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Preface

This text serves as a supplemenfaedback Systenty Astrom and Murray {]
(refered to throughout the text as AM08) and is intended for reseesdhterested

in the application of feedback and control to biomolecular systems. The @sxt h
been designed so that it can be used in parallel Rédback Systenas part of a
course on biomolecular feedback and control systems, or as a stamdeflerence
for readers who have had a basic course in feedback and contooy.tfigne full
text for AM08, along with additional supplemental material and a copy ofethes
notes, is available on a companion web site:

http://www.cds.caltech.edu/~murray/amwiki/BFS

The material in this book is intended to be useful to three overlapping audi-
ences: graduate students in biology and bioengineering interested irstamding
the role of feedback in natural and engineered biomolecular systenas)@st/un-
dergraduates and graduate students in engineering disciplines whdesestied
the use of feedback in biological circuit design; and established &@s&arin the
the biological sciences who want to explore the potential application ofiphasc
and tools from control theory to biomolecular systems. We have written the text
assuming some familiarity with basic concepts in feedback and control, bat hav
tried to provide insights and specific results as needed, so that the maaeriaé c
learned in parallel. We also assume some familiarity with cell biology, at the level
of a first course for non-majors. The individual chapters in the textaid the
pre-requisites in more detail, most of which are covered either in AM08 orein th
supplemental information available from the companion web site.

Domitilla Del Vecchio Richard M. Murray
Cambridge, Massachusetts Pasadena, California


http://www.cds.caltech.edu/~murray/amwiki/BFS
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Notation

This is an internal chapter that is intended for use by the authors in fixingptiae Review
tion that is used throughout the text. In the first pass of the book we tcgparting

several conflicts in notation and the notes here may be useful to eark/afdbe

text.

Protein dynamics

For a gene ‘gent’, we writgenXfor the gene, ), for the mRNA and GenX for
the protein when they appear in text or chemical formulas. Superscrptssad
for covalent modifications, e.g.,»for phosphorylation. We also use superscripts
to differentiate between isomers, sgem( might be used to refer to mature RNA

or GenX to refer to the folded versions of a protein, if required. Mathematical
formulas use the italic version of the variable name, but roman font for the ge
isomeric state. The concentration of mRNA is written in text or formulasg@sx
(mgenxfor mature) and the concentration of proteirpgsnx (pgenxfor folded). The
same naming conventions are used for common /geoiein combinations: the
mMRNA concentration ofetRis m,.., the concentration of the associated protein is
Pretr @Nd parameters argetr, dietr, €tC.

For generic genes and proteins, use X to refer to a protejripmefer to the
MRNA associated with that protein ardo refer to the gene that encodes X. The
concentration of X can be written either Xs px or [X], with that order of pref-
erence. The concentration of,man be written either asy (preferred) or [m].
Parameters that are specific to ggrare written with a subscripted py, 6p, etc.
Note that although the protein is capitalized, the subscripts are lower ase (s
dexed by the gene, not the protein) and also in roman font (since theyotee

variable).
The dynamics of protein production are given by
dm, _ dpP =
gt = @po ZHTh—yplMh, priatel —uP—-6,P,

—YpMp -0pP

whereay is the (basal) rate of productiop, parameterizes the rate of degradation
of the mRNA m, B, is the kinetic rate of protein productiop,is the growth rate
that leads to dilution of concentrations afbarameterizes the rate of degradation
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of the protein P. Since dilution and degradation enter in a similar fashion, eve us
v =vy+uands = 6+ u to represent the aggregate degradation and dilution rate. If
we are looking at a single gefpeotein, the various subscripts can be dropped.
When we ignore the mRNA concentration, we write the simplified protein dy-
namics as
dP

gt = Pro—0pP.

Assuming that the mRNA dynamics are fast compared to protein production, the
the constang, o is given by

¥p
ﬂp,O Z,Bp_-
a’p’o

For regulated production of proteins using Hill functions, we modify the-con
stitutive rate of production to b&(Q) instead ofapo or B0 as appropriate. The
Hill function is written in the forms

- pg _ @pg(Q/Kpg)™e
PaQ= gk Q= T gk, g

The notation folF mirrors that of transfer function&;, 4 represents the inplatutput
relationship between inp@ and outputP (rate). If the target gene is not particu-
larly relevant, the subscript can represent just the transcription faatgie letters:

_ Qlac
Fiac(Q) = 15 (0 K)o Kiag)e

The subscripts can be dropped completely if there is only one Hill functiosen u
Some common symbols:

Symbol | LaTeX | Comment

Xiot X_\tot | Total concentration of a species
Ky \Kd Dissociation constant

Km \Km Michaelis-Menten constant

Chemical reactions

We write the symbol for a chemical species A using roman type. The number of
molecules of a species A is written ag The concentration of the species is oc-
casionally written as [A], but we more often use the nota#gras in the case of
proteins, orxy. For a reaction A B «— C, we use the notation

R1: A+B;C d—C:alAB—dlc
d; dt

This notation is primarily intended for situations where we have multiple reactions
and need to distinguish between mangtaetient constants. Enzymatic reactions
have the form o

R2: S+E=C->P+E

dz
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For a small number of reactions, the reaction number can be dropped.

It will often be the case that two species A and B will form a molecular bond, in
which case we write the resulting species as AB. If we need to distinguiskebrtw
covalent bonds and hydrogen bonds, we write the latter as A:B. Finallpnires
situations we will have labeled section of DNA that are connected togethahw
we write as A-B, where here A represents the first portion of the DNA strand and B
represents the second portion. When describing (single) strandsAf\dwrite
A’ to represent the Watson-Crick complement of the strand A. ThtB:B/—A’
would represent a double stranded length of DNA with domains A and B.

The choice of representing covalent molecules using the conventiceraical
notation AB can lead to some confusion when writing the reaction dynamics using
A andB to represent the concentrations of those species. Namely, the syBbol
could represent either the concentration of A times the concentration ofttigor
concentration of AB. To remove this ambiguity, when using this notation we write
[A]l[B] as A-B.

When working with a system of chemical reactions, we wrijteé S 1,...,nfor
the species andjRj = 1,...,mfor the reactions. We write; to refer to the molecu-
lar count for speciesandx; = [Si] to refer to the concentration of the species. The
individual equations for a given species are written

The collection of reactions are written as

dx dx

wherex; is the concentration of species 8 € R™™ is the stochiometry matrix;;

is the reaction flux vector for reactign andé is the collection of parameters that
the define the reaction rates. Occasionally it will be useful to write the flages
polynomials, in which case we use the notation

vj(x,6) = Z Ejk l_[ Xf'jk
K |

whereEj is the rate constant for thigh term of thejth reaction ancklJk is the
stochiometry coféicient for the species;.

Generally speaking, cfiecients for propensity functions and reaction rate con-
stants are written using lower case, i, etc). Two exceptions are the dissociation
constant, which we write aky, and the Michaelis-Menten constant, which we
write asKp,.
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Chapter 1
Introductory Concepts

This chapter provides a brief introduction to concepts from systems bidiogjg
from differential equations and control theory, and approaches to modelifg, ana
ysis and design of biomolecular feedback systems. We begin with a discugsio
the role of modeling, analysis and feedback in biological systems, followeshb
overview of basic concepts from cell biology, focusing on the dynanfipsaiein
production and control. This is followed by a short review of key corxend
tools from control and dynamical systems theory, intended to provide inisigh

the main methodology described in the text. Finally, we give a brief introduction
to the field of synthetic biology, which is the primary topic of the latter portion of
the text. Readers who are familiar with one or more of these areas can skip the
corresponding sections without loss of continuity.

1.1 Systems Biology: Modeling, Analysis and Role of Feedback

At a variety of levels of organization—from molecular to cellular to organismal—
biology is becoming more accessible to approaches that are commonly used in
engineering: mathematical modeling, systems theory, computation and abptract
proaches to synthesis. Conversely, the accelerating pace of digéoveological
science is suggesting new design principles that may have important praptica
plications in human-made systems. This synergy at the interface of biolafjy an
engineering fiers many opportunities to meet challenges in both areas. The guid-
ing principles of feedback and control are central to many of the kegtouns in
biological science and engineering and can play an enabling role instadding

the complexity of biological systems.

In this section we summarize our view on the role that modeling and analysis
should (eventually) play in the study and understanding of biological sgstend
discuss some of the ways in which an understanding of feedback prindiple
biology can help us better understand and design complex biomoleculatscircu

There are a wide variety of biological phenomena that provide a rictteair
examples for control, including gene regulation and signal transductiomdnal,
immunological, and cardiovascular feedback mechanisms; muscular canttol
locomotion; active sensing, vision, and proprioception; attention andcirss
ness; and population dynamics and epidemics. Each of these (and marly more
provide opportunities to figure out what works, how it works and whatlze done
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to afect it. Our focus here is at the molecular scale, but the principles andagpr
that we describe can also be applied at larger time and length scales.

Modeling and analysis

Over the past several decades, there have been significant asvanoodeling
capabilities for biological systems that have provided new insights into the com-
plex interactions of the molecular-scale processes that implement life. &kduc
order modeling has become commonplace as a mechanism for describingcand d
umenting experimental results and high-dimensional stochastic models can now
be simulated in reasonable periods of time to explore underlying stochfistitse
Coupled with our ability to collect large amounts of data from flow cytometry,
micro-array analysis, single-cell microscopy and other modern expetafrtech-
niques, our understanding of biomolecular processes is advancing@taace.

Unfortunately, although models are becoming much more common in biolog-
ical studies, they are still far from playing the central role in explaining derp
biological phenomena. Although there are exceptions, the predomireaot oed-
els is to “document” experimental results: a hypothesis is proposed and tsste
ing careful experiments, and then a model is developed to match the expeiimen
results and help demonstrate that the proposed mechanisms can lead to the ob-
served behavior. This necessarily limits our ability to explain complex phenmmen
to those for which controlled experimental evidence of the desired pharsooas
be obtained.

This situation is much dlierent than standard practice in the physical sciences
and engineering, as illustrated in Figurd (in the context of modeling, analysis
and control design for gas turbine aeroengines). In those discipérpsriments
are routinely used to help build models for individual components at a variety o
levels of detail, and then these component-level models are interconneated to
tain a system-level model. This system-level model, carefully built to capture the
appropriate level of detail for a given question or hypothesis, is usedftain,
predict and systematically analyze the behaviors of a system. Becausavedyh
in which models are viewed, it becomes possible to prove (or invalidate)ahyp
esis through analysis of the model, and the fidelity of the models is such that dec
sions can be made based on them. Indeed, in many areas of modern Bngiree
including electronics, aeronautics, robotics and chemical processinm@nie a
few—models play a primary role in the understanding of the underlying physic
andor chemistry, and these models are used in predictive ways to exploredesig
tradedts and failure scenarios.

A key element in the successful application of modeling in engineering dis-
ciplines is the use ofeduced-order modelthat capture the underlying dynamics
of the system without necessarily modeling every detail of the underlyindpmec
anisms. These reduced order models are often coupled with schematiesriag
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Figure 1.1: Sample modeling, analysis and design frameWaor&n engineering system.

such as those shown in Figute?, to provide a high level view of a complex sys-
tem. The generation of these reduced-order models, either directly fatenod
through analytical or computational methods, is critical in tieative applica-

tion of modeling since modeling of the detailed mechanisms produces high fidelity
models that are too complicated to use with existing tools for analysis and design.
One area in which the development of reduced order models is fairly eedas

in control theory, where inpfdutput models, such as block diagrams and transfer
functions are used to capture structured representations of dynantesagipro-
priate level of fidelity for the task at hand][

While developing predictive models and corresponding analysis toolsdbr b
ogy is much more diicult, it is perhaps even more important that biology make
use of models, particularly reduced-order models, as a central elefhenter-
standing. Biological systems are by their nature extremely complex and ean be
have in counterintuitive ways. Only by capturing the many interacting aspécts
the system in a formal model can we ensure that we are reasoning Igrapeut
its behavior, especially in the presence of uncertainty. To do this will recuuib-
stantial éfort in building models that capture the relevant dynamics at the proper
scales (depending on the question being asked) as well as building aticahaly
framework for answering questions of biological relevance.

The good news is that a variety of new techniques, ranging from expasrte
computation to theory, are enabling us to explore new approaches to matheling
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Figure 1.2: Schematic diagrams representing modeldtierdnt disciplines. Each diagram
is used toillustrate the dynamics of a feedback systemidajrecal schematics for a power
system 56], (b) a biological circuit diagram for a synthetic clockaiit [5], (c) a process
diagram for a distillation column8p] and (d) a Petri net description of a communication
protocol.

attempt to address some of these challenges. In this text we focus on tifeeise
vant classes of reduced-order models that can be used to captur@hsmomena
of biological relevance.

Dynamic behavior and phenotype

One of the key needs in developing a more systematic approach to the usd-of mo
els in biology is to become more rigorous about the various behaviors thahar
portant for biological systems. One of the key concepts that needs torhalized

is the notion of “phenotype”. This term is often associated with the existerare o
equilibrium point in a reduced-order model for a system, but clearly murgptex
(non-equilibrium) behaviors can occur and the “phenotypic resparfsg’system

to an input may not be well-modeled by a steady operating condition. Even more
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System Dynamics

External inputs Observed outputs
u — Pl(s) O y
0 Pm(s)
A
Unmodeled Dynamics N(-) f~— 20
Crosstalk )
Nonlinear
A Couping
(2 L
\Z/

Interconnection Matrix

Figure 1.3: Conceptual modeling framework for biomolectiégedback systems. The dy-
namics consist of a set of linear dynamics, represented dynthiti-input, multi-output
transfer functionP(s), a static nonlinear map and an interconnection matrlx Uncer-
tainty is represented as unmodeled dynamticgrosstalkA and system contexd. The
inputs and outputs to the system are denoted agdy.

problematic is determining which regulatory structures are “active” in angives-
notype (versus those for which there is a regulatory pathway that isaseduaind
hence not active).

Figurel.3shows a graphical representation of a class of systems that captures
many of the features we are interested in. The system is compodsedimter-
connected subsystems. The linear dynamics of the subsystems (posdildynioc
delay) are captured via their frequency responses, representediiagiam by the
“transfer functions’P;(s). The outputs of the linear subsystems are transformed via
a nonlinear ma(-) and then interconnected back to the inputs of the subsystems
through the matrid.. The role of feedback is captured through the interconnec-
tion matrix L, which represents a weighted graph describing the interconnections
between subsystems.

In addition to the internal dynamics and nonlinear coupling, we separatefy ke
track of external inputs to the subsystem) (neasured outputg), stochastic dis-
turbancesw, not shown), and measurement noigent shown). Three other fea-
tures are present in Fig.3 The first is the uncertainty operatar attached to the
linear dynamics block. This operator represents both parametric un¢gitathe
dynamics as well as unmodeled dynamics that have known (frequepeydent)
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bounds. Tools for understanding this class of uncertainty are avaitateth lin-
ear and nonlinear control systeni$ nd allow stability and performance analyses
in the presence of uncertainty. A similar termis included in the interconnec-
tion matrix and represents (unmodeled) “crosstalk” between subsystarakly fo
represents the context- and environment-dependent parameters ydgtdma.s

This particular structure is useful because it captures a large numbrerdsi-
ing frameworks in a single formalism. Mass action kinetics and chemical reaction
networks can be represented by equating the stoichiometry matrix with the inter-
connection matribk and using the nonlinear terms to capture the fluxes, @viép-
resenting the rate constants. We can also represent typical redutsrdrmdels for
transcriptional regulatory networks by letting the nonlinear functi()gepresent
various types of Hill functions and including th&ects of mMRNAprotein produc-
tion, degradation and dilution through the linear dynamics. These two claéses
systems can also be combined, allowing a very expressive set of dyniduaii¢s
capable of capturing many relevant phenomena of interest in moleculagiolo

In the context of the modeling framework described in Figli® it is possible
to consider a working definition of phenotype in terms of the patterns of the dy
namics that are present. In the simplest case, consisting of operatioa siegte
equilibrium point, we can look at thefective gain of the dferent nonlinearities as
a measure of which regulatory pathways are “active” in a given statesi@er, for
example, labeling each nonlinearity in a system as being esthef or active A
nonlinearity that is on orfd represents one in which changes of the input produce
very small deviations in the output, such as those that occur at very hilglwor
concentrations in interactions modeled by a Hill function. An active nonlityear
is one in which there is a proportional response to changes in the input, with th
slope of the nonlinearity giving thefective gain. In this setting, the phenotype of
the system would consist of both a description of the nominal concentratidims
measurable specieg) (@s well as the state of each nonlinearity (offi, active).

Another common situation is that a system may have multiple equilibrium
points and the “phenotype” of the system is represented by the partiauar e
librium point that the system converges to. In the simplest case, we cambista-
bility, in which there are two equilibrium pointge and Xy for a fixed set of pa-
rameters. Depending on the initial conditions and external inputs, a gystens
may end up near one equilibrium point or the other, providing two distinatghe
types. A model with bistability (or multi-stability) provides one method of model-
ing memory in a system: the cell or organism remembers its history by virtue of
the equilibrium point to which it has converted.

For more complex phenotypes, where the subsystems are not at a speady o
erating point, one can consider temporal patterns such as limit cyclesdjgerio
orbits) or non-equilibrium inpubutput responses. Analysis of these more compli-
cated behaviors requires more sophisticated tools, but again model-adgsisa
of stability and inpybutput responses can be used to characterize the phenotypic
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behavior of a biological system undefférent conditions or contexts.

Additional types of analysis that can be applied to systems of this form include
sensitivity analysis (dependence of solution properties on selectaeti@@ms), un-
certainty analysis (impact of disturbances, unknown parameters andlefedaly-
namics), bifurcation analysis (changes in phenotype as a function dof leyals,
context or parameters) and probabilistic analysis (distributions of statefuas-
tion of distributions of parameters, initial conditions or inputs). In each asehe
cases, there is a need to extend existing tools to exploit the particular stroftur
the problems we consider, as well as modify the techniques to providemetet@
biological questions.

Stochastic behavior

Another important feature of many biological systems is stochasticity: biolbgica
responses have an element of randomness so that even undelhceosiiol con-
ditions, the response of a system to a given input may vary from expdritmen
experiment. This randomness can have many possible sources, inclutinupé
perturbations that are modeled as stochastic processes and inteogss@®such
as molecular binding and unbinding, whose stochasticity stems from thelymder
ing thermodynamics of molecular reactions.

While for many engineered systems it is common to try to eliminate stochastic
behavior (yielding a “deterministic” response), for biological systemsthppear
to be many situations in which stochasticity is important for the way in which or-
ganisms survive. In biology, nothing is 100% and so there is always sharee
that two identical organisms will respondi@irently. Thus viruses are never com-
pletely contagious and so some organisms will survive, and DNA replication is
never error free, and so mutations and evolution can occur. In studyiogits
where these types offfects are present, it thus becomes important to study the
distribution of responses of a given biomolecular circuit, and to collect idaga
manner that allows us to quantify these distributions.

One important indication of stochastic behavidbimodality We say that a cir-
cuit or system is bimodal if the response of the system to a given inpunhditam
has two or more distinguishable classes of behaviors. An example of bimodal-
ity is shown in Figurel.4, which shows the response of the galactose metabolic
machinery in yeast. We see from the figure that even though geneticallycalen
organisms are exposed to the same external environment (a fixed galactes
centration), the amount of activity in individual cells can have a large at@iun
variability. At some concentrations there are clearly two subpopulationslisf ce
those in which the galactose metabolic pathway is turned on (higher repader fl
rescence values on tlyeaxis) and those for which it istb(lower reporter fluores-
cence).

Another characterization of stochasticity in cells is the separation of nogsines
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-/intro/figures/gal-circuit.eps ./intro/figures/gal-response.eps

(a) Galactose control network (b) Pathway response

Figure 1.4: Galactose response in ye83}.[(a) GAL signaling circuitry showing a num-
ber of diferent feedback pathways that are used to detect the preskgeéactose and
switch on the metabolic pathway. (b) Pathway activity asrecfion of galactose concen-
tration. The points at each galactose concentration reptéise activity level of the galac-
tose metabolic pathway in an individual cell. Black dotsigatle the mean of a Gaussian
mixture model (GMM) classification9]. Small random deviations were added to each
galactose concentration (horizontal axis) to better Vizedhe distributions.

in protein expression into two categories: “intrinsic” noise and “extrinsmse.
Roughly speaking, extrinsic noise represents variability in gene expnetsat
effects all proteins in the cell in a correlated way. Extrinsic noise can be due to
environmental changes thdtect the entire cell (temperature, pH, oxygen level) or
global changes in internal factors such as energy or metabolite levetsafjsedue

to metabolic loading). Intrinsic noise, on the other hand, is the variability dueto th
inherent randomness of molecular events inside the cell and represetitciion

of independent random processes. One way to attempt to measure thet afnou
intrinsic and extrinsic noise is to take two identical copies of a biomolecular cir-
cuit and compare their respons@8[92]. Correlated variations in the output of
the circuits corresponds (roughly) to extrinsic noise and uncorrelaeations to
intrinsic noise #4, 92].

The types of models that are used to capture stochastic behavior ardifvery
ferent than those used for deterministic responses. Instead of writiiegeditial
equations that track average concentration levels, we must keep tréwk iofdi-
vidual events that can occur with some probability per unit time (or “prapghs
We will explore the methods for modeling and analysis of stochastic systems in
Chapterd.

1.2 Dynamics and Control in the Cell

The molecular processes inside a cell determine its behavior and aresgdpo
for metabolizing nutrients, generating motion, enabling procreation anglirogrr
out the other functions of the organism. In multi-cellular organisntie@int types
of cells work together to enable more complex functions. In this section wiybrie
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describe the role of dynamics and control within a cell and discuss the frasic
cesses that govern its behavior and its interactions with its environmentdjimglu
other cells). We assume knowledge of the basics of cell biology at thepevel
vided in AppendixA; a much more detailed introduction to the biology of the cell
and some of the processes described here can be found in standboiexon
cell biology such as Albertst al. [2] or Phillips et al.[76]. (Readers who are fa-
miliar with the material at the level described in these latter references cathikip
section without any loss of continuity.)

The central dogma: production of proteins

The genetic material inside a cell, encoded in its DNA, governs the respbase
cell to various conditions. DNA is organized into collections of genes, with ea
gene encoding a corresponding protein that performs a set of fuadtidhe cell.
The activation and repression of genes are determined through acfergaaplex
interactions that give rise to a remarkable set of circuits that perform tietidins
required for life, ranging from basic metabolism to locomotion to procreaGen.
netic circuits that occur in nature are robust to external disturbanckesaanfunc-
tion in a variety of conditions. To understand how these processes @rlisome
of the dynamics that govern their behavior), it will be useful to presealtzively
detailed description of the underlying biochemistry involved in the production o
proteins.

DNA is double stranded molecule with the “direction” of each strand specified
by looking at the geometry of the sugars that make up its backbone (see Eigu
The complementary strands of DNA are composed of a sequence of tideteo
that consist of a sugar molecule (deoxyribose) bound to one of 4:badesine
(A), cytocine (C), guanine (G) and thymine (T). The coding strand @wention
the top row of a DNA sequence when it is written in text form) is specified fitwen
5" end of the DNA to the 3’ end of the DNA. (As described briefly in Appiri,

5" and 3’ refer to carbon locations on the deoxyribose backbone thaheolved

in linking together the nucleotides that make up DNA.) The DNA that encodes
proteins consists of a promoter region, regulator regions (described & dptail
below), a coding region and a termination region (see Figue We informally
refer to this entire sequence of DNA as a gene.

Expression of a gene begins with thanscriptionof DNA into mMRNA by RNA
polymerase, as illustrated in FiguteZ. RNA polymerase enzymes are present in
the nucleus (for eukaryotes) or cytoplasm (for prokaryotes) and localize and
bind to the promoter region of the DNA template. Once bound, the RNA poly-
merase “opens” the double stranded DNA to expose the nucleotides thatupak
the sequence. This reversible reaction, caiteinerization is said to transform
the RNA polymerase and DNA from @osed complexo anopen complexAf-
ter the open complex is formed, RNA polymerase begins to travel down the DNA
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Figure 1.5: Molecular structure of DNA. (a) Individual bag@ucleotides) that make up
DNA: adenine (A), cytocine (C), guanine (G) and thymine ((B). Double stranded DNA

formed from individual nucleotides, with A binding to T ando@hding to G. Each strand
contains a 5" and 3’ end, determined by the locations of thbares where the next nu-
cleotide binds. Figure from Phillips, Kondev and Therid6]f used with permission of

Garland Science.

strand and constructs an mRNA sequence that matches the 5’ to 3’ sequfenc
the DNA to which it is bound. By convention, we number the first base pair tha
is transcribed as+1’ and the base pair prior to that (which is not transcribed) is
labeled as ‘-1'. The promoter region is often shown with the -10 and -gioms
indicated, since these regions contain the nucleotide sequences to whiRiNAhe
polymerase enzyme binds (the locations vary fifiedént cell types, but these two
numbers are typically used).

The RNA strand that is produced by RNA polymerase is also a sequence of
cleotides with a sugar backbone. The sugar for RNA is ribose insteagloadyd-
bose and mRNA typically exists as a single stranded molecule. Anotffieretice

. RNA
5 RBS AUG UAA 3
RNA polymerase Start Stop
codon codon
Transcription
-35 -10 +1
5 3
T TA AGGAGGT ATG TAA
A AT TCCTCCA TAC ATT
3 5
promoter DNA Terminator

Figure 1.6: Geometric structure of DNA. The layout of the DNAhown at the top. RNA
polymerase binds to the promoter region of the DNA and tndipss the DNA starting at
the+1 side and continuing to the termination site.
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Figure 1.7: Production of messenger RNA from DNA. RNA polyass, along with other
accessory factors, binds to the promoter region of the DNd\than “opens” the DNA to
begin transcription (initiation). As RNA polymerase movksvn the DNA, producing an
RNA transcript (elongation), which is later translateaiatprotein. The process ends when
the RNA polymerase reaches the terminator (terminatioajpr&duced from Coureyif];
permission pending.

is that the base thymine (T) is replaced by uracil (U) in RNA sequences RN
polymerase produces RNA one base pair at a time, as it moves from in th8'5’ to
direction along the DNA coding strand. RNA polymerase stops transcribiddy D
when it reaches germination region(or terminatoi) on the DNA. This termination
region consists of a sequence that causes the RNA polymerase to umdomthé
DNA. The sequence is not conserved across species and in many edisrth-
nation sequence is sometimes “leaky”, so that transcription will occasioraly o
across the terminator.

Once the mRNA is produced, it must be translated into a protein. This process
is slightly different in prokaryotes and eukaryotes. In prokaryotes, there isanreg
of the mRNA in which the ribosome (a molecular complex consisting of of both
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proteins and RNA) binds. This region, called titeosome binding site (RB)as
some variability between fierent cell species and betweelffelient genes in a
given cell. The Shine-Delgarno sequence, AGGAGG, is the conseesjuEnce
for the RBS. (A consensus sequence is a pattern of nucleotides that inmpéeme
a given function across multiple organisms; it is not exactly conservegose
variations in the sequence will be present from one organism to another.)

In eukaryotes, the RNA must undergo several additional steps hefeteans-
lated. The RNA sequence that has been created by RNA polymerasstemis
introns that must be spliced out of the RNA (by a molecular complex called the
spliceosome), leaving only thexons which contain the coding sequence for the
protein. The ternpre-mRNASs often used to distinguish between the raw transcript
and the spliced mRNA sequence, which is caliedture mRNAIn addition to
splicing, the mRNA is also modified to contairpaly(A) (polyadenine}ail, con-
sisting of a long sequence of adenine (A) nucleotides on the 3’ end of tiMAMR
This processed sequence is then transported out of the nucleus injadpkesm,
where the ribosomes can bind to it.

Unlike prokaryotes, eukaryotes do not have a well defined ribosondéigise-
guence and hence the process of the binding of the ribosome to the mRNAes mor
complicated. Th&kozak sequencd/GCCACCAUGEG is the rough equivalent of
the ribosome binding site, where the underlined AUG is the start codorrifgedc
below). However, mRNA lacking the Kozak sequence can also be traghslate

Once the ribosome is bound to the mRNA, it begins the procesamglation
Proteins consist of a sequence of amino acids, with each amino acid spégifie
a codon that is used by the ribosome in the process of translation. Each cod
consists of three base pairs and corresponds to one of the 20 aminorazigsop”
codon. The genetic code mapping between codons and amino acids is ishown
TableA.1. The ribosome translates each codon into the corresponding amino acid
using transfer RNA (tRNA) to integrate the appropriate amino acid (whichsbind
to the tRNA) into the polypeptide chain, as shown in Figlit& The start codon
(AUG) specifies the location at which translation begins, as well as codimpé
amino acid methionine (a modified form is used in prokaryotes). All subsgque
codons are translated by the ribosome into the corresponding amino acid until
reaches one of the stop codons (typically UAA, UAG and UGA).

The sequence of amino acids produced by the ribosome is a polypeptide cha
that folds on itself to form a protein. The process of folding is complicatet an
involves a variety of chemical interactions that are not completely underséab
ditional post-translational processing of the protein can also occur asttje,
until a folded and functional protein is produced. It is this molecule thatles tab
bind to other species in the cell and perform the chemical reactions thatlynd
the behavior of the organism. Theaturation timeof a protein is the time required
for the polypeptide chain to fold into a functional protein.

Each of the processes involved in transcription, translation and folditigeof
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Cell

Figure 1.8: Translation is the process of translating trgusece of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protgimhesis. The genetic

code describes the relationship between the sequence@phas in a gene and the cor-
responding amino acid sequence that it encodes. In theyteplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assehgbfmdtein. Figure and

caption courtesy the National Human Genome Researchutestit

protein takes time andi&cts the dynamics of the cell. Taldlel shows the rates of
some of the key processes involved in the production of proteins. It is tarpdo

note that each of these steps is highly stochastic, with molecules binding togethe
based on some propensity that depends on the binding energy but alsthéne
molecules present in the cell. In addition, although we have describegtlener

Table 1.1: Rates of core processes involved in the creafiproteins from DNA inE. coli.

Process Characteristic rate Source

MRNA transcription rate 24-29 bpsec BioNumbers 2]
Protein translation rate 12-21 agsec BioNumbers 12]
Maturation time (fluorescent proteins)6—60 min BioNumbers 2]
mMRNA half life ~ 100 sec YMO03 [103

E. colicell division time 20—-40 min BioNumbers 12]
Yeastcell division time 70-140 min BioNumbers 2]
Protein half life ~5x10* sec YMO03 [103
Protein difusion along DNA up to 1¢ bp'sec | PKT [76]
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Figure 1.9: Regulation of proteins. Figure from Phillipgridev and Theriot76]; used
with permission of Garland Science.

as a sequential process, each of the steps of transcription, transladidol&ng

are happening simultaneously. In fact, there can be multiple RNA polymerades
are bound to the DNA, each producing a transcript. In prokaryotespas as

the ribosome binding site has been transcribed, the ribosome can bindgind be
translation. Itis also possible to have multiple ribosomes bound to a single piece o
MRNA. Hence the overall process can be extremely stochastic and asyouahb.

Transcriptional regulation of protein production

There are a variety of mechanisms in the cell to regulate the productiontefrso
These regulatory mechanisms can occur at various points in the ovexcglgsrthat
produces the protein. Figuied shows some of the common points of regulation in
the protein production process. We focus firsti@mscriptional regulationwhich
refers to regulatory mechanisms that control whether or not a gene sstitzed.

The simplest forms of transcriptional regulation are repression and tatiya
which are controlled througtranscription factors In the case ofepressionthe
presence of a transcription factor (often a protein that binds near tmeqgper)
turns df the transcription of the gene and this type of regulation is often called
negative regulation or “down regulation”. In the caseofivation(or positive reg-
ulation), transcription is enhanced when an activator protein binds to theopeo
site (facilitating binding of the RNA polymerase).
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Figure 1.10: Repression of gene expression. Figure froffig2hikondev and Theriotq6];
used with permission of Garland Science.

RepresessiorA common mechanism for repression is that a protein binds to a re-
gion of DNA near the promoter and blocks RNA polymerase from binding Th
region of DNA to which the repressor protein binds is callecoperator region
(see Figurel.103. If the operator region overlaps the promoter, then the presence
of a protein at the promoter can “block” the DNA at that location and transcrip
tion cannot initiate, as illustrated in FiguielOa Repressor proteins often bind to
DNA as dimers or pairs of dimersffectively tetramers). Figure.10bshows some
examples of repressors bound to DNA.

A related mechanism for repressior8IA looping In this setting, two repres-
sor complexes (often dimers) bind irfidirent locations on the DNA and then bind
to each other. This can create a loop in the DNA and block the ability of RNA poly
merase to bind to the promoter, thus inhibiting transcription. Figut&shows an
example of this type of repression, in tla& operon. (Anoperonis a set of genes
that is under control of a single promoter.)

Activation.The process of activation of a gene requires that an activator praein b
present in order for transcription to occur. In this case, the protein modt to
either recruit or enable RNA polymerase to begin transcription.

The simplest form of activation involves a protein binding to the DNA near
the promoter in such a way that the combination of the activator and the promoter
sequence bind RNA polymerase. Figurd 2 illustrates the basic concept. Like
repressors, many activators have inducers, which can act in eithesitav@ or
negative fashion (see Figulel4). For example, cyclic AMP (cCAMP) acts as a
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(a) DNA looping (b) lac repressor

Figure 1.11: Repression via DNA looping. Figure from PpaliKondev and Therio7f);
used with permission of Garland Science.

positive inducer for CAP.

Another mechanism for activation of transcription, specific to prokasydse
the use ofsigma factors Sigma factors are part of a modular set of proteins that
bind to RNA polymerase and form the molecular complex that performs tigascr
tion. Different sigma factors enable RNA polymerase to bind fi@dint promot-
ers, so the sigma factor acts as a type of activating signal for transcripéiblel.2
lists some of the common sigma factors in bacteria. One of the uses of sigma fac-
tors is to produce certain proteins only under special conditions, sushesthe
cell undergoebeat shockAnother use is to control the timing of the expression of
certain genes, as illustrated in Figurd.3

Inducers.A feature that is present in some types of transcription factors is the ex-
istence of annducer moleculehat combines with the protein to either activate or
inactivate its function. Aoositive inducers a molecule that must be present in order
for repression or activation to occur.egative inducers one in which the pres-
ence of the inducer molecule blocks repression or activation, eitherdmgatg the
shape of the transcription factor protein or by blocking active sites onrtiteip

that would normally bind to the DNA. Figurke 14a summarizes the various possi-
bilities. Common examples of repressor-inducer pairs incladeand lactose (or
IPTG), tetRand aTc, and tryptophan repressor and tryptophan. Lat®dse and

aTc are both negative inducers, so their presence causes the otherprisssed

Table 1.2: Sigma factors iB. coli[2].

Sigma factor Promoters recognized
a0 most genes
o2 genes associated with heat shock
o8 genes involved in stationary phase and stress response
o8 genes involved in motility and chemotaxis
o4 genes dealing with misfolded proteins in the periplasm
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Figure 1.12: Activation of gene expression. (a) Conceptpa&lration of an activator. The
activator binds to DNA upstream of the gene and attracts Rhlimperase to the DNA
strand. (b) Examples of activiators: catablite activatotgin (CAP), p53 tumor supressor,
zinc finger DNA binding domain and leucine zipper DAN bindidgmain. Figure from
Phillips, Kondev and Theriof7g]; used with permission of Garland Science.

gene to be expressed, while tryptophan is a positive inducer.

Combinatorial promotersin addition to repressors and activators, many genetic
circuits also make use @bmbinatorial promotershat can act as either repressors
or activators for genes. This allows genes to be switched on fitid®ed on more
complex conditions, represented by the concentrations of two or moratacs\or
repressors.

Figurel.15shows one of the classic examples, a promoter fotdbsystem.
In the lac system, the expression of genes for metabolizing lactose are under the
control of a single (combinatorial) promoter. CAP, which is positively induicg
cAMP, acts as an activator and Lacl (also called “lac repressor’ichwis neg-

./intro/figures/MBoC09_07_43.eps

Figure 1.13: Use of sigma factors to controlling the timifigxpression. Reproduced from
Alberts et al. B]; permission pending.
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Figure 1.14: Hects of inducers. Reproduced from Alberts et 2], permission pending.

atively induced by lactose, acts as a repressor. In addition, the indAd&P is
expressed only when glucose levels are low. The resulting behaviot théharo-
teins for metabolizing lactose are expressed only in conditions where theoe is
glucose (so CAP is activendlactose is present.

More complicated combinatorial promoters can also be used to control tran-
scription in two diferent directions, an example that is found in some viruses.

Antitermination.A final method of activation in prokaryotes is the useaotiter-
mination The basic mechanism involves a protein that binds to DNA and deacti-
vates a site that would normally serve as a termination site for RNA polymerase.
Additional genes are located downstream from the termination site, but wighou
promoter region. Thus, in the presence of the anti-terminator protein, geess

are not expressed (or expressed with low probability). Howevernwine antiter-
mination protein is present, the RNA polymerase maintains (or regains) its tontac
with the DNA and expression of the downstream genes is enhanced. Wakis
antitermination allows downstream genes to be regulated by repressingdypre
ture” termination. An example of an antitermination protein is the protein N in
phaget, which binds to a region of DNA labeled Nut (for N utilization), as shown
in Figure1.16[39].
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Figure 1.15: Combinatorial logic for tHac operator. Figure from Phillips, Kondev and
Theriot [76]; used with permission of Garland Science.

Post-transcriptional regulation of protein production

In addition to regulation that controls transcription of DNA into mRNA, a variety
of mechanisms are available for controlling expression after mRNA is peatuc
These include control of splicing and transport from the nucleus (iargokes),

the use of various secondary structure patterns in mRNA that can irtevidr
ribosomal binding or cleave the mRNA into multiple pieces, and targeted degrada
tion of MRNA. Once the polypeptide chain is formed, additional mechanisms are
available that regulate the folding of the protein as well as its shape andtyactiv

./intro/figures/GNM93-antitermination.eps

Figure 1.16: Antitermination. Reproduced froB8][; permission pending.
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Figure 1.17: Phosphorylation of a protein via a kinase. Béypced from Madhanid1];
permission pending

level. We briefly describe some of the major mechanisms here.

Material to be written: sSRNA, riboswitches.

One of the most common types of post-transcriptional regulation is through the
phosphorylatiorof proteins. Phosphorylation is an enzymatic process in which a
phosphate group is added to a protein and the resulting conformation abtieép
changes, usually from an inactive configuration to an active one. ithgree that
adds the phosphate group is callekimase(or sometimes @hosphotransferage
and it operates by transferring a phosphate group from a bound Alédeuteto the
protein, leaving behind ADP and the phosphorylated pro@aphosphorylation
is a complementary enzymatic process that can remove a phosphate gnoup fr
a protein. The enzyme that performs dephosphorylation is calfgibaphatase
Figurel.17shows the process of phosphorylation in more detail.

Phosphorylation is often used as a regulatory mechanism, with the phgsphor
lated version of the protein being the active conformation. Since phogpkion
and dephosphorylation can occur much more quickly than protein produartic
degradation, it is used in biological circuits in which a rapid response isrez
One common pattern is that a signaling protein will bind to a ligand and the result-
ing allosteric change allows the signaling protein to serve as a kinase. Whe ne
active kinase then phosphorylates a second protein, which modulateduwsibe
tions in the cell. Phosphorylation cascades can also be used to amplifjettiecd
the original signal; we will describe this in more detail in Sectkh

Kinases in cells are usually very specific to a given protein, allowing detailed
signaling networks to be constructed. Phosphatases, on the otherahamdyuch
less specific, and a given phosphatase species may desphosphoayigtdiferent
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types of proteins. The combined action of kinases and phosphatases itaintjro
signaling since the only way to deactivate a phosphorylated protein is byigno
the phosphate group. Thus phosphatases are constantly “tuiffiipyaieins, and
the protein is activated only whenfigient kinase activity is present.
Phosphorylation of a protein occurs by the addition of a charged phtsph
(PG,) group to the serine (Ser), threonine (Thr) or tyrosine (Tyr) amincsa8am-
ilar covalent modifications can occur by the attachment of other chemicapgro
to select amino aciddviethylationoccurs when a methyl group (GHis added
to lysine (Lys) and is used for modulation of receptor activity and in modifying
histones that are used in chromatin structukestylationoccurs when an acetyl
group (COCH) is added to lysine and is also used to modify histohdsquitina-
tion refers to the addition of a small protein, ubiquitin, to lysine; the addition of a
polyubiquitin chain to a protein targets it for degradation.

1.3 Control and Dynamical Systems Tools [AMO08]

To study the complex dynamics and feedback present in biological sysiems,
will make use of mathematical models combined with analytical and computational
tools. In this section we present a brief introduction to some of the key ptsce
from control and dynamical systems that are relevant for the study ofddécular
systems considered in later chapters. More details on the application dficspec
concepts listed here to biomolecular systems is provided in the main body of the
text. Readers who are familiar with introductory concepts in dynamical systems
and control, at the level described in Astm and Murray 1] for example, can skip

this section.

Dynamics, feedback and control

A dynamical systens a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The teeadbackrefers to a situation
in which two (or more) dynamical systems are connected together such that ea
system influences the other and their dynamics are thus strongly couptaale S
causal reasoning about a feedback systemfitdit because the first system in-
fluences the second and the second system influences the first, leadicigcidar
argument. This makes reasoning based on causeftga &icky, and it is neces-
sary to analyze the system as a whole. A consequence of this is that tnaédveh
of feedback systems is often counterintuitive, and it is therefore negessresort
to formal methods to understand them.

Figure 1.18illustrates in block diagram form the idea of feedback. We often
use the termspen loopandclosed loopwvhen referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a sycle, a
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Figure 1.18: Open and closed loop systems. (a) The outpystérs 1 is used as the input
of system 2, and the output of system 2 becomes the input térays, creating a closed
loop system. (b) The interconnection between system 2 astérayl is removed, and the
system is said to be open loop.

shown in Figurel.18a If we break the interconnection, we refer to the configura-
tion as an open loop system, as shown in Fidufesh

Biological systems make use of feedback in an extraordinary numberysf, wa
on scales ranging from molecules to cells to organisms to ecosystems. One ex-
ample is the regulation of glucose in the bloodstream through the production of
insulin and glucagon by the pancreas. The body attempts to maintain a constant
concentration of glucose, which is used by the body’s cells to produesygn
When glucose levels rise (after eating a meal, for example), the hormordm insu
is released and causes the body to store excess glucose in the livergibese
levels are low, the pancreas secretes the hormone glucagon, whicle lnggptsite
effect. Referring to Figur&.18 we can view the liver as system 1 and the pancreas
as system 2. The output from the liver is the glucose concentration in thd,blo
and the output from the pancreas is the amount of insulin or glucagomgedd
The interplay between insulin and glucagon secretions throughout theedlasy h
to keep the blood-glucose concentration constant, at about 90 mg penL160
blood.

Feedback has many interesting properties that can be exploited in desigsing
tems. As in the case of glucose regulation, feedback can make a systkemtres
toward external influences. It can also be used to create linear bebatiof non-
linear components, a common approach in electronics. More generathdele
allows a system to be insensitive both to external disturbances and to vasiatio
its individual elements.

Feedback has potential disadvantages as well. It can create dynantditiesa
in a system, causing oscillations or even runaway behavior. Anotherdcky
especially in engineering systems, is that feedback can introduce umhgansor
noise into the system, requiring careful filtering of signals. It is for thessans
that a substantial portion of the study of feedback systems is devoteddlopieg
an understanding of dynamics and a mastery of techniques in dynamiteahsys

The mathematical study of the behavior of feedback systems is an area know
ascontrol theory The term control has many meanings and often varies between
communities. In engineering applications, we typical define control to beshe u
of algorithms and feedback in engineered systems. Thus, control isciudé ex-



1.3. CONTROL AND DYNAMICAL SYSTEMS TOOLS [AMO0S] 23

amples as feedback loops in electronic amplifiers, setpoint controllers imicie
and materials processing, “fly-by-wire” systems on aircraft and eveter proto-
cols that control triiic flow on the Internet. Emerging applications include high-
confidence software systems, autonomous vehicles and robots, reattimgae
management systems and biologically engineered systems. At its core) oaitro
informationscience and includes the use of information in both analog and digital
representations.

Feedback properties

Feedback is a powerful idea that is used extensively in natural anddiedical
systems. The principle of feedback is simple: implement correcting actioes bas
on the diference between desired and actual performance. In engineerul, fe
back has been rediscovered and patented many times in m@@redt contexts.
The use of feedback has often resulted in vast improvements in systeubilisp
and these improvements have sometimes been revolutionary, as discuseed ab
The reason for this is that feedback has some truly remarkable propertiesh

we discuss briefly here.

Robustness to Uncertaintfone of the key uses of feedback is to provide robust-
ness to uncertainty. By measuring théfelience between the sensed value of a
regulated signal and its desired value, we can supply a corrective dttiom sys-

tem undergoes some change thieets the regulated signal, then we sense this
change and try to force the system back to the desired operating points pnés
cisely the &ect that Watt exploited in his use of the centrifugal governor on steam
engines.

As an example of this principle, consider the simple feedback system shown in
Figure1.19 In this system, the speed of a vehicle is controlled by adjusting the
amount of gas flowing to the engine. Simglmportional-integral(P1) feedback
is used to make the amount of gas depend on both the error between et curr
and the desired speed and the integral of that error. The plot on theshigtvs
the results of this feedback for a step change in the desired speed aridtg of
different masses for the car, which might result from havingtem@int number of
passengers or towing a trailer. Notice that independent of the mass (velnieb by
a factor of 3!), the steady-state speed of the vehicle always apmo#uh desired
speed and achieves that speed within approximately 5 s. Thus the peréeraia
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide robustnessneghe
ative feedback amplifier. When telephone communications were devekopet;
fiers were used to compensate for signal attenuation in long lines. A vaitunenm
was a component that could be used to build amplifiers. Distortion causea by th
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-
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Figure 1.19: A feedback system for controlling the speedwatacle. In the block diagram

on the left, the speed of the vehicle is measured and compaibd desired speed within
the “Compute” block. Based on theffiirence in the actual and desired speeds, the throttle
(or brake) is used to modify the force applied to the vehigléhe engine, drivetrain and
wheels. The figure on the right shows the response of theal@ystem to a commanded
change in speed from 25/mto 30 nis. The three dierent curves correspond tofiiiring
masses of the vehicle, between 1000 and 3000 kg, demongttag robustness of the
closed loop system to a very large change in the vehicle cterstics.

jor breakthrough was the invention of the feedback amplifier in 1927 byplH&.
Black, an electrical engineer at Bell Telephone Laboratories. Blagk negative
feedbackwhich reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier
Feedback is also pervasive in biological systems, where transcripticanas;
lational and allosteric mechanisms are used to regulate internal concerstraftion
various species, and much more complex feedbacks are used to regofade p
ties at the organism level (such as body temperature, blood presslic#@adian
rhythm). One diference in biological systems is that the separation of sensing, ac-
tuation and computation, a common approach in most engineering controhsyste
is less evident. Instead, the dynamics of the molecules that sense the Brarnron
tal condition and make changes to the operation of internal components may be
integrated together in ways that make iffidult to untangle the operation of the
system. Similarly, the “reference value” to which we wish to regulate a systgm ma
not be an explicit signal, but rather a consequence of mafsrent changes in the
dynamics that are coupled back to the regulatory elements. Hence we deenot
a clear “setpoint” for the desired ATP concentration, blood oxygen levbbdy
temperature, for example. Thesdhdiulties complicate our analysis of biological
systems, though many important insights can still be obtained.

Design of DynamicsAnother use of feedback is to change the dynamics of a sys-
tem. Through feedback, we can alter the behavior of a system to meetettie ofe

an application: systems that are unstable can be stabilized, systems tHagare s
gish can be made responsive and systems that have drifting operatirtg qain

be held constant. Control theory provides a rich collection of techniqueesaiyze

the stability and dynamic response of complex systems and to place bounds on th
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behavior of such systems by analyzing the gains of linear and nonlineeaitops
that describe their components.

An example of the use of control in the design of dynamics comes from the are
of flight control. The following quote, from a lecture presented by Wilbuight
to the Western Society of Engineers in 1968][ illustrates the role of control in
the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at $licient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of suficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the age
of flying will have arrived, for all other diiculties are of minor impor-
tance.

The Wright brothers thus realized that control was a key issue to enggle fl
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. |yaeHad
a rudder in the front of the airplane, which made the plane very mandalgera
disadvantage was the necessity for the pilot to keep adjusting the ruddgettie fl
plane: if the pilot let go of the stick, the plane would crash. Other early agiato
tried to build stable airplanes. These would have been easier to fly, badeeof
their poor maneuverability they could not be brought up into the air. By ubigig
insight and skillful experiments the Wright brothers made the first suttddbght
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, in/ente
by Sperry, was based on the concept of feedback. Sperry usg-atgbilized
pendulum to provide an indication of the vertical. He then arranged a de&db
mechanism that would pull the stick to make the plane go up if it was pointing
down, and vice versa. The Sperry autopilot was the first use of &sédb aero-
nautical engineering, and Sperry won a prize in a competition for thetsafelane
in Paris in 1914. Figur&.20shows the Curtiss seaplane and the Sperry autopilot.
The autopilot is a good example of how feedback can be used to stabilizesta u
ble system and hence “design the dynamics” of the aircraft.

One of the other advantages of designing the dynamics of a device is that it
allows for increased modularity in the overall system design. By usind#esdo
create a system whose response matches a desired profile, we carehidenth
plexity and variability that may be present inside a subsystem. This allows us to
create more complex systems by not having to simultaneously tune the response
of a large number of interacting components. This was one of the advanthge
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Figure 1.20: Aircraft autopilot system. The Sperry autopfleft) contained a set of four
gyros coupled to a set of air valves that controlled the wurfpses. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aaftand was able to maintain level
flight as a mechanic walked on the wing (rightg].

Black’s use of negative feedback in vacuum tube amplifiers: the resulévige
had a well-defined linear inpftautput response that did not depend on the individ-
ual characteristics of the vacuum tubes being used.

Drawbacks of FeedbackVhile feedback has many advantages, it also has some
drawbacks. Chief among these is the possibility of instability if the system is not
designed properly. We are all familiar with the undesiraldteats of feedback
when the amplification on a microphone is turned up too high in a room. This
is an example of feedback instability, something that we obviously want to.avoid
This is tricky because we must design the system not only to be stable wrder n
inal conditions but also to remain stable under all possible perturbationsof th
dynamics.

In addition to the potential for instability, feedback inherently coupl&gint
parts of a system. One common problem is that feedback often injects nteastire
noise into the system. Measurements must be carefully filtered so that thiaarctua
and process dynamics do not respond to them, while at the same time ensating th
the measurement signal from the sensor is properly coupled into the dtaged
dynamics (so that the proper levels of performance are achieved).

Another potential drawback of control is the complexity of embedding a abntr
system in a product. While the cost of sensing, computation and actuatiaehas
creased dramatically in the past few decades, the fact remains thatl aysteons
are often complicated, and hence one must carefully balance the costsreefis.

