degradation

As in the case of transcription, we see that these reactions allow multiple ribesome



2-26 CHAPTER 2. CORE PROCESSES

to translate the same piece of MRNA by freeing up the ribosome binding site (RBS)
when translation begins.

As complex as these equation are, they are still missing many important ef-
fects. For example, we have not accounted for the possibility of multiple RNA
polymerases or ribosomes interacting with each other, so it is possible inréhese
actions to have two or more RNAP:DNA complexes, which would correspond
to multiple RNA polymerases bound to the same spot on a single piece of DNA.
We have also left out various error correction mechanisms in which nibes@an
step back and release an incorrect amino acid that has been incodpiotatthe
polypeptide chain. And we have left out the many chemical species thathmust
present in order for many of the reactions to happen (NTPs for mRNéugt@n,
amino acids for protein production, etc). Incorporation of theékeres requires ad-
ditional reactions that track the many possible states of the molecular machinery
that underlies transcription and translation.

Given a set of reactions, the various stochastic processes thatyudelziled
models of transcription and translation can be specified using the stochadgt mo
ing framework described briefly in the previous section. In particulangusither
models of binding energy or measured rates, we can construct pitydfenstions
for each of the many reactions that lead to production of proteins, inclutimg
motion of RNA polymerase and the ribosome along DNA and RNA. For many
problems in which the detailed stochastic nature of the molecular dynamics of the
cell are important, these models are the most relevant and they are ciovsoede
detail in Chapted.

Alternatively, we can move to the reaction rate formalism and model the reac-
tions using diferential equations. To do so, we must compute the various reaction
rates, which can be obtained from the propensity functions using equat#ror
measured experimentally. In moving to this formalism, we approximate the con-
centrations of various species as real numbers, which may not beatesimce
some species (such as DNA) exist as a single molecule in the cell. Despite all of
these approximations, in many situations the reaction rate equations aretlperfe
suficient, particularly if we are interested in the average behavior of a laméeu
of cells.

In some situations, a even simpler model of the transcription, translation and
folding processes can be utilized. If we assume that RNA polymerase binds to
DNA at some average rate (which includes both the binding and isomerization
reactions) and that transcription takes some fixed time (depending on ttik leng
of the gene), then the process of transcription can be described usirtgliy
differential equation

d m

d—”tb = apo—pMp—ypMp,  Mi(t) = e Bmp(t— 1), 2.9)
wherem, is the concentration of mRNA for protein Ry, is the concentration of
“active” mRNA, ap is the rate of production of the mRNA for protein Pis the
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growth rate of the cell (which results in dilution of the concentration) anis the

rate of degradation of the mRNA. Since the dilution and degradation termg are o
the same form, we will often combine these terms in the mMRNA dynamics and use
a single cofficientyp.

The active mRNA is the mRNA that is available for translation by the ribo-
some. We model its concentration through a simple time delay of lerfythat
accounts for the transcription of the ribosome binding site in prokaryotsglior
ing and transport from the nucleus in eukaryotes. The exponenttal faccounts
for dilution due to the change in volume of the cell, wheris the cell growth rate.
The constanta o andy,, capture the average rates of production and degradation,
which in turn depend on the more detailed biochemical reactions that undanlie tr
scription.

Once the active mMRNA is produced, the process of translation can biédelsc
via a similar ordinary dterential equation the describes the production of a func-
tional protein:

%’ = BpoMy—3pP,  P*(t) = e P(t—7b). (2.10)
Here P represents the concentration of the polypeptide chain for the prdein,
represents the concentration of functional protein (after folding). gdrameters
that govern the dynamics app o, the rate of translation of mMRNAj, the rate
of degradation and dilution of P; and,, the time delay associated with folding
and other processes required to make the protein functional. The ext@bnerm
again accounts for dilution due to cell growth. The degradation and dilutiam te
parameterized by, captures both rate at which the polypeptide chain is degraded
and the rate at which the concentration is diluted due to cell growth.

It will often be convenient to write the dynamics for transcription and transla
tion in terms of the functional MRNA and functional proteinfidrentiating the
expression fom]g, we see that

dn(t) m
— aHTpR _.m
at & MR- (2.11)

_ — m — —
=€ 1P (apo—ypMp(t—1,)) = apo—ypmMp(D),
— _ M . . . . - - -
whereapo = € Papo. A similar expansion for the active protein dynamics yields

daPt) - . -,
T() = Bpomi(t—h) - 5P (1), 2.12)

Where,B_p,o = e‘f”;ﬁp,o. We shall typically use equationg.¢1) and @.11) as our
(reduced) description of protein folding, dropping the superserigmd overbars
when there is no risk of confusion.
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X

RNAP — ™| genX | GenX | - ™| GenX

3

Figure 2.18: Simplified diagrams for protein productioneThiagram on the left shows a
section of DNA with RNA polymerase as an input, protein caricaion as an output and
degradation of MRNA and protein. The figure on the right isnapsified view in which
only the protein output is indicated.

In many situations the time delays described in the dynamics of protein pro-
duction are small compared with the time scales at which the protein concentration
changes (depending on the values of the other parameters in the systsmmghl
cases, we can simplify the our model of the dynamics of protein production an

write d d4p
d_rrtb =apo=ypMp. v =BpoMp—dpP. (2.13)

Note that we here have dropped the superserigihce we are assuming that all
MRNA is active and proteins are functional and dropped the overbaramdg
since we are assuming the time delays are negligible. We retain the overbars on
ands since dilution due to cell growth is still a potentially important factor.

Finally, the simplest model for protein production is one in which we only keep
track of the basal rate of production of the protein, without including the mRNA
dynamics. This essentially amounts to assuming the mRNA dynamics reach steady
state quickly and replacing the firstfidirential equation in equatiog.0.3 with its
equilibrium value. Thus we obtain

dP @po
7p

This model represents a simple first order, lineéfiedéntial equation for the rate of
production of a protein. In many cases this will be &isiently good approximate
model, although we will see that in many cases it is too simple to capture the
observed behavior of a biological circuit.

We will often find it convenient to represent protein production using a sim-
ple diagram that hides the details of the particular model that we decide to use.
Figure 2.18 shows the symbol that we will use through the text. The diagram is
intended to resemble a section of double stranded DNA, with a promoter and ter
minator at the ends, and then a list of the gene and protein in the middle. The
boxes labeled by the gene and protein schematically represent the mRNwoand
tein concentration, with the line at the left of the DNA represent the inputNvA R
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Figure 2.19: Regulation of proteins. Figure from Philliggndev and Theriot35]; used
with permission of Garland Science.

polymerase and the line on the top representing the the (folded) proteisyiie
bols at the bottom represent the degradation and dilution of MRNA and protein

2.4 Transcriptional Regulation

The operation of a cell is governed by the selective expression ofgeitiee DNA
of the organism, which control the various functions the cell is able to paréd
any given time. Regulation of protein activity is a major component of the molecu-
lar activities in a cell. By turning genes on anfll, and modulating their activity in
more fine-grained ways, the cell controls the many metabolic pathways inlthe ce
responds to external stimuli,féirentiates into dierent cell types as it divides, and
maintains the internal state of the cell required to sustain life.

The regulation of gene expression and protein activity is accomplisheagro
a variety of molecular mechanisms, as illustrated in Figud® We see that at
each stage of the processing from a gene to a protein, there are patestize-
nisms for regulating the production processes. The remainder of thisrsedtio
focus on transcriptional control, the next section on control betweesdrgtion
and translation, and the third section on post-translational control meof&anige
begin with a description of regulation mechanisms in prokaryotes (bactenil) a
then describe the additional mechanisms that are specific to eukaryotes.
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Prokaryotic mechanisms

Transcriptional regulation refers to the selective expression of ggnastivating
or repressing the transcription of DNA into mRNA. The simplest such regulatio
occurs in prokaryotes, where proteins can bind to “operator regiorbgixicinity
of the promoter region of a gene anfiezt the binding of RNA polymerase and
the subsequent initiation of transcription. A protein is calleemessoiif it blocks
the transcription of a given gene, most commonly by binding to the DNA and
blocking the access of RNA polymerase to the promoteraétivator operates in
the opposite fashion: it recruits RNA polymerase to the promoter regionemzkeh
transcription only occurs when the activator (protein) is present.

We can capture this set of molecular interactions by modifying the RNA poly-
merase binding reactions in equati@l(l). For a repressor (Rep), we simply have
to add a reaction that represents the repressor bound to the promoter:

DNAP + Rep== DNA:Rep Repressor binding

This reaction acts to “sequester” the DNA promoter site so that it is no longer
available for binding by RNA polymerase (which requires DNAThe strength
of the repressor is reflected in the reaction rate constants for the seplkésding
reaction and the equilibrium concentrations of DRA¥ersus DNA:Rep model the
“leakiness” of the repressor.

The modifications for an activator (Act) are a bit more complicated, since we
have to modify the reactions to require the presence of the activatorebRfdh
polymerase can bind. One possible mechanism is

DNAP + Act == DNA:Act activator binding;
RNAPY = RNAPP diffusion along DNA;
RNAPP + DNA:Act = RNAP:DNA° + DNA:Act binding to promoter wactivator;
RNAPP + DNAP — RNAP:DNAP binding to promoter yiout activator

Here we model both the enhanced binding of the RNA polymerase to the promote
in the presence of the activator, as well as the possibility of binding without a
activator. The relative reaction rates determine how strong the activaodithe
“leakiness” of transcription in the absence of the activator.

As indicated earlier, many activators and repressors operate in thenpeesf
inducers. To incorporate these dynamics in our description, we simplytbagkl
the reactions that correspond to the interaction of the inducer with the m¢leva
protein. For a negative inducer, we can simply add a reaction in which tbeend
binds the regulator protein andfectively sequesters it so that it cannot interact
with the DNA. For example, a negative inducer operating on a repreestd be
modeled by adding the reaction

Rep+ Ind = Rep:Ind
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Positive inducers can be handled similarly, except now we have to modibjritie
ing reactions to only work in the presence of a regulatory protein bound ta-a
ducer. For example, a positive inducer on an activator would have théietbd
reactions

Act+Ind = Act:Ind inducer binding;
DNAP + Act:Ind == DNA:Act:Ind activator binding;
RNAPY = RNAPP diffusion along DNA;
RNAPP + DNA:Act:Ind = RNAP:DNA° + DNA:Act:Ind binding to promoter wactivator

A simplified version of the dynamics can be obtained by assuming that tran-
scription factors bind to the DNA rapidly, so that they are in steady stategzonfi
urations. In this case, we can make use of the steady state statistical mechanic
techniques described in Secti@® and relate the expression of the gene to the
probability that the activator or repressor is bound to the DR§y(g. This could
be done at the level of the reaction rate equation by replacing ffezatitial equa-
tions for activator or repressor binding with their steady state value iHstead
we demonstrate how to account for this rapid binding in the simplifiéeraintial
equation models presented at the end of Se@i8n

Recall that given the relative energies of thietient microstates of the system,
we can compute the probability of a given configuration using equadid)(

1
P [ —Eq/(kBT)‘
(a) €

Consider the regulation of a geaewith a protein concentration given kjy, and
a corresponding mMRNA concentratiom,. Let b be a second gene with protein
concentratiorp, that represses the production of protein A through transcriptional
regulation. If we leigpound represent the microstate corresponding to the appropri-
ate activator or repressor bound to the DNA, then we can con®atgung as a
function of the concentratiopy,, which we write a$pound Ppn). FOr a repressor, the
resulting mMRNA dynamics can be written as

dmy

ar (1= Poound Pb))@a0 — yaMa. (2.14)

We see that theffect of the repression is modeled by a modification of the rate of
transcription depending on the probability that the repressor is bound NAe
In the case of an activator, we proceed similarly. The modified mRNA dynamics
are given by
dmy
dt
where now we see that B must be bound to the DNA in order for transcrifiion
occur.

= Pbound Pb)@a0 — YaMa, (2.15)



2-32 CHAPTER 2. CORE PROCESSES

P lacO1

500
cl
T 4000- - - - lacl A
t - — tetR
]
SC101 o 3000’/'\ )
origin APy 2 , - /\ /- r n
‘® 20008 ' ! A DA
<4 Py \ oy g\ Y
o [ I \ ! .
, 10007 S v i
lacl-lite | \ I N A 71
0 / ‘N _ \, / /S >./_ 4
0 100 200 300
P, tetO1 Timet [min]
(a) Repressilator plasmid (b) Repressilator simulation

Figure 2.20: The repressilator genetic regulatory netw@kA schematic diagram of the
repressilator, showing the layout of the genes in the pldshgit holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simpledrbfor the repressilator, show-
ing the oscillation of the individual protein concentraiso (Figure courtesy M. Elowitz.)

As we shall see in Chapte¥ (see also Exercisg.], the functional form of
PuoundCan be nicely approximated by a monotonic rational function, callddla
function[12, 31]. For a repressor, the Hill function is given by

r Tab
fa(pp) = Ko+ pgab + @a,

where the subscripts correspond to a protein B repressing produétoprotein

A, and the parameters,,, kap andng, describe how B represses A. The maximum
transcription rate occurs whep, = 0 and is given bywap/Kap + @ao. The mini-
mum rate of transcription occurs wheg — oo, giving aao, Which describes the
“leakiness” of the promoter. The parametgp, is called theHill coefficientand
determines how close the Hill function is to a step function. The Hillficcient

is often called thedegree of cooperativitpf the reaction, as it often arises from
molecular reactions that involve multiple (“cooperating”) copies of the profein

Example 2.1(Repressilator) As an example of how these models can be used, we
consider the model of a “repressilator,” originally due to Elowitz and Leifdd}.

The repressilator is a synthetic circuit in which three proteins each seanesher

in a cycle. This is shown schematically in Figl2&20a where the three proteins
are TetRA cl and Lacl.

The basic idea of the repressilator is that if TetR is present, then it rertss
production ofacl. If Acl is absent, then Lacl is produced (at the unregulated tran-
scription rate), which in turn represses TetR. Once TetR is represssd) this
no longer repressed, and so on. If the dynamics of the circuit arerdespyoperly,
the resulting protein concentrations will oscillate.

We can model this system using three copies of equafald), with A and
B replaced by the appropriate combination of TetR, cl and Lacl. The stdle o



2.4. TRANSCRIPTIONAL REGULATION 2-33

step function——> )
<—step function

pi2

Y promoter activity
B

Y promoter activity

t—n=4

n=4
i

0 05 1 2 [ 0.5 1 15 2
activator concentration X/K repressor concentration X/K

Figure 2.21: Hill function for an activator (left) and for epressor (right).

system is then given by = (Mretr, Pretr, Mel» Pets Miact PLact)- Figure2.20bshows
the traces of the three protein concentrations for paramaterg, a = 0.5, k =
6.25x 1074, ap=5x10"%,y=5.8x1073, 5= 0.12 ands = 1.2x 10~2 with initial
conditionsx(0) = (1,0,0,200 0,0) (following [14]). \%

For an activator the Hill function is given by

N,
@apKab P,
Nab + a0,

Kab + Py
where the variables are the same as described previously. Note that esthefc
the activator, ifpy is zero, then the production ratedgy (versusaap + ago for the
repressor). Ap, gets large, the first term in the Hill function approachgs and
the transcription rate becomeg, + a4 (Versusuyg for the repressor). Thus we see
that the activator and repressor act in opposite fashion from eacah Bitpere2.21
shows the standard Hill functions for activation and repression.

In the case where there are inducers present, we can modify our mpdel b
adding the appropriate additional reactions. For example, if we haveresssp
with a negative inducer (such as Lacl and IPTG), we can add a reaction

f2(po) =

kf
B+1=B:l.
kr
If we assume that this reaction is fast relative to the other dynamics in the sys-
tem, we can solve for the equilibrium concentration of the inducer bound to the
repressor,

kf
[B:1] = (B .

wherek’ andk' are the forward and reverse reaction rates. We can now attempt to
solve forPyoundl) by computing the amount of repressor that is still free to bind to
the DNA.
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Figure 2.22: Circuit diagrams for transcriptional regigdatof a gene. The first two figures
represent repression and activation. If desired, additiomechanisms can also be indi-
cated, as shown in the diagram on the right.

A simplified case occurs when we assume that most of the repressor is either
bound to the inducer or free, so that the amount of B bound to the DNA is small.
In this case we can solve f@yg, in terms ofl and then combine the expression for
Ppoung With the modified value opy,. If we let Br represent the total amount Bf
present and assume this is constant, we can write

Br = [B:I] +[B]
(ignoring any contributions from B:DNA) and solve fpg as

AT

Po =Bl = T

The resulting expression f@&,oundl) is complicated, but easily computed.

We will often find it convenient to represent the process of regulatiomgiajph-
ical fashion that hides the specific details of the model that we choose.tBigse
ure2.22shows the notation that we will use in this text to represent the process of
transcription, translation and regulation.

We have described how the Hill function can model the regulation of a gene
by a single transcription factor. However, genes can also be regulatedltiple
transcription factors, some of which may be activators and some may lesyepr
sors. The input function can thus take several forms depending oalédsactiva-
tors versus repressors) of the various transcription facgrégeneral, the input
function of a transcriptional module that takes as input transcription &gtdor
i €{1,...,N} will be denotedf(p4,..., pn).

Consider a transcriptional module with input functiéps, ..., pn). The inter-
nal dynamics of the transcriptional module usually models mRNA and protein dy-
namics through the processes of transcription and translation. Proteingpiom
is balanced by decay, which can occur throualglgradationor dilution. Thus, the
dynamics of a transcriptional module is often well captured by the ordiriigrd
ential equations

d d
d—?=f(p1,-.-,pn)—yyw d—? = Bymy — dy Py, (2.16)
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wherem, denotes the concentration of MRNA translated by geree constants
vy anddy incorporate the dilution and degradation processespaiigia constant
that establishes the rate at which the mRNA is translated.

Several other methods of transcriptional regulation can exist in cells.

Antitermination.Antitermination can also be used as a transcriptional regulatory
mechanism. To model itsffects, assume that we have a coding region lableled
that occurs after an antitermination site. We modify the termination reactions from
equation 2.11):

RNAP:DNA! — RNAP® Termination (unchanged)
DNANL N = DNAN:N  Binding to utilization site
RNAP:DNA'+ DNANY:N — RNAP:DNA™  Antitermination
RNAP:DNA! —> RNAP:DNAM Termination (unchanged)

Regulation in eukaryotes

Transcriptional regulation in eukaryotes is more complex than in prokarybite
many situations the transcription of a given gendfiscied by many dierent tran-
scription factors, with multiple molecules being required to initiate/ansuppress
transcription.

2.5 Post-Transcriptional and Post-Translational Regulation

In addition to regulation of expression through modifications of the praafdssn-
scription, cells can also regulate the production and activity of proteins eida
lection of other post-transcriptional modifications. These include methauedf
ulating the translation of proteins, as well dkeating the activity of a protein via
changes in its conformation.

RNA-based regulation
Allosteric modifications to proteins
Covalent modifications to proteins

Covalent modification is a post-translational protein modification tffatts the
activity of the protein. It plays a great role both in the control of metabolischia
signal transduction. Here, we focus mversiblecycles of modification, in which
a protein is interconverted between two forms théfiediin activity either because
of effects on the kinetics relative to substrates or for altered sensitivitfjeoters.
At high level, any covalent modification cycle involves a target proteinsay
an enzyme for modifying it, say Z, and one for reversing the modificationyYsay
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output

Figure 2.23: Diagram representing a covalent modificatyahec

(see Figure.23. We call X* the activated protein. There are often allosteffe@

tors or further covalent modification systems that regulate the activity of tlte mo
ifying enzymes, but we do not consider here this added level of compl&kigre

are several types of covalent modification, depending on the type gétati of

the proteinPhosphorylatioris a covalent modification that takes place mainly in
eukaryotes and involves activation of the inactive protein X by additionpbfcs-
phate group. In this case, the enzyme Z is called a kinase while the enzyme Y is
called phosphatase. Another type of covalent modification, which is \@myron

in both procaryotes and eukaryotes nmgthylation Here, the inactive protein is
activated by the addition of a methyl group.

The reactions describing this system are given by the following two enzymatic
reactions, also called two step reaction model,

k Keat
Z+X?C——>X*+Z

LN K
Y+X"=C — X+Y.
ki
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The corresponding ODE model is given by

‘i_f = —KkiZ-X+ (Kear+ k)C
‘;%( = —kiZ-X+kC+KyC'
‘jj_(t: = KiZ-X— (K +kea)C

d;f = kaC-KiY-X"+KC
dg = KY-X = (K +K)C'
B X (K K

Furthermore, we have that the total amounts of enzymes Z and Y are wedser
Denote the total concentrations of Z and Y By, Yior, respectively. Then, we
have also the conservation la&s C = Ziot andY + C’ = Yior. We can thus reduce
the above system of ODE to the following one, in which we have substiited
Ziot—C andY = Yot — C'.

dcC

G = KilZot=C)-X—(k +kea)C
dx*

dt = kcatC - k,f (Ytot - C,) SXE k;C'
dac’ ’ ’ * ’ ’ ’

dt kf(Ytot_C)‘X _(kr"'kcat)c'

As for the case of the enzymatic reaction, this system cannot be analytically in
tegrated. To simplify it, we can perform a similar approximation as done for the
enzymatic reaction. In particular, the complexes C and C’ are often assiamed
reach their steady state values very fast becluse, k., ki > Keat, kio. Therefore,

we can approximate the above system by substitutingCfand C’ their steady
state values given by the solutions to

K (Ztot—C)- X = (K + kea)C =0

and
k/f (Ytot - C/) X - (k; + kéa‘)C’ =0.

By solving these equations, we obtain that

YtotX* . k; + k{:at
' = th K/ =
XK M T
and that
ke +Keat

ZigtX .
C=—— th Kip = .
X+ Ky i m = e
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(a) Full reaction (b) Reduced reaction

Figure 2.24: Circuit diagram for phosphorylation and degtfaoylation of a proteirX via
a kinaseE and phosphotasé. The diagram on the left shows the full set of reactions. A
simplified diagram is shown on the right.

As a consequence, the ODE model of the phosphorylation system camrlbe w
approximated by

ax* ZiotX YiotK;,
F = kcat

YiotX”*
—K m . X* 4
X+Km X+ K kfx*+Kr’n’

which, considering thakt; K{, — ki = ki, leads finally to

d X ZiotX

Tdt kcatX+K

YiotX*

kcatx*+K/ . (217)

We will come back to the modeling of this system after we have introduced singu-
lar perturbation theory, through which we will be able to perform a formalysis

of this system and mathematically characterize the assumptions neededfapp
imating the original system by the first order ODE mod&L{).

The phosphorylatigdephosophorylation process is illustrated in circuit dia-
gram form in Figure2.24
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Phosphotransfer systems

2.6 Cellular subsystems
Intercellular Signalling
Adaptation

Logical operations

Exercises

2.1 (Hill function for a cooperative repressor) Consider a repressaitinds to an
operator site as a dimer:

Rl: R+tR=R,
R2: R,+DNAP==R,:DNA
R3: RNAP+DNAP = RNAP:DNAP

Assume that the reactions are at equilibrium and that the RNA polymerase con
centration is large (so that [RNAP] is roughly constant). Show that the o&tite
concentration of RNA:DNR to the total amount of DNAD+, can be written as a

Hill function

[RNAP:DNA]  «a

Dt T K+R2

f(R) =
and give expressions farandK.

2.2 (Switch-like behavior in cooperative binding) For a cooperative bindéag-
tion
k1 kf
B+B?Bd, Bd+A?C, and A+C = Apt,
2

the steady state values GfandA are

2
c= MMAaB” g ac Aofo
kMBZ+KD kM BZ+KD

Derive the expressions @f andA at the steady state when you modify these reac-
tions to

k k
B+B+...+B%Bn, Bn+A%C, and A+C = Ag.
2

Make MATLAB plots of the expressions that you obtain and verify thah &%
creases the functions become more switch-like.
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2.3 Consider the following modification of the competitive binding reactions:

kg ks
B,+A=C,B,+A=C,
ke 3

and _

K _ K

C+B,=C,andC+B,=C

kt Kt
with At = A+C +C +C’. What are the steady state expressionsXand C?
What information do you deduce from these expressions if A is a pronidéer,
is an activator protein, and C is the activalXA complex that makes the gene
transcriptionally active?

2.4 Assume that we have an activatof &1d a repressor protein. BMe want to
obtain an input function such that when a lot of B present, the gene is tran-
scriptionally active only if there is no Bwhen low amounts of Bare present, the
gene is transcriptionally inactive (with or without)BWrite down the reactions
among B, B,, and complexes with the DNA (A) that lead to such an input func-
tion. Demonstrate that indeed the set of reactions you picked leads to theddes
input function.

2.5 Consider the phosphorylation reactions described in Se2trbut suppose
that the kinase concentrati@nis not constant, but is produced and decays accord-

o
ing to the reaction ZTT 0. How should the system in equatidh 17) be modified?
t

Use a MATLAB simulation to apply a periodic input stimulkg) using parame-

ter valueskear = kig = 10, ks =K} =k = ki = 1,6 = 0.01. Is the cycle capable of
“tracking” the input stimulus? If yes, to what extent? What are the trackinp-p

erties depending on?

2.6 Another model for the phosphorylation reactions, referred to as opeate
action model, is given by ZX = X*+Z and Y+ X* = X +Y, in which the
complex formations are neglected. Write down the ODE model and comparing the
differential equation oK* to that of equation4.17), list the assumptions under
which the one step reaction model is a good approximation of the two step reactio
model.

2.7 (Transcriptional regulation with delay) Consider a repressor or d@otiBi
modeled by a Hill functior=(B). Show that in the presence of transcriptional delay
7™M, the dynamics of the active mRNA can be written as

dnrr(t) _

—7M _ ANy TaaE
a0t e’ F(Bt-1")—ynT.



Chapter 3

Dynamic Behavior

In this chapter, we describe some of the tools from dynamical systems eatd fe
back control theory that will be used in the rest of the text to analyze asjul
biological circuits, building on tools already described in AM08. We focigion
deterministic models and the associated analyses; stochastic methods aia given
Chapterd.

PrerequisitesReaders should have a understanding of the tools for analyzing sta-
bility of solutions to ordinary dterential equations, at the level of Chapter 4 of
AMO08. We will also make use of linearized inpotitput models in state space,
based on the techniques described in Chapter 5 of AM08, and sensitinittidn
methods, described in Chapters 11 and 12 of AM08 and building on thecinegy
domain techniques described in Chapters 8-10.

3.1 Analysis Near Equilibria

As in the case of many other classes of dynamical systems, a great desibbt
into the behavior of a biological system can be obtained by analyzing treadgs

of the system subject to small perturbations around a known solution. yif e
considering the dynamics of the system near an equilibrium point, which isfone
the simplest cases and provides a rich set of methods and tools.

Parametric uncertainty

Consider a general nonlinear system of the from
x = f(x,0,w),

wherex € R" is the system state#, € RP are the system parameters amnc RY
is a set of external inputs. Let(6o, Wp) represent an equilibrium point for fixed
parametergy and external inputvy, so thatf (xe, 89, Wo) = 0. The stability of the
system around the equilibrium point can be analyzed using the tools debdnib
AMO08. Here we focus instead on understanding how the location of thkgum
point and the dynamics near the equilibrium point vary as a function ofgesain
the parameterg and external inpute.

We start by assuming that = 0 and investigating howe depends om. The
simplest approach is to analytically solve the equafip®, dp) = O for x.. However,
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RNAP @r’ RNAP@W

T A ] 4
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Figure 3.1: Parameter sensitivity in a genetic circuit. Dipen loop system (a) consists
of a constitutive promoter, while the closed loop circuit igself-regulated with negative
feedback (repressor).

this is often dificult to do in closed form and so as an alternative we instead look
at the linearized response given 8y,y = dx./d6, the (infinitesimal) change in the
equilibrium state due to a change in the parameter. To detei®jpeve begin by
differentiating the relationshifxe(6), ) = 0 with respect t@:
df  af oxe of O (9f\ 7 of
a6 - axae T Y T e __(6x) 90 3.1)

(xedo)

These quantities can be computed numerically and hence we can evaludiiedhe e
of small (but constant) changes in the parametens the equilibrium state.