An early engineering example of this is the use of microprocessor-basdtdck
systems in automobiles.The use of microprocessors in automotive applicagions b
gan in the early 1970s and was driven by increasingly strict emissiongastis
which could be met only through electronic controls. Early systems weensiye
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and failed more often than desired, leading to frequent customer disstdisfdt
was only through aggressive improvements in technology that the perioena
reliability and cost of these systems allowed them to be used in a transpesknt f
ion. Even today, the complexity of these systems is such that itfisult for an
individual car owner to fix problems.

Feedforward Feedback is reactive: there must be an error before correctivasctio
are taken. However, in some circumstances it is possible to measure aatistirb
before it enters the system, and this information can then be used to tagetverr
action before the disturbance has influenced the system. fféwt of the distur-
bance is thus reduced by measuring it and generating a control sighabthra
teracts it. This way of controlling a system is calleg¢dforward Feedforward is
particularly useful in shaping the response to command signals becaussacal
signals are always available. Since feedforward attempts to match two signals
requires good process models; otherwise the corrections may havedhg size

or may be badly timed.

The ideas of feedback and feedforward are very general arghappmany dif-
ferent fields. In economics, feedback and feedforward are amadoip a market-
based economy versus a planned economy. In business, a feadf@trategy
corresponds to running a company based on extensive strategic jglawhiile a
feedback strategy corresponds to a reactive approach. In bidémgiforward has
been suggested as an essential element for motion control in humans tingtds tu
during training. Experience indicates that it is often advantageous to cerfdsd-
back and feedforward, and the correct balance requires insightirzrerstanding
of their respective properties.

Positive Feedbackn most of control theory, the emphasis is on the roleegative
feedbackin which we attempt to regulate the system by reacting to disturbances in
a way that decreases thiext of those disturbances. In some systems, particularly
biological systemspositive feedbackan play an important role. In a system with
positive feedback, the increase in some variable or signal leads to a situratio
which that quantity is further increased through its dynamics. This hastabiles
lizing effect and is usually accompanied by a saturation that limits the growth of
the quantity. Although often considered undesirable, this behavior isind#d-
logical (and engineering) systems to obtain a very fast response taddionror
signal.

One example of the use of positive feedback is to create switching behavior
in which a system maintains a given state until some input crosses a threshold.
Hysteresis is often present so that noisy inputs near the threshold dauss the
system to jitter. This type of behavior is callbitability and is often associated
with memory devices.
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Figure 1.21: Inpybutput characteristics of orffccontrollers. Each plot shows the input on
the horizontal axis and the corresponding output on thécatexis. Ideal on-fi control is
shown in (a), with modifications for a dead zone (b) or hystsré). Note that for on4®
control with hysteresis, the output depends on the valuasff ipputs.

Simple forms of feedback

The idea of feedback to make corrective actions based on ffezatice between
the desired and the actual values of a quantity can be implemented in nff@ngati
ways. The benefits of feedback can be obtained by very simple fdeitves such
as on-dt control, proportional control and proportional-integral-derivatigatcol.
In this section we provide a brief preview of some of these topics to providesia
of understanding for their use in the chapters that follows.

On-Qf Control. A simple feedback mechanism can be described as follows:
e Umax ?f e>0 (1.1)
Umin |f e< O,

where thecontrol error e=r -y is the diference between the reference signal (or
command signal) and the output of the systeyrandu is the actuation command.
Figurel.2lashows the relation between error and control. This control law implies
that maximum corrective action is always used.

The feedback in equatiord (1) is calledon-gf control. One of its chief advan-
tages is that it is simple and there are no parameters to choosdt Gmtrol often
succeeds in keeping the process variable close to the referencgsstiehuse of
a simple thermostat to maintain the temperature of a room. It typically results in
a system where the controlled variables oscillate, which is often acceptdbé if
oscillation is stficiently small.

Notice that in equationl(1) the control variable is not defined when the error
is zero. It is common to make modifications by introducing either a dead zone or
hysteresis (see Figude21band1.21g.

PID Control. The reason why onfbcontrol often gives rise to oscillations is that
the system overreacts since a small change in the error makes the actuablbv
change over the full range. Thiffect is avoided iproportional contro] where the
characteristic of the controller is proportional to the control error forlseneors.
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This can be achieved with the control law

Unax If €> €max
U=1Kp€ if Emin < €< Emax (1.2)
Umin |f e< Q'T]irb

wherek, is the controller gaingmin = Umin/Kp and émax = Umax/Kp. The interval
(emin, €max) is called theproportional bandbecause the behavior of the controller
is linear when the error is in this interval:

u=Kp(r-y) =kpe if €mnin < €< enax (1.3)

While a vast improvement over orffocontrol, proportional control has the
drawback that the process variable often deviates from its referahge \n partic-
ular, if some level of control signal is required for the system to maintairsaeste
value, then we must hawez O in order to generate the requisite input.

This can be avoided by making the control action proportional to the intefyral
the error:

t
u(t) = ki fo e(r)dr. (1.4)

This control form is calledntegral contro| andk; is the integral gain. It can be
shown through simple arguments that a controller with integral action has zero
steady-state error. The catch is that there may not always be a stetedyestause

the system may be oscillating.

An additional refinement is to provide the controller with an anticipative abil-
ity by using a prediction of the error. A simple prediction is given by the linear
extrapolation

oL+ To) = &) + Ty .
which predicts the errdFq time units ahead. Combining proportional, integral and
derivative control, we obtain a controller that can be expressed mathaityatis

t

u(t) = kpe(t) + kifo e(r)dr+ m%.
The control action is thus a sum of three terms: the past as representbd by
integral of the error, the present as represented by the proportemmaland the
future as represented by a linear extrapolation of the error (the thegeitarm).
This form of feedback is called@oportional-integral-derivative (PID) controller
and its action is illustrated in Figude22

A PID controller is very useful and is capable of solving a wide rangeoof ¢
trol problems. More than 95% of all industrial control problems are sobyelID
control, although many of these controllers are actuaidbportional-integral(P1)
controllersbecause derivative action is often not includ2® [ There are also more
advanced controllers, whichftér from PID controllers by using more sophisti-
cated methods for prediction.

(1.5)
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Figure 1.22: Action of a PID controller. At time the proportional term depends on the
instantaneous value of the error. The integral portioneféedback is based on the integral
of the error up to time (shaded portion). The derivative term provides an estirobtke
growth or decay of the error over time by looking at the ratelwnge of the erroiy
represents the approximate amount of time in which the ésrprojected forward (see
text).

1.4 Input/Output Modeling [AMOS8]

A model is a mathematical representation of a physical, biological or information
system. Models allow us to reason about a system and make predictiorts abou
how a system will behave. In this text, we will mainly be interested in models of
dynamical systems describing the infowtput behavior of systems, and we will
often work in “state space” form. In the remainder of this section we proaide
overview of some of the key concepts in infmuttput modeling. The mathematical
details introduced here are explored more fully in Chapter

The heritage of electrical engineering

The approach to modeling that we take builds on the view of models that emerged
from electrical engineering, where the design of electronic amplifiers laddous
on inpufoutput behavior. A system was considered a device that transfornts inpu
to outputs, as illustrated in Figufe23 Conceptually an inpgautput model can be
viewed as a giant table of inputs and outputs. Given an input sigt)aver some
interval of time, the model should produce the resulting ouyftit

The inputoutput framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connectedthrou
their inputs and outputs. Thus, we can take a complicated system sucldas@rra
a television and break it down into manageable pieces such as the redeived-
ulator, amplifier and speakers. Each of these pieces has a set of indudstputs
and, through proper design, these components can be interconneébech tihe
entire system.

The inputoutput view is particularly useful for the special clasdiogar time-
invariant systemsThis term will be defined more carefully below, but roughly
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Figure 1.23: lllustration of the inpfgutput view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic dfigsl the one on the right is its
representation as a block diagram.

speaking a system is linear if the superposition (addition) of two inputs yields a
output that is the sum of the outputs that would correspond to individuatsriye-

ing applied separately. A system is time-invariant if the output responsegiwen
input does not depend on when that input is applied. While most biomolesydar
tems are neither linear nor time-invariant, they can often be approximateahby su
models, often by looking at perturbations of the system from its nominaMimha

in a fixed context.

One of the reasons that linear time-invariant systems are so prevalent &-mod
ing of inpufoutput systems is that a large number of tools have been developed to
analyze them. One such tool is thep responsevhich describes the relationship
between an input that changes from zero to a constant value abruptgp(anput)
and the corresponding output. The step response is very useful iactér@zing
the performance of a dynamical system, and it is often used to specify shredie
dynamics. A sample step response is shown in Figi2éa

Another way to describe a linear time-invariant system is to represent it by its
response to sinusoidal input signals. This is calledftbguency responsend a
rich, powerful theory with many concepts and strong, useful resuiehserged
for systems that can be described by their frequency responseediitsrare based
on the theory of complex variables and Laplace transforms. The basibetad
frequency response is that we can completely characterize the bebbaisystem
by its steady-state response to sinusoidal inputs. Roughly speaking, tiiges
by decomposing any arbitrary signal into a linear combination of sinusoids (e
by using the Fourier transform) and then using linearity to compute the ouwput b
combining the response to the individual frequencies. A sample freguesiponse
is shown in Figurel.24h

The inputoutput view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording itssesfm
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Figure 1.24: Inpybutput response of a linear system. The step response (& ghe
output of the system due to an input that changes from 0 to imattt=5 s. The fre-
guency response (b) shows the amplitude gain and phaseecdargo a sinusoidal input
at different frequencies.

particular inputs, e.g., a step or a set of sinusoids over a range oéfreigs.

The control view

When control theory emerged as a discipline in the 1940s, the approagh to d
namics was strongly influenced by the electrical engineering (fopttut) view.

A second wave of developments in control, starting in the late 1950s, wageithsp

by mechanics, where the state space perspective was used. Thereraaiggpace
flight is a typical example, where precise control of the orbit of a spatfigs es-
sential. These two points of view gradually merged into what is today the state
space representation of inpotitput systems.

The development of state space models involved modifying the models from
mechanics to include external actuators and sensors and utilizing morelgene
forms of equations. In control, models often take the form
%( = f(x,u), y =h(xu), (1.6)
wherex is a vector of state variables,is a vector of control signals andis a
vector of measurements. The tedwr/dt (sometimes also written ag represents
the derivative ofx with respect to time, now considered a vector, &nédnd h
are (possibly nonlinear) mappings of their arguments to vectors of the e
dimension.

Adding inputs and outputs has increased the richness of the classibldmpso
and led to many new concepts. For example, it is natural to ask if possible state
can be reached with the proper choicaudfeachability) and if the measuremegnt
contains enough information to reconstruct the state (observability) eTthpgcs
are addressed in greater detail in AMO08.
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A final development in building the control point of view was the emergeiice o
disturbances and model uncertainty as critical elements in the theory. Thie simp
way of modeling disturbances as deterministic signals like steps and sinuasids h
the drawback that such signals cannot be predicted precisely. A nadigticeap-
proach is to model disturbances as random signals. This viewpoint givesiial
connection between prediction and control. The dual views of joptgut repre-
sentations and state space representations are particularly usefuhwiefing
uncertainty since state models are convenient to describe a nominal modal bu
certainties are easier to describe using ifguutput models (often via a frequency
response description).

An interesting observation in the design of control systems is that feedlyack
tems can often be analyzed and designed based on comparatively simple.mode
The reason for this is the inherent robustness of feedback systemesyveip other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precotheuiguts
that cause the system to respond in a certain way. Another area is syatdar v
tion, where one wishes to verify that the detailed response of the systéonmps
as it was designed. Because of thedgedent uses of models, it is common to use
a hierarchy of models havingftierent complexity and fidelity.

State space systems

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a biochemical syibestate

is composed of the variables required to account for the current daftthe cell,
including the concentrations of the various species and complexes thmtasnt.

It may also include the spatial locations of the various molecules. A key issue in
modeling is to decide how accurately this information has to be represented. Th
state variables are gathered in a vectarR" called thestate vectorThe control
variables are represented by another veg®RP, and the measured signal by the
vectory € RY. A system can then be represented by thedéntial equation

S=tu. v =hocu, .7
wheref : R"xRP - R" andh : R"xRP — RY are smooth mappings. We call a
model of this form astate space model

The dimension of the state vector is called trder of the system. The sys-
tem (L.7) is calledtime-invariantbecause the functions and h do not depend
explicitly on timet; there are more general time-varying systems where the func-
tions do depend on time. The model consists of two functions: the funttives
the rate of change of the state vector as a function of statel controlu, and the
functionh gives the measured values as functions of stated controlu.
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A system is called énear state space system if the functiohandh are linear
in X andu. A linear state space system can thus be represented by

%( = Ax+ Bu, y =Cx+Du, (1.8)
whereA, B, C andD are constant matrices. Such a system is said {onbar and
time-invariant or LTI for short. The matrixA is called thedynamics matrixthe
matrix B is called thecontrol matrix the matrixC is called thesensor matrixand
the matrixD is called thedirect term Frequently systems will not have a direct
term, indicating that the control signal does not influence the output directly.

Input/output formalisms for biomolecular modeling

A key challenge in developing models for any class of problems is the sel@dtion
an appropriate mathematical framework for the models. Among the featutes tha
we believe are important for a wide variety of biological systems are capturin
the temporal response of a biomolecular system to various inputs andstarder

ing how the underlying dynamic behavior leads to a given phenotype. Thelmo
should reflect the subsystem structure of the underlying dynamicansystal-

low prediction of results, but need not necessarily be mechanisticallyatecat

a detailed biochemical level. We are patrticularly interested in those probleins tha
include a number of molecular “subsystems” that interact with each othetis@n
our models should support a level of modularity (with the additional advardfg
allowing multiple groups to develop detailed models for each module that can be
combined to form more complex models of the interacting components). Since we
are likely to be building models based on high-throughput experiments, itds als
key that the models capture the measurable outputs of the systems.

For many of the systems that we are interested in, a good starting point is to
use reduced-order models consisting of nonlinefiedintial equations, possibly
with some time delay. Using the basic structure shown in Figuea model for a
multi-component system might be descibed using a set of foypput diterential
eqguations of the form

X _ Ax +N(X, Ly, 60) + Bu + Fw,
gr = AX+N(xi, Ly".6) + Bu + Fwi, (1.9)
Yi=Cx+Hvi  y(t)=Vi(t-m).

The internal state of thiégh component (subsystem) is captured by the s¢at&R™,
which might represent the concentrations of various species and casasxvell
as other internal variables required to describe the dynamics. The tetigfuhe
system, which describe those species (or other quantities) that interacitigth
subsystems in the cell is captured by the varighbleRP. The internal dynamics
consist of a set of linear dynamic&X) as well as nonlinear terms that depend
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both on the internal state and the outputs of other subsyst&in})(whereLy*
represents interconnections with other subsystem® &nd set of parameters that
represent the context of the system (described in more detail belovglsd/allow
for the possibility of time delays (due to folding, transport or other pra®ssnd
write y;" for the “functional” output seen by other subsystems.

The coupling between subsystems is captured using a weighted grapse who
elements are represented by thefioents of the interconnection matrix In the
simplest version of the model, we simply combin&efient outputs from other
modules in some linear combination to obtain the “indug”. More general inter-
connections are possible, including allowing multiple outputs froffedént sub-
systems to interact in nonlinear ways (such as one often sees on comhinator
promoters in gene regulatory networks).

Finally, in addition to the internal dynamics and nonlinear coupling, we sepa-
rately keep track of external inputs to the subsyst&u),(stochastic disturbances
(Fw) and measurement noisey). We treat the external inputsas deterministic
variables (representing inducer concentrations, nutrient levels, tataper etc)
and the disturbances and noiseandv as (vector) random processes. If desired,
the mappings from the various inputs to the states an outputs, represerites by
matricesB, F andH can also depend on the system stafeesulting in additional
nonlinearities).

This particular structure is useful because it captures a large numipeodbf
eling frameworks in a single formalism. In particular, mass action kinetics and
chemical reaction networks can be represented by equating the stoiclyionzetr
trix with the interconnection matrix. and using the nonlinear terms to capture
the fluxes, withg representing the rate constants. We can also represent typical
reduced-order models for transcriptional regulatory networks by lett@gonlin-
ear functionsN represent various types of Hill functions and including teas
of mMRNA/protein production, degradation and dilution through the linear dynam-
ics. These two classes of systems can also be combined, allowing a vezgsExe
set of dynamics that is capable of capturing many relevant phenomenteiafsin
in molecular biology.

Despite being a well-studied class of systems, there are still many open ques-
tions with this framework, especially in the context of biomolecular systems. For
example, a rigorous theory of théfects of crosstalk, the role of context on the
nonlinear elements, and combining tHeeets of interconnection, uncertainty and
nonlinearity is just emerging. Adding stochastiteets, either through the distur-
bance and noise terms, initial conditions or in a more fundamental way, is also
largely unexplored. And the critical need for methods for performing moslel
duction in a way that respects of the structure of the subsystems has oahglye
begun to be explored. Nonetheless, many of these research direaigohsiag
pursued and we attempt to provide some insights in this text into the underlying
techniques that are available.
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Figure 1.25: Milestones in the history of synthetic biology

1.5 From Systems to Synthetic Biology

The rapidly growing field of synthetic biology seeks to use biological priesip
and processes to build useful engineering devices and systems. Aippkcaf
synthetic biology range from materials production (drugs, biofuels) to Qicéd
sensing and diagnostics (chemical detection, medical diagnostics) to ballogie
chines (bioremediation, nanoscale robotics). Like many other fields at thetime
their infancy (electronics, software, networks), it is not yet clearr@tsynthetic
biology will have its greatest impact. However, recent advances suttte abil-

ity to “boot up” a chemically synthesized genon82] demonstrate the ability to
synthesize systems thaffer the possibility of creating devices with substantial
functionality. At the same time, the tools and processes available to desigmsyste
of this complexity are much more primitive, awnié@ novosynthetic circuits typi-
cally use a tiny fraction of the number of genetic elements of even the smallest
microorganisms{8].

Several scientific and technological developments over the past focadee
have set the stage for the design and fabrication of early synthetic biamarlec
circuits (see Figurd..25. An early milestone in the history of synthetic biology
can be traced back to the discovery of mathematical logic in gene regulation. |
their 1961 paper, Jacob and Monod introduced for the first time the idgans
expression regulation through transcriptional feedbd&k Only a few years later
(1969), restriction enzymethat cut double-stranded DNA at specific recognition
sites were discovered by Arber and co-workels These enzymes were a major
enabler of recombinant DNA technology, in which genes from one dsgaare
extracted and spliced into the chromosome of another. One of the mostatetebr
products of this technology was the large scale production of insulin by ginglo
E. colibacteria as a cell factor@§].
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Another key innovation was the development of the polymerase chain reac-
tion (PCR), devised in the 1980s, which allows exponential amplification ofl sma
amounts of DNA and can be used to obtaiffisient quantities for use in a variety
of molecular biology laboratory protocols where higher concentratiobs\Zf are
required. Using PCR, it is possible to “copy” genes and other DNA sempgeout
of their host organisms.

The developments of recombinant DNA technology, PCR and artificial synth
sis of DNA provided the ability to “cut and paste” natural or synthetic pronsote
and genes in almost any fashion. This cut and paste procedure isdathétyand
consists of four primary stepBagmentationligation, transfectiorandscreening
The DNA of interest is first isolated using restriction enzymeg@ndlCR amplifi-
cation. Then, a ligation procedure is employed in which the amplified fragment is
inserted into a vector. The vector is often a piece of circular DNA, callddsapd,
that has been linearized by means of restriction enzymes that cleave firapap
ate restriction sites. The vector is then incubated with the fragment of inteitbst
an enzyme calle@®NA ligase producing a single piece of DNA with the target
DNA inserted. The next step is to transfect (or transform) the DNA into divin
cells, where the natural replication mechanisms of the cell will duplicate the DNA
when the cell divides. This process does not transfect all cells, aadsslection
procedure if required to isolate those cells that have the desired DNAegdser
them. This is typically done by using a plasmid that gives the cell resistance to a
specific antibiotic; cells grown in the presence of that antibiotic will only live if
they contain the plasmid. Further selection can be done to insure that thedser
DNA is also present.

Once a circuit has been constructed, its performance must be verifiedf an
necessary, debugged. This is often done with the hefijofescent reportersThe
most famous of these is GFP, which was isolated from the jellyistuorea vic-
toria in 1978 by Shimomuragd8]. Further work by Chalfie and others in the 1990s
enabled the use of GFP i colias a fluorescent reporter by inserting it into an ap-
propriate point in an artificial circuitl]7]. By using spectrofluorometry, fluorescent
microscopy or flow cytometry, it is possible to measure the amount of fluaresce
in individual cells or collections of cells and characterize the performafee
circuit in the presence of inducers or other factors.

Two early examples of the application of these technologies wenegressi-
lator [27] and a synthetic genetic switcB]].

The repressilator is a synthetic circuit in which three proteins each epres
other in a cycle. This is shown schematically in Figir26a where the three pro-
teins are TetRa cl and Lacl. The basic idea of the repressilator is that if TetR is
present, then it represses the production off. If Acl is absent, then Lacl is pro-
duced (at the unregulated transcription rate), which in turn represtBs Once
TetR is repressed, thercl is no longer repressed, and so on. If the dynamics of
the circuit are designed properly, the resulting protein concentrationesxillate,
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Figure 1.26: The repressilator genetic regulatory netw@kA schematic diagram of the
repressilator, showing the layout of the genes in the pldghat holds the circuit as well
as the circuit diagram (center). The flat headed arrow betwheeprotein names represents
repression. (b) A simulation of a simple model for the regitator, showing the oscillation
of the individual protein concentrations. (Figure cowytbt Elowitz.)

as shown in Figuré&.26h

The repressilator can be constructed using the techniques descrived Ripst,
we can make copies of the individual promoters and genes that fornirouit by
using PCR to amplify the selected sequences out of the original organisrhgcim w
they were found. TetR is the tetracycline resistance repressor proteis fband
in gram-negative bacteria (suchB&scoli) and is part of the circuitry that provides
resistance to tetracycline. Lacl is the gene that prodlam=spressor, responsible
for turning df thelac operon in the lactose metabolic pathwayEincoli (see Sec-
tion 5.1). And A cl comes from phage, where it is part of the regulatory circuitry
that regulates lysis and lysogeny.

By using restriction enzymes and related techniques, we can separatg-the n
ural promoters from their associated genes, and then ligate (reassé¢hnaniein
a new order and insert them into a “backbone” vector (the rest of tisenpda in-
cluding the origin of replication and appropriate antibiotic resistance). TNi& D
is then transformed into cells that are grown in the presence of an antib@tiats
only those cells that contain the represillator can replicate. Finally, we can tak
individual cells containing our circuit and let them grow under a microsdop
image fluorescent reporters coupled to the oscillator.

Another early circuit in the synthetic biology toolkit is a genetic switch built
by Gardneret al. [31]. The genetic switch consists of two repressors connected
together in a cycle, as shown in Figute27a The intuition behind this circuit is
that if the gene A is being expressed, it will repress production of B aridtaia
its expression level (since the protein corresponding to B will not beeptés re-
press A). Similarly, if B is being expressed, it will repress the productfoh and
maintain its expression level. This circuit thus implements a tygeastébility that
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Figure 1.27: Stability of a genetic switch. The circuit diaigp in () represents two proteins
that are each repressing the production of the other. Thesnp andu, interfere with this
repression, allowing the circuit dynamics to be modifiede Simulation in (b) shows the
time response of the system starting from twidetent initial conditions. The initial portion
of the curve corresponds to protein B having higher coneéintr than A, and converges to
an equilibrium where A isfd and B is on. At time = 10, the concentrations are perturbed,
moving the concentrations into a region of the state spaa¥evolutions converge to the
equilibrium point with the A on and Bf&,

can be used as a simple form of memory. FigliZ7bshows the time traces for

a system, illustrating the bistable nature of the circuit. When the initial condition
starts with a concentration of protein B greater than that of A, the solution con
verges to the equilibrium point where B is on and A {B & A is greater than B,
then the opposite situation results.

These seemingly simple circuits took years to get to work, but showed that it
was possible to synthesize a biological circuit that performed a desiredida
that was not originally present in a natural system. Today, commercigiesia
of DNA sequences and genes has become cheaper and faster, wiitke affgn
below $0.30 per base p&ilThe combination of inexpensive synthesis technolo-
gies, new advances in cloning techniques, and improved devices for ignagih
measurement has vastly simplified the process of producing a sequeDd&Aof
that encodes a given set of genes, operator sites, promoters anduoitiéons,
and these techniques are a routine part of undergraduate courseeauiaoand
synthetic biology.

As illustrated by the examples above, current techniques in synthetic biology
have demonstrated the ability to program biological function by designing DNA
sequences that implement simple circuits. Most current devices make tra@-of
scriptional or post-transcriptional processing, resulting in very slow tales (re-
sponse times typically measured in tens of minutes to hours). This restricts their
use in systems where faster response to environmental signals is nsecleds

1As of this writing; divide by a factor of two for every two years after thélxation date.
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Figure 1.28: Expression of a protein using an inducible mi@m[16]. (a) The circuit
diagram indicates the DNA sequences that are used to congtaupart (chosen from the
BioBrick library). (b) The measured response of the systemgtep change in the inducer
level (HSL).

rapid detection of a chemical signal or fast response to changes in theairdgavi-
ronment of the cell. In addition, existing methods for biological circuit debiyre
limited modularity (reuse of circuit elements requires substantial redesigm-or tu
ing) and typically operate in very narrow operating regimes (e.g., a singtgesp
grown in a single type of media under carefully controlled conditions). Euth
more, engineered circuits inserted into cells can interact with the hostisngan
and have other unintended interactions.

As an illustration of the dynamics of synthetic devices in use today, Fiha&
shows a typical response of a genetic element to an inducer mold@llén this
circuit, an external signal of homoserine lactone (HSL) is applied at tineearedt
the system reaches 10% of the steady state value in approximately 15 mirniges. T
response is limited in part by the time required to synthesize the output protein
(GFP), including delays due to transcription, translation and folding. Simise
is the response time for the underlying “actuator”, circuits that are condpaise
feedback interconnections of such genetic elements will typically oper&telét
times slower speeds. While these speeds are appropriate in many appli@tions
regulation of steady state enzyme levels for materials production), in the tontex
of biochemical sensors or systems that must maintain a steady operatingnpoint
more rapidly changing thermal or chemical environments, this response tinee is to
slow to be used as arifective engineering approach.

By comparison, the inpfdgutput response for the signaling componeri.igoli
chemotaxis is shown in Figuke29[87]. Here the response of the kinase CheA is
plotted in response to an exponential ramp in the ligand concentration. The re
sponse is extremely rapid, with the timescale measured in seconds. Thisaapid r
sponse is implemented by conformational changes in the proteins involved in the
circuit, rather than regulation of transcription or other slower processes
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Figure 1.29: Responses Bf coli signaling network to exponential ramps in ligand con-
centration. (a) A simplified circuit diagram for chemotaxdhowing the biomolecular pro-
cesses involved in regulating flagellar motion. (b) Timegoesses of the “sensing” subsys-
tem (from Shimizu, Tu and Berg; Molecular Systems Biolo@4 @), showing the response
to exponential inputs.

The field of synthetic biology has the opportunity to provide new appr@ache
to solving engineering and scientific problems. Sample engineering appligation
include the development of synthetic circuits for producing biofuels, @trsitive
chemical sensors, or production of materials with specific propertiesrénaurzed
to commercial needs. In addition to the potential impact on new biologically engi-
neered devices, there is also the potential for impact in improved unddirsjef
biological processes. For example, many diseases such as cand&ar&imson’s
disease are closely tied to kinase dysfunction. Our analysis of robsteinsy of
kinases and the ability to synthesize systems that support or invalidate balogic
hypotheses may lead to a better systems understanding of failure modesdhat le
to such diseases.

1.6 Further Reading

There are numerous survey articles and textbooks that provide more di@téite
ductions to the topics introduced in this chapter. In the field of systems bidlugy,
textbook by Alon B] provides a broad view of some of the key elements of mod-
ern systems biology. A more comprehensive set of topics is covered iedkatr
textbook by Klipp p5], while a more engineering-oriented treatment of modeling
of biological circuits can be found in the text by Myei&l]. Two other books that
are particularly noteworthy are Ptashne’s book on the plid@&] and Madhani’s
book on yeastq1], both of which use well-studied model systems to describe a
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general set of mechanisms and principles that are present in méensedt types
of organisms.

Several textbooks and research monographs provide excellentreesdor
modeling and analysis of biomolecular dynamics and regulation. J. D. Msirray
two-volume text 9] on biological modeling is an excellent reference with many
examples of biomolecular dynamics. The textbook by Phillips, Kondev and The
riot [76] provides a quantitative approach to understanding biological systems, in
cluding many of the concepts discussed in this chapter. Coli8tygives a detailed
description of mechanisms transcriptional regulation.

The topics in dynamical systems and control theory that are briefly intesuc
here are covered in more detail in AMOS][to which this text is a supplement.
Other books that introduce tools for modeling and analysis of dynamictdrags
with applications in biology include J. D. Murray’s teX@9] and the recent text by
and Ellner and Guckenheimezg].

Synthetic biology is a rapidly evolving field that includes mantfedent sub-
areas of research, but few textbooks are currently available. Irptwfie area of
biological circuit design that we focus on here, there are a numberaaf garvey
and review articles. The article by Baketral.[7] provides a high level description
of the basic approach and opportunities. Recent survey and revjgviaclude
Voigt [99] and Khalil and Collins $3].



Chapter 2

Dynamic Modeling of Core Processes

The goal of this chapter is to describe basic biological mechanisms in a way tha
can be represented by simple dynamical models. We begin the chapter with a dis
cussion of the basic modeling formalisms that we will utilize to model biomolecu-
lar feedback systems. We then proceed to study a number of core ggeaeithin

the cell, providing diferent model-based descriptions of the dynamics that will
be used in later chapters to analyze and design biomolecular systems.clike fo
in this chapter and the next is on deterministic models using ordinéireintial
eqguations; Chapterdescribes how to model the stochastic nature of biomolecular
systems.

PrerequisitesReaders should have some basic familiarity with cell biology, at the
level of the description in Sectioh.2 (see also Appendid), and a basic under-
standing of ordinary dierential equations, at the level of Chapter 2 of AM08.

2.1 Modeling Techniques

In order to develop models for some of the core processes of the cellilwead

to build up a basic description of the biochemical reactions that take platgdinc

ing production and degradation of proteins, regulation of transcriptidriransla-

tion, intracellular sensing, action and computation, and intercellular sign&sg.

in other disciplines, biomolecular systems can be modeled in a varietyfefetit
ways, at many dferent levels of resolution, as illustrated in Fig@r& The choice

of which model to use depends on the questions that we want to ansdepad
modeling takes practice, experience, and iteration. We must properlyredphtu
aspects of the system that are important, reason about the appropriat@aemp
and spatial scales to be included, and take into account the types of simulation
and analysis tools be be applied. Models that are to be used for analyistige
systems should make testable predictions and provide insight into the underlyin
dynamics. Design models must additionally capture enough of the important be-
havior to allow decisions to be made regarding how to interconnect subsgste
choose parameters and design regulatory elements.

In this section we describe some of the basic modeling frameworks that we will
build on throughout the rest of the text. We begin with brief descriptions ef th
relevant physics and chemistry of the system, and then quickly move to models
that focus on capturing the behavior using reaction rate equations. Irhiqiec
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Figure 2.1: Diferent methods of modeling biomolecular systems.

our emphasis will be on dynamics with time scales measured in seconds to hours
and mean behavior averaged across a large number of molecules. \Weotdyic
briefly on modeling in the case where stochastic behavior dominates arrdadefe
more detailed treatment until Chapter

Statistical mechanics and chemical kinetics

At the fine end of the modeling scale depicted in FigRrg we can attempt to
model themolecular dynamicsf the cell, in which we attempt to model the indi-
vidual proteins and other species and their interactions via molecularfeceds

and motions. At this scale, the individual interactions between protein domains
DNA and RNA are resolved, resulting in a highly detailed model of the dynamics
of the cell.

For our purposes in this text, we will not require the use of such a detaitdel.s
Instead, we will start with the abstraction of molecules that interact with etehn o
through stochastic events that are guided by the laws of thermodynamicegdife b
with an equilibrium point of view, commonly referred to sististical mechanics
and then briefly describe how to model the (statistical) dynamics of the system
using chemical kinetics. We cover both of these points of view very briefte,h
primarily as a stepping stone to deterministic models, and present a more detailed
description in Chaptet.

The underlying representation for both statistical mechanics and cheniical k
netics is to identify the appropriataicrostatesof the system. A microstate cor-
responds to a given configuration of the components (species) in ttersysla-
tive to each other and we must enumerate all possible configurations betvece
molecules that are being modeled. As an example, consider the distributidiof R
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Figure 2.2: Microstates for RNA polymerase. Each micrestdtthe system corresponds
to the RNA polymerase being located at some position in tiie IEeve discretize the
possible locations on the DNA and in the cell, the microstaigrresponds to all possi-
ble non-overlapping locations of the RNA polymerases. fégtom Phillips, Kondev and
Theriot [76]; used with permission of Garland Science.

polymerase in the cell. It is known that most RNA polymerases are bound to the
DNA in a cell, either as they produce RNA or as theffue along the DNA in
search of a promoter site. Hence we can model the microstates of the RNA poly
merase system as all possible locations of the RNA polymerase in the cell, with the
vast majority of these corresponding to the RNA polymerase at some location o
the DNA. This is illustrated in Figurg.2

In statistical mechanics, we model the configuration of the cell by the pilebab
ity that the system is in a given microstate. This probability can be calculated bas
on the energy levels of theftlerent microstates. The laws of statistical mechanics
state that if we have a set of microstat@sthen the steady state probability that
the system is in a particular microstatés given by

1
P(q) = ze—Eq/(kB”, (2.1)

whereEg is the energy associated with the microsigteQ, kg is the Boltzmann
constant,T is the temperature in degrees Kelvin, afids a normalizing factor,
known as theartition function

7 = Z g Ea/(keT)
geQ

(These formulas are described in more detail in Chap)er
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By keeping track of those microstates that correspond to a given sysdém s
(also called amacrostatg we can compute the overall probability that a given
macrostate is reached. Thus, if we have a set of sgte§) that correspond to a
given macrostate, then the probability of being in theSset given by

quS e Eq/(kBT)

Z Qe—Eq/(kBT) (22)

P(S) = Z g Ea/(keT) _

qu

This can be used, for example, to compute the probability that some RNA poly-
merase is bound to a given promoter, averaged over many indepeadeples,
and from this we can reason about the rate of expression of the pondiag
gene. More details and several examples will be illustrated in Chdpter

Statistical mechanics describes the steady state distribution of microstates, but
does not tell us how the microstates evolve in time. To include the dynamics, we
must consider thehemical kineticof the system and model the probability that
we transition from one microstate to another in a given period of timeqlcep-
resent the microstate of the system, which we shall take as a vector of mthger
represents the number of molecules of a specific types in given confangar
locations. Assume we have a set\freactionsR;, j = 1,..., M, with ¢; represent-
ing the change in staigassociated with reactioR;. We describe the kinetics of
the system by making use of tipgopensity function gq,t) associated with reac-
tion R;, which captures the instantaneous probability that at timesystem will
transition between statpand stateg + &;.

More specifically, the propensity function is defined such that

aj(g,t)dt = Probability that reactiof®; will occur between time
and timet + dt given that the microstate

We will give more detail in Chaptetregarding the validity of this functional form,
but for now we simply assume that such a function can be defined foystars.

Using the propensity function, we can keep track of the probability distribu-
tion for the state by looking at all possible transitions into and out of the curre
state. Specifically, giveR(qg,t), the probability of being in statgat timet, we can
compute the time derivativeP(qg,t)/dt as

dpP M
@0 = J;(aj (a-£€)P@-¢j.1) - 3j(@P(a.1))- (2.3)

This equation (and its many variants) is callede¢hemical master equatidCME).

The first sum on the right hand side represents the transitions into the $tate
some other statg-¢; and the second sum represents that transitions out of the
stateq. The variable; in the sum ranges over all possible reactions.
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Clearly the dynamics of the distributid{q, t) depend on the form of the propen-
sity functionsa;(q). Consider a simple reaction of the form

Ri:A+B— AB
R, :AB — A +B.

A+B=—=AB

(2.4)

We assume that the reaction takes place in a well-stirred volaraad let the
configurationgy be represented by the number of each species that is present. The
forward reactiorRs is a bimolecular reaction and we will see in Chaptahat it

has a propensity function

k
ai(e) = 55 Nane.

wherek; is a parameter that depends on the forward reactionparahdng are
the number of molecules of each species. The reverse re&gtism unimolecular
reaction and we will see that it has a propensity function

ar(0) = Krnag,

wherek; is a parameter that depends on the reverse reactionsgnd the number
of molecules of AB that are present.

If we now letq = (na,Nng,Nag) represent the microstate of the system, then we
can write the chemical master equation as

dP
a(nA, Ng,Nag) = krNag P(Na — 1,ng — 1,nag + 1) — kinang P(Na, Ng, Nag)-

The first term on the right hand side represents the transitions into the tateros

g = (na,Ng,Nag) and the second term represents the transitions out of that state.
The number of dterential equations depends on the number of molecules of

A, B and AB that are present. For example, if we start with 1 molecules of A, 1

molecule of B, and 3 molecules of AB, then the possible states and dynamics are

0o =(1,0,4) dPp/dt = 3k;P1

a1 =(2,1,3) dPy/dt = 4k, Py — 2(ks/ Q)P

02=(3,2,2) dP,/dt = 3k;P1 — 6(ki/Q)P2

g3 =(4,3,1) dPs/dt = 2k, P, — 12(k;/Q)P3

s = (5,4,0) dP4/dt = 1k, P3 — 20(;/Q)P4,
whereP; = P(q;,t). Note that the states of the chemical master equation are the
probabilities that we are in a specific microstate, and the chemical master @quatio

is alinear differential equation (we see from equati¢h3 that this is true in
general).

The primary diference between the statistical mechanics description given by equa-
tion (2.1) and the chemical kinetics description in equati2r8)is that the master
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equation formulation describes how the probability of being in a given midesta
evolves over time. Of course, if the propensity functions and energislave mod-
eled properly, the steady state, average probabilities of being in a giveostaite
should be the same for both formulations.

Reaction rate equations

Although very general in form, the chemical master equatidfessifrom being a

very high dimensional representation of the dynamics of the system. Wesskall

in Chapter4 how to implement simulations that obey the master equation, but in
many instances we will not need this level of detail in our modeling. In particula
there are many situations in which the number of molecules of a given species
is such that we can reason about the behavior of a chemically reactitegnsys
by keeping track of theoncentrationof each species as a real number. This is
of course an approximation, but if the number of molecules fEBcsently large,

then the approximation will generally be valid and our models can be dramatically
simplified.

To go from the chemical master equation to a simplified form of the dynam-
ics, we begin by making a number of assumptions. First, we assume that we can
represent the state of a given species by its concentraiipf?, whereny is the
number of molecules of A in a given volungg We also treat this concentration
as a real number, ignoring the fact that the real concentration is quaurftizelly,
we assume that our reactions take place in a well-stirred volume, so thatelod ra
interactions between two species is solely determined by the concentratithes of
species.

Before proceeding, we should recall that in many (and perhaps mostjiaits
inside of cells, these assumptions a@ particularly good ones. Biomolecular
systems often have very small molecular counts and are anything but weld.mixe
Hence, we should not expect that models based on these assumptioluspsTe
form well at all. However, experience indicates that in many cases the foas
of the equations provides a good model for the underlying dynamics auoe: lnee
often find it convenient to proceed in this manner.

Putting aside our potential concerns, we can now proceed to write theniyga
of a system consisting of a set of specigsiS 1,...,n undergoing a set of reac-
tionsR;, j=1,...,m. We write x; = [Sj] = ng /Q for the concentration of speciés
(viewed as a real number). Because we are interested in the casethdruenber
of molecules is large, we no longer attempt to keep track of every possible co
figuration, but rather simply assume that the state of the system at anytigneen
is given by the concentrationg. Hence the state space for our system is given by
x € R" and we seek to write our dynamics in the form of fietential equation

dx
Z_f
dt (x.6),
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wheref : R" - R" describes the rate of change of the concentrations as a function
of the instantaneous concentrations @mdpresents the parameters that govern the
dynamic behavior.
To illustrate the general form of the dynamics, we consider again the €ase o
basic bimolecular reaction
A+B—=AB.

Each time the forward reaction occurs, we decrease the number of mal@fule
A and B by 1 and increase the number of molecules of AB (a separate specie
by 1. Similarly, each time the reverse reaction occurs, we decrease thenafmb
molecules of AB by one and increase the number of molecules of A and B.

Using our discussion of the chemical master equation, we know that the likeli-
hood that the forward reaction occurs in a given intedtak given byas(q)dt =
(ks/Q)nangdt and the reverse reaction has likelihamdq) = k;nag. It follows that
the concentration of the complex AB satisfies

[AB](t+dt)—[AB](t) = E(nag (t +dt)/Q—nag(t)/€)
= (as(q—£r.t) - ar(Q))/Q-dt
= (Kinang/Q% — kiag /Q) dt
= (ki[Al[B] ~ ki[AB] )dt,

in which E(x) denotes the expected valueofTaking the limit asdt approaches
zero (but remains large enough that we can still average across multpteores,
as described in more detail in Chap#rwe obtain

d
giAB] = ki[Al[B] —ki[AB].

In a similar fashion we can write equations to describe the dynamics of A and
B and the entire system of equations is given by

d dA
G[Al = K[AB] - K[AI[B] Gt = KC-kiA-B
d dB
Bl =k[AB] ~K([AIB]  or  —==kC-kiAB
dgt[AB] = ke[A][B] — ki [AB] ‘jj—ct: = kA B—k.C,

whereC = [AB], A =[A], and B = [B]. These equations are known as tmass
action kineticor thereaction rate equationfor the system. The parametdgsand
k, are called theate constantsind they match the parameters that were used in the
underlying propensity functions.

Note that the same rate constants appear in each term, since the rate of pro-
duction of AB must match the rate of depletion of A and B and vice versa. We
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adopt the standard notation for chemical reactions with specified ratesréed
the individual reactions as

K ,
A+BSAB.  AB S A+B,

whereks andk; are the reaction rates. For bidirectional reactions we can also write

Ky
A+B = AB.

ke
Itis easy to generalize these dynamics to more complex reactions. For example
if we have a reversible reaction of the form

k
A+2B=2C+D,
kr

where A, B, C and D are appropriate species and complexes, then tamigfor
the species concentrations can be written as

d%A: k/C2-D—k¢A-B?, dﬂtc = 2k¢A- B - 2k,C?- D,
q d (2.5)
—B=2kC?-D-2kA- B, —D =k¢A-B?—kC2.D.
dt dt
Rearranging this equation, we can write the dynamics as
A -1 1
d|B| |-2 2| (kiA-B?
dt|C| |2 -2 [erZ-D]' (26
D 1 -1

We see that in this decomposition, the first term on the right hand side is a matrix
of integers reflecting the stoichiometry of the reactions and the second term is
vector of rates of the individual reactions.

More generally, given a chemical reaction consisting of a set of sp&ies
i=1,...,nand a set of reactionR;, j = 1,...,m, we can write the mass action

kinetics in the form d
X
a - NV(X)’

whereN € R™M is the stoichiometry matriXor the system and(x) € R™ is the
reaction flux vectarEach row ofv(x) corresponds to the rate at which a given
reaction occurs and the corresponding column of the stoichiometry matrig-cor
sponds to the changes in concentration of the relevant species. Asalveeshin
the next chapter, the structured form of this equation will allow us to exsionge

of the properties of the dynamics of chemically reacting systems.
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Sometimes, the following notation will be used to denote birth and death of
species
ks ke
00— A A—0.
We attach to the first reaction theffdirential equation

dA
_k
TR

and to the second reaction we attach tHeedéntial equation

dA
2o kLA
dt rs

From a physical point of view, these reactions simplify the representatiome
complex processes, such as production of proteins or degradatigoteiirs due
to proteases.

Example 2.1(Covalent modification of a protein)Consider the set of reactions
involved in the phosphorylation of a protein by a kinase, as shown in Fiydie
Let S represent the substrate, K represent the kinase arepBsent the phospho-
rylated (activated) substrate. The sets of reactions illustrated in Flglirare

Ri: K+ATP— KIATP Rs: S:KIATP— S*:K:ADP
R: K:ATP — K +ATP Rs: S":KIADP — S*+K:ADP
Rs;: S+KATP — S:KIATP R;: K:ADP — K+ADP
Rs: S:KIATP— S+KATP Rs: K+ADP— K:ADP.
We now write the kinetics for each reaction:
vy = kg [K][ATP] , V5 = kg [SIKIATP],
Vo = ko [KIATP], Ve = ks [S™:K:ADP],
vz = k3 [S][K:ATP], v7 = k7[K:ADP],
Vs = ks [S:K:IATP], vg = kg [K][ADP] .

We treat [ATP] as a constant (regulated by the cell) and hence do reutlglir
track its concentration. (If desired, we could similarly ignore the conceortraf
ADP since we have chosen not to include the many additional reactions ih whic
it participates.)

The kinetics for each species are thus given by

%[K] =—Vi+Vo+V7—Vg %[K:ATP] =Vi—Vo—V3+Vy
d d

a[S] =—-V3+Vy4 a[S.K.ATP] =V3—V4—V5
d ST=wv E[S*'K'ADP] =V5— V|

de> e de> T

d d
a[ADP] =V7—V\g a[K:ADP] =Vg—V7+Vg.
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Collecting these equations together and writing the state as a vector, we obtain

K] -1 1 0 0 0 0 1 -1 (wn
[K:ATP] 1 -1 1 -2 0 0 0 O0f]|w
[S] 0O 0 -1 1 0 0 0 0w
d|[SKATP]| |0 0 1 -1 -1 0 0 Of]|va
dt [S*] 1o o o 0 O 1 o0 of]w|’
[S*:K:ADP] 0O 0 O O 1 -1 0 0w
[ADP] O 0 O O O O 1 -1|(|w
[K:ADP] O 0 0O O O 1 -1 1) \vg
~——
X N V(X)
which is in standard stoichiometric form. \Y

Reduced order mechanisms

In this section, we look at the dynamics of some common reactions that occur in
biomolecular systems. Under some assumptions on the relative rates ofirgactio
and concentrations of species, it is possible to derive reduced oquiessions for

the dynamics of the system. We focus here on an informal derivation aéléneant
results, but return to these examples in the next chapter to illustrate thaitlee sa
results can be derived using a more formal and rigorous approach.

Simple binding reactionConsider the reaction in which two species A and B bind
reversibly to form a complex €AB:

A+B=C, (2.7)
d

wherea is the association rate constant amds the dissociation rate constant.
Assume that B is a species that is controlled by other reactions in the celland th
the total concentration of A is conserved, so tAatC = [A] + [AB] = A If the
dynamics of this reaction are fast compared to other reactions in the celthinen
amount of A and C present can be computed as a (steady state) fundBon of
To compute howA andC depend on the concentration of B at the steady state,

we must solve for the equilibrium concentrations of A and C. The rate equatio
C is given by

dC

i aB- (Aypt—C)—-dC.
By settingdC/dt = 0 and lettingKy := d/a, we obtain the expressions

_ (B/Ka)Awt Ao Pt
"~ (B/Kg)+1’ " (B/Kg)+1'

The constanKy is called thadissociation constartf the reaction. Its inverse mea-
sures the fiinity of A binding to B. The steady state value @fincreases wittB
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while the steady state value #fdecreases with8 as more of A is found in the
complex C.

Note that wherB ~ Ky, A and C have roughly equal concentration. Thus the
higher the value oKy, the moreB is required forA to form the complex CKq4
has the units of concentration and it can be interpreted as the concentfaBi@t
which half of the total number of molecules of A are associated with B. Toegef
a highKgy represents a weakfmity between A and B, while a lowq represents a
strong dinity.

Cooperative binding reactiolAssume now that B binds to A only after dimeriza-
tion, that is, only after binding another molecule of B. Then, we have tlzatre
tions 2.7) become

k

B+BB,  B,+A %c, A+C = A,
2

in which B, denotes the dimer of B. The corresponding ODE model is given by

dd—Btz = 2kyB? - 2k, Bz — aB; - (Aot — C) +dC, %—(t: =By (Aot—C)-dC.

By settingdB,/dt = 0, dC/dt = 0, and by definindl, := k»/k;, we we obtain that

B, = BZ/ Ko, C= (BZ/ Kd)Atot A Atot

" (Bo/Ka)+ 1 " (Bo/Kg)+ 1’
so that
B2/(KmKg) +1 B2/(KmKg) +1°

As an exercise, the reader can verify that if B binds to A only as a compjlex o
copies of B, that is,

k
B+B+---+B\—‘—15n, Bn+A;C, A+C = Ao,
ko d

then we have that

_ AtotBn/(KmKd) Atot

C= =——
B"/(KmKg) +1’ B"/(KmKg) +1

In this case, one says that the binding of B to Aa®perativevith cooperativityn.
Figure2.3shows the above functions, which are often referred tadikhéunctions

Another type of cooperative binding is when a species R can bind A otdy af
another species B as bound. In this case, the reactions are given by

B+A%C, R+C:=C’, A+C+C = Aop.
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0 05 1 15 2 0 05 1 15 2
B"(K K, B"(K K,

Figure 2.3: Steady state concentrations of the complex Coénf as functions of the
concentration of B.

Proceeding as above by writing the ODE model and equating the time dezivativ
to zero to obtain the equilibrium, one obtains

1
K/Kq

1
C= K—dB(Atot—C—C’), (04 R(Awi—C-C').

By solving this system of two equations for the unknov@sandC, one obtains

_ (RB/(KdK{)Awt 3 (B/Ka)Asot
" (B/Ka)(R/Kj+ 1)+ 1’ ~ (B/Kg)(R/Kj+ 1)+ 1

’

In the case in which B would first bind cooperatively with other copies ofitd w
cooperativity n, the above expressions would modify to

_ (RBY)/(KaK{km) Aot co (B"/Kgkm)Asot
" (B"/Kakm)(R/K,+ 1)+ 1’ " (B"/Kakm)(R/K,+ 1)+ 1

’

Competitive binding reactiorfFinally, consider the case in which two species B
and B both bind to A competitively, that is, they cannot be bound to A at the same
time. Let C, be the complex formed between Bnd A and let Cbe the complex
formed between Band A. Then, we have the following reactions

’

Bi+A=C, B+A=C, A+Cat+C =Ag,
d a

for which we can write the dynamics as

dC d
d_'[a =aBa- (Awt—Ca—Cr)—dCq, d_(ir =aBr- (Aot —Ca—Cr) -d'Cr.