A similar analysis can be performed to determine tlieats of small (but con-
stant) changes in the external input Suppose thak, depends on both andw,
with f(Xe, 80, Wp) = 0 anddp andwg representing the nominal values. Then

% (af)‘l of

o (of\ T of Ixe _ (9f\ 7 of
00 \ox) o6

Ceomo) W \9x) ow

(x&60,wo)

We see that the vecterf /0w describes how the specific inputs vary adfl9x)~*
indicates how the perturbations are reflected in the equilibrium states. fstens
is close to instability then some eigenvalue®dfox will be near zero and hence
the inverse could be large, resulting in significant changes in the equililpdim
due to variations in the disturbances (or parameters).

Example 3.1 (Transcriptional regulation)Consider a genetic circuit consisting
of a single gene. We wish to study the response of the protein concentration
fluctuations in its parameters in two casespastitutive promoteno regulation)
and self-repression (negative feedback), illustrated in Figukterhe dynamics of
the system are given by

dm dP
a = F(P)—)/m, E —ﬂm—5P,

wheremis the mMRNA concentration arfélis the protein concentration.
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For the case of no feedback we havép) = ap, and the system has an equi-
librium point atme = ag/7y, Pe = Bag/(dy). The parameter vector can be taken as
0 = (ao,v,B,6). Since we have a simple expression for the equilibrium concentra-
tions, we can compute the sensitivity to the parameters directly:

2
g T | B /?700 @ Bao
00 55 ToZ oy o2

oy oy 762

where the parameters are evaluated at their nominal values, but we Edkie o
subscript 0 on the individual parameters for simplicity. If we choose thanpe-
ters agly = (0.001380.005780.1150.00116), then the resulting sensitivity matrix
evaluates to

SoPen [ 170 -41 0 0 J .

6 ~ 117000 -4100 210 -2100 (3.2)

If we look instead at the scaled sensitivity matrix, then the open loop natuine of
system yields a particularly simple form:

= 1 -1 0 O
open _
SH _[1 11 _1]. (3.3)

In other words, a 10% change in any of the parameters will lead to a cobi@ara
positive or negative change in the equilibrium values.
For the case of negative regulation, we have

a

FP) =

+ o,

and the equilibrium points satisfy

0 a vo
= —P s = = —P .
Me B e K+P2 +ao=yMe B e
Rather than attempt to solve for the equilibrium point in closed form, we instead

investigate the sensitivity using the computations in equaBol).(The state, dy-
namics and parameters are given by

x=(m P, f(x,@):[':ﬁ(r?__gpm], 6=(a0 v B 6 @ n K).

Note that the parameters are ordered such that the first four parametiets the
open loop system. The linearizations are given by

K+P'  (KePZ  (K+P")2
Ox B = 00 ’

of _(-y F'(Pe) af (1 -m 0 0 1 aPlog(P) o
B ’ 0 0 m-P 0
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where again the parameters are taken to be their nominal values. From ttasiwe
compute the sensitivity matrix as

a0 g0 ; ;
_ Odng sm_ __mF P _ %4 _ 0 0%
S o= oy—BF’ oy—BF’ oy—PF’ oy—pF’ oy—BF’ oy—BF’ oy—pF’
X,0 — E) il P
_ FBiag gm__ ym N It
oy-BF’  Sy-BF’ oy—pBF’  oy-BF’ oy—BF’ oy—PF’ oy—PF’

whereF’ = 9F /0P and all other derivatives df are evaluated at the nominal pa-
rameter values.

We can now evaluate the sensitivity at the same protein concentration ag we us
in the open loop case. The equilibrium point is given by

[o16)
_[me) |5 | _ (0239
“‘[Pe]‘[%]‘[zag

and the sensitivity matrix is

Guosea_ (761 -182 -116 116 0134 -0.212 -0.00011
xf ~ 7610 -1820 908 -908Q 134 -212 -00117 |

The scaled sensitivity matrix becomes

Selosed. [0.16 -044 -056 056 028 -1.78 -3.08x 107} (3.4)

Xe 0 0.16 -0.44 044 -0.44 028 -178 -3.08x107|" '
Comparing this equation with equatioB.8), we see that there is reduction in the
sensitivity with respect to most parameters. In particular, we become lesitse
to those parameters that are not part of the feedback (columns 2+4hebe is
higher sensitivity with respect to some of the parameters that are part fefatie
back mechanisms (particulanhy. \%

More generally, we may wish to evaluate the sensitivity of a (non-constant) s
lution to parameter changes. This can be done by computing the fuile{ihndo,
which describes how the state changes at each instant in time as a function of
(small) changes in the parametér&Ve assumev = 0 for simplicity of exposition.

Let x(t; Xo,680) be a solution of the dynamics with initial conditiog and pa-
rameters)y. To computedx/do, we write down a dterential equation for how it

evolves in time:
& (2= 2 (%)= & trunmy
dt\do/ do\dt/ do o
_ofdx of
= oxdo 06"
This is a diferential equation withx m statesS;; = dx /d@; and with initial condi-
tion S;;(0) = 0 (since changes to the parameters to fi@icathe initial conditions).
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To solve these equations, we must simultaneously solve for thexsteie the
sensitivity S (whose dynamics depend o Thus, we must solve the set nf+
nmcoupled diterential equations

dX dSXQ

a = f(x,6,w), Tt

of of
= Gx 0 W)Se + -5 (X.0.W). (3.5)

This differential equation generalizes our previous results by allowing us to
evaluate the sensitivity around a (non-constant) trajectory. Note that sptwal
case that we are at an equilibrium point and the dynamicS{grare stable, the
steady state solution of equatidh ) is identical to that obtained in equaticd. 1).
However, equatior.5) is much more general, allowing us to determine the change
in the state of the system at a fixed timiefor example. This equation also does
not require that our solution stay near an equilibrium point, it only reqtiivatsour
perturbations in the parameters ardisiently small.

Example 3.2(Repressilator) Consider the example of the repressilator, which was
described in Exampl2.1 The dynamics of this system can be written as

dmy _ dP; _
T Frep(P3) —ymy at =M —6P,
dmp _ dpP, _
T Frep(P1) —yme at =pmp—oP;
dl’ng _ dPg _
T Frep(P2) —ymp at = Mg —0P>,

where the repressor is modeled using a Hill function

a

Frep(p) = K+ pr

+ .

The dynamics of this system lead to a limit cycle in the protein concentrations, as
shown in Figure3.2a

We can analyze the sensitivity of the protein concentrations to changes in the
parameters using the sensitivityférential equation. Since our solution is periodic,
the sensitivity dynamics will satisfy an equation of the form

d Sxﬁ
dt

whereA(t) and B(t) are both periodic in time. Letting = (my, P1, My, P2, mg, P3)

andé = («o,v.,,9, @, K), we can comput8y 4 along the limit cycle. If the dynamics

for Sy are stable then the resulting solutions will be periodic, showing how the
dynamics around the limit cycle depend on the parameter values. The results a
shown in Figure3.2h where we plot the steady state sensitivityPafas a function

of time. We see, for example, that the limit cycle depends strongly on the protein

= A()Sxe + B(1),
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Figure 3.2: Repressilator sensitivity plots

degradation and dilution ratg indicating that changes in this value can lead to
(relatively) large variations in the magnitude of the limit cycle.
\%

Several simulation tools include the ability to do sensitivity analysis of this sort,
including COPAST.

Frequency domain analysis

Another way to look at the sensitivity of the solutions near equilibria to chenge
in parameters and inputs is to use frequency domain techniques. Recdlighat
frequency responsef a linear system

X=Ax+Bu
y=Cx+Du

is the response of the system to a sinusoidal inpaiasinwt with input amplitude
a and frequencw. The transfer function for a linear system is given by

Gyu(s) =C(sl-A)*B+D

and represents the response of a system to an exponential signafahthgt) =
e wheres e C. In particular, the response to a sinusaiet asinwt is given by
y = Masin(wt + ) where the gairM and phase shifi can be determined from the
transfer function evaluated at iw:

Gyu(iw) = M€".
For finite dimensional linear (or linearized) systems, the transfer funceobeb
written as a ratio of polynomials is

G(s) = %.
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The values ok at which the numerator vanishes are called the zeros of the transfer

function and the values afat which the denominator vanishes are called the poles.
The transfer function representation of an iriputput linear system is essen-

tially equivalent to the state space description, but we reason about rilaendys

by looking at the transfer function instead of the state space matricesxdrope,

it can be shown that the poles of a transfer function correspond to thevaigies

of the matrixA, and hence the poles determine the stability of the system.
Interconnections between subsystems often have simple representat@ngsin

of transfer functions. Two systen@ andG, in series (with the output of the first

connected to the input of the second) have a combined transfer fuGligys) =

G1(9)G2(s) and two systems in parallel (a single input goes to both systems and the

outputs are summed) has the transfer func@ggaie(s) = G1(s) + Ga(s). A com-

mon interconnection is two put two systems in feedback form for which thefean

function is given by
Gyr(9) = Gi(9) _ ny(s)d2(s) ,
Gi(9)+G2(s)  m(s)da(s) + da(s)n(9)
wheren;(s) andd;(s) are the numerator and denominator of the individual transfer
function. The ease in which the inpotitput response for interconnected systems
can be computed with transfer functions is one of the main motivations for their
widespread use in engineering.

Transfer functions are useful representations of linear systemedeettee prop-
erties of the transfer function can be related to the properties of the dymamic
particular, the shape of the frequency response describes howstieensyesponse
to inputs and disturbances, as well as allows us to reason about the stdliiligr-o
connected systems. The Bode plot of a transfer function gives the mdgrind
phase of the frequency response as a function of frequency aridiytiést plot
can be used to reason about stability of a closed loop system from thdamgen
frequency response. The transfer function for a system can beriesel from
experiments by measuring the frequency response and fitting a transéioh
to the data. Formally, the transfer function corresponds to the ratio of thiade
transforms of the output to the input.

Returning to our analysis of biomolecular systems, suppose we have msyste
whose dynamics can be written as

x=f(x,6,w)

and we wish to understand how the solutions of the system depend on the pa-
rameters) and disturbancew. We focus on the case of an equilibrium solution
X(t; X0,60) = Xe. LetZ= X— Xe, W= W—Wp andé = 6 — 6y represent the deviation

of the state, input and parameters from their nominal values. We can writlythe
namics of the perturbed system using its linearization:

]
dt X (Xe,t0,Wo) 96 (Xe,6o,Wo) ow (Xe,60,Wo)
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This linear system describes small deviations foquo, wo) but allowsd andw to
be time-varying instead of the constant case considered earlier.

To analyze the resulting deviations, it is convenient to look at the system in the
frequency domain. Let = Cx be a set of values of interest. The transfer functions
betweerd, W andy are given by

Hy(S) = C(sl— A) By, Hyw () = C(sl - A)1By,

where
of of of
A= — , By= — , = — .
OX | (xe,00.w0) 90 | (xe.60.m0) OW | (e, 60.w0)
Note that if we lets = 0, we get the response to small, constant changes in

parameters. For example, the change in the outpwis a function of constant
changes in the parameters is given by

Hy3(0) = CA™'By = CSx,
which matches our previous parametric analysis.

Example 3.3(Transcriptional regulation)Consider again the case of transcrip-
tional regulation described in Exampdel Suppose that the mRNA degradation
ratey can change as a function of time and that we wish to understand the sensitiv-
ity with respect to this (time-varying) parameter. Linearizing the dynamicsarou
an equilibrium point
_ (-7 F(pe) _[-me

A=y 7). e[
For the case of no feedback we ha/@) = ag, and the system has an equilibrium
point atme = ag/y, Pe = Bao/(dy). The transfer function frony to p is given by

—BMe
(s+7)(s+9)
For the case of negative regulation, we have

G,(9) =

(04
F(P) =
(P) K+ pn + o,
and the resulting transfer function is given by
Me naPh-1
GCI = ﬁ s = F, P = —c .
(9 (s+7)(s+06) + o v (Pe) (K + PD)2

Figure 3.3 shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbaiticdevw
frequency content but slightly amplifies disturbances at high frequeacydared
to the open loop system). \%
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Figure 3.3: Noise attenuation in a genetic circuit.

@ Robustness analysis

A slightly more general analysis of sensitivity can be accomplished usingtie ¢
trol theoretic notions of sensitivity described in AMO08, Chapter 12. Rdtiaarjust
considering static changes to parameter values, we can instead consicieselof
unmodeled dynamics which we allow bounded inp(dgutput uncertainties to en-
ter the system dynamics. This can be used to model parameters whoseavelues
unknown and also time-varying, as well as capturing uncertain dynamicarta
being ignored or approximated.

To illustrate the basic approach, consider the problem of determining thie sen
tivity of a set of reactions to a set of additional unmodeled reactions,evietziled
effects are unknown but assumed to be bounded. We set this problem gphesin
general framework shown in FiguBe4.

3.2 Analysis of Reaction Rate Equations

The previous section considered analysis techniques for generainityad sys-
tems with small perturbations. In this section, we specialize to the case where the

L,,f T

Figure 3.4: Analysis of dynamic uncertainty in a reactiosteyn.
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dynamics have the form of a reaction rate equation:

S=NMs, p). (3.6)

wheresis the vector of species concentratiopss the vector of reaction parame-
ters,N is the stoichiometry matrixy(s, p) is the reaction rate (or flux) vector.

Reduced reaction dynamics

When analyzing reaction rate equations, it is often the case that theresereed
gquantities in the dynamics. For example, conservation of mass will imply that if all
compounds containing a given species are captured by the model, the tetal ma
of that species will be constant. This type of constraint will then give semed
guantity of the formc; = His whereH; represents that combinations of species in
which the given element appears. Sirgges constant, it follows that; = 0 and,
aggregating the set of all conserved species, we have

O0=Cc=Hx=HNVs,p) foralls.

If we assume that the vector of fluxes sp&is(the range of/: R"xRP — R™M),
then this implies that the conserved quantities correspond to the left nué spac
the stoichiometry matri.

It is often useful to remove the conserved quantities from the descrigitibie o
dynamics and write the dynamics for a set of independent species. Tisdwéh
transform the state of the system into two sets of variables:

-0

The vectors = Psis the set of independent species and is typically chosen as
a subset of the original species of the model (so that the Pwsnsists of all
zeros and a single 1 in the column corresponding to the selected spedies). T
matrix H should span the left null space df, so thatsy represents the set of
dependent concentrations. These dependent species do naanidggesrrespond
to individual species, but instead are often combinations of speciesX&nple,
the total concentration of a given element that appears in a number of rfeslecu
that participate in the reaction).

Given the decompositior8(7), we can rewrite the dynamics of the system in
terms of the independent variablgs We start by noting that giveg and sy, we
can reconstruct the full set of species

s:[ﬁ]_l[;]ﬂs% L=(5]l[é] @ :['z]l[gj
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wherecy represents the conserved quantities. We now write the dynamissdesr
§ = P§=PNMLs +Co, p) = NrVi (S, Co, p), (3.8)

whereN; is thereduced stoichiometry matriand v, is the rate vector with the
conserved guantities separated out as constant parameters.

The reduced order dynamics in equati@8[ represent the evolution of the
independent species in the reaction. Giggrwe can “lift” the dynamics from the
independent species to the full set of species by wrisird_s + cg. The vectorcy
represents the values of the conserved quantities, which must be specdieer
to compute the values of the full set of species. In addition, sinek s + ¢y, we
have that

S§=LS§ = LNV (s,Co, p) = LN V(s p),

which implies that
N = LN;.

Thus,L also "lifts” the reduced stoichiometry matrix from the reduced space to the
full space.

Example 3.4(Enzyme kinetics) Consider an enzymatic reaction

S+E=2 skt Esp,
Koft
whose full dynamics can be written as
S -1 1 0
d|E|_|-1 1 0 klfo”ig
dt|ES| " |1 -1 1|2
P 0 o 1) KaES

The conserved quantities are given by

01 10
H‘[1 —101]‘

The first of these is the total enzyme concentrafign= E + ES, while the second
asserts that the concentration of prod@ et equal to the free enzyme concentration
E minus the substrate concentratiSnlf we assume that we start with substrate
concentratiorsg, enzyme concentratidgr and no product or bound enzyme, then
the conserved quantities are given by

c_ [E+ES)_( Er
- S-E+P - So—ET ’
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There are many possible choices for the set of independent sgeei®s but
since we are interested in the substrate and the product, we cR@sse

1000
P‘[0001}‘

OnceP is chosen then we can compute

1 O 0
I R A MR
H 0 -1 -1’ H c So |’
0 1 0

The resulting reduced order dynamics can be computed to be

_ kon(P+S+ Er —So)S
252 5 [ s
Kea(—P — S+ So)
_ [—kon(P+S+ Et —S0)S — ko (P + S—So)]
- kea(So—S—P) '

A simulation of the dynamics is shown in Figu8es. We see that the dynamics are
very well approximated as being a constant rate of production until waustihe
substrate (consistent with the Michaelis-Menten approximation).

\Y

Metabolic control analysis

Metabolic control analysis (MCA) focuses on the study of the sensitivisteddy
state concentrations and fluxes to changes in various system parafie¢sbsisic
concepts are equivalent to the sensitivity analysis tools described in 158ctjo
specialized to the case of reaction rate equations. In this section we padlvidk
introduction to the key ideas, emphasizing the mapping between the general co
cepts and MCA terminology (as originally done by Ingald]).

Consider the reduced set of chemical reactions

S = Nrvi (s, p) = Nrv(LS + Co, ).

We wish to compute the sensitivity of the equilibrium concentratiRrend equi-
librium fluxesve to the parameterp. We start by linearizing the dynamics around
an equilibrium points. DefiningXx = s— S, U= p— pp and f (X, u) = N, V(Se+ X, Po +

u), we can write the linearized dynamics as

. ov ov
= Ax+ Bu, A=|N,—L B=|N,— 3.9
X X ( "os ) ( r<9p)’ (3-9)
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Figure 3.5: Enzyme dynamics. The simulations were carrigkg, = kog = 10, Kear= 1,
So =500 andet =5,1020. The top plot shows the concentration of subsBatad product
P, with the fastest case correspondinggp = 20. The figures on the lower left zoom in
on the substrate and product concentrations at the initi@ &nd the figures on the lower
right at one of the transition times.

which has the form of a linear fierential equation with stateand inputu.
In metabolic control analysis, the following terms are defined:

— _dv

P dpls.p,
— 0% —
F?S = Q;E; ::(:SEp
— Ve ——

ep = flux control codficients

Ry

CS = concentration control céicients

Ry
C_v

rate control cofficients

These relationships describe how the equilibrium concentration and emuniibr
rates change as a function of the perturbations in the parameters. Theritwol
matrices provide a mapping between the variation in the flux vector evaluated at

equilibrium,

|

)
)

and the corresponding féerential changes in the equilibrium poidtse/dp and
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e ()
ap \op/gpy
The left side is the relative change in the equilibrium rates, while the rightiside
the change in the rate functias, p) evaluated at an equilibrium point.

To derive the cofficient matricesC® andCY, we simply take the linear equa-
tion (3.9) and choose outputs correspondings&ndyv:

OVe/0p. Note that

Vs = 1X, Y= —LX+—u.

Using these relationships, we can compute the transfer functions

el av-1R (et Y -1y 19V
Hs(s) = (sI-A) "B =|(sl Ne <L) Nr]ap,

ov _ ov oV ov, __ ov
HY(9) = 5 L(sI-A) 1B+% - [6—SL(SI—Nra—SL) 1Nr+|]%.

Classical metabolic control analysis considers only the equilibrium coratimts,
and so these transfer functions would be evaluatsedto obtain the equilibrium
equations.

These equations are often normalized by the equilibrium concentrations and
parameter values, so that all quantities are expressed as fractionétigaalf we
define

D® = diag s}, D" = diagv(se, po)}, DP = diag{ po},
the the normalized cdigcient matrices (without the overbar) are given by

CS= (DS)_lC_SDV, cV= (DV)_:LC_VDV,
RS = (D%)'R3DP, RY = (DY)"'RyDP.
Example 3.5(Enzyme kinetics) TBA \%

Flux balance analysis

Flux balance analysis is a technique for studying the relative ratdfefeint reac-
tions in a complex reaction system. We are most interested in the case where ther
may be multiple pathways in a system, so that the number of reacticgreater

than the number of speciasThe dynamics

S=NMs, p)

thus have the property that the mathikkhas more columns that rows and hence
there are multiple reactions that can produce a given set of speciehdtance is
often applied to pathway analysis in metabolic systems to understand the limiting
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Figure 3.6: Flux balance analysis.

pathways for a given species and the tifie@s of changes in the network (e.g.,
through gene deletions) to the production capacity.

To perform a flux balance analysis, we begin by separating the reacfitims
pathway into internal fluxeg versus exchanges flwy, as illustrated in Figur8.6.
The dynamics of the resulting system now be written as

5= Nv(s p) =N [J‘J ~ (s p)—be

wherebe = — NV, represents thefkects of external fluxes on the species dynamics.
Since the matriN has more columns that rows, it hagght null space and hence
there are many flierent internal fluxes that can produce a given change in species.

In particular, we are interested studying the steady state properties ofsthe s
tem. In this case, we have that 0 and we are left with an algebraic system

NV| = be.

Power law formalism

Chemical reaction rate equations are nonlinefieteéntial equations whenever two

or more species interact. However, the nonlinearities are very structhesdcan

be decomposed into a stoichiometry matrix and flux rates, and the flux rates typ-
ically consist of either polynomial terms or simple ratios of polynomials (e.g.,
Michaelis-Menten kinetics or Hill functions). In this section we considergdaw
representations that exploit these properties and attempt to provide singtler te
niques for understand the relationships between species concentraticarseter
values and flux rates. This formalism was developed by Savaddharid is also
called biochemical systems theory (BST).
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The general power law formalism describes a set of reaction dynamicsals
set of diferential equations of the form

n+m n+m

%:ZErHXﬁ_ZESHXf, i=1..n (3.10)
r j=1 S =1

Here, x; is the concentration for speciéswith i = 1,...,n representing internal
species and = n+1,...,m representing external species, and the dynamics are
broken into two summations. The first sum is over the set of reactions thduiqe

the species; and the second is over the reactions that utikzéand so decrease

its concentration). The linear cfieientsE, andEs are the activity levels and cor-
respond to the rate constants (for metabolic networks the rate constaofteare
proportional to a fixed enzyme level, hence the use of the sym@polhe expo-
nentSGJf ande’® are thekinetic ordersof the production and utilization reactions.

In this general form, the power law formalism is able to exactly capture mass
action kinetics, but it does not provide any additional structure. If wesicter a
general rate equation of the fow{x, ..., Xn+m), We can approximate this function
in a number of ways. The first is through its linearization,

ov .
Vi(X1, ..o Xnem = Vi(XLe, - - - » Xneme) + Z %(Xj — Xj,e) + higher order terms
i
We have used exactly this approximation in previous sections.

A different approximation can be obtained by taking a Taylor series expansion
for logvi:

8||09Vi (logx; —logx; ¢) + higher order terms

I0GVi(X1. ... Xnem ~ 10V (XL .. Xneme) + ) 5 0%,

If we define
ologu _ X v

- dlogx; Y 0X;

Oi,j
and collect terms, we have
logvi(x) ~ logai + i1 10gX1 + -+ + Gi nemlOY Xnm.

Converting this back from log coordinates, we can thus right

n+m

Vi(X) ~ l_[ X?i’j.
j=1

Using this approximation on the sums in equati8ri(), we can approximate
the resulting dynamics as



3.3. LIMIT CYCLE BEHAVIOR 3-17

wherea; andg; j are the rate constant and kinetic orders for the production terms
andg; andh; j are the rate constant and kineeetic orders for reactions that utilize
x;. While this is only an approximation, its form is convenientt for performing
equilibrium analyses. In particular,Xf = 0 then we can equate the production rate
to the utilization rate adn take the log of this expression to obtain

logai + Z 0i,jlogx; = logpg; + Z hi jlogXx;.

This is now a linear equation for the logs of the concentrations in terms of the
various parameters that enter the system.

3.3 Limit Cycle Behavior

Before studying periodic behavior of system&it we study the behavior of sys-
tems inR? as several high dimensional systems can be often well approximated by
systems in two dimensions by, for example, employing quasi-steady stateiappro
mations. For systems iR?, we will see that there are only two types of solutions:
those converging (diverging) from steady states and periodic solufidre is,
chaos can be ruled out in two-dimensional systems.

Consider the system= f(x), in which f(x) is often referred to as vector field,
and letx(t, Xp) denote its solution starting ag at timet = 0, that is,x{t, Xo) =
f(x(t, X)) and x(0, xg) = Xo. We say thaix(t, xo) is a periodic solutionif there is
T > 0 such thatx(t, Xg) = x(t + T, xg) for all t € R. Here, we seek to answer two
guestions: (a) when does a systgm f(x) admit periodic solutions? (b) When are
these periodic solutions stable or asymptotically stable?

We first tackle these questions for the caseR2. The first result that we next
give provides a simple check to rule out periodic solutions for syste&i.iSpecif-
ically, let (x,y) € R? and consider

x = f(xy)
y = 9gxy), (3.11)
in which the functiong, f are smooth. Then, we have the following result:

Theorem 3.1(Bendixson’s Criterion) If on a simply connected region ®R? (i.e.,
there are no holes in it) the expression

ot 99

ox oy
is not identically zero and does not change sign, then sys3ehi) (has no closed
orbits that lie entirely in D.
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Example 3.6. Consider the system

X = -y +6x°
y o= X,

with § > 0. We can computé—; + g—g = 36x2, which is positive in alR? if § # 0. If
6 # 0, we can thus conclude from Bendixson’s criterion that there are rodie
solutions. Investigate as an exercise what happens wkeh \%

In order to provide the main result to state the existence of a stable periodic
solution, we need the concept of omega-limit set of a ppjrtenotedu(p). Basi-
cally, the omega-limit seb(p) denotes the set of all points to which the trajectory
of the system starting frorp tends as time approaches infinity. This is formally
defined in the following definition

Definition 3.1. A point x e R" is called aromega-limit poinbf p e R" if there is a
sequence of timef&;} with tj — oo for i — oo such thatx(tj, p) — X asi — . The
omega limit seof p, denotedv(p), is the set of all omega-limit points qf.

The omega-limit set of a system has several relevant properties, antocly w
the fact that it cannot be empty and that it must be a connected set.

The following theorem, completely characterizes the omega limit set of any
point for a system iR

Theorem 3.2(Poincae-Bendixson) Let M be a positively invariant region for the
systenk = f(x) with xe R? (i.e., any trajectory that starts in M stays in M for all
t > 0). Let pe M, then one of the following possibilities holds tofp):

() w(p)is a steady state;
(i) w(p) is a closed orbit;

(iii) w(p) consists of a finite number of steady states and orbits, each starting (for
t = 0) and ending (for t> ) at one of the fixed points.

This theorem has two important consequences:

1. If the system does not have steady statelsljrsincew(p) is not empty, it
must be a periodic solution;

2. If there is only one steady statelhand it is unstable and not a saddle (i.e.,
the eigenvalues of the linearization at the steady state are both positive), the
w(p) is a periodic solution.

Example 3.7. Consider the following system iR?:

Xx—y— (% +y?)x
X+y— (O +y2)y.

< X
Il
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Verify as an exercise that this system admits one equilibrium point only (ihe or
gin), which is unstable. Also, show that its trajectories are globally bou(ided
example, take a se€ +y? = c for ¢ large enough and demonstrate that the vec-
tor field of the system always points inside the cirgfer y? = c). Therefore, by
Poincae-Bendixson Theorem, we can conclude that the omega-limit set of any
point inR? different from the origin is a non-zero periodic orbit. \%

This result holds only for systems in two dimensions. However, there resue b
recent extensions of this theorem to systems with special structi&'e in partic-
ular, we have the following result due to Hastings et al. (1977).

Theorem 3.3(Hastings et al. 1977)Consider a system = f(x), which is of the
form

X1

f1(Xn, X1)

5(] fj(Xj_l, Xj), 2<j<n

on the set M defined by x O for all i with the following inequalities holding in
M:
0] g—)f(ii <Oand%1 >0, for2<i<n, andg—)f; <0

(i) fi(0,0)>0and f(x,,0)> Ofor all x,> O;

(iii) The system has a unique steady state k. ..., X;) in M such that {(x,, X1) <
0if Xn > X and x > X7, while fi(xn, X1) > 0if xn < X; and % < x3;

(iv) 22 is bounded above in M.

Then, if the Jacobian of f athas no repeated eigenvalues and has any eigenvalue
with positive real part, then the system has a non-constant periodic solatidn

This theorem states that for a system with cyclic structure in which the cy-
cle “has negative gain”, the instability of the steady state (under some tathnic
assumption) is equivalent to the existence of a periodic solution. This&heor
however, does not provide information about whether the orbit is atteagtinot,
that is, of whether it is an omega-limit set of any pointMn This stability result is
implied by a more recent theorem due to Mallet-Paret and Smith (1990), fohwh
we provide a simplified statement as follows.

Theorem 3.4(Mallet-Paret and Smith, 1990 Consider the system= f(x) with
the following cyclic feedback structure

X1 = fi(xn,x1)
Xj = fj(Xj-1,Xj), 2<j<n

on a set M defined by; % O for all i with all trajectories starting in M bounded
for t > 0. Then, the omega-limit sei(p) of any point pc M can be one of the
following:
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() A steady state;
(b) A non-constant periodic orbit;
(c) A set of steady states connected by homoclinic or heteroclinic orbits.

A heteroclinic orbit is an orbit that starts (for 0) at a steady state and ends (for
t — o0) into a diterent steady state. A homoclinic orbit is an orbit that starts and
ends at the same steady state. It is thus clear that a steady state whogztinear
admits all positive or all negative eigenvalues cannot have a homocliritc Asla
consequence of the theorem, then we have that for a system with cydluafde
structure that admits one steady state only and at which the linearization has all
eigenvalues with positive real part, the omega limit set must be a periodic orbit.

Let for somes; € {1,-1} be 6i% >0 for all 0<i < n and defineA :=
81-...-0n . One can show that the sign &fis related to whether the system has one
or multiple steady states.

Therefore, a system with a cyclic feedback structure and a unique euiiib
point at which the linearization has all eigenvalues with positive real jpianita a
stable periodic orbit.

3.4 Analysis Using Describing Functions

Unlike the case of linear systems, where it is possible to full characterizothe
tions of a model and there are a wide variety of analysis techniques avattable,
behavior of nonlinear systems is harder to analyze, especially awayefoitib-
rium points (where the linearization gives a good approximation). One ahtre
useful techniques for studying the behavior of nonlinear systems is thedeth
harmonic balance, of which a special case is the method of describintioiusc
This section explores the use of harmonic balance and describing fustdicen-
alyzing nonlinear systems, including the detection and analysis of limit cyctes an
the propagation of noise through nonlinear systems.

Describing functions (AMO08)

For special nonlinear systems like the one shown in Fi@urg which consists

of a feedback connection between a linear system and a static nonlingasity,
possible to obtain a generalization of Nyquist’s stability criterion based on ¢ze id
of describing functionsFollowing the approach of the Nyquist stability condition,
we will investigate the conditions for maintaining an oscillation in the system. If
the linear subsystem has low-pass character, its output is approximateypisial
even if its input is highly irregular. The condition for oscillation can then henfb

by exploring the propagation of a sinusoid that corresponds to the dinstdnic.
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(a) Block diagram (b) Nyquist plot
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Figure 3.7: Describing function analysis. A feedback catioa between a static nonlin-
earity and a linear system is shown in (a). The linear syssecharacterized by its transfer
functionL(s), which depends on frequency, and the nonlinearity by isedeing function
N(a), which depends on the amplitudef its input. The Nyquist plot oE(iw) and the plot
of the—1/N(a) are shown in (b). The intersection of the curves represeptsssible limit
cycle.

To carry out this analysis, we have to analyze how a sinusoidal sigopapr
gates through a static nonlinear system. In particular we investigate howdhe fir
harmonic of the output of the nonlinearity is related to its (sinusoidal) input. lgettin
F represent the nonlinear function, we expdr(@“!) in terms of its harmonics:

F(ad) = )" My(a)e™+n(@),
n=0

whereMn(a) and¢n(a) represent the gain and phase of titke harmonic, which
depend on the input amplitude since the functioris nonlinear. We define the
describing function to be the complex gain of the first harmonic:

N(a) = M1 ()e*"@. (3.12)

The function can also be computed by assuming that the input is a sinusoid and
using the first term in the Fourier series of the resulting output.

Arguing as we did when deriving Nyquist’s stability criterion, we find that an
oscillation can be maintained if

L(iw)N(a) = -1. (3.13)

This equation means that if we inject a sinusoid at A in Figui'ethe same signal

will appear at B and an oscillation can be maintained by connecting the points.
Equation 8.13 gives two conditions for finding the frequeneyof the oscillation

and its amplitudex: the phase must be 180and the magnitude must be unity. A
convenient way to solve the equation is to pldgiw) and—-1/N(a) on the same
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Figure 3.8: Heuristic stability of limit cycles using deiing functions. (a) To check if a
perturbation from amplitudey to amplitudeag + da is stabilizing, we check to see if the
Nyquist criterion is satisfied for the original frequencgpense and the perturbed critical
point P; = 1/N(ap + 6a). (b) An example of a nonlinear system with multiple limitcbys.
Stable limit cycles are labeled 's’ and unstable limit cgchee labeled 'u’.

diagram as shown in Figu®7b. The diagram is similar to the Nyquist plot where
the critical point-1 is replaced by the curvel/N(a) andaranges from O teo.

It is possible to define describing functions for types of inputs other than si-
nusoids. Describing function analysis is a simple method, but it is approximate
because it assumes that higher harmonics can be neglected. Excedénetres
of describing function techniques can be found in the texts by AtheB8pard
Graham and McRuedp].

Example 3.8(Repressilator) \%

Stability of limit cycles using describing functions

In order to check the stability of a limit cycle, we must reason about how sokutio
that have initial conditions near the limit cycle evolve in time and whether they
move closer to the limit cycle (asymptotic stability) or diverge from the limit cycle
(instability).

We begin by arguing heuristically, using the Nyquist plot in FigBréh Sup-
pose that we were to consider a perturbed limit cycle with amplitgdesa, where
qp is the amplitude of the limit cycle predicted by the describing function method.
If we did so, then the point of intersection of the describing function andrée
guency response would move frdPg = —1/N(ap) to P1 = —1/N(ag +sa), as shown
in Figure3.8a Now evaluate the Nyquist criterion for the frequency response with
critical point P;. If the criterion indicates that the perturbed system is stable (i.e.,
no net encirclements d#; for a stable process), then intuitively the amplitude of
the perturbed solution would decrease and we would return to our oreyimali-
tude limit cycle. Conversely, if the Nyquist criterion with critical poRit indicates
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instability, then the oscillation would grow and hence we can infer that the limit cy-
cle is unstable. Figurgd.8bshows a situation with multiple limit cycles with some
stable and some unstable.

While this heuristic method is intuitively appealing, it does not always give the
correct answer. Indeed, even the prediction of the existence of a licig oging
describing functions can be incorrect unless the system satisfies salitiersd
conditions. We present here one such set of conditions, due to IFees [

Suppose thatdp, ag) satisfies the describing function balance equafitm,) =
—1/N(ap) and that the the frequency response curve and the describing fulwtio
cus are transverse (not tangent) at their intersection. Define

p(w)? = Z IP(ikwo)|4, “gain of harmonics”
k=3,5,9....
p(a)? = [In(asint)|3 - [aN(@)[?, “first harmonic error”
d(a,e) = [Im(asint, )|, “slope bound”

mM(x, €) = max|N(x+€) = N(X)I. IN(x - €) = N(x)[}.

Now find ane such that for all ©,a) near (v, ag),

p(w)(p(a) +q(a.€)) < €

and letQ € R? be the set of¢), a) such that
IN(a) +1/G(iw)l < q(a€)/a.

Theorem 3.5. Suppose&? is bounded and there exists a unigiue ap) € Q sat-
isfying the balance equation. Then there exists a periodic solution of the form
y(t) = asinwt) + y*(t) with remnant|y*||. < €.

Sketch of proof Reduced to the contraction mapping theorem, which genesates
p andg. O

The basic idea behind this theorem is that if the harmonics around the loop die
off sufficiently fast, then we can insure that there is truly a periodic solution and
bound the error of the higher harmonics. There is also a graphicabrestthe
stability theorem that checks for “complete intersections” between theiblieggcr
function locus and the Nyquist curve][

Mathematically, the stability of a limit cycle can be analyzed by taking the }
earization of the system around the (non-equilibrium) solution. To see hswst
done, consider a nonlinear system of the form

%= f(X)
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Figure 3.9: Random input describing function analysis.

that has a solutiory(t) that is periodic with period’. To compute the linearization
of the dynamics around the equilibrium point, we compute the dynamics of the
errore= X— Xxq:

e= f(x) - f(xa) = F(e xa(t)) = Alt)e

whereA(t) is the time-varying linearization given by

oF
AlD) = (& Xa) ooy’
The dynamics matri\(t) is periodic and so the dynamics of the linearization are
a given by a periodic, linear ordinaryftérential equation.

The dynamics of periodic linear systems can be studied USioguettheory,
which we briefly review here. Leb(t,0) be the T-periodic) fundamental matrix
for &€ = A(t)e, so that the solution is given by(t) = ®(t,0)x(0). It can be show
that®d(t,0) has the formp(t,0) = P(t)e" whereP(t) = P(t+ T) e R™" is a periodic
matrix andF € R™" is a constant matrix. We can now check stability by examining
the eigenvalues of the matrék T, which corresponds to the “first return” map for
the system.

Random input describing functions

In addition to allowing prediction and analysis of limit cycles, describing fumstio
can also be used to analyze the propagation of noise through nonlieekafs
systems. This approach is known as thedom input describing functiomethod.
As in the single input describing function method, we begin with a system in

the form of a a linear system with a nonlinear feedback, as shown in Fj8ae

To analyze this system, we construct an input that contains both a sinusbal a
random input (t):

y=b+asin(wt+¢) +r(t),

whereb is the bias terma is the amplitude of the sinusoidal tergnjs a uniform
random variable and(t) is a stationary Gaussian random process with variance
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o2 and correlatiorp(r).: We approximate the response of the system through the
nonlinearity by

N(y(t)) ~ Npb+ Naasin(wt + ¢) + Ny r(t),
whereNy, is called thebias gain N, is the sinusoidal gain an; is the stochastic
gain. These functions are given by

21 oo 2
Np(b,a,0) = %E{f(y)} = mﬁ [w f(b+asind+r(t))e 22 drdd
2 2 e 2
Na(b,a,0) = aE{f(y)sinH} = (277)370%1»[0 j:w f(b+asing +r(t))sinde 2.2 drdd

21 oo 2
Ni(b.a, o) = %E{f(y)r} - Qﬂ)?’%ﬁfo LO f(b+asing-+r(t))re 32 drdo
(3.14)

The random input describing function method has a number of specid.cas
If we takeo = 0, then it can be shown that we recover the standard describing
function method. If we instead take= 0, we can study how noise propagates
through the system. Recall that in the linear case, where the feedbacis @gikr@n
by a constant gaifl, the spectral density of the outpyis given by

Sy(w) = Hyd(—iw)Sq(w)Hyq(iw), oy= %j_‘ Sy(w) dw.

In the nonlinear case, we replace the feedback Nawith N, (o) so that

P(s)

Fiyd(s) = Wl\lr(o'y)’

oy = % f : Hyd(—iw)Sa(w)Hyq(iw).  (3.15)

Note that this equation gives an algebraic relationship-fahat can be solved and
then used to computs, (o) andSy(w).
Consider next the case of both a limit cycle and random noise,

y(t) = asin(wt + @) + r(t).
We now look for solutions of the coupled equations
T P(s)
U = T BN oy
Na(@, ory)Piwo) = ~1.

If we can finda, oy andwg that satisfy all of the equations, then we get a description
of y(t).

Itis interesting to note that it can sometimes happen$héb) can cause an un-
stable (noiseless) system to be stable. Similarly, we can get a system\@dthry)
that destabilizes and otherwise stable system.

L (e yq(i
oy = ij:oo Hyd(—iw)Sa(w)Hyd(iw), (3.16)

1These are described in more detail in Chagter
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Figure 3.10: Hopf Bifurcation.

3.5 Bifurcations

Hopf bifurcation is a technique that is often used to understand whetlystens
admits a periodic orbit when some parameter is varied. Usually, such ansosbit
small amplitude periodic orbit that is present in the close vicinity of an unstable
steady state.

Consider the system dependent on a parameter

X=g(x,a),xeR", a €R,

and assume that at the steady stateorresponding tar = « (i.e., g(X,a) = 0),

the Iinearizationg—?((i&) has a pair of (non zero) imaginary eigenvalues with the
remainingR"2 eigenvalues having negative real parts. Define the new parameter
u = a—a and re-define the system as

x=f(xu) =g(Xu+a),

so that the Iinearizatiorg—L(ZO) has a pair of (non zero) imaginary eigenvalues
with the remainingR"? eigenvalues having negative real parts. Denota(y =
B(u) +iw(u) the eigenvalue such tha{0) = 0. Then, ifg—ﬁ(u = 0) # 0 the system
admits a small amplitude almost sinusoidal periodic orbifemall enough and
the system is said to go through a Hopf bifurcatiop &t0. If the small amplitude
periodic orbit is stable, the Hopf bifurcation is sasdpercritical while if it is
unstable it is saidubcritical Figure3.10shows diagrams corresponding to these
bifurcations.

In order to determine whether a Hopf bifurcation is supercrictical or ritithc
cal, it is necessary to calculate a “curvature” ffmeent, for which there are for-
mulas (Marsden and McCrocken, 1976) and available bifurcation sefygach as
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AUTO. In practice, it is often enough to calculate the vatuef the parameter at
which Hopf bifurcation occurs and simulate the system for values of trenpeter
a close toa. If a small amplitude limit cycle appears, then the bifurcation must be
supercritical.

The Hopf bifurcation result is based on the center manifold theory falimmear
dynamical systems. For a rigorous treatment of Hopf bifurcation is thusssacy
to study center manifold theory first, which is outside the scope of this text. For
details, the reader is referred to Wiggins book on dynamical systems and.ch

3.6 Model Reduction Techniques

The techniques that we have developed in this chapter can be applied te a wid
variety of dynamical systems. However, many of the methods require sagtific
computation and hence we would like to reduce the complexity of the models as
much as possible before applying them. In this section we review methods-for d
ing such a reduction in the complexity of the models. Most of the techniques are
based on the common idea that if we are interested in the slower time scale dynam-
ics of a system, the fast time scale dynamics can be approximated by their equi-
librium solutions. This idea was introduced in Cha®én the context of reduced
order mechanisms; we present a more mathematical analysis of such systems h

Singular Perturbation

Let (x,y) € D := Dyx Dy c R"xR™and consider the vector field

x=1(xy), ey=g(xy), (x(0),y(0)) = (xo,Yo)

in which 0< € < 1 is a small parameter. Sineex 1, the absolute value of the
time derivative ofy can be much larger than the time derivativexpfesulting iny
dynamics that are much faster than sheéynamics. That is, this system has a slow
time scale evolution (ix) and a fast time-scale evolution {fin If we are interested

only in the slower time scale, then the above system can be approximated (unde
suitable conditions) by theeduced system

x=f(xy), 0=g(xy), X0) = X.

Lettingy = y(x) (called theslow manifold be the locally unique solution gfx,y) =
0, we can approximate the dynamicsxas

x= f(X (%), X(0) = Xo.

We seek to determine under what conditions the solutighis “close” to the
solution x(t) of the reduced system. This problem can be addressed by analyzing
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the fast dynamics. Letting= t/e be the fast time scale, we have that

Doeiten. ooty XOYO)= (030

T

so that where < 1, x(r) does not appreciably change. Therefore, the above system
in thet time scale can be approximated by
dy

e 9(Xo.Y) y(0) = Yo,
-

in which x is “frozen” at the initial condition. This system is usually referred to as
theboundary layesystem. If for allxg, we have thay(r) converges ta/(xp), then

for t > 0 we will have that the solutior(t) is well approximated by the solution
X(t) to the reduced system. This qualitative explanation is more precisely cdpture
by the following theorem (originally due to Tikonov).

Theorem 3.6. Assume that
0
——9(x.y) <0
ay y=r()

uniformly for xe Dy. Let the solution of the reduced system be uniquely defined for
te[0,t¢]. Then, for all € (0,t¢] there is a constant” > 0 and setQ C D such that

X(t) — x(t) = O(e) uniformly for te [0, t¢],
y(t) — ¥(X(t)) = O(e) uniformly for te [tp, 7],
providede < €* and(Xp, Yo) € Q.
Example 3.9(Linear system) Consider the following linear system
5(]_ = —X1
Xz = —}X2+1-X1, e>0, (3.17)
€ €
in which € is very small. This system has two eigenvalues equallt@nd-1/e
with corresponding eigenvectors{%,1) and (Q1), respectively. The slow man-
ifold, obtained by multiplying both sides of the second equation in sys8ei)(

by € and setting: = 0, is given byx, = x; and the boundary layer system is expo-
nentially stable. The reduced system is just given by

X1 = —X1, andxa(t) = Xa(t).

The trajectories of the system along with the slow manifold are representegtin F
ure3.11 The initial conditions that are not on the slow manifold quickly converge
to the slow manifold and then they converge to the origin. \%
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Figure 3.11: Simulation results for the system in equat{8rk7). Trajectories in theq, xo
plane.

Example 3.10(Enzymatic reaction)Let’s go back to the enzymatic reaction

k
E+S—C % Eyp,

ke

in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the sub&rate
due to the binding with the enzyme E. The rktés referred to as association con-
stant,k, as dissociation constant, akgy as the catalytic rate. The corresponding
ODE system is given by

%_ItE = —k{E-S+kC+KkeC
ds

i -k{E-S+kC

dC

i kiE-S—(k +Kea)C
dP

a = kcatC~

By assuming thak;,k; > k.4, We obtained that approximative%% =0 and thus

thatC = 32, with Ky, = S5t and 92 = 25 with Vinax= KeatEtor. From this, it

also follows that

dE ds dP

How good is this approximation? By applying the singular perturbation method,
we will obtain a clear answer to this question. Specifically, dedire ks /k; and
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take the system to standard singular perturbation form by defining the saall p
rameter ag := % so thatks = ata kr = Kear , and the system becomes

K
dE
Ea = _aK;atE N S + kcatC + EkcatC
Ec:j_? = _aK;atE . S + kcatC
dC
fa = akeatE S —KeatlC — ekcalC
dpP
a = keaC.

One cannot directly apply singular perturbation theory on this systenube@me
can verify from the linearization of the first three equations that the banyridyer
dynamics is not locally exponentially stable as there are two zero eigenvahiss
is because the three variablesS, C are not independent. Specifically= Eioi—C
andS + C + P = S(0) = Sio, assuming that initially we have S in amow8(0) and
no amount of P and C in the system. Given these conservation laws, the £gste
be re-written as

dC

EE = akcat(Etot - C) . (Stot -C- P) - kcatC - Ekcatc
dP
a = kealC.

Under the assumption made in the analysis of the enzymatic reactio8ghat
Eiot, We have thaC <« Sio; S0 that the equations finally become

dC
€ at = akeat(Etot — C) - (Stot — P) — KcatC — €keatC
dP
— = C.
it Keat
One can verify (show as an exercise) that in this system, the boundaryd;a}am-
ics is locally exponentially stable, so that setting0 one obtain€ = %;)‘;2 =
g(P) and thus that the slow dynamics of the system are given by
P\, (Sw—P)
dt — "(Sy— P)+ K’
From the conservation la® + C + P = S(0) = Sior, We obtain tha%—?_ = —%‘f— dd—f
in which now¥ = 2(p). ¢° Therefore
dS dP, 4g,=. = - -
T =gt 55P): S0 = Swoi—g(P(0)) - P(O) (3.19)
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Figure 3.12: Simulation results for the enzymatic reactiomparing the approximations
from singular perturbation and from the quasi-steady stpfgroximation. Here, we have
Stot = 100, Etot = 1, ky = ks = 10, andkeat = 0.1

and _
dE _ dC
dt ~ dt

which are diterent from expressione:%(l& Specifically, these expressions are
close to those in3.18 only When (P) is small enough. In the plots of Fig-
ure 3.12 we show the time trajectorles of the original system, of the Michaelis-
Menten quasi-steady state approximation, and of the singular perturbpfiooxa
imation. The trajectories dE(t) and ofS(t) for the quasi-steady state approxima-
tion have been obtained from the conservation laws é{teandC(t) are deter-
mined. The trajectories of these variables for the singular perturbationxapa-

tion have been obtained directly integrating equati@itg and @.20. Notice that

the quasi-steady state approximatidfys~ 0 and4E ~ 0 are well representing the

(P) E(0) Etot - 9(P(0)), (3.20)
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Figure 3.13: The slow manifold of the syst&r= g(P) is shown in red. In black, we show
the trajectories of the the full system. These trajectar@gpse into ar-neighbor of the
slow manifold. Here, we hav8;ot = 100, Eior = 1, ky = ki = 10, andkeas = 0.1.

dynamics of theC and E variables only whileS(t) is large enough. By contrast,
equations 3.193.20 well represent the system even when the substrate goes to
zero. In Figure3.13 we show the curv€ = g(P) (in red) and the trajectories of the

full system in black. All of the trajectories of the system immediately collapse into
ane-neighbor of the curv€ = g(P). \%

Balanced truncation

Principle component analysis (PCA)



Chapter 4

Stochastic Behavior

In this chapter we explore stochastic behavior in biomolecular systems, louildin
on our preliminary discussion of stochastic modeling in Seci@We begin by
reviewing the various methods for modeling stochastic processes, incltiging
chemical master equation (CME), the chemical Langevin equation (CLEh&nd
Fokker-Planck equation (FPE). Given a stochastic description, wehesmana-

lyze the behavior of the system using a variety of stochastic simulation and analy
sis tools. In many cases, we must simplify the dynamics of the system in order to
obtain a tractable model, and we describe several methods for doing Isaljriigc
finite state projection, linearization and Markov chain representationsldtéra
vestigate how to use data to identify some the structure and parameters aksioch
models.

PrerequisitesThis chapter makes use of a variety of topics in stochastic processes
that are not covered in AM08. Readers should have a good workiogl&dge of
basic probability and some exposure to simple stochastic processes (@njdr
motion).

4.1 Stochastic Systems

We begin by briefly introducing the general notions of stochastic systenositme
uous time and with continuous states. Some of the material in this section is drawn
from the AMO08 supplement on Optimization-Based Control Syste#s [

Review of random variables

Random variables and processes are defined in terms of an undengbrapility
spacethat captures the nature of the stochastic system we wish to study. A proba-
bility space has three elements:

e asample spac® that represents the set of all possible outcomes;

e a set ofeventsf the captures combinations of elementary outcomes that are
of interest; and

e aprobability measurg that describes the likelihood of a given event occur-
ring.
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Q can be any set, either with a finite, countable or infinite number of elements. The
event spac& consists of subsets 6f. There are some mathematical limits on the
properties of the sets i, but these are not critical for our purposes here. The
probability measur is a mapping fron® : ¥ — [0, 1] that assigns a probability

to each event. It must satisfy the property that given any two disjoints&s 7,

P(AuU B) = P(A) + P(B). The termprobability distributionis also to describe a
probability measure.

With these definitions, we can model manyfeient stochastic phenomena.
Given a probability space, we can choose sample<2 and identify each sample
with a collection of events chosen froffi. These events should correspond to
phenomena of interest and the probability meagushould capture the likelihood
of that even occurring in the system that we are modeling. This definition of a
probability space is very general and allows us to consider a number afigits
as special cases.

A random variable Xis a functionX : Q — S that gives a value 15, called
the state space, for any sampbes Q. Given a subseA c S, we can write the
probability thatX € A as

P(XeA) =PweQ: X(w)eA).

We will often find it convenient to omitv when working random variables and
hence we writeX € S rather than the more corre¥{w) € S.

A discrete random variable X a variable that can take on any value from
a discrete sef with some probability for each element of the set. We model a
discrete random variable by igobability mass function yis), which gives the
probability that the random variabktakes on the specific valuses S:

px(s) = probability thatX takes on the valuse S.

The sum of the probabilities over the entire set of states must be unity, amel so

have that
D ipx(9=1
seS

If Ais a subset 08, then we can writd?(X € A) for the probability thaX will take
on some value in the sét It follows from our definition that

P(XeA)= " p(s).

seA

Definition 4.1 (Bernoulli distribution) The Bernoulli distribution is used to model
a random variable that takes the value 1 with probabpignd 0 with probability
1-p:

P(X=1)=p, P(X=0)=1-p.
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Figure 4.1: Probability mass functions for common disccésributions.

Alternatively, it can be written in terms of its probability mass function

p s=1
p(s)={1-p s=0
0 otherwise.

Bernoulli distributions are used to model independent experiments with/mogr
comes, such as flipping a coin.

Definition 4.2 (Binomial distribution) Thebinomial distributionmodels the prob-
ability of successful trials in experiments, given that a single experiment has prob-
ability of succes®. If we let K, be a random variable that indicates the number of
success im trials, then the binomial distribution is given by

P9 = PlKn =K = (]t prt

fork=1,...,n. The probability mass function is shown in Fig4rda

Definition 4.3 (Poisson distribution) The Poisson distributions used to describe
the probability that a given number of events will occur in a fixed intervainoé
t. The Poisson distribution is defined as

et ( /lt)k

P = PN =19 = S =,

(4.1)
whereN; is the number of events that occur in a pertaghd 1 is a real number
parameterizing the distribution. This distribution can be considered as a foodel
counting process, where we assume that the average rate of ocesrnea period
tis given byt andA represents the rate of the counting process. Figiieshows
the form of the distribution for diierent values ok andat.
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A continuous (real-valued) random variablei¥a variable that can take on any
value in the set of real numbeRs We can model the random varial¥eaccording
to its probability distribution P

P(x < X < %) = probability thatx takes on a value in the rangg Xy.

More generally, we writd?(A) as the probability that an eveAtwill occur (e.g.,
A={x < X< x}). It follows from the definition that ifX is a random variable in
the range I[,U] then P(L < X < U) = 1. Similarly, if Y € [L,U] thenP(L < X <
Y)=1-P(Y < X<U).

We characterize a random variable in terms ofhebability density function
(pdf) p(x). The density function is defined so that its integral over an intervakgive
the probability that the random variable takes its value in that interval:

P(x < X<x)= fxu p(x)dx. (4.2)
X

Itis also possible to compui#Xx) given the distributior as long as the distribution
is suitably smooth:

B OP(X < X< X)
PO = Xy X fixed,
Xu=X

X> X.

We will sometimes writepx(X) when we wish to make explicit that the pdf is
associated with the random varialdeNote that we use capital letters to refer to a
random variable and lower case letters to refer to a specific value.

Definition 4.4 (Uniform distribution) Theuniform distributionon an interval [, U]
assigns equal probability to any number in the interval. Its pdf is given by

p(x) = ﬁ (4.3)

The uniform distribution is illustrated in Figure2a

Definition 4.5 (Gaussian distribution)The Gaussian distributior(also called a
normal distributior) has a pdf of the form

Nl

e () : (4.4)

P9 = —=
V2no2
The parameteq is called themeanof the distribution andr is called thestan-
dard deviationof the distribution. Figurel.2bshows a graphical representation a
Gaussian pdf.
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Figure 4.2: Probability density function (pdf) for unifor@aussian and exponential dis-
tributions.

Definition 4.6 (Exponential distribution) The exponential distribution is defined
for positive numbers and has a pdf of the form

p(x)=e™*, x>0

whereA is a parameter defining the distribution. A plot of the pdf for an exponential
distribution is shown in Figurd.2c The exponential distribution can be shown to
describe the amount of time between two events in a Poisson process.

Properties of random variables

We now define a number of properties of collections of random varialdle$ocus
on the continuous random variable case, but unless noted otherwisetheepts
can all be defined similarly for discrete random variables (using the pildpa
mass function in place of the probability density function).