By setting the derivatives to zero, we obtain that

Ca(aBa +d) = aBa(Awt - Cr), Cr(@Br +d) = & B (Awt - Ca),
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so that
_ Br(Awi—Ca) BaBr \ K&
C = Br+Ka s Ca(Ba‘f'Kd Br+Ké)_Ba(Br+Ké Ao,
from which we finally obtain that
_ (Ba/ Kd)Atot _ (Br/Ké)Atot
®7 (Ba/Ka)+ (B /K +1° " (B/KY) + (Ba/Ka) + 17

In this derivation, we have assumed that botfaBd B bind A as monomers. If
they were binding as dimers, the reader should verify as an exercesEXsecises)
that they would appear in the final expressions with a power of two.

Note also that in this derivation we have assumed that the binding is competi-
tive, that is, B and B cannot simultaneously bind to A. If they were binding simul-
taneously to A, we would have included another complex comprisipdgpBand
A. Denoting this new complex by’Cwe would have added also the two additional
reactions

=

a _, a ’
ca+8r?c, Cr+Ba?C

and we would have modified the conservation law for Alg = A+ C,+C, +C’.
The reader can verify as an exercise (see Exercises) that in thia caiged term
B B, would appear in the equilibrium expressions.

Enzymatic reactionA general enzymatic reaction can be written as

a _k
E+ S? C—>E+P,
in which E is an enzyme, S is the substrate to which the enzyme binds to form
the complex C, and P is the product resulting from the modification of the sub-
strate S due to the binding with the enzyme E. The paranazei®referred to as
association rate constantas dissociation rate constant, dnds the catalytic rate
constant. Enzymatic reactions are very common and we will see specificdastan
of them in the sequel, e.g., phosphorylation and dephosphorylation meacTioe
corresponding ODE system is given by

ds dC

o = —aE-S+dC gr - aEs-(d+kC,
9 sE-s+dcikC P _ic

dt dt

The total enzyme concentration is usually constant and denotég,fgo that
E + C = Eior. Substituting in the above equatioBs= E;o;— C, we obtain

dd—f = —a(Etot—C)-S+dC+ kC, C(lj_? = a(Etot—C)~S—(d+k)C,

d—S = —a(Etot—C)-S+dC, C;—I? =

kC.
dt c
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This system cannot be solved analytically, therefore assumptions hemeubed

in order to reduce it to a simpler form. Michaelis and Menten assumed that the
conversion of E and S to C andce versais much faster than the decomposition

of C into E and P. This approximation is called tpgasi-steady state assumption
This assumption can be translated into the condition

a,d>k

on the rate constants.

Under this assumption and assuming tBat E (at least at time 0; see Exam-
ple 3.195, C immediately reaches its steady state value (WRils still changing).
The steady state value 6fis given by solvinga(Eiot — C)S — (d + K)C = 0 for C,
which gives

Etots . d+k
= , with Kp=—,
S+Knm w m a

in which the constanky, is called theMichaelis-Menten constantetting Vimax =
kEo, the resulting kinetics

dP_, EwS S

dt ~ S+Ky TS iKy,

is calledMichaelis-Menten kinetics

The constan¥/ax is called the maximal velocity (or maximal flux) of modifi-
cation and it represents the maximal rate that can be obtained when the eéazyme
completely saturated by the substrate. The valu€p€orresponds to the value of
S that leads to a half-maximal value of tieproduction rate. When the enzyme
complex can be neglected with respect to the total substrate arSgunte have
thatSi; ~ S+ P, so that the above equation can be also re-written as
dP  VmaxStot— P)

dt ~ (Stot—P)+Km’

When K, < Siot and the substrate has not yet been all converted to product,
that is, Syt — P > K, we have that the rate of product formation becomes approx-
imately dP/dt ~ Vinax Which is the maximal speed of reaction. Since this rate is
constant and does not depend on the reactant concentrations, iaiky usterred
to zero-order kineticsWhenSy,; — P > K, the system is said to operate in the
zero-order regime (see Figu?ed).

2.2 Transcription and Translation

In this section we consider the processes of transcription and translatiog,the
modeling techniques described in the previous section to capture the fumddme
dynamic behavior. Models of transcription and translation can be donesaitedy
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Figure 2.4: Enzymatic reactions. (a) Transfer curve shgulire production rate foP as a
function of substrate concentration. (b) Time plots of pdP(t) for different values of
the Km. In the plotsS;o; = 1 andVmax= 1. The black plot shows the behavior for a value
of Km much smaller that the total substrate amo8gt. This corresponds to a constant
product formation rate (at least before the substrate isstiall converted to product, that
is, Stot — P = Kpy)), which is referred taero-order kinetics

of levels of detail and which model to use depends on the questions thataote w

to consider. We present several levels of modeling here, starting witihyade-
tailed set of reactions and ending with highly simplified models that can be used
when we are only interested in average production rate of proteins tategtdong

time scales.

The basic reactions that underly transcription include theusion of RNA
polymerase from one part of the cell to the promoter region, binding offéA R
polymerase to the promoter, isomerization from the closed complex to the open
complex, and finally the production of mMRNA, one base pair at a time. To @ptur
this set of reactions, we keep track of the various forms of RNA polyreezesord-
ing to its location and state: RNARepresents RNA polymerase in the cytoplasm
and RNAP! is non-specific binding of RNA polymerase to the DNA. We must sim-
ilarly keep track of the state of the DNA, to insure that multiple RNA polymerases
do not bind to the same section of DNA. Thus we can write 'Ni#x the promoter
region, DNA?' for theith section of a geng (whose length can depend on the de-
sired resolution) and DNAfor the termination sequence. We write RNAP:DNA to
represent RNA polymerase bound to DNA (assumed closed) and RNA®’ BN
indicate the open complex. Finally, we must keep track of the mRNA that is pro-
duced by transcription: we write mRNAo represent an mRNA strand of length
and assume that the length of the gene of intereNt is

Using these various states of the RNA polymerase and locations on the DNA,
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we can write a set of reactions modeling the basic elements of transcription as

Binding to DNA: RNAF® — RNAPY
Diffusion along DNA: RNAP = RNAPP
Binding to promoter: RNAP+DNAP — RNAP:DNAP
Isomerization: RNAP:DNAR —= RNAP:DNA°
Start of transcription: RNAP:DNA— RNAP:DNA%! + DNAP
mRNA creation: RNAP:DNA! — RNAP:DNA%? + mRNA}
Elongation: RNAP:DNA™!+mRNA]

— RNAP:DNA%*2 1 mRNA"
Binding to terminator: RNAP:DNAN + mRNAN !

— RNAP:DNA'+ mRNA!
Termination: RNAP:DNA — RNAP®

Degradation: mRNA — 0.

(2.8)
This reaction has been written for prokaryotes, but a similar set of reaatauld
be written for eukaryotes: the mainfidirences would be that the RNA polymerase
remains in the nucleus and the mRNA must be spliced and transported to the cy-
tosol. Note that at the start of transcription we “release” the promotermeyjitne
DNA, thus allowing a second RNA polymerase to bind to the promoter while the
first RNA polymerase is still transcribing the gene.

A similar set of reactions can be written to model the process of translation.
Here we must keep track of the binding of the ribosome to the mRNA, translation
of the mRNA sequence into a polypeptide chain, and folding of the polypeptide
chain into a functional protein. Let Ribo:mRN&S indicate the ribosome bound
to the ribosome binding site, Ribo:mRMA' the ribosome bound to ttith codon,
Ribo:mRNAS®"and Ribo:mRNA™P for the start and stop codons, and PR@ a
polypeptide chain consisting omino acids. The reactions describing translation
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can then be written as

Binding to RBS:  Riba- MRNAT®S = Ribo:mRNAR®®
Start of translation:  Ribo:mRNAPS — Ribo:mRNAT"+ mRNATBS
Polypeptide chain creation: Ribo:mRNA"— Ribo:mRNAM? + PPC!
Elongationj = 1,...,M: Ribo:mRNAM(*Y  ppC
— Ribo:mRNAM(2) 4 ppci+
Stop codon:  Ribo:mRNH + PPC"~1
— Ribo:mRNA™ P+ ppc
Release of mRNA:  Ribo:mRNE® — Ribo
Folding: PPC' — protein
Degradation: proteir— 0.

As in the case of transcription, we see that these reactions allow multiple ribesome
to translate the same piece of MRNA by freeing up the ribosome binding site (RBS)
when translation begins.

As complex as these reactions are, they are still missing many important ef-
fects. For example, we have not accounted for the existencefteudseof the 5’
and 3’ untranslated regions (UTRs) of a gene and we have also lefadats error
correction mechanisms in which ribosomes can step back and release madhco
amino acid that has been incorporated into the polypeptide chain. We haveftls
out the many chemical species that must be present in order for a vafittg o
reactions to happen (NTPs for mRNA production, amino acids for proteityzr
tion, etc). Incorporation of thesdtects requires additional reactions that track the
many possible states of the molecular machinery that underlies transcription an
translation.

Given a set of reactions, the various stochastic processes thatyudetiled
models of transcription and translation can be specified using the stochadgtmo
ing framework described briefly in the previous section. In particulangusither
models of binding energy or measured rates, we can construct pitydfenstions
for each of the many reactions that lead to production of proteins, inclutimg
motion of RNA polymerase and the ribosome along DNA and RNA. For many
problems in which the detailed stochastic nature of the molecular dynamics of the
cell are important, these models are the most relevant and they are civsoede
detail in Chapted.

Alternatively, we can move to the reaction rate formalism and model the reac-
tions using diferential equations. To do so, we must compute the various reaction
rates, which can be obtained from the propensity functions or measyvedraen-
tally. In moving to this formalism, we approximate the concentrations of various
species as real numbers, which may not be accurate since some sp&ties e
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low molecular counts in the cell. Despite all of these approximations, in many sit-
uations the reaction rate equations are perfectlficent, particularly if we are
interested in the average behavior of a large number of cells.

In some situations, an even simpler model of the transcription, translation and
folding processes can be utilized. Let the “active” mMRNA be the mRNA that is
available for translation by the ribosome. We model its concentration through a
simple time delay of length™ that accounts for the transcription of the ribosome
binding site in prokaryotes or splicing and transport from the nucleuskargu
otes. If we assume that RNA polymerase binds to DNA at some average/radé (
includes both the binding and isomerization reactions) and that transcripkies ta
some fixed time (depending on the length of the gene), then the process-of tra
scription can be described using the delayadential equation

(L_T =apo-um-ym  m(t)=e*" mt-7"), (2.9)

wherem is the concentration of mRNA for protein Ry is the concentration of
active mRNA,ap is the rate of production of the mRNA for protein f#js the
growth rate of the cell (which results in dilution of the concentration) aigithe
rate of degradation of the mRNA. Since the dilution and degradation termg are o
the same form, we will often combine these terms in the mRNA dynamics and
use a single cdicienty. The exponential factor accounts for dilution due to the
change in volume of the cell, wheges the cell growth rate. The constantgo and
v capture the average rates of production and degradation, which ingpemd on
the more detailed biochemical reactions that underlie transcription.

Once the active mRNA is produced, the process of translation can bebdeksc
via a similar ordinary dterential equation that describes the production of a func-
tional protein:

C:TT = Bpom’ —6P,  P(t) =¥ P(t—1"). (2.10)

Here P represents the concentration of the polypeptide chain for the préé&in,
represents the concentration of functional protein (after folding). gdrameters
that govern the dynamics apg o, the rate of translation of mRNA4, the rate

of degradation and dilution of P; and, the time delay associated with folding
and other processes required to make the protein functional. The ext@bnerm
again accounts for dilution due to cell growth. The degradation and dilutiom te
parameterized by, captures both rate at which the polypeptide chain is degraded
and the rate at which the concentration is diluted due to cell growth.

It will often be convenient to write the dynamics for transcription and transla
tion in terms of the functional MRNA and functional proteinfidrentiating the



2.3. TRANSCRIPTIONAL REGULATION 61

expression fom*, we see that

dr(®)  no o,
T (2.11)

= & (@po—ym(t—1™) = @po—ym'(t),

whereapg = e‘/”map,o. A similar expansion for the active protein dynamics yields

f
dzt(t) — Bpom'(t—7")— 6P 1), (2.12)
where,B_p,o = e‘/”fﬁp,o. We shall typically use equation&.(1) and .12 as our
(reduced) description of protein folding, dropping the supersdrighd overbars
when there is no risk of confusion.

In many situations the time delays described in the dynamics of protein pro-
duction are small compared with the time scales at which the protein concentration
changes (depending on the values of the other parameters in the systsomhl
cases, we can simplify our model of the dynamics of protein productionfeven

ther and write
dm dP

[ —ym, P
dr ~ 4poTY dt

Note that we here have dropped the superscrifad f since we are assuming
that all mRNA is active and proteins are functional and dropped the averix
andp since we are assuming the time delays are negligible.

Finally, the simplest model for protein production is one in which we only keep
track of the basal rate of production of the protein, without including the mRNA
dynamics. This essentially amounts to assuming the mRNA dynamics reach steady
state quickly and replacing the firstfidirential equation in equatiog.0.3 with its
equilibrium value. This is often a good assumption as mRNA degration is usually
about 100-1000 times faster than protein degradation (see TableThus we
obtain

= Bpom-JP. (2.13)

— =B-6P, =Bpo—.

This model represents a simple first order, lineéfiedéntial equation for the rate of
production of a protein. In many cases this will be &isiently good approximate
model, although we will see that in many cases it is too simple to capture the

observed behavior of a biological circuit.

2.3 Transcriptional Regulation

The operation of a cell is governed in part by the selective expressigenas in
the DNA of the organism, which control the various functions the cell is able to
perform at any given time. Regulation of protein activity is a major compookent
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the molecular activities in a cell. By turning genes on afidand modulating their
activity in more fine-grained ways, the cell controls the many metabolic patyway
responds to external stimuli,ftgrentiates into dierent cell types as it divides, and
maintains the internal state of the cell required to sustain life.

The regulation of gene expression and protein activity is accomplisheagtnro
a variety of molecular mechanisms, as discussed in Settland illustrated in
Figurel.9. At each stage of the processing from a gene to a protein, there are po-
tential mechanisms for regulating the production processes. The remafrtties
section will focus on transcriptional control and the next section on t&elqmst-
transcriptional control mechanisms. We will focus on prokaryotic mechamis

Transcriptional regulation refers to the selective expression of dgnastivat-
ing or repressing the transcription of DNA into mRNA. The simplest such-regu
lation occurs in prokaryotes, where proteins can bind to “operatormegia the
vicinity of the promoter region of a gene anfilect the binding of RNA polymerase
and the subsequent initiation of transcription. A protein is callegpaessorif it
blocks the transcription of a given gene, most commonly by binding to the DNA
and blocking the access of RNA polymerase to the promoterdivator oper-
ates in the opposite fashion: it recruits RNA polymerase to the promoter ragtbn
hence transcription only occurs when the activator (protein) is present.

We can capture this set of molecular interactions by modifying the RNA poly-
merase binding reactions in equati@n§j. For a repressor (Rep), we simply have
to add a reaction that represents the repressor bound to the promoter:

Repressor binding: DNA+ Rep= DNA:Rep

This reaction acts to “sequester” the DNA promoter site so that it is no longer
available for binding by RNA polymerase (which requires DNAThe strength
of the repressor is reflected in the reaction rate constants for the septesding
reaction. Sometimes, the RNA polymerase can bind to the promoter even when the
repressor is bound, usually with lower forward rate. In this case, firessor still
allows some transcription even when bound to the promoter and the rapiesso
said to be “leaky”.

The modifications for an activator (Act) are a bit more complicated, since we
have to modify the reactions to require the presence of the activatorebefdhA
polymerase can bind. One possible mechanism is

Activator binding: DNAP + Act = DNA:Act
Diffusion along DNA: RNAP = RNAPP
RNAP binding w activator: RNAP + DNA:Act = RNAP:DNA°
+DNA:Act
RNAP binding wout activator: RNAP + DNAP = RNAP:DNAP.
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Here we model both the enhanced binding of the RNA polymerase to the promote
in the presence of the activator, as well as the possibility of binding without a
activator. The relative reaction rates determine how strong the activatadithe
“leakiness” of transcription in the absence of the activator.

A simplified version of the dynamics can be obtained by assuming that tran-
scription factors bind to the DNA rapidly, so that they are in steady stategsonfi
urations. In this case, we can make use of the reduced order modelbeésar
Section2.1 We can consider the competitive binding case to model that a strong
repressor prevents RNAP to bind to the DNA. In the sequel, we removeuthe s
perscripts “p” from the DNA and RNAP for simplifying notation. The steathtes
amount of the complex of DNA bound to the repressor will have the exjpress

([Rep)/Ka)[DNA]

[DNA:Rep] = 1+[Rep]/Kq+[RNAP]/K},

and the steady state amount of free DNA (not bound to the repressobevgien

by
([RNAP]/K/)[DNA]

~ 1+[RNAP]/K) +[Rep)/Kq’

in which K, is the dissociation constant of RNAP from the promoter whilgis
the dissociation constant of Rep from the promoter. The complex C, haWAdPR
bound, will allow transcription, while the complex [DNA:Rep] will not allow tran-
scription as it is not bound to RNAP.

The transcription rate will be proportional @, so that the rate of change of
MRNA is described by

d[mRNA] (IRNAP]/K{)[DNA]

C = [DNA] — [DNA:Rep]

dt  “OT+[RNAP]/K;+[Rep)/Kq ~YImRNAJ,
in which the production rate is given by
([RNAP]/K/) [DNA]

f([Repl)= a0 [RNAP]/K/, + [Repl/Kq’

If the repressor binds to the promoter with cooperatiritthe above expression
becomes (see Secti@nl)
(IRNAP]/K)[DNA]

f(IRep])= a0y [RNAP]/K/, + [Repl'/ (Kakm)’

in which kq, is the dissociation constant of the reaction of n molecules of Rep
binding together. The functiof is usually denoted by the standard Hill function
form

a
f([Rep])= W,
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in whicha andK are implicitly defined. In practice we can assume that [RNAR>
1 since there is plenty of RNAP in the cell. As a consequence, we obtain the ex
pressionsr = ao[DNA] and K = (Kgkm[RNAP]/K/)*",

Finally, if the repressor allows RNAP to still bind to the promoter at a small rate
(leaky repressor), the above expression modifies to the new fornSéstion2.1)

f([Rep])= a, (2.14)

a
L+ (Repy/K)" "
in which « is the basal expression level when the promoter is fully repressed, usu-
ally referred to as “leakiness”.

To model the production rate of mMRNA in the case in which an activator Act
binds to the promoter with cooperativity n, we can consider first the cashiochw
RNAP binds only when the activator is already bound to the promoter. This ca
be well modeled by a cooperative binding scenario as illustrated in Seztlon
According to this scenario, the concentration of the complex [RNAP:BINA
given by

([RNAP][Act]")/ (KK jkm) [DNA]

[RNAP-DNA® = € = 1 Ac™ Kakn) (1 + [RNAPT/K7)"

in which K} is the dissociation constant of RNAP with the complex of DNA bound
to Act andKy is the dissociation constant of Act with DNA. Since the production
rate of mMRNA is proportional to [RNAP:DN#, we have that
d [MRNA
% = f([Act]) —y[MRNA]
with

([RNAP][Act]")/(KgKikm)[DNA] - o([Act] /K)"

HUAC) = oo TACT K k) L+ [RNAPTK) ~ 1+ (ACH /K™

in which @ andK are implicitly defined. Since in practice [RNAR/ > 1, we
have thatr = ag[DNA] and K = (KK kn/[RNAP])Y/".

The right-hand side expression is in the standard Hill function form. Figire
shows the shape of these Hill functions both for an activator and assprelf we
assume that RNAP can still bind to DNA even when the activator is not bound,
have an additional basal expression ratgo that the new form of the production
rate is given by

a([Act]/K)" _
—— ta.
1+ ([Act] /K)"
Example 2.2(Repressilator) As an example of how these models can be used, we

consider the model of a “repressilator,” originally due to Elowitz and Leif®&}
and briefly described in Sectidn5. The repressilator is a synthetic circuit in which

f([Act]) =
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Figure 2.5: Hill function for an activator (left) and a repser (right).

three proteins each repress another in a cycle. This is shown schemaitidatly
ure2.6a where the three proteins are TetR;l and Lacl.

We can model this system using three copies of the repression fun2tioh, (
with Rep replaced by the appropriate combination of TetR, cl and Laclsidie
of the system is then given by= (Mretr, Pretr, Mels Pets Miacls Pract)- The full dy-
namics become

Figure 2.6b shows the traces of the three protein concentrations for (symmetric)

Lacl M —ymy,
Mretr 1+ (Pract/Kiac)" TetR~ Y MretR
Pretr BTetRMretR— 0 Pretr
dTetR —
+ Qg —y M
E M 1+ (pTetR/KTetR)n o= I (2_15)
dt Pel Bei Mgl — 6 P
Y ac—yML
M ac 1+ (pa/Ka)" Lacl =Y MLacl
PLaci BLaciMLacl — 0 PLacl

parametersi =2, a = 0.5, K =6.25x 1074, ag=5x10%,y=5.8x1073,8=0.12
ands = 1.2 x 1073 with initial conditionsx(0) = (1,200Q0,0,0,0) (following [27]).

\%

As indicated earlier, many activators and repressors operate in thenpeesf
inducers. To incorporate these dynamics in our description, we simplytb sl
the reactions that correspond to the interaction of the inducer with the méleva
protein. For a negative inducer, we can simply add a reaction in which theend
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Figure 2.6: The repressilator genetic regulatory netw@kA schematic diagram of the
repressilator, showing the layout of the genes in the pldshait holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simpledabfor the repressilator, show-
ing the oscillation of the individual protein concentraiso (Figure courtesy M. Elowitz.)

binds the regulator protein andfectively sequesters it so that it cannot interact
with the DNA. For example, a negative inducer operating on a repressia be
modeled by adding the reaction

Rep+Ind = Rep:Ind

Since the above reactions are very fast compared to transcription,ahdyecas-
sumed at the quasi-steady state. Hence, the free amount of repressmarttstill

bind to the promoter can be calculated by writing the ODE model corresponding
to the above reactions and by setting the time derivatives to zero. This yields to

[Rep] = - [Repjot ’

+[Ind] /Ky
in which [Rep]ot = [Rep]+ [Rep:Ind] is the total amount of repressor (bound and
not bound to the inducer) any is the dissociation constant of Ind binding to
Rep. This expression of the repressor concentration needs to kgwaldsn the
expression of the production rat{Rep]).

Positive inducers can be handled similarly, except now we have to modify the
binding reactions to only work in the presence of a regulatory proteindtuan
inducer. For example, a positive inducer on an activator would have tligieth
reactions

Inducer binding: Act Ind = Act:Ind
Activator binding: DNAP + Act:Ind == DNA:Act:Ind
Diffusion along DNA: RNAF = RNAPP
RNAP binding w activator: RNAP + DNA:Act:Ind
= RNAP:DNA° + DNA:Act:Ind.
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Figure 2.7: Autoregulation of gene expression. The thremiits control the expression of
gene regulation using (a) unregulated, (b) negative agdaton and (c) positive autoreg-
ulation.

Hence, in the expression of the production r&gAct]), we should substitute in
place of [Act] the concentration [Act:Ind]. This concentration, in turm ba sim-

ply computed at the quasi-steady state by writing the ODE model for the inducer
binding reaction and equating the time derivatives to zero. This yields

[Act] [Ind]/Kg

[Act:Ind] = L+ Ind]/Kq

in which [Actlior = [Act] +[Act:Ind] and K is the dissociation constant of the bind-
ing of Ind with Act.

Example 2.3(Autoregulation of gene expressiorgonsider the three circuits shown
in Figure2.7, representing a unregulated gene, a negatively autoregulated gene an
a positively autoregulated gene. We want to model the dynamics of the pfotein
starting from zero initial conditions for the thredtf@érent cases to understand how
the three dterent circuit topologiesfeect dynamics.

The dynamics of the three circuits can be written in a common form,

dma dA
T - - = - 2.16
g = [(A)—yMa, G =Pma-oA (2.16)
wheref (A) has the form
A/K)"
funred A) = as, frepres€A) = 1 (C,:\B/K)n +ao, factivatd A) = ]C_yi((A// K))n @B

We choose the parameters to be

ap=1/3 ag=1/2, o =5x10"%,
B =20log(2y120, v =1log(2)/120, 6 =log(2)/600q,
K =10, n=2,
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Figure 2.8: Simulations for autoregulated gene expresériNon-normalized expression
levels. (b) Normalized expression.

corresponding to biologically plausible values. Note that the parameteth@sen
so thatf(0) ~ ag for each circuit.

Figure 2.8a shows the results of the simulation. We see that initial increase
in protein concentration is identical for each circuit, consistent with ouiceho
of Hill functions and parameters. As the expression level increasesftéws of
positive and negative are seen, leading tedént steady state expression levels.
In particular, the negative feedback circuit reaches a lower steaidyestaression
level while the positive feedback circuit settles to a higher value.

In some situations, it makes sense to ask whethé&erdnt circuit topologies
have diferent properties that might lead us to choose one over another. Inse ca
where the circuit is going to be used as part of a more complex pathway, it may
make the most sense to compare circuits that produce the same steady state con
tration of the protein A. To do this, we must modify the parameters of the individu
circuits, which can be done in a number offdient ways: we can modify the pro-
moter strengths, degradation rates, or other molecular mechanisms reifhetbied
parameters.

The steady state expression level for the negative autoregulation @admec
adjusted by using a stronger promoter (modeledpyor ribosome binding site
(modeled byg). The equilibrium point for the negative autoregulation case is given
by the solution of the equations

aK" B
m = —, = =Mpe.
he TSR P

These coupled equations can be solvediige andAe, but in this case we simply
need to find valuesy andg’ that give the same values as the unregulated case. For
example, if we equate the mRNA levels of the unregulated system with that of the
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negatively autoregulated system, we have

K"+ Al a
s .
vo

ag _ 1( CI%K”

by K”+A2+a/o) = apg=(ag—o)

whereAg is the desired equilibrium value (which we choose using the unregulated
case as a guide).

A similar calculation can be done for the case of positive autoregulation, in
this case decreasing the promoter parametgrand ag so that the steady state
values match. A simple way to do this is to leayg unchanged and decreasg
to account for the positive feedback. Solving &gy to give the same mRNA levels
as the unregulated case yields

n

KN+ AL

’
ag=ap—aa

Figure2.8 shows simulations of the expression levels over time for the modi-
fied circuits. We see now that the expression levels all reach the samg stat
value. The negative autoregulated circuit has the property that itesdleh steady
state more quickly, due to the increased rate of protein expressionAvisesmall
(ag > a). Conversely, the positive autoregulated circuit has a slower rate-of ex
pression than the constitutive case, since we have lowered the rateteinhpr-
pression wherd is small. The initial higher and lower expression rates are com-
pensated for via the autoregulation, resulting in the same expression |etehdy
state. v

We have described how the Hill function can model the regulation of a gene
by a single transcription factor. However, genes can also be regulatedltiple
transcription factors, some of which may be activators and some may lesyepr
sors. In this case, the promoter controlling the expression of the gented aa
combinatorial promoter. The mRNA production rate can thus take severatfo
depending on the roles (activators versus repressors) of the saramscription
factors [B]. In general, the production rate resulting from a promoter that takes as
input transcription factors;for i € {1,...,N} will be denotedf (py, ..., pn).

Thus, the dynamics of a transcriptional module is often well captured by the
ordinary dtferential equations

d d
d—? = f(Pr,.... Pn) —yymy, d—? = Bymy — by Py, (2.17)
wherem, denotes the concentration of mMRNA translated by gerke constants
vy andéy incorporate the dilution and degradation processespgamsla constant
that establishes the rate at which the mRNA is translated.

For a combinatorial promoter with two input proteins, an activatpapd a
repressor p in which the activator cannot bind if the repressor is bound to the
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promoter, the functionf (pa, pr) can be obtained by employing the competitive
binding in the reduced order models of Sectd. In this case, assuming the
activator has cooperativity n and the repressor has cooperativity raptaé the
expression

(Pa/Ka)"
1+ (pa/Ka)" + (pr/Ke)™

Here, we have thaKa = (KmaKa Y™, K = (KmrKg)®™, in which Kq 4 and
Kg,r are the dissociation constants of the activator and repressor, respedtom
the DNA promoter site, whil&,a andKy,, are the dissociation constants for the
cooperative binding reactions for the activator and repressorectgely. In the
case in which the activator is “leaky”, that is, some transcription still oceuen
when there is no activator, the above expression will be modified to

(Pa/Ka)" i
1+ (pa/Ka)"+ (pr/Ke)™
in which «a is the basal transcription rate when no activator is present. If such a

basal rate can still be repressed by the repressor, the abovesapnemdifies to
the form

f(Pa, pr) = @

f(Pa. pr) =

a(pa/Ka)"+a
1+ (pa/Ka)" + (pr /Kp)™

Example 2.4(Activator-repressor clock)As an example of where combinatorial
promoters are used, we illustrate in this example an activator-represshiticétc
was fabricated if. coliand is shown in Figur2.9(a) [5].

The activator A is self activated and is also repressed by the repiRss@nce,
the promoter controlling the expression of A is a combinatorial promoter. The
model describing this system, assuming the mRNA dynamics have reached its
guasi-steady state, is given by

dA _ (XA(A/ Ka)n + C?A _
dt ~ (A/K) "+ (R/K)M+1

f(Pa. pr) =

dR _ QR(A/ Ka)n + C7R

oA G T (A/K)"+1

-J0rR

Figure2.9(b) shows the behavior of the activator and the repressor concengatio
We will come back to this design in Chaptrin which we will use the tools
introduced in ChapteB to establish parameter conditions under which the system
admits a periodic solution. \%

Finally, a simple regulation mechanism is based on altering the half life of a pro-
tein. Specifically, the degradation rate of a protein is determined by the anwunts
proteases present, which bind to recognition sites (degradation tag#)eande-
grade the protein. Degradation of a protein X by a protease Y can thendeledo
by the following two-step reaction

a _ k
X+Y?C—>Y,
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Figure 2.9: The activator-repressor clock network. (a) Aesoatic diagram of the circuit.
(b) A simulation of a simple model for the clock, showing treeitiation of the individual
protein concentrations. In the simulation, we have chdsgr K, = 1, ap = ar = 100,
ap=04,ar=0.004,6p=1,6r=0.5,n=2, andm=4.

in which C is the complex of the protease bound to the protein. By the end of the
reaction, protein X has been degraded to nothing, so that sometimes thisrreac
is simplified to X— 0.

2.4 Post-Transcriptional Regulation

In addition to regulation of expression through modifications of the praufasan-
scription, cells can also regulate the production and activity of proteins etda
lection of other post-transcriptional modifications. These include methauedf
ulating the translation of proteins, as well deating the activity of a protein via
changes in its conformation, as shown in Figlre

Allosteric modifications to proteins

In allosteric regulation, a regulatory molecule, called allosteffiector, binds to a
site separate from the catalytic site (active site) of an enzyme. This bindiisgsa
a change in the three dimension conformation of the protein, turrir{grdurning
on) the catalytic site (Figur2.10.

An allosteric €fector can either be an activator or an inhibitor, just like inducers
work for activation or inhibition of transcription factors. Inhibition can eithe
competitive or not competitive. In the case of competitive inhibition, the inhibitor
competes with the substrate for binding the enzyme; that is, the substratmdan b
to the enzyme only if the inhibitor is not bound. In the case of non-competitive



72 CHAPTER 2. DYNAMIC MODELING OF CORE PROCESSES

./coreproc/figures/Allosteric-diagram.eps

Figure 2.10: In allosteric regulation, a regulatory moledinds to a site separate from the
catalytic site (active site) of an enzyme. This binding esus change in the three dimen-
sion conformation of the protein, turningfdor turning on) the catalytic site. Permission
pending.

inhibition, the substrate can be bound to the enzyme even if the latter is bound to
the inhibitor. In this case, however, the product may not be able to formayr
form at a lower rate, in which case, we have partial inhibition.

Activation can be absolute or not. Specifically, an activator is absoluta tilee
enzyme can bind to the substrate only when bound to the activator. Othgettveise
activator is not absolute. In this section, we derive the expressiotisdqroduc-
tion rate of the active protein in an enzymatic reaction in the two most common
cases: when we have a (non-competitive) inhibitor | or an (absolutepsmtiA of
the enzyme.

Allosteric inhibition
Consider the standard enzymatic reaction
a _k
E+S=C->S"+E
d

in which enzyme E activates protein S and transforms it to the active forines

| be a (non-competitive) inhibitor of enzyme E so that when E is bound to I, the
complex EIl can still bind to inactive protein S, however, the complex EIS is non
productive, that is, it does not produce the active protéinTBen, we have the
following additional reactions:

Eil =l Cil=-EIS ElLS=EIS
ko ko d

with the conservation laws (assumiSgy is in much greater amounts th&g,)
Ewt=E+C+EI+EIS, Sipt=S+S"+C+EIS~S+S".
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Hence, the production rate & is given bydS*/dt = kC. Since we have that
ki,k_,a,b> k, we can assume all the complexes to be at the quasi steady state.
This gives
a K, 1
EIS=-EI- El=—E-I =—S-E
S g S, i El C KmS ,

in whichKn, = (d+K)/ais the Michaelis-Menten constant. Using these expressions,
the conservation law for the enzyme, and the fact éiidt~ 1/K,, we obtain

E_ Etot
(1/Kg+1)(1+S/Km)’

with Kg=k_/k,,

so that
S Etot

C:S+Km1+I/Kd

and, as a consequence,

ds’ 1 S
dt klEt°‘(1+ I/Kd)(S+ Km)'

Using the conservation law f@, this is also equivalent to

das* CWE 1 (Stot—S%)
dt T 1/Kg \ (Swer=S7) + K/

In our earlier derivations of the Michaelis-Menten kinetGs.x= ki Eiot Was called

the maximal speed of modification, which occurs when the enzyme is completely
saturated by the substrate (Sectdd). Hence, the fect of a non-competitive
inhibitor is to decrease the maximal speed of modification by a fag{a1l /Kg).

Another type of inhibition occurs when the inhibitor is competitive, that is, when
is bound to E, the complex EI cannot bind to protein S. Since E can either bind to
| or S (not both), | competes against S for binding to E. See Exelcise

Allosteric activation

In this case, the enzyme E can transform S to its active form only when itiischo
to A. Also, we assume that E cannot bind S unless E is bound to A (from there
name absolute activator). The reactions are therefore modified to be

E+A == EA
k-

and . )
EA+S? EAS— S*+EA,
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with conservation laws
Etot =E+EA+EAS Stot ~S+S".

The production rate of’Ss given bydS*/dt = KEAS Assuming as above that the
complexes are at the quasi-steady state, we have that

E-A S-EA
EA= — EAS=
Kd ’ Km ’
which, using the conservation law for E, leads to
Etot A S
AS/Kn(sA/Ky 2Md EAS (A+ Kd)(S+Km) tot

Hence, we have that

ds* A S
dt kE““(A+ Kd)(S+ Km)‘

Using the conservation law for S, this is also equivalent to

ﬁ _KE, A (Stot—S7)
dt M A+Kg)\(Swi-S) +Km)

The dtect of an absolute activator is to modulate the maximal speed of modification
by a factorA/(A+ Kqy).

Figure 2.11 shows the behavior of the enzyme activity as a function of the
allosteric dfector. As the dissociation constant decreases, that isfiihéyaof the
effector increases, a very small amount @ieetor will cause the enzyme activity
to be completely “on” in the case of the activator and completefiy ‘ia the case
of the inhibitor.

Another type of activation occurs when the activator is not absoluteighahen
E can bind to S directly, but cannot activate S unless the complex ES fidst Ain
(see Exercis@.12).

Covalent modifications to proteins

Covalent modification is a post-translational protein modification ttatts the
activity of the protein. It plays an important role both in the control of metabolis
and in signal transduction. Here, we focusrewersiblecycles of modification, in
which a protein is interconverted between two forms thé&edin activity either
because offéects on the kinetics relative to substrates or for altered sensitivity to
effectors.

At a high level, a covalent modification cycle involves a target protein X, an
enzyme Z for modifying it, and a second enzyme Y for reversing the modifica-
tion (see Figur.12. We call X* the activated protein. There are often allosteric
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Figure 2.11: Enzyme activity in the presence of allostefieaors (activators or in-
hibitors). The red plots show the enzyme activity in the pnee of an inhibitor as a
function of the inhibitor concentration. The green plotswthe enzyme activity in the
presence of an activator as a function of the activator aunagon. The dierent plots

show the &ect of the dissociation constant.

effectors or further covalent modification systems that regulate the activityeof th
modifying enzymes, but we do not consider this added level of complexity. he
There are several types of covalent modification, depending on theotygpeti-
vation of the proteinPhosphorylatioris a covalent modification that takes place
mainly in eukaryotes and involves activation of the inactive protein X by adfditio
of a phosphate group, RQn this case, the enzyme Z is calle¢tiaasewhile the
enzyme Y is callegphosphataseAnother type of covalent modification, which is
very common in both procaryotes and eukaryotesi@thylation Here, the inactive
protein is activated by the addition of a methyl group,,CH

The reactions describing this system are given by the following two enzymatic
reactions, also called a two step reaction model,

a k a k:
Z+X =C, 5 X"+Z, Y+X* = C, 5 X+Y.
d1 d2

The corresponding ODE model is given by

z X
O(!It = —Z- X+ (kg +d1)C, OIdt =kiC1—aY- X" +dC,
X
dd_t — —a12 X+ dlcl + k2C2, d(;z = azY' X — (dZ + k2)C2’
Y
_d(il =aZ-X—(dy+kp)Cy, ?j_t = —aY- X" +(d2 + k2)Ca.

Furthermore, we have that the total amounts of enzymes Z and Y are wedser
Denote the total concentrations of Z and Y By, Yiot, respectively. Then, we
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Figure 2.12: (Left) General diagram representing a covaterdification cycle. (Right)
Detailed view of a phoshorylation cycle including ATP, AD#hd the exchange og the
phosphate group “p”.

phosphatase

have also the conservation ladis- C1 = Ziot andY + C, = Yior. We can thus reduce
the above system of ODE to the following one, in which we have substiited
Ztot — C]_ andyY = Ytot — CzZ

dC
i = 21(Zot=C1) X~ (d1 +k1)Cy.
dx: .

g = KaC1—aa(Yiot—C2)- X"+ dCo,
dC
5 = 82(Yor=C2) X' = (d +k)Ca.

As for the case of the enzymatic reaction, this system cannot be analytically
integrated. To simplify it, we can perform a similar approximation as done for the
enzymatic reaction. In particular, the complexgsa@d C, are often assumed to
reach their steady state values very quickly becayst,ay, do> > ki, k. There-
fore, we can approximate the above system by substitutingCfaand C, their
steady state values, given by the solutions to

a1(Ztot—C1)- X~ (d1 +k1)C1 =0

and
a(Yiot—C2) - X* = (d2 + k2)C2 = 0.

By solving these equations, we obtain that

YtotX* . d2+k2
Co=———, with Kpo=
2T X + Kz’ m2
and ZiotX dy +k
Cy= 2o with Ky = 270
! X+ Km,l’ m1 a
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As a consequence, the ODE model of the phosphorylation system camrlbe w
approximated by

dx ZintX YiotKm2 YiotX*
=k —a X+dpy———,
0t X Kt X 1 Kmz X+ Koo
which, considering thad,Km 2 — dz = ko, leads finally to
dx: ZiotX YiotX™
— = -k ) 2.18
dt " X+Kmi  2X +Kmo (2.18)

We will come back to the modeling of this system after we have introduced sin-
gular perturbation theory, through which we will be able to perform a fbamnal-
ysis and mathematically characterize the assumptions needed for approximating
the original system by the first order ODE mod2l1g). In the model of equation
(2.18), we have thaX = X, — X* — C1 — C, by the conservation laws. A standard
assumption is that the amounts of enzymes are small compared to the amount of
substrate, so thaf ~ X — X* [37].

Ultrasensitivity

One relevant aspect of the response of the covalent modification cytdertput is
the sensitivity of the steady state characteristic curve. Specifically, ahaiteters
affect the shape of the steady state response is a crucial question. Toidettre
steady state characteristics, which shows how the steady stdtecbhinges when
the input stimulugZ,ot is changed, we setX*/dt = 0 in equation 2.18). Using the
approximationX ~ Xt — X*, denotingVy := KiZiot, V2 1= kaYiot, K1 1= Km1/Xeots
andKj := Km2/Xiot, We obtain

oV X* /Yot Ky + (1= X/ Xeor))
C Va2 (Kot X/ Xio) (1= X/ Xeot)

We are interested in the shape of the steady state cun¥é a$ function ofy.
This shape is usually characterized by two key parameters: the resjmEissent,
denotedr, and the point of half maximal induction, denotggd. Lety, denote the
value ofy corresponding to having* equala% of the maximum value oK*
obtained foty = oo, which is equal t0%o. Then, the response daeient is defined
as

(2.19)

R:= Yoo
Y10
and measures how switch-like the response is (Figut8. WhenR — 1 the re-
sponse becomes switch-like. In the case in which the steady state chiatiadter
a Hill function, we have thax* = y"/(K +y"), so thaty, = (¢/(100— )™ and
as a consequence

>

log(81)

- (1/n) i -
R=(81)""", or equivalentlyn 0@ °
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Figure 2.13: Steady state characteristic curve showingetlesance of the response coef-
ficient for ultrasensitivity. A®R — 1, the points/ o andygg tend to each other.

Hence, whem = 1, that is, the characteristic is of the Michaelis-Menten type, we
have thatR = 81, while whenn increasesR decreases. Usually, when> 1 the
response is referred to a#trasensitive The formulan = log(81)/log(R) is often
employed to estimate tragparent Hill cogficientof a dose response curve (the in-
putoutput steady state characteristic curve obtained from experimentakdata)
R can be calculated for any response curve directly from the data points.

In the case of the current system, from equat®i9, we have that

(K1+0.1) 0.9 (K1+0.9)01
90=————— and yjo= —T—"—,
(K2+0.9) 01 (K2+O.1) 0.9

so that _ _
(Kl + 0.1)(K2 + O.l)

R=81 .
(K2 + 0.9)(K1 + 09)

As a consequence, Wh(§1, IZZ > 1, we have thaR — 81, which gives a Michaelis-
Menten type of response. If instel(d, K, < 0.1, we have thaR — 1, which cor-
responds to a theoretic Hill ciigientn > 1, that is, a switch-like response (Figure
2.14). In particular, if we have, for exampl&; = K, = 1072, we obtain an appar-
ent Hill codficient grater than 13. This type of ultrasensitivity is usually referred
to aszero-order ultrasensitivityThe reason of this name is due to the fact that
whenKp1 is much smaller than the amount of protein substigteve have that
Ziot X/ (Kma + X) = Zior. Hence, the forward modification rate is “zero order” in the
substrate concentration (no free enzyme is left, all is bound to the substrate
One can study the behavior also of the point of half maximal induction

to find that ask, increases, it decreases and thakasncreases, it increases.
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Figure 2.14: Steady state characteristics of a covalenification cycle as a function of
the Michaelis-Menten constarks andKo.

Phosphotransfer systems

Phosphotransfer systems are also a common motif in cellular signal transductio
These structures are composed of proteins that can phosphorylateteac In
contrast to kinase-mediated phosphorylation, where the phosphateisiasoally
ATP, in phosphotransfer the phosphate group comes from the dookeirpitself
(Figure2.15. Each protein carrying a phosphate group can donate it to the next
protein in the system through a reversible reaction. In this section, weiltkesc
module extracted from the phosphotransferase sys#ém [

Let X be a transcription factor in its inactive form and let be the same tran-
scription factor once it has been activated by the addition of a phospraip.g
Let Z* be a phosphate donor, that is, a protein that can transfer its phospbape g
to the acceptor X. The standard phosphotransfer reactB#jscan be modeled
according to the two-step reaction model

Z"+X \L‘—l C; ixuz,
ko kg
in which G, is the complex of Z bound to X bound to the phosphate group. Ad-
ditionally, protein Z can be phosphorylated and proteindéphosphorylated by
other phosphotransfer interactions. These reactions are modeled ateprreac-
tions depending only on the concentrations of Z aridtKat is,

z% 7, x*Bx

Protein X is assumed to be conserved in the system, thédjiss X+ Cy + X*.
We assume that protein Z is produced with time-varying productionk{ftend
decays with raté. The ODE model corresponding to this system is thus given by
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Figure 2.15: (a) Diagram of a phosphotransfer system. (@teirs X and Z are transferring
the phosphate group p to each other.

the equations

Z
% = K(t) — 6Z + kaCp — Ky X*Z — 112
dC X C
- = klxtot(l— - —l)Z* - k3C1 - kzc]_ + k4X*Z
dt Xiot  Xtot
dz* X+ C (2.20)
= m1Z +koCp — Ky Xeot [ 1— ——1)2*
dt ! e tOt( Xiot  Xtot
ax* .
dt = k3C1—k4X*Z—ﬂ2X*.

Sample simulation results when the input is a time-varying (periodic) stimulus are
shown in Figure2.16 The outputX* well “tracks” the input stimulus by virtue of
the fast phosphotransfer reactions.

This model will be considered again in Chapter 7 when the phosphotraysfe
tem is proposed as a possible realization of an insulation deviceffier lsystems
from retroactivity éfects.

2.5 Cellular subsystems

In the previous section we have studied how to model a variety of coregses
that occure in cells. In this section we consider a few common “subsystems” in
which these processes are combined for specific purposes.

Intercellular signaling: MAPK cascades

The Mitogen Activated Protein Kinase (MAPK) cascade is a recurreattstral
motif in several signal transduction pathways (FigRr&7). The cascade consists
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time

Figure 2.16: Output response of the phosphotransfer sysitma step signak(t) = 1+
0.5sin(t). The parameters are given 8y 0.01, Xiot =5000,k; = ko =kz=kg=m1 =72 =
0.01.

of a MAPK kinase kinase (MAPKKK), denotedXa MAPK kinase (MAPKK),
denoted X, and a MAPK, denoted X MAPKKKSs activate MAPKKSs by phospho-
rylation at two conserved sites and MAPKKs activate MAPKSs by also piargp
lation at conserved sites. The cascade relays signals from the plasmaanembr
to targets in the cytoplasm and nucleus. It has been extensively studiedaat
eled. Here, we provide two flierent models. First, we build a modular model by
viewing the system as the composition of single phosphorylation cycle modules
(whose ODE model was derived earlier) and double phosphorylaticle ayod-
ules, whose ODE model we derive here. Then, we provide the full listaxftions
describing the cascade and construct a mechanistic ODE model frotohsahée

will then highlight the diference between the two derived models.

Double phosphorylation modeTonsider the double phosphorylation motif in Fig-
ure2.18 The reactions describing the system are given by

a1 ky " az ko «
E,+X=C, —» X" +E, E,+X=C, — X" +E,,
dl dZ
X*+E, = C;—= X" +E,, E,+ X" =C, > X"+E,
d: d;

With conservation laws
E1+C1+C3=Eyor, Eo+Co+Cs=Eptor,
Xiot = X+ X"+ X +C1+Co+C3+Cyq = X+ X" + X,

in which we have assumed the the total amounts of enzymes are small compared
to the total amount of substrate as we have explained earlier. §ige> k; and
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X, Xo* Xy **

T o

Figure 2.17: Schematic representing the MAPK cascade slthrae levels: the first one
has a single phosphorylation, while the second and the timed have a double phospho-
rylation.

a’,d’ > k', we can assume that the complexes are at the quasi-steady state (i.e.,
Ci = 0), which gives the Michaelis-Menten form for the amount of formed com-
plexes:

Ci=E " X Cs=E fa X
1= E1ltot KIX+ KX + KlKi’ 3 = Eiltot KiX+ Ky X* + KlKI’
Kj X Ka X
C,=E 2 - CGa=E ’
2 2, tot K;X* + KX + KZK; 4 2,tot sz* + KoX* + Ksz

inwhichK; = (di + kj)/a; andK;" = (d’ +k)/a;" are the Michaelis-Menten constants
for the enzymatic reactions. Since the complexes are at the quasi stefgytsta
follows that

d .
a X = k1C1 - szz - k?;_c?, + kEC4,

d *% * *
d_t X = k1C3 - k2C4,
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Figure 2.18: Schematic representing a double phosphamwlaycle.E; is the input and
X** is the output.

from which, substituting the expressions of the complexes, we obtain that

d_. kXK — K XKq ks XK — ko XK
— X' = El,tot - E2,tot N o *

dt KiX+ KX+ KKy KEX* + KXo + KoK

d KiX* Kp X**
— X" =KE ~KE

dt TEHONGX + KX + KK 2 2 KX+ KX + KoK

in which X = Xior — X* — X**,

Modular model of MAPK cascades

In this section, to simplify notation, we denote “MAPK” by, XIn a modular com-
position framework, the output of one stage becomes an input to the nget sta
downstream of it. Hence, (}(becomes the input enzyme that activates the phos-
phorylation of X, and )(l becomes the input enzyme that activates the phospho-
rylation of X,. Let (ay,dy,Kyi) and @z, d2;, ko) be the association, dissociation,
and catalytic rates for the forward and backward enzymatic reactispectvely,

for the first cycle at stage< {0,1,2}. Similarly, let @7 ;,d};.k};) and @;,d;. K ;)

be the association, dissociation, and catalytic rates for the forward ahovaal
enzymatic reactions, respectively, for the second cycle at staffe 2}. Also, de-
note byKi; andKy; fori € {0, 1,2} the Michaelis-Menten constants of the forward
and backward enzymatic reactions, respectively, of the first cyclageis Sim-
ilarly, denoteK;; and K* for i € {1,2} be the Michaelis-Menten constants of the
forward and backward enzymatlc reactions, respectively, of thendecycle at
stagei. Let Pyt and P yo be the total amounts of the,Xand X, phosphatases,
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respectively. Then, the modular ODE model of the MAPK cascade is giyen b

d X, X5

— Xt = —=0__ _ _0

dt XO kl,O El,tot Xo+K1o k2,OP0,t0tX6+K20

d kit Xo Kiy Ky Xi Kia g Ky Kas Xi'kes X K3
dt 1 XOK 1 XK1 X +KiKT + 1t0tK* X;+Ka1 X" +K21K3 |

d X: K X;* K
w5k |k * 1 NL1 e 1 N1
dt prRal] 11 %o K7, Xa+Ky1 X;+K11K7 | ka1 Pl,tOtK* X[ +Ko1 X7 +K21K5 | (2.21)

E XE = X kioXo Kio=Kj, X5 Ko + K5, Koz X5'—ko2 X5 K3,
dt 2 = M1 KL, %Kiy XK, Kip © 1 2RGS0 K, , X6 +Ka K22
d X5 Kyz X5 Kaz

dt 2 =k X Ki, XotKiz X5+K7, Kiz —ka2 P2t0tK* X2+K22 X5 +K22 K3,
in which, letting Xo.tot, X1.tot @Nd Xz 10t represent the total amounts of each stage
protein, we haveXp = Xo ot — X3, X1 = Xy ot — Xj = X7" andXz = Xp ot — X5 = X57.