If two random variables are related, we can talk about jbéit probability dis-
tribution: Px v(A, B) is the probability that both evert occurs forX andB occurs
for Y. This is sometimes written &(An B), where we abuse notation by implic-
itly assuming thatA is associated witl)X and B with Y. For continuous random
variables, the joint probability distribution can be characterized in termgamhea
probability density function

Yu Xu
WNSXSXwMSYSWFi[‘[ p(xy) dxdy: (4.5)
yi X
The joint pdf thus describes the relationship betwBeandY, and for stficiently

smooth distributions we have

X> X,
X, fixed, y> V.
Xu=XYu=Y,

PP < X <X, VI <Y <Vy)
OXulYyy

p(X.y) =
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We say thatX and Y are independenif p(x,y) = p(X)p(y), which implies that
Pxv(A,B) = Px(A)Py(B) for eventsA associated withX and B associated with
Y. Equivalently,P(An B) = P(A)P(B) if AandB are independent.

The conditional probabilityfor an eventA given that an ever has occurred,
written asP(A | B), is given by

P(AN B)
P(B)

P(A|B) = (4.6)
If the eventsA andB are independent, theé?(A | B) = P(A). Note that the individ-
ual, joint and conditional probability distributions are alffdrent, so we should
really write Px y(AN B), Pxy(A| B) andPy(B).

If X is dependent oiY thenY is also dependent oM. Bayes' theorennelates
the conditional and individual probabilities:

P(BIAPA)

PAIB) = =

, P(B) # 0. 4.7)
Bayes’ theorem gives the conditional probability of evArin eventB given the
inverse relationshipR given A). It can be used in situations in which we wish to
evaluate a hypotheski$ given dataD when we have some model for how likely the
data is given the hypothesis, along with the unconditioned probabilities tor bo
the hypothesis and the data.

The analog of the probability density function for conditional probability is the
conditional probability density function(r| y)

PCY) ) < oo
(1Y) =

p(y) (4.8)
0 otherwise.

It follows that

p(x.y) = p(x1y)p(y) (4.9)
and
P <X<xly)=Px <X<x]Y=Y)
f p(x | y)dx= fx’ P y)dx. (@20
p(y)

If XandY are independent thao(x|y) = p(x) andp(y | X) = p(y). Note thatp(x,y)

and p(x|y) are diterent density functions, though they are related through equa-
tion (4.9). If X andY are related with joint probability density functiqgx,y) and
conditional probability density functiop(x | y) then

p(X) = f "~ pxy)dy= f (X y)pO)dy.
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Example 4.1(Conditional probability for sum)Consider three random variables
X, Y andZ related by the expression

Z=X+Y.

In other words, the value of the random variaBlés given by choosing values
from two random variableX andY and adding them. We assume thaandY
are independent Gaussian random variables with mgaend 4, and standard
deviationo = 1 (the same for both variables).

Clearly the random variabl& is not independent oX (or Y) since if we know
the values oK then it provides information about the likely value£fTo see this,
we compute the joint probability betwe@mandX. Let

A={x < X<}, B={z<z<z}.
The joint probability of both event& andB occurring is given by

Pxz(ANB) = P(x < X< Xy, 24 < X+Y < Z)
=P(X < X<Xy,Z—X<Yy<z—X).

We can compute this probability by using the probability density functionfor
andy:

Pang) - [ ([ prps)pena

Xu ZIZ;X 2y Xu
= f f py(z—X)px(X)dzdx=: f f pz.x(z X)dxdz
X 2 2 X

Using Gaussians fox andY we have

1 —l(Z—X—uy)2 1 —l(x—ux)2
zX)= ——¢€ 2 ——e2

_ 1 3@ Xy + (x=px)?)
2n

A similar expression holds fqozy. \Y

Given a random variablX, we can define various standard measures of the
distribution. Theexpectatioror meanof a random variable is defined as

(o)

E(X) = (X) =f X p(x)dx

and themean squaref a random variable is

E{X?} = (X?) = fm X2 p(x) dx.
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If we let u represent the expectation (or meanXahen we define thearianceof
X as .

(X)) = (%= 00 = [ (x-? P9
We will often write the variance as?. As the notation indicates, if we have a
Gaussian random variable with meaand (stationary) standard deviationthen
the expectation and variance as computed above rgtanuo?.

Example 4.2 (Exponential distribution) The exponential distribution has mean
and variance given by

1 > 1
= -, o = —.
=2 22
The exponential distribution can be shown to describe the amount of timedaetwe
two events in a Poisson process. \%

Several useful properties follow from the definitions.
Proposition 4.1(Properties of random variables)

1. If X is a random variable with meanand variancer2, thenaX is random
variable with meam X and variancer?c2.

2. If X and Y are two random variables, thEfwX + 8Y} = aE{X} + BE{Y}.

3. If X and Y are Gaussian random variables with meansuy and variances

2 2
Oy Oy,

e (%)2, p(y) = L e‘%(;_”YY)Z,

1
27r0'§( A /27r(T$

then X+Y is a Gaussian random variable with mean= ux + py and vari-
ancecs = 0% + 0%,

Nl

p(X) =

1z \?
e2 o7

p(x+y) =

1
A /27r0'§
Proof. The first property follows from the definition of mean and variance:

E{aX}:fmax p(X)dX=a/fma/X p(x) dx = aE{X}

(%Y

E{(aX)?} = f m(ax)Z p(x)dx = a? f ) X2 p(x) dx = ?E{X?}.

(o9
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The second property follows similarly, remembering that we must take the-expe
tation using the joint distribution (since we are evaluating a function of twomeind
variables):

ElaX +BY) = f f (ax+By) py(xy) dxdy

iy f f X Py, y) dxdy- B f f y Py ) dxdy

—a f X px(X) dx+ 3 f y pr(y) dy = QE(X) + BE(Y).

[ee)

The third item is left as an exercise. O

Introduction to random processes

A random processs a collection of time-indexed random variables. Formally, we
consider a random procexgo be a joint mapping of sample and a time to a state:
X:QxT — S, where7 is an appropriate time set. We view this mapping as a
generalized random variable: a sample corresponds to choosing anfenttion
of time. Of course, we can always fix the time and interptéb,t) as a regular
random variable, withiX(w,t’) representing a flierent random variable if # t’.
Our description of random processes will consist of describing howahdom
variable at a time relates to the value of the random variable at an earlier ime
To build up some intuition about random processes, we will begin with theatiéscr
time case, where the calculations are a bit more straightforward, and thesepr
to the continuous time case.

A discrete-time random proceissa stochastic system characterized byahe-
lution of a sequence of random variabMk], wherek is an integer. As an example,
consider a discrete-time linear system with dynamics

X[k+1] = AX[K] + BU[K + FW[K],  Y[Kl = CX[K] +VIK. (4.11)

As in AM08, X € R" represents the state of the systdune RP is the vector of
inputs andY € RY is the vector of outputs. The (possibly vector-valued) signal
W represents disturbances to the process dynamic¥aeg@resents noise in the
measurements. To try to fix the basic ideas, we will take0, n =1 (single state)
andF =1 for now.

We wish to describe the evolution of the dynamics when the disturbances and
noise are not given as deterministic signals, but rather are chosesdmomproba-
bility distribution. Thus we will letW[K] be a collection of random variables where
the values at each instaktare chosen from a probability distribution with pdf
pwk- As the notation indicates, the distributions might depend on the time instant
k, although the most common case is to hagtagionarydistribution in which the
distributions are independent k{defined more formally below).
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In addition to stationarity, we will often also assume that distribution of values
of W at timek is independent of the values @f at timel if k # |. In other words,
WIk] and W[I] are two separate random variables that are independent of each
other. We say that the corresponding random proceassadsrrelated(also defined
more formally below). As a consequence of our independence assumptibiave
that

2 —
E(WIKWIIT} = B(W[K]}o(k~1) = {f{w ! ::; :

In the case thaV[K] is a Gaussian with mean zero and (stationary) standard devi-
ationo, thenE{W[K]W[I]} = o?6(k—1).

We next wish to describe the evolution of the staie equation 4.11) in the
case wheW is a random variable. In order to do this, we describe the statea
sequence of random variabl¥gk], k = 1,--- ,N. Looking back at equatior®(11),
we see that even W[K] is an uncorrelated sequence of random variables, then the
statesX[K] are not uncorrelated since

X[k+1] = AX[K] + FWIK],

and hence the probability distribution fot at timek+ 1 depends on the value
of X at timek (as well as the value oV at timek), similar to the situation in
Exampled4.1

Since eaclX[K] is a random variable, we can define the mean and variance as
u[K] and?[K] using the previous definitions at each tike

00

uIK] = E{X[K]) = f X p(x.K) dx

—00

o?[K] := B{(X[K] - u[K])?} = f (x=u[K])? p(x. K) dx
To capture the relationship between the current state and the future statefime
the correlation functionfor a random process as

00

plke ko) = BX[ki] X[ko]) = f Xa Xz P(x, X2: ke, ko) d el

—00

The functionp(x;, X;; k1, ko) is thejoint probability density functiorwhich depends
on the timesk; andky. A process isstationaryif p(x,k+d) = p(x,d) for all k,
P(Xi, Xj; ke +d, ko +d) = p(x, Xj; ki, ko), etc. In this case we can writg(x;, Xj; d)
for the joint probability distribution. We will almost always restrict to this case.
Similarly, we will write p(ki, ko) asp(d) = p(k,k+ d).

We can compute the correlation function by explicitly computing the joint pdf
(see Exampld.1) or by directly computing the expectation. Suppose that we take



4.1. STOCHASTIC SYSTEMS 4-11

a random process of the form.(1) with x[0] = 0 andW having zero mean and
standard deviatioor. The correlation function is given by

ki—1 ko—1
E(X[kiX[ke]} = E{( Y ASTBWI( Y A%TBW )]
i=0 i=0

ki—1kp—1
=E{> > ATBWIIWj]BAC].
i=0 j=0
We can now use the linearity of the expectation operator to pull this inside the
summations:
k-lko-1 _
B(X[ka]X[ke]} = ), ) AT BE(WLIW[j]))BAC)
i=0 j=0
ki—1ko—-1 - ‘
= > > AeTBos(i - j)BAR
i=0 j=0
ki—1
=y AuTiBg?BAe
i=0
Note that the correlation function dependskarandks.
We can see the dependence of the correlation function on the time more clearly
by lettingd = k, — k1 and writing

ki—1
pk k+d) = EXKIX[k+d]} = > AIBo?BATH

i=0
k k
= > AlBr?BAI* = () AIBo?BA)A”,

=1 j=1
In particular, if the discrete time system is stable th&inc 1 and the correlation
function decays as we take points that are further departed in drizege). Fur-
thermore, if we lek — oo (i.e., look at the steady state solution) then the correlation
function only depends od (assuming the sum converges) and hence the steady
state random process is stationary.

In our derivation so far, we have assumed tK§t + 1] only depends on the
value of the state at timle(this was implicit in our use of equatiod.(L1) and the
assumption thatV[K] is independent oK). This particular assumption is known as
the Markov propertyfor a random process: a Markovian process is one in which
the distribution of possible values of the state at tinteepends only on the values
of the state at the prior time and not earlier. Written more formally, we say that a
discrete random process is Markovian if

Pxk(X | X[k— 1], X[k—2]...., X[0]) = pxk(x| X[k—1]).
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Markov processes are roughly equivalent to state space dynamstahss; where
the future evolution of the system can be completely characterized in terms of th
current value of the state (and not it history of values prior to that).

Continuous time random processes

We now consider the case where our time index is no longer discrete, beadns
varies continuously. A fully rigorous derivation requires careful akeneasure
theory and is beyond the scope of this text, so we focus here on theptsitloat
will be useful for modeling and analysis of important physical properties.

A continuous-time random proceissa stochastic system characterized by the
evolution of a random variabl¥(t), t € [0, T]. We are interested in understanding
how the (random) state of the system is related at separate times. Thespgces
defined in terms of the “correlation” of(t1) with X(t2). We assume, as above, that
the process is described by continuous random variables, but thetdistate case
(with time still modeled as a real variable) can be handled in a similar fashion.

We call X(t) € R" the stateof the random process at timeFor the case > 1,
we have a vector of random processes:

Xa(t)
X(t) =
Xn(t)

We can characterize the state in terms of a (vector-valued) time-varying pdf
Xu
P(x < Xi(t) < xy) :f px, (X; t)dx.
X

Note that the state of a random process is not enough to determine theatext s
(otherwise it would be a deterministic process). We typically omit indexing of the
individual states unless the meaning is not clear from context.

We can characterize the dynamics of a random process by its statisticat-cha
teristics, written in terms of joint probability density functions:

P(x1 < Xi(t1) < Xqu, X2 < Xj(t2) < Xou)
Xou X1u
= f f Px..v; (X1, X2; t1, t2) dxgd X
X2l X1

The functionp(x;, Xj; 1, t2) is called goint probability density functioand depends
both on the individual states that are being compared and the time instants over
which they are compared. Note that i |, thenpy, x, describes howX; at timet;
is related taX; at timets.

In general, the distributions used to describe a random process depehd
specific time or times that we evaluate the random variables. However, in some
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cases the relationship only depends on theedince in time and not the abso-
lute times (similar to the notion of time invariance in deterministic systems, as de-
scribed in AM08). A process stationaryif p(x,t+7) = p(x,t) for all 7, p(x;, Xj; t1+

7,12+ 7) = p(Xi, Xj; t1,12), etc. In this case we can writgx;, x;; r) for the joint prob-
ability distribution. Stationary distributions roughly correspond to the stetadyg s
properties of a random process and we will often restrict our attentiornstodke.

In looking at biomolecular systems, we are going to be interested in random
processes in which the changes in the state occur when a random eard o
(such as a molecular reaction or binding event). In this case, it is natutestwibe
the state of the system in terms of a set of times t; <tx < --- <ty and X(t;) is
the random variable that corresponds to the possible states of the sysim@ta
Note that time time instants do not have to be uniformly spaced and most often (for
biomolecular systems) they will not be. All of the definitions above carryutyng
and the process can now be described by a probability distribution of itme fo

P(X(t) € [, X +dx].i=1,...,n) =
f‘"fp(xn’xn—l,---,XO;tn,tn_]_,...,to)dxnd)(n_ldxl,

wheredx are taken as infinitesimal quantities.

An important class of stochastic systems is those for which the next state of the
system depends only on the current state of the system and not the loistbey
process. Suppose that

P(X(tn) € [Xn. Xn + dXa] | X(6) € [%, % +dx],i = 1,...,n-1)
= P(X(tn) € [xn. X+ dxa] | X(th-1) € [X-1. X1+ d¥r-a]). - (4.12)

That is, the probability of being in a given state at tithdepend®nly on the state
that we were in at the previous time instgnt; and not the entire history of states
prior to t,_1. A stochastic process that satisfies this property is callbtheov
process

In practice we do not usually specify random processes via the joibapiie
ity distribution p(x;, Xj;t1,t2) but instead describe them in terms op@pogater
function Let X(t) be a Markov process and define the Markov propogater as

F(dt; x,t) = X(t+dt) — X(t), given X(t) = x.

The propogater function describes how the random variable atttimeelated

to the random variable at time+ dt. Since bothX(t + dt) and X(t) are random
variables Z(dt; x,t) is also a random variable and hence it can be described by its
density function, which we denote B¢, x; dt, t):

X+&
P(x < X(t+dt)sx+§)=f T1(dx x;dt,t) dx
X
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The previous definitions for mean, variance and correlation can bededdn
the continuous time, vector-valued case by indexing the individual states:

E{X1(t)}
E{X(t)} = : = u(t)
E{Xn(1)}
EXX(M)X()} ... E{Xi(t)Xa()}
E{(X(t) - u(®)(X(®) — (1)) = " : =1 X(t)

E{Xn(t)Xn(t)}

E{XXi()X1(9)} ... E{X1()Xn(s)}

E{XX(®X' ()} = : = R(t9

E{Xn(t)Xn(9)}

Note that the random variables and their statistical properties are all shgxtae
timet (ands). The matrixR(t, s) is called thecorrelation matrixfor X(t) € R". If

t = sthenR(t,t) describes how the elementsyoéire correlated at time(with each
other) and in the case that the processes have zero Rgdh= X(t). The elements

on the diagonal oE(t) are the variances of the corresponding scalar variables. A
random process is uncorrelatedrit, s) = 0 for all t # s. This implies tha¥(t) and

X(s) are independent random events and is equivalepgigx,y) = px(X)py(y).

If arandom process is stationary, then it can be showrRttatr, s+ 1) = R(t, )
and it follows that the correlation matrix depends onlyters. In this case we will
often write R(t, s) = R(s—t) or simpleR(r) wherer is the correlation time. The
correlation matrix in this case is simpR(0).

In the case wher&X is also scalar random process, the correlation matrix is
also a scalar and we will writp(r), which we refer to as the (scalar) correla-
tion function. Furthermore, for stationary scalar random processes;direla-
tion function depends only on the absolute value of the correlation funcmn,
o(1) = p(=1) = p(I7]). This property also holds for the diagonal entries of the corre-
lation matrix sinceR; (s,t) = R;i(t, s) from the definition.

Definition 4.7 (Ornstein-Uhlenbeck processtonsider a scalar random process
defined by a Gaussian pdf with= 0,

p(x.1) =

and a correlation function given by

—woltz—t1]

o(t1,tp) = Zie
wo

The correlation function is illustrated in Figude3. This process is known as an
Ornstein-Uhlenbeck procesd it is a stationary process.
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p(ti—12)

! T=01 -1

Figure 4.3: Correlation function for a first-order Markowpess.

Note on terminologyl'he terminology and notation for covariance and correlation
varies between disciplines. The term covariance is often used to refethithie re-
lationship between éierent variableX andY and the relationship between a single
variable at diferent timesX(t) andX(s). The term “cross-covariance” is used to re-
fer to the covariance between two random veck¥endY, to distinguish this from
the covariance of the elementsXfwith each other. The term “cross-correlation”
is sometimes also used. Finally, the term “correlatiorfiecient” refers to the nor-
malized correlatiop(t, s) = E{X(t)X(8)}/E{X(t)X(t)}..

MATLAB has a number of functions to implement covariance and correlation,
which mostly match the terminology here:

cov (X) - this returns the variance of the vectothat represents samples of a
given random variable or the covariance of the columns of a métvikere
the rows represent observations.

cov(X, Y) -equivalenttacov([X(:), Y(:)]).Computes the covariance
between the columns of andY, where the rows are observations.

xcorr(X, Y) - the “cross-correlation” between two random sequences. If
these sequences came from a random process, this is correlation riunctio
p(t).

xcov(X, Y) - thisreturns the “cross-covariance”, whiBATLAB defines as

the “mean-removed cross-correlation”.

The MATLAB help pages give the exact formulas used for each, so the main point
here is to be careful to make sure you know what you really want.
We will also make use of a special type of random process referredwhite

noise”. A white noise process (¥ satisfiesE{X(t)} = 0 andR(t,s) = Wé(s—1),
whered(7) is the impulse function and/ is called thenoise intensityWhite noise

is an idealized process, similar to the impulse function or Heaviside (step) fanctio

in deterministic systems. In particular, we note théd) = E{X?(t)} = oo, so the
covariance is infinite and we never see this signal in practice. HoweverfHe
step function, it is very useful for characterizing the responds of alisgstem,
as described in the following proposition. It can be shown that the integral
white noise process is a Wiener process, and so often white noise iheddsas
the derivative of a Wiener process.
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Discrete-state random processes

There are a number of specialized discrete random processes thelieseat for
biochemical systems. In this section we give a brief introduction to thesesses.

A birth-deathprocess is one in which the states of the process represent integer-
value counts of dferent species populations and the transitions between states are
restricted to either incrementing (birth) or decrementing (death) a givesiespe
This type of model is often used to represent chemical reactions suck ascth
duction and degradation of proteins.

Example 4.3(Protein production) \%

A more general type of discrete random procesaVigekov chain In a Markov
chain, evolution of the discrete states occurs by execution of allowablstioens
between two states. Each transition has a specified probability, which igased
determine whether a system will transition from its current state intdfarent
state (corresponding to an allowable transition). An important propeitgdcie
Markov propertyis that the transition probability only depends on the value of the
current state, not the previous values of the state.

We define a Markov chain by giving the set of transition probabilities

qij(t,7) = P(X(t+7) = 5j|X(t) = s),

wheres, sj € S, tis the current time and is the time interval over which we are
interested. I;j(t, 7) # 0 for somer # 0 then we say that the transition is allowable
attimet. If g;j is independent dfthen we say that the processtationaryand we
omit the argument In the special case that we are only interested in a fixge.,
we are using a discrete-time model) then we omit this argument as well.

Itis generally dificult to describe the probability of being in a particular state in
a Markov process at a given time. Instead, we often resort to desgilnsteady
state distributions, assuming that they exist. For a stationary Markov chaicgmv
look at the equilibrium distributions, which are those distributierisat satisfy

i = qij(T)ﬂ'j, foralli, j.

Example 4.4(Protein expression) \%

4.2 Stochastic Modeling of Biochemical Systems

Chemical reactions in the cell can be modeled as a collection of stochastts even
corresponding to chemical reactions between species, including bindihgra
binding of molecules (such as RNA polymerase and DNA), conversiomeket

of species into another, and enzymatically controlled covalent modificatiats s
as phosphorylation. In this section we will briefly survey some of tHeeint
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representations that can be used for stochastic models of biochemieshsy#l-
lowing the material in the textbooks by Philligs al. [35], Gillespie [L7] and Van
Kampen R6).

Statistical physics

At the core of many of the reactions and multi-molecular interactions that take
place inside of cells is the chemical physics associated with binding between two
molecules. One way to capture some of the properties of these interactions is
through the use of statistical mechanics and thermodynamics.

As described briefly already in Chapt®r the underlying representation for
both statistical mechanics and chemical kinetics is to identify the appropriate mi-
crostates of the system. A microstate corresponds to a given configucéhtioa
components (species) in the system relative to each other and we mustrateume
all possible configurations between the molecules that are being modeled.

In statistical mechanics, we model the configuration of the cell by the proba-
bility that system is in a given microstate. This probability can be calculatedibase
on the energy levels of thefiierent microstates. Consider a setting in which our
system is contained within a reservoir. The total (conserved) energydn gy
Eiot and we letE, represent the energy in the reservoir. Eé]t) and Egz) represent
two different energy levels for the system of interest andNigtE,) be the num-
ber of possible microstates of the reservoir with endggyThe laws of statistical
mechanics state that the ratio of probabilities of being at the energy lég}ébxnd
E(SZ) is given by the ratio of number of possible states of the reservoir:

PEY) _ Wi(Ew-EY)
PEY) W (Eot—EY)

(4.13)

Defining the entropy of the system 8s= kgInW, we can rewrite equatior#(13
as

Wi (Eqgt— ED)  eSr(EoES) ke

Wi (Eor— E?)  e51(Eo-E) ks
We now approximat&, (Eq: — Es) in a Taylor series expansion arouBgy, under
the assumption thd, > Eg:

0S
Sr(Etot - Es) ~ Sr(Etot) - G_Er Es.

From the properties of thermodynamics, if we hold the volume and number of
molecules constant, then we can define the temperature as

0S 1

G_E\/,N_?
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and we obtain
P(Egl)) e—E(sl)/kBT
PED) " et

This implies that
P(ED) oc ¢ B /(6T)

and hence the probability of being in a microstais given by
P(q) = %e‘E“/ (kaT), (4.14)

where we have writte for the energy of the microstate adds a normalizing
factor, known as theartition function defined by

7= Z g Ea/(keT)
geQ

By keeping track of those microstates that correspond to a given sysém s
(also called a macrostate), we can compute the overall probability that a give
macrostate is reached.

In order to determine the energy levels associated witlerdint microstates,
we will often make use of th&ee energyof the system. Consider an elementary
reaction A+ B = AB. Let E be the energy of the system, taken to be operating
at pressuré in a volumeV. Theenthalpyof the system is defined &= E + PV
and theGibbs free energis defined a$&s = H — T S whereT is the temperature of
the system an@ is its entropy (defined above). The change in bond energy due to
the reaction is given by

AH = AG+TAS,

where theA represents the change in the respective quanrtityd represents the
amount of heat that is absorbed from the reservoir, which tlffecta the entropy
of the reservoir.

The resulting formula for the probability of being in a microstais given by

1_
P(q) — Ze AG/kBT.

Example 4.5(Ligand-receptor binding)To illustrate how these ideas can be ap-
plied in a cellular setting, consider the problem of determining the probability that
a ligand binds to a receptor protein, as illustrated in FigudeWe model the sys-
tem by breaking up the cell intQ different locations, each of the size of a ligand
molecule, and keeping track of the locations of thégand molecules. The mi-
crostates of the system consist of all possible locations of the ligand mdaecule
including those in which one of the ligand molecules is bound to the receptor
molecule.
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Figure 4.4: Statistical physics description of ligandeggtor binding. The cell is modeled
as a compartment witf sites, one of which contains a receptor protein. Ligand moés
can occupy any of the sites (first column) and we can compuweGibbs free energy
associated with each configuration (second column). Theerdive represents all possible
microstates in which the receptor protein is not bound, evttile second represents all
configurations in which one of the ligands binds to the remefy accounting for the
multiplicity of each microstate (third column), we can camg the weight of the given
collection of microstates (fourth column). Figure from IRps, Kondev and Theriot35).

To compute the probability that the ligand is bound to the receptor, we must
compute the energy associated with each possible microstate and then compute th
weighted sum of the microstates corresponding to the ligand being boumnagliro
ized by the partition function. We |&is, represent the free energy associated with
a ligand in free solution aneyoung represent the free energy associated with the
ligand being bound to the receptor. Thus, the energy associated with tateom
which the ligand is not bound to the receptor is given by

AGsoI = I—Esol

and the energy associated with microstates in which one ligand is bound to the
receptor is given by
AGpound= (L — 1)Esol+ Ebound

Next, we compute the number of possible ways in which each of these two
situations can occur. For the unbound ligand, we Hawolecules that can be in
any one ofQ2 locations, and hence the total number of combinations is given by
Qo ob
L) TLQ-L)! L
where the final approximation is valid in the case whes Q. Similarly, the num-
ber of microstates in which the ligand is bound to the receptor is

Q Ol QL—l
NsoI:(L_l): (L-D(Q-L+1)! ~ (L-1)r

I\lsol = (
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Using these two counts, the partition function for the system is given by

QL _ LEsol QL_l _ (L-1)Esoi+Epound
Z~—e kT + e kT
L (L-1)!

Finally, we can compute the steady state probability that the ligand is bound by
computing the ratio of the weights for the desired states divided by the partition

I SZL 1 (L_l)ESO|+Eb0UI"Id
B e L

Pbound= 7 me 8
\%

While the previous example was carried out for the special case of a ligand
molecule binding to a receptor protein, in fact this same type of computation can
be used to compute the probability that a transcription factor is attached toea piec
of DNA or that two freely moving molecules bind to each other. Each of thesesc
simply comes down to enumerating all possible microstates, computing the energy
associated with each, and then computing the ratio of the sum of the weights for
the desired states to the complete partition function.

Chemical Master Equation (CME)

The statistical physics model we have just considered gives a descrigtibe
steady statgroperties of the system. In many cases, it is clear that the system
reaches this steady state quickly and hence we can reason about éh@beh

the system just by modeling the free energy of the system. In other situations,
however, we care about the transient behavior of a system or theniysaf a
system that does not have an equilibrium configuration. In these instameenust
extend our formulation to keep track of how quickly the system transitioma fro
one microstate to another, known as ghemical kinetic®f the system.

To model these dynamics, we return to our enumeration of all possible mi-
crostates of the system. LE(q,t) represent the probability that the system is in
microstateq at a given time. Hereq can be any of the very large number of pos-
sible microstates for the system. We wish to write an explicit expression for how
P(g,t) varies as a function of time, from which we can study the stochastic dynam-
ics of the system.

We begin by assuming we have a set\bfreactions IJR j=1...,M, with ¢;
representing the change in state associated with reac}ioThEpropensity func-
tion defines the probability that a given reaction occurs infagantly small time
stepdt:

aj(g,t)dt = Probability that reaction J-RNi” occur between time
and timet + dt given thatX(t) = g.
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The linear dependence ait relies on the fact thadt is chosen sfliciently small.
We will typically assume thaa; does not depend on the timh@nd writea;(q)dt
for the probability that reactiofjoccurs in state.
Using the propensity function, we can compute the distribution of states at time
t+ dt given the distribution at time

M M
P(a,t+dt| do,to) = P(Gt | do,to)( 1~ D aj(@)dt) + > P(a—¢; | do,to)aj(a—£))dlt
j=1 j=1
M
= P(q,t] o, o) + Z(aj (@-¢&j))P(q—£j,t| do,to) — aj(Q)P(q.t | QO,to))dt-
j=1
J (4.15)

Sincedtis small, we can take the limit @& — 0 and we obtain thehemical master
equation(CME):

oP S
i=1

This equation is also referred to as theward Kolmogorov equatiofor a discrete
state, continuous time random process.

We will sometimes find it convenient to use a slightlffeient notation in which
we leté represent any transition in the system state (without enumerating the reac-
tions). In this case, we write the propensity functiora@s g, t), which represents
the incremental probability that we will transition from stgtto stateq+ £ at time
t. When the propensities are not explicitly dependent on time, we simply write
a(¢; ). In this notation, the chemical master equation becomes

oP
;@1 00.t) = Zg:(a(f; q-£j)P(—&j.t] Go.to) — A& PGt Go.to)),  (4.17)

where the sum is understood to be over all allowable transitions.
Under some additional assumptions, we can rewrite the master equation in dif-
ferential form as

d
P@n= ; a&q-P@-£.0) - ZE] a(& QP(a.Y). (4.18)

where we have dropped the dependence on the initial condition for natbtion-
venience. We see that the master equationireear differential equation with state
P(g,t). However, it is important to note that the size of the state vector can be very
large: we must keep track of the probability of every possible microstateeof th
system. For example, in the case of the ligand-receptor problem discemdied,

this has a factorial number of states based on the number of possible sites in th
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model. Hence, even for very simple systems, the master equation cannatlyypic
be solved either analytically or in a numericall§ieient fashion.

Despite its complexity, the master equation does capture many of the important
details of the chemical physics of the system and we shall use it as ourépisae
sentation of the underlying dynamics. As we shall see, starting from thiiequ
we can then derive a variety of alternative approximations that allow ussteean
specific equations of interest.

The key element of the master equation is the propensity funeii&nm,t),
which governs the rate of transition between microstates. Although the detailed
value of the propensity function can be quite complex, its functional fornténo
relatively simple. In particular, for a unimolecular reactiof the form A— B,
the propensity function is proportional to the number of molecules of A thet ar
present:

a(é;q,t) = cena. (4.19)

This follows from the fact that each reaction is independent and herdikéhi-
hood of a reaction happening depends directly on the number of copfeshaft
are present.

Similarly, for a bimolecular reaction, we have that the likelihood of a reaction
occurring is proportional to the product of the number of molecules di égme
that are present (since this is the number of independent reactionsithatcur).
Hence, for a reactio# of the form A+ B — C we have

a(&;q,t) = c:nang. (4.20)

The rigorous verification of this functional form is beyond the scopeisftéxt, but
roughly we keep track of the likelihood of a single reaction occurring betwe
and B and then multiply by the total number of combinations of the two molecules
that can reactra - ng).

A special case of a bimolecular reaction occurs whenB\ so that our reaction
is given by 2 A— B. In this case we must take into account that a molecule cannot
react with itself, and so the propensity function is of the form

a(¢:q,t) = cena(na—1). (4.21)

Although it is tempting to extend this formula to the case of more than two
species being involved in a reaction, usually such reactions actually ingotve
binations of bimolecular reactions, e.g.:

A+B+C—D = A+B—AB AB+C—D

This more detailed description reflects that fact that it is extremely unlikely that
three molecules will all come together at precisely the same instant, versus the
much more likely possibility that two molecules will initially react, followed be a
second reaction involving the third molecule.
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Table 4.1: Examples of propensity functions for some comoases18]. Here we take
andrp to be the &ective radii of the moleculesy® = mymy/(my + my) is the reduced mass
of the two molecules is the volume over which the reaction occurds temperaturesg

is Boltzmann’s constant ang, n, are the numbers of molecules AfandB present.

Reaction type Propensity function cdicient,c,
. ) 172
Reaction occurs if molecules “touch” Q‘l(ik—r‘fg) ! a(ra+rp)?

. . o 12
Reaction occurs if molecules collide with energy Q~*(2eT) P p(ratrp)2-ee/keT
Steady state transcription factor PboundkocNrRNAP

The propensity functions for these cases and some others are givaoléd 1L

Example 4.6(Transcription of mMRNA) Consider the production of mMRNA from

a single copy of DNA. We have two basic reactions that can occur: mRMA ca
be produced by RNA polymerase transcribing the DNA and producing adAnR
strand, or mRNA can be degraded. We represent the micraptdthe system in
terms of the number of mMRNA's that are present, which we writa fig ease of
notation. The reactions can now be representegi-as-1, corresponding to tran-
scription and¢ = -1, corresponding to degradation. We choose as our propensity
functions

a(+1;n,t) = a, a(-1;n,t) =yn,

by which we mean that the probability of that a gene is transcribed indinsexdt
and the probability that a transcript in tindéis yndt (proportional to the number
of MRNA'S).

We can now write down the master equation as described above. Eq4atiBn (
becomes

P(n.t+df) = P(n,t)(1- Z a(é; n.tydt) + Z P(n-¢,t)aé q-£)dt

&=+1-1 &=+1-1
= P(n,t) —a(+1;n,t)P(n,t) —a(-1;n,t)P(n,t)
+a(+1L,n-1t)P(n-1t)+a(-1;n+ L, t)P(n+1)
= P(n,t) + aP(n—1,t)dt— (e —yn)P(n,t)dt+y(n+ 1)P(n+ 1, t)dt.

This formula holds fon > 0, with then = 0 case satisfying
P(0,t+dt) = P(0,t) — «P(0, t)dt + yP(1, t)dt.

Notice that we have an infinite number of equations, simcan be any positive
integer.
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We can write the dferential equation version of the master equation by sub-
tracting the first term on the right hand side and dividingdlly

dEtP(n, t) = aP(n—1,t) — (@ +yn)P(n,t) + y(n+ 1)P(n+ 1,t), n>0

dgtP(O, t) = —aP(0,t)dt+yP(1,1).

Again, this is an infinite number of fierential equations, although we could take
some limitN and simply declare th&(N,t) = 0 to yield a finite number.

One simple type of analysis that can be done on this equation without truncating
it to a finite number is to look for a steady state solution to the equation. In this
case, we se®(n,t) = 0 and look for a constant solutid®(n,t) = pe(n). This yields
an algebraic set of relations

0= —ape(0)+ype(1) == a@Pe(0) = ype(1)
0= ape(0) - (a+7¥)pe(1) + 2y pe(2) ape(1) = 2ype(2)

0= ape(1) - (a+ 2y)pe(2) + 3y pe(3) ape(1) = 3ype(3)

ap(n-1)=nyp(n).

It follows that the distribution of steady state probabilities is given by the Boiss
distribution @/y)"
— ey Y
p(n) = &7,

and the mean, variance and fiogent of variation are thus

/l:

Chemical Langevin equation (CLE)

The chemical master equation gives a complete description of the evolutioa of th
distribution of a system, but it can often be quite cumbersome to work with directly
A number of approximations to the master equation are thus used to provide more
tractable formulations of the dynamics. The first of these that we shalidars
known as theehemical Langevin equatiqi©CLE).

To derive the chemical Langevin equation, we start by assuming that theenumb
of species in the system is large and that we can therefore represesysteen
using a vector of real numbeb§, with X; representing the (real-valued) number
of molecules in § (Often X; will be divided by the volume to give a real-valued
concentration of species.pIn addition, we assume that we are interested in the
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dynamics on time scales in which individual reactions are not important and so
we can look at how the system state changes over time intervals in which many
reactions occur and hence the system state evolves in a smooth fashion.

Let X(t) be the state vector for the system, where we assume now that the ele-
ments ofX are real-valued rather than integer valued. We make the further approx-
imation that we can lump together multiple reactions so that instead of keeping
track of the individual reactions, we can average across a numbeactions over
a timer to allow the continuous state to evolve in continuous time. The resulting
dynamics can be described by a stochastic process of the form

M M
Xi(t+7) = X0+ > &iai(XO)r+ > &ja2(XOIN (0, v7),
j=1 j=1

wherea; are the propensity functions for the individual reactiafisare the corre-
sponding changes in the system stafeand \V; are a set of independent Gaussian
random variables with zero mean and variance

If we assume that is small enough that we can use the derivative to approxi-
mate the previous equation (but still large enough that we can averagmoliple
reactions), then we can write

dX(t) < SPRY ¢
T Zlf,-ia,- (X(t) + Zlf,-iaj (XENTj(t) =2 AX(D) + 2; B (X(O)I' 1),
i= i= j=
(4.22)
wherel’j are white noise processes. This equation is calledlieenical Langevin

equation(CLE).

Example 4.7(Protein production)Consider a simplified model of protein produc-
tion in which mRNAs are produced by transcription and proteins by translation
We also include degradation of both mRNAs and proteins, but we do notlitihede
detailed processes of elongation of the mRNA and polypeptide chains.

We can capture the state of the system by keeping track of the numberie$ cop
of mMRNA and proteins. We further approximate this by assuming that the number
of each of these is sficiently large that we can keep track of its concentration,
and henceX = (nm,np) whereny, € R is the amount of mMRNA and, € R is the
concentration of protein. Lettin@ represent the volume, the reactions that govern
the dynamics of the system are given by:

Ri: ¢ — mRNA & =(1,0) a1(X) = a/Q
Ro: MRNA S ¢ &£=(-10)  a(X)=y/Qnm
Rs: mRNAi MRNA+protein &3 =(0,1) az(X) =B/Q ny,

Ry: proteini é &, =(0,-1) ay(X) =6/Qnp.
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Substituting these expressions into equatibi2?, we obtain a stochastic fier-
ential equation of the form

d (nm) _ [—y/Q 0 Nm a/Q
dt(np] T lgre -s/0f(n,) Tl o7

wherel', andI', are independent white noise processes with unit variance. (Note
that in deriving this equation we have used the fact that the sum of twoendept
Gaussian processes is a Gaussian process.) \%

(Va7Q+ \ynm/Q) T
(VBNm/Q+ Jone/Q) Ty’

Fokker-Planck equations (FPE)

The chemical Langevin equation provides a stochastic ordindigrential equa-
tion that describes the evolution of the system state. A slightferint (but com-
pletely equivalent) representation of the dynamics is to model how the probab
ity distribution P(g,t) evolves in time. As in the case of the chemical Langevin
equation, we will assume that the system state is continuous and write down a
formula for the evolution of the density functigoa(x,t). This formula is known
as theFokker-Planck equation~PE) and is essentially an approximation on the
chemical master equation.

Consider first the case of a random process in one dimension. We astme
the random process is in the same form as the previous section:

X
% = A(X(t)) + B(X(1))I'(t). (4.23)
The functionA(X) is called thedrift term and B(X) is thediffusion term It can be
shown that the probability density function f&r p(x,t | Xo, to), satisfies the partial
differential equation

a—p(xtl t)——ﬁ(A(xt) (x.t] t))+3‘9—2(|32(x )p(x.t| Xo,t0)) (4.24)
(9t ] X0$ 0 - 8X 9 p 9 X0$ 0 Zaxz 9 p 9 XO’ O .

Note that here we have shifted to the probability density function since we are
consideringX to be a continuous state random process.

In the multivariate case, a bit more care is required. Using the chemicaizaing
equation 4.22), we define

M M
DIt = > B, Cij(xt) = > Br(x DBk, i<j=1... M.
j=1 k=1
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The Fokker-Planck equation now becomes

ap RN
o Ot %00 =0 5 (A OROC X0.0)

82
- 2 DI (% P(x.t] X0, t0)) (4.25)

2
6mam

'MZ
Q)|Q_3

+
NI =
n
=

M=z

(Cij (X t)p(x,t | Xo,to))-

L.
—

A
=

Linear noise approximation (LNA)

The chemical Langevin equation and the Fokker-Planck equation prapjgtex-
imations to the chemical master equation. A slightlffetient approximation can
be obtained by expanding the density function in terms of a size parafheiiis
approximation is know as théear noise approximatiofLNA) or the Q expan-
sion[26].

We begin with a master equation for a continuous random varkbiénich we
take to be of the form

k0= [ (@a(Ex-p(x-£0 - an(EXPx D) e

where we have dropped the dependence on the initial condition for nabsiom
plicity. As before, the propensity functiam,(¢; X) represents the transition prob-
ability between a stat& and a statex+ ¢ and we assume that it is a function of
a parametef2 that represents the size of the system (typically the volume). Since
we are working with continuous variables, we now have an integral in jpifacer
previous sum.

We assume that the meanXtan be written aQ¢(t) whereg(t) is a continuous
function of time that represents the evolution of the meaX . To understand
the fluctuations of the system about this mean, we write

X =Qp+Q27,

whereZ is a new variable representing the perturbations of the system about its
mean. We can write the distribution fdras

pz(z.1) = px(Qa() + QP2 1)
and it follows that the derivatives qfz can be written as
9"pz _ Q%Vf)vpx

z N

opz 0px ~dpdpx 0Jpx 1dpdpz
ot ot +th ox ot +det 0z’
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We further assume that tie dependence of the propensity function is such that

an(¢.Q9) = F(Q)a(¢; ¢),

whered’is not dependent of2. From these relations, we can now derive the master
equation forpz in terms of powers of2 (derivation omitted).
The QY2 term in the expansion turns out to yield
de X(0)
— = | £a(¢, Q) dé, 0)=—,
L L OR
which is precisely the equation for the mean of the concentration. It ctirefuve
shown that the terms i2° are given by

opz(z7) _ 82pz(z.1)

L20) — a(¢) @)+ pr ) ), (4.26)

where
av(X) = f EVA(E; X) dé, =0 Q).

Notice that in the case thai(t) = ¢o, this equation becomes the Fokker-Planck
equation derived previously.

Higher order approximations to this equation can also be carried out binkee
track of the expansion terms in higher order powergofn the case wher€
represents the volume of the system, the next term in the expangion &nd this
represents fluctuations that are on the order of a single molecule, winictsaally
be ignored.

Rate reaction equations (RRE)

As we already saw in Chapt@rthe reaction rate equations can be used to describe
the dynamics of a chemical system in the case where there are a large raimber
molecules whose state can be approximated using just the concentratioes of th
molecules. We re-derive the results from Sect2oRhere, being more careful to
point out what approximations are being made.

We start with the chemical Langevin equatioA2Q), from which we can write
the dynamics for the average quantity of the each species at each point:in time

dOG() _
o =;fji<aj(><(t))>,

where the second order term drops out under the assumption thiatstee in-
dependent processes. We see that the reaction rate equations follbsviting

X = (X)/Q andassuminghat(a;(X(t))) = a;((X(t))). This relationship is true when

a; is linear (e.g., in the case of a unimolecular reaction), but is an approximation
otherwise.
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4.3 Simulation of Stochastic sections
4.4 Analysis of Stochastic Systems

4.5 Linearized Modeling and Analysis

In this section we consider the special case of linear stochastic systenaeahat
driven by random processes.

Linear input/output response

We now consider the problem of how to compute the response of a lindansys
to a random process. We assume we have a linear system described spatate
as

X=AX+FW Y =CX (4.27)

Given an “input”W, which is itself a random process with meaft), variance
o?(t) and correlatiop(t, t + 7), what is the description of the random proc¥8s
Let W be a white noise process, with zero mean and noise inteQsity

p(7) = Q5(7).
We can write the output of the system in terms of the convolution integral
t
Y(t) = f h(t-7)W(r)dr,
0
whereh(t — 1) is the impulse response for the system
h(t—7) = CE"" B+ Ds(t - 7).

We now compute the statistics of the output, starting with the mean:
t
EIY(O) = E | ht-n)Wi)di)

t
- [ ha-nEweidr o
Note here that we have relied on the linearity of the convolution integral tahpll
expectation inside the integral.

We can compute the covariance of the output by computing the correlgtipn
and settingr? = p(0). The correlation function foy is

t S
pv(t.9 = EIYOY(S) = Ef fo h(t— m)W(r) - fo h(s—&)W(E) dé)

t S
_ | fo fo h(t — 1) W(m)W(E)h(s— &) dde)
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Once again linearity allows us to exchange expectation and integration

t S
pv(t.9) = fo fo h(t - ) E(W()W(E)Ih(s— £) ddé
t S
- f f h(t— 1) Q8(y — )h(s— &) dnde
0t 0
- fo h(t— m)Qh(s—n) d

Now lett = s—t and write

t
pv(r) = py(t.t+7) = fo h(t— m)Qh(t + 7~ ) dy

t
- [ hoanesde  (setings=t-)

Finally, we lett — oo (steady state)

Iim (.t 1) = (o) = [ Qe + 1) (4.28)

If this integral exists, then we can compute the second order statistics foutinet
Y.

We can provide a more explicit formula for the correlation funcgiamterms of
the matrice®\, F andC by expanding equatiod(28. We will consider the general
case wher&V € RP andY € R% and use the correlation matri(t, s) instead of the
correlation functiorp(t, s). Define thestate transition matrixd(t, to) = eAt-%) so
that the solution of systend(27) is given by

X(t) = D(t, to)x(to) + f t(D(t,/l)FW(/l)d/l

to
Proposition 4.2 (Stochastic response to white noisépt E{X(to)X" (to)} = P(to)

and W be white noise with{B/()W' (¢)} = Rwé(1 - &). Then the correlation ma-
trix for X is given by

Rx(t,s) = PO®T (s 1)

where Rt) satisfies the linear matrix glerential equation

P(t)= AP+PAT + FRyF,  P(0) = Pq.
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Proof. Using the definition of the correlation matrix, we have
E(X(®)XT(9)} = E{(t.0)X(0)X" (0)® (t,0)+ cross terms
+ f t O(t, &) FW(E) dg f SWt(/l)FT<D(s, ) d/l}
= o(t, O)E{X(B)XT (0))®(s,0) 0
+ fo t fo SCD(t,f)FE{W(g—‘)WT(/l)}FT(D(s, A)déda
= O(t,0)P(0)¢" (s,0)+ fo t @(t, )FRw()F T d(s 1) dA.

Now use the fact thab(s,0) = ®(s,t)®(t,0) (and similar relations) to obtain
Rx(t.s) = P()®"(s.t)
where -
P(t) = ®(t,0)P(0)d (t,0)+ fo O(t, )FRWFT (DD (t, 1)dA
Finally, differentiate to obtain
P(t) = AP+PAT + FRyF,  P(0) =Pg
(see Friedland for details). O

The correlation matrix for the outpif can be computing using the fact that
Y = CX and henceRy = CTRxC. We will often be interested in the steady state
properties of the output, which given by the following proposition.

Proposition 4.3(Steady state response to white naid&)r a time-invariant linear
system driven by white noise, the correlation matrices for the state and output
converge in steady state to

Rx(r) = Rx(t,t+7) = PN ™,  Ry(r) = CRx(r)CT
where P satisfies the algebraic equation
AP+PAT +FRyFT=0  P>0. (4.29)

Equation 4.29 is called the_yapunov equatioand can be solved in MATLAB
using the functiorlyap.

Example 4.8(First-order system)Consider a scalar linear process

X = —aX+W Y =cX
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whereW is a white, Gaussian random process with noise intensityJsing the
results of Propositiod.2, the correlation function foX is given by

Rx(t,t+7) = p(t)e™™

wherep(t) > O satisfies
p(t) = —2ap+ 2.

We can solve explicitly foip(t) since it is a (hon-homogeneous) lineaffeliential
equation:

p(t) = e *'p(0)+ (1- e‘z""‘)g—z-
2a

Finally, making use of the fact that= cX we have

2
ot t+7) = A2 p(0)+ (1— e—Zat)%)e—af.

In steady state, the correlation function for the output becomes

2
0 _ar
=—e%
(1) = —_
Note correlation function has the same form as the Ornstein-Uhlenbec&gs
Example4.7 (with Q = c?c2). \Y

Random Processes in the Frequency Domain

As in the case of deterministic linear systems, we can analyze a stochastic linear
system either in the state space or the frequency domain. The frequenaindap-
proach provides a very rich set of tools for modeling and analysis otioterected
systems, relying on the frequency response and transfer functioepriesent the

flow of signals around the system.

Given a random proceg§t), we can look at the frequency content of the prop-
erties of the response. In particular, if we ¢ét) be the correlation function for a
(scalar) random process, then we definegbeer spectral density functicas the
Fourier transform op:

00

S(w) = f o(r)e 17 d, o(r) = %f S(w)el“ dr.
The power spectral density provides an indication of how quickly the satdie
a random process can change through the frequency content: ifishiagh fre-
guency content in the power spectral density, the values of the ranadaible can
change quickly in time.
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} logs(w)

wo logw

Figure 4.5: Spectral power density for a first-order Markovgess.

Example 4.9(First-order Markov process)o illustrate the use of these measures,
consider a first-order Markov process as defined in ExafgleThe correlation
function is

Q wolm

2w

The power spectral density becomes

p(r) =

S@)= [ revretdr

0 )
= _Q e(w_jw)T dT+f Q e(_w_jw)T dT = Q
0 2wo

—oo 2w0 W2+ w

5+
0

We see that the power spectral density is similar to a transfer function and we
can plotS(w) as a function ofv in a manner similar to a Bode plot, as shown in
Figure4.5. Note that althougls(w) has a form similar to a transfer function, itis a
real-valued function and is not defined for compgex v

Using the power spectral density, we can more formally define “white noise”:
awhite noise procesis a zero-mean, random process with power spectral density
S(w) = W = constant for allw. If X(t) € R" (a random vector), theWV € R™",

We see that a random process is white if all frequencies are equalbsezyied in
its power spectral density; this spectral property is the reason for timént@ogy
“white”. The following proposition verifies that this formal definition agreathw
our previous (time domain) definition.

Proposition 4.4. For a white noise process,

o(7) = 2—1ﬂ [ B S(w)el“T dr = Ws(7),

o0

wheres(7) is the unit impulse function.

Proof. If = # 0 then

(1) = % Iw W(cosrt) + jsinfwt)dr =0
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If =0 thenp(r) = 0. Can show that

p(0) = mﬁ[:(---)dwdfzwa(m

Given a linear system
X=AX+FW  Y=CX

with W given by white noise, we can compute the spectral density function cor-
responding to the outpui. We start by computing the Fourier transform of the
steady state correlation functio4.28):

sve)= [ [ [ ) h(f)Qh(§+T)d§] &1 dr

_ ) 00 . Cior i

foh(f)Q[Loh(& e d]dg

_ f h(§)Q[ f h(/l)e‘j“’“‘f)d/l]df
0 0

_ fo " h©)e dg- QH(jw) = H(- j)QuH(je)

This is then the (steady state) response of a linear system to white noise.

As with transfer functions, one of the advantages of computations in the fre
guency domain is that the composition of two linear systems can be represented
by multiplication. In the case of the power spectral density, if we pass whise no
through a system with transfer functiéh (s) followed by transfer functioiidz(s),
the resulting power spectral density of the output is given by

Sy(w) = Hi(=jw)H2(-jw)QuH2(jw)H1(jw).

As stated earlier, white noise is an idealized signal that is not seen in practice
One of the ways to produced more realistic models of noise and disturbé&nces
to apply a filter to white noise that matches a measured power spectral density
function. Thus, we wish to find a covarian@éand filterH(s) such that we match
the statisticsS(w) of a measured noise or disturbance signal. In other words, given
S(w), find W > 0 andH(s) such thatS(w) = H(— jw)WH(jw). This problem is
know as thespectral factorization problem

Figure 4.6 summarizes the relationship between the time and frequency do-
mains.



4.6. MARKOV CHAIN MODELING AND ANALYSIS 4-35

1y _r
V) = e 2Ry = e 2Ry
p(v) iy Vsl H |y PO o=
Sv(w) =Ry Sy(w) = H(-jw)RvH(jw)
() = Ryé() X = AX+FV py(7) = Ry(r) = CPeATICT
T)= T
- Y Y =CX AP+PAT + FRyFT =0

Figure 4.6: Summary of steady state stochastic response.

Application to Biomolecular Systems
4.6 Markov chain modeling and analysis
4.7 System identification techniques

4.8 Model Reduction
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Chapter 5

Feedback Examples
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Figure 5.1: Schematic diagram for tlee system.

5.1 The lac Operon
Modeling

The lac operon is one of the most studied regulatory networks in molecular bi-
ology. Its function is to determine when the cell should produce the proteihs a
enzymes necessary to import and metabolize lactose from its externalreneint
Since glucose is a mordfeient source of carbon, the lactose machinery is not pro-
duced unless lactose is present and glucose is not presentacltmentrol system
implements this computation.

In constructing a model for tHac system, we need to decide what questions we
wish to answer. Here we will attempt to develop a model that allows us to under-
stand what levels of lactose are required forldesystem to become active in the
absence of glucose. We will focus on the so-called “bi-stability” oflfteoperon:
there are two steady operating conditions—at low lactose levels the machinery
is off and at high lactose levels the machinery is on. The system has hysteresis,
S0 once the operon is actived, it remains active even if the lactose ¢oato@m
descreases. We will construct afdrential equation model of the system, with
various simplifying assumptions along the way.

A schematic diagram of thlac control system is shown in Figutel Starting
at the bottom of the figure, lactose permease is an integral membrane protein tha
helps transport lactose into the cell. Once in the cell, lactose is convertediézallo
tose, and allolactose is then broken down into glucose and galactose,itiothev
assistance of the enzyrgegalactosidases¢gal for short). From here, the glucose
is processed using the usual glucose metabolic pathway and the galactose.

The control circuitry is implemented via the reactions and transcriptional reg-
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ulation shown in the top portion of the diagram. Tiae operon, consisting of the
genedacZ (coding forg-gal),lacY (coding for lactose permease) dadA (coding

for a transacetylase), has a combinatorial promoter. Normally, lac sepréecl)

is present and the operon iff.oThe activator for the operon is CAP, which has
a positive inducer cAMP. The concentration of CAMP is controlled by gdaco
when glucose is present, there is very little CAMP available in the cell (ancehen
CAP is not active).

The bistable switching behavior in thee control system is implemented with a
feedback circuit involving théac repressor. Allolactose bindac repressor and so
when lactose is being metabolized, then the repressor is sequesteredanycai
and thelac operon is no longer repressed.

To model this circuit, we need to write down the dynamics of all of the reac-
tions and protein production for the circuitry shown in Figbrgé We will denote
the concentration of thg-gal mMRNA and protein asy, and B. We assume that
the internal concentration of lactose is givenlhyignoring the dynamics of lac-
tose permease and transport of lactose into the cell. Similarly, we assumeethat th
concentration of repressor protein, dend® s constant.