Mechanistic model of the MAPK cascade

We now give the entire set of reactions for the MAPK cascade of Figuréas
they are found in standard references (Huang-Ferrell md&gt [

k1.0

al,l k]_ 1

3k RN 3k
di1
ail k;.,l
Xo+X] = C; — X"+ X,
d*
11

kl 2

d

koo
Py+ Xy = Tzo C,— Xy +PR,

k;
x1+|=>lzc4i>xl+|31
%1 Ky

X]+P \——C — X +P;
2,1

« a2 k22
X5+P, - Cg— X, +P,

2,2

ok * a;"z kiz EE S * EE S a; k22
X7+ X5 = Cy — X5"+X] X5 +P—C10—>X +P,,
djT.Z d22

with conservation laws

Xotot = Xo+Xg+C1+C2+C3+Cs

Xitot= X1+ X[ +C3+ X" +C4+Cs5+Cg+C7+Cy
Xotot = Xo+ X5+ X5" +C7+Cg+Co+Cyp

Eitot = E1+C1, Potor = Po+C2

P1tot = P1+Cs4+Ce

P2tot = P2+ Cg + Cio.
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The corresponding ODE model is given by

d
a C1=a10E1 Xo—(d,0+ki0) C1

a Xo =k1,0C1+d20 Co—apo Po Xy + (dp1+ky1) Ca—agg X1 X
+(d, +Kp 1) Cs—ag; X X|

d
—Co=ap0 Po Xj—(d20+k2p) C2

dt

%Cg—a]_]_XlXO (dpg+ku1) Cs

C(Ijtxi—k11C3+d21C4 a1 Xy P1+dy;Cs—ay ) Xy Xg+k; 4 Co
%(_‘,4 =ap1 X] P1—(d21+ka1) Ca

;C5—%¢Xox* 117K 1) Cs

Stxi*_kilc5 81 X Prtdy; Co—ane X" X2

+ (d1’2 + k172) C7 - a1’2 X;_* X; + (d:T.Z + kl,2) Cg

d k%

dt
;Q—%ﬂgb(dﬁﬁﬁa

;&_ —ap5 X3 Py+ 02 Cg—al, X3 X3+, Co+Cao Kag
c?tCS—aZZXzPZ (d22+ko2) Cg

;xy_@gx a5, X5 P2 +d3, Cao

gtc =8, X" Xy = (dy 2+ Ky 5) Co
:cm_%gqumn+ggqo

Assuming as before that the total amounts of enzymes are much smaller than
the total amounts of substrateS; ot, Po.tot, P1.tots P2.tot < Xo.tots X1.tot, X2.tot), WE
can approximate the conservation laws as

Xotot & Xo+ X5 +Cz +Cs,
Xl,tot X X1+ XI +C3-+—XTF +C5+C7+Cg,

XZ,tot ~ Xo + X; + X;* +C7+ Cg.
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Using these and assuming that the complexes are at the quasi-steadyesiaite, w
tain the following functional dependencies:

Cy = f10X5, X3, X717, X5, X57), Co = f2(Xp),
Cs = f3(Xp, X1, X1, X5, X57), Cs = f5(Xp, X7),
C7 = (XL, X5, X5, X55), Co = fo(X1", X5).

The fact thatC7 depends oiX; and X" illustrates that the dynamics of the second

stage are influenced by those of the third stage. Similarly, the facCthdepends

on X7, X7*, X5, X5 indicates that the dynamics of the first stage are influenced by

those of the second stage and by that of the third stage. The phenonyerbith

the behavior of a “module” is influenced by that of its downstream clientdliscta

retroactivity, which is a phenomenon similar to impedance in electrical systems

and to back-fect in mechanical systems. It will be studied at length in Chapter 7.
This fact is in clear contrast with the ODE model obtained by modular compo-

sition, in which each stage dynamics depended upon the variables of theamps

stages and not upon those of the downstream stages. That is, frativege.21),

itis apparent that the dynamics ¥j (first stage) do not depend on the variables of

the second stagex{, X}, X;*). In turn, the dynamics ok} andX;* (second stage)

do not depend on the variables of the third stageendX"). Indeed modular com-

position does not consider the fact that the proteins of each stagesae-ty” in

the process of transmitting information to the downstream stages. This backwa

effect has been theoretically shown to lead to sustained oscillations in the MAPK

cascade§(]. By contrast, the modular ODE model of MAPK cascades does not

give rise to sustained oscillations.

Properties of the MAPK Cascade

The stimulus-response curve obtained with the mechanistic model predidisehat
response of the MAPKKK to the stimulls; to: is of the Michaelis-Menten type.
By contrast, the stimulus-response curve obtained for the MAPKK and KMAP
are sigmoidal and show high Hill cigients, which increases from the MAPKK
response to the MAPK response. That is, an increase ultrasensitivibgésved
moving down in the cascade (Figu2el9. These model observations persist when
key parameters, such as the Michaelis-Menten constants are chatteHur-
thermore, zero-order ultrasensitivityfects can be observed. Specifically, if the
amounts of MAPKK were increased, one would observe a higher appdiin
codficient for the response of MAPK. Similarly, if the values of #g for the re-
actions in which the MAPKK takes place were decreased, one would atsovab

a higher apparent Hill cdggcient for the response of MAPK. Double phosphory-
lation is also key to obtain a high apparent Hill fibi@ent. In fact, a cascade in
which the double phosphorylation was assumed to occur through a gnestie|
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Figure 2.19: Dose response of the MAPK cascade for evergsgigulations from the
model of BOQ].

(similar to single phosphorylation) predicted substantially lower apparentétill
efficients.

Additional topics to be added later: Review

1. Transport across the membrane

2. Membrane receptors, ligand binding, G-proteins

Exercises

2.1(BE 150, Winter 2011) Consider a cascade of three activatesy %> Z. Pro-

tein X is initially present in the cell in its inactive form. The input signal ofs,
appears at time=0. As a result, X rapidly becomes active and binds the promoter
of gene Y, so that protein Y starts to be produced atga®&hen Y levels exceed

a thresholK, gene Z begins to be transcribed and translated ayra# proteins

have the same degradatiditution ratea.
(&) What are the concentrations of proteins Y and Z as a function of time?
(b) What is the minimum duration of the pulSg such that Z will be produced?

(c) What is response time of protein Z with respect to the time of additi3)@f



88 CHAPTER 2. DYNAMIC MODELING OF CORE PROCESSES

2.2 (Hill function for a cooperative repressor) Consider a repressaibiinds to an
operator site as a dimer:

Rl: R+tR=—=R,
R2: R,+DNAP==R,:DNA
R3: RNAP+DNAP = RNAP:DNAP

Assume that the reactions are at equilibrium and that the RNA polymerase con
centration is large (so that [RNAP] is roughly constant). Show that the otioe
concentration of RNA:DNR to the total amount of DNADt, can be written as a

Hill function
[RNAP.DNA]  «

f(R) = =
( ) Dtot K+R2

and give expressions farandK.

2.3 (Switch-like behavior in cooperative binding) For a cooperative bindaag-
tion
k1 kf
B+B =B, By+tA=0C, and A+C=Aq,
ko K

the steady state values GfandA are

o kuAxB?
kM B2+ Kd ’

AvotKqg

and A= ————.
kMBz+Kd

Derive the expressions @f andA at the steady state when you modify these reac-
tions to

k Ky
B+B+..+B=B, B,+A=0C, and A+C=Aq:
ko ke
Make MATLAB plots of the expressions that you obtain and verify thah &s
creases the functions become more switch-like.

2.4 Consider the following modification of the competitive binding reactions:

K¢ k¢
B,+A=2C, B,+A=C,
ke ke

and _
ki _ ki
C+B,=C,andC+B,=C

kt k

with At = A+C +C +C’. What are the steady state expressionsAandC?
What information do you deduce from these expressions if A is a pronidéer,
is an activator protein, and C is the activaliXA complex that makes the gene
transcriptionally active?
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2.5 Consider the case of a competitive binding of an activator A and a repress
R with D and assume that before they can bind D they have to cooperatinely b
according to the following reactions:

kl k1
A+A+. . +tA=A,, R+R+..+R=R

m»
k2 k2

in which the complex A contains n molecules of A and the compley Bontains
m molecules of R. The competitive binding reactions with A are given by

a a
A,+D=C R,+D=C,
d d

andDy; = D+ C+C’. What are the steady state expression<fandD?

2.6 Assume that we have an activatof &1d a repressor protein. BMe want to
obtain an input function such that when a lot of B present, the gene is tran-
scriptionally active only if there is no Bwhen low amounts of Bare present, the
gene is transcriptionally inactive (with or without)BWrite down the reactions
among B, B,, and complexes with the DNA (A) that lead to such an input func-
tion. Demonstrate that indeed the set of reactions you picked leads to theddes
input function.

2.7 (BE 150, Winter 2011) Consider a positive transcriptional feedbagk ¢oon-
posed of two negative interactiosd Y andY 4 X.

(a) Write the ODEs for the system above. Assume that the two transgrpfioession
mechanisms have the same dynamics and both genes are degraded at tfadesame
0.2. Let the basal transcription rate beKl= 2, n = 2.

(b) To solve for the steady states, plot thdiclinesby solving‘(’j—’f =0 and‘fj—\{ =0
(i.e. solve forY = g;(X) where %X = 0 andY = go(X) where3¥ = 0 and plot both
solutions). The steady states are given by the intersections of the two raglclin

(c) Plot the time response of X and Y using the following two initial conditions:
(X(0).Y(0))=(1,4) and (41).

Next, plot the phase plane of the system ugipianein MATLAB. How do the
responses change with initial conditions? Describe a situation where thisftype
interaction would be useful.

2.8 Consider the phosphorylation reactions described in Se2ti§rbut suppose
that the kinase concentrati@nis not constant, but is produced and decays accord-

ing to the reaction Z?—f;_ 0. How should the system in equatidh 18 be modified?
t
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Use a MATLAB simulation to apply a periodic input stimulk&) using parame-

ter valueskear = kip = 1, kf = ki =k = ki = 10,0 = 0.01. Is the cycle capable of
“tracking” the input stimulus? If yes, to what extent? What are the tracking-p

erties depending on?

2.9 Another model for the phosphorylation reactions, referred to as opaate
action model, is given by ZX = X*+Z and Y+ X* = X +Y, in which the
complex formations are neglected. Write down the ODE model and comparing the
differential equation oK* to that of equation4.18), list the assumptions under
which the one step reaction model is a good approximation of the two step reactio
model.

2.10(Transcriptional regulation with delay) Consider a repressor or dotigt
modeled by a Hill functior-(B). Show that in the presence of transcriptional delay
7™M, the dynamics of the active mRNA can be written as

dn (1) _

_rm My
at e F(Bt-7")—ym".

2.11 (Competitive Inhibition) Derive the expression of the production ratév/of
in the presence of a competitive inhibitor I.

2.12 (Non-absolute activator) Derive the expression of the productionofaié
in the presence of a non-absolute activator A.

2.13(BE 150, Winter 2011) Consider the following netwokk— Y andX — X.

(a) Write the ODEs for the system above. Use basal expregsiensy = 2 and
activation cofficientsKx = 1, Ky = 2,n; = np = 2. The degradation cfiicients for
Xand Y are both 0.5.

(b) Plot the vector field using pplane. How many steady states do youvel¥ser

(c) Solve for the steady states of the system using the derived ODESsjdméze
system and do a stability analysis.



Chapter 3

Analysis of Dynamic Behavior

In this chapter, we describe some of the tools from dynamical systems edd fe
back control theory that will be used in the rest of the text to analyze asidjd
biological circuits, building on tools already described in AM08. We foceigion
deterministic models and the associated analyses; stochastic methods aia given
Chapterd.

PrerequisitesReaders should have a understanding of the tools for analyzing sta-
bility of solutions to ordinary dterential equations, at the level of Chapter 4 of
AMO08. We will also make use of linearized inpotitput models in state space,
based on the techniques described in Chapter 5 of AM08 and the frggden
main techniques described in Chapters 8-10.

3.1 Analysis Near Equilibria

As in the case of many other classes of dynamical systems, a great diesibbt
into the behavior of a biological system can be obtained by analyzing tlradgs
of the system subject to small perturbations around a known solution. il g
considering the dynamics of the system near an equilibrium point, which isfone
the simplest cases and provides a rich set of methods and tools.

In this section we will model the dynamics of our system using the joptgut
modeling formalism described in Chapter

x = f(x,0,u), y = h(x,6), (3.1)

wherex € R" is the system stat#,e RP are the system parameters and RY is

a set of external inputs (including disturbances and noise). The sysétex is a
vector whose components will represent concentration of specidsasymroteins,
kinases, DNA promoter sites, inducers, allosteffe@ors, etc. The system param-
etersf is also a vector, whose components will represent biochemical parameters
such as association and dissociation rates, production rates, decgydrs$eci-
ation constants, etc. The inputis a vector whose components will represent a
number of possible physical entities, including the concentration of trigtiscr
factors, DNA concentration, kinases concentration, etc. The oytp®™ of the
system represents quantities that can be measured or that are usedcctmimget
subsystem models to form larger models.
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Example 3.1(Transcriptional componentConsider a promoter controlling a gene
g that can be regulated by a transcription factor Z. Letamd G represent the
MRNA and protein expressed by gene g. This system can be viewed atemgsy
in whichu = Z is the concentration of transcription factor regulating the promoter,
the statex = (X1, X2) is such thak; = mg is the concentration of MRNA ang = G

is the concentration of protein, aiyd= G = X, is the concentration of protein G.
Assuming that the transcription factor regulating the promoter is a repreksor
system dynamics can be described by the following system

dt 1+ (u/K)"

in which 6 = (a,K,v,8,6,n) is the vector of system parameters. In this case, we
have that

d
—YX1, d—)iz = ffX1 —OXo, y=Xo (3.2)

(07
— o X
f(x,e,u)z[“(u/K)” N hxe)=x
,8X1—5X2

\%

Note that we have chosen to explicitly model the system paramgtersich
can be thought of as an additional set of (mainly constant) inputs to thersyste

Equilibrium points and stability [AMO8]

We begin by considering the case where the inpaind parameterg in equa-
tion (3.1) are fixed and hence we can write the dynamics of the system as

dx

i F(X). (3.3)
An equilibrium pointof a dynamical system represents a stationary condition for
the dynamics. We say that a statds an equilibrium point for a dynamical system
if F(xe) = 0. If a dynamical system has an initial conditig®) = Xe, then it will
stay at the equilibrium poin(t) = %, for all t > 0.

Equilibrium points are one of the most important features of a dynamical sys-
tem since they define the states corresponding to constant operatiritjiortnd\
dynamical system can have zero, one or more equilibrium points.

Thestability of an equilibrium point determines whether or not solutions nearby
the equilibrium point remain close, get closer or move further away. Aitiequm
point X is stableif solutions that start neax, stay close tak. Formally, we say
that the equilibrium poinke is stable if for alle > 0, there exists & > 0 such that

IX(0)—Xell <6 = |IX(t)—Xel|<e forallt>0,

where x(t) represents the solution the thefdrential equation3.3) with initial
conditionx(0). Note that this definition does not imply thgt) approaches. as
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Figure 3.1: Phase portrait (trajectories in the state gpatehe left and time domain sim-
ulation on the right for a system with a single stable eqtillim point. The equilibrium
point X at the origin is stable since all trajectories that start xeatay nearxe.

time increases but just that it stays nearby. Furthermore, the vatumay depend

on ¢, so that if we wish to stay very close to the solution, we may have to start
very, very closed < €). This type of stability, which is illustrated in Figu&1,

is also calledstability in the sense of Lyapund¥an equilibrium point is stable in
this sense and the trajectories do not converge, we say that the equilfwintis
neutrally stable

An example of a neutrally stable equilibrium point is shown in Figgide From
the phase portrait, we see that if we start near the equilibrium point, theraywe s
near the equilibrium point. Indeed, for this example, given ailyat defines the
range of possible initial conditions, we can simply chodsee to satisfy the defi-
nition of stability since the trajectories are perfect circles.

An equilibrium pointxe is asymptotically stabléf it is stable in the sense of
Lyapunov and alsa(t) — Xe ast — oo for x(0) suficiently close taxe. This corre-
sponds to the case where all nearby trajectories converge to the stiaibiensfor
large time. Figure3.2 shows an example of an asymptotically stable equilibrium
point.

Note from the phase portraits that not only do all trajectories stay neagtlie e
librium point at the origin, but that they also all approach the origihgets large
(the directions of the arrows on the phase portrait show the direction irhwiihéc
trajectories move).

An equilibrium pointxe is unstableif it is not stable. More specifically, we say
that an equilibrium poinke is unstable if given some> 0, there doesiot exist a
6 > 0 such that ifijx(0) — Xg|| < &, then||X(t) — X¢|| < € for all t. An example of an
unstable equilibrium point is shown in FiguBe3.

The definitions above are given without careful description of their dlowia
applicability. More formally, we define an equilibrium point to lmeally stable
(or locally asymptotically stab)eif it is stable for all initial conditionsx € B;(a),
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Figure 3.2: Phase portrait and time domain simulation foysdesn with a single asymp-
totically stable equilibrium point. The equilibrium poirg at the origin is asymptotically
stable since the trajectories converge to this poirt-asx.

where
Br(a) = {x:|[x—all <r}

is a ball of radiug arounda andr > 0. A system igylobally stableif it is stable for
all r > 0. Systems whose equilibrium points are only locally stable can have inter-
esting behavior away from equilibrium points, as we explore in the nekibsec

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called theegion of attractionfor the equilibrium point. In general,
computing regions of attraction isfilcult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable gguilib
that are attracting. This gives partial information about the behavior cfytbem.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes amttractor. An unstable equilibrium point can be either a
source if all trajectories lead away from the equilibrium point, csaddle if some
trajectories lead to the equilibrium point and others move away (this is the situ-
ation pictured in Figure.3). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as the one in Fjlires called
acenter

Example 3.2(Bistable gene circuit) Consider a system composed of two genes
that express transcription factors that repress each other as shdviguie 3.4.
Denoting the concentration of protein A by and that of protein B by, and
neglecting the mRNA dynamics, the system can be modeled by the following dif-
ferential equations:

dX]_ a1 dX2 (0%]

ot gK) el o dK)e1
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Figure 3.3: Phase portrait and time domain simulation forséesn with a single unstable
equilibrium point. The equilibrium points at the origin is unstable since not all trajectories
that start neaxe stay neae. The sample trajectory on the right shows that the trajezgor
very quickly depart from zero.

Figure 3.4(b) shows the phase portrait of the system. This system is bi-stable be-
cause there are two (asymptotically) stable equilibria. Specifically, the tregscto
converge to either of two possible equilibria: one whetes high andx; is low

and the other wherg; is low andx; is high. A trajectory will approach the first
one if the initial condition is below the dashed line, called the separatrix, while it
will approach the second one if the initial condition is above the separateixcéd

the region of attraction of the first equilibrium is the region of the plane belew th
separatrix and the region of attraction of the second one is the portion plaihe
above the separatrix. \%

Nullcline Analysis

Nullcline analysis is a simple and intuitive way to determine the stability of an
equilibrium point for systems iiR?. Consider the system witk = (X1, X2) € R?
described by the élierential equations

dx
e F1(X1, %2),

at = Fa(x1, X2).

dx
dt
The nuliclines of this system are given by the two curves inxhe, plane in
which F1(x1, X2) = 0 andF»(Xx1, X2) = 0. The nullclines intersect at the equilibria of
the systemxe. Figure3.5shows an example in which there is a unique equilibrium.
The stability of the equilibrium is deduced by inspecting the direction of the
trajectory of the system starting at initial conditioxslose to the equilibriunxe.
The direction of the trajectory can be obtained by determining the sighs ahd
F, in each of the regions in which the nullclines partition the plane around the
equilibriumxe. If F1 <0 (F1 > 0), we have thak; is going to decrease (increase)
and similarly ifF, < 0 (F2 > 0), we have thax; is going to decrease (increase). In



96 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR

1 7|
0.8
0.6
N
X

0.4
m 0.2
A B

(@) (b)

Figure 3.4: (a) Diagram of a bistable gene circuit compodedo genes. (b) Phase plot
showing the trajectories converging to either one of the passible stable equilibria de-
pending on the initial condition. The parameters@ie- o, =1, K1 = Ky =0.1, ands = 1.

Figure3.5 we show a case in whidh; < 0 on the right-hand side of the nulicline
F1 =0 andF; > 0 on the left-hand side of the same nullcline. Similarly, we have
chosen a case in whidh, < 0 above the nullclind=, = 0 andF, > 0 below the
same nullcline. Given these signs, it is clear (see the figure) that staimgeiny
point x close tox the vector field will always point toward the equilibriuxg and
hence the trajectory will tend toward such equilibrium. In this case, it thenasllo
that the equilibriunxe is asymptotically stable.

Example 3.3(Negative autoregulation)As an example, consider expression of
a gene with negative feedback. batrepresent the mRNA concentration axg
represent the protein concentration. Then, a simple model (in which fotisityp
we have assumed all parameters to be 1) is given by

dxq 1 Xo

— = - X1, — =X — X,

dt  1+x ! dt 1=
so thatF1(x1, X2) = 1/(1+ X2) — X3 and Fa(xq, X2) = X1 — Xo. Figure3.5a) exactly
represents the situation for this example. In fact, we have that

1
Fi(x;, %) <0 = x> , Fo(x1, %) <0 = X>X,
1+ X%

which provides the direction of the vector field as shown in FiiBe As a con-
sequence, the equilibrium point is stable. The phase plot of FR)&fk) confirms
this fact since the trajectories all converge to the unique equilibrium point. V

Stability analysis via linearization

For systems with more than two states, the graphical technique of nullclinesenaly
cannot be used. Hence, we must resort to other techniques to detetatiitieys
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Figure 3.5: (a) Example of nullclines for a system with a gneguilibrium pointxe. To
understand the stability of the equilibrium poixg, one traces the direction of the vec-
tor field (fy, f2) in each of the four regions in which the nullcline partititre plane. If
in each region the vector field points toward the equilibripaint, then such a point is
asymptotically stable. (b) Phase plot diagram for the negaiutoregulation example.

Consider a linear dynamical system of the form

dx
a = AX, X(O) = Xo, (34)

whereA € R™™. For a linear system, the stability of the equilibrium at the origin
can be determined from the eigenvalues of the matrix

A(A) = {se C: detsl-A) =0}.

The polynomial detl — A) is the characteristic polynomiabnd the eigenvalues
are its roots. We use the notatian for the jth eigenvalue oA andA(A) for the
set of all eigenvalues o, so thatd; € A(A). For each eigenvalug; there is a
corresponding eigenvectey € R", which satisfies the equatidhvj = ;v;.

In generall can be complex-valued, althoughAfis real-valued, then for any
eigenvaluel, its complex conjugata* will also be an eigenvalue. The origin is al-
ways an equilibrium point for a linear system. Since the stability of a linearrsyste
depends only on the matrik we find that stability is a property of the system. For
a linear system we can therefore talk about the stability of the system ra#mer th
the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose systerasmatric
are in diagonal form. In this case, the dynamics have the form

A1 0
dx A2

i X. (3.5)
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It is easy to see that the state trajectories for this system are indepeifdaacho
other, so that we can write the solution in termsiafidividual systems;j = 2x;.
Each of these scalar solutions is of the form

Xj(t) = e/lthj (0).

We see that the equilibrium poirg = 0 is stable if1; < 0 and asymptotically stable
if i < 0.
Another simple case is when the dynamics are in the block diagonal form

o1 w1 0 0
—-w1 O 0 0
% B 1 1 )
0 0 Om wWm
0 0 —Wm Om

In this case, the eigenvalues can be shown tajbeo; +iwj. We once again can
separate the state trajectories into independent solutions for each pabesf and
the solutions are of the form

Xoj_1(t) = eo-jt(ij_l(O) coswjt+ X2j(0) sinwjt),
Xoj(t) = ea-jt(—ij_l(O)Sina)jt +X2j(0) coswit),

wherej = 1,2,...,m. We see that this system is asymptotically stable if and only
if oj = Red; < 0. Itis also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some sysh@ms
be transformed into these forms via coordinate transformations. One kRssh ¢
of systems is those for which the dynamics matrix has distinct (non-repeating)
eigenvalues. In this case there is a malrigk R™" such that the matrif AT is
in (block) diagonal form, with the block diagonal elements correspondirieo
eigenvalues of the original matri. If we choose new coordinates= T x, then

9 y=TAx=TAT

dt
and the linear system has a (block) diagonal dynamics matrix. Furtherthere,
eigenvalues of the transformed system are the same as the original syjstem s
if v is an eigenvector oA, thenw = Tv can be shown to be an eigenvector of
TAT-1. We can reason about the stability of the original system by noting that
x(t) = T~1(t), and so if the transformed system is stable (or asymptotically stable),
then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, thk stab
ity of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we makktlise o
following theorem, proved in the next chapter:
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Theorem 3.1(Stability of a linear system)The system

dx
i AX
is asymptotically stable if and only if all eigenvalues of A all have a strictly trega

real part and is unstable if any eigenvalue of A has a strictly positive redl p

In the case in which the system state is two-dimensional, thatig?, we have
a simple way of determining the eigenvalues of a makispecifically, denote by
tr(A) the trace ofA, that is, the sum of the diagonal terms, and let Aet{e the
determinant ofA. Then, we have that the two eigenvalues are given by

Ao = %(tr(A) + Vir(A)2 - 4det)).

Both eigenvalues have negative real parts when (&) &(0 and (2) detd) > 0. By
contrast, if condition (2) is satisfied but&)> 0, the eigenvalues have positive real
parts.

An important feature of dierential equations is that it is often possible to de-
termine the local stability of an equilibrium point by approximating the system by
a linear system. Suppose that we have a nonlinear system

dx

— = F(X

ity
that has an equilibrium point a&. Computing the Taylor series expansion of the
vector field, we can write

d oF . :

o F(X) + —| (X—Xe)+ higher-order terms inq— Xe).

dt OX I

SinceF(xe) = 0, we can approximate the system by choosing a new state variable
Z= X— Xe and writing

dz oF

i Az where A= I " (3.6)
We call the system3.6) thelinear approximatiorof the original nonlinear system
or thelinearizationat x.. We also refer to matriA as theJacobian matrixof the
original nonlinear system.

The fact that a linear model can be used to study the behavior of a nanlinea
system near an equilibrium point is a powerful one. Indeed, we carthékeven
further and use a local linear approximation of a nonlinear system to de $&gul-
back law that keeps the system near its equilibrium point (design of dynamics
Thus, feedback can be used to make sure that solutions remain closedaithe e
rium point, which in turn ensures that the linear approximation used to stabilize it
is valid.
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Example 3.4(Negative autoregulation)Consider again the negatively autoregu-
lated gene modeled by the equations

dX]_ _ 1
dt a 1+ X%

%
X1, E = X1 — Xo.

In this case,

F(x):( rlxz_xl )

X1—X2

so that, lettingxe = (X1,¢, X2,¢), the Jacobian matrix is given by

1
A= E‘ = -1 T (lexee? |
OX Ixe 1 -1

In this case, we have that &)= -2 < 0 and that de#) = 1+ m > 0. Hence,
independently of the value of the equilibrium point, the eigenvalues havenbgth
ative real parts, which implies that the equilibrium poxatis asymptotically sta-
ble. v

Frequency domain analysis

Frequency domain analysis is a way to understand how well a systemsgamde

to rapidly changing input stimuli. As a general rule, most physical systerpkaglis

an increased dliculty in responding to input stimuli as the frequency of variation
increases: when the input stimulus changes faster than the natural tireecfchke
system, the system becomes incapable of responding. If instead thetinputis

is changing much slower than the natural time scales of the system, the system
will respond very accurately. That is, the system behaves like a “Iss-pler”.

The cut-df frequency at which the system does not display a significant response
is called thebandwidthand quantifies the dominant time scale. To identify this
dominant time scale, we can perform infowitput experiments in which the system

is excited with periodic input at various frequencies.

Example 3.5(Phosphorylation cycle)To illustrate the basic ideas, we consider
the frequency response of a phosphorylation cycle, in which enzynestations
are modeled by a first order reaction. Referring to Figuéa we have that the one
step reactions involved are given by

Z+X 570X YaX B v ax,

with conservation lawX + X* = Xior. Let Yior be the total amount of phosphatase.
We assume that the kinase Z has a time-varying concentration, which we siew a
theinputto the system, whil&X* is theoutputof the system.
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Figure 3.6: (a) Diagram of a phosphorylation cycle, in whiglis the kinase, X is the
substrate, and Y is the phosphatase. (b) Bode plot showasmgtdgnitude and phase lag
for the frequency response of a one step reaction model opltbephorylation system
on the left. The magnitude is plotted in decibels (dB), inathiM|gg = 20l0g,;o(M). The
parameters arg=¢6 = 1.

The diferential equation model is given by

dx*
dt

= klz(t)(xtot - X*) - kZYtotX*,

If we assume that the cycle is weakly activated & Xo1), the above equation is
well approximated by

dx*

el ZAURIN (3.7)
where = ki Xior andéd = ko Yior. To determine the frequency response, we set the
inputZ(t) to a periodic function. It is customary to take sinusoidal functions as the
input signal as they lead to an easy way to calculate the frequency resp@ns
thenZ(t) = Agsin(wt).

Since equationd.?) is linear in the stateX* and inputZ, it can be directly

integrated to lead to

AoB . | _ AgBw st
—msm(wt tan “(w/9)) —(w2+62)e :

The second term dies out fodarge enough. Hence, the steady state response is
given by the first term. The amplitude of response is thus giveAdsy Vw? + 62,
in which the gaing/ Vw? + 62 depends on the system parameters and on the fre-
guency of the input stimulation.

As this frequency increases, the amplitude decreases and appraachédsr
infinite frequencies. Also, the argument of the sine function shows dineghase
shift of tarr*(w/6), which indicates that there is an increased delay in responding

X*(t) =
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to the input as the frequency increases. Hence, the key quantities iretjufrcy
response are the magnitude gMiw) and phase lag(w) given by

B _1(w
M@= dlo)=tan (5).

These are plotted in Figu®6k a type of figure known asBode plot

The bandwidth of the system, denoted is the frequency at which the mag-
nitude gain drops below!(0)/ V2. In this case, the bandwidth is given by =
6 = koYior, Which implies that the bandwidth of the system can be made larger
by increasing the amount of phosphatase. However, note that Ei(@e= 3/6 =
k1 X0t/ (K2 Yiot), increased phosphatase will also result in decreased amplitude of re-
sponse. Hence, if one wants to increase the bandwidth of the system edyimg
the value ofM(0) (also called theero frequency gajrunchanged, one should in-
crease the total amounts of substrate and phosphatase in comparablgigmep
Fixing the value of the zero frequency gain, the bandwidth of the systenecses
with increased amounts of phosphatase and kinase. \%

More generally, thdrequency responsaf a linear system with one input and
one output
X = Ax+ Bu, y =Cx+Du

is the response of the system to a sinusoidal inptiasinwt with input amplitude
a and frequencw. Thetransfer functiorfor a linear system is given by

Gyu(s) =C(sl-A)*B+D

and represents the response of a system to an exponential signafahthgt) =
e wheres e C. In particular, the response to a sinusaie asinwt is given by
y = Masin(wt + ¢) where the gairM and phase shift can be determined from the
transfer function evaluated at iw:

M =[Gy(iw)] = IM(Gy(iw))? + ReGyu(iw))?
Gyu(iw) = Mé?, bt _l(lm(Gyu(iw)))
ReGyu(iw)) '
where Re() and Im(-) represent the real and imaginary parts of a complex number.

For finite dimensional linear (or linearized) systems, the transfer functon b
written as a ratio of polynomials is

_ b

G(9) = "ol

The values ot at which the numerator vanishes are calledzbesof the transfer
function and the values afat which the denominator vanishes are calledatbles
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The transfer function representation of an irjputput linear system is essen-
tially equivalent to the state space description, but we reason about rilaendys
by looking at the transfer function instead of the state space matricesx&opée,
it can be shown that the poles of a transfer function correspond to tbevaig
ues of the matrixA, and hence the poles determine the stability of the system.
In addition, interconnections between subsystems often have simpleearfares
tions in terms of transfer functions. For example, two syst&mnandG; in series
(with the output of the first connected to the input of the second) havenaioced
transfer functiorGseriedS) = G1(5)G2(s) and two systems in parallel (a single in-
put goes to both systems and the outputs are summed) has the transfemfunctio
Gparalle(s) = Gy(8) +G2(9).

Transfer functions are useful representations of linear systemedeettee prop-
erties of the transfer function can be related to the properties of the dymamic
particular, the shape of the frequency response describes howstieensyesponse
to inputs and disturbances, as well as allows us to reason about the stdability o
interconnected systems. The Bode plot of a transfer function gives thritude
and phase of the frequency response as a function of frequedcthaiyquist
plot can be used to reason about stability of a closed loop system from the open
loop frequency response (AMO08, Section 9.2).

Returning to our analysis of biomolecular systems, suppose we have msyste
whose dynamics can be written as

x= f(x6,u)

and we wish to understand how the solutions of the system depend on éme-par
etersg and input disturbancas We focus on the case of an equilibrium solution
X(t; X0,00) = Xe. Letz= X—Xe, li=U—Ug andd =0-6o represent the deviation of
the state, input and parameters from their nominal values. Linearizatidreqaer-
formed in a way similar to the way it was performed for a system with no inputs.
Specifically, we can write the dynamics of the perturbed system using itsiiaear
tion as

dZ_(af) - (6f) 7 (éf) i
dt  \ 0%/ (x, 00.00) 9 (4. 0,u0) OW ) (. 60.0)

This linear system describes small deviations foquo, wo) but allowsd andw to
be time-varying instead of the constant case considered earlier.

To analyze the resulting deviations, it is convenient to look at the system in the
frequency domain. Let = Cx be a set of values of interest. The transfer functions
betweerd, W andy are given by

Hy(S) = C(sl— A) By, Hyw(S) = C(sl- A) 1By,

where
f f f
A= a_ s 89 = a_ 5 B\N = 6_ .
OX | (xe,00,0) 96 | (xe,00,w0) OW | (xe,00,w0)
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Note that if we lets= 0, we get the response to small, constant changes in
parameters. For example, the change in the outpws a function of constant
changes in the parameters is given by

Hy5(0) = CA™'By = CSy.

Example 3.6(Transcriptional regulation)Consider a genetic circuit consisting of
a single gene. The dynamics of the system are given by

dm dP

— =F(P)-ym,  — =pm-6P,
gt = F(P) -y il
wherem is the mRNA concentration arfd is the protein concentration. Suppose
that the mRNA degradation ratecan change as a function of time and that we
wish to understand the sensitivity with respect to this (time-varying) parameter
Linearizing the dynamics around an equilibrium point

_ =7 F'(pe) _ e
ST R B ]
For the case of no feedback we havéP) = ag, and the system has an equilib-

rium point atme = ag/y, Pe = Bao/(6y). The transfer function frony to p, after
linearization about the steady state, is given by

—BMe

B e

whereyg represents the nominal value pfaround which we are linearizing. For
the case of negative regulation, we have

a
TR
and the resulting transfer function is given by
naP-1/Kn
G2 () = Bme = F/(Pe)= e [
= e g T P Pk

Figure 3.7 shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbaiticdevwy
frequency content but slightly amplifies disturbances at high frequexxcydared
to the open loop system). \%

3.2 Robustness

The term “robustness” refers to the general ability of a system to continfuec-
tion in the presence of uncertainty. In the context of this text, we will waneto b
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Figure 3.7: Noise attenuation in a genetic circuit.

more precise. We say that a given function (of the circuit) is robust wipheaet
to a set of specified perturbations if the sensitivity of that function to peatur
tions is small. Thus, to study robustness, we must specify both the functianewe
interested in and the set of perturbations that we wish to consider.

In this section we study the robustness of the system

x = f(x,0,u), y = h(x,6)

to various perturbations in the paramet@end disturbance inputs The function

we are interested in is modeled by the outpugnd hence we seek to understand
how y changes if the parametefisare changed by a small amount or if external
disturbancess are present. We say that a system is robust with respect to these
perturbations ify undergoes little changes as these perturbations are introduced.

Parametric uncertainty

In addition to studying the inpfdutput transfer curve and the stability of a given
equilibrium point, we can also study how these features change with tespec
changes in the system parameterket ye(6p, Ug) represent the output correspond-
ing to an equilibrium pointe with fixed parametergy and external inputiy, SO
that f (X, 8o, Ug) = 0. We assume that the equilibrium point is stable and focus here
on understanding how the value of the output, the location of the equilibriumb po
and the dynamics near the equilibrium point vary as a function of changés in
parameters and external inputs..

We start by assuming that= 0 and investigating howe andye depend ord.
The simplest approach is to analytically solve the equatiog, ) = O for xe and
then setye = h(Xe, 6p). However, this is often dlicult to do in closed form and so
as an alternative we instead look at the linearized response given by

de 90, yo - déo 90’

SX,@ .—
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which is the (infinitesimal) change in the equilibrium state and the output due to
a change in the parameter. To deternt8yg we begin by diferentiating the rela-
tionship f(xe(6),6) = 0 with respect t@:

W axd "0 = Sv=g%="\ox) @ (3.8)

Similarly, we can compute the change in the output sensitivity as

_dye  Ohdx ah__(ah(af)—laf ah]

df ofdxe of _%__(af)‘laf

(xedo)

Y= dg “axdo "o \ax\ax) 90" o0

(x&60)

These quantities can be computed numerically and hence we can evaludiedbe e
of small (but constant) changes in the parametens the equilibrium statge and
corresponding output valug.

A similar analysis can be performed to determine tfieas of small (but con-
stant) changes in the external inputSuppose thaxe depends on both andu,
with f(Xe, 80, Ug) = 0 andfg andug representing the nominal values. Then

dxe __(9f\ " af dxe __(ot\" ot
do  \dx) 06 lxesouo)’ du \dx/ du

The sensitivity matrix can be normalized by dividing the parameters by their
nominal values and rescaling the outputs (or states) by their equilibriumsvadfue
we define the scaling matrices

(x&60,Uo)

D* =diagxs), D% =diagye), D’=diags),
Then the scaled sensitivity matrices can be written as
S_X,O = (Dxe)_lsxeDe’ S_y,e = (Dye)_lSyHDe- (3-9)

The entries in this matrix describe how a fractional change in a paramegs giv
a fractional change in the output, relative to the nominal values of the ptaeme
and outputs.

Example 3.7 (Transcriptional regulation)Consider again the case of transcrip-
tional regulation described in ExampB6. We wish to study the response of
the protein concentration to fluctuations in its parameters in two casEmsii-
tutive promoter(no regulation) and self-repression (negative feedback), illustrated
in Figure3.8 For the case of no feedback we havép) = ag, and the system
has an equilibrium point ate = ag/y, Pe = Bag/(dy). The parameter vector can
be taken a# = (ao,y,8,5). Since we have a simple expression for the equilibrium
concentrations, we can compute the sensitivity to the parameters directly:

o [y -% 0 0
50 = | B _fg ool
5y

oy 5y yo?



3.2. ROBUSTNESS 107

RNAP @ RNAP@W

—~ T A ]
| l A | N/
(a) Open loop (b) Negative feedback

Figure 3.8: Parameter sensitivity in a genetic circuit. Dpen loop system (a) consists
of a constitutive promoter, while the closed loop circuit i€self-regulated with negative
feedback (repressor).

where the parameters are evaluated at their nominal values, but we Edlie o
subscript 0 on the individual parameters for simplicity. If we choose thampe-
ters ag)p = (0.001380.005780.1150.00116), then the resulting sensitivity matrix

evaluates to
170 -41 0 0
open__

SXef’ - [17000 -4100 210 —21004' (3.10)

If we look instead at the scaled sensitivity matrix, then the open loop nattine of
system yields a particularly simple form:

= 1 -10 0
open _
SH _[1 11 _1]. (3.11)

In other words, a 10% change in any of the parameters will lead to a cobipara
positive or negative change in the equilibrium values.
For the case of negative regulation, we have

(0%
F(P)= ———
(P =T pk * oo
and the equilibrium points satisfy
0 a vo
= —P,, - = =P 3.12
Me B e 1+P2/K+a0 yMe B e ( )

In order to make a proper comparison with the previous case, we needaodiel
to choose the parameters so that the equilibrium concentr@tiomatches that of
the open loop system. We can do this by modifying the promoter strength
the RBS strengtls so that the second formula in equatidhl is satisfied or,
equivalently, choose the parameters for the open loop case so that thetythe
closed loop steady state protein concentration (see Exatrif)le

Rather than attempt to solve for the equilibrium pointin closed form, we instead
investigate the sensitivity using the computations in equatbbh?(. The state,
dynamics and parameters are given by

x:(m P), f(x,@):[Fﬁ(r?__;I;m], 0=(a0 y B 6 a n K).
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Note that the parameters are ordered such that the first four parametiets the
open loop system. The linearizations are given by

’ KaP"log(P @
of _ [~y F'(Pe) af (1 -m 0 0 Ay TP o
ox | B -5 |’ M (0 0 m -P 0 0 0 ’

where again the parameters are taken to be their nominal values. From ttasiwe
compute the sensitivity matrix as

JF 5
5m 6£ 60F

6 sm__ mF PF_ _ 9% _ 9%k

oy—LF’ oy—BF’ oy—PF’ oy—LF’ oy—BF’ oy—pPF’ oy—LF’

Sxo = oF oF oF
B Bm ym yP Biag B B3k

S oy-pF Gy-BF Gy-BF Sy-pF  Sy-BF  Sy-BF  Sy—pF
whereF’ = 9F /0P and all other derivatives df are evaluated at the nominal pa-
rameter values.
We can now evaluate the sensitivity at the same protein concentration ag we us
in the open loop case. The equilibrium point is given by

[o16)
_(me) (5] _(0.239
Xe‘[%]‘[%]‘[zag

and the sensitivity matrix is

761 -182 -116 116 0134 -0.212 -0.00011
7610 -1820 908 -908Q 134 -212 -0.0117)°

The scaled sensitivity matrix becomes

016 -044 -056 056 028 -178 -308x107) ...
016 -044 044 -044 028 -1.78 -308x107| ™

Comparing this equation with equatio.11), we see that there is reduction in the
sensitivity with respect to most parameters. In particular, we become lesitise
to those parameters that are not part of the feedback (columns 2+4hebe is
higher sensitivity with respect to some of the parameters that are part ffettie
back mechanisms (particulanhy. \%

closed,
Sxe,e ~ [

closed
Sxeﬁ ~ [

More generally, we may wish to evaluate the sensitivity of a (non-constant) s
lution to parameter changes. This can be done by computing the fule{ihndo,
which describes how the state changes at each instant in time as a function of
(small) changes in the parametérdVe assume = 0 for simplicity of exposition.

Let x(t; Xg,080) be a solution of the dynamics with initial conditiog and pa-
rametersly. To computedx/dd, we write down a dierential equation for how it
evolves in time:

d (dx d (dx d
d_t(@)zﬁ(a)ZE(f(xﬁ,u))
_afdx_of

= oxdo o0’
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This is a differential equation withx m statesS;; = dx /d@; and with initial condi-
tion Sjj(0) = O (since changes to the parameters to fi@tch the initial conditions).

To solve these equations, we must simultaneously solve for thexsteie the
sensitivity S (whose dynamics depend o Thus, we must solve the set nf+
nmcoupled diferential equations

dx dSy of of
i f(x,0,u), Tl ax(x,el,u)SX9+ ae(x,e,u). (3.14)

This differential equation generalizes our previous results by allowing us to
evaluate the sensitivity around a (non-constant) trajectory. Note that ispte
cial case that we are at an equilibrium point and the dynamicSfgrare stable,
the steady state solution of equatid1@) is identical to that obtained in equa-
tion (3.8). However, equation3(14) is much more general, allowing us to deter-
mine the change in the state of the system at a fixed fimnfr example. This
eqguation also does not require that our solution stay near an equilibriumy o
only requires that our perturbations in the parameters dheismtly small.

Example 3.8(Repressilator)Consider the example of the repressilator, which was
described in Exampl2.2 The dynamics of this system can be written as

d dP

d—n,:l = Frep(P3) —ymu d_tl =pm - 6Py
dmp dpP;

at = Frep(P1) —ymy ot =pmp— 6P
dmg

dPs
at = Frep(P2) —ymy ot =pMmg—0P>,

where the repressor is modeled using a Hill function

a

Frep(P) = m + .

The dynamics of this system lead to a limit cycle in the protein concentrations, as
shown in Figure3.9a

We can analyze the sensitivity of the protein concentrations to changes in the
parameters using the sensitivityférential equation. Since our solution is periodic,
the sensitivity dynamics will satisfy an equation of the form

dSX’Q
dt

whereA(t) and B(t) are both periodic in time. Letting = (my, P1,mp, P2, mg, P3)
andd = («o,v,8,9, @, K), we can comput8y ¢ along the limit cycle. If the dynamics

for Sy are stable then the resulting solutions will be periodic, showing how the
dynamics around the limit cycle depend on the parameter values. The results a

= A(t)Sxg + B(t),
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Figure 3.9: Repressilator sensitivity plots
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shown in Figure3.9h where we plot the steady state sensitivityPgfas a function
of time. We see, for example, that the limit cycle depends strongly on the protein
degradation and dilution ratg indicating that changes in this value can lead to
(relatively) large variations in the magnitude of the limit cycle.

\Y

Several simulation tools include the ability to do sensitivity analysis of this sort,
including COPAST.

Adaptation and disturbance rejection

A system is said to adapt to the inputvhen the steady state value of its output

is independent of the actual (constant) value of the input (Figui@. Basically,
after the input changes to a constant value, the output returns to its dxiglna
after a transient perturbation. Adaptation corresponds to the confodigtarbance
rejectionin control theory. The full notion of disturbance rejection is more general
and depends on the specific disturbance input and it is studied using thrainte
model principle 89].

For example, for adaptation to constant signals, the internal model primeiple
quires integral feedback. The internal model principle is a powerfultavaycover
biochemical structures in natural networks that are known to have theedica
property. An example of this is the bacterial chemotaxis described in moré deta
in Chapters.

We illustrate two main mechanisms to attain adaptation: integral feedback and
incoherent feedforward loops (IFFLs). We next study these two arésims from a
mathematical standpoint to illustrate how they achieve adaptation. Possible ldemole
ular implementations are presented in later chapters.

Integral feedback

Inintegral feedback systems, a “memory” variabkeeps track of the accumulated
difference betweeg(t) and its nominal steady state valyg A comparison is
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Figure 3.10: Adaptation property. The system is said to hiawedaptation property if the
steady state value of the output does not depend on the sstateyvalue of the input.
Hence, after a constant input perturbation, the outputmstto its original value.

performed between this memory variable and the current iopptroviding an
error term that is used to drive the feedback mechanism that brings stensy
output back to the desired valyg (Figure3.11).

In this system, the outpw(t), after any constant input perturbatiantends to
Yo for t — oo independently of the (constant) valuewnfThe equations representing
the system are given by:

dz
— =V, y1=Y-Yo, y =k(u-2),

dt
so that the equilibrium is obtained by setting 0, from which we obtairy = yp.
That is, the steady state gfdoes not depend on. The additional question to
answer is whether, after a perturbatioroccurs,y; (t) tends to zero fot — oo.
This is the case if and only #— 0 ast — oo, which is satisfied if the equilibrium

Figure 3.11: Basic block diagram representing a systeminiéiyral action.



112 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR

U T { 22

Figure 3.12: Incoherent feedforward loop. The inpaffects the output through two chan-
nels. It indirectly represses it through an intermediatéatéde x; and it activates it directly.

of the systenz = —kz+ ku—Yyjp is asymptotically stable. This, in turn, is satisfied
whenevek > 0 andu is a constant. Hence, after a constant perturbatisrapplied,
the system output approaches back its original steady state vghje¢hat is,y is
robust to constant perturbations.

More generally, a system with integral action can take the form

%(z f(x,u,k), y=h(x), 3—? =y-Yo, k=Kk(x2),
in which the steady state valueyfeing the solution tg—yy = 0, does not depend
onu. In turn,y tends to this steady state value for o if and only if z— 0 as
t — co. This, in turn, is the case #tends to a constant value for» oo, which is
satisfied ifu is a constant and the steady state of the above system is asymptotically
stable.

Integral feedback is recognized as a key mechanism of perfectlyiagdyio-
logical systems, both at the physiological level and at the cellular level, as1in
blood calcium homeostasig9], in the regulation of tryptophan i&. coli[94], in
neuronal control of the prefrontal corte&], and inE. coli chemotaxis 102.

Incoherent feedforward loops

Feedforward motifs (Figur8.12 are common in transcriptional networks and it
has been shown they are over-representesl. icoli gene transcription networks,
compared to other motifs composed of three no8ksThese are systems in which
the inputu directly helps promote the production of the outgaind also acts as a
delayed inhibitor of the output through an intermediate variabl@ his incoherent
counterbalance between positive and negatiteces gives rise, under appropriate
conditions, to adaptation. A large number of incoherent feedforwaimslpartici-
pate in important biological processes such as the EGF to ERK activ@@hrije
glucose to insulin releas&@%|, ATP to intracellular calcium releas&4], micro-
RNA regulation P3], and many others.

Several variants of incoherent feedforward loops exist for peddaptation.
The “snifer”, for example, is one in which the intermediate variable promotes
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degradation:

dx: d
d_tl = aU—0Xq, d—)iz = BU—yX1Xo. (3.15)

In this system, the steady state value of the outpuis obtained by setting the
time derivatives to zero. Specifically, we have that 0 givenx; = au/§ andx, =

0 givesx, = Bu/(yx1), which combined together result ik = (85)/(ya), which

is a constant independent of the inputThe linearization of the system at the
equilibrium is given by

~ ) 0
(=B /(ya) —y(au/s))’

which has eigenvaluess and—y(au/6). Since these are both negative, the equi-
librium point is asymptotically stable. The $i@r appears in models of neutrophil
motion andDictyosteliumchemotaxis 101].

Another form for a feedforward loop is one in which the intermediate viiab
X1 inhibits production of the outpu, such as in the system:

A

% = aU—F5Xy, dd—)iz =,8X£1—yx2. (3.16)
The equilibrium point of this system is given by setting the time derivativesrtm ze
Fromx; =0, one obtaing; = au/§ and fromx, = 0 one obtains that, = Bu/(yx1),
which combined together result ¥a = (86)/(ya), which is a constant independent
of the inputu.
By calculating the linearization at the equilibrium, one obtains

A -0 0
= _% —")/’

1

whose eigenvalues are given by and—y. Hence, the equilibrium point is asymp-
totically stable. Further, one can show that the equilibrium point is globalipwpsy
totically stable because the subsystem is linear, stable, argdapproaches a con-
stant value (for constanf) and thex, subsystem, in whicjgu/x; is viewed as an
external input is also linear and exponentially stable.

Scale Invariance and fold-change detection

Scale invariance is the property by which the outgi(t) of the system does not
depend on the amplitude of the inpu(t) (Figure3.13. Specifically, consider an
adapting system and assume that it pre-adapted to a constant backgatueg,
then apply inpua+b and letx,(t) be the resulting output. Now consider a new
background valug a for the input and let the system pre-adapt to it. Then apply
the inputp(a+ b) and letxy(t) be the resulting output. The system has the scale
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Figure 3.13: Fold-change detection. The output response dot depend on the absolute
magnitude of the input but only on the fold change of the input

invariance property ikx(t) = X(t). This also means that the output responds in the
same way to inputs changing by the same multiplicative factor (fold), hence this
property is also called fold-change detection. Looking at Fidil& the output
would present dferent pulses for dierent fold changels/a.

Incoherent feedforward loops can implement the fold-change detgutap:
erty [36]. As an example, consider the feedforward motif represented by ttfersni
and consider two inputs (t) = a+ b1 (t—tg) andux(t) = pa+ pby(t —tg). Assume
also, as said above, that at tifpethe system is at the steady state, that is, it pre-
adapted. Hence, we have that the two steady states from which the syat&sn s
att =t are given byx;1 = aa/é and x;2 = paa/d for the x; variable and by
X21 = X22 = (B5)/(ya) for the xp variable. Integrating systen3.(L6 starting from
these initial conditions, we obtain foe tg

x1a(t) = a%e“s(t‘t") +(a+b)(1-e°t0) and
X12(t) = paSe = + pla+ b)(1- e W),

Using these in the expression ®f in equation 8.16 gives the diferential
equations to whiclxy 1(t) andxz 2(t) obey fort >ty as

dx1 p(a+h)
dt  aZedlt-b) 1 (a+b)(1-edlt-)

—¥X21, X2,1(to) = (B6)/(ya)

and

dx2 _ pB(a+b)
dt  pa%ed(t-) 4+ p(a+b)(1-et-)

which give xp1(t) = xg2(t) for all t > to. Hence, the system responds exactly the
same way after changes in the input of the same fold. The output resisamse
dependent on the scale of the input but only on its shape.

—¥X22, X2,2(to) = (BS)/ (ya),
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Figure 3.14: (a) Disturbance attenuation. A system is saithte the disturbance attenua-
tion property if there is an internal system param@&tsuch that the system output response
becomes arbitrarily close to a nominal output (independégtiite inputu) by increasing the
value ofG. (b) High gain feedback. A possible mechanism to attairudistince attenuation
is to feedback the error between the nominal outgleind the actual outpuytthrough a
large gainG.

Disturbance attenuation

A system has the property of disturbance attenuation if there is a systamegiar

G such that the output respong#) to the inputu(t) can be made arbitrarily small as
Gisincreased (Figurd.14a). A possible mechanism for disturbance attenuation is
high gain feedback (Figur@ 14b). In a high gain feedback configuration, the error
between the output, perturbed by some exogenous disturbamcend a desired
nominal outputy is fed back with a negative sign to produce the outpitgelf. If

Yo >V, this will result in an increase of otherwise it will result in a decrease nf
Mathematically, one obtains from the block diagram that

G
tYor =~

y 11 G’

T 1+G
so that as5 increases the (relative) contribution wbn the output of the system
can be arbitrarily reduced.

High gain feedback can take a much more general form. Consider a system
with x € R" in the formx = F(x,t). We say that this system @ontractingif any
two trajectories starting from fierent initial conditions tend to each other as time
increase to infinity. A sflicient condition for the system to be contracting is that in
some set of coordinates, with matrix transformation den@®tetie symmetric part
of the linearization matrix (Jacobian) is negative definite. That is, that tigedar
eigenvalue of

2

1aF+aFT
ox  ox |’

is negative. We denote this eigenvalue-byfor A > 0 and call it the contraction
rate of the system.
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Now, consider the nominal systexn="G f(x,t) for G > 0 and its perturbed ver-
sionxp = G f(xp,t) +u(t). Assume that the inpuit) is bounded everywhere in norm
by a constan€ > 0. If the system is contracting, we have the following robustness
result:

[1X(t) — Xp(t)l] < xIX(0) — Xp(0)lle”C + %

in which y is an upper bound on the condition number (ratio between the largest
and the smallest eigenvalue ®f ®) of the transformation matri® [60]. Hence,

if the perturbed and the nominal systems start from the same initial conditiens, th
difference between their states can be made arbitrarily small by increasingrthe ga
G. Hence, the system has the disturbance attenuation property.

3.3 Analysis of Reaction Rate Equations

The previous section considered analysis techniques for generainityal sys-
tems with small perturbations. In this section, we specialize to the case where the
dynamics have the form of a reaction rate equation:

ds
5t = v(x6). (3.17)

wherex is the vector of species concentratiofiss the vector of reaction parame-
ters,N is the stoichiometry matrix ane(x, 6) is the reaction rate (or flux) vector.

Reduced reaction dynamics

When analyzing reaction rate equations, it is often the case that therersereed
guantities in the dynamics. For example, conservation of mass will imply that if all
compounds containing a given species are captured by the model, the tetal ma
of that species will be constant. This type of constraint will then give semed
guantity of the formc; = Hjx whereH; represents that combinations of species in
which the given element appears. Sirgges constant, it follows thatig/dt =0

and, aggregating the set of all conserved species, we have

dc ds
0= i Ha =HNWXx,60) forall x.

If we assume that the vector of fluxes sp@s(the range of/: R" xRP — R™M),
then this implies that the conserved quantities correspond to the left nué spac
the stoichiometry matrii.

It is often useful to remove the conserved quantities from the descriptitie o
dynamics and write the dynamics for a set of independent species. Tasdwéh
transform the state of the system into two sets of variables:

J-10)
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The vectorx; = Px is the set of independent species and is typically chosen as
a subset of the original species of the model (so that the Pwensists of all
zeros and a single 1 in the column corresponding to the selected spedies). T
matrix H should span the left null space bf, so thatxy represents the set of
dependent concentrations. These dependent species do naardgesrrespond
to individual species, but instead are often combinations of speciesx&nple,
the total concentration of a given element that appears in a number of rnesecu
that participate in the reaction).
Given the decompositior8(18), we can rewrite the dynamics of the system in

terms of the independent variabbgs We start by noting that giver andxqy, we
can reconstruct the full set of species

_(P) (0

[ 19

i e )

wherecy represents the conserved quantities. We now write the dynamigsder

% = P% = PNVLX; + Co, ) = Nrvi (X, Co, 6), (3.19)

where N; is thereduced stoichiometry matriandv; is the rate vector with the
conserved gquantities separated out as constant parameters.

The reduced order dynamics in equati@l9 represent the evolution of the
independent species in the reaction. Giwgnwe can reconstruct the full set of
species from the dynamics of the independent species by wrtingx; + co. The
vectorcy represents the values of the conserved quantities, which must be specifie
in order to compute the values of the full set of species. In addition, siree
LX; + co, we have that

=L = LN (5,0 P) = LNk ),
which implies that
N =LN;.
Thus,L also reconstruct the reduced stoichiometry matrix from the reduced space
to the full space.

Example 3.9(Enzyme kinetics) Consider an enzymatic reaction

a _k
E+S? C—oE+P,

whose full dynamics can be written as

S) (-1 1 o0
dlE|_|-1 1 1 5(':5
dtjcl |1 -1 -1f| &
P 0 0 1
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The conserved quantities are given by

01 10
H‘[1 —101}‘

The first of these is the total enzyme concentrafign= E + C, while the second
asserts that the concentration of prode i equal to the free enzyme concentration
E minus the substrate concentrati8nlf we assume that we start with substrate
concentratiorsy, enzyme concentratidf; and no product or bound enzyme, then
the conserved quantities are given by

c= E+C | _ | Euwt
- S-E+P - SO_EtOt ’

There are many possible choices for the set of independent speei®s, but
since we are interested in the substrate and the product, we cR@sse

1000
F"[0001]'

OnceP is chosen then we can compute
. 1 0 . 0
Lo Pl (1) |1 1 _(P) (0] _ |Ett—So
“H) o) T]-1 -1lr ®T{H] l¢]T| s |
0 1 0

The resulting reduced order dynamics can be computed to be

d (s 11 0 a(P+S+Et0t—So)S
atlp] = lo o 1| 4P-S+S0
K(~P—S+So)
_ (-a(P+S+Ei—So)S—d(P+S—S)
- k(So-S—-P) '

A simulation of the dynamics is shown in FiguBela We see that the dynamics
are very well approximated as being a constant rate of production unékieust
the substrate (consistent with the Michaelis-Menten approximation).

\%

Metabolic control analysis

Metabolic control analysis (MCA) focuses on the study of the sensitivisteddy
state concentrations and fluxes to changes in various system parafietsbsisic
concepts are equivalent to the sensitivity analysis tools described in 158ctjo



3.3. ANALYSIS OF REACTION RATE EQUATIONS 119

600

500 P M

400 b

300

200

100 b

0 I I I I
0 10 20 30 40 50 60

Figure 3.15: Enzyme dynamics. The simulations were caoig@d =d = 10,k=1,Sp =
500 andEy; = 5,1020. The top plot shows the concentration of substeaéad product
P, with the fastest case correspondinggg; = 20. The figures on the lower left zoom in
on the substrate and product concentrations at the initi@ &nd the figures on the lower
right at one of the transition times.

specialized to the case of reaction rate equations. In this section we peolvicks
introduction to the key ideas, emphasizing the mapping between the general co
cepts and MCA terminology (as originally done yr]).
Consider the reduced set of chemical reactions

dx

i NrVr (%, 0) = Nev(LX; + Co, 0).
We wish to compute the sensitivity of the equilibrium concentratixend equi-
librium fluxesve to the parameter& We start by linearizing the dynamics around
an equilibrium pointe. Definingz= x—Xe, U=0—0g and f (z,u) = Ny V(Xe + Z 0 +
u), we can write the linearized dynamics as

dx _

5 = Ax+Bu A:(Nra—vL), B:(Nr@), (3.20)

Js ap

which has the form of a linear fierential equation with stateand inputu.
In metabolic control analysis, the following terms are defined:

dv

€ = "7 € = flux control codficients
Xe,0o
R _ o R
00 C* = concentration control cdécients
R= e _ i, Ry =
09 C' = rate control cofficients

These relationships describe how the equilibrium concentration and emuriibr
rates change as a function of the perturbations in the parameters. Therntwol
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matrices provide a mapping between the variation in the flux vector evaluated at

equilibrium,
(GV)
00 90

and the corresponding ftiérential changes in the equilibrium poitdtx./d00 and

0Ve/06. Note that
ave (av)
90 "\ o6 Yol

The left side is the relative change in the equilibrium rates, while the rightiside
the change in the rate functim(x, 8) evaluated at an equilibrium point.

To derive the coficient matriceC* andCY, we simply take the linear equa-
tion (3.20 and choose outputs correspondingtndyv:

yx = IX, y\,:a—VLx+—u.

Using these relationships, we can compute the transfer functions

ov
00’

HU(S) = JeL(s1 - A) B+ 6“—[—L( =N LN 1]

Hy(s) = (sl-A) B = [(s|— L) IN =

Classical metabolic control analysis considers only the equilibrium coratemts,
and so these transfer functions would be evaluated-dl to obtain the equilibrium
equations.

These equations are often normalized by the equilibrium concentrations and
parameter values, so that all quantities are expressed as fractionétigealf we
define

= diagxe}, DY = diag{V(Xe, 60)}, DY = diag(6o},

then the normalized cdigécient matrices (without the overbar) are given by
CX = (DX)_léxDV, cV= (DV)_lC_VDV,
Ré( — (DX)—lﬁgD(), R\é — (DV)—1§\9/D9

Flux balance analysis

Flux balance analysis is a technique for studying the relative ratefefeint reac-
tions in a complex reaction system. We are most interested in the case where ther
may be multiple pathways in a system, so that the number of reacticmgreater

than the number of speciesThe dynamics

dX_Nv( %.6)
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Figure 3.16: Flux balance analysis.

thus have the property that the mathikhas more columns that rows and hence
there are multiple reactions that can produce a given set of speciehdtaince is
often applied to pathway analysis in metabolic systems to understand the limiting
pathways for a given species and the tiffie@s of changes in the network (e.g.,
through gene deletions) to the production capacity.

To perform a flux balance analysis, we begin by separating the reactfons
the pathway into internal fluxeg versus exchanges flug, as illustrated in Fig-
ure3.16 The dynamics of the resulting system now be written as

dx_ NV(x,6) = N [Vi] =Nv(x,60)—b

dt - ] - Ve - | 9 e
wherebe = —NV, represents thefiects of external fluxes on the species dynamics.
Since the matriXN has more columns that rows, it hagght null space and hence
there are many éerent internal fluxes that can produce a given change in species.

In particular, we are interested studying the steady state properties gfsthe s
tem. In this case, we have thdit/dt = 0 and we are left with an algebraic system

NV| = be.

Material to be completed. Review

3.4 Oscillatory Behavior

In addition to equilibrium behavior, a variety of cellular procesess invobgilla-

tory behavior in which the system state is constantly changing, but in atimegpea
pattern. Two examples of biological oscillations are the cell cycle and ¢acad
rhythm. Both of these dynamic behaviors involve repeating changes in the co
centrations of various proteins, complexes and other molecular speciesdalth
though they are very dierent in their operation. In this section we discuss some of
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the underlying ideas for how to model this type of oscillatory behavior, Simgu
on those types of oscillations that are most common in biomolecular systems.

Biomolecular oscillators

Biological systems have a number of natural oscillatory processes thatrgiine
behavior of subsystems and whole organisms. These range from Irdsoiléa-
tions within cells to the oscillatory nature of the beating heart to various tremors
and other undesirable oscillations in the neuro-muscular system. At the bimmole
ular level, two of the most studied classes of oscillations are the cell cycle and
circadian rhythm.

The cell cycle consists of a set “phases” that govern the duplicatiodigisibn
of cells into two new cells:

G1 phase - gap phase, terminated by “G1 checkpoint”

S phase - synthesis phase (DNA replication)

G2 phase - gap phase, terminated by “G2 checkpoint”

M - mitosis (cell division)

The cell goes through these stages in a cyclical fashion, with ffereit enzymes
and pathways active in filerent phases. The cell cycle is regulated by many dif-
ferent proteins, often divided into two major classégclinscyclinsare a class of
proteins that sense environmental conditions internal and external teltrend
are also used to implement various logical operations that control transiti@f o
the G1 and G2 phaseSyclin dependent kinasé€DKs)are proteins that serve as
“actuators” by turning on various pathways duringfelient cell cycles.

An example of the control circuitry of the cell cycle for the bacteriaulobac-
ter crescentughenceforthCaulobactey is shown in Figure3.17 [57]. This or-
ganism uses a variety offtéierent biomolecular mechanisms, including transcrip-
tional activation and represssion, positive autoregulation (CtrA), giftmisansfer
and methlylation of DNA.

The cell cycle is an example of an oscillator that does not have a fixed pe-
riod. Instead, the length of the individual phases and the transitioning diftiee-
ent phases are determined by the environmental conditions. As one exdémeple
cell division time forE. coli can vary between 20 minutes and 90 minutes due to
changes in nutrient concentrations, temperature or other externaifacto

A different type of oscillation is the highly regular pattern encoding in circa-
dian rhythm, which repeats with a period of roughly 24 hours. The observ
of circadian rhythms dates as far back as 400 BCE, when Androstdesesbed
observations of daily leaf movements of the tamirind tré§.[There are three
defining characteristics associated with circadian rhythm: (1) the time to complete
one cycle is approximately 24 hours, (2) the rhythm is endogenouslyajedeand
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(a) Overview of cell cycle (b) Molecular mechanisms

Figure 3.17: TheCaulobacter crescentusell cycle. (a)Caulobactercells divide asym-
metrically into a stalked cell, which is attached to a swefeand a swarmmer cell, that is
motile. The swarmer cells can become stalked cells in a neatitm and begin the cell
cycle anew. The transcriptional regulators CtrA, DnaA ami/AGare the primary factors
that control the various phases of the cell cycle. (b) Thesiertircuitry controlling the
cell cycle consists of a large variety of regulatory mechians, described in more detail in
the text. Figure obtained frond}] (permission TBD).

self-sustaning and (3) the period remains relatively constant undegeban am-

bient temperature. Oscillations that have these properties appaer in ni@ngrdi
organisms, including micro-organisms, plants, insects and mammals. Some com-
mon features of the circuitry implementing circadian rhythms in these organisms is
the combination of postive and negative feedback loops, often with thitvpade-

ments activating the expression of clock genes and the negative elenmeatsieg

the positive elementsl]l]. Figure 3.18 shows some of the fierent organisms in
which circadian oscillations can be found and the primary genes respmifmib
different postive and negative factors.

Clocks, oscillators and limit cycles

To begin our study of oscillators, we consider a nonlinear model of thersyste
described by the flierential equation

dx_
dt

wherex € R" represents the state of the system (typically concentrations of various
proteins and other species and complexes)R represents the external inpuis
RP represents the (measured) outputs @adkX represents the model parameters.
We say that a solutiorx(t), u(t)) is oscillatory with period Tif y(t+T) = y(t). For
simplicity, we will often assume thgt = q = 1, so that we have a single input
and single output, but most of the results can be generalized to the multi-input,
multi-output case.

There are multiple ways in which a solution can be oscillatory. One of the sim-
plest is that the input(t) is oscillatory, in which case we say that we haveraed
oscillation In the case of a linear system, an input of the faii) = Asinwt then

f(x,u,6), y = h(x,6)
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./dynamics/figures/BP+05_Figl.eps

Figure 3.18Caption omitted pending permissidifrigure and caption fronmi[])

we now already the output will be of the forgit) = M- Asin(wt + ¢) whereM
andg represent the gain and phase of the system (at frequendy the case of a
nonlinear system, if the output is periodic then we can write it in terms of a set of
harmonics,

y(t) = B+ By sin(wt + ¢1) + Basin(2wt + ¢2) + - -«

The termBg represents the average value of the output (also called the bias), the
termsB; are the magnitudes of théh harmonic and; are the phases of the har-
monics (relative to the input). Thascillation frequencyw is given byw = 27/T
whereT is the oscillation period.

A different situation occurs when we have no input (or a constant input}idind s
obtain an oscillatory output. In this case we say that the systemgesustained
oscillation This type of behavior is what is required for oscillations such as the
cell cycle and circadian rhythm, where there is either no obvious forcingtion
or the forcing function is removed by the oscillation persists. If we assunéhihna
input is constant,(t) = Ao, then we are particularly interested in how the peifod
(or equivalently frequency), amplitudesB; and phaseg; depend on the inpuig
and system parametets

To simplify our notation slightly, we consider a system of the form

dx

G =F(x&.  y=h(x0) (3.21)
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(a) Linear harmonic oscillator (b) Nonlinear harmonic oscillator

Figure 3.19: Examples of harmonic oscillators.

whereF(x,0) = f(x,u,0) reflects the fact that the input is ignored (or taken to be
one of the constant parameters) in the analysis that follows. We haveefaun

the oscillatory nature of the outpuft) thus far, but we note that if the state@)

are periodic then the output is as well, as this is the most common case. Hence we
will often talk about thesystenbeing oscillatory, by which we mean that there is a
solution for the dynamics in which the state satiskéis- T) = x(t).

More formally, we say that a closed curles R" is anorbit if trajectories that
start onl” remain o for all time and ifT" is not an equilibrium point of the system.
As in the case of equilibrium points, we say that the orb#tableif trajectories
that start near stay neaf’, asymptotically stabld in addition nearby trajectories
approacH” ast — co andunstableif it is not stable. The orbif" is periodic with
periodT if for any x(t) e T', x(t+ T) = X(t).

There are many lierent types of periodic orbits that can occur in a system
whose dynamics are modeled as in equat®21). A harmonic oscillatorrefer-
ences to a system that oscillates around an equilibrium point, but doassnatly)
get near the equilibrium point. The classical harmonic oscillator is a lineggrays

of the form
E 0 w X1
dt|-w O X2 ’

whose solutions are given by

X1(t)] _ [ coswt sinwt] (x1(0)

[xz(t)] B [—sinwt co&ut] [xz(O)] '

The frequency of this oscillation is fixed, but the amplitude depends on thesva
of the initial conditions, as shown in FiguBe19 Note that this system has a single
equilibrium point atx = (0,0) and the eigenvalues of the equilibrium point have
zero real part, so trajectories neither expand nor contract, but simpliatesc
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(a) Homoclinic orbit (b) Heteroclinic orbit

Figure 3.20: Homoclinic and heteroclinic orbits.

An example of a nonlinear harmonic oscillator is given by the equation

% = X+ X1(1— X8 - %3), % = —Xg + Xo(1 - X§ = X). (3.22)
This system has an equilibrium pointeat (0,0), but the linearization of this equi-
librium point is unstable. The phase portrait in Fig@r&9bshows that the solu-
tions in the phase plane converge to a circular trajectory. In the time domain this
corresponds to an oscillatory solution. Mathematically the circle is calledia
cycle Note that in this case, the solution for any initial condition approaches the
limit cycle and the amplitude and frequency of oscillation “in steady state” (once
we have reached the limit cycle) are independent of the initial condition.

A different type of oscillation can occur in nonlinear systems in which the
equlibrium points are saddle points, having both stable and unstable digesiva
Of particular interest is the case where the stable and unstable orbits of wmoee
equilibrium points join together. Two such sitautions are shown in FigL@ The
figure on the left is an example offreomoclinic orbit In this system, trajectories
that start near the equilibrium point quickly diverge away (in the directomrs
responding to the unstable eigenvalues) and then slowly return to the equailibr
point along the stable directions. If the initial conditions are chosen to loispig
on the homoclinic orbif” then the system slowly converges to the equilibrium
point, but in practice there are often disturbances present that willrpefte sys-
tem df of the orbit and trigger a “burst” in which the system rapidly escapes from
the equilibrium point and then slowly converges again.

A somewhat similar type of orbit is heteroclinic orbit in which the orbit
connects two dierent equilibrium points, as shown in Figu8&0h

An example of a system with a homaoclinic orbit is given by the system

dxg dx
. 2 oy =3, 3.23
dt X2, dt X=X ( )
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Figure 3.21: Example of a homoclinic orbit.

The phase portrait and time domain solutions are shown in Fig2® In this
system, there are periodic orbits both inside and outside the two homoclinic cy-
cles (left and right). Note that the trajectory we have chosen to plot in the time
domain has the property that it rapidly moves away from the equilibrium point
and then slowly re-converges to the equilibrium point, before begin daaiey
again. This type of oscillation, in which one slowly returns to an equilibriumtpoin
before rapidly diverging is often calledralaxation oscillation Note that for this
system, there are also oscillations that look more like the harmonic oscillator case
described above, in which we oscillate around the unstable equilibirum gints
x=(x1,0).

Example 3.10(Glycolytic oscillations) Glycolysis is one of the principal metabolic
networks involved in energy production. It is a sequence of enzyrayezad reac-
tions that coverts sugar into pyruvate, which is then further degradédadioa (in
yeast fermentation) and lactic acid (in muscles) in anaerobic condition#\l&hd
(the cell's major energy supply) is produced as a result. Both dampediataired
oscillations have been observed. Damped oscillations were first refmyrti24l]
while sustained oscillations in yeast cell free extracts were observauglheose-
6-phosphate (G6P), fructose-6-phosphate (F88])dr trehalose 79 were used as
substrates.

Here, we introduce the fundamental motif which is known to be at the core of
these oscillatory phenomenon. This is depicted in Fi@22 (a). A simple model
for the system is given by the twoftBrential equations

dS—V V =V1—V
= V0 1, dt_ 1 25

in which
aP?

vi=SHP). f(P)= 2

W, Vo = koP,
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Figure 3.22: (a) The Glycolisis pathway. “S” is a substratieich is converted into product
“P”. This, in turn, is activating its own production by enltamg the rates,. (b) Oscillations
in the glycolisis pathway. Parameters age= 1, k; = 1, andk, = 1.00001.

wheref (P) is the Hill function. Under the assumption thats> P?, we havef (P) ~
k1P?, in which we have defineki := «/K. This second order system admits a stable
limit cycle under suitable parameter conditions (FigBrz2b)). \%

The example above illustrates some of the types of questions we would like to
answer for oscillatory systems. For example, Under what parameteitioosdlo
oscillations occur in the glycolitic system? How much can the parameter change
before the limit cycle disappears? To analyze these sorts of questionsete
to introduce tools that allow to infer the existence and robustness of limit cycle
behavior from a dterential equation model. The objective of this section is to
address these questions.

Consider the systerm= F(x) and letx(t, xg) denote its solution starting &b
at timet = 0, that is,Xx{t, Xo) = F(X(t, X0)) andx(0, o) = Xo. We say thak(t, xo) is a
periodic solutionf there isT > 0 such thak(t, xo) = x(t+ T, Xp) for all t € R. Here,
we seek to answer two questions: (a) when does a systef(X) admit periodic
solutions? (b) When are these periodic solutions stable or asymptoticallystable

In order to provide the main result to state the existence of a stable periodic
solution, we need the concept of omega-limit set of a ppjrtenotedy(p). Basi-
cally, the omega-limit seb(p) denotes the set of all points to which the trajectory
of the system starting frorp tends as time approaches infinity. This is formally
defined in the following definition.

Definition 3.1. A point xe R" is called aromega-limit poinbf pe R" if there is a
sequence of timef&;} with tj — oo for i — oo such thatx(tj, p) — X asi — . The
omega limit sebf p, denotedu(p), is the set of all omega-limit points qf

The omega-limit set of a system has several relevant properties, antocly w
the fact that it cannot be empty and that it must be a connected set.
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Limit cycles in the plane

Before studying periodic behavior of system&it we study the behavior of sys-
tems inR? as several high dimensional systems can be often well approximated by
systems in two dimensions by, for example, employing quasi-steady statxiappro
mations. For systems ik?, we will see that there are easy-to-check conditions that
guarantee the existence of a limit cycle.

The first result that we next give provides a simple check to rule oudbgier
solutions for system iiR?. Specifically, letx e R? and consider

xp=Fi(x, %) X =Fa(xg, %), (3.24)
in which the functiond : R? — R? is smooth. Then, we have the following result:

Theorem 3.2(Bendixson’s criterion) If on a simply connected region ®R? (i.e.,
there are no holes in it) the expression

oF1  OF2
0X1 0%

is not identically zero and does not change sign, then sy&e2d) has no closed
orbits that lie entirely in D.

Example 3.11. Consider the system
X1 = =X+ 0%, Yo =X,

with 6 > 0. We can computée + 52 = 3632, which is positive in allR? if 6 # 0. If
6 # 0, we can thus conclude from Bendixson’s criterion that there are nodie
solutions. Investigate as an exercise what happens wheh v

The following theorem, completely characterizes the omega limit set of any
point for a system iR

Theorem 3.3(Poincae-Bendixson) Let M be a bounded and closed positively
invariant region for the system= F(X) with x € (i.e., any trajectory that starts in
M stays in M for all t> 0). Let pe M, then one of the following possibilities holds
for w(p):

() w(p)is a steady state;
(i) w(p)is a closed orbit;

(iii) w(p) consists of a finite number of steady states and orbits, each starting (for
t = 0) and ending (for t> ) at one of the fixed points.

This theorem has two important consequences:
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k1

(a) Nullclines (b) Stability diagram

Figure 3.23: (a) The nuliclines and the equilibrium of thetsyn. (b) Parameter space
leading to oscillatory behavior.

1. If the system does not have steady statelsljrsincew(p) is not empty, it
must be a periodic solution;

2. If there is only one steady statelihand it is unstable and not a saddle (i.e.,
the eigenvalues of the linearization at the steady state are both positive), the
w(p) is a periodic solution.

Example 3.12(Glycolytic oscillations) Consider again the glycolysis example.
Let x; = S andxp = P and rewrite the systen3(10 as
dx dx
= Vo kowd =T Falax). = kaxad —kox =t Fa(x, %),
As a first step, we need to determine the number of steady states.x=d@dnwe

obtain

kyy?’
while fromy = 0, we obtain

kyy’
The intersection between these two curves (the nullclines) irkihgy] plane gives
rise to one steady state only (FigiB2339. The reader can determine a positively

invariant region that is compact. Then, it is enough to verify that the stsidy
(X1, X2.¢) IS unstable and not a saddle to guarantee the existence of a stable limit

cycle. Thus,

oFy R
J= X1 OXo
= o o
0X1 OXo

(K, —Zkaxiexoe
klxg’e —k2+2k1X1,eX2,e ’

(X1.e:X2.¢)
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in which X1 e = kg/(klvo) andxze = Vp/ko. The eigenvalues are such that

_ tr(J) + ytr(J)2 - 4detQ)

2 >

A1

in which
Vo

2 Vo\2
tr(J) =ko — kl(k_z) and det() = kl(k_z) .

Since det{) > 0, in order to have an unstable equilibrium that is not a saddle, it is
necessary and fiicient to have trd) > 0, which leads to

ke < K3/V3.

This region is depicted in Figu®23h Hence, itk; is large enough (i.e., the outflux
is large enough compared to the strength of the self activation) a stable lir@t cyc
arises. \%

Limit cyclesin R"

The results above holds only for systems in two dimensions. However, liheee
been recent extensions of this theorem to systems with special structffelm
particular, we have the following result due to Hastings et al. (1977).

Theorem 3.4(Hastings et al. 1977)Consider a system = F(x), which is of the
form

X1 = F1(Xn, X1)

Xj = Fj(Xj_l,Xj), 2<j<n
on the set M defined by x O for all i with the following inequalities holding in
M:

N OF 9F;i ; OF1 _ A
0] a—xi<0andaX—H>O, for2<i<n, anda—xn<0,

(i) Fi(0,0)>0and Fi(x,,0)> Ofor all X, > O;

(iii) The system has a unique steady stdte kx, ..., X;) in M such that k(x,, X1) <
0if Xy > X and x > X7, while Fy(x,, X1) > 0if X, < X and x < xJ;

(iv) 52 is bounded above in M.

Then, if the Jacobian of f atshas no repeated eigenvalues and has any eigenvalue
with positive real part, then the system has a non-constant periodic solatign

This theorem states that for a system with cyclic structure in which the cy-
cle “has negative gain”, the instability of the steady state (under some tathnic
assumption) is equivalent to the existence of a periodic solution. This theore
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however, does not provide information about whether the orbit is atteaatinot,
that is, of whether it is an omega-limit set of any pointMn This stability result is
implied by a more recent theorem due to Mallet-Paret and Smith (1990), fohwh
we provide a simplified statement as follows.

Theorem 3.5(Mallet-Paret and Smith, 1990 onsider the system= F(x) with
the following cyclic feedback structure

X1 = F1(%n, X1)
Xj =Fj(Xj-1.%Xj), 2<j<n

on a set M defined by % O for all i with all trajectories starting in M bounded for
t > 0. Then, thew-limit setw(p) of any point p= M can be one of the following:

(a) A steady state;
(b) A non-constant periodic orbit;
(c) A set of steady states connected by homoclinic or heteroclinic orbits.

As a consequence of the theorem, we have that for a system with cydic fee
back structure that admits one steady state only and at which the linearizaton h
all eigenvalues with positive real part, the omega limit set must be a periddtc or

Let for somes; € {1,-1} be §; % (X’X' ) 5 0 for all 0<i < n and defineA :=
d1-...-6n . One can show that the S|gn Y &¥fis related to whether the system has one
or multlple steady states.

In Chapter6, we will apply these results to determine the parameter space that
makes the repressilator (see Exanth@ oscillate.

3.5 Bifurcations

Another important property of nonlinear systems is how their behaviorgesaas
the parameters governing the dynamics change. We can study this in thet abnte
models by exploring how the location of equilibrium points, their stability, their re-
gions of attraction and other dynamic phenomena, such as limit cycles,asegb
on the values of the parameters in the model.

Parametric stability

Consider a dterential equation of the form

d

di( —F(x0), XxeR"geRrK (3.25)
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Figure 3.24: Phase portraits for a simple bifurcation.

wherex is the state andis a set of parameters that describe the family of equations.
The equilibrium solutions satisfy

F(x,0) =0,

and asf is varied, the corresponding solutiorgd) can also vary. We say that
the system3.25 has abifurcationatd = 6* if the behavior of the system changes
qualitatively at9*. This can occur either because of a change in stability type or a
change in the number of solutions at a given valu@. of

As an example of a bifurcation, consider the linear system

dx _ dx
dat 2> dt

wherek > 0 is fixed andd is our bifurcation parameter. Figu®24 shows the
phase portraits for tlierent values of. We see that & = 0 the system transitions
from a single stable equilibrium point at the original to having an unstabliitequ
rium. Hence, ag goes from negative to positive values, the behavior of the system
changes in a significant way, indicating a bifurcation.

A common way to visualize a bifurcation is through the use difarcation
diagram To create a bifurcation diagram, we choose a funcfierh(x) such that
the value ofy at an equilibrium point has some useful meaning for the question
we are studying. We then plot the valueyaf= h(xe(8)) as a function ob for all
equilibria that exist for a given parameter valueBy convention, we use dashed
lines if the corresponding equilibrium point is unstable and solid lines otherwis
Figure3.25shows examples of some common bifurcation diagrams. Note that for
some types of bifucations, such as the pitchfork bifurcation, there exiigés of
0 where there is more than one equilibrium point. A system that exhibits this type
of behavior is said to benultistable A common case is that there are two stable
equilibria, in which case the system is said todistable

Another type of diagram that is useful in understanding parametric depee
is aparametric stability diagraman example of which was shown in Figl8&23
In this type of diagram, we pick one or two (or sometimes three) parameters in the

= —kXg —uxz,



134 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR

gup\wc-l!w\\' Rv ‘!\E‘i?_, ,JU.E'E (\1=x)

L 'SM\.“‘, noch. ‘BIRTLG%M

X= m- 2T
2. Trtﬂ‘crlJ'\ €e l klr(':r-rc.]“rm b4
Y U %= XT _M_
s P
- - l
3. eLLBAL blRrehin .

e MY

Figure 3.25: Bifurcation diagrams for some common bifuiozat

system and then analyze the stability type for the system over all possiblénamb
tions of those parameters. The resulting diagram shows those regionatngiar
space where the system exhibits qualitativelffestent behaviors; an example is
shown in Figure8.26a

A particular form of bifurcation that is very common when controlling linear
systems is that the equilibrium remains fixed but the stability of the equilibrium
changes as the parameters are varied. In such a case it is revealinghe gigen-
values of the system as a function of the parameters. Such plots arerocatlbxtus
diagramsbecause they give the locus of the eigenvalues when parameters change
An example is shown in Figurg.26h Bifurcations occur when parameter values
are such that there are eigenvalues with zero real part. Computing remants
such LabVIEW, MATLAB and Mathematica have tools for plotting root loci.

Parametric stability diagrams and bifurcation diagrams can provide valuable
insights into the dynamics of a nonlinear system. It is usually necessaryefollbar
choose the parameters that one plots, including combining the natural parame
of the system to eliminate extra parameters when possible. Computer programs
such asAUTO, LOCBIF andXPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.



3.5. BIFURCATIONS 135

15 T 10

N

N
10[  ynstable

Unstable

(2]
7
7/
7/
d
Ve
N
\
I
v _ -
/
S/
Stable
(92
//<
T
=}
= 4

<V Vo

Rea
)
|y
Ima
o
<
N
(]
-

_5,

-15— -10— :
-10 0 10 -10 0 10
0 Rel
(a) Stability diagram (b) Root locus diagram

Figure 3.26: Stability plots a nonlinear system. The plotajpshows the real part of the
system eigenvalues as a function of the parangefEne system is stable when all eigenval-
ues have negative real part (shaded region). The plot irhs the locus of eigenvalues
on the complex plane as the parameéter varied and gives a fierent view of the stability
of the system. This type of plot is called@ot locus diagram

Hopf bifurcation

The bifurcations discussed above involved bifurcation of equilibriumtpo#in-
other type of bifurcation that can occur is that a system with an equilibriunt po
admits a limit cycle as a parameter is changed through a critical value. The Hopf
bifurcation theorem provides a technique that is often used to undenstegttier
a system admits a periodic orbit when some parameter is varied. Usuallyassuch
orbit is a small amplitude periodic orbit that is present in the close vicinity of an
unstable steady state.

Consider the system dependent on a parameter

%zg(x,a),xeR”, a €R,

dt

and assume that at the steady stateorresponding tar = « (i.e., g(Xx,a) = 0),
the linearizationdg/dx(x, @) has a pair of (non zero) imaginary eigenvalues with
the remaining eigenvalues having negative real parts. Define the nametar

0 := a —a and re-define the system as

dx _

at f(x,0) = g(x.0+a),

so that the linearizatiofif /dx(x,0) has a pair of (non zero) imaginary eigenvalues
with the remaining eigenvalues having negative real parts. Denot@by: 5(0) +
iw(0) the eigenvalue such thaf{0) = 0. Then, if‘97"560(0) # 0 the system admits a
small amplitude almost sinusoidal periodic orbit fmall enough and the system
is said to go through a Hopf bifurcation @t 0. If the small amplitude periodic
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./dynamics/figures/hopf-bifurcation.eps

Figure 3.27: Hopf Bifurcation. On the left hand,@mcreases a stable limit cycle appears.
On the right hand side, @increases a limit cycle appears but it is unstable.

orbit is stable, the Hopf bifurcation is sasdipercritical while if it is unstable it is

saidsubcritical Figure3.27shows diagrams corresponding to these bifurcations.
In order to determine whether a Hopf bifurcation is supercritical or stitoal;

it is necessary to calculate a “curvature” fis®ent, for which there are formu-

las (Marsden and McCrocken, 1976) and available bifurcation saftvearch as

AUTO. In practice, it is often enough to calculate the vatuef the parameter at

which Hopf bifurcation occurs and simulate the system for values of treapeter

a close toa. If a small amplitude limit cycle appears, then the bifurcation must be

supercritical.

Example 3.13(Glycolytic oscillations) Recalling the model3.10 for the gly-
colytic oscillator, we ask whether such an oscillator goes through a Hopi- bif
cation. In order to answer this question, we consider again the expresfsibe

eigenvalues
tr(J) + \/tr(J)2 - 4det(Q)
A12 = 5 ,
in which

Vo 2 Vo 2
tr(J)=ko—ky [ — and detd)=ki[—] .
(kz) (kz)
The eigenvalues are imaginary if3)(= 0, that is, ifk; = kg/vé. Furthermore, the
frequency of oscillations is given iy = vA4det{) = 4ky(Vo/k2). Whenky ~ k3/V3,
an approximately sinusoidal oscillation appears. Wkgis large, the Hopf bifur-
cation theorem does not imply the existence of a periodic solution. This isideca
the Hopf theorem provides only local results. For obtaining global resutshas
to apply other tools, such as the Poire&endixson theorem. \%

The Hopf bifurcation theorem is based on center manifold theory for resnin
dynamical systems. For a rigorous treatment of Hopf bifurcation is thusssacy
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to study center manifold theory first, which is outside the scope of this text. For
details, the reader is referred to standard text in dynamical sysi€ygsf].

3.6 Model Reduction Techniques

The techniques that we have developed in this chapter can be applied te a wid
variety of dynamical systems. However, many of the methods require sagrtific
computation and hence we would like to reduce the complexity of the models as
much as possible before applying them. In this section, we review methods for
doing such a reduction in the complexity of the models. Most of the techniques
are based on the common idea that if we are interested in the slower time scale
dynamics of a system, the fast time scale dynamics can be approximated by their
equilibrium solutions. This idea was introduced in Chaj2t@r the context of re-
duced order mechanisms; we present a more mathematical analysis ofstechss

here.

Singular perturbation analysis

Singular perturbation techniques apply to systems that have processegdiva
on both fast and slow time scales and that can be written in a standard foich, wh
we now introduce. Let(y) € D := Dyx Dy c R"xR™ and consider the vector field

dx

a = f(X,y,G), X(O): XO
d
ed—i/ =g(x.y.€), ¥(0) = Yo

in which 0< e < 1 is a small parameter and bofkx,y,0) andg(x,y,0) are well
defined. Since <« 1, the absolute value of the time derivativeyofan be much
larger than the time derivative of resulting iny dynamics that are much faster
than thex dynamics. That is, this system has a slow time scale evolutiax) @nd
a fast time-scale evolution (iy).

If we are interested only in the slower time scale, then the above system can be
approximated (under suitable conditions) by teéuced system

dx __ _
a - f(va, 0)7 X(O) = Xo,
0=g(xy.0).

Lety =y(X) denoteslow manifoldyiven by the locally unique solution gfx,y,0) =
0. Theimplicit function theoren{63] shows that this solution exists whenever
0g/dy is non singular. Furthermore, the theorem also shows that

dy  9gdg

dx dy ax
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We can now approximate the dynamicsxifi.e., on the slow manifold) as

dx _
gt = fr(¥.0,  x(0)=x.

We seek to determine under what conditions the solut{onis “close” to the
solution x(t) of the reduced system. This problem can be addressed by analyzing
the fast dynamics. Letting=t/e be the fast time scale, we have that
dy

Yeeitera. Dogya. (00D =000

so that where < 1, X(r) does not appreciably change. Therefore, the above system
in ther time scale can be approximated by
dy

d_ = g(X07 y’ 0)’ y(O) = YO7
T

in which x is “frozen” at the initial condition. This system is usually referred to as
theboundary layesystem. If for allxg, we have thay(r) converges tg/(xo), then
for t > 0 we will have that the solutior(t) is well approximated by the solution
X(t) to the reduced system. This qualitative explanation is more precisely cdpture
by the following theorem3g4].
)) <0
y=y(x)

uniformly for xe Dy. Let the solution of the reduced system be uniquely defined for
t e [0,t]. Then, for all € (0,t¢] there is a constant” > 0 and setQ C D such that

Theorem 3.6. Assume that

Rea(/l(%g(x, Y)

X(t) — x(t) = O(e) uniformly for te [0, t¢],
y(t) —y(X(t)) = O(e) uniformly for te [ty, t],

providede < €* and(Xp, Yo) € Q.

Example 3.14(Hill function). In Section2.1, we obtained the expression of the
Hill function by making a quasi-steady state approximation on the dynamics of
binding. Here, we illustrate how Hill function expressions can be detdyeal for-

mal application of singular perturbation. Specifically, consider the simpléargnd
scenario of a transcription factor X with DNA promoter sites p. Assume thedt su

a transcription factor is acting as an activator of the promoter and let Y @ ohe
tein expressed under promoter p. Assume further that X dimerizes h@fatieg

to promoter p. The reaction equations describing this system are given by

k]_ a a
X+X=X,, X,+p=_C, C—-m,+C,
ko d
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inmY+Y, my 2 0, Yo, p+C = pot.

The corresponding fferential equation model is given by

dd_)iz = k1X2— k2X2—aX2(ptot_C) +dC
dC

i aXo(pot—C)—dC
dmy

dY

at = pmy - oY.

Since all the binding reactions are much faster than mRNA and protein pirmaluc
and decay, we have thiat, ko, a,d > a,B,7,9. Letknm := ko /ki, Kq:=d/a, c:=ky/d,
ande := ¢/d. Then, we can re-write the above system by using the substitutions

d:g, a:KidE, kzzcg, k1:0&,
so that we obtain
e%—)? = C%XZ—céXZ— %Xg(ptot—C) +6C
T = e Xalpoi=O)—oC
dd_rrtw =aC—ymy
?TT =pmy —6Y.

This system is in the standard singular perturbation foBmg)( As an exercise,

the reader can verify that the slow manifold is locally asympotically stable (see
Exercises). The slow manifold is obtained by setting0 and determineX, and

C as functions oK. These functions are given by

oo X o2 P/ (knKa)
2" k' 1+ X2/ (KnKq)

As a consequence, the reduced system becomes

dmy ProtX?/ (KmKa)

at T X (knKag) T
9Y _ smy—sv,
dt —,BmY s

which is the familiar expression for the dynamics of gene expression witbtan a
vator as derived in Sectidhl1 \%
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Example 3.15(Enzymatic reaction)Let’s go back to the enzymatic reaction
a _k
E+S=C->E+P,
d

in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the substrate
S due to the binding with the enzyme E. The corresponding systentfefetitial
equations is given by

‘i—f = —aE-S+dC+kC, Oc'i—f = aE-S—(d+kC, (3.26)
ds dpP
a = —aE‘S+dC, a =kC. (327)

By assuming tha&, d > k, we obtained before that approximatel¢/dt = 0 and
thus thaC = EiotS/(S + Kp), with ky, = (d + K)/aanddP/dt = VimaxS/(S + k) with
Vimax= KEot. From this, it also follows that

dE ds dP

a ~0 anda x —a. (328)

How good is this approximation? By applying the singular perturbation method,
we will obtain a clear answer to this question. Specifically, delige= d/a and
take the system to standard singular perturbation form by defining the sasall p
rametere ;= k/d, so thatd = k/¢, a = k/(Kge), and the system becomes

dE k dC k

—=-——E-S+k kC — =—E-S-kC-¢k
Edt Ky S+kC+ekC, Edt Ky S ekC,
ds k dP
Ea——K—dE'S'FkC, a—kc

One cannot directly apply singular perturbation theory on this systenubeca
one can verify from the linearization of the first three equations that thadary
layer dynamics are not locally exponentially stable since there are two eEn-e
values. This is because the three varialgS, C are not independent. Specifically,
E = Eioi—C andS+C+ P = S(0) = Sio, assuming that initially we have S in amount
S(0) and no amount of P and C in the system. Given these conservatiorthaws,
system can be re-written as

dC k dp

GEZ K—d(Etot—C)'(Stot—C—P)—kC—GkC, a:
Under the assumption made in the analysis of the enzymatic reactio8ghat
Eiot, We have tha€C <« Sy so that the equations finally become

k P
edc = (Etot —C) - (Stot — P) —kC - €kC, —d =
Ky dt

kC.

kC.
dt C
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One can verify (see Exercises) that in this system, the boundary layantgs
is locally exponentially stable, so that setting 0 one obtains

co Etot(Stot— P)
(Stot— P) + km

and thus that the reduced system is given by

= y(P)

dP _ (Stot—P)
dt —  "(Siot—P) + km’

This system is the same as that obtained in Chaptétowever,dC(t)/dt and
dE(t)/dtare not close to zero as obtained earlier. In fact, from the conser\lramn
S+C+P=S(0)= S, We obtalntha% ~dP_ dC in \which nowdS = 27(p). 4

dt ~ dte
Therefore S 4
= 1+ Oy

=t = gt 1+ 55(P). S(0)= Swor—¥(P(0) - P(0) (3.29)
and i dC
at - dt ( ) E(O) = Eiot—¥(P(0)), (3.30)

which are diferent from expressmns(za. _

These expressions are close to those in equaB@8(only whendy/dP(P) is
small enough. In the plots of FiguB28 we show the time trajectories of the orig-
inal system, of the Michaelis-Menten quasi-steady state approximation (QSSA
and of the singular perturbation approximation. In the full model (solid lindédgn F
ure 3.28, E(t) starts from a unit concentration and immediately collapses to zero
as the enzyme is all consumed to form the complex C by the substrate, which is
in excess. SimilarlyC(t) starts from zero and immediately reaches the maximum
possible value of one.

In the QSSA, bottE(t) andC(t) are assumed to stabilize immediately to their
(quasi) steady state and then stay constant. This is depicted by the dotteid plots
Figure 3.28 in which E(t) stays at zero for the whole time af{t) stays at one
for the whole time. This approximation is fairly good as long as there is an gxces
of substrate. When the substrate concentration goes to zero as it is\ateah
to product, also the complex concentratidrgoes to zero (see solid line of Fig-
ure 3.28. At this time, the concentrations of complex and enzyme substantially
change with time and the QSSA is unsatisfactory. By contrast, the redunachdy
ics obtained from the singular perturbation approach well represeidtytigemics
of the full system even during this transient behavior. Hence, while tH&/AQSa
good approximation only as long as there is excess of substrate in the sirstem,
reduced dynamics obtained by singular perturbation is a good approxinezgon
when the substrate concentration goes to zero.

In Figure3.29 we show the curv€ = y(P) (in red) and the trajectories of the
full system in black. All of the trajectories of the system immediately collapse into
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Figure 3.28: Simulation results for the enzymatic reactiomparing the approximations
from singular perturbation and from the quasi-steady sipfgroximation (QSSA). Here,
we haveSio = 100, Eyot = 1, a=d = 10, andk = 0.1. The full model is the one in equa-

tions 3.27).

ane-neighbor of the curv€ = y(P). From this plot, it is clear thaty/dP is small
as long as the product concentratiBris small enough, which corresponds to a
substrate concentratighlarge enough. This confirms that the QSSA is good only
as long as there is excess of substte \%

Exercises

3.1 (Frequency response of a phosphorylation cycle) Consider the rabdedo-
valent modification cycle as illustrated in Chapgein which the kinase Z is not

5
constant, but it is produced and decays according to the reacti@(?iz Letu(t)
u(t

be the input stimulus of the cycle and ¥t be the output. Determine the fre-
quency response o* to u, determine its bandwidth, and make plots of it. What

parameters can be used to tune the bandwidth?

3.2 (Design for robustness) Consider a one-step reaction model forsppbryla-

tion cycle as seen in Homework 1, in which the input stimulus is the time-varying
concentration of kinasg(t). When found in the cellular environment, this cycle is
subject to possible interactions with other cellular components, such asrhe no
specific or specific binding of X* to target sites, to noise due to stochasti€ity o
the cellular environment, and to other cross-talk phenomena. We will corkddbac
these “disturbances” later during the course. For now, we can think sé tistur-
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Figure 3.29: The slow manifold of the syst&m= y(P) is shown in red. In black, we show
the trajectories of the the full system. These trajecta@kmpse into ar-neighbor of the
slow manifold. Here, we havBiot = 100,Et=1,a=d =10, andk = 0.1.

bances as acting like an aggregate rate of change on the output proteimixh
we calld(t). Hence, we can model the “perturbed” cycle by

*

- X
X" = Z(t)klxtot(l—
Xiot

J -t +dt

which is the same as you found in Homework 1, except for the presenite of
disturbanced(t). Assume that you can tune all the parameters in this system (we
will see later that this is actually possible to large extent by suitably fabricating
genetic circuits). Can you tune these parameters so that the respoXsg)db

d(t) is arbitrarily attenuated while the responseXsft) to Z(t) remains arbitrarily
large? If yes, explain how these parameters should be tuned to reaclesigs d
objective and justify your answer through a careful mathematical regagosing

the tools introduced in class.

3.3 (Adaptation) Show that the equation of thefBmi3.15can be taken into the
standard integral feedback form through a suitable change of cabedin

3.4 (Design limitations) This problem is meant to have you think about possible
trade-dfs and limitations that are involved in any realistic design question (we will
come back to this when we start design). Here, we examine this throughehe op
loop and negative feedback transcriptional component seen in atesBifgire 3-8

in the Lecture Notes). Specifically, we want to compare the robustnesssa tivo
topologies to cellular noise, crosstalk, and other cellular interactions. Aerpeed

in Problem 1, we model these phenomena as a time-varying disturbfiactna

the production rate of MRNA m and protein P. To slightly simplify the problem,
we focus only on disturbance#fecting the production of protein. The open loop
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model becomes

m=agp—ym P = Bm—6P+d(t)
and the negative feedback system becomes

M=o+ ym P = Bm—6P+d(t).

(07
K+Pn
Answer the following questions:

(a) After performing linearization about the equilibrium point, determine ana-
lytically the frequency response Bfto d for both systems.