We start by keeping track of the concentration of free allolacfoS3éne relevant
reactions are given by the transport of lactose into the cell, the conmerdiactose
into allolactose and then into glucose and lactose and finally the sequestiation o
repressoR by allolactose:

L°*+P=L%P==L+P Transport
L+B==L:B— A+B Conversion
A+B=AB — Glu+Gal+B Conversion
A+R=A:R Sequestration
We see that the dynamics involve a number of enzymatic reactions and hence w

can use Michaelis-Menten kinetics to model the response at a slightly reléweéd
of detail. The diferential equation for the internal lactose concentratitwecomes

dL Le L
— =q eP————apB— - B
at - TR e T PR AL A PR AL

—6L, (5.1)

where the first two terms arise from the transport of lactose into and ol akll,

the third term is the conversion of lactose to allolactose and the final term is due to
degradation and dilution. Similarly, the dynamics for the allolactose concentration
can be modeled as

dA L A
—=aa B —apgB——— + KL [AR] — K, o [A][R] — 6 AA.
gr = AL Ko L @AB KA+A+ ARIAR] —Kag[AIR] —da

The dynamics of the production gfgal and lactose permease are given by
the transcription and translational dynamics of protein production. Thesesg
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are both part of the same operon (along wahA) and hence the use a single
MRNA strand for translation. To determine the production rate of mMRNA, we nee
to determine the amount of repression that is present as a function of theeofio
repressor, which in turn depends on the amount of allolactose that Bnpr&ge
make the simplifying assumption that the sequestration reaction is fast, so that it is
in equilibrium and hence

[AR] =kar[Al[R],  kar = K\r/Kig-

We also assume that the total repressor concentration is constantgwadnatches
degradation and dilution). LettinBr = [R] + [A:R] represent the total repressor
concentration, we can write

Ry

RI=Rr-kalARI = [Rl=

(5.2)

The simplification that the sequestration reaction is in equilibrium also simplifies
the reaction dynamics for allolactose, which becomes

dA L

A
2 oALB —anB _SAA. 5.3
dt = PR+ L PPKaeA A (5.3)

We next need to compute th&ect of the repressor on the productiongegal
and lactose permease. It will be useful to express the promoter state inderms
the allolactose concentratighrather tharR, using equation.2). We model this
using a Hill function of the form

ar  ar(l+KarA)"
Kr+R"  Kgr(1l+KarA)"+Rr

Fea(A) =

Letting M represent the concentration of the (common) mRNA, the resulting form
of the protein production dynamics becomes

amM _
EZ HMEBA(A(t—Tm)) —ymM,

‘c’j_'? = B P M(t - ) — 5B, (5.4)
dP

gt = Bpe MM PIM(t— Ty — ) — GpP.

This model includes the degradation and dilution of mRN#y); the transcrip-
tional delayss-gal mRNA (ry), the degradation and dilution of the proteidg,(
6p) and the delays in the translation and folding of the final proteigsp).
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Table 5.1: Parameter values tac dynamics (from ).

Parameter Value Description
n 3.03x102mint  dilution rate
awm 997 nMmirtt production rate oB-gal mMRNA
Bs 1.66x102mint  production rate oB-galactosidase
Bp 2?22 mint production rate of lactose permease
an 1.76x 10* min't production rate of allolactose
™ 0.411 mint degradation and dilution gi-gal mMRNA
s 8.33x10“*min!  degradation and dilution ¢gf-gal
op 2?2 mint degradation and dilution of lactose permease
SA 1.35x 1072 mint degradation and dilution of allolactose
n 2 Hill coefficient for repressor
K 7200
K1 2.52x 1072 (uM)~?
KL 0.97uM
Ka 1.95uM
Ba 2.15x 10* mint
™ 0.10 min
™ 2.00 min

Bifurcation analysis
Sensitivity analysis

Consider the model of thiac operon introduced in Sectid??. For the gendacZ
(which encodes the protejgrgalactosidase), we & represent the protein con-
centration andvl represent the mRNA concentration. We also consider the con-
centration of the lactosk inside the cell, which we will treat as an external input,
and the concentration of allolactoge,Assuming that the time delays considered
previously can be ignored, the dynamics in terms of these variables are

dM 1+kA"

A Fea(A0) —yM Faa(A 6) = apgo—

gr = FealA0) - 7M. BA(A.6) WG ey

dB L

— =M -06gB FaL(L,0) =apn—— 5.5
gr —PeM-deB, AL(L.6) A D (5.5)
dA A

ddt BFAL(L,0) - BFAA(A.0) —vaA, Faa(A6) =B

k/_\+A.

Here the state is = (M, B, A) € R, the input isw = L € R and the parameters are
0= (aB,BB, @A, YB,0B, YA, N, K K1, K, Ka,Ba) € R12. The values for the parameters are
listed in Table??.

We investigate the dynamics around one of the equilibrium points, corrdspon
ing to an intermediate input df = 40uM. There are three equilibrium points at
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this value of the input:
X1.e=(0.0003930.0002103.17), X2.e=(0.003280.0017419.4), x3e=(0.01420.0075842.1).

We choose the third equilibrium point, corresponding to the lactose metabolic ma-
chinery being activitated and study the sensitivity of the steady state doatbems
of allolactose Q) andg-galactosidaseR) to changes in the parameter values.

The dynamics of the system can be represented in thexerm(x, 6, L) with

Fea(A)—yeM —uM
f(x,0,L) = LM —-o6gB—uB .
FaL(L)B—Faa(A)B-0aA-uA

To compute the sensitivity with respect to the parameters, we compute tha-deriv
tives of f with respect to the state

JF
PP et 0 R
ox | Ps —0B—U 0
0 Fa—Fan -BZ2

and the parametets

of

oF oF oF
%=(FBAOO—M006—?‘6—EAW‘?OOO).

Carrying out the relevant computations and evaluating the resulting siqmesu-
merically, we obtain

ﬁ[Be] [—1.21 00243 -3.35x10% 0935 146 ... 0.001lj

96 \Ae) ~ |-2720 477 —-0.00656 1830 2860 ... 3.27

We can also normalize the sensitivity computation:

= _axe/xe_ 1 1
o= S D ()SD ™)

which yields

S - -485 32 -318 311 32 63 -605 -41 402 605
Y6~ 1-1.96 113 -1.12 11 113 324 -311 -211 207 311

where
9=(,U av K Ki B aa KL Ba Ka L)'

We see from this computation that increasing the growth rate decreaseglilite e
rium concentation oB andA, while increasing the lactose concentration by 2-fold
increases the equilibriugrgal concentration 12-fold (6X) and the allolactose con-
centration by 6-fold (3X).
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5.2 Heat Shock Response in Bacteria
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5.3 Bacteriophage 4

Bacteriophaga (also calledl phage or phagsg) is a virus that infect&. coliand
propogates itself by integrating its DNA into the genome of the infected cell. The
virus includes a decision “switch” that determines whether the virus shauold p
pogate itself by DNA integration (thgsogenigohase) or whether it should destroy
the host cell and spread to other nearby bacteridytieephase). In this section we
describe what is known about the modeling of the |§ys®geny decision-making
circuitry and explore some of the properties of its dynamics.

The material in this section is based on the work of PtasBhé\fkin et al. [?]
and St. Pierre et al.?]. The models used to create the plots in this section are
available on the companion web site for the text.

Phage A lifecycle

A detailed model for A
Reduced order models for A
Dynamic analysis

Open issues
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lysogeny

A Genetic Switch, 3rd edition, 2004
© Cold Spring Harbor Laboratory Press
Chapter 1, Figure 2

Figure 5.2: Growth cycle of phage From Ptashne.
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Figure 5.3: A detailed circuit diagram for thiedecision-making circuit. From Arkin, Ross
and McAdams (1998).
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Figure 5.4: Simulation results using the detailed model.
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attractant repellent
- increasing decreasing
concentration concentration
NO ATTRACTANT POSITIVE NEGATIVE
OR REPELLENT CHEMOTAXIS CHEMOTAXIS

Figure 4.16d Physical Biology of the Cell (© Garland Science 2009)

Figure 5.5: Examples of chemotaxis. Figure from Phillipendev and Theriotd5]; used
with permission of Garland Science.

5.4 Bacterial Chemotaxis

Chemotaxigefers to the process by which micro-organisms move in response to
chemical stimuli. Examples of chemotaxis include the ability of organisms to move
in the direction of nutrients or move away from toxins in the environment. Chemo-
taxis is calledpositive chemotaxig the motion is in the direction of the stimulus
andnegative chemotaxigthe motion is away from the stimulant, as shown in Fig-
ure5.5. Many chemotaxis mechanisms are stochastic in nature, with biased random
motions causing the average behavior to be either positive, negativeitoaln@n
the absence of stimuli).

In this section we look in some detail at bacterial chemotaxis, whiatoli use
to move in the direction of increasing nutrients. The material in this section islbase
primarily on the work of Barkai and LeibleB] and Rao, Kirby and Arkin37].

Control system overview

The chemotaxis system iB. coli consists of a sensing system that detects the
presence of nutrients, and actuation system that propels the organisnemviits
ronment, and control circuitry that determines how the cell should move in the
presence of chemicals that stimulate the sensing system. The approximatalocatio
of these elements are shown in Fig@fe

The actuation system in th& coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown
in Figure5.6a When the flagella all spin in the counter clockwise direction, the
individual flagella form a bundle and cause the organism to move roughdy in
straight line. This behavior is called a “run” motion. Alternatively, if the fléae
spin in the clockwise direction, the individual flagella do not form a bundbkthe
organism “tumbles”, causing it to rotate (Figuséh). The selection of the motor
direction is controlled by the protein CheY: if phosphorylated CheY bindséo th
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Figure 5.6: Bacterial chemotaxis. Figures from Phillipgnidev and Theriot35]; used
with permission of Garland Science.

Figure 4.16¢ Physical Biology of the Cell (0 Garland Science 2009)

motor complex, the motor spins clockwise (tumble), otherwise it spins counter-
clockwise (run).

Because of the size of the organism, it is not possible for a bacterium $e sen
gradients across its length. Hence, a more sophisticated strategy is uaéa;hn
the organism undergoes a combination of run and tumble motions. The basic ide
is illustrated in Figuré.6¢ when high concentration of ligand (nutrient) is present,
the CheY protein is left unphosphorylated and does not bind to the actueation
plex, resulting in a counter-clockwise rotation of the flagellar motor (ruon-C
versely, if the ligand is present then the molecular machinery of the celesaus
CheY to be phosphorylated and this modifies the flagellar motor dynamics so that
clockwise rotation occurs (tumble). The néfieet of this combination of behaviors
is that when the organism is traveling through regions of higher nutriettere
tration, it continues to move in a straight line for a longer period before tumbling
causing it to move in directions of increasing nutrient concentration.

A simple model for the molecular control system that regulates chemotaxis is
shown in Figuré.7. We start with the basic sensing and and actuation mechanisms.
A membrane bound protein MCP (methyl-accepting chemotaxis protein) that is
capable of binding to the external ligand serves as a signal transdueimgre
from the cell exterior to the cytoplasm. Two other proteins, CheW and Cloer,

a complex with MCP. This complex can either be in an active or inactive state. In
the active state, CheA is autophosphorylated and serves as a phaspfertise
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./fbkexamps/figures/chemotaxis-ctrlsys.eps

Figure 5.7: Control system for chemotaxis. Figure from Real.[37] (Figure 1A).

for two additional proteins, CheB and CheY. The phosphorylated fdr@heY
then binds to the motor complex, causing clockwise rotation of the motor.

The activity of the receptor complex is governed by two primary factors: the
binding of a ligand molecule to the MCP protein and the presence or absence o
up to 4 methyl groups on the MCP protein. The specific dependence broéac
these factors is somewhat complicated. Roughly speaking, when the ligend
bound to the receptor then the complex is less likely to be active. Furthera®ore,
more methyl groups are present, the ligand binding probability incredkesira
the gain of the sensor to be adjusted through methylation. Finally, even inthe ab
sence of ligand the receptor complex can be active, with the probabilityaisioge
with increased methylation. Figu&8 summarizes the possible states, their free
energies and the probability of activity.

Several other elements are contained in the chemotaxis control circuit. T¥te mo
important of these are implemented by the proteins CheR and CheB, both &f whic
affect the receptor complex. CheR, which is constitutively produced in the cell,
methylates the receptor complex at one of the foffedént methylation sites. Con-
versely, the phosphorylated form of CheB demethylates the receptor corigle
described above, the methylation patterns of the receptor comfiéet #s activ-
ity, which afects the phosphorylation of CheA and, in turn, phosphorylation of
CheY and CheB. The combination of CheA, CheB and the methylation of the re-
ceptor complex forms a negative feedback loop: if the receptor is attime CheA
phosphorylates CheB, which in turn demethylates the receptor complex,gntkin
less active. As we shall see when we investigate the detailed dynamics thétow,
feedback loop corresponds to a type of integral feedback law. Thigraitaction
allows the cell to adjust to ffierent levels of ligand concentration, so that the be-
havior of the system is invariant to the absolute nutrient levels.
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./fbkexamps/figures/receptor-activity|. eps

Figure 5.8: Receptor complex states. The probability ofv@ryistate being in an active
configuration is given by. Figure obtained fromdJd.

Modeling

The detailed reactions that implement chemotaxis are illustrated in Fig@re
Letting T represent the receptor complex anfi fepresent an active form, the
basic reactions can be written as

TA+A=TAA — AP+ TA
AP+B=—AP.B— A+BP BP+P=—BP.P— B+P (5.6)
AP+Y = APY — A+YP YP+Z=YPZ—>Y+Z

where CheA, CheB, CheY and CheZ are written simply as A, B, Y and Z for
simplicity and P is a non-specific phosphotase. We see that these are basically
three linked sets of phosphorylation and dephosphorylation reactidhsCive A
serving as a phosphotransferase and P and CheZ serving as plasssh

The description of the methylation of the receptor complex is a bit more com-
plicated. Each receptor complex can have multiple methyl groups attachéideand
activity of the receptor complex depends on both the amount of methylation and
whether a ligand is attached to the receptor site. Furthermore, the bindibg-pro
bilities for the receptor also depend on the methylation pattern. To capturaéhis,
use the set of reactions that are illustrated in Fig&r@and5.9. In this diagram,
T represents a receptor that hiasethylation sites filled and ligand state s (which
can be either u if unoccupied or o if occupied). WeNetrepresent the maximum
number of methylation sited = 4 for E. coli).

Using this notation, the transitions between the states correspond to the reac-
tions shown in Figur®.10

TX+BP = TXBP — T*, +BP i>0
T*+R=TXR— T* +R i<M

TU4L =T
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Figure 5.9: Circuit diagram for chemotaxis.

We now must write reactions for each of the receptor complexes with Chezh E
form of the receptor complex has dférent activity level and so the most complete
description is to write a separate reaction for eaftaiid T" species:

f.o Kc,o
T'+A=TA — AP+T,

lﬁlﬂ,o
where xe {o,u} and i=0,...,M. This set of reactions replaces the placeholder
reaction ' + A = TA:A — AP+ T4 used earlier.

Approximate Model

The detailed model described above iffisiently complicated that it can be dif-
ficult to analyze. In this section we develop a slightly simpler model that can be
used to explore the adaptation properties of the circuit, which happenlowers
time-scale.

./fbkexamps/figures/chemotaxis-methylation.eps

Figure 5.10: Methylation model for chemotaxis. Figure frBarkai and Leibler§] (Box
1). Note: the figure uses the notatiofi #r the receptor complex instead of.T
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Figure 5.11: Probability of activity.

We begin by simplifying the representation of the receptor complex and its
methylation pattern. Lek(t) represent the ligand concentration ahdrepresent
the concentration of the receptor complex witsides methylated. If we assume
that the binding reaction of the ligand L to the complex is fast, we can write the
probability that a receptor complex wittsites methylated is in its active state as a
static function;(L), which we take to be of the form
Q’IOL a’iKL

+

(L) = .
aill) = T koL

The codficientse anda; capture the ffect of presence or absence of the ligand on
the activity level of the complex. Note that has the form of a Michaelis-Menten
function, reflecting our assumption that ligand binding is fast compared t@he
of the dynamics in the model. Followin8T], we take the cofcients to be

ap =0, a; =01, a» =0.5, az =0.75, as=1,
aj=0, aj=0, ay=0.1, a3=0.5, ag=1
and choos&| = 10uM. Figure5.11shows how each; varies withL.
The total concentration of active receptors can now be written in terms of the
receptor complex concentratiofis and the activity probabilitieg;(L). We write
the concentration of activated complef &nd inactivated complex'Tas

4 4
=Y aT. T'= ) A-aU)T.
i=0 =0

These formulas can now be used in our dynamics agtant&e concentration of
active or inactive receptors, justifying the notation that we used in equiién

We next model the transition between the methylation patterns on the receptor.
We assume that the rate of methylation depends on the activity of the receptor
complex, with active receptors less likely to be demethylated and inactivetoese
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less likely to be methylate®f, 30]. Let

BP R

s R= T, =
Kg+TA R = KT

re =ks

represent rates of the methylation and demethylation reactions. We chease th
efficients as

ke=0.5 Kg=55 kr=0.255 Kr=0.251

We can now write the methylation dynamics as

%Ti = rR(1-@is1(L))Ti—t + reaic1(L) Tiva — rr(1—ai(L)Ti - reai(L)T;,

where the first and second terms represent transitions into this state vidatiethy

or demethylation of neighboring states (see FigbuH) and the last two terms
represent transitions out of the current state by methylation and demethylatio
respectively. Note that the equations Ty and T4 are slightly diferent since the
demethylation and methylation reactions are not present, respectively.

Finally, we write the dynamics of the phosphorylation and dephosphorylation
reactions, and the binding of Ché&Yo the motor complex. Under the assumption
that the concentrations of the phosphorylated proteins are small relative timtal
protein concentrations, we can approximate the reaction dynamics as

d

A= 50TAA— 100APY — 30APB,

d

i7" = 100APY —0.1YP — 5[M] YP+ 19[M:Y *] - 30Y",

EBID = 30APB-BP,
dt
d
d—t[M:Y Pl = 5[M] YP - 19[M:Y P].
The total concentrations of the species are given by

A+AP=5nM, B+BP=2nM, Y+YP+[M:YP]=17.9nM
[M] +[M:Y P] =5.8 nM, R=0.2nM St oTi=5nM.

The reaction ca@cients and concentrations are taken from Raal. [37].
Figure5.12ashows a the concentration of the phosphorylated proteins based on
a simulation of the model. Initially, all species are started in their unphosphedyla
and demethylated states. At tifie= 500 s the ligand concentration is increased to
L=10uM and at timeT = 1000 it is returned to zero. We see thatimmediately after
the ligand is added, the Ché\oncentration drops, allowing longer runs between
tumble motions. After a short period, however, the CR@¥ncentration adapts to
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Figure 5.12: Simulation and analysis of reduced-order dtaris model.

the higher concentration and the nominal run versus tumble behavior isesto
Similarly, after the ligand concentration is decreased the concentrationedfCh
increases, causing a larger fraction of tumbles (and subsequemgeshendirec-
tion). Again, adaptation over a longer time scale returns that CheY coatentr
to its nominal value.

Figure 5.12bhelps explain the adaptation response. We see that the average
amount of methylation of the receptor proteins increases when the ligaodrcon
tration is high, which decreases the activity of CheA (and hence desrd¢hs
phosphorylation of CheY).

Integral action

The perfect adaptation mechanism in the chemotaxis control circuitry haartie
function as the use of integral action in control system design: by includfagd-
back on the integral of the error, it is possible to provide exact cancellabio
constant disturbances. In this section we demonstrate that a simplified vefsion
the dynamics can indeed be regarded as integral action of an apprcigiadd
This interpretation was first pointed out by &t al [48].

We begin by formulating an even simpler model for the system dynamics that
captures the basic features required to understand the integral aatoxrépre-
sent the receptor complex and assume that it is either methylated or not. We let X
represent the methylated state and we further assume that this methylatedrstate c
be activated, which we write as X This simplified description replaces the multi-
ple stated; and probabilitiesy;(L). We also ignore the additional phosphorylation
dynamics of CheY and simply take the activated receptor concentidij@s our
measure of overall activity.

Figure5.13shows the transitions between the various foKnas before, CheR
methylates the receptor and Che@emethylates it. We simplify the picture by only
allowing CheP’ to act on the active statexand CheR to act on the inactive state.
We take the ligand into account by assuming that the transition between the activ
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. /fbkexamps/figures/chemotaxis-reduced. eps

Figure 5.13: Reduced order model of receptor activity. @lethfrom [B], Figure 7.9.

form X, and the inactive form X depends on the ligand concentration: higher
ligand concentration will increase the rate of transition to the inactive state.

This model is a considerable simplification from the ligand binding model that
is illustrated in Figure®.8 and5.10Q In the previous models, there is some prob-
ability of activity with or without methylation and with or without ligand. In this
simplified model, we assume that only three states are of interest: demethylated,
methylateginactive and methylatgdctive. We also modify the way that that lig-
and binding is captured and instead of keeping track of all of the possibilities
Figure5.8, we assume that the ligand transitions us from an active stat®Xn
inactive X,,. These states and transitions are roughly consistent with flezetht
energy levels and probabilities in Figuse3, but it is clearly a much coarser model.

Accepting these approximations, the model illustrated in FigLt8results in
a set of chemical reactions of the form

X+R=XR— X, ,+R methylation
Xp+BP =X :BP — X+BP  demethylation

Xm T Xm activatiorideactivation

For simplicity we take both R and™Bto have constant concentration.
Approximating the first two reactions by their Michaelis-Menten forms and
assuming thak > 1, we can write the resulting dynamics for the system as

dEtXm = kgR+ k' (L)X — K Xm

d X

xR — p__™m . f * r
5 =—keB . kf(L)XE + K X,

We wish to use this model to understand how the steady state activityXgvel
depends on the ligand concentratiofwhich enters through the deactivation rate
kf(L)). Starting with the first equation, we see that at equilibrium we have

Xme = (Kr/K)R.



5.4-10 CHAPTER 5. FEEDBACK EXAMPLES

To find X*

me» We note that at equilibrium

*

d X
= — * = — p—me

From this equation we can solve i, . as a function of the CheR concentration:

" er*nkRR
Xme = kgBP — kgR
Note that this solution does not dependidiiL) or k" and hence we see that the
steady state solution is independent of the ligand concentration.

To see the integral action more directly, we write the dynamics in terms of a
new variablez = X3, — Xj, .

Further reading
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5.5 Yeast mating response



5.5-2 CHAPTER 5. FEEDBACK EXAMPLES



Part Il
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Chapter 6

Biological Circuit Components

6.1 Biology Circuit Design

One of the fundamental building blocks employed in synthetic biology is the pro-
cess of transcriptional regulation, which is found in natural transcrigtioet-
works. A transcriptional network is composed of a number of genes xpaess
proteins that then act as transcription factors for other genes. Thatratgich a
gene is transcribed is controlled by th@moter a regulatory region of DNA that
precedes the gene. RNA polymerase binds a defined site (a specificdgparece)

on the promoter. The quality of this site specifies the transcription rate of tiee ge
(the sequence of the site determines the chemi@ality of RNA polymerase to

the site). RNA polymerase acts on all of the genes. However, each rifzitst
factor modulates the transcription rate of a set of target genes. Tifgiwtifac-

tors dfect the transcription rate by binding specific sites on the promoter region
of the regulated genes. When bound, they change the probability petimait
that RNA polymerase binds the promoter region. Transcription factorsatferst

the rate at which RNA polymerase initiates transcription. A transcription factor
can act as aepressomwhen it prevents RNA polymerase from binding to the pro-
moter site. A transcription factor acts asautivatorif it facilitates the binding of
RNA polymerase to the promoter. Such interactions can be generally eapzds

as nodes connected by directed edges. Synthetic bio-molecular cirauiebar
cated typically in bacteri&. coli, by cutting and pasting together according to a
desired sequence genes and promoter sites (natural and engin8ered}the ex-
pression of a gene is under the control of the upstream promoter regeoan this
way create a desired circuit of activation and repression interactionsgagemes.
Early examples of such circuits include an activator-repressor systdrogh dis-
play toggle switch or clock behavio6], a loop oscillator called the repressilator
obtained by connecting three inverters in a ring topoldgd},[a toggle switch ob-
tained connecting two inverters in a ring fashids|[ and an autorepressed circuit
[9] (Figure 6.1). Several scientific and technological developments accumulating
over the past four decades have set the stage for the design aicdtiahrof early
synthetic bio-molecular circuits (Figue?2).

An early milestone in the history of synthetic biology can be traced back to the
discovery of mathematical logic in gene regulation. In their 1961 papesbJawd
Monod introduced for the first time the idea of gene expression regulationgh
transcriptional feedbackp]. Only a few years later (1969), special enzymes that
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a) Self repression b) Toggle switch
A C

c) Activator-repressor clock d) Repressilator

Figure 6.1: Early transcriptional circuits that have begricated in bacteri&. coli: the
self-repression circuit9], the toggle switch 16], the activator-repressor cloclé][ and

the repressilatorl4]. Each node represents a gene and each arrow from node Z ¢o nod
X indicates that the transcription factor encoded in z, deth@, regulates gene 8] If

z represses the expression of x, the interaction is repiesdry ZX. If z activates the
expression of x, the interaction is represented byX| 3].

can cut double-stranded DNA at specific recognition sites (known sigatén
sites) were discovered by Arber and co-workets These enzymes, called re-
striction enzymes, were major enabler of recombinant DNA technology.ddne
the most celebrated products of such a technology is the large scalepoodof
insulin by employingke. colibacteria as a cell factorg}]. The development of re-
combinant DNA technology along with the demonstration in 1970 that genes can
be artificially synthesized, provided the ability to cut and paste naturalnvhetic
promoters and genes in almost any fashion on size-wise compatible plashigls. T
“cut and paste” procedure is calletbning[2]. Cloning of any DNA fragment in-
volves four stepsragmentation, ligation, transfectioifhe DNA of interest is first
isolated. Then, a ligation procedure is employed in which the amplified fragment
is inserted into a vector. The vector (which is frequently circular) is linedrtzy
means of restriction enzymes that cleave it at target sites called restrictisnitsite

is then incubated with the fragment of interest with an enzyme calied ligase
Polymerase chain reaction (PCR), devised in the 1980s, allows then toesxpo
tially amplify a small amount of DNA in amounts large enough to be used for
transfection and transformation in living cell®[Today, commercial synthesis of
DNA sequences and genes has become cheaper and faster with dtpridsetow

$ 1 per base pair7].
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Birth of Genetic Birth of Synthetic

Engineering

recombinant DNA

1961 1968 1970 1978 1980s 1983 2000

W Arber discovers First rapoiter gens
resfriciian enzymes was isolaled: green K. Muilis: Polymerase
(Nobel Prize winner) fluorescant protein (GFF) Chain Reaction (PCR) e in £ coli Gardner
(exponantial ampificalion g¢ o o001 switch, Eiowitz
Jacob and Wonod infroduce Of DAA) and Leibler repressilafor
for the first fime the concept Insulin became first
of aperon regulation DNA synthesis was first recormbinant DNA drug
demonsirated by Har
Gobind Khorana

Early “working” synthetic

Figure 6.2: Milestones in the history of synthetic biology.

Another key enabling technology has been the developmeéntoio measure-
ment techniques that allow to measure the amount of protein produced et tar
gene Xx. For instance, green fluorescent protein (GFP) is a protein wititdperty
that it fluoresces in green when exposed to UV light. It is produced bjellyéish
Aequoria victorig and its gene has been isolated so that it can be used as a reporter
gene. The GFP gene is inserted (cloned) into the chromosome, adjacentty o
close to the location of gene x, so both are controlled by the same promater.reg
Thus, gene x and GFP are transcribed simultaneously and then transtateg,
measuring the intensity of the GFP light emitted one can estimate how much of x
is being expressed. Other fluorescent proteins, such as yellow fteotgsotein
(YFP) and red fluorescent protein (RFP) are genetic variations of e G

Just as fluorescent proteins can be used as a read out of a circuiteiad
function as external inputs that can be used to probe the system. Iaduetion
by disabling repressor proteins. Repressor proteins bind to the DNAds#iad
prevent RNA polymerase from being able to attach to the DNA and synthesize
MRNA. Inducers bind to repressor proteins, causing them to change stmal
making them unable to bind to DNA. Therefore, they allow transcription to take
place.

Inset (Electronic circuits) One of the current directions of the field is to create
circuitry with more complex functionalities by assembling simpler circuits, such
as those in Figuré.1 This tendency is consistent with what has been observed in
the history of electronics: after the bipolar junction transistor (BJT) wasnited

in 1947 by William Shockley and co-workers, the transistor era started. jarma
breakthrough in the transistor era occurred in 1964 with the invention dfrite
operational amplifier (op amp), which led the way to standardized modulénand
tegrated circuit design. By comparison, synthetic biology may be directingrtow

a similar development, in which modular and integrated circuit design becomes
a reality. This is witnessed by several recefibes toward formally characteriz-
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ing interconnection mechanisms between modules, impedancefidatse and op
amp-like devices to counteract impedance probletths40, 39, 13, 38,42, 41]. ¢



Chapter 7

Interconnecting Components

7.1 Input/Output Modeling and the Modularity Assumption

Each node y of a transcriptional circuitry is usually modeled as an /ot
module taking as input the concentrations of transcription factors thdategene

y and giving as output the concentration of protein expressed by geleagted Y.
This is not the only possible choice for delimiting a module: one could in fact let
the messenger RNA (mRNA) or the RNA polymerase flow along the DNA (as sug
gested by 19]) play the role of input and output signals. The transcription factor
enters as input of the transcriptional module through the binding and unbidg-
namics of the transcription factors with the DNA promoter sites upstream @f gen
y. The internal dynamics of the transcriptional component is determinedeby th
transcription and translation dynamics. The processes of transcriptibtraars-
lation are much slower than the binding dynamics of the transcription factor to
the promoter sites on the DNAJ. Thus, the binding of the transcription factor to
the DNA promoter site reaches the equilibrium in seconds, while transcripin a
translation of the target gene takes minutes to hours. This time scale separation
a key feature of transcriptional circuits, leads to the following central firagle
simplification.