(b) Sketch the magnitude plot of this response by hand for both systems, co
pare them, and determine what happeng asd« increase (note: if your
calculations are correct, you should find that what really matters for e ne
ative feedback system is the produg which we can view as thieedback
gain). So, is increasing the feedback gain to arbitrarily large values the best
strategy to decrease the sensitivity of the system to the disturbance? Com-
ment.

(c) Pick parameter values and use Matlab to draw Bode plots as the f&edbac
gain increases and validate your predictions of (b). (Suggested parame
vy=1,6=1,K=1,n=1,08={1,10,1001000Q...}). Note: in Matlab, once
you have determined the matricAsB, C, andD for the linearization, you
can just do:SYS=ss(A,B,C,D); bode(SYS) and the Bode plot will pop

up.

(d) Investigate the answer to (c) when you hane 20, that is, the timescale of
the mMRNA dynamics becomes faster than that of the protein dynamics. What
does change with respect to what you found in (c)? Note: whi@icreases
you are reducing the (phase) lag within the negative feedback loop...

(e) Wheny is at least 10 times larger thaxn you can approximate tha dy-
namics to the quasi-steady state. So, the two above systems can be reduced
to one diferential equation each for the protein concentrafoifror these
two reduced systems, determine analytically the frequency respodsatb
use it to find out whether arbitrarily increasing the feedback gain is a good
strategy to decrease the sensitivity of response to the disturbance.

3.5(Bendixson criterion) Consider the possible circuit topologies of FigL88 in
which A and B are transcriptional components. Model each transcriptongo-
nent by a first order system, in which you have approximated the mRNAnigsa

at the quasi-steady state. Hence, each topology will be representetybgmical
system in the plan&2. Use Bendixson criterion to rule out topologies that cannot
give rise to closed orbits.
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Figure 3.30: Circuit topologies with two components (piasg A and B.

3.6 (Two gene oscillator) Consider the feedback system composed of tvas gen
expressing proteins A (activator) and R (repressor), in which wetddoy A, R,

ma, andmg, the concentrations of the activator protein, the repressor protein, the
MRNA for the activator protein, and the mRNA for the repressor protespee
tively. The ODE model corresponding to this system is given by

dmy a0 dmg A"

dt  Kerr /e dt  Ky+Am VTR
dA dR

O Bma—oA R sme-oR

at /S’mA ) at ﬂﬁh R

Determine parameter conditions under which this system admits a stable limit cy-
cle. Validate your finding through simulation.

3.7 (Goodwin oscillator) Consider the simple set of reactions
X1 X2 Xaoo S X,

Assume further that Xis a transcription factor that represses the production of pro-
tein X3 through transcriptional regulation (assume simple binding 0foXDNA).
Neglecting the mRNA dynamics of p{write down the ODE model of this sys-
tem and determine conditions on the length n of the cascade for which thensyste
admits a stable limit cycle. Validate your finding through simulation.
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3.8 (Activator-repressor clock) A well known oscillating motif is given by the
activator-repressor clock by Atkinson et ab] jin which an activator protein A
activates its own production and the one of a repressor protein R, whichinin
acts as a repressor for A. The ODE model corresponding to this clodkeis by

dmy  aA"+ao m dng A" m
dt K +R +Am VA dt  Ky+Am V'R
dA dR

= (B - A = Bmg-6

Ot H(BMA ) at BMr—6R,

in whichu > 0 models the dference of speeds between the dynamics of the activa-
tor and that of the repressor. Indeed a key requirement for this systestillate

is that the dynamics of the activator ardfaiently faster than that of the repressor.
Demonstrate that this system goes through a Hopf Bifurcation with bifurcptien
rameteru. Validate your findings with simulation by showing the small amplitude
periodic orbit.

3.9 (Phosphorylation via singular perturbation) Consider again the modetof a
valent modification cycle as illustrated in Chapgein which the kinase Z is not
o
constant, but it is produced and decays according to the reac&??tm.
u(t
(a) Consider thaks, k > keas 0, u(t) and employ singular perturbation with small

parameter, for example,= 6/k; to obtain the approximated dynamics&it) and
X*(t). How is this diferent from the result obtained in Exerci&? Explain.

(b) Simulate these approximated dynamics whghis a periodic signal with fre-
guencyw and compare the responses of Z of this approximated dynamics to those
obtained in Exercis2.9as you change. What do you observe? Explain.

3.10(Hill function via singular perturbation) Show that the slow manifold of the
following system is asymptotically stable:

dX; 0 2 ) dmy

GW —me —C6X2—K—dx2(ptot—C)+6C, T —CYC—’)/mY,
dC ¢ dy
— = 2 Xo(prot=C) - — =pmy - oY,

3.11(Enzyme dynamics via singular perturbation) Show that the slow manifold of
the following system is asymptotically stable:

dC

k dP
Ea = K—d(Etot—C)'(Stot— P)—kC—EkC, a =kC.
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3.12(BE 150, Winter 2011; Based on Alon 4.6—Shaping the pulse) Consider a s
uation where X in an 11-FFL begins to be produced at tigf@ &0 that the level of
protein X gradually increases. The input sigBalandS, are present throughout.

(a) How does the pulse shape generated by the I1-FFL depend onékbhdlus
Kxz, Kxy, @andKy,, and ong, the production rate of protein X? (i.e. How does in-
creasing or decreasing these parameters change the height or pdditierpolse
peak, the slope of the rise of the pulse, etc?)

(b) Analyze a set of geneg, Z,, ..., Z,, all regulated by the same X and Y in 11-
FFLs. Design thresholds such that the genes are turned ON in the risisg ph
the pulse in a certain temporal order and turned OFF in the declining ph#se of
pulse with the same order.

(c) Design thresholds such that the turn-OFF order is opposite the NNrorder.
Plot the resulting dynamics.

3.13(BE 150, Winter 2011; Based on Alon 5.6—Bi-fan dynamics) Consider a bi-
fan in which activators; and X, regulate geneZ; andZ,. The input signal of
X1,Sx2, appears at time=D and vanishes at timeD. The input signal oKX, Sx2,
appears at time=tD/2 and vanishes at2D. Plot the dynamics of the promoter
activity of Z; andZ, given that the input functions &f; andZ, are AND and OR
logic, respectively.

3.14(BE 150, Winter 2011; Based on Alon 6.1—Memory in the regulated-feed-
back network motif) Transcription factor X activates transcription fagiandYa.

Y; and Y2 mutually activate each other. The input function at ¥Yaeand Y, pro-
moters is an OR gatéy{ is activated when either X of; binds the promoter). At
time &0, X begins to be produced from an initial concentration efOXInitially

Y1 = Y2 = 0. All production rates arg = 1 and degradation rates are= 1. All of

the activation thresholds are#0.5. At time &3, production of X stops.

|

Y1 Y2

(a) Plotthe dynamics of, Y1, Y>. What happens t¥; andY; after X decays away?

(b) Consider the same problem, but n&¥wandY, repress each other and X ac-
tivatesY; and repressey,. At time t=0, X begins to be produced and the initial
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levels areX =0,Y; =0,Y, = 1. Attime &3, X production stops. Plot the dynamics
of the system. What happens after X decays away?

3.15(BE 150, Winter 2011; Repressilator) Simulate the following simplified ver-
sion of the repressilator:

dmy Kp dp

dt 1+ ()" ~ Knded™ dt KiransM1 — KpdegP1
dmp Kp dp,

dt 1+ ()" ~ Knded2 dt - Kirans™z — KpdegP2
dmy Kp dps

dt 1+ Zr Knded™s .~ Kranse — KpdegPs

(a) Simulate the system using the following parametigs= 0.5,n = 2,Ky =
40, kmdeg: 00058 kpdeg: 00012 ktrans = 0116

(b) Suppose the protein half-life suddenly decreases by half. Whichmzder(s)
will change and how? Simulate what happens. What if the protein half-lifeus d
bled? How do these two change$eat the oscillatory behavior?

(c) Now assume that there is leakiness in the transcription process. Hesathu®m
system’s ODE change? Simulate the system with a small leakiness (say, B-3) a
comment on how it fiects the oscillatory behavior.

3.16(BE 150, Winter 2011; Glycolytic oscillations) In almost all living cells, glu-

cose is broken down into the cell's energy currency, ATP, via the glgt®lyath-

way. Glycolysis is autocatalytic in the sense that ATP must first be consuntiegl in

early steps before being produced later and oscillations in glycolytic metabolite

have been observed experimentally. We will look at a minimal model of glycolysis
dX 2Vy? K dy 2Vy2

E—W— X a:(qﬁ-l)kx—qW—l

Note that this system has been normalized suchYthat 1.

(a) While a system may have the potential to oscillate, the behavior still depends
on the parameter values. The glycolysis system undergoes muitfpkeations

as the parameters are varied. Using linear stability analysis, find the parameter
conditions where the system is stable vs. unstable. Next, find the conditiwre w

the system has eigenvalues with nonzero imaginary parts.

(b) Letg=k=V=1.Find the relationship betwedranda where the system is stable
or not. Draw the stability diagram and mark the regions where the systemlis stab
vSs. unstable. In the same plot, mark the regions where the system hasagiigsnv
with nonzero imaginary parts.
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(c) Letg=k=V=1. Choosen anda such that the eigenvalues are unstable and have
nonzero imaginary parts. Use these parameter values and simulate the aronline
system in MATLAB. Sketch the time response of the system starting with initial
condition X(0)=1.2, Y(0)= 0.5 (you may use MATLAB or sketch by hand). Com-
ment on what you see compared to what linear stability analysis told you tid@out
system.

3.17(BE 150, Winter 2011) Finding limit cycles for nonlinear systems and under-
standing how changes in parameteffeet the amplitude and period of the oscil-
lation is dificult to do in analytical form. A graphical technique that gives some
insight into this problem is the use déscribing functionswhich is described in
Feedback SysterSection 9.5. In this problem we will use describing functions for
a simple feedback system to approximate the amplitude and frequency of a limit
cycle in analytical form.

Consider the system with the block diagram shown below. The BRasla relay

Yi
r = 8 u b | &

—-»f\g}"-—-— R{-) = P(s5) -

with hysteresis whose inpgoutput response is shown on the right and the process
transfer function iP(s) = e 7/s. Use describing function analysis to determine
frequency and amplitude of possible limit cycles. Simulate the system and cempar
with the results of the describing function analysis.

3.18(BE 150, Winter 2011) In this problem we will compare the model with single
methylation site vs. double methylation sites. The model with a single methylation
site is given by:

d(X+Xx*) VeBXx

=VrR-
dt R K + X

where theactivity is given by A = Xx. The model with two methylation sites is
given by

d(X2 + Xz*) . RVRX1

= —BVgX
dt X1+ Xg = Bhet
d(X]_ + Xl*) RVRXO RVRX]_
ST AT BVX - —BVgX
at B S+ Xe Xi+Xg B
RV
dX _ RWXo BVgXy*

dt T Xo+ Xg
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and the activity is given by = X; =« +Xo+. Let K = 10,VRR = 1,VgB = 2. Derive

the parameter sensitivities of the activities>] for both the single and double
methylation models. Comment on which parameter each model is most robust and
most sensitive to.

3.19(BE 150, Winter 2011) Consider a toy model of protein production:

dm dp

a=f(p)—7m a=g(p)—5p

(&) Assume that there is transcriptional self-regulatié(p) = ﬁpn). We now
know that the mRNA transcription process and thus we want to understand th
sensitivity with respect to the mRNA transcription ratg Compute the trans-
fer function froma to p. Plot this transfer function for = 0.00239 = 0.1,y =
0.0056 = 0.00L K = 0.002 Compare it with the transfer function fromy to p
without regulation {(p) = ag = 0.001). (Note: As a reminder on how to compute
these transfer functions, see BFS chapter 3 page 3-11).

(b) Now assume that there is no transcriptional regulatigp)(= ao) but there is

translational self-regulation such thg{p) = %. Computer the transfer function

from ag to p wheng = 0.2. Compare again with the case with no regulation.
3.20(BE 150, Winter 2011) Consider a simple model of chemotaxis:

dd—f“ = keR+ K" (L)X, — K Xm

dXxi, X!

= —kgBP—™ kM (L)X +K'X

at - B ey K (DXt K X

whereXp, is the concentration of methylated receptor complex, §has the con-
centration of activated, methylated receptor complex. Ligand concenteaiiens
into the equation through the rat&(L). In this modelCheR(R) andCheB’ (BP)
concentrations are constant. (BFS, Section 5)

(a) Pick parameter values such thgBP > kgR and plot the dynamics, doubling
the ligand concentration at time20. Compare to figure 5.12 in BFS.

(b) Now assume that CheR no longer acts in saturation. Rederive thenadyma
and plot. Comment on how this assumptidfeats adaptation.



Chapter 4

Stochastic Modeling and Analysis

In this chapter we explore stochastic behavior in biomolecular systems, lguildin
on our preliminary discussion of stochastic modeling in Sec2dnWe begin by
reviewing the various methods for modeling stochastic processes, incltiging
chemical master equation (CME), the chemical Langevin equation (CLE}&nd
Fokker-Planck equation (FPE). Given a stochastic description, wihearanalyze

the behavior of the system using a variety of stochastic simulation and analysis
tools.

PrerequisitesThis chapter makes use of a variety of topics in stochastic processes
that are not covered in AM08. Readers should have a good workiogl&dge of
basic probability and some exposure to simple stochastic processes (@njdr
motion), at the level of the material presented in Apperilixirawn from [7Q]).

4.1 Stochastic Modeling of Biochemical Systems

Biomolecular systems are inherently noisy due to the random nature of malecula
reactions. When the concentrations of molecules are high, the deterministtsmod
we have used in the previous chapters provide a good description ofriaenits

of the system. However, if the molecular counts are low then it is often rexgess
explictly account for the random nature of events. In this case, th chbmédions

in the cell can be modeled as a collection of stochastic events correspdnding
chemical reactions between species, including binding and unbinding of nfede
(such as RNA polymerase and DNA), conversion of one set of spietéeanother,

and enzymatically controlled covalent modifications such as phosphorylation
this section we will briefly survey some of theffdirent representations that can be
used for stochastic models of biochemical systems, following the material in the
textbooks by Phillipet al.[76], Gillespie [33] and Van Kampeng2].

Statistical mechanics

At the core of many of the reactions and multi-molecular interactions that take
place inside of cells is the chemical physics associated with binding between two
molecules. One way to capture some of the properties of these interactions is
through the use of statistical mechanics and thermodynamics.
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As described briefly already in Chapt2r the underlying representation for
both statistical mechanics and chemical kinetics is to identify the appropriate mi-
crostates of the system. A microstate corresponds to a given configuohtioe
components (species) in the system relative to each other and we mustateume
all possible configurations between the molecules that are being modeled.

In statistical mechanics, we model the configuration of the cell by the pilebab
ity that system is in a given microstate. This probability can be calculated based
the energy levels of the fllerent microstates. Consider a setting in which our sys-
tem is contained within a reservoir. LEt represent the energy in the resevai,
the energy in the system afgh; = E; + E sthe total (conserved) energy. Given two
different energy IeveIE(Sl) and E(SZ) for the system of interest, &/ (Eo; — Eg_))
be the number of possible microstates of the reservoir with ertgrgyE o — Eg),

i = 1,2. The laws of statistical mechanics state that the ratio of probabilities of be-
ing at the energy levelE® andE® is given by the ratio of number of possible
states of the reservoir:
P(ES) _ Wi (Ewi—ESY)
PEP) Wi (Eoi-ED)
Defining the entropy of the system&s- kg InW, wherekg is Boltmann’s constant,
we can rewrite equatiord(l) as

(4.1)

W, (Eior— ES) _ eSr(BaEke
W (Etot — E(sz)) eST(Etot—E(sz))/ ke

We now approximat&, (Eq:— Es) in a Taylor series expansion arouBgy, under
the assumption tha, > Eg:

0S
Sr(Etot - Es) ~ Sr(Etot) - a_Er Es.

From the properties of thermodynamics, if we hold the volume and number of
molecules constant, then we can define the temperature as

0S 1

9ElN T

and we obtain ®
P(Egl)) ~ g Es’/keT

PED) o T

This implies that
P(ED) o g EL/(kaT)

and hence the probability of being in a microstais given by

1
B(q) = S e /teT), (4.2)
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where we have writte for the energy of the microstate adds a normalizing
factor, known as theartition function defined by

7= Z g Ea/(keT)
qeQ

By keeping track of those microstates that correspond to a given sysém s
(also called a macrostate), we can compute the overall probability that a give
macrostate is reached.

In order to determine the energy levels associated wifferdint microstates,
we will often make use of théee energyof the system. Consider an elementary
reaction A+ B = AB. Let E be the energy of the system, taken to be operating
at pressuré® in a volumeV. Theenthalpyof the system is defined &= E + PV
and theGibbs free energis defined a$&s = H— T S whereT is the temperature of
the system an@ is its entropy (defined above). The change in bond energy due to
the reaction is given by

AH = AG+TAS,

where theA represents the change in the respective quantityd represents the
amount of heat that is absorbed from the reservoir, which tlffesta the entropy
of the reservoir.

Derivation to be added later. Review
The resulting formula for the probability of being in a microstais given by

1
P(q) = — g AG/keT
(©) €

Example 4.1(Transcription factor binding)Suppose that we have a transcription
factor R that binds to a specific target region on a DNA strand (such gsrthe
moter region upstream of a gene). We wish to find the probablitynqthat the
transcription factor will be bound to this location as a function of the number of
transcription factor molecules in the system. If the transcription factor is a re-
pressor, for example, knowirg,oundNr) Will allow us to calculate the likelihood

of transcription occurring.

To compute the probability of binding, we assume that the transcription factor
can bind non-specifically to other sections of the DNA (or other locationsen th
cell) and we leiNps represent the number of such sites. WeBgjngrepresent the
free energy associated with R bound to its specified target regioBamepresent
the free energy foR in any other non-specific location, where we assume that
Epound< Ens. The microstates of the system consist of all possible assignments of
theng transcription factors to either a non-specific location or the target redion o
the DNA. Since there is only one target site, there can be at most oneripgiosc
factor attached there and hence we must count all of the ways in whicl eétoe
or one molecule of R are attached to the target site.
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If none of theng copies of R are bound to the target region then these must be
distributed between th,,s non-specific locations. Each bound protein has energy
Ens, SO the total energy for any such configuratiomggEns. The number of such
combinations is(';'];S) and so the contribution to the partition function from these
microstates is

7w = an e—nREns/(kBT) = —an! e_nREnS/(kBT)
7\ nk NR!(Nns— NR)!

For the microstates in which one molecule of R is bound at a target site and the
otherng — 1 molecules are at the non-specific locations, we have a total energy of
Epound+ (NR — 1)Ens and((n':”_sl)) possible such states. The resulting contribution to
the partition function is

Nig! o (Evound-("r-1)Eng)/(keT)

Zbound=

The probability that the target site is occupied is now computed by looking at
the ratio of theZyoungto Z = Zns+ Zpoung After some basic algebraic manipulations,
it can be shown that

(ﬁﬁwl) exp—(Epound+ Ens)/(ksT)]
+ (ﬁﬁwl) exp[ —(Ebound+ Ens)/(ksT)] '

Pbounc(nR) =

If we assume thall,s > ng thenNps— nr+ 1 ~ Ny, and we can write

Knr
1+ knR’

1
PooundNR) ~ where k= N exp[—(Ebound— Ens)/(ksT)].
ns
As we would expect, this says that for very small numbers of represBgysq
is close to zero, while for large numbers of repressBgsung— 1. The point at
which we get a binding probability of 0.5 is wher = 1/k, which depends on the
relative binding energies and the number of non-specific binding sites.  V

Example 4.2(Combinatorial promoter)A combinatorial promoter is a region of
DNA in which multiple transcription factors can bind and influence the sulesgqu
binding of RNA polymerase. Combinatorial promoters appear in a numbextof n
ural and engineered circuits and represent a mechanism for creatfitofp-tike
behavior, for example by having a gene that controls expression of istran-
scription factors.

One method to model a combinatorial promoter is to use the binding energies
of the diferent combinations of proteins to the operator region, and then compute
the probability of being in a given promoter state given the concentratiosobf @f
the transcription factors. Tabdel shows the possible states of a notional promoter
that has two operator regions—one that binds a repressor protein Bnatiaer
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Table 4.1: Configurations for a combinatorial promoter wvath activator and a repres-
sor. Each row corresponds to a specific macrostate of theqteornim which the listed
molecules are bound to the target region. The relative gnafrgtate compared with the
ground state provides a measure of the likelihood of tha¢ stecurring, with more nega-
tive numbers corresponding to more energetically faverabhfigurations.

State  OR1 OR2 Prom Eq4(AG) Comment

S - - - 0 No binding (ground state)

S, - - RNAP -5 RNA polymerase bound

S3 R - - -10 Repressor bound

S4 — A - -12 Activator bound

Ss - A RNAP -15 Activator and RNA polymerase

that binds an activator protein A. As indicated in the table, the promoter hees thr
(possibly overlapping) regions of DNA: OR1 and OR2 are binding sitesher
repressor and activator proteins, and Prom is the location where RNAprase
binds. (The individual labels are primarily for bookkeeping purposesmay not
correspond to physically separate regions of DNA.)

To determine the probabilities of being in a given macrostate, we must compute
the individual microstates that occur at a given concentrations of gepreac-
tivator and RNA polymerase. Each microstate corresponds to an indigdtaf
molecules binding in a specific configuration. So if we hayeepressor molecules,
then there is one microstate correspondingaohdifferent repressor molecule that
is bound, resulting img individual microstates. In the case of configuraties)
where two diferent molecules are bound, the number of combinations is given by
the product of the numbers of individual moleculeg; nrnap, reflecting the pos-
sible combinations of molecules that can occupy the promoter sites. Thdlovera
partition function is given by summing up the contributions from each microstate:

7 — g Eo/(keT) | NRNAP g Ernap/(ksT) N] g Er/(keT)

+Na g Ea/ksT) NANRNAP g Earnap/(keT) (4.3)

The probability of a given macrostate is determined using equa®@ or
example, if we define the promoter to be “active” if RNA polymerase is bound
to the DNA, then the probability of being in this macrostate as a function of the
various molecular counts is given by

1 —Ernap/(keT —Enrnap/(keT
Pactive(NR> NA, NRNAP) = > (nRNAPe ruap/(keT) 1y nrape EaRe/ (ke ))

3 Ka:RnAP NA + KrRnAP
1+ krnap + KR MR + (Ka + Ka:rnap)Na”
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where
ky = g (Ex—Eo)/(keT)_

From this expression we see thamif > na thenPyciivetends to 0 while iy > ng
thenPgghvetends to 1, as expected. \Y

Chemical master equation (CME)

The statistical physics model we have just considered gives a descriitibe
steady statgroperties of the system. In many cases, it is clear that the system
reaches this steady state quickly and hence we can reason about dveobeh

the system just by modeling the free energy of the system. In other situations,
however, we care about the transient behavior of a system or thentyaf a
system that does not have an equilibrium configuration. In these instameenust
extend our formulation to keep track of how quickly the system transitioms fro
one microstate to another, known as themical kineticef the system.

To model these dynamics, we return to our enumeration of all possible mi-
crostates of the system. LB{q,t) represent the probability that the system is in
microstateq at a given timet. Hereq can be any of the very large number of
possible microstates for the system, which for chemical reaction systemsnwe ca
represent in terms of a vector consisting of the number of molecules oépacles
that is present. We wish to write an explicit expression for lrfe;t) varies as a
function of time, from which we can study the stochastic dynamics of the system.

We begin by assuming we have a set\bfreactions R j =1,..., M, with ¢;
representing the change in state associated with reacti@pBcificallyj is given
by the jth column of the stoichiometry matriX. The propensity functiordefines
the probability that a given reaction occurs in &hsiently small time stejlt:

aj(g,t)dt = Probability that reactiof; will occur between timé
and timet + dt given that the microstate &g

The linear dependence att relies on the fact thadt is chosen sfliciently small.
We will typically assume thaa; does not depend on the timend writea;(qg)dt
for the probability that reactiofpoccurs in state.
Using the propensity function, we can compute the distribution of states at time
t + dt given the distribution at time

M M
P(a.t+d) = P(a.(1- > aj()dt) + > Pa-&))aj(a—&))dt
j=1 j=1
(4.4)

M
=P+ Y (aj@-&)P(a-£.1) - aj(Q)P(a.t))dt
j=1
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Sincedtis small, we can take the limit @& — 0 and we obtain thehemical master
equation(CME):

oP W
E;mx)=;;¢nm—fnpm—fpw—anmpmi» (4.5)

This equation is also referred to as theward Kolmogorov equatiofor a discrete
state, continuous time random process.

Despite its complexity, the master equation does capture many of the important
details of the chemical physics of the system and we shall use it as ourépage
sentation of the underlying dynamics. As we shall see, starting from thatiequ
we can then derive a variety of alternative approximations that allow ussteean
specific equations of interest.

The key element of the master equation is the propensity funat{ogt), which
governs the rate of transition between microstates. Although the detailedofalue
the propensity function can be quite complex, its functional form is oftetivela
simple. In particular, for a unimolecular reaction of the form-2B, the propensity
function is proportional to the number of molecules of A that are present:

ai(g,t) = kina. (4.6)

This follows from the fact that each reaction is independent and heediéti-
hood of a reaction happening depends directly on the number of copkeshaft
are present.

Similarly, for a bimolecular reaction, we have that the likelihood of a reaction
occurring is proportional to the product of the number of molecules df égme
that are present (since this is the number of independent reactionathatcur)
and inversely proportional to the volunge Hence, for a reaction of the form-A
B — C we have

a(g,t) = gnAnB. 4.7)

The rigorous verification of this functional form is beyond the scopeisftéxt, but
roughly we keep track of the likelihood of a single reaction occurring betwe
and B and then multiply by the total number of combinations of the two molecules
that can reactry - ng).

A special case of a bimolecular reaction occurs whenBj so that our reaction
is given by 2 A— B. In this case we must take into account that a molecule cannot
react with itself, and so the propensity function is of the form

a(aY = (1) 4.8)

The termna(na— 1) reprents the number of ways that two molecules can be chosen
from a collection o, identical molecules.
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Table 4.2: Examples of propensity functions for some comoases35]. Here we take
andrp to be the &ective radii of the moleculesy® = mymy/(my + my) is the reduced mass
of the two molecules is the volume over which the reaction occurds temperaturesg

is Boltzmann’s constant anth, ng are the numbers of molecules AfandB present.

Reaction type Propensity function cd&cient, k;

; 5 172
Reaction occurs if molecules “touch” (ikﬁ;r) n(ra+rp)?

. . o 1/2
Reaction occurs if molecules collide with enexgy (ik—%T) / A(ra+rp)2-e</keT
Steady state transcription factor PhoundocNRNAP

Note that the use of the paramekem the propensity functions above is inten-
tional: it corresponds to the reaction rate parameter that is present iraitteore
rate equation model. The factor ©f for biomolecular reactions models the fact
that the propensity of a biomolecular reaction occuring depends explicittiieon
volume in which the reaction takes place.

Although it is tempting to extend the formula for a biomolecular reaction to the
case of more than two species being involved in a reaction, usually sutforea
actually involve combinations of bimolecular reactions, e.qg.:

A+B+C—D = A+B—AB AB+C—D

This more detailed description reflects that fact that it is extremely unlikely that
three molecules will all come together at precisely the same instant, versus the
much more likely possibility that two molecules will initially react, followed be a
second reaction involving the third molecule.

The propensity functions for these cases and some others are givenléd 2.

Example 4.3 (Repression of gene expression)e consider a simple model of
repression in which we have a promoter that contains binding sites for RINA p
merase and a repressor protein R. RNA polymerase only binds wherptiesgser
is absent, after which it can undergo an isomerization reaction to form @m op
complex and initiate transcription. Once the RNA polymerase begins to create
MRNA, we assume the promoter region is uncovered, allowing anothessgpre
or RNA polymerase to bind.

The following reactions describe this process:

R1: R+DNA = R:DNA

R2: RNAP+DNA — RNAP:DNA®

R3: RNAP:DNA®— RNAP:DNA°

R4: RNAP:DNA° — RNAP+DNA (+mRNA),

where RNAP:DNA' represents the closed complex and RNAP:DNapresents
the open complex. The states for the system depend on the number of n®lecule
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of each species and complex that are present. If we assume that weittang
repressors anaknap RNA polymerases, then the possible states for our system are
given by

State DNA R RNAP R:DNA RNAP:DNA RNAP:DNA°
a1 1 NR NRNAP 0 0 0
(o) 0 nr-1 nRrnap 1 0 0
03 0 NR Nrnap— 1 0 1 0
04 0 NR  Nrnap—1 0 0 1

Note that we do not keep track of each individual repressor or RNpnperase
molecule that binds to the DNA, but simply keep track of whether they arecbhoun
or not.

We can now rewrite the chemical reactions as a set of transitions between the
possible microstates of the system. Assuming that all reactions take placelin a vo
umeQ, we use the propensity functions for unimolecular and bimolecular reactions
to obtain:

& g —ay aE])=(k/Qmn & g—a; aE) =K
& g —ay aE) =K /e & gg—ay aE) =K
&1 g0y alé)=ks & q—0qp; alE) =k

The chemical master equation can now be written down using the propensity fu
tions for each reaction:

P(ant))  (—(K/Qnr—(K/Qnrnar K K ke ) (P(wt)
d [P(azt)| _ (kj / Q)R K 0 0 | [P(az.1)
dt P(Q3,t) (k;/Q)nRNAp 0 —kg—kg 0 P(Q3,t) .

P(0.1) 0 0 ks —ky4) \P(0a, 1)

The initial condition for the system can be takerPég, 0) = (1,0, 0,0), correspond-
ing to the state};. A simulation showing the evolution of the probabilities is shown
in Figure4.l1

The equilibrium solution for the probabilities can be solved by setiing 0,



160 CHAPTER 4. STOCHASTIC MODELING AND ANALYSIS

1
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Figure 4.1: Numerical solution of chemical master equatitorsimple repression model.

which yields:
o) ki kaQ(K; + k3)
e\U1) =
k! kanr(KS + k3) + KL k! nrnap(ks + Ka) + Ko kaQ(K, + ka)
Pu(co) olare( 1o
e\Yz) =
kg Kanr (K + k) + K, Ky Nieniap(Ks + Ka) + K KaQ (K, + k)
Pu(0) krlk; K4NrNnAP
elys) =
kI Kanr (K, + k3) + krlké NrRNnAP(K3 + Kg) + K KeQ(KS, + k3)
Kk
Pe(ck) = relone

ki kanr(K, + ka) + Kk Nrnap(ks + ka) + K keQ(K, + k)

We see that the functional dependencies are similar to the case of the ctaribina
promoter of Exampléet.2, but with the binding energies replaced by kinetic rate
constants. v

Example 4.4(Transcription of mMRNA) Consider the production of mRNA from

a single copy of DNA. We have two basic reactions that can occur: mMRMA ca
be produced by RNA polymerase transcribing the DNA and producing adAnR
strand, or mRNA can be degraded. We represent the micraptdtdhe system in
terms of the number of MRNA's that are present, which we writa #8 ease of
notation. The reactions can now be representeq as+1, corresponding to tran-
scription and¢é, = —1, corresponding to degradation. We choose as our propensity
functions

ai(n,t) = a, ag(n,t) =yn,

by which we mean that the probability of that a gene is transcribed in dinie
adt and the probability that a transcript is created in tidtés yndt (proportional
to the number of mMRNA'S).
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We can now write down the master equation as described above. Equadpn (
becomes

P(n.t+dt) = P(.)(1- " a(n.dt)+ > P(n-&.Hai(g-&)dt
i=12 i=12
= P(n,t) —ai(n,t)P(n,t) — ax(n,t)P(n,t)
+a1(n-Lt)P(n-1Lt)+ax(n+ L t)P(n+1)
= P(n,t) + aP(n-1,t)dt— (¢ — yn)P(n,t)dt+ y(n+ 1)P(n+ 1,t)dt.

This formula holds fon > 0, with then = 0 case satisfying
P(0,t+dt) = P(0,t) — aP(0, t)dt+ yP(1, t)dt.

Notice that we have an infinite number of equations, simcan be any positive
integer.

We can write the dierential equation version of the master equation by sub-
tracting the first term on the right hand side and dividingliry

dEtP(n, t) = aP(n—-1,t) — (@ +yn)P(n,t) + y(n+ 1)P(n+ 1,t), n>0

dgtP(O, t) = —aP(0, t)dt+yP(1,1).

Again, this is an infinite number of fierential equations, although we could take
some limitN and simply declare th&(N,t) = 0 to yield a finite number.

One simple type of analysis that can be done on this equation without truncating
it to a finite number is to look for a steady state solution to the equation. In this
case, we se®(n,t) = 0 and look for a constant solutid®(n,t) = pe(n). This yields
an algebraic set of relations

0= —ape(0)+ype(1) = aPe(0) = ype(1)
0= ape(0)— (a+7y)pe(1) + 2y pe(2) aPe(1) = 2ype(2)
0= ape(1)—(a+2y)pe(2) + 3y Pe(3) aPe(1) = 3ype(3)

ap(n—1)=nyp(n).

It follows that the distribution of steady state probabilities is given by the Boiss
distribution

n
p(n) = "7,
and the mean, variance and fio@ent of variation are thus
1
u=2  o2=2  cv=H-_—_ [Y
Y Y T} @

Note taht the cocient of variation increases,if decreases. \%
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Chemical Langevin equation (CLE)

The chemical master equation gives a complete description of the evolutioa of th
distribution of a system, but it can often be quite cumbersome to work with directly
A number of approximations to the master equation are thus used to provide more
tractable formulations of the dynamics. The first of these that we shalidmris
known as theehemical Langevin equatiqi©CLE).

To derive the chemical Langevin equation, we start by assuming that theenumb
of molecules in the system is large and that we can therefore represaysteen
using a vector of real numbeb§, with X; representing the (real-valued) number
of molecules in § (Often X; will be divided by the volume to give a real-valued
concentration of species.pIn addition, we assume that we are interested in the
dynamics on time scales in which individual reactions are not important and so
we can look at how the system state changes over time intervals in which many
reactions occur and hence the system state evolves in a smooth fashion.

Let X(t) be the state vector for the system, where we assume now that the ele-
ments ofX are real-valued rather than integer valued. We make the further approx-
imation that we can lump together multiple reactions so that instead of keeping
track of the individual reactions, we can average across a numbeactaons over
a timer to allow the continuous state to evolve in continuous time. The resulting
dynamics can be described by a stochastic process of the form

M M
Xi(t+7) = Xi(0) + ) &jaXW)r+ > &aAXMOING(O, Vo),
j=1 j=1

wherea; are the propensity functions for the individual reactiafysare the corre-
sponding changes in the system sta{eand N are a set of independent Gaussian
random variables with zero mean and variance

If we assume that is small enough that we can use the derivative to approxi-
mate the previous equation (but still large enough that we can averagmoligple
reactions), then we can write

dxi(t) M M M
1/2 .
5= ;aiaj(xa» + ;aiaj/ XOXO = AXD)+ ,Zl Bij (X(O)T' (1),
(4.9)
wherel’; are white noise processes (see AppetdlB. This equation is called the
chemical Langevin equatiqi€LE).

Example 4.5(Protein production)Consider a simplified model of protein produc-
tion in which mRNAs are produced by transcription and proteins by translation
We also include degradation of both mRNAs and proteins, but we do notitiede
detailed processes of elongation of the mRNA and polypeptide chains.

We can capture the state of the system by keeping track of the numberies cop
of MRNA and proteins. We further approximate this by assuming that the number
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of each of these is sficiently large that we can keep track of its concentration,
and henceX = (Xm, Xp) Wwherexm € R is the amount of mRNA and, € R is the
concentration of protein. Lettin@ represent the volume, the reactions that govern
the dynamics of the system are given by:

Ri: ¢ — MRNA & =(1,0) a(X) = a

Ry: MRNA L ¢ &=(-10)  a(X)=7 Xn
Rs: mRNAi MRNA+protein &3 =(0,1) az(X) =B Xm
Ry: proteini 1) & =(0,-1) ay(X) = 0 Xp.

Substituting these expressions into equati$8)( we obtain a stochasticfieren-

tial equation of the form
d (Xm _ =y O [Xm 2?4 va (\/a+yxm)rm ,
dt{xp) (B —6) (%) |0 (VBXm+0%,)Tp
wherel'r, andI'p are independent white noise processes with unit variance. (Note

that in deriving this equation we have used the fact that the sum of twoendept
Gaussian processes is a Gaussian process.) \%

Fokker-Planck equations (FPE)

The chemical Langevin equation provides a stochastic ordindigretial equa-
tion that describes the evolution of the system state. A slightferdint (but com-
pletely equivalent) representation of the dynamics is to model how the pkobab
ity distribution P(x,t) evolves in time. As in the case of the chemical Langevin
equation, we will assume that the system state is continuous and write down a
formula for the evolution of the density functign(x,t). This formula is known
as theFokker-Planck equation~PE) and is essentially an approximation on the
chemical master equation.
Consider first the case of a random process in one dimension. We astme

the random process is in the same form as the previous section:

% = A(X(t)) + B(X(1))I'(t). (4.10)
The functionA(X) is called thedrift term and B(X) is thedifusion term It can
be shown that the probability density function &r p(x,t), satisfies the partial
differential equation

op, . 0 102,
5 060 =~ (AP 1) + 5 =5 (BX X D p(x. 1) (4.11)
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Note that here we have shifted to the probability density function since we are
consideringX to be a continuous state random process.

In the multivariate case, a bit more care is required. Using the chemicagizaing
equation 4.9), we define

M
Di(x,t) = ZB(xt) Cij(x,t):ZBik(x,t)Bjk(x,t),i<j:1,...,M.
k=1

The Fokker-Planck equation now becomes

‘9—2 Di(x.H)px.1))

M
X1) = Z—(A(X 0p0C) +5 ).
i=1

9
9% 0
M
Z_ aNaXJ(Cij(X,t)p(x,t)). (4.12)

i <

[—

Note that the Fokker-Planck equation is very similar to the chemical master
eqguation: both provide a description of how the probability distribution vaases
function of time. In the case of the Fokker-Planck equation, we regarstale as
a continuous set of variables and we write a partifiledgential equation for how
the probability density function evolves in time. In the case of the chemical master
equation, we have a discrete state (microstates) and we write an ordifiery di
ential equation for how the probability distribution (formally the probability mass
function) evolves in time. Both formulations contain the same basic information,
just using slightly diferent representations of the system and the probability of
being in a given state.

Linear noise approximation (LNA)

The chemical Langevin equation and the Fokker-Planck equation prapjgi®x-
imations to the chemical master equation. A slightlffetient approximation can
be obtained by expanding the density function in terms of a size parafheiéis
approximation is know as thiaear noise approximatiofLNA) or the Q expan-
sion[52].

We begin with the master equation forcantinuousrandom variablex. For-
mally deriving this requires a considerabl&oet since we have to extend our pre-
vious discussions to the case where the random variable has a contseiafs
values. To do this, we rewrite the propensity funct&(u,t) asa:(q,t;2), where
g€ R"is a vector of continuous states and R" is a vector of continuous “incre-
ments” (the analog of reactions). We also explicitly keep track of the depeed
of the propensity function on a paramegg(the volume in our case).
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Using this notation, we can write the master equation for the random variable
X as

2kt = f (@e(X— .5 Q)P(x— £.1) — ac(x, b Q)P(x.1)) de.

Since we are working with continuous variables, we now have an integpthae
of our previous sum. In addition, if we take the derivativePx, t) with respect to
the continuous variablg, we can obtain the pdf of the distributigaix, t) and this
satisfies the equation

Txt = [ (@elx-£L Q- £ - a(x EQP(XD)E

Although we are skipping important theoretical details, the basic idea of this fo
mulation is the same as the discrete chemical master equation: we keep track of
how the probability density changes by “summing” (integrating) over all éncr
mental) reactions going into and out of that particular state.

We now assume that the mean Xfcan be written agl¢(t) whereg(t) is a
continuous function of time that represents the evolution of the meaii@f To
understand the fluctuations of the system about this mean, we write

X =Qp+Q27,

whereZ is a new variable representing the perturbations of the system about its
mean. We can write the distribution fdras

Pz(z.1) = Px(Q() + Qi Y)
and it follows that the derivatives @z can be written as

9Pz _ 1,9"Px

2 X’
opz _0px , dpdpx Ipx , ~1d¢pdpz
oo Carax - a T dat ez

We further assume that tlf dependence of the propensity function is such that

a:(Q¢, 1, Q) = F(Q)a:(¢),

whered’is not dependent on the parameteor the timet. From these relations,
we can now derive the master equation figrin terms of powers of2 (derivation
omitted).

The Q2 term in the expansion turns out to yield

d
2= [eatonde  s0="F.
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which is precisely the equation for the mean of the concentration. It ctirefuve
shown that the terms i2° are given by

8%pz(z.t)
02’

Ipz(27) _

- (4.13)

~01(0) - (2Pe(a ) + aole) T PEEY

where
(X = f fa.00de,  T=Q QL

Notice that in the case thaft) = ¢ (a constant), this equation becomes the Fokker-
Planck equation derived previously.

Higher order approximations to this equation can also be carried out pynkee
track of the expansion terms in higher order power£2ofin the case wher&
represents the volume of the system, the next term in the expangion &nd this
represents fluctuations that are on the order of a single molecule, whctsaally
be ignored.

Reaction rate equations (RRE)

As we already saw in Chapt&rthe reaction rate equations can be used to describe
the dynamics of a chemical system in the case where there are a large rafmber
molecules whose state can be approximated using just the concentratiores of th
molecules. We re-derive the results from Sechhere, being more careful to
point out what approximations are being made.

We start with the chemical Langevin equatiodsd, from which we can write
the dynamics for the average quantity of the each species at each point:in time

d<X.(t)>

qu XN, (4.14)

where the second order term drops out under the assumption thgtdlaee inde-
pendent processes with zero mean. We see that the reaction rate exjttom

by definingx; = (X)/Q andassuminghat (a;(X(t))) = aj((X(t))). This relation-
ship is true whem, is linear (e.qg., in the case of a unimolecular reaction), but is an
approximation otherwise.

4.2 Simulation of Stochastic Systems

Suppose that we want to generate a collection of sample trajectories fohastic
system whose evolution is described by the chemical master equétin (

§iPG0=Da0-8Pa-5.0- T a@PG.
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whereP(qg,t) is the probability of being in a microstatgat timet (starting from
(o at timetp) and a(q) is the propensity function for a reactionstarting at a
microstateq and ending at microstatg+ &. Instead of simulating the distribution
function P(qg,t), we wish to simulate a specific instangg) starting from some
initial conditiongp(to). If we simulate many such instanceyft), their distribution
at timet should matchP(q,t).

To illustrate the basic ideas that we will use, consider first a simple birth ggoce
in which the microstate is given by an integee {0,1,2,...} and we assume that
the propensity function is given by

a(g)dt = adt, E=+1

Thus the probability of transition increases linearly with the time increrde(go
birth events occur at rateé, on average). If we assume that the birth events are
independent of each other, then it can be shown (see App8jdhat this process
has Poisson distribution with paramefet

(/lT)€ e—/l‘r
L ’

wherer is the diference in time and is the diference in count. In fact, this
distribution is a joint distribution in time and count, and by setting = 1 it can
be seen that the time to the next reacfiofollows an exponential distribution and
has density function

Pt+7)-qt) =0 =

pr(t) =1e .

The exponential distribution has expectatiofl and so we see that the average
time between events is inversely proportional to the reactionirate

Consider next a more general case in which we have a countable nufmiier o
crostateg) € {0,1,2,...} and we lek; represent the transition probability between
a microstate and microstatg. The birth process is a special case givekiby; = A
and all othek; = 0. The chemical master equation describes the joint probability
that we are in statg =i at a particular time. We would like to know the probabil-
ity that we transition to a new statg= j at timet + dt. Given this probability, we
can attempt to generate an instance of the varigf)eby first determining which
reaction occurs and then when the reaction occurs.

Let P(j,7) := P(j,t+ T+dr |i,t+7) represent the probability that we transition
from the state to the statg in the time interval {+7,t + 7 + dr]. For simplicity and
ease of notation, we will take= 0. LetT :=T;; be the time at which the reaction
first occurs. We can write the probability that we transition to sjaethe interval
[r,7+dr] as

P(j,7) = P(T > 7) k;j dr, (4.15)

whereP(T > 1) is the probability that no reaction occurs in the time intervat]0
andk;jidr is the probability that the reaction taking stat® statej occurs in the
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nextdr seconds (assumed to be independent events, giving the productef the
probabilities).
To computeP(T > 1), define

E:iji
]

so that (- E)dr is the probability that no transition occurs from state the next
dr seconds. Then, the probability that no reaction occurs in the intefrwat pir]
can be written as

P(T > r+d7) = P(T > 7)(1- k) dr. (4.16)
It follows that
I pr sy = fim POV ZPO>D _ prs oy
dr dr—0 dr

Solving this diferential equation, we obtain
P(T >1) =™, (4.17)

so that the probability that no reaction occurs in tintecreases exponentially with
the amount of time that we wait, with rate given by the sum of all the reactions that
can occur from state

We can now combine equatiod.{7) with equation 4.15) to obtain

P(j.7) = P(j, 7+ dr |i,0) = kj €57 dr.

We see that this has the form of a density function in time and hence the pitgbab
that the next reaction is reactignindependent of the time in which it occurs, is

ok g Ki
Pji :f kjie dr=—. (4.18)
0 Ki

Thus, to choose the next reaction to occur from a dtatee choose betweeN
possible reactions, with the probability of each reaction weightekj; bl .

To determine the time that the next reaction occurs, we sum over all possible
reactionsj to get the density function for the reaction time:

pr(r) = Z Kjie k™ = kie ™™,
j

This is the density function associated with a Poisson distribution. To compute a
time of reactionAt that draws from this distribution, we note that the cumulative
distribution function forT is given by

At At _ _
fr(r)dr= | ke Tdr=1-e"A
0 0
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The cumulative distribution function is always in the rangelJ@and hence we can
computeAt by choosing a (uniformly distributed) random numioen [0,1] and

then computing
1 1

(This equation can be simplified somewhat by replacirg Iith r’ and noting
thatr’ can also be drawn from a uniform distribution on1)

Note that in the case of a birth process, this computation agrees with our ear-
lier analysis. Namelyk; = A2 and hence the (only) reaction occurs according to an
exponential distribution with parameter

This set of calculations gives the following algorithm for computing an ingtanc
of the chemical master equation:

1. Choose an initial conditiog at timet = O.
2. Calculate the propensity functioagq) for each possible reactian

3. Choose the time for the reaction according to equatiarf, wherer € [0, 1]
is chosen from a uniform distribution.

4. Use a weighted random number generator to identify which reaction will
take place next, using the weights in equatiérig.

5. Updateg by implementing the reactiochand update the timeby &t
6. If T < Tstop gOtO Ste®.

This method is sometimes called “Gillespie’s direct meth@&S8, B4], but we shall
refer to it here as the “stochastic simulation algorithm” (SSA). We note thaethe r
action number in stegp can be computed by calculating a uniform random number
on [0,1], scaling this by the total propensidy; a(&i,q), and then finding the first
reactioni such thatzioa(gi,q) is larger than this scaled random number.

Example 4.6(Transcription) To be completed. V Review

4.3 Input/Output Linear Stochastic Systems

In many situations, we wish to noise how noise propogates through a bioraslecu
system. For example, we may wish to understand how stochastic variation&in RN
polymerase concentratofi@ct gene expression. In order to analyze these cases, we
specialize to the case of a biomolecular system operating around a fixedioge
point.

We now consider the problem of how to compute the response of a lingansys
to a random process. We assume we have a linear system described spatate
as

X=AX+FW Y =CX (4.20)
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Given an “input”W, which is itself a random process with meaft), variance

o?(t) and correlation (t,t + 7), what is the description of the random proc¥8s
Let W be a white noise process, with zero mean and noise inteQsity

r(r) = Qs(7).

We can write the output of the system in terms of the convolution integral

t
Y(t) = f h(t—r)W(r)dr,
0
whereh(t — 1) is the impulse response for the system
h(t—7) = CE"" B+ Ds(t - 7).

We now compute the statistics of the output, starting with the mean:
t
ECV0) = E( [ ht=n)W(r) o)
t
- [ he-mEwadn o

Note here that we have relied on the linearity of the convolution integral tahpill
expectation inside the integral.

We can compute the covariance of the output by computing the corretafion
and settingr$ =ry(0). The correlation function foy is

t S
re(t.9) = E(Y(OY(S) = E( fo h(t— m)W(r) - fo h(s—&W(E) d¢)

t S
= fo fo h(t— )W) W(Eh(s— &) dnd)

Once again linearity allows us to exchange expectation and integration
t S
(9= [ [ R WE)Ns-drds

t S

- [ |t n)Qotn-en(s- &) e
0 JO
t

- [ ha-nens-na

Now lett = s—t and write
t
rv(t) =ry(t,t+7) = f h(t—n)Qh(t+7—-n)dn
0

{
_ fo hEQhE+7)dé  (settingé = t—7)



4.3. INPUT/OUTPUT LINEAR STOCHASTIC SYSTEMS 171

Finally, we lett — oo (steady state)

limry(t,t+7) =ry(r) = foo h(¢)Qh(¢ + 7)dé (4.21)
o0 0

If this integral exists, then we can compute the second order statistics foutiet
Y.

We can provide a more explicit formula for the correlation functiamterms of
the matrice®\, F andC by expanding equatior(21). We will consider the general
case wher&V € RP andY € R% and use the correlation matii(t, s) instead of the
correlation functiorr(t, s). Define thestate transition matrixd(t, tg) = e*t-%) so
that the solution of systend (20 is given by

X(t) = D(t, to)X(to) + ft t(D(t,/l)FW(/l)d/l

Proposition 4.1 (Stochastic response to white noisept E(X(tg) X" (to)) = P(to)
and W be white noise witB(W(1)WT (£)) = Rwd(1 — &). Then the correlation ma-
trix for X is given by

Rx(t,s) = P)®T(s1)

where Rt) satisfies the linear matrix glerential equation
P(t)= AP+PAT +FRyF,  P(0) =P.
Proof. Using the definition of the correlation matrix, we have

E(X(®)XT(9) = E((D(t, 0)X(0)XT (0)DT (t,0)+ cross terms
' T )
+ j(; D(t, ) FW(E) dfj(; W (Q)F ' @(s,2)dA
= @(t, 0)E(X(0)X" (0))®(s. 0)

t s
T T
+f0 fo O(t, ) FE(W(EW' (1))F ' (s, 1)déda

= @(t,0)P(0)¢' (s,0)+ fo t O(t, )FRw()FTd(s, ) dA.

Now use the fact thab(s,0) = ®(s,t)®(t,0) (and similar relations) to obtain
Rx(t.s) = P()®"(s.t)
where -
P(t) = ®(t,0)P(0)® (t,0) + f @(t, )FRWFT (DD (t,1)dA

Finally, differentiate to obtain i

P(t)= AP+PAT +FRyF,  P(0) =Pq
(see Friedlandd0] for details). O
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The correlation matrix for the outpit can be computed using the fact that
Y = CX and henceRy = CTRxC. We will often be interested in the steady state
properties of the output, which are given by the following proposition.

Proposition 4.2(Steady state response to white naider a time-invariant linear
system driven by white noise, the correlation matrices for the state and output
converge in steady state to

Rx(1) = Rx(t,t+7) = P"",  Ry(r) = CRx(r)CT
where P satisfies the algebraic equation
AP+PAT +FRyFT=0  P>0. (4.22)

Equation 4.22) is called the_yapunov equatioand can be solved in MATLAB
using the functiorlyap.

Example 4.7(First-order system)Consider a scalar linear process
X =—aX+W, Y =cX

whereW is a white, Gaussian random process with noise intensityJsing the
results of Propositiod.1, the correlation function foX is given by

Rx(t,t+7) = p(t)e ™
wherep(t) > 0 satisfies
p(t) = —2ap+o2.

We can solve explicitly fop(t) since it is a (non-homogeneous) lineatteiential
equation:

p(t) = € **'p(0)+ (1- e‘z""‘)(r—z-
2a

Finally, making use of the fact that= cX we have

2
F(t,t+7) = (e 2p(0)+ (1— e-Zat)%)e—af.

In steady state, the correlation function for the output becomes

2

r(r) = —22 e,

Note correlation function has the same form as the Ornstein-Uhlenbeckgsrn
ExampleB.7 (with Q = c®c?). \Y
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As in the case of deterministic linear systems, we can analyze a stochastic linear
system either in the state space or the frequency domain. The frequenaindip-
proach provides a very rich set of tools for modeling and analysis otionerected
systems, relying on the frequency response and transfer functioepresent the

flow of signals around the system.

Given a random proceg§t), we can look at the frequency content of the prop-
erties of the response. In particular, if we ¢ét) be the correlation function for a
(scalar) random process, then we definegbeer spectral density functias the
Fourier transform op:

S(w) = ﬁwp(T)e—ij dr, p(‘r) - % Ioo S(w)ejwr dr.

The power spectral density provides an indication of how quickly the satfie
a random process can change through the frequency content: ifisheigh fre-
guency content in the power spectral density, the values of the ranaigaile can
change quickly in time.

Example 4.8(Ornstein-Uhlenbeck processjo illustrate the use of these mea-
sures, consider a first-order Markov process where the correfatiation is

p(e) = 5ol
2wo

This correspnds to Exampde7 (also called aDrnstein-Uhlenbeck processhe
power spectral density becomes

S(w) = f Q olgrior gy
oo 200

0 00
_ [ R geiorgr g f Q gromioyrgr— @
0 2wo

_eo 20 2

2
w +a)o
We see that the power spectral density is similar to a transfer function and we
can plotS(w) as a function ofv in a manner similar to a Bode plot, as shown in
Figure4.2 Note that althougls(w) has a form similar to a transfer function, itis a
real-valued function and is not defined for compgex v

Using the power spectral density, we can more formally define “white noise”:

awhite noise process a zero-mean, random process with power spectral density
S(w) = W = constant for allw. If X(t) € R" (a random vector), theW/ € R™",
We see that a random process is white if all frequencies are equalgseeyed in
its power spectral density; this spectral property is the reason for timént@ogy
“white”.

Given a linear system

X = AX+FW, Y=CX
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} logs(w)

wo logw

Figure 4.2: Spectral power density for a first-order Markovgess.

with W given by white noise, we can compute the spectral density function cor-
responding to the output. We start by computing the Fourier transform of the
steady state correlation functiof.21):

sv)= [ [ [ ) h(f)Qh(fw)df]e-imdr

_ 00 00 . Cior i

fo h(f)Q[Loh(& e d ]df

_ f ) h(g)Q[ f h(/l)e‘j‘”“‘f)d/l}df
0 0

_ fo " h(e)e dé- QH(j) = H(- j)QH(juw).

This is then the (steady state) response of a linear system to white noise.

As with transfer functions, one of the advantages of computations in the fre
guency domain is that the composition of two linear systems can be represented
by multiplication. In the case of the power spectral density, if we pass whise no
through a system with transfer functiéhi (s) followed by transfer functiom(s),
the resulting power spectral density of the output is given by

Sy(w) = Hi(=jw)Hz(-jw)QuH2(jw)H1(jw).

As stated earlier, white noise is an idealized signal that is not seen in practice
One of the ways to produced more realistic models of noise and disturbances
to apply a filter to white noise that matches a measured power spectral density
function. Thus, we wish to find a covarian@éand filterH(s) such that we match
the statisticsS(w) of a measured noise or disturbance signal. In other words, given
S(w), find W > 0 andH(s) such thatS(w) = H(— jw)WH(jw). This problem is
know as thespectral factorization problem

Figure 4.3 summarizes the relationship between the time and frequency do-
mains.
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1 e 1 X
V=™ v u |y pY) = o8
Sv(w) =Ry Sy(w) = H(=jw)RvH(jw)
X =AX+FV py(7) =Ry(r) =CPeATCT
=Rvé
pv(r) = Rvo(r) Y=CX AP+PAT +FR/FT =0

Figure 4.3: Summary of steady state stochastic response.

Exercises

4.1 (BE 150, Winter 2011) For this problem, we return to our standard model of
transcription and transcription process with probabilistic creation ancdatjon
of discrete mMRNA and protein molecules. T®pensity function$or each reac-
tion are as follows:

Probability of transcribing 1 mRNA molecule:Zait

Probability of degrading 1 mRNA molecule:5ait and is proportional to the num-
ber of MRNA molecules.

Probability of translating 1 proteindband is proportional to the number of mMRNA
molecules.

Probability of degrading 1 protein molecule5@t and is proportional to the num-
ber of protein molecules.

dtis the time step chosen for your simulation. Here we chalbse0.05.

(&) Simulate the stochastic system above until time 100. Plot the resulting
number of mMRNA and protein over time.

(b) Now assume that the proteins are degraded much more slowly than mRINA an
the propensity function of protein degradation is na@3dt. To maintain similar
protein levels, the translation probability is novb@t (and still proportional to the
number of MRNA molecules). Simulate this system as above. Whatelice do

you see in protein level? Comment on th&eet of protein degradation rates on
noise.

4.2 (BE 150, Winter 2011) Compare a simple model of negative autoregulation
with one without autoregulation:

(0)4
at =Bo—yX
and dx 8
dat 1+ % X

(a) Assume that the basal transcription r@t@sdgg vary between cells, following
a Gaussian distribution Wita% = 0.1. Simulate time courses of both models for
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100 diferent "cells” using the following parametefs= 2,80 =1,y = 1,K = 1. Plot
the nonregulated and autoregulated systems in two separate plots. Comriient on
variation you see in the time courses.

(b) Calculate the deterministic steady state for both models above. How does va
ation in the basal transcription rggeor 8o enter into the steady state and relate it
to what you see in part (a).

. .k
4.3 Consider gene expressigh:— m, m% m+ P, m> ¢, and P2 ¢. Answer the
following questions:

(a) Use the stochastic simulation algorithm (SSA) to obtain realizations of the
stochastic process of gene expression and numerically compare witheneice

istic ODE solution. Explore how the realizations become close to or aparttfrem
ODE solution when the volume is changed. Determine the stationary probability
distribution for the protein (you can do this numerically, but note that thisqga®is
linear, so you can compute the probability distribution analytically in closed form)

(b) Now consider the additional binding reaction of protein P with downstrea
o Kon _
DNA binding sites D: R-D —= C. Note that the system no longer linear due to

Kot t
the presence of a bi-molecular reaction. Use the SSA algorithm to obtain sample

realizations and numerically compute the probability distribution of the protein and
compare it to what you obtained in part (a). Explore how this probabilityidistr
tion and the one of C change as the rdtgsandk,ss become larger and larger
with respect tas, k,3,y. Do you think we can use a QSS approximation similar to
what we have done for ODE models?

(c) Determine the Langevin equation for the system in part (b) and obtaiplea
realizations. Explore numerically how good this approximation is when the volume
decreaségBicreases.

k
4.4 Consider the bi-molecular reaction+B kﬁl C, in whichA andB are in total

amountsAt and By, respectively. Compare t2he steady state valu€ abtained

from the deterministic model to the mean valueCobbtained from the stochastic
model as the volume is changed in the stochastic model. What do you observe?
You can perform this investigation through numerical simulation.

koG
4.5 Consider the simple birth and death proces'%ié 0, in whichG is a “gain”.

1G
Assume that the reactions are catalyzed by enzymes and that th& gain be
tuned by changing the amounts of these enzymes. A deterministic ODE model for
this system incorporating noise and disturbances due to the stochasticity of th

cellular environment is given by

Z =kiG-koGZ+ d(t),
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in which d(t) incorporates noise, as seen in the previous homework. Determine the
Langevin equation for this birth and death process and compare its forne to th
deterministic one. Also, determine the frequency respongttofnoise for both

the deterministic model and for the Langevin model. Does increasing thezgain
has the samefect in both models? Explain.

4.6 Consider a second order system with dynamics

Xi) (-a 0) (X)) (1 ~ Xy

ol =[5 SIfe)h v - o
that is forced by Gaussian white noise with zero mean and vari@ahcAssume
a,b>0.

(a) Compute the correlation functiqrir) for the output of the system. Your an-
swer should be an explicit formula in termsayb ando.

(b) Assuming that the input transients have died out, compute the mean &nd var
ance of the output.
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Chapter 5
Feedback Examples

In this chapter we present a collection of examples that illustrate some of the mod
eling and analysis tools covered in the preceding chapters. Each okttesples
represents a more complicated system than we have considered previotos a
gether they are intended to demonstrate both the role of feedback in bidlogica
systems and how tools from control and dynamical systems can be applies to p
vide insight and understanding. Each of the sections below is indepetidms
others and they can be read in any order (or skipped entirely).

Pagination in this chapter is broken down by section to faciliate author editegiew
Some extraneous blank pages may be included due to LaTeX processing.
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5.1 The lac Operon

The lac operon is one of the most studied regulatory networks in molecular bi-
ology. Its function is to determine when the cell should produce the proteihs a
enzymes necessary to import and metabolize lactose from its externalreneina
Since glucose is a mordfient source of carbon, the lactose machinery is not pro-
duced unless lactose is present and glucose is not preseracltantrol system
implements this computation.

In this section we construct a model for the lac operon and use that model to
understand how changes of behavior can occur for large changesameters
(e.g., lactosmglucose concentrations) and also the sensitivity of the phenotypic re-
sponse to changes in individual parameter values in the model. The basié¢ mod
and much of the analysis in this section is drawn from the work of Yildirim and
Mackey [L03.

Modeling

In constructing a model for thiac system, we need to decide what questions we
wish to answer. Here we will attempt to develop a model that allows us to under-
stand what levels of lactose are required forldtesystem to become active in the
absence of glucose. We will focus on the so-called “bistability” ofl#weoperon:

there are two steady operating conditions—at low lactose levels the machinery
is off and at high lactose levels the machinery is on. The system has hysteresis,
so once the operon is actived, it remains active even if the lactose doatoan
descreases. We will construct dfdrential equation model of the system, with
various simplifying assumptions along the way.

A schematic diagram of thac control system is shown in Figutel Starting
at the bottom of the figure, lactose permease is an integral membrane protein tha
helps transport lactose into the cell. Once in the cell, lactose is convertedliézallo
tose, and allolactose is then broken down into glucose and galactose,itfothev
assistance of the enzyrgegalactosidaseségal for short). From here, the glucose
is processed using the usual glucose metabolic pathway and the galactose.

The control circuitry is implemented via the reactions and transcriptional reg-
ulation shown in the top portion of the diagram. Tlhe operon, consisting of the
genedacZ (coding forg-gal),lacY (coding for lactose permease) dadA (coding
for a transacetylase), has a combinatorial promoter. Normally, lac sepréscl)
is present and the operon iff.oThe activator for the operon is CAP, which has
a positive inducer cAMP. The concentration of cAMP is controlled by glaco
when glucose is present, there is very little cAMP available in the cell (ancehen
CAP is not active).

The bistable switching behavior in thec control system is implemented with a
feedback circuit involving théac repressor. Allolactose bindac repressor and so
when lactose is being metabolized, then the repressor is sequesteredanycai
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./fbkexamps/figures/lac-diagram.eps

Figure 5.1: Schematic diagram for ttae system 103. Permission pending.

and thelac operon is no longer repressed.

To model this circuit, we need to write down the dynamics of all of the reactions
and protein production. We will denote the concentration ofgtgal mRNA and
protein asm, andB. We assume that the internal concentration of lactose is given
by L, ignoring the dynamics of lactose permease and transport of lactose into the
cell. Similarly, we assume that the concentration of repressor proteintetHRas
constant.

We start by keeping track of the concentration of free allolackoSée relevant
reactions are given by the transport of lactose into the cell, the conmerfdiactose
into allolactose and then into glucose and lactose and finally the sequestifation o
repressoR by allolactose:

Transport: L +P=L°P— L+P
Conversion: L+B=—LB—A+B
Conversion: A+B—AB — Glu+Gal+B
Sequestration: A+R—AR
We see that the dynamics involve a number of enzymatic reactions and hence w
can use Michaelis-Menten kinetics to model the response at a slightly reléweéd
of detail.

Given these reactions, we can write the reaction rate equations to deseribe th
time evolution of the various species concentrations.dyeandKy represent the
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parameters of the Michaelis-Menten functions agpdrepresent the dilution and

degradation rate for a given species X. Thfaiential equation for the internal

lactose concentratioh becomes
dL L®

— = eP
dt L K|_e+L

L
—aaLB -6l 51
e ~aALBi — ok (5.1)

where the first term arises from the transport of lactose into the cell, temnde
term is the conversion of lactose to allolactose, and the final term is due ft@-deg
dation and dilution. Similarly, the dynamics for the allolactose concentration can
be modeled as

% = aaL Bﬁ —ans Bﬁ + KA [AR] — KL &[A]IR] —SaA.
The dynamics of the production gfgal and lactose permease are given by
the transcription and translational dynamics of protein production. Thesesg
are both part of the same operon (along wahA) and hence the use a single
MRNA strand for translation. To determine the production rate of mMRNA, we nee
to determine the amount of repression that is present as a function of theeofio
repressor, which in turn depends on the amount of allolactose that Bnpr&ge
make the simplifying assumption that the sequestration reaction is fast, so that it is
in equilibrium and hence

[AR] = kAR[A][R] > kAR = k,qu/k,gR

We also assume that the total repressor concentration is constantgiwadnatches
degradation and dilution). LettinBy: = [R] +[AR] represent the total repressor
concentration, we can write

[R] = Riot — karl[A][R] — [R] = Riot

= T kamlAl (5.2)

The simplification that the sequestration reaction is in equilibrium also simplifies
the reaction dynamics for allolactose, which becomes

dA L A

— = B —aaB —5aA. 5.3

dt = A PKa L ATKarA A (-3)

We next need to compute thé&ect of the repressor on the productionsegal
and lactose permease. It will be useful to express the promoter state inderms
the allolactose concentratighrather tharR, using equation.2). We model this
using a Hill function of the form
R OJR(1+ KARA)n

a
Fea(A) = -
Ba(A) Kr+R"  Kgr(1+KarA)"+RY,
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Table 5.1: Parameter values fac dynamics (from 103).

Parameter Value Description
n 3.03x102min"t dilution rate
awm 997 nMmirr® production rate oB-gal mMRNA
Bs 1.66x102min~t  production rate oB-galactosidase
Bp 2?22 mint production rate of lactose permease
an 1.76x 10 min~t production rate of allolactose
™ 0.411 mir? degradation and dilution gi-gal mMRNA
s 8.33x 104 min~t  degradation and dilution ¢f-gal
op 2?2 mirt degradation and dilution of lactose permease
SA 1.35x10?min!  degradation and dilution of allolactose
n 2 Hill coefficient for repressor
K 7200
Ky 2.52x 1072 (uM)~?
KL 0.97uM
Ka 1.95uM
Ba 2.15x 10* min?!
™ 0.10 min
B 2.00 min
TP ??? min

Letting M represent the concentration of the (common) mRNA, the resulting form
of the protein production dynamics becomes

aM _
E = e ™MFga(A(t—1m)) —YMM,

dB —

i =pe€ " M(t-18) -8B, (5.4
dP _

rm = Bpe MM TPIM(t— Ty — 7p) — 6pP,

This model includes the degradation and dilution of mRN#y); the transcrip-
tional delayss-gal mRNA (ry), the degradation and dilution of the proteiag,(
6p) and the delays in the translation and folding of the final proteigsp).

To study the dynamics of the circuit, we consider a slightly simplified situa-
tion in which we study the response to the internal lactose concentitatiorthis
case, we can take(t) as a constant and ignore the dynamics of the permase
Figure5.2a shows the time response of the system for an internal lactose concen-
tration of 100uM. As a test of the fect of time delays, we consider in Figuse?h
the case when we set the delayg and g to both be zero. We see that the re-
sponse has very little flerence, consistent with our intuition that the delays are
short compared to the dynamics of the underlying processes.
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Lac operon simulation (YSHMO04) Lac operon simulation (no time delays)
0.25 0.25

M M

02 B N 02 —sB |
0.15 0.15
0.1 0.1
0.05 0.05
0 0
0 20 40 60 80 100 0 20 40 60 80 100
time (min) time (min)

Figure 5.2: Time response of the Lac system.

Bifurcation analysis

To further explore the dierent types of dynamics that can be exhibited by the
Lac system, we make use of bifurcation analysis. If we vary the amounttosia
present in the environent, we expect that the lac circuitry will turn onraegaoint.
Figure5.3ashows the concentration of allolacto8eas a function of the internal
lactose concentratioh. We see that the behavior of thec system depends on
the amount of lactose that is present in the cell. At low concentrations okkcto
thelac operon is turned fd and the proteins required to metabolize lactose are not
expressed. At high concentrations of lactose,ltteoperon is turned on and the
metabolic machinery is activated. In our model, these two operating conditiens a
measured by the concentration®falactosidas® and allolactosé\. At interme-
diate concentrations of lactose, the system has multiple equilibrium points, with
two stable equilibrium points corresponding to high and low concentratiods of
(andB, as can be verified separately).

The parametric stability plot in Figufe 3bshows the dferent types of behav-
ior that can result based on the dilution ratand the lactose concentratibn\We
see that we get bistability only in a certain range of these parameters. Giberw
we get that the circuitry is either uninduced or induced.

Sensitivity analysis

We now explore how the equilibrium conditions vary if the parameters in oueiod
are changed.

For the gendacZ (which encodes the protefitgalactosidase), we |& repre-
sent the protein concentration ahtdrepresent the mRNA concentration. We also
consider the concentration of the lactdsiaside the cell, which we will treat as an
external input, and the concentration of allolactesejssuming that the time de-
lays considered previously can be ignored, the dynamics in terms of theables
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. /fbkexamps/figures/lac-stability.eps
. /fbkexamps/figures/lac-bifurcatign.eps

(a) Bifurcation diagram (b) Stability diagram

Figure 5.3: Bifurcation and stability diagram for the las®m. Figures from1[04].

are
dM 1+kA"
I Fea(A0)— 1M Faa(A0) = apg— 2
gr = Fea(A6) — %M, BA(A.6) XABY Y AW
dB L
— =BrM -65sB Fal(L,0) =ap—— 55
i —PsM-3sB, AL(L.6) A D (5.5)
dA

— = BFaL(L,0) —BFaa(A0) —yaA,  Faa(A.6) =6a

ddt Bl kA+A'

Here the state is = (M, B, A) € RS, the input isw = L € R and the parameters are
60 = (@, BB, A, B, OB, YA, M, K, K1, KL, Ka, Ba) € R*2. The values for the parameters are
listed in Table5.1

We investigate the dynamics around one of the equilibrium points, corrdspon
ing to an intermediate input df = 40uM. There are three equilibrium points at
this value of the input:

X1.e=(0.0003930.0002103.17), X2 =(0.003280.0017419.4), X3e=(0.01420.0075842.1).

We choose the third equilibrium point, corresponding to the lactose metabolic ma-
chinery being activitated and study the sensitivity of the steady state doaibemns
of allolactose Q) andg-galactosidaseR) to changes in the parameter values.

The dynamics of the system can be represented in the dogiadt = f(x,0,L)
with

Fea(A.0) —ygM —uM
f(x,0,L) = LM —-o6gB—uB .
FaL(L,0)B—Faa (A 0)B—5aA—uA

To compute the sensitivity with respect to the parameters, we compute tha-deriv



5.2. BACTERIAL CHEMOTAXIS 187

tives of f with respect to the state

af |7YBTH 0 ea
ax | Bs -0B—H 0
0 FaL—Fan —B%22

and the parametets

of

oF oF oF
=(Fea 00 -M 0 0 % % a0 0 0).

Carrying out the relevant computations and evaluating the resulting sipmesu-
merically, we obtain

0 (Be) _ (-121 00243 -335x10% 0935 146 ... 00011
89 |\Ae) ~ |-2720 477 -0.00656 1830 286Q ... 327 |-
We can also normalize the sensitivity computation, as described in equai@pn (
= OXe/Xe

_—:DX—lS Db”
= 5660 (D*)"Sxeo

whereD* = diag{Xe} andD? = diag{fp}, which yields

S .- -485 32 -318 311 32 63 -605 -41 402 605
Y = 1-1.96 113 -112 11 113 324 -311 -211 207 311

where
9=(,U av K Ki B aa KL Ba Ka L).

We see from this computation that increasing the growth rate decreasegiifite- e
rium concentation oB andA, while increasing the lactose concentration by 2-fold
increases the equilibriugrgal concentration 12-fold (6X) and the allolactose con-
centration by 6-fold (3X).

5.2 Bacterial Chemotaxis

Chemotaxigefers to the process by which micro-organisms move in response to
chemical stimuli. Examples of chemotaxis include the ability of organisms to move
in the direction of nutrients or move away from toxins in the environment. Chemo-
taxis is calledpositive chemotaxis the motion is in the direction of the stimulus
andnegative chemotaxisthe motion is away from the stimulant, as shown in Fig-
ure5.4. Many chemotaxis mechanisms are stochastic in nature, with biased random
motions causing the average behavior to be either positive, negativeltoaln@n
the absence of stimuli).

In this section we look in some detail at bacterial chemotaxis, Whiatoli use
to move in the direction of increasing nutrients. The material in this section islbase
primarily on the work of Barkai and LeibleB] and Rao, Kirby and Arkin31].
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attractant repellent
- increasing decreasing
concentration concentration
NO ATTRACTANT POSITIVE NEGATIVE
OR REPELLENT CHEMOTAXIS CHEMOTAXIS

Figure 4.16d Physical Biology of the Cell (© Garland Science 2009)

Figure 5.4: Examples of chemotaxis. Figure from Phillipendev and Theriotq6]; used
with permission of Garland Science.

Control system overview

The chemotaxis system iB. coli consists of a sensing system that detects the
presence of nutrients, and actuation system that propels the organisnemwiis
ronment, and control circuitry that determines how the cell should move in the
presence of chemicals that stimulate the sensing system.

The actuation system in the coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown
in Figure5.5a When the flagella all spin in the counter clockwise direction, the
individual flagella form a bundle and cause the organism to move roughdy in
straight line. This behavior is called a “run” motion. Alternatively, if the fléae
spin in the clockwise direction, the individual flagella do not form a bundtethe
organism “tumbles”, causing it to rotate (Figusesh). The selection of the motor
direction is controlled by the protein CheY: if phosphorylated CheY bindséo th
motor complex, the motor spins clockwise (tumble), otherwise it spins counter-
clockwise (run).

Because of the size of the organism, it is not possible for a bacterium e sen
gradients across its length. Hence, a more sophisticated strategy is ustdthn
the organism undergoes a combination of run and tumble motions. The basic ide
is illustrated in Figuré.5¢c when high concentration of ligand (nutrient) is present,
the CheY protein is left unphosphorylated and does not bind to the actuation
plex, resulting in a counter-clockwise rotation of the flagellar motor (ruen-C
versely, if the ligand is not present then the molecular machinery of thearedbs
CheY to be phosphorylated and this modifies the flagellar motor dynamics so that
clockwise rotation occurs (tumble). The néieet of this combination of behaviors
is that when the organism is traveling through regions of higher nutrietters
tration, it continues to move in a straight line for a longer period before tumbling
causing it to move in directions of increasing nutrient concentration.

A simple model for the molecular control system that regulates chemotaxis is
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Figure 5.5: Bacterial chemotaxis. Figures from Phillipgnidev and Theriot76]; used
with permission of Garland Science.

shown in Figurés.6. We start with the basic sensing and and actuation mechanisms.
A membrane bound protein MCP (methyl-accepting chemotaxis protein) that is
capable of binding to the external ligand serves as a signal transdueimgre

from the cell exterior to the cytoplasm. Two other proteins, CheW and Cloew,

a complex with MCP. This complex can either be in an active or inactive state. In
the active state, CheA is autophosphorylated and serves as a phaspfertise

for two additional proteins, CheB and CheY. The phosphorylated fdr@heY

then binds to the motor complex, causing clockwise rotation of the motor.

The activity of the receptor complex is governed by two primary factors: the
binding of a ligand molecule to the MCP protein and the presence or abskumge o
to 4 methyl groups on the MCP protein. The specific dependence on Etwdse
factors is somewhat complicated. Roughly speaking, when the ligaadound
to the receptor then the complex is less likely to be active. Furthermore, as more
methyl groups are present, the ligand binding probability increases, atjavin
gain of the sensor to be adjusted through methylation. Finally, even in theabse
of ligand the receptor complex can be active, with the probability of it beitigeac
increasing with increased methylation. Figet& summarizes the possible states,
their free energies and the probability of activity.

Several other elements are contained in the chemotaxis control circuit. /e mo
important of these are implemented by the proteins CheR and CheB, both &f whic
affect the receptor complex. CheR, which is constitutively produced in the cell,
methylates the receptor complex at one of the foffedént methylation sites. Con-
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./fbkexamps/figures/chemotaxis-ctrlsys.eps

Figure 5.6: Control system for chemotaxis. Figure from Real.[81] (Figure 1A).

versely, the phosphorylated form of CheB demethylates the receptor comgle
described above, the methylation patterns of the receptor comfiéet #s activ-

ity, which afects the phosphorylation of CheA and, in turn, phosphorylation of
CheY and CheB. The combination of CheA, CheB and the methylation of the re-
ceptor complex forms a negative feedback loop: if the receptor is attte CheA
phosphorylates CheB, which in turn demethylates the receptor complex,gntkin
less active. As we shall see when we investigate the detailed dynamics thétow,
feedback loop corresponds to a type of integral feedback law. Thgraitaction
allows the cell to adjust to fferent levels of ligand concentration, so that the be-
havior of the system is invariant to the absolute nutrient levels.

Modeling

The detailed reactions that implement chemotaxis are illustrated in Fig8re
Letting T represent the receptor complex anfi fepresent an active form, the
basic reactions can be written as

TA+A=—TAA — AP+TA
AP+B=—AP.B— A+BP BP+P—BP.P—B+P (5.6)
AP+Y = AP.Y — A+YP YP+Z—YPZ——>Y+Z

where CheA, CheB, CheY and CheZ are written simply as A, B, Y and Z for
simplicity and P is a non-specific phosphatase. We see that these are basically
three linked sets of phosphorylation and dephosphorylation reactigtmsCive A
serving as a phosphotransferase and P and CheZ serving as atlasgsh

The description of the methylation of the receptor complex is a bit more com-
plicated. Each receptor complex can have multiple methyl groups attachéieand
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./fbkexamps/figures/receptor-activity|. eps

Figure 5.7: Receptor complex states. The probability ofv@ryistate being in an active
configuration is given by. Figure obtained fromdg].

activity of the receptor complex depends on both the amount of methylation and
whether a ligand is attached to the receptor site. Furthermore, the bindibg-pro
bilities for the receptor also depend on the methylation pattern. To capturevéhis,
use the set of reactions that are illustrated in Fig&résnd5.8. In this diagram,
TS represents a receptor that hasethylation sites filled and ligand state s (which
can be either u if unoccupied or o if occupied). WeNetrepresent the maximum
number of methylation sited = 4 for E. coli).

Using this notation, the transitions between the states correspond to the reac-
tions shown in Figur®.9;

T'+BP =T B? — T +BP i >0, xe{u,0}
T'+R=T'R— T}, +R i< M, xe{u,0}
T'+L=T?

We now must write reactions for each of the receptor complexes with Cheszh E

form of the receptor complex has dferent activity level and so the most complete
description is to write a separate reaction for eaftaiid T" species:

f.o c.o
T +A=TXA K—>Ap+TiX,

K
where xe {o,u} and i=0,...,M. This set of reactions replaces the placeholder
reaction " + A = TA:A — AP+ TA used earlier.
Approximate model

The detailed model described above iffisiently complicated that it can be dif-
ficult to analyze. In this section we develop a slightly simpler model that can be
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Figure 5.8: Circuit diagram for chemotaxis.

used to explore the adaptation properties of the circuit, which happenlowers
time-scale.

We begin by simplifying the representation of the receptor complex and its
methylation pattern. Lek(t) represent the ligand concentration ahdrepresent
the concentration of the receptor complex witsides methylated. If we assume
that the binding reaction of the ligand L to the complex is fast, we can write the
probability that a receptor complex witlsites methylated is in its active state as a
static functiona;(L), which we take to be of the form

a’l N ai K

(L) = .
aill) = T koL

The codficientse? anda; capture the fect of presence or absence of the ligand on
the activity level of the complex. Note that has the form of a Michaelis-Menten
function, reflecting our assumption that ligand binding is fast compared t@he

./fbkexamps/figures/chemotaxis-methylation.eps

Figure 5.9: Methylation model for chemotaxis. Figure frorarBai and Leibler §] (Box
1). Note: the figure uses the notatiofi #r the receptor complex instead of.T
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Figure 5.10: Probability of activity.

of the dynamics in the model. Following§1], we take the cofcients to be

ap=0, a; =0.1, a, =0.5, az =0.75 au=1,
ay=0, aj=0, ay=01  aJ=0.5, ag=1

and choos&| = 10uM. Figure5.10shows how each; varies withL.

The total concentration of active receptors can now be written in terms of the
receptor complex concentratiofis and the activity probabilitieg;(L). We write
the concentration of activated complef &nd inactivated complex'Tas

4 4
Th= Y aUT T =Y A-a()T
i=0 =0

These formulas can now be used in our dynamics agfant&e concentration of
active or inactive receptors, justifying the notation that we used in equ@ién

We next model the transition between the methylation patterns on the receptor.
We assume that the rate of methylation depends on the activity of the receptor
complex, with active receptors less likely to be demethylated and inactivetoese
less likely to be methylated[, 68]. Let

BP R

re=ke———,  Ir=Keo——,
BT P+ TA R R Kr+T!

represent rates of the methylation and demethylation reactions. We chease th
efficients as

ke=05 Kg=55 kr=0255 Kr=0.251

We can now write the methylation dynamics as

%Ti = rR(1-iz1(L))Ti—t + reaica(L) Tiva = rr(1—ai(L)Ti - reai(L)T;,
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Figure 5.11: Simulation and analysis of reduced-order dtaxis model.

where the first and second terms represent transitions into this state vidanethy
tion or demethylation of neighboring states (see Figu8eand the last two terms
represent transitions out of the current state by methylation and demethytatio
spectively. Note that the equations fo§ and T4 are slightly diferent since the
demethylation and methylation reactions are not present, respectively.

Finally, we write the dynamics of the phosphorylation and dephosphorylation
reactions, and the binding of Ch&Yo the motor complex. Under the assumption
that the concentrations of the phosphorylated proteins are small relative timtal
protein concentrations, we can approximate the reaction dynamics as

d
A= 50TAA— 100APY — 30APB,

d

i7" = 100APY ~0.1YP — 5[M] YP+ 19[M:Y *] - 30V,
9 Bp _ 30aPB—BP.

dt

d
d—t[M:Y Pl = 5[M] YP - 19[M:Y P].
The total concentrations of the species are given by

A+AP=5nM, B+BP=2nM, Y+YP+[M:YP]=17.9nM
[M] +[M:Y P] =5.8 nM, R=0.2nM StoTi=5nM.

The reaction co@icients and concentrations are taken from Rgal.[81].
Figureb.1l1lashows a the concentration of the phosphorylated proteins based on
a simulation of the model. Initially, all species are started in their unphospledyla
and demethylated states. At tirie= 500 s the ligand concentration is increased to
L=10uM and attimeT = 1000 itis returned to zero. We see thatimmediately after
the ligand is added, the Ch&¥oncentration drops, allowing longer runs between
tumble motions. After a short period, however, the CR&dncentration adapts to
the higher concentration and the nominal run versus tumble behavior isegsto
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Figure 5.12: Reduced order model of receptor activity. @lethfrom ], Figure 7.9.

Similarly, after the ligand concentration is decreased the concentrationedf"Ch
increases, causing a larger fraction of tumbles (and subsequemgeshendirec-
tion). Again, adaptation over a longer time scale returns that CheY coatentr
to its nominal value.

Figure 5.11bhelps explain the adaptation response. We see that the average
amount of methylation of the receptor proteins increases when the ligandrcon
tration is high, which decreases the activity of CheA (and hence desd¢hs
phosphorylation of CheY).

Integral action

The perfect adaptation mechanism in the chemotaxis control circuitry haartine
function as the use of integral action in control system design: by includfagd-
back on the integral of the error, it is possible to provide exact canceilabio
constant disturbances. In this section we demonstrate that a simplified vefsion
the dynamics can indeed be regarded as integral action of an appr&igiadd:
This interpretation was first pointed out by & al[102.

We begin by formulating an even simpler model for the system dynamics that
captures the basic features required to understand the integral aatoxrépre-
sent the receptor complex and assume that it is either methylated or not. We let X
represent the methylated state and we further assume that this methylatedrstate c
be activated, which we write asX This simplified description replaces the multi-
ple stated; and probabilities(L). We also ignore the additional phosphorylation
dynamics of CheY and simply take the activated receptor concentidlj@s our
measure of overall activity.

Figure5.12shows the transitions between the various foknas before, CheR
methylates the receptor and CHedemethylates it. We simplify the picture by only
allowing CheP’ to act on the active state,xand CheR to act on the inactive state.
We take the ligand into account by assuming that the transition between the activ
form X, and the inactive form X depends on the ligand concentration: higher
ligand concentration will increase the rate of transition to the inactive state.

This model is a considerable simplification from the ligand binding model that
is illustrated in Figure$.7 and5.9. In the previous models, there is some prob-
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ability of activity with or without methylation and with or without ligand. In this
simplified model, we assume that only three states are of interest: demethylated,
methylatednactive and methylatgdctive. We also modify the way that that lig-
and binding is captured and instead of keeping track of all of the possibilities
Figure5.7, we assume that the ligand transitions us from an active stat®Xn
inactive X,,. These states and transitions are roughly consistent with fferetit
energy levels and probabilities in Figusey, but it is clearly a much coarser model.
Accepting these approximations, the model illustrated in Figut@results in
a set of chemical reactions of the form

Rl: X+R=XR—X,+R methylation
R2: X;5+BP =X/ :BP— X+BP  demethylation

R3: Xp=—=Xp activatiorideactivation
k"

For simplicity we take both R and®Bto have constant concentration.

We can approximate the first and second reactions by their Michaelis-Mente
forms, which yield net methylation and demethylation rates (for those reaxtions

X X
—_ V_ = kBBp—m.
Kx + X K)(;;1 + X;fn
If we further assume thaX > Ky > 1, then the methylation rate can be further
simplified:

X
Kx + X

Using these approximations, we can write the resulting dynamics for thellovera
system as

V+ = kRR

~ KrR.

dgtxm = kgR+ k' (L)X — K Xm

d X

Moy p__™m . f * r

51 m = —keBP i — o k" (L)XE +K X,

We wish to use this model to understand how the steady state activityXgvel
depends on the ligand concentratiofwhich enters through the deactivation rate
k'(L)).

It will be useful to rewrite the dynamics in terms of the activated complex con-
centrationX?;, and thetotal methylated complex concentratiofh, = Xm + Xz, A
simple set of algebraic manipulations yields

d X
X"‘ =k(X,, - X5) - kBBIOW kf(L)Xx:,

dxm X
= kgR—kgBP—2_.
dt R 8 Kxz +Xm
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From the second equation, we see that the the concentration of methylatplgxo
X} is a balance between the action of the methylation reaction (R1, characterized
by v;) and the demethylation reaction (R2, at rat¢ Since the action of a ligand
binding to the receptor complex increases the rate of deactivation of thdeomp
(R3), in the presence of a ligand we will increase the amount of methylatad co
plex (and, via reaction R1) eventually restore the amount of the activateglex.
This represents the adaptation mechanism in this simplified model.

To further explore theféect of adaptation, we compute the equilibrium points
for the system. Setting the time derivatives to zero, we obtain

. Kyx: kR
Xme = 1oBP —kaR
Xt = l(kfx* +k38pi+kf(L)X*).
me = jr (7 m Ky + X m

Note that the solution for the active compl&g, . in the first equation does not
depend orkf(L) (or k') and hence the steady state solution is independent of the
ligand concentration. Thus, in steady state, the concentration of acto@tgalex
adapts to the steady state value of the ligand that is present, making it ingensitiv
to the steady state value of this input.

The dynamics foix!, can be viewed as an integral action: when the concen-
tration of X;, matches its reference value (with no ligand present), the quantity of
methylated complex!, remains constant. But X!, does not match this reference
value, therX}!, increases at a rate proportional to the methylation “error” (measured
here by diference in the nominal reaction ratesandv_). It can be shown that
this type of integral action is necessary to achieve perfect adaptationoipuatr
manner 107].
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Chapter 6

Biological Circuit Components

In this chapter, we describe some simple circuits components that havedieen c
structed inE. colicells using the technology of synthetic biology. We will analyze
their behavior employing mainly the tools from Chap8eaind some of the tools
from Chapte#. The basic knowledge of Chapt2will be assumed.

6.1 Introduction to Biological Circuit Design

In Chapter2 we have introduced a number of core processes and their modeling.
These include gene expression, transcriptional regulation, postatiianal regu-
lation such as covalent modification of proteins, allosteric regulation ofreegy
activity regulation of transcription factors through inducers, etc. Tloese pro-
cesses provide a rich set of functional building blocks, which can bebowed
together to create circuits with prescribed functionalities.

For example, if we want to create an inverter, a device that returns hightou
when the input is low and vice versa, we can use a gene regulated byseripan
tion repressor. If we want to create a signal amplifier, we can employcadas
of covalent modification cycles. Specifically, if we want the amplifier to be lin-
ear, we should tune the amounts of protein substrates to be in smaller valnes tha
the Michaelis-Menten constants. If instead we are looking for an almost ldigita
response, we could employ a covalent modification cycle with high amounts of
substrates compared to the Michaelis-Menten constants. Furthermore aifewe
looking for a fast inpybutput response, phosphorylation cycles are better candi-
dates than transcriptional systems.

In this chapter and in the next one, we illustrate how one can build circuits with
prescribed functionality using some of the building blocks of Chaptend the
design techniques illustrated in Chap8eiVe will focus on two types of circuits:
gene circuits and signal transduction circuits. In some cases, we will ilestea
signs that incorporate both.

A gene circuit is usually depicted by a set of nodes, each represengegea
connected by unidirectional edges, representing a transcriptionzd@mti or a re-
pression. Inducers will often appear as additional nodes, whichadetdr inhibit
a specific edge. Early examples of such circuits include an activatorssqr sys-
tem that can display toggle switch or clock behavig]; b loop oscillator called
the repressilator obtained by connecting three inverters in a ring topogya]
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S

A
a) Self repression b) Toggle switch
A C

c) Activator-repressor clock d) Repressilator

Figure 6.1: Early transcriptional circuits that have begoricated in bacteri&. coli: the
negatively autoregulated geng(], the toggle switch 31], the activator-repressor clock
[5], and the repressilatoR}].

toggle switch obtained connecting two inverters in a ring fash&if fand an au-
torepressed circuitlfd] (Figure6.1). Each node represents a gene and each arrow
from node Z to node X indicates that the transcription factor encoded i@ gen
denoted Z, regulates gene3d|.[If z represses the expression of X, the interaction is
represented byX. If z activates the expression of x, the interaction is represented
by Z—-X[3].

Basic synthetic biology technology

Simple synthetic gene circuits can be constituted from a set of (connected) tr
scriptional components, which are made up by the DNA base-pair sezgidrat
compose the desired promoters, ribosome binding sites, gene coding, ragibn
terminators. We can choose these components from a library of basithisutees
able parts, which are classified based on biochemical properties swathnigg
(of promoter, operator, or ribosome binding sites), strength (of a projmeted
efficiency (of a terminator).

The desired sequence of parts is usually assembled on plasmids, whah are
cular pieces of DNA, separate from the host cell chromosome, with theiooigin
of replication. These plasmids are then inserted, through a processtcaiisfbr-
mation in bacteria and transfection in yeast, in the host cell. Once in the Hipst ce
they express the proteins they code for by using the transcription arglatian
machinery of the cell. There are three main types of plasmids: low copy number
(5-10 copies), medium copy number (15-20 copies), and high copy ewufap to
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hundreds). The copy humber reflects the average number of copies pasmid
inside the host cell. The higher the copy number, the mfiteient the plasmid is
at replicating itself. The exact number of plasmids in each cell fluctuatelsastoc
tically and cannot be exactly controlled.

In order to measure the amounts of proteins of interest, we make tesgoofer
genesA reporter gene codes for a protein that fluoresces in a specific Eelhr
blue, green, yellow, etc.) when itis exposed to light of the correct viewgth. For
instance, green fluorescent protein (GFP) is a protein with the propeitti fluo-
resces in green when exposed to UV light. It is produced by the jelpfEsfuoria
victoria, and its gene has been isolated so that it can be used as a reporter. Other
fluorescent proteins, such as yellow fluorescent protein (YFP)eah@uorescent
protein (RFP) are genetic variations of GFP.

A reporter gene is usually inserted downstream of the gene expressipgoth
tein whose concentration we want to measure. In this case, both genasdaire
the control of the same promoter and are transcribed into a single mRNA molecule
The mRNA is then translated to protein and the two proteins will be fused together
This technique sometimeffacts the functionality of the protein of interest because
some of the regulatory sites may be occluded by the fluorescent protgirevient
this, another viable technique is to clone after the protein of interest theteepo
gene under the control of a copy of the same promoter that also contretsjires-
sion of the protein. This way the protein is not fused to the reporter pratéiich
guarantees that the protein function is nfieeted. Also, the expression levels of
both proteins should be close to each other since they are controlledffeyddt
copies of) the same promoter.

Just as fluorescent proteins can be used as a read out of a cirauigiadunc-
tion as external inputs that can be used to probe the system. Inducet®rfun
by either disabling repressor proteins (negative inducers) or bylirgadctiva-
tor proteins (positive inducers). Two commonly used negative inducerdPd G
and aTc. Isopropyb-D-1-thiogalactopyranoside (IPTG) induces activity of beta-
galactosidase, which is an enzyme that promotes lactose utilization, throwth bin
ing and inhibiting thdac repressor Lacl. The anhydrotetracycline (aTc) binds the
wild-type repressor (TetR) and prevents it from binding the Tet operkitm com-
mon positive inducers are arabinose and AHL. Arabinose activatesahsctip-
tional activator AraC, which activates the pBAD promoter. Similarly, AHL is a
signaling molecule that activates the LuxR transcription factor. which aetvhe
pLux promoter.

Protein dynamics can be usually altered by the addition of a degradation tag at
the end of the coding region. A degradation tag is a sequence of baséyadiadds
an amino acid sequence to the functional protein that is recognized bypeste
Proteases then bind to the protein, degrading it into a non-functional nelésu
a consequence, the half life of the protein decreases, resulting into r@ased
decay rate. Degradation tags are often employed to obtain a faster sesgdhe
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protein concentration to input stimulation and to prevent protein accumulation.

6.2 Negative Autoregulation

In this section, we analyze the negatively autoregulated gene of Faylirend
focus on analyzing how the presence of the negative feedlfaitsithe dynamics
of the system and how the negative feedbaffkcts the noise properties of the
system. This system was introduced in Exangk

Let A denote the concentration of protein A and let A be a transcriptional re-
pressor for its own production. Assuming that the mRNA dynamics are atitsa-g
steady state, the ODE model describing the self repressed system idgiven

dA B

ot 1e AR oA

We seek to compare the behavior of this autoregulated system to the bedfavior

the unregulated one:

dA

in which Bg is the unrepressed production rate.

Dynamic effects of negative autoregulation

As we showed via simulation in Exam#e3, negative autoregulation speeds up the
response to perturbations. Hence, the time the system takes to reach ysstatad
decreases with negative feedback. In this section, we show this rasijtieally

by employing linearization about the steady state and by explicitly calculating the
time the system takes to reach it.

Let Ac = Bo/6 be the steady state of the unregulated system armHet — A¢
denote the perturbation with respect to such a steady state. The dynamiaeof
given by

dz

i
Given a small initial perturbatiom,, the time response afis given by the expo-
nential

-0z

2(t) = e

The “half-life” of the signalz(t) is the time it takes to reach half @§. This is a
common measure for the speed of response of a system to an initial pgotorba
Simple mathematical calculation shows that = In(2)/6.

Let now A be the steady state of the autoregulated system. Assuming that the
perturbatiorz with respect to such a steady state is small enough, we can employ
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linearization to describe the dynamicsaofThese dynamics are given by

dz =
gt~ 0%
in which
_ n n—l/Kn
6=+ —
(1+ (Ae/K)M)?
In this case, we have thag = In(2)/6.
Sinced > ¢ (independently of the steady stakg), we have that the dynamic
response to a perturbation is faster in the system with negative autoreguldtie
confirms the simulation findings of Exam#e3.

Noise filtering

In this section, we investigate th&ect of the negative feedback on the noise spec-
trum of the system. In order to do this, we employ the Langevin modeling frame-
work and determine the frequency response to the noise on the varami®one
channels. We perform two flierent studies. In the first one, we assume that the de-
cay rate of the protein is much smaller than that of the mRNA. As a consequence
the mRNA is at its quasi-steady state and we focus on the dynamics of the protein
only. In the second study, we investigate the consequence of having tRA i
protein decay rates in the same range so that the quasi-steady state assoanptio
not be made. In either case, we study both the open loop system and &ctlolos
system (the system with negative autoregulation) and compare the cordasy
frequency responses.

Assuming mRNA at the quasi-steady state

In this case, the reactions for the open loop system are given by

Rl:pﬁA+p, RZ:Ai(Z),

in which Bg is the constitutive production rate, p is the DNA promoter, arid
the decay rate of the protein. Since the concentration of DNA promoter ptis no
changed by these reactions, it is a constant, which wepgzll

Employing the Langevin equatiod.Q) of Section4.1 and lettingna denote
the real-valued number of molecules of A andyythe real-valued number of
molecules of p, we obtain

dn —
d—? :ﬁonp - 5nA+ Vﬂonle - 5nAN2’

in whichN; andN; are the noises on the production reaction and on the decay reac-
tion, respectively. By denoting = na/Q the concentration of A anpl=np/Q = prot
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the concentration of p, we have that

dA 1
at = BoPtot —0A+ E(VﬁoptotNl_ VEANy).

This is a linear system and therefore we can calculate the frequencynsesfm
any of the two inputdN; andN,. The frequency response to ingW is given by

VBoProt/ 2
Var e

We now consider the autoregulated system. The reactions are given by

Gan,(w) =

Rl:piA+p, RZ:Ai(Z),

R3:A+p3>C, R4:CE>A+D, Prot = p+C.
Employing the Langevin equatiod.Q) of Section4.1 and dividing both sides of
the equation to obtain concentrations, we obtain

dp 1

i —aAp+d(pot— p) + ﬁ(_ VaApNs+
Vd(Prot — P)Na)

dA

1
I =pp—06A—-aAp+d(prwot— p) + @(\/@Nl— VSAN; — \/aApNs+
Vd(prot — P)N4),

in which N3 and N4 are the noises on the association and o the dissociation reac-
tions, respectively. Lettingy =d/a, I'1(t) = %(— VaAp/ KNz + /d(prot— P)N4),
andI,(t) = %( vVBPNL — V6AN,), we can rewrite the above system in the follow-
ing form:

d

Gt = ~aAP+d(pi—p)+ VAr()

dA

dt
Sincea,d > 6,8p, this system displays two time scales. Denoting- §/d and
definingy := A— p, the system can be further rewritten in standard singular pertur-

bation form @.6):

Bp—6A—aAp+d(prot— p) +2(t) + Vdla(t).

d
e = ~0AP/Ka-+ 8(por— P) + Ve VOT1(1)

d
d—i’=/3p—6(y+ p) +I2(t).
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By settinge = 0 and assuming thabe/Kg is suficiently small, we obtain the
reduced system describing the dynamicé\afs

dA _ Prot

E‘ﬁA/Kdu

- 6A+ %(\//Tle— VSAN,) =: f(A Ni, Ny).

The equilibrium point for this system corresponding to the mean valyesO
andN, = 0 of the inputs is given by

1
Ae = 5 ([ K§+4BProiKa/6 - Ko).
The linearization of the system about this equilibrium point is given by
of Prot/ Kd =
— =B —§ =6,
OAI AN, =0.Ny=0 ﬁ(Ae/ Kgq+ 1)2 +1
of 1 BProt of
b= — = , b= — = —/0Ae.
1T AN, AeNi=0N,=0  VQ Y Ae/Kg+1 27 0N, Ae,N1=0,N>=0
Hence, the frequency responseNipis given by
b1
G (W) = ——.
ANL 2152

In order to make a fair comparison between this response and that oféhe op
loop system, we need to make sure that the steady states of both systems are the
same. In order to do so, we set

B
COA/Kg+ 1

This can be attained by properly adjusting the strength of the promoter ahd of
ribosome binding site. _

As a consequence; = +/Boprot/Q. Since als@ > 4, it is clear thalG§, (w) <
Gani(w) for all w. This result implies that the negative feedback attenuates the
noise at all frequencies. The two frequency responses are plottéeglire.2(a).

Bo

MRNA decay close to protein decay

In this case, we need to model the processes of transcription and tramskepia-
rately. Denoting iy the mRNA of A, the reactions describing the open loop system
modify to

Rimy Hmu+A,  RyA30, RepSmu+p  Remy 50,
while those describing the closed loop system modify to

R;: mAimA+A, RZ:Aiw,
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Figure 6.2: (a) Frequency response to ndigét) for both open loop and closed loop
for the model in which mRNA is assumed at its quasi-steadie stEhe parameters are
Pt = 10, Kg = 10,8 =0.001,5 = 0.01,Q = 1, andBp = 0.00092. (b) Frequency response
to noiseNg(t) for both open loop and closed loop for the model in which mRid&ay is
close to protein decay. The parametersgge= 10,K4 = 10,a = 0.001,3=0.01,y = 0.01,

6 =0.01, andap = 0.0618.

d
RyA+p>C, R,CSA+p,

Repomy+p,  Rgm, 50,  por=p+C.