Modularity assumption. The dynamics of transcription facf@mMNA
binding are considered at the equilibrium and each transcription factor
concentration enters the inpotitput transcriptional module through
staticinput functions that drive the transcriptiranslation dynamics
(Figure7.1).

Transcriptional 1/O module

Transcription Translation | —— =

\

Figure 7.1: A transcriptional module is modeled as an ifquiput component with input
function given by the transcription regulation functié(X) and with internal dynamics
established by the transcription and translation prosesse
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Figure 7.2: The clock behavior can be destroyed by a loadhdstimber of downstream
binding sites for A,ptor, is increased in the load, the activator and repressor dipgsam
loose their synchronization and ultimately the oscillasi@isappear.

For engineering a system with prescribed behavior, one has to be ahkrtgec
the physical features so as to change the values of the parameters ofdbke mo
This is often possible. For example, the bindirfiraty (1/K in the Hill function
model) of a transcription factor to its site on the promoter canfleeted by single
or multiple base pairs substitutions. The protein decay rate (constamequation
(2.16)) can be increased by adding degradation tags at the end of the gers®x
ing proteinY (http;/parts.mit.edfiegistryindex.phgHelp: Tag. (Degradation) Tags
are genetic additions to the end of a sequence which modify expressethprio
different ways such as marking the protein for faster degradation. Pratoédr
can accept multiple input transcription factors (called combinatorial pros)ater
implement regulation functions that take multiple inputs can be realized by com-
bining the operator sites of several simple promot@rdHor example, the operators
Or1 — Oro from theA promoter of thel bacteriophage can be used as binding sites
for the A transcription factor36]. Then, the paiOgr, — Ory from the 434 promoter
from the 434 bacteriophag&(] can be placed at the end of tg; — Og, Sequence
from theA promoter. Depending on the relative positions of these sites and on their
distance from the RNA polymerase binding site, the 434 transcription factpr ma
act as a repressor as when this protein is bound ©rits- Or; sites it prevents the
polymerase to bind, while th&transcription factor may act as an activator.
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7.2 Beyond the Modularity Assumption: Retroactivity

In the previous sections, we have outlined a circuit design process, o$ed

in synthetic biology, that relies on the interconnection of well characteiized
put/output transcriptional modules through suitable static input functions. Exam-
ples of designs performed through this process can be found in Cafitdeeply
relies on the modularity assumption, by virtue of which the behavior of the @atain
circuit topology can be directly predicted by the properties of the compasiitg.

For example, the monotonicity of the input functions of the transcriptional tesdu
composing the repressilator have been a key feature to formally showiserse

of periodic solutions. The form of the input functions in the activatorgsgor
clock design have been key enablers to easily predict the location andenumb
of equilibria as the parameters are changed. The modularity assumption implies
that when two modules are connected together, their behavior doesamgjeche-
cause of the interconnection. However, a fundamental systems-enginessue

that arises when interconnecting subsystems is how the process of trargsmnittin
signal to a “downstream” componerfiects the dynamic state of the sending com-
ponent. Indeed, after designing, testing, and characterizing thgonpuit behav-

ior of an individual component in isolation, it is certainly desirable if its chara
teristics do not change substantially when another component is connedtsd
output channel. This issue, thexct of “loads” on the output of a system, is well-
understood in many fields of engineering, for example in electrical ciresig.

It has often been pointed out that similar issues arise for biological sysfdors
states that “modules in engineering, and presumably also in biology, haugkp
features that make them easily embedded in almost any system. For exarnyple, ou
put nodes should have ‘low impedance,” so that adding on additionaistosam
clients should not drain the output to existing clients (up to some limit).” An ex-
tensive review on problems of loads and modularity in signaling network®ean
found in 43, 41, 42, where the authors propose concrete analogies with similar
problems arising in electrical circuits.

These questions are even more delicatgyimthetidbiology. For example, sup-
pose that we have built a timing device, a clock made up of a network of tativa
andor repression interactions among certain genes and proteins, suchoas thie
diagram c) of Figuré&.1 Next, we want to employ this clock (upstream system) in
order to drive one or more components (downstream systems), by ssitsgat-
putsignal the oscillating concentratidft) of the activator. From a systeysgynals
point of view, A(t) becomes aimput to the second system (Figure?). The terms
“upstream” and “downstream” reflect the direction in which we think of digiha
as traveling,from the clockto the systems being synchronized. However, this is
only an idealization, because the binding and unbinding of A to promoter siges in
downstream system competes with the biochemical interactions that constitute the
upstream block (retroactivity) and may therefore disrupt the operafitrealock
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Figure 7.3: On the left, we represent a tank system that @dké&sput the constant flovig
and gives as output the pressyrat the output pipe. On the right, we show a downstream
tank.

itself (Figure7.2). One possible approach to avoid disrupting the behavior of the
clock, motivated by the approach used with reporters such as GFP, isoduoé a
gene coding for a new protein X, placed under the control of the sannegbeo as

the gene for A, and using the concentration of X, which presumably mitmatsf

A, to drive the downstream system. This approach, however, has stgrdttem

that the behavior of the X concentration in time may be altered and even didrupte
by the addition of downstream systems that drain X. The net result is stiliitbat
downstream systems are not properly timed.

Modeling retroactivity

We broadly call retroactivity the phenomenon by which the behavior of@n u
stream system is changed upon interconnection to a downstream systarsins

ple example, which may be more familiar to an engineering audience, consider th
one-tank system shown on the left of Figit8 We consider a constant input flow

fo as input to the tank system and the presguet the output pipe is considered
the output of the tank system. The corresponding output flow is giveki\ay,

in which k is a positive constant depending on the geometry of the system. The
pressurep is given by (neglecting the atmospheric pressure for simpligity)oh,

in which h is the height of the water level in the tank gnmis water density. Let

A be the cross section of the tank, then the tank system can be represettied b
equation

d
Ad—?:pfo—pk\/ﬁ. (7.1)

Let us now connect the output pipe of the same tank to the input pipe of a-dow
stream tank shown on the right of Figut&. Let p1 = ph1 be the pressure generated

by the downstream tank at its input and output pipes. Then, the flow autpato

of the upstream tank will change and will now be givendfg, p1) = k+/|p— p1/ if

p > p1 and byg(p, p1) = —k+/|p— p1| if p < p1. As a consequence, the time behav-
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Figure 7.4: A systens input and output signals. The red signals denote signajgating
by retroactivity upon interconnection.

ior of the pressur@ generated at the output pipe of the upstream tank will change
to

dp
AE = pfo—pa(p, p1)
dp
AIW = pg(p, p1) —pk1 VP1, (7.2)

in which A; is the cross section of the downstream tank lanig a positive param-
eter depending on the geometry of the downstream tank. Thus, the¢ounmuit
response of the tank measured in isolation (equaffah))(does not stay the same
when the tank is connected through its output pipe to another tank (equa@pn (
We will model this phenomenon by a signal that travels from downstream-to up
stream, which we catetroactivity. The amount of such a retroactivity will change
depending on the features of the interconnection and of the downstsesiems
For example, if the aperture of the pipe connecting the two tanks is very small
compared to the aperture of an output pipe of the downstream tank, thsupze
p at the output of the upstream tank will not change much when the dowmstrea
tank is connected.

We thus model a system by adding an additional input, calléd the system
to model any change in its dynamics that may occur upon interconnection with
a downstream system. Similarly, we add to a system a sigaalanother output
to model the fact that when such a system is connected downstreamtb&ano
system, it will send upstream a signal that will alter the dynamics of the upstrea
system. More generally, we define a syst8rno have internal statg, two types
of inputs (1), and two types of outputs (O): an inpuwt {l), an output 'y (O), a
retroactivity to the input'r” (O), and aretroactivity to the outputs’ (I) (Figure
7.4). We will thus represent a systeinby the equations

x=f(xu,9), y=Y(xu,s), r=R(x,u,s), (7.3)

in which f,Y,R are arbitrary functions and the signaay, s,r,y may be scalars

or vectors. In such a formalism, we define the iriputput model of the isolated
system as the one in equatiors3) withoutr in which we have also set= 0. Let

Si be a system with inputs; ands and with outputsy; andr;. Let S; andS; be

two systems with disjoint sets of internal states. We define the interconneétion o



7-6 CHAPTER 7. INTERCONNECTING COMPONENTS

an upstream syste®y with a downstream systeB8p by simply settingy; = u, and
s1 = Ip. For interconnecting two systems, we require that the two systems do not
have internal states in common.

Retroactivity in gene transcriptional circuits

In the previous section, we have defined retroactivity as a generagépbmodeling
the fact that when an upstream system is ifgauput connected to a downstream
one, its dynamic behavior can change. In this section, we focus on tigistal
circuits and show what form the retroactivity takes.

We denote by X the protein, b (italics) the average protein concentration,
and by x (lower case) the gene expressing protein X. A transcriptiamaponent
that takes as input protein Z and gives as output protein X is shown ind=rgoir
in the dashed box. The activity of the promoter controlling gene x depamttseo

Transcriptional component

QE § X Downstream transcriptional component
i B 0 T
Z \ e - \\\

\ ’ (o \

\ / \\): \
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Figure 7.5: The transcriptional component takes as inpatotein concentratio@ and
gives as outpwy protein concentratioX. The transcription factor Z binds to operator sites
on the promoter. The red part belongs to a downstream tiiatisoial block that takes
protein concentratioiX as its input.

amount of Z bound to the promoter.4f= Z(t), such an activity changes with time.
We denote it byk(t). By neglecting the mRNA dynamics, which are not relevant
for the current discussion, we can write the dynamicX af

dX

i k(t) — 6 X, (7.4)
in which§ is the decay rate of the protein. We refer to equatitd) @s the isolated
system dynamics. For the current study, the mRNA dynamics can be neglecte
because we focus on how the dynamicsxoéhanges when we add downstream
systems to which X binds. As a consequence, also the specific fokit) @ not
relevant. Now, assume that X drives a downstream transcriptional my bied-
ing to a promoter p with concentratign(the red part of Figur@.5). The reversible
binding reaction of X with p is given by

X+p%}£ C,
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in which C is the complex protein-promoter akgh andkyy are the binding and
dissociation rates of the protein X to the promoter site p. Since the promoter is
not subject to decay, its total concentratipip is conserved so that we can write
p+C = prot. Therefore, the new dynamics ¥fis governed by the equations

CL_i( = KO~ 6X+[kgC—Konlpror-C)X| 5= kyyC—kan(pror-~C)X
&~ eyCan(pror-O)X (7.5)

in which the terms in the box represent the siggathat is, the retroactivity to

the output, while the second of equatiosy describes the dynamics of the input
stage of the downstream system drivenXayThen, we can interprefas being a
mass flow between the upstream and the downstream system. 8 @&rthe first

of equations7.5) reduces to the dynamics of the isolated system given in equation
(7.4). Here, we have assumed that X binds directly to the promoter p. The case
in which a signal molecule is needed to transform X to the active form that then
binds to p, can be treated in a similar way by considering the additional iteeers
reaction of X binding to the signal molecule. The end result of adding thitioea

is the one of having similar terms in the box of equati@rb) involving also the
signaling molecule concentration.

How large is the gect of the retroactivity s on the dynamics of X and what are
the biological parameters thatfct it? We focus on the retroactivity to the out-
puts. We can analyze theffect of the retroactivity to the inputon the upstream
system by simply analyzing the dynamicszin the presence of its binding sites
po in Figure7.5in a way similar to how we analyze the dynamicsXfin the
presence of the downstream binding sites p. Tifeceof the retroactivitys on the
behavior ofX can be very large (Figure?). This is undesirable in a number of sit-
uations in which we would like an upstream system to “drive” a downstrean o
as is the case, for example, when a biological oscillator has to time a number of
downstream processes. If, due to the retroactivity, the output sifjtied apstream
process becomes too low g@odout of phase with the output signal of the isolated
system (as in Figuré.6), the coordination between the oscillator and the down-
stream processes will be lost. We next propose a procedure to obtapeeative
qguantification of the fect of the retroactivity on the dynamics of the upstream
system.

Quantification of the retroactivity to the output

In this section, we propose a general approach for providing armatypeguantifi-
cation of the retroactivity to the output on the dynamics of the upstream system.
This approach can be generally applied whenever there is a separfdiine-o
scales between the dynamics of the output of the upstream module and #me-dyn
ics of the input stage of the downstream module. This separation of timesssale
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Figure 7.6: The dramaticfiect of interconnection. Simulation results for the system i
equations 1.5). The green plot (solid line) represemt) originating by equationsrz(4),
while the blue plot (dashed line) represeK($) obtained by equatior??). Both transient
and permanent behaviors aréeient. Herek(t) = 0.01(1+ sin(wt)) with w = 0.005 in the
left side plots andv = 0 in the right side plotskon = 10, koy = 10,6 = 0.01, prot = 100,
X(0) = 5. The choice of protein decay rate imn') corresponds to a half life of about
one hour. The frequency of oscillations is chosen to haveriagef about 12 times the
protein half life in accordance to what is experimentallgeived in the synthetic clock of

[6].

always encountered in transcriptional circuits. In fact, the dynamicseoinhut
stage of a downstream system is governed by the reversible bindirigpreaicthe
transcription factor with the operator sites. These reactions are ofteredmté
scales of a second and thus are fast compared to the time scales ofiptaorscr
and translation (often of several minute3). [These determine, in turn, the dynam-
ics of the output of a transcriptional module. Such a separation of timessisale
encountered even when we extend a transcriptional network to includeeson-
nection mechanisms between transcriptional modules protein-protein intagactio
(often with a subsecond timesca]), as encountered in signal transduction net-
works.

We quantify the dference between the dynamicsXfin the isolated system
(equation 7.4)) and the dynamics aX in the connected system (equatiosby)
by establishing conditions on the biological parameters that make the two dynam-
ics close to each other. This is achieved by exploiting tliedince of time scales
between the protein production and decay processes and its bindinglainding
process to the promoter p. By virtue of this separation of time scales, wepean a
proximate system7(.5) by a one dimensional system describing the evolutioX of
on the slow manifold27]. This reduced system takes the form:

dX - _
— =k(t)-6X
at (t)—6X+s
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whereX is an approximation oK andsis an approximation o§, which can be
written ass = —R(X)(K(t) — 6X). If R(X) is zero, then alse = 0 and the dynamics
of X becomes the same as the one of the isolated systefn inceX approxi-
matesX, the dynamics oK in the full system 7.5) is also close to the dynamics
of the isolated systen¥(4) wheneverR(X) = 0. The factorR(X) provides then a
measure of the retroactivity on the dynamicsft is also computable as a func-
tion of measurable biochemical parameters and of the sKtraveling across the
interconnection, as we next illustrate.

Consider again the full system in equatiorsy, in which the binding and
unbinding dynamics is much faster than protein production and decay,,tkgtis
K(t), kog > ¢ [3], and kon = kog/Kg With kg = O(1). Even if the second equation
goes to equilibrium very fast compared to the first one, the above systeon iis
“standard singular perturbation form27]. To explicitly model the dierence in
time scales between the two equations of systé),(we introduce a parameter
which we define ag = ¢/Kqy. Sincekyy > 6, we also have that < 1. Substituting
Kogr = 6/€, Kon = 6/(ekg), and lettingy = X + C (thetotal protein concentration), we
obtain the system in singular perturbation form

dy
Y - kw-ay-0)
- ~3C + 2 (pror-C)y-C). (7.6)

This means, as some authors proposgdthaty (total concentration of protein)
is the slow variable of the systeni.p) as opposed tX (concentration of free
protein). We can then obtain an approximation of the dynamics of the limit
in which € is very small, by setting = 0. This leads to (se€lB] for details) the
approximatedX dynamics

= K(t) — X — (K(t) — 6X (7.7)

ax oY)
dt dy
The smallefe, the better is the approximation. Sinkewell approximates for e
small, conditions for which the dynamics of equati@tiff is close to the dynamics
of the isolated systen¥(4) also guarantee that the dynamicsXofjiven in system
(7.5 is close to the dynamics of the isolated system.

The diterence between the dynamics in equatiéim)((the connected system
after a fast tran5|ent2 and the dynamics in equati®) ((the isolated system) is
zero when the terrﬁ— in equation 7.7) is also zero. We thus consider the factor

dy@ asa quantlflcatlon of the retroactivigafter a fast transient in the approxima-

tlon in whiche ~ 0. We can also interpret the fact%{!‘yl) as a percentage variation
of the dynamics of the connected system with respect to the dynamics of the iso
lated system at the quasi steady state. We next determine the physical gnafanin
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such a factor by calculating a more useful expression that is a functikeydjio-
chemical parameters. By using the implicit function theorem, one can compute the
following expression fordf,—(yw:

dy(y) 1 e

) _ R, (7.8)
d (LXK

S

in which one can verify thaR(X) < 1 (see L3 for details). The expressioR(X)
quantifies the retroactivity to the output on the dynamicX after a fast transient,
when we approximat& with X in the limit in whiche ~ 0. The retroactivity mea-
sure is thus low if the finity of the binding sites p is smalk{ large) or if the
signal X(t) is large enough compared i ot. Thus, the expression &(X) pro-
vides an operative quantification of the retroactivity: such an expressioin fact
be evaluated once the association and dissociation constants of X to poane, kn
the concentration of the binding sitpgor is known, and the range of operation of
the signalX(t) that travels across the interconnection is also known.

Therefore, the modularity assumption introduced in Sec#@rholds if the
value of R(X) is low enough. As a consequence, the design of a simple circuit
motif such as the ones of Figuéel can assume modularity if the interconnections
among the composing modules can be designed so that the vaR{X)ods given
in expression®.8) is low.

7.3 Insulation Devices to Enforce Modularity

Of course, it is not always possible to design an interconnection suthhtha
retroactivity is low. This is, for example, the case of an oscillator that has to time
a downstream load: the load cannot be in general designed and thetosaillest
perform well in the face of unknown and possibly variable load prope(Eegure

7.2). Therefore, in analogy to what is performed in electrical circuits, @mede-

sign a device to be placed between the oscillator and the load so that the device
output is not changed by the load and the device doesffeattahe behavior of the
upstream oscillator. Specifically, consider a systias the one shown in Figure
7.4 that takeau as input and giveg as output. We would like to design it in such

a way that (a) the retroactivity to the input is very small; (b) theffect of the
retroactivity s to the output on the internal dynamics of the system is very small
independently of itself; (c) its inpufoutput relationship is about linear. Such a
system is said to enjoy thiasulation property and will be called an insulation
component or insulation device. Indeed, such a system will fiettsan upstream
system because~ 0 and it will keep the same output signaindependentlypf

any connected downstream system. In electronics, amplifiers enjoy tHatiosu
property by virtue of the features of the operational amplifier (op amp)thiest

employ @5 (Figure7.7).
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Figure 7.7: In diagram (a), we show the basic non-invertimgléier circuit that is com-
posed of the op amp plus a feedback circuit. The op amp isitiregular shape that takes
as input the dterential voltageV, — V_ and gives as (open) outpuy: = AV, —V_), in
which the gainA is infinity in the ideal op amp. The blue circuit componentgresent
the feedback circuit, while the red component is the loadting@K = R;/(R; + Rp), direct
computation leads t¥,y; — V. /K asA — oo. That is, the output voltage does not depend
on the load: the retroactivity to the output is almost cortgdleattenuated. In diagram (b),
we zoom inside the op amp to show the abstraction of its iatestiucture. In an ideal
op amp,R; = o so that it absorbs almost zero current and any upstreangeodfanerator
will not experience a voltage drop at its output terminalsrujmterconnection with the
amplifier. That is, the retroactivity to the input of the aifipl is almost zero.

The concept of amplifier in the context of a biochemical network has been
considered before in relation to its robustness and insulation property dxe
ternal disturbances4p] and [41]). Here, we revisit the amplifier mechanism in the
context of gene transcriptional networks with the objective of mathematicadly a
computationally proving how suitable biochemical realizations of such a mecha-
nism can attain properties (a), (b), and (c).

Retroactivity to the input

In electronic amplifierst is very small because the input stage of an op amp ab-
sorbs almost zero current (Figu?@). This way, there is no voltage drop across the
output impedance of an upstream voltage source. Equati8nhquantifies the ef-
fect of retroactivity on the dynamics of as a function of biochemical parameters
that characterize the interconnection mechanism with a downstream sys$tese. T
parameters are thdfaity of the binding site 1kq, the total concentration of such
binding siteproT, and the level of the signa(t). Therefore, to reduce the retroac-
tivity, we can choose parameters such tha8)(is small. A sdficient condition is
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Figure 7.8: Diagram (a) shows the basic feedatiplification mechanism by which am-
plifiers attenuate thefiect of the retroactivity to the outpst Diagram (b) shows an alter-
native representation of the same mechanism of diagramv(agh will be employed to
design biological insulation devices.

to chooseky large (low dfinity) and prot small, for example. Having small value

of prot andor low afinity implies that there is a small “flow” of protein X toward

its target sites. Thus, we can say that a low retroactivity to the input is obtaine
when the “input flow” to the system is small. This interpretation establishes a nice
analogy to the electrical case, in which low retroactivity to the input is obtained
as explained above, by a low input current. Such an interpretation cauther
carried to the hydraulic example. In such an example, if the input flow to tva-do
stream tank is small compared, for example, to the output flow of the downstre
tank, the output pressure of the upstream tank will notfiected by the connec-
tion. Therefore, the retroactivity to the input of the downstream tank widirball.

Retroactivity to the output

In electronic amplifiers, thefect of the retroactivity to the outpston the ampli-
fier behavior is reduced to almost zero by virtue of a large (theoreticallyitiefi
amplification gain of the op amp and an equally large negative feedback mscha
that regulates the output voltage (Figiit@). Genetic realization of amplifiers have
been previously proposed (se8], for example). However, such realizations fo-
cus mainly on trying to reproduce the layout of the device instead of implementing
the fundamental mechanism that allows it to properly work as an insulaton Su
a mechanism can be illustrated in its simplest form by diagram (a) of Fig8re
which is very well known to control engineers. For simplicity, we have @eslin
such a diagram that the retroactivigys just an additive disturbance. The reason
why for large gainss the dfect of the retroactivitys to the output is negligible can
be verified through the following simple computation. The ouipigtgiven by

y=Gu-Ky)+s,
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which leads to
G S

Y=UT7xG " 1+kG’
As G grows,y tends tou/K, which is independent of the retroactivity
Therefore, a central enabler to attenuate the retroactitfiégcieat the output of
a component is to (1) amplify through a large gain the input of the component a
(2) to apply a large negative output feedback. We next illustrate thigglddea in
the context of a simple hydraulic system.

Hydraulic exampleConsider the academic hydraulic example consisting of two
connected tanks shown in Figure. The objective is to attenuate thfext of the
pressure applied from the downstream tank to the upstream tank, soetloaitjput
pressure of the upstream system does not change when the downsdrdais
connected. We let the input floig be amplified by a large factds. Also, we

Gfy
_ 1
|
rh f
G P | hy
D | |

Figure 7.9: We amplify the input flowy through a large gaiG and we apply a large
negative feedback by employing a large output pipe with atilpw G’ /p.

consider a large pipe in the upstream tank with output f®w/p, with G" > k
andG’ > k;. Let p be the pressure at the output pipe of the upstream tanlpand
the pressure at the bottom of the downstream tank. One can verify thahige
equilibrium value for the pressune at the output pipe of the upstream tank is
obtained forp > p; and it is given by

2
Gfo

G’ + (Kky)/ ([K2 + K2

peq =

If we let G’ be suficiently larger thark; andk and we letG’ = KG for some pos-
itive K = O(1), then forG suficiently largepeq = (fo/K)?, which does not depend
on the presence of the downstream system. In fact, it is the same as thereomilib
value of the isolated upstream syst@r%fp = pGfo—pG" y/p—-pk+/p for G sufi-
ciently large and foG’ = KG with K = O(1).

Coming back to the transcriptional example, consider the approximated dynam-
ics of equation1.7) for X. Let us thus assume that we can apply a gaito the
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input k(t) and a negative feedback gaBi to X with G’ = KG. This leads to the
new diferential equation for the connected systéhT) given by

‘;_i( = (GK(t) - (G’ +6)X) (1 - d(t)), (7.9)

in which we have defined(t) := dé—(yy) wherey(t) is given by the reduced system
%’ = Gk(t) = (G’ +6)(y—7(y)). It can be shown (se€] for details) that ass and
thus agG’ grow, the signak(t) generated by the connected systéh®)(becomes

close to the solutioX(t) of the isolated system

%( = GK(t) - (G’ +6)X, (7.10)

thatis, the presence of the disturbance td(thwill not significantly afect the time
behavior ofX(t). Sinced(t) is a measure of the retroactivityfect on the dynamics
of X, such an fect is thus attenuated by employing large gaihandG’. How
can we obtain a large amplification gain G and a large negative feedbddk G
a biological insulation componentPhis question is addressed in the following
chapter, in which we show two possible realizations of insulation devices.

7.4 Design of genetic circuits under the modularity assumption

Based on the modeling assumptions introduced in Ch&ptexd on the tools for
studying the dynamics of a nonlinear system introduced in Ch&ptemumber
of synthetic genetic circuits have been designed and fabricated by cogpi@s-

scriptional modules through inpoutput connection (Figur6.l). Through such
a design procedure one seeks to predict the behavior of a circuit byetravior

of the composing units, once these have been well characterized in isolgtien
approach is standard also in the design and fabrication of electronidgircu

The repressilator

Elowitz and Leibler 14] constructed the first operational oscillatory genetic circuit
consisting of three repressors arranged in ring fashion, and coirtieel ‘itepres-
silator” (See diagram d) of Figui&1). The repressilator exhibits sinusoidal, limit
cycle oscillations in periods of hours. The dynamical model of the rejtaess
can be thus obtained my composing three transcriptional modules in a loggfash
through input functions as in expressid?). Re-arranging the parameters, it can
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thus be described by

fa = —ora+ f1(C)

A = rpa-6A

g = —org+ fa(A)

B = rg-oB

fc = -orc+ f3(B)

C = rc-4C, (7.11)

where we consider two flerent cases for the shape of the input functiGnthree
identical repressions (the symmetric case) or two identical activationsrentee
pression (the non-symmetric case). For the symmetric case, we thus asatime th

a2

1+p"

f1(p) = f2(p) = f3(p) =

Since the regulation functions have all negative slope, and there is amuoaaker

of them in the loop, there is only one equilibrium. One can then invoke Mallet-
Paret’s TheoremZ9] or Hastings’ Theorem?] (see ChapteB for the details) to
conclude that if the equilibrium point is unstable, the system admits a notiacdns
periodic orbit (see?] for a detailed application of these theorems). Thus, one can
search for parameter values to guarantee the instability of the equilibriurh poin
This procedure was followed by Elowitz in the design of the repressiladr |n
particular, one can show that the repressilator in equatiérid)(has a periodic
solution for the ratiax/¢ satisfying the relation

2 2 o] 43 4/3
@/0"> \ a2zt noas

For the proof of this statement, the reader is referred®foThis relationship is
plotted in the left plot of Figur@.10 Whenn increases, the existence of an unsta-
ble equilibrium point is guaranteed for larger ranges of the other paransdtes.
Equivalently, for fixed values af ands, asn increases the robustness of the circuit
oscillatory behavior to parametric variations in the valueg ahds increases. Of
course, this “behavioral” robustness does not guarantee that othertéampfea-
tures of the oscillator, such as the period value, are slightly changed panam-
eters vary. Numerical studies indicated that the pefiagbproximatively follows
T %, and varies only little withy (right plot of Figure7.10). From the figure, we
can note that as the value @increases, the sensitivity of the period to the varia-
tion of § itself decreases. However, increasingiould necessitate the increase of
the cooperativityn, therefore indicating a possible tradf that should be taken
into account in the design process in order to balance the system complexity a
robustness of the oscillations.
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Repressilator (symmetric case) Repressilator (symmetric case)
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Figure 7.10: (Left) Space of parameters that give rise tdlasons for the repressilator
in equations??). (Right) Period as a function éfanda.

A similar result for the existence of a periodic solution can be obtained for
the non-symmetric case in which the input functions of the three transcriptiona
modules are modified to

G =
a/2 pn

fa(p) = rp”
az pn

that is, two interactions are activations and one only is a repression.abnedfy

that there is one equilibrium point only and again invoke Mallet-Paret’s f@meo

[29] or Hastings’ Theorem?] to conclude that if the equilibrium point is unsta-
ble, the system admits a non-constant periodic solution. We can thus obtain the
condition for oscillations again by establishing conditions on the parametérs tha
guarantee an unstable equilibrium. These conditions are reported in Higure
(see P] for the detailed derivations). One can conclude that it is possible ta “ove
design” the circuit to be in the region of parameter space that gives ris&cie o
lations. It is also possible to show that increasing the number of elements in the
oscillatory loop, the value of suficient for oscillatory behavior decreases. The
design criteria for obtaining oscillatory behavior are thus summarized in ésgur
7.10and7.11

The activator-repressor clock

Consider the activator-repressor clock diagram shown in Figure). The tran-
scriptional module for A has an input function that takes two inputs: anaotiv
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Figure 7.11: Space of parameters that give rise to oscillatfor the repressilator (non-
symmetric case).

A and a repressor B. The transcriptional module B has an input functidietkes
only an activator A asits input. Les andrg represent the concentration of m-RNA
of the activator and of the repressor, respectively. A@nd B denote the protein
concentration of the activator and of the repressor, respectivedy, We consider
the following four-dimensional model describing the rate of change offikeiss
concentrations:

fa = —d1/erp+Fi(AB)

A = V(—5AA+ ki/e rA)

fg = —d2/erg+F2(A)

B = —6gB+ky/erg, (7.12)

in which the parameter regulates the dierence of time-scales between the re-
pressor and the activator dynamiess a parameter that regulates th&elience of
time-scales between the m-RNA and the protein dynamics. The paradttsr-
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Figure 7.12: Shape of the curves in t#eB plane corresponding tog = O, B =
0 and torap = 0,A = 0 as function of the parameters. Lettinkj; = Kyi(ki/(5164)),
Kao = Kno(ka/(616)), Kz = Ka(kz/(6268)), Kso = Keo(ke/(6208)), we haveAm =
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mines how close mode¥ (12 is to a two-dimensional model in which the m-RNA
dynamics are considered at the equilibrium. Thuis, a singular perturbation pa-
rameter (equations/(12 can be taken to standard singular perturbation form by
considering the change of variables=ra/e andrg = rg/€). The details on singu-
lar perturbation can be found in Chap&IThe functiond=; andF, are the input
functions and are given by

= (A, B) KlAn + KAO
! 1+71A"+9,B"
KzAn + KBO
Fa(A) = W

in which K1 andK5 are the maximal transcription rates, whilgy andKgg are the
basal transcription rates when no activator is present. The Hifficentn is cho-
sen here to ba = 2. The values o¢é and ofy do not dfect the number of equilibria
of the system, while the values of the other parameters are the ones that tantr
number of equilibria. The set of valueskf, ki, 5i,vi,5a, 0 that allow the existence
of a unique equilibrium can be determined by employing graphical technitues
particular, we can plot the curves corresponding to the seisB®¥alues for which

g = 0 andB = 0 and the set oA, B values for whichr = 0 andA = 0 as in Figure
7.12 The intersection of these two curves provides the equilibria of the systédm a
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Figure 7.13: Design chart for the relaxation oscillatoreQibotains sustained oscillations
passed the Hopf bifurcation, for valuesio$uficiently large independently of theftir-
ence of time scales between the protein and the mRNA dynaWviEealso notice that there
are values of for which a stable equilibrium point and a stable orbit caeaind values of

v for which two stable orbits coexist. The intervalhofalues for which two stable orbits
coexist is too small to be able to numerically sét such an interval. Thus, this interval is
not practically relevant. The valueswfor which a stable equilibrium and a stable periodic
orbit coexist is instead relevant. This situation corregfsato thehard excitationcondition

[?] and occurs for realistic values of the separation of timales between protein and
m-RNA dynamics. Therefore, this simple oscillator motisdebed by a four-dimensional
model can capture the features that lead to the long termrasgipn of the rhythm by
external inputsBirhythmicity[?] is also possible even if practically not relevant due to
the numerical dficulty of moving the system to one of the two periodic orbitsr Fore
details, the reader is referred 1 [7].

conditions on the parameters can be determined that guarantee the exa$mmee
equilibrium only. In particular, we require that the basal activator tnapisen rate
when B is not present, which is proportional ¥, is suficiently smaller than
the maximal transcription rate of the activator, which is proportion& toAlso,
Kao must be non-zero. Also, in cag >> Kag, one can verify thal\y ~ Ky/2y;
and thusM =~ K1/2+/y1y2. As a consequence, i€1/y1 increases then so must do
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K_z/’yg. Finally, Ay ~ 0, andm= /Kao/y2Am. As a consequence, the smalkety
becomes, the smallé&gg must be (see? for more details). Assume that the val-
ues ofKj,ki,di,vi,0a,68 have been chosen so that there is a unique equilibrium
and we numerically study the occurrence of periodic solutions as tfezatice in
time-scales between protein and m-RNAand the dierence in time-scales be-
tween activator and represserare changed. In particular, we perform bifurcation
analysis withe andv the two bifurcation parameters.

These bifurcation results are summarized by Figui& The reader is referred to
[?] for the details of the numerical analysis. In terms of ¢él@dy parameters, it is
thus possible to “over design” the system: if the activator dynamicsficisntly
sped up with respect to the repressor dynamics, the system parameteracruss

a Hopf bifurcation (Hopf bifurcation was introduced in Chag@8eand stable oscil-
lations will arise. From a fabrication point of view, the activator dynamics lua
sped up by adding suitable degradation tags to the activator protein. Jiba of

the parameter space in which the system exhibits almost sinusoidal damped osc
lations is on the left-hand side of the curve corresponding to the Hopfchifion.
Since the data ofg] exhibits almost sinusoidal damped oscillations, it is possible
that the clock is operating in a region of parameter space on the “left” ofuitve c
corresponding to the Hopf bifurcation. If this were the case, incredemgepara-
tion of time-scales between the activator and the repregsoray lead to a stable
limit cycle.

7.5 Biological realizations of an insulation component

In the previous section, we have proposed a general mechanism moicteate

an insulation component. In particular, we have specified how one cartiedteio-
logical features of the interconnection mechanism in order to have lovactividy

to the inputr and we have shown a general method to attenuate the retroactivity
to the outputs. Such a method consists of a large amplification of the input and a
large negative output feedback. The insulation component will be isierfdace

of the transcriptional component of Figureb. This will guarantee that the sys-
tem generating Z, an oscillator, for example, will maintain the same behavior as
in isolation and also that the downstream system that aceepssits input will

not alter the behavior ak. The net result of this is that the oscillator generating
signalZ will be able to time downstream systems with the desired phase and ampli-
tude independently of the number and the features of downstream sybtehis.
section, we determine two possible biological mechanisms that can be exploited
to obtain a large amplification gain to the inpatof the insulation component
and a large negative feedback on the oufwif the insulation component. Both
mechanisms realize the negative feedback through enhanced degradh&dirst
design realizes amplification through transcriptional activation, while thenskec
design through phosphorylation of a protein that is in abundance in thensys
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Design 1: Amplification through transcriptional activatio n

In this design, we obtain a large amplification of the input sigi@® by having
promoter g (to which Z binds) be a strong, non leaky, promoter. The negative
feedback mechanism oX relies on enhanced degradation of X. Since this must
be large, one possible way to obtain an enhanced degradation for X isg¢caha
protease, called Y, be expressed by a strong constitutive promotepratease Y

will cause a degradation rate for X, which is larger if Y is more abundantén th
system. This design is schematically shown in Figlidet
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Figure 7.14: We highlight in blue the parts that Designffe@s. In particular, a negative

feedback occurring through post-translational regutatiod a promoter that produces a
large signal amplification are the central parts of this glesirhe red part indicates the

downstream component that takes as input the concentiaitjmmotein X.

In order to investigate whether such a design realizes a large amplification an
a large negative feedback ohas needed, we analyze the full infouttput model
for the block in the dashed box of Figuel4 In particular, the expression of
gene x is assumed to be a two-step process, which incorporates also th® mRN
dynamics. Incorporating these dynamics in the model is relevant for tmentur
study because they may contribute to an undesired delay betweehahd X
signals. The reaction of the protease Y with protein X is modeled as the two-step
reaction

X+Y & Wby,

which can be found in standard references (8gddr example). The inpubutput
system model of the insulation component that takes an input and givex as
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an output is given by the following equations

dz
i k(t)—52+]sz—u(po,TOT—zp)\ (7.13)
dz,

W = k+Z(pO,TOT_Zp)_k—Zp (714)
I~ Gzy-oumx (7.15)
dX

St = YMXTY X+ naW=62X + koyC—konX(proT—=C)| - (7.16)
%V = mXY-nW-BW (7.17)
%—T = —-mYX+BW+aG—-vyY +nW (7.18)
dc

Gt = ~KgC+konX(pror~C). (7.19)

in which we have assumed that the expression of gene z is controlled lo a pr
moter with activityk(t). These equations will be studied numerically and analyzed
mathematically in a simplified form. The varialdg is the concentration of pro-
tein Z bound to the promoter controlling genepg,tot is the total concentration

of the promoter p controlling gene xmy is the concentration of messenger RNA
of X, Cis the concentration of X bound to the downstream binding sites with total
concentrationpror, y is the decay rate of the protease Y. The valué&adt the
production rate of X mRNA per unit concentration of Z bound to the promoter
controlling x; the promoter controlling gene y has streng®) for some constant

a, and it has the same order of magnitude strength as the promoter controlling x.
The terms in the box in equatiof@.(3 represent the retroactivity to the input

of the insulation component in FiguR®. The terms in the box in equatioi.(6
represent the retroactivity to the output of the insulation component of Figure
??. The dynamics of equation3.03—(7.19 without s (the elements in the box in
equation 7.16) describe the dynamics of with no downstream system.

We mathematically explain why syste.{13—(7.19 allows to attenuate the
effect of s on the X dynamics. Equations/(13 and (7.14) simply determine the
signalZy(t) thatis the input to equation$.5—(7.19. For the discussion regarding
the attenuation of thefiect of s, it is not relevant what the specific form of signal
Zp(t) is. Let thenZ,(t) be any bounded signa(t). Since equation?.15 takesv(t)
as an input, we will have thax = Gv(t), for a suitable signal(t). Let us assume
for the sake of simplifying the analysis that the protease reaction is a one step
reaction, that is, X Y £ Y. Therefore, equatiori7(18 simplifies to‘(’j—\{ =aG-vyY
and equationq.16 simplifies to%—>§ = yMy —BY X—= 52X+ KogC — konX(proT = C).

If we consider the protease to be at its equilibrium, we haveX{tat aG/y. As a
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consequence, thé dynamics becomes

dX _
S = YOUD) — (BaG/y +2)X + | koyC — kanX(proT - C)
with C determined by equatior7(19. By using the same singular perturbation
argument employed in the previous section, we obtain that the dynamicsvidif

be after a fast transient approximatively given by

>

‘jj—i( = (VGW(t) — (BaG/y + 62)X)(1—d(t)), (7.20)

in which 0< d(t) < 1 is the dfect of the retroactivitys. Then, ass increasesx(t)
becomes closer to the solution of the isolated system

O = VGV~ (8aGy + 32X
as explained in Sectio??L.

We now turn to the question of minimizing the retroactivity to the inpbte-
cause its ffect can alter the input signalt). In order to decrease we guarantee
that the retroactivity measure given in equati@fl) (s small. This is seen to be true
if (kg +Z)2/(po,TOde) is very large, in which kg = k, /k_ is the dfinity of the
binding site g to Z. Since after a short transie@l; = (po.r012)/(Kd + Z), for Z,
not to be a distorted version & it is enough to ask thady > Z. This, combined
with the requirement thak§ + Z)?/(poTotky) is very large, leads to the require-
mentpo1oT1/kd < 1. Summarizing, for not having distortioiffects betwee# and
Z, and small retroactivity, we need that

kg > Z andporoT/kg < 1. (7.21)

Simulation results. Simulation results are presented for the insulation system of
equations 1.13—(7.19 as the mathematical analysis of such a system is only
valid under the approximation that the protease reaction is a one step reaction
In all simulations, we consider protein decay rates to §drfin~! to obtain a
protein half life of about one hour. We consider always a periodicidgrk(t) =
0.01(1+ sin(wt)), in which we assume that such a periodic signal has been gener-
ated by a synthetic biological oscillator. Therefore, the oscillating signalstao-

sen to have a period that is about 12 times the protein half life in accordamwbato

is experimentally observed in the synthetic clock@}f Pll simulation results were
obtained by using MATLAB (Simulink), with variable step ODE solver ODE23s.
For large gains@ = 1000,G = 100), the performance considerably improves com-
pared to the case in whick was generated by a plain transcriptional component
acceptingZ as an input (Figur&.6). For lower gainsG = 10, G = 1), the perfor-
mance starts to degrade 1Br= 10 and becomes not acceptable ®& 1 (Figure

1See the supplementary material for the mathematical details.
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Figure 7.15: Design 1: results forftérent gainsG. In all plots, red (dotted line) is the
inputZ to the insulation device, green (solid line) is the outudf the insulation device in
isolation (without the downstream binding sites p), bluasfted line) is the outpt of the
insulation device when downstream sites p are present. ptoés$, k(t) = 0.01(1+ sin(wt)),
prot = 100,Kgs = kon = 10,6 = 0.01, andw = 0.005. The parameter values ae= 0.01,
potor=1,nm1=n2=B=y=001,k =200k, =10, =0.1,6,=0.1,v=0.1, and
G =100Q100,10,1. The retroactivity to the output is not well attenuatedvalues of the
gainG = 1 and the attenuation capability begins to worser&er 10.

7.15. Since we can vievs as the number of transcripts produced per unit time
(one minute) per complex of protein Z bound to promotgmaluesG = 100,1000
may be dificult to realizein vivo, while the value<s = 10,1 could be more easily
realized. The values of the parameters chosen in Figurgare such thaky > Z
andpo 1ot < Kg. This is enough to guarantee that there is small retroactivity
the input of the insulation device independently of the value of the @aactcord-

ing to relations 7.21). The poorer performance of the device @k 1 is therefore
entirely due to poor attenuation of the retroactiwstio the output.

Design 2: Amplification through phosphorylation

In this design, the amplification & is obtained by having activate the phos-
phorylation of a protein X, which is available in the system in abundancd.i$ha
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Insulation component

Figure 7.16: The dashed box contains the insulation device.blue parts highlight the
mechanism that provides negative feedback and amplifitaegative feedback occurs
through a phosphatase Y that converts the active fgback to its inactive formX.
Amplification occurs through Z activating the phosphorgatof X.

Z is a kinase for a protein X. The phosphorylated form of X, callggd Xnds to

the downstream sites, while X does not. A negative feedback,da obtained by
having a phosphatase Y activate the dephosphorylation of protgiRnétein Y is

also available in abundance in the system. This mechanism is depicted in Figure
7.16 A similar design has been proposed B,[41], in which a MAPK cascade

plus a negative feedback loop that spans the length of the MAPK caicade-
sidered as a feedback amplifier. Our design is much simpler as it involves only
one phosphorylation cycle and does not require the additional feledibag. In

fact, we realize a strong negative feedback by the action of the phiasghidat
converts the active protein formpXo its inactive form X. This negative feedback,
whose strength can be tuned by varying the amount of phosphatase yrstbm s

is enough to mathematically and computationally show that the desired insulation
properties are satisfied.

We consider two dferent models for the phosphorylation and dephosphoryla-
tion processes. A one step reaction model is initially considered to illustrate wha
biochemical parameters realize the input g&@rand the negative feedback .
Then, we turn to a more realistic two step model to perform a parametric analysis
and numerical simulation. The one step model that we consider is the oR#:of |

Z+X 874X,

and
Y +Xp Ky + X.

We assume that there is plenty of protein X and of phosphatase Y in the system
that these quantities are conserved. The conservation of X)Xiwe§ +C = Xtor,
in which X is the inactive protein, Xis the phosphorylated protein that binds to
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the downstream sites p, and C is the complex of the phosphorylated prgiein X
bound to the promoter p. Th¢, dynamics can be described by the first equation
in the following model

dXp Xp _[c
i kiXtoTZ(t)(1- Xor | Kot )— koY Xo +’ KofC — konXp(PToOT -(E)?P)
O = eyCranXp(pror—C) (7.23)

The boxed terms represent the retroactigitg the output of the insulation system
of Figure 7.16 For a weakly activated pathway2d]), X, < Xror. Also, if we
assume that the concentration of total X is large compared to the concentftion
the downstream binding sites, thatig,ot > pror, equation (.22 is approxima-
tively equal to

dX,

- kiXtotZ(t) - k2Y Xp + KofC — konXp(proT - C).

DenoteG = ki Xtor andG’ = koY. Exploiting again the dierence of time scales
between theX, dynamics and th€ dynamics, after a fast initial transient, the
dynamics ofX, can be well approximated by

dXp

T (GZ(t) - G'Xp)(1—d(t)), (7.24)
in which 0< d(t) < 1 is the dfect of the retroactivitys to the output after a short
transient. Therefore, fdB andG’ large enoughXp(t) tends to the solutioiX(t)

of the isolated systen% = GZ(t) - G'Xp, as explained in Sectio??. As a con-
sequence, thefiect of the retroactivity to the outputis attenuated by increasing
kiXtotr andkoY enough. That is, to obtain large input and feedback gains, one
should have large phosphorylatidephosphorylation rates giod a large amount
of protein X and phosphatase Y in the system. This reveals that the valties of
phosphorylatiofdephosphorylation rates cover an important role toward the real-
ization of the insulation property of the module of Fig@2

We next consider a more complex model for the phosphorylation and depho
phorylation reactions and perform a parametric analysis to highlight the ables
the various parameters for attaining the insulation properties. In partiadamn-
sider a two-step reaction model such as those28j. [According to this model,
we have the following two reactions for phosphorylation and dephogfatimn,
respectively:

X+Z %cl B Xp+2, (7.25)
and
Y +XpBC BX +Y, (7.26)

2See the supplementary material for the mathematical details.
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in which G, is the [protein Xkinase Z] complex and s the [phosphatase/protein

Xp] complex. Additionally, we have the conservation equatiépnsr = Y +Cp, XtoT =
X+ Xp+C1+Cy+C, because proteins X and Y are not degraded. Therefore, the
differential equations modeling the insulation system of Figut&become

U K9-67-pZ%rord- g — &= & [[C )1 (8 + k)B2T)

dt Xror  Xtor Xtor | XToT
at (B2 +k1)C1 +B1ZXro1(1- Xror  Xror  Xror | Xror (7.28)
dC C
—2 = —(kpg+a2)Co+arYr ot Xp(1- 2) (7.29)
dt Yrot
dXp C,
— = kiCi+aCo—a1YrorXp(1- ) +’ KofC — KonXp(PToT — C)(V-30)
dt Yror
dC
T —kogC + konXp(proT—C), (7.31)

in which the expression of gene z is controlled by a promoter with actigt)y

The terms in the large box in equation.Z7) represent the retroactivity to the
input, while the terms in the small box in equationZ? and in the boxes of
equations 1.28 and (7.30 represent the retroactivityto the output. We assume
that XToT > proT SO that in equations/(27) and (7.28 we can neglect the term
C/Xtot1 becauseC < prot. Also, phosphorylation and dephosphorylation reac-
tions in equations7.25 and (7.26) can occur at a much faster rate (on the time
scale of a second?]) than protein production and decay processes (on the time
scale of minutesd]). ChoosingXtoT and Yyo1 suficiently large, the separation

of time-scales between equatiohZ7) and equations7.28-7.31) can be explic-

itly modeled by lettinge = 6/Kqg, Kon = Kog/Kd, @and by defining the new rate con-
stantd; = B1XtoT€/d, a1 = a1Y10T1€/8, b2 = B2€/6, @2 = a2€/6, C = €ki /5. Letting

z= Z+C; (the total amount of kinase) be the slow variable, we obtain the system
in the standard singular perturbation form

dz
5 = k(t)-6(z—Cq)
dC1 Xp Cl C2
e— = —6(b2+¢1)Cq1+6b1(z-Cq)(1- - -
dt (b2 +1)Ca +0ba( 1 Xtor Xtor XtoT
6& = —5(02 + a2)02 + 5&1Xp(1 - Cz )
dt YToT
dXp C
€E— = (5C]_C]_+(5a2C2—5a]_Xp(l— )+’6C—5/kd(pTQT—C)Xp‘
dt YToT
e(jj—ct: = —6C+d/ka(pror—C)Xp, (7.32)

in which the boxed terms represent the retroactivity to the owtpile then com-
pute the dynamics on the slow manifold by letting 0. When we set = 0, the
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terms due to the retroactivityvanish. This means that if the internal dynamics of
the insulation device evolve on a time scale that is much faster than the dynamics
of the input signak, then (provided we also havé ot > pror) the retroactivitys

to the output has naofkect on the dynamics of,, at the quasi steady state. This is a
crucial feature of this design. Letting= (82 + ki1)/81 andy = (a2 + k2) /a1, setting

€ = 0in the third and fourth equations of.82 the following relationships can be

obtained:
XpYTOTk2 XpYTOT

=F(X p) =

C1=Fi(Xp) = (7.33)

1+ x /_’ 1+ x o/
Using expressions/(33 in the second of equationg.82 with € = 0 leads to

Xp _Fz(Xp)
Xror  Xror

Fl(Xp)(b2+Cl+ b2 ) b1Z(1- ) (7.34)

Assuming for simplicity thaiX, < y, we obtain that1(X;) ~ m and that

Fa(Xp) = %YTOT. As a consequence of these simplifications, equai@¥) leads

to
bi1Z
%= BZ (11 Vror/7+ (Vrorke) K Yige me)
(1+Yror/y+ (YroTke)/(YK1)) + 52 ( 2+Cl)

XroT

In order not to have distortion froi to X, we require that

Yror
k
Z< Ly

1+ YTOT + Yrot ko’ (7.35)

Yk

so thatm(Z) ~ ZXTOTWl and therefore we have a linear relationship betwggand

Z with gain fromZ to Xp given byﬁggt; In order not to have attenuation frazn
to X, we require that the gain is greater than or equal to one, that is,

Xroryki

input/output gairr
putoutput g YroTyks

>1 (7.36)
Requirements7.39, (7.36, and X, < y are enough to guarantee that we do not
have nonlinear distortion betweehand X, and thatX, is not attenuated with
respect t&Z. In order to guarantee that the retroactivityp the input is sfficiently
small, we need to quantify the retroactivitffect on theZ dynamics due to the
binding of Z with X. To achieve this, we proceed as in Sect@rby computing
the Z dynamics on the slow manifold, which gives a good approximation of the
dynamics ofZ if e ~ 0. Such a dynamics is given by

dZ dF1 dXp
- () -02)1- 252,
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in which 3—2% measures thefkect of the retroactivity to the input on theZ

dynamics. Direct computation (ﬂ% and of% along withXp, <y and with (7.35

leads toﬁ—%% ~ Xtot/7, SO that in order to have small retroactivity to the input,

we require that

Xtot

Y

Concluding, for having attenuation of th&exct of the retroactivity to the output
s, we require that the time scale of the phosphorylgtephosphorylation reac-
tions is much faster than the production and decay processes of Z (thetonpu
the insulation device) and thatr ot > pror, that is, the total amount of protein
Xis in abundance compared to the downstream binding sites p. To obtain also a
small dfect of the retroactivity to the input, we require that> Xtot as estab-
lished by relation7.37). This is satisfied if, for example, kinase Z has loffiraty
to binding with X. To keep the inpfdutput gain betweed and X, close to one
(from equation 7.36), one can choos¥to1 = YroT, and equal ca@cients for the
phosphorylation and dephosphorylation reactions, thatisy andk; = ko.

Simulation results. System in equations/(27-7.31) was simulated with and
without the downstream binding sites p, that is, with and without, respectiely
terms in the small box of equatioi.27) and in the boxes in equations.80 and
(7.28. This is performed to highlight theffect of the retroactivity to the outpust
on the dynamics aoX,. The simulations validate our theoretical study that indicates
that whenXtot > prot and the time scales of phosphorylafid@phosphorylation
are much faster than the time scale of decay and production of the proteia Z, th
retroactivity to the outpusis very well attenuated (Figurg17, plot A). Similarly,
the time behavior oZ was simulated with and without the terms in the large box
in equation 7.27), that is, with and without X to which Z binds, to verify whether
the insulation component exhibits retroactivity to the inpuh particular, the ac-
cordance of the behaviors dft) with and without its downstream binding sites
on X (Figure7.17, plot B), indicates that there is no substantial retroactivity to the
inputr generated by the insulation device. This is obtained bec¥yise < y as
indicated in equation7(.37), in which 1/ can be interpreted as théiaity of the
binding of X to Z. Our simulation study also indicates that a faster time scale of
the phosphorylatigidephosphorylation reactions is necessary, even for high values
of Xyo1 andYtoT, to maintain perfect attenuation of the retroactivity to the output
s and small retroactivity to the output In fact, slowing down the time scale of
phosphorylation and dephosphorylation, the system looses its insulatiparpr
(Figure7.18. In particular, the attenuation of théect of the retroactivity to the
outputsis lost because there is not enough separation of time scales between the
Z dynamics and the internal device dynamics. The device also displays a&gen n
ligible amount of retroactivity to the input because the conditieg Xt IS not
satisfied anymore.

<1 (7.37)
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Phosphorylation and dephosphorylation with fast time scale

X Protein Concentration
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Figure 7.17: Simulation results for system in equatioh%7.31). In all plots, proT =
100, kofr = kon = 10,6 = 0.01, k(t) = 0.01(1+ sin(wt)), andw = 0.005. In subplots A and
B, k1 = ko =50,a1 =81 =0.01,82 = a2 = 10, andY1oT1 = X707 = 1500. In subplot A, the
signalXp(t) without the downstream binding sites p is in green (sofié)j while the same
signal with the downstream binding sites p is in blue (dadime]. The small error shows
that the &ect of the retroactivity to the outputis attenuated very well. In subplot B, the
signal Z(t) without X to which Z binds is in red (solid), while the samegrsal Z(t) with

X present in the systenX¢ ot = 1500) is in black (dashed line). The small error confirms
a small retroactivity to the input. The values of the compkeroncentration€; andC,
oscillate about 0.4, so they are comparable to the valuXg.of
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Phosphorylation and dephosphorylation with slow time scale

X Protein Concentration

Z Protein Concentration
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (min)

Figure 7.18: In all plotsprot = 100 andkoy = kon = 10,6 = 0.01,k(t) = 0.01(1+ sin(wt)),
andw = 0.005. Phosphorylation and dephosphorylation rates areesltvan the ones in
Figure7.17, that is,k; = ko = 0.01, while the other parameters are left the same, that is,
@2 = 2 =10, a1 = 1 = 0.01, andYrot = Xro1 = 1500. In subplot A, the signaXy(t)
without the downstream binding sites p is in green (solid)linvhile the same signal with
the downstream binding sites p is in blue (dashed line). Tieekof the retroactivity to the
outputsis dramatic. In subplot B, the signa(t) without X in the system is in red (solid
line), while the same signal(t) with X in the system is in black (dashed line). The device
thus also displays a large retroactivity to the input
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