Employing the Langevin equation in terms of concentrations, and applyinglamg
perturbation as performed before, we obtain the dynamics of the system as

dm 1
gt = TA)-yma+ ﬁ(x/f(A)Ns— VyMaNe)
dA 1
— = —0A+ — N; — VA
at Bma—o6A+ \@(\/ﬁmA 1— VoAN,),
in which N5 andNg are the noise on the production reaction and decay reaction of

MRNA, respectively. For the open loop systé(#) = agpiot, While for the closed
loop system

_ Pt
A= A/Kg+1
The steady state for the open loop system is given by
o_ 20 o_ @08

ConsideringNg to be the input of interest, the linearization of the system at this
equilibrium is given by

(3 8) o T

B -6 0
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Letting K = B/(6Kq), the steady state for the closed loop system is given by

1
A = ﬁTme, g = E(-1/K+ \/(1/K)2+4G’ptot/(K')’))-

The linearization of the closed loop system at this equilibrium point is given by

ST

in which G = apot/(AS/Ka + 1)? represents the contribution of the negative feed-
back. The larger the value &f the stronger the negative feedback.

In order to make a fair comparison between the two systems, we need to make
the steady states be the same. In order to do this, we car set/(AS/Kqg + 1),
which can be done by suitably changing the strengths of the promoter asdmie
binding sites.

The open loop and closed loop transfer functions are given by

BAyme/Q

Can(d = (s )1 0)
and by
V Q
G (9 = B+yme/

L+8y+0)+y5+G’

respectively. By looking at these expressions, it is clear that the opertriansfer
function has two real poles, while the closed loop transfer function ces ¢@m-
plex conjugate poles whda is sufficiently large. As a consequence, noldgecan
be amplified at sfiiciently high frequencies. Figu&2(b) shows the correspond-
ing frequency responses for both the open loop and the closed loeprsys

It is clear that the presence of the negative feedback attenuates ntiigew
spect to the open loop system at low frequency, but it amplifies it at higéer
guency. This is a very well knowrfiect known as the “water bedfect”, according
to which negative feedback decreases tfieat of disturbances at low frequency,
but it can amplify it at higher frequency. Thiffect is not found in first order mod-
els, as demonstrated by the derivations when mRNA is at the quasi-stetaly sta
This illustrates the spectral shift of the frequency response to intrinsie tmisard
the high frequency, as also experimentally demonstraded [

6.3 The Toggle Switch

The toggle switch is composed of two genes that mutually repress eachasther,
shown in the diagram of Figur@.3 [31]. We start by describing a simple model
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Figure 6.3: Nullclines for the toggle switch. By analyzitgtdirection of the vector field
in the proximity of the equilibria, one can deduce their 8iighas described in Sectiod.1

with no inducers. By assuming that the mRNA dynamics are at the quasi-steady
state, we obtain a two dimensionafférential equation model given by

A__ g 4B __ B o
dt  1+(B/K)" dt 1+ (A/K)"

in which we have assumed for simplicity that the parameters of the repression
functions are the same for A and B.

The number and stability of equilibria can be analyzed by performing nulicline
analysis since the system is two-dimensional. Specifically, by setdt = 0 and
dB/dt = 0, we obtain the nullclines shown in Figuge3. In the case in which the
parameters are the same for both A and B, the nulliclines intersect at threg, po
which determine the steady states of this system.

The nullclines patrtition the plane into six regions. By determining the sign of
dA/dtanddB/dtin each of these six regions, one determines the direction in which
the vector field is pointing in each of these regions. From these directioes, 0
immediately deduces that the steady state for wiiich B is unstable while the
other two are stable. This is thus a bistable system.

The system converges to one steady state or the other depending on the initia
condition. If the initial condition is in the region of attraction of one steady state,
it converges to that steady state. The 45 degree line divides the planedriteah
regions of attraction of the stable steady states. Once the system haggednve
to one of the two steady states, it cannot switch to the other unless an éxterna
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Figure 6.4: time traces fak(t) andB(t) when inducer concentrationg andu, are changed.
In the simulation, we have= 2, K41 = Kg2 =1, K2 = 0.1,8=1,andé = 1. The inducers
are such thati; = 10 fort < 100 andu;, = 0 fort > 100, whileu, = 0 fort < 100 andu, = 10
for t > 100.

stimulation is applied that moves the initial condition to the region of attraction of
the other steady state.

In the toggle switch by31], external stimulations were added in form of neg-
ative inducers for A and B. Let,ube the negative inducer for A and, be the
negative inducer for B. Then, as we have seen in Se&i8nthe expressions of
the Hill functions need to be modified to replagdy A(1/(1+ u1/Kg1)) andB by
B(1/(1+uz/Kq2)), in whichKq 1 andKq > are the dissociation constants gfwith
A and of y, with B, respectively. We show in Figui&4 time traces forA(t) and
B(t) when the inducer concentrations are changed. Specifically, initiglly high
until time 100 whileu, is low until this time. As a consequence, A does not repress
B while B represses A. Accordingly, the concentration of A stays low until time
100 and the concentration of B stays high. After time 180s high andu; is low.

As a consequence B does not repress A while A represses B. In traiituA
switches to its high value and B switches to its low value.

6.4 The Repressilator

Elowitz and Leibler 27] constructed the first operational oscillatory genetic circuit

consisting of three repressors arranged in ring fashion, and coirtieel ‘itepres-

silator” (Figure6.1d). The repressilator exhibits sinusoidal, limit cycle oscillations

in periods of hours, slower than the cell-division life cycle. Thereftire,state of

the oscillator is transmitted between generations from mother to daughter cells.
The dynamical model of the repressilator can be obtained by composirgg thre
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transcriptional modules in a loop fashion. The dynamics can be written as

dmy 3 dmg 3 dme 3

at - oma+ f1(C) T omg + f2(A) at - ome + f3(B)
dA dB dC

a—mA—é‘A a—mB—éB a—mc—(SC,

where we take

a2

u(p) = £(P) = f5(P) = 1 5

This structure belongs to the class of cyclic feedback systems that wetuaied
in Section3.4. In particular, the Mallet-Paret and Smith theorem and Hastings the-
orem (see SectioB.4for the details) can be applied to infer that if the system has
a unique equilibrium point and this is unstable, then it admits a periodic solution.
Therefore, we first determine the number of equilibria and their stability.

The equilibria of the system can be found by setting the time derivativesdo zer
We thus obtain that

WO L A o _

A = 62 ’ - 62 ’ - 62 ’

which combined together yield to
1 1 1

The solution to this equation determines the set of steady states of the syseem. Th
number of steady states is given by the number of crossings of the twtidiusic
h1(A) = g(A) andhy(A) = A. Sincehy is strictly monotonically increasing, we ob-
tain a unique steady statehf is monotonically decreasing. This is the case when
gA) = % < 0. Otherwise, there could be multiple steady states. Since we have
that

sign@ (A) = 112 sign(; (P)).

then ifo’zlsign(fi’(P)) < 0the system has a unique steady state. We call the product
I3 sign(f/ (P)) theloop gain

Thus, any cyclic feedback system with negative loop gain will have a eniqu
steady state. It can be shown that a cyclic feedback system with posiipeé&n
belongs to the class of monotone systems and hence cannot have petfiitdic o
[62]. In the present case, systef4) is such thatf’ < 0, so that the loop gain is
negative and there is a unique steady state. We next study the stability aétdy s
state by studying the linearization of the system.
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Repressilator (symmetric case) Repressilator (symmetric case)
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70k REGION THAT GIVES RISE TO OSCILLATIONS
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Figure 6.5: (a) Space of parameters that give rise to osoifia for the repressilator in
equation 6.4). (b) Period as a function éfanda.

Letting P denote the steady state value of the protein concentrations for A, B,
and C, the linearization of the system is given by

5 0 0 0 0 f/(P)
- 0 0 0 0
Py <6 0 0 0
o 1 -5 0 0|
0 0 fP) -5 O
O 0 0 0 1 -¢

O OO

whose characteristic polynomial is given by
det@l —J) = (1+6)° - T12, f/ (P). (6.1)

In the case in whicH;(P) = &?/(1+ p") for i € {1,2,3}, this characteristic polyno-
mial has a root with positive real part if the ratigs satisfies the relation

2 2 o] 43 4/3
/o> n—4/3(1+n—4/3)'

For the proof of this statement, the reader is referre@1h [This relationship
is plotted in Figures.5 (b).

Whenn increases, the existence of an unstable equilibrium point is guaranteed
for larger ranges of the other parameter values. Of course, thisvioeaB robust-
ness does not guarantee that other important features of the oscilletoras the
period are not changed when parameters vary. Numerical studiestethiea the
periodT approximatively followsT « 1/6, and varies little with respect t@ (Fig-
ure6.50). From the figure, we see that as the valué imicreases, the sensitivity of




212 CHAPTER 6. BIOLOGICAL CIRCUIT COMPONENTS

the period to the variation of itself decreases. However, increasihgould ne-
cessitate the increase of the cooperatinittherefore indicating a possible tradieo
that should be taken into account in the design process in order to batenegs-
tem complexity and robustness of the oscillations. From a practical poineéwf v
n can be changed by selecting repressors that bind cooperatively tootheter.
In practice, it is usually hard to obtain valuesrogreater than two.

A similar result for the existence of a periodic solution can be obtained for
the non-symmetric case in which the input functions of the three transcriptiona
modules are modified to

azpn
1+p"

azpn

f1(p) = = rp”

f2(p) f3(p) =

3
Trp
That is, two interactions are activations and one only is a repressiore 8iac
loop gain is still negative, there is only one equilibrium point only. We can thus
obtain the condition for oscillations again by establishing conditions on thepara
eters that guarantee that at least one root of the characteristic polyr{érijddas
positive real part, that is,

2 P5
(0.86)2n\/(1+pg)(1+pg)(1+pT > 1. (6.2)

We rewrite p; and pz as functions ofp, by using two of the equilibrium rela-

tions: o o
ac/o°p

=i =2

/6% — P2 1+p2

Using these expressions i6.), we can find all possible values p$ that satisfy
(6.2) for a fixed pair 2/62,n). These values gf, correspond to the possible values
of a3/52 by means of the third equilibrium condition

a5/6% = pa(1+pY).

For each paird?/62,n), we finally obtain all possible values of/5 that satisfy
the equilibrium conditions and inequalitg.@). These conditions are reported in
Figure6.6 (see R1] for the detailed derivations).

One can conclude that it is possible to “over design” the circuit to be in the
region of parameter space that gives rise to oscillations. In practicesvafa be-
tween one and two can be obtained by employing repressors that hapeacoady
higher than or equal to two. There are plenty of such repressorsdinglthose
originally used in the repressilator desidtv]. However, values oh greater than
two may be hard to reach in practice. It is also possible to show that incgeagin
number of elements in the loop, the valueno$uficient for oscillatory behavior
decreases (see Exercises).
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Figure 6.6: Space of parameters that give rise to oscitlatfor the repressilator (non-
symmetric case). As the value ofis increased, the ranges of the other parameters for
which sustained oscillations exist become larger.

6.5 Activator-repressor clock

Consider the activator-repressor clock diagram shown in Figue). The tran-
scriptional module A has an input function that takes two inputs: an actitedod

a repressor B. The transcriptional module B has an input function thes @ky
an activator A as its input. Leha andmg represent the concentration of mRNA
of the activator and of the repressor, respectively. Aeind B denote the protein
concentration of the activator and of the repressor, respectivedy, Ve consider
the following four-dimensional model describing the rate of change offibeiss
concentrations:

d d

M _ -61ma+F1(A, B), e _ —5org+ F2(A),
dt dt
dA dB
— = —0pAA+ 1My, — = —0sB+p3>mg,

dt dt
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B

(@n=1 (byn=2

Figure 6.7: Nullclines for the two-dimensional system afigiipn 6.5). (a) shows the only
possible configuration of the nullclines whar= 1. (b) shows a possible configuration of
the nullclines whem = 2. In this configuration, there is a unique equilibrium, whan
be unstable.

in which the functiong-; andF, are Hill functions and given by

K]_An +Kao = (A) _ KzAn + Kpgo
1+ (A/k)"+(Blk)™ 2 T T (A/ky)"

F1(A,B) =

The Hill function F1 can be obtained through a combinatorial promoter, where
there are sites both for an activator and for a repressor (see S2@jon

Two-dimensional analysis

We first assume the mRNA dynamics to be at the quasi-steady state so that we ca
perform two dimensional analysis and invoke the Poiadaendixson theorem.
Then, we analyze the four dimensional system and perform a bifurcsttioly.

We let f1(A,B) := (B1/61)F1(A, B) and f2(A) := (B2/d2)F2(A). For simplicity,
we also denotd (A, B) := —6aA+ f1(A, B) andg(A, B) := —6gB + f2(A) so that the
two-dimensional system is given by

dA dB
i f(A,B), i o(A, B).
For simplicity, we assume = 1 andk; = 1 for alli.
We first study whether the system admits a periodic solutiomferl. To do
so, we analyze the nullclines to determine the number and location of steady state
DenoteK = K1(81/61), K2 = K2(82/62), Kao = Kpo(B1/61), andKpo = Kgo(B1/61).
Then,g(A,B) =0 leads to
_ |Z2A+ KBO
 (1+A6A°
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which is an increasing function &. Settingf (A, B) = 0, we obtain that

_ |Z1A+ K_AO - 6AA(1+ A)
B SaA ’

which is a monotonically decreasing function of A. These nuliclines are gisgla
in Figure6.7(a).

We see that we have one equilibrium only. To determine the stability of such
an equilibrium, we calculate the linearization of the system at such an equilibrium.
This is given by

B

of of
| % B
A 0B
In order for the equilibrium to be unstable and not a saddle, it is negeasar
suficient that trg) > 0 and det{) > 0.
Graphical inspection of the nuliclines at the equilibrium (8ea)), shows that

dB‘ <0
dAltap=0

By the implicit function theorem (Sectidh6), we further have that

d_B‘ __0f/oA
dAltag=0 Of/0B’

so thatof /0A < 0 becauséf/dB < 0. As a consequence, we have thaf)r 0
and hence the equilibrium point is either stable or a saddle.
To determine the sign of det(J), we further inspect the nullclines and find tha

g ds
dAlgap-0 dAlfap=0
Again using the implicit function theorem we have that

dB’ _ 0g/oA
dAlga.B)=0 dg/oB’

so that det]) > 0. Hence, thev-limit set (Section3.4) of any point in the plane

is not necessarily a periodic orbit. Hence, to guarantee that any initialitemm
converges to a periodic orbit, we need to require thatl.

We now study the cagse= 2. In this case, the nulicling(A, B) = 0 changes and
can have the shape shown in Figét& (b). In the case in which, as in the figure,
there is an equilibrium point only and the nullclines intersect both with positive
slope (equivalent to deitf > 0), the equilibrium is unstable and not a saddle if
tr(J) > 0, which is satisfied if

OB

__9%
ot /0A—on
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Figure 6.8: Effect of the trace of the Jacobian on the stability of the eltilim. The
above plots illustrate the trajectories of systefrb) for both Functional (trd) > 0) and
a Non-Functional (t{) < 0) Clocks. The parameters in the simulation &te= 6> = 1,
K1 =Ky =100,Kag =.04,Kpgp =.004,6p = 1,81 =82 =1, andk; =k, = 1. In the Functional
Clock, 6g = 0.5 whereas in the Non-Functional Cloalg = 1.5. Parameter&; and K,
were chosen to give about 500-2000 copies of protein perfaekctivated promoters.
Parameter& ag andKpgg were chosen to give about 1-10 copies per cell for non-aetiva
promoters.

This condition reveals the crucial design requirement for the functionfrtheo
clock. Specifically the repressor B time scale must taaeantly slower than the
activator A time scale. This point is illustrated in the simulations of Figu8zin
which we see that ifg is too large, the trace becomes negative and oscillations
disappear.

Four-dimensional analysis

In order to specifically study time scale separation between activator presser
as a crucial design requirement for the clock, we perform a time scalgsena
employing bifurcation the tools described in Sect®& To this end, we consider
the following four-dimensional model describing the rate of change offikeiss
concentrations:

dma dmg

T —01/€ ma+F1(A,B), Ot - —02/€ mg + F2(A),
dA dB
i V(=6aA+B1/€ Ma), Fri 6B+ B2/ mp.

This system is the same as systénb where we have explicitly introduced two
parameters; ande, which model time scale fferences as follows. The parameter
v regulates the dierence of time scale between the repressor and the activator
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dynamics whilee regulates the dierence of time scale between the mRNA and
the protein dynamics. The parametattetermines how close modd.p) is to the
two-dimensional model(5), in which the mRNA dynamics are considered at the
quasi-steady state. Thus,is a singular perturbation parameter (equatiofi$)(
can be taken to standard singular perturbation form by considering #mgelof
variablesma = ma/e andmg = mg/¢). The details on singular perturbation can be
found in Sectior8.6.

The values ot and ofv do not dfect the number of equilibria of the system. We
then perform bifurcation analysis withandy the two bifurcation parameters. The
bifurcation analysis results are summarized by FiguéeThe reader is referred to
[20Q] for the details of the numerical analysis. In terms ofdlady parameters, itis
thus possible to “over design” the system: if the activator dynamics &ieisatly
sped up with respect to the repressor dynamics, the system undertiogs$ bi-
furcation (Hopf bifurcation was introduced in Sectid®) and stable oscillations
will arise.

From a fabrication point of view, the activator dynamics can be sped up by
adding suitable degradation tags to the activator protein. Similarly, the sgpres
dynamics can be slowed down by adding repressor DNA binding site€(egeer
7 and the #ects of retroactivity on dynamic behavior).

6.6 An Incoherent Feedforward Loop (IFFL)

Several genetic implementations of incoherent feedforward loops asgb® 3.
Here, we describe an implementation proposed for making the steady stadse leve
of protein expression adapt to DNA plasmid copy numi&.[In this implemen-
tation, the inpuu is the amount of DNA plasmid coding for both the intermediate
regulator Lacl (L) with concentratiob and the output RFP (R) with concentration
R. The intermediate regulator Lacl represses through transcriptiorralssapn the
expression of the output protein RFP (Figgd 0. The expectation is that the
steady state value of the RFP expression is independent of the coticeniraf
the plasmid. That is, the concentration of RFP should adapt to the copy noimbe
its own plasmid.

In order to analyze whether the adaptation property holds, we write fieg-di
ential equation model describing the system, assuming the mRNA dynamics are at
the quasi-steady state. This model is given by

dR _ k1U

dt ~ 1+(L/Kg) —9R 6.3)

dL

— =Kou—-96L,

dt ko
in which kg is the constitutive rate at which Lacl is expressed Kgib the dissoci-
ation constant of Lacl from the operator sites on the lac promoter. This impleme
tation has been called the fiier in Section3.2 The steady state of the system is
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Hopf bifurcation and saddle node bifurcation (cyclic fold) of the periodic orbit
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Figure 6.9: Design chart for the relaxation oscillator. Viséain sustained oscillations past
the Hopf bifurcation point, for values efsufficiently large independently of theftérence
of time scales between the protein and the mRNA dynamics.|¥denmtice that there are
values ofv for which a stable equilibrium point and a stable orbit caesind values of
v for which two stable orbits coexist. The intervalhofalues for which two stable orbits
coexist is too small to be able to numerically sét such an interval. Thus, this interval is
not practically relevant. The valueswfor which a stable equilibrium and a stable periodic
orbit coexist is instead relevant. This situation corresfsato thehard excitationcondition
[58] and occurs for realistic values of the separation of timales between protein and
m-RNA dynamics. Therefore, this simple oscillator motidebed by a four-dimensional
model can capture the features that lead to the long termresgipn of the rhythm by
external inputs.

obtained by setting the time derivatives to zero and gives

L= @u, R= &
0 0+ kou/Kyg

From this expression, one can easily note tha€adecreases, the denominator
of the right-side expression tendskgu/Kq resulting into the steady state value
R = k;Kq4/ko, which does not depend on the inpuiHence, in this case, adaptation
would be reached. This is the case if thératy of Lacl to its operator sites is
extremely high, resulting also in a strong repression and hence a lower ofalu
R. In practice, however, the value & is non-zero, hence the adaptation is not
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Figure 6.10: (Left) The incoherent feedforward motif. (RigA possible implementation
of the incoherent feedforward motif. Here, Lacl (L) is undlee control of a constitutive
promoter in amountsl, while RFP (R) is under the control of the lac promoter, also i
amountsu. Hence RFP is also activated hyas the RFP gene is found in amountgist
like the Lacl gene.

perfect. We show in Figuré.11the behavior of the steady stateR®#s a function
of the inputu for different values oKy. Ideally, for perfect adaptation, this should
be a horizontal line.

In this study, we have modeled protein L as binding with its promoter with no
cooperativity. If L is Lacl, the cooperativity of binding i$= 4. We leave as an
exercise to show that the adaptation behavior persist in this case (se&sESE

For engineering a system with prescribed behavior, one has to be ahkeige:
the physical features so as to change the values of the parameters ofdake mo
This is often possible. For example, the bindiriyraty (1/Kq in the Hill function
model) of a transcription factor to its site on the promoter canffexied by sin-
gle or multiple base pairs substitutions. The protein decay rate can be extigas
adding degradation tags at the end of the gene expressing proteimoters that
can accept multiple input transcription factors (combinatorial promoters) teimp
ment regulation functions that take multiple inputs can be realized by combining
the operator sites of several simple promoté&&.[

Exercises

6.1 Consider the toggle switch:

Ao B __ Y
1+ (B/Ky)" 1+ (A/K)m

Here, we are going to explore the parameter space that makes the systeaswo
a toggle. To do so, answer the following questions:

arA, B

—a9B.

(&) Considem=n= 1. Determine the number and stability of the equilibria.

(b) Considem=1 andn > 1 and determine the number and stability of the equi-
libria (as other parameters change).
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Figure 6.11: Behavior of the steady state valug a$ a function of the inpui.

(c) Considem = n= 2. Determine parameter conditions @1y, a1, a; for which
the system is bistable, i.e., there are two stable steady states.

6.2 Consider the “generalized” model of the repressilator in which we mave
repressors (witlman odd number) in the ring. Explore via simulation the fact that
whenmis increased, the system oscillates for smaller values of the Hithicimant

n.

6.3 Consider the oscillator design of Stricker et &I0][ Build a four dimensional

model including mRNA concentration and protein concentration. Then ecithis

fourth order model to a second order model using the QSS approximatitmefo
MRNA dynamics. Then, investigate the following points:

(&) Use the PoincarBendixson theorem to determine under what conditions the
system in 2D admits a periodic orbit.

(b) Simulate the four dimensional system and the two dimensional system-for pa
rameter values that give oscillations and study how close the trajectories 2Dth
approximation are to those of the 4D system.

(c) Determine whether the four dimensional system has a Hopf bifurcatithe(
analytically or numerically).

6.4 Consider the feedforward circuit shown in Fig@d 1 Assume now to model
the fact that the cooperativity of binding of Lacl to its promoter is 4. The rhode
then modifies to

dL dR _ klu

A pu—er, SR au 4
gt fuob T kR 6.4)

Show that the adaptation property still holds under suitable parameter cosditio



Chapter 7

Interconnecting Components

In Chapter2 and Chapte6, we studied the behavior of simple biomolecular mod-
ules, such as oscillators, toggles, self repressing circuits, signatitreticen and
amplification systems, based on reduced order models. One naturalrstepdies

to create larger and more complex systems by composing these modules together
In this chapter, we illustrate problems that need to be overcome when inteaten

ing components and propose a number of engineering solutions basesifeadh

back principles introduced in Chapt&rSpecifically, we explain how impedance-
like effects arise at the interconnection between modules, which change the ex-
pected circuit behavior. These impedance problems appear in setlfezalengi-
neering domains, including electrical, mechanical, and hydraulic systethBasa

been largely addressed by the respective engineering communities. ¢haipier,

we explain how similar engineering solutions can be employed in biomolecular
systems to defeat impedancieets and guarantee “modular” interconnection of
circuits. In ChapteB, we further study loading of the cellular environment by syn-
thetic circuits employing the same framework developed in this chapter.

7.1 Input/Output Modeling and the Modularity Assumption

The inpufoutput modeling introduced in Chapteand further developed in Chap-

ter 3 has been employed so far to describe the behavior of various modules and
subsystems. Such an inpuitput description of a system allows to connect sys-
tems together by setting the input of a downstream system equal to the output

Uy Y1 U 12

—_— [—— —_—
Uy U2 = Y1 ’
- Y2

Figure 7.1: In the inpybutput modeling framework, systems are interconnecteddiy s
cally assigning to the input of the downstream system theevaf the output of the up-
stream system.
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y1 of the upstream system (Figurel). This interconnection framework has been
used extensively in the previous chapters.

Specifically, each node of a gene circuit has been modeled as ayounput
module taking as input the concentrations of transcription factors thalatega
geney and giving as output the concentration of protein Y expressed by gene
This is of course not the only possible choice for delimiting a module. We could
in fact let the mRNA or the RNA polymerase flowing along the DNA, called PoPS
(polymerase per second}q], play the role of input and output signals. Similarly,
each node of a signal transduction network is usually a protein covaledifimo
cation module, which takes as input a modifying enzyme (a kinase in the case of
phosphorylation) and gives as an output the modified protein.

For example, one of the models of the MAPK cascade considered in Section
2.5was obtained by setting the value of the kinase concentration of a downstrea
cycle equal to the value of the concentration of the modified protein of ttieeaps
cycle. A similar technique was employed for designing all the circuits of Chépte
For example, the repressilator model was obtained by setting the concengftio
the input transcription factor of each gene equal to the concentratioe ofutiput
transcription factor of the upstream gene.

This inpufoutput modeling framework is extremely useful because it allows
us to predict the behavior of an interconnected system based on thadrebfa
the isolated modules. For example, the location and number of steady states in
the toggle switch of Sectiof.3 were predicted by intersecting the steady state
inpuoutput characteristics of the isolated modules A and B. Similarly, the number
of steady states in the repressilator was predicted by modularly composing the
inpuoutput steady state characteristics of the three modules composing the circuit.

For this inputoutput interconnection framework to reliably predict the behavior
of connected modules, however, one must have that the/oytptit (dynamic)
behavior of a system does not change upon interconnection to angstems We
refer to the property by which a system infouttput behavior does not change upon
interconnection amodularity Of course, all the designs and modeling described
in the previous chapter assume that the modularity property holds. In tipgecha
we question this assumption and investigate when modularity holds in gene and in
signal transduction circuits.

7.2 Introduction to Retroactivity

The modularity assumption implies that when two modules are connected together,
their behavior does not change because of the interconnection. EQwaewunda-
mental systems-engineering issue that arises when interconnectingteumsys
how the process of transmitting a signal to a “downstream” compotfigtta the
dynamic state of the sending component. This issue, fiieeteof “loads” on the
output of a system, is well-understood in many engineering fields suchcisale
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Figure 7.2: The clock behavior can be destroyed by a loadhédstimber of downstream
binding sites for Apt, is increased in the load, the activator and repressor dipsdoose
their synchronization and ultimately the oscillationsaglisear.

engineering. It has often been pointed out that similar issues may arismlog-
ical systems. These questions are especially delicate in design problemsssu
those described in Chaptér

For example, consider a biomolecular clock, such as the activatorssepre
clock introduced in SectioB.5. Assume that the activator protein concentration
A(t) is now used as a means to synchronize or time some downstream systems.
From a systenjsignals point of viewA(t) becomes arnput to the second sys-
tem (Figure7.2). The terms “upstream” and “downstream” reflect the direction in
which we think of signals as travelingom the clockto the systems being syn-
chronized. However, this is only an idealization, because, as seen ireFiguthe
binding and unbinding of A to promoter sites in a downstream system competes
with the biochemical interactions that constitute the upstream clock and may there
fore disrupt the operation of the clock itself. We call this “badleet” retroactivity
to extend the notion of impedance or loading to non-electrical systems and in pa
ticular to biomolecular systems. This phenomenon, while in principle may be used
in an advantageous way from natural systems, can be deleterious wesignidg
synthetic systems.

One possible approach to avoid disrupting the behavior of the clock is to in-
troduce a gene coding for a new protein X, placed under the controeasdme
promoter as the gene for A, and using the concentration of X, which prasly
mirrors that of A, to drive the downstream system. This approach, hewvstill
has the problem that the behavior of the X concentration in time may be altered
and even disrupted by the addition of downstream systems that drain X, stsalv
see in the next section. The net result is that the downstream systenwt prep:
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Figure 7.3: A systen$ input and output signals. Theands signals denote signals origi-
nating by retroactivity upon interconnectio2.

erly timed as X does not transmit the desired signal. Methods to model arehprev
retroactivity is the subject of this chapter.

To model a system with retroactivity, we add to the iriputput modeling
framework used so far, an additional input, caledo model any change that
may occur upon interconnection with a downstream system. Thamgdels the
fact that whenevey is taken as an input to a downstream system the valye of
may change, because of the physics of the interconnection. This pheoorise
also called in the physics literature “the observie&”, implying that no phys-
ical quantity can be measured without being altered by the measuremerg.devic
Similarly, we add a signal as an additional output to model the fact that when a
system is connected downstream of another one, it will send a sigriedapsthat
will alter the dynamics of that system. More generally, we define a syStem
have internal stat&, two types of inputs, and two types of outputs: an inpuit
an output ¥’ (as before), aetroactivity to the inputr”, and aretroactivity to the
output“s’ (Figure 7.3). We will thus represent a systegnby the equations

dx
i f(x,u,s), y=h(xu,s), r=R(xU,s), (7.1)
where f, g, andR are arbitrary functions and the signalsu, s, r, andy may be
scalars or vectors. In such a formalism, we define the foptgut model of the
isolated system as the one in equati@ri without r in which we have also set
s=0.

LetS; be a system with inputg ands and with outputy; andr;. LetS; andS;
be two systems with disjoint sets of internal states. We define the intercormectio
of an upstream systef with a downstream systefy by simply settingy; = u
ands; = ry. For interconnecting two systems, we require that the two systems do
not have internal states in common.

Inset. As a simple example, which may be more familiar to an engineering audi-
ence, consider the hydraulic system shown in Figu#ie We consider a constant
input flow fp as input to the upstream tank and the pressuas its output. The
corresponding output flow is given ly4/p, in whichk is a positive constant de-
pending on the geometry of the system. The prespuseagiven by (neglecting the
atmospheric pressure for simplicitp)= ph, in which h is the height of the water
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Figure 7.4: On the left, we represent a tank system that @&é@sput the constant flovg
and gives as output the pressyrat the output pipe. On the right, we show a downstream
tank.

level in the tank ang is water density. Lef\ be the cross section of the tank, then
the tank system can be represented by the equation

d
Ad—?=pfo—pk\/ﬁ (7.2)

Hence, the steady state value of the presgusagiven by
Peq= (fo/K)?.

We now connect the output pipe of the same tank to the input pipe of a down-
stream tank shown on the right of Figutd. Let p; = phy be the pressure generated
by the downstream tank at its input and output pipes. Then, the flow autpeto
of the upstream tank will change and will now be givendf, p1) = k+/|p— p1/ if
p > p1 and byg(p, p1) = —k+/|p— p1| if p < p1. As a consequence, the time behav-
ior of the pressur@ generated at the output pipe of the upstream tank will change
to

d
AP = pfo—pg(p. py).
(7.3)

d
Ald_F:l = pg(p. P1) — oK1 v/P1.

in which A; is the cross section of the downstream tank lanigd a positive param-
eter depending on the geometry of the downstream tank. Thus, theonfmutt
response of the tank measured in isolation (equafid?)(does not stay the same
when the tank is connected through its output pipe to another tank (equa®pn (
The resulting equilibrium pressure is alsdfeient and given by

o\, K2
e () (1)
1
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Q X Downstream transcriptional component
5

Figure 7.5: The transcriptional component takes as imppitotein concentratioZ and
gives as outpuy protein concentratioX. The downstream transcriptional component takes
protein concentratioiX as its input.

7.3 Retroactivity in Gene Circuits

In the previous section, we have defined retroactivity as a genere¢épomodeling
the fact that when an upstream system is ifgoutput connected to a downstream
one, its behavior can change. In this section, we focus on gene ciroditsh@w
what form retroactivity takes and what its ndéiteets are.

Consider the transcriptional system of Figut® in the dashed box. It is an
inputoutput system that takes as input the transcription factor concentzatiod
gives as output the transcription factor concentrak@t). The activity of the pro-
moter controlling gen& depends on the amount of Z bound to the promoter. If
Z = Z(t), such an activity changes with time. To simplify notation, we denote it by
k(t). We assume here that the mRNA dynamics are at their quasi-steady st&te. Th
reader can verify that all the results hold unchanged when the mRNArdgaare
included (see exercises). We write the dynamics of X as

dX

i k(t) — 6 X, (7.4)
in which ¢ is the decay rate constant of the protein. We refer to equafiai &s
theisolated system dynamics

Now, assume that X drives a downstream transcriptional module by binding to
a promoter p with concentratign(Figure7.5). The reversible binding reaction of
X with p is given by

X+p g C
Kon
in which C is the complex protein-promoter akg andke; are the association and
dissociation rate constants of protein X to promoter site p. Since the promoter is
not subject to decay, its total concentratipg; is conserved so that we can write
p+C = pwt. Therefore, the new dynamics of X are governed by the equations

O = k)~ 0X+ [konC —on(Prot~ C)X]. (7.5)
e _ —KoffC + Kon(Prot — C) X, (7.6)

dt
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Figure 7.6: The fect of interconnection. Simulation results for the systanequations
(7.6). The solid line represent$(t) originating by equations7(4), while the dashed line
representsX(t) obtained by equation7(6). Both transient and permanent behaviors are
different. Herek(t) = 0.01(1+ sin(wt)) with w = 0.005 in the left side plots and = 0

in the right side plotskon = 10, kog = 10, 6 = 0.01, po; = 100, X(0) = 5. The choice of
protein decay rate (in mitt) corresponds to a half life of about one hour. The frequetficy o
oscillations is chosen to have a period of about 12 times ttvim half life in accordance
to what is experimentally observed in the synthetic cloci&hf

in which
S = koffC — Kon(ptot —C)X.

We refer to this system annectedsystem. The terms in the brackets represent
the signals, that is, the retroactivity to the output, while the second of equation
(7.6) describes the dynamics of the downstream system drivefi Bjren, we can
interprets as being a mass flow between the upstream and the downstream system.
When s = 0, the first of equations7(6) reduces to the dynamics of the isolated
system given in equatior7 (4).

How large is the ffect of retroactivitys on the dynamics oK and what are the
biological parameters thaffact it? We focus on the retroactivity to the outpsut
We can analyze theflect of the retroactivity to the inputon the upstream system
by simply analyzing the dynamics @f here modeled big(t), in the presence of its
binding sites p in Figure7.5in a way similar to how we analyze the dynamics of
Xin the presence of the downstream binding sites p.

The dfect of retroactivitys on the behavior oK can be very large (Figurg.6).
By looking at Figurer .6, we notice that theféect of retroactivity is to “slow down”
the dynamics oK(t) as the response time to a step input increases and the response
to a periodic signal appears attenuated and phase-shifted. We will cakolihis
more precisely in the next section.

These €fects are undesirable in a number of situations in which we would like
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an upstream system to “drive” a downstream one as is the case, fapkxavhen
a biological oscillator has to time a number of downstream processes.elfodu
the retroactivity, the output signal of the upstream process becomesat@mfor
out of phase with the output signal of the isolated system (as in Fig@jethe
coordination between the oscillator and the downstream processes wiitbé/o
next provide a procedure to obtain an operative quantification offfeetef the
retroactivity on the dynamics of the upstream system.

Quantification of the retroactivity to the output

In this section, we provide a general approach to quantify the retragdvthe
output. To do so, we quantify theftBrence between the dynamicsXoin the iso-

lated system.4) and the dynamics o in the connected systeni.g) by estab-
lishing conditions on the biological parameters that make the two dynamics close
to each other. This is achieved by exploiting thffatience of time scales between
the protein production and decay processes and its binding and unbprdicess

to the promoter p. By virtue of this separation of time scales, we can approximate
system {.6) by a one dimensional system describing the evolutioxk of the slow
manifold (see SectioB8.6).

Consider again the full system in equatiorrsg], in which the binding and
unbinding dynamics are much faster than protein production and decaystha
Koft» Kon > K(t),6 and defineKy = kog/Kon @s before. Even if the second equation
goes to equilibrium very fast compared to the first one, the above systeon iis
standard singular perturbation form. In fact, whiteclearly is a fast variableX
is neither fast nor slow since itsftirential equation displays both fast and slow
terms. To explicitly model the éfierence of time scales, we introduce a parameter
which we define as = §/ko. Sincekqg > §, we also have that <« 1. Substituting
kot = 6/€, kon = 6/(eKg), and lettingy = X + C (thetotal protein concentration), we
obtain the system in standard singular perturbation form

dy dC

R -KO-00-0). € ==dCH i (pa-CNy-C)  (7.7])

in whichy is the slow variable. The reader can check as an exercise that the slow
manifold of system7.7) is locally exponentially stable (see Exercises).

We can obtain an approximation of the dynamicXoh the limit in whiche is
very small, by setting = 0. This leads to

ProtX
X+Ky

Sincedy/dt = dX/dt+ dC/dt, we have thatly/dt = dX/dt+ (dy/dX)dX/dt. This
along withdy/dt = k(t) —6X lead to

_5C 4 Ki(pmt_c)x = 0— C = y(X) with y(X) =
d

dX 1
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The diference between the dynamics in equatid®)((the connected system
after a fast transient) and the dynamics in equatiad) ((the isolated system) is
zero when the terrﬂ% in equation {.8) is zero. We thus consider the fac%‘xﬁ
as a guantification of the retroactivig/after a fast transient in the approximation
in which e ~ 0. We can also interpret the fact%% as a percentage variation of
the dynamics of the connected system with respect to the dynamics of thedsolate
system at the quasi steady state. We next determine the physical measiro af
factor by calculating a more useful expression that is a function of kehbimical
parameters.

By using the implicit function theorem, one can compute the following expres-
sion fordy(X)/dX:

dy(X) _  Pot/Ka  _.
aX ~ OKgr1E R(X). (7.9)

The retroactivity measurR is low basically whenever the ratjmq/Kqg, which can

be seen as arttective load, is low. This is the case if thifiaity of the binding sites

p is small Kq large) or if py is low. Also, the retroactivity measure is dependent
on X in a nonlinear fashion and it is such that it is maximal when X is the smallest.
The expression oR(X) provides an operative quantification of the retroactivity:
such an expression can in fact be evaluated once the dissociationntafstao p

is known, the concentration of the binding sitgg is known, andX is also known.

Summarizing, the modularity assumption introduced in Sectidmolds only
when the value oR(X) is small enough. As a consequence, the design of a simple
circuit can assume modularity if the interconnections among the composing mod-
ules can be designed so that the valu&@X) is low. From a design point of view,
low retroactivity can be obtained by either choosing Idiwity binding sites p or
making sure that the amounts of p is not too high. This can be guaranteéacby p
ing the promoter sites p on low copy number plasmids or even on the chromosome
(with copy number equal to 1). High copy number plasmids are expectedittoea
non-negligible retroactivity féects on X.

However, in the presence of very lovfiaity andor very low amount of pro-
moter sites, the amount of complex C will be very low. As a consequence, the
amplitude of the transmitted signal to downstream may be also very small. Hence,
there will be a design compromise between guaranteeingfiaisatly high signal
while minimizing retroactivity. A better approach is to design insulation devices
(as opposed to designing the interconnection for low retroactivity) ftebgys-
tems from retroactivity as explained later in the chapter.

Characterizing the effects of retroactivity

How do we explain the amplitude attenuation and phase shift due to retroactiv-
ity observed in FigureZ.6? In order to answer this question, we can linearize
the system about its steady state and determinefiBetef retroactivity on the
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frequency response. Let the input k@) = k+ Agsin(wt) and letX = k/s and

C = potX/(X+ Kg) be the equilibrium values correspondingktdrhe isolated sys-
tem is already linear, so there is no need to perform linearization and ttséeran
function fromk to X is given by

Gy(s) =

For the connected system, denote the displacements with respect to thestigady

(k,X,C) by k=k—-k, x=X- X, andc = C - C. Then, the linearized dynamics are
given by

S+6°

% = k(t) - 5x— ix(ptot—C) + - Xc+ 6c
3—: = E%dx(ptot—C) - EXC— gc
Lettingy := c+ X, these can be taken to standard singular perturbation form:
5 = kO-s(y-0).
e a0

Settinge = 0, gives the expression of the slow manlfolobasx(ptot—C)/(X/Kd +

1) =: ¥(x). Using the expression @, the fact thatix/dt+dc/dt = dy/dt = k(t) — 6x

and thatdc/dt = (dy/dx)dx/dt, we finally obtain the expression of tlxedynamics
on the slow manifold as

1
1+ (Prot/ Ka)/(X/Kg + 1)?°
DenotingR:= (prot/Kd)/(X/Kq + 1)2, we obtain the transfer function frokto x of
the approximated connected system linearization as

c 1 1
Gz = S =%
1+Rs+6/(1+R)

dx
P (k(t) —6x)

Hence, we have the following result for the frequency response amgpliand
phase shift:
1

1
\/ﬁ ¢Zk(w)—tan (—0.)/6)

M 'Zk(w) =

MZ(w) =  $5) = tam (-w(1+R)/9),

1+R \J? +82/(1+R?

from which one obtains thaw}, (0) = MZ,(0) and, since&’ > 0, the bandwidth of
the connected system is lower than that of the isolated system. Also, thesplifase
of the connected system will be larger than that of the isolated system.
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Figure 7.7: Covalent modification cycle (in the box) withdimwvnstream system.

7.4 Retroactivity in Signaling Systems

Signaling systems are circuits that take external stimuli and through a segoken
biolmolecular reactions transform them to useful signals that establish élsv c
respond to their environment. These systems are usually composed t#ntova
modification cycles (phosphorylation, methylation, urydylilation, etc.) cotatec

in cascade fashion, in which each cycle has multiple downstream targesist(or
strates). An example is that of the MAPK cascade, which we have anaiyzed
Section2.5. Since covalent modification cycles always have downstream targets,
such as DNA binding sites or other substrates, it is particularly important-to un
derstand whether and how retroactivity from these downstream systéausthe
response of the upstream cycles to input stimulation. In this section, wetstigdy
guestion both for the steady state and dynamic response of a covalenicatmtifi
cycle to its input (refer to Figuré.?).

Steady state effects of retroactivity

One important characteristic of signaling systems and, in particular, oferdva
modification cycles, is the steady state characteristics (also called dosesexp
This describes the steady state output value in response to a constastimpila-
tion. For a single covalent modification cycle, this has been extensiveliedtad

a function of important cycle parameters, such as the Michaelis-Mentetacds
and the total amount of protein. In particular, it was found that when thbadiis-
Menten constants are fficiently small compared to the total protein amount, the
cycle characteristic becomes ultrasensitive, a condition called zerowtdesen-
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sitivity (Section2.4).

However, when the cycle is interconnected to its downstream targets, #mis ch
acteristic may change shape. In order to understand how this may chaage,
rewrite the reaction rates and correspondingjedential equation model for the
covalent modification cycle incorporating the binding 6ftd its downstream tar-
gets. Referring to Figuré.7, we have the following reactions:

a k a k
Z+X=C,5X+Z,  X'+Y=0C,5X+Y,
dl d2

to which we add the binding reaction of X* with its substrates S:

Kon
X*+S=C,
Kot
in which C is the complex of X* with S. In addition to this, we have the conserva-
tion lawsXiot = X* + X+ C1+Co+C, Z+Cq = Zior, andY + C5 = Yiot.
The rate equations governing the system are given by

% = a1XZ— (d1 + kl)Cl

dx: .

at = —a XY +dCo +kiC1 —KkonS X+ kotC
% = a2X*Y - (d2 + kz)CZ

dc .

a = KonX*S — kot C.

The inpufoutput characteristics are found by solving this system for the equilib-
rium. In particular, by settindC; /dt = 0, dC,/dt = 0, using thaZ = Z;,;— C1 and
thatY = Yot — Co, we obtain the familiar expressions for the complexes:

Ztotx Ytotx* . dl + kl dz + k2
= = h K = K = .
1=K+ X C Kyt X wit 1 a and 2 2
By settingd X*/dt+ dC,/dt+dC/dt = 0, we obtairk;C, = koC», which leads to
X X*
Vl = Vz—, Vl = klztot and V2 = kZYtot- (7.10)

K1+ X Ko + X*

By assuming that the substrafg is in excess compared to the enzymes, we have
thatCy,Cy <« Xiot SO thatX ~ X0t — X* = C, in which (from settingdC/dt=0) C =
X*S/Kg with Kg = Kog/Kon, leading toX ~ Xy — X*(1+ S/Kg). Calling A = S/Ky,
equation 7.10 finally leads to

vi_ X (g + (e -X)

Vo (K2+X*)(%—X*) .

(7.11)
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Figure 7.8: The addition of downstream target sites makeanpet/output characteristic
more linear-like, that is, retroactivity makes a switdkeliresponse into a more graded
response.

Here, we can interpret as an €ective load, which increases with the amount of
targets of X but also with the fiinity of these targets (Kg). The ratioV1/V, =y
is a normalized input stimulation as it linearly increases with the idgt

We are interested in how the shape of the steady state cuixe ad function
of y changes when thefective loadl is changed. As seen in Sectigr, a way to
characterize the shape of the steady state characteristic is to calculatepthreses

codficient
Yoo

R= .
Y10

In the case of the current system, we have that the maximal vakreaiftained
asy — oo is given byXo/(1+ 4). Hence, from equatiorv(11), we have that

(K1+0.1)0.9 (K1 +0.9)0.1
Yoo oA+ 0+0901 07 Ky(1+)+01)09’
— . Kg Ko
Ky = - Ky = -
so that _ _
R- 81 (51+O.1)(K2(1+il)+0.1‘
(K2(1+2)+0.9)(K1+0.9)

This expression clearly indicates that the néee of the load is to increase the
Michaelis-Menten constarit, of the backward enzymatic reaction.

One can check th& is a monotonically increasing function &f In particular,
asJ increases, the value &ftends to 811 + 0.1)/(K2+0.9), which, in turn, tends
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to 81 forKy, Ko — co. When = 0, we recover the results of Secti2n, according
to which R approaches 81 (Michaelis-Menten type of responseKioK; large,
while R decreases for decreasing valueKefKy, corresponding to an ultrasensi-
tive response. Independently of the valueKgfand K>, the addition of the load
makes any characteristic more linear-like (see Figu8 This finding has been
experimentally confirmed employing signal transduction circuits reconstitated
vitro [95].

We can also study the behavior of the point of half maximal induction

Ki+05

Yoo = R+ )+ 05’

to find that asd increasesysg decreases. That is, as more downstream load is
applied, a smaller stimulus is required to obtain a significant response oftfng ou
(see exercises).

Dynamic effects of retroactivity

In order to understand the dynamitexts of retroactivity on the signaling module,
we seek a one dimensional approximation of Xfielynamics, which can be easily
analyzed. To do so, we exploit time scale separation and apply singularrijzion
analysis.

Specifically, we have that;, d;, kon, Ko > ki1,ko, SO we can choose as a small
parametek = ki /Ko and slow variablg = X* + C + C,. By settinge = 0, we obtain
thatCy = ZiotX/ (K1 + X), C2 = YiorX* /(K2 + X*) =2 y(X*), andC = AX*, in which
Ziot IS NOwW a time-varying signal. Hence, the dynamics of the slow variplole
the slow manifold is given by

dy _ | Za®X X'
dt ~ TKi+X 2N LKy

Usingdy/dt=dX*/dt+dC/dt+dC,/dt, dC/dt=Ad X*/dt, dCy/dt=dy/0X*d X* /dl,
and the conservation laX = X — X*(1 + 1), we finally obtain the approximated
X* dynamics as

dx 1 ( Ziot(1) (Xtot — X*(1+ 1)) X (7.12)

dt 1+2\ TKi+ Xeot= X1+ ) 2%+ Kp)

where we have assumed that that/K, < S/Kgy, so that the fect of the binding
dynamics of X* with Y (modeled byly/dX*) is negligible with respect td. The
reader can verify this derivation as an exercise (see exercises).

From this expression, one can understand immediatelyfieetef the loadt
on the rise time and decay time in response to extreme input stimuli. For the decay
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Figure 7.9: Behavior of the bandwidth as a function of thellta different values of the
Michaelis-Menten constant;, Ko. HereXiot = 1.

time, one has to assume an initial conditi¥h(0) # 0 andZ(t) = O for all t. In
this case, we have that
axe K X* 1
dt PN K1
from which, sincel > 0, it is apparent that the transient will be slower and hence

that the system will have an increased decay time due to retroactivity. Fos¢he
time, one can assun¥&y; ~ co andX*(0) = 0. Hence, we have that

dx’ _( Ziot() ot = X" (14 2))

(+4) dt K K1+ (Xeot = X*(1+2) )

which is the same expression for the isolated system in wKiclis scaled by
(1+2). So, the rise time is nottiected.

In order to understand how the bandwidth of the systenffexted by retroac-
tivity, we considerZin(t) = Z + Agsin(wt). Let X be the equilibrium ofX* cor-
responding taZ and denote the displacemerts Zi,i—Z and x = X* — X. The
linearized dynamics are given by

dx
i —a(A)x+ b)),
in which
_ K1(1+/1) Ko
A= 1+ﬂ( 2K O XA D2 O o X)Z)
and

kl( Xiot — X(1+ ) )

o) =177 K1+ (Xeot— X(1+2))
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so that the bandwidth of the system is givenday= a(A).

Figure7.9shows the behavior of the bandwidth as a function of the load. When
the isolated system static characteristics are linear-KleK> > Xo), the band-
width monotonically decreases with the load. Hence applying any load desrea
system bandwidth. When the isolated system static characteristics arendtrase
tive (K1, Ko < Xiot), the bandwidth of the connected system can be larger than that
of the isolated system for fiiciently large amounts of loads. In these conditions,
one should expect that the response of the connected system beesteesHan
that of the isolated system.

7.5 Insulation Devices: Retroactivity Attenuation

As explained earlier, it is not always possible or advantageous to dissiglown-
stream system so that it applies low retroactivity. This is because the tteams
system may have already been designed and optimized for other purfidisster
approach, in analogy to what is performed in electrical circuits, is to desug:
vice to be placed between the upstream system (the oscillator, for examgblea
downstream load so that the device output is not changed by the loadeadd-th
vice does not fiiect the behavior of the upstream system. That is, the output of the
device should follow the prescribed behavior independently of any Igagiplied
by a downstream system.

Specifically, consider a systegsuch as the one shown in Figutthat takes
u as input and giveg as output. We would like to design such a system so that

(a) the retroactivity to the input is very small;

(b) the dfect of the retroactivitys to the output on the internal dynamics of the
system is very small independently sitself.

Such a system is said to enjoy timsulationproperty and will be called an insu-
lation device. Indeed, such a system will ndfieat an upstream system because
r ~ 0 and it will keep the same output signalindependentlpf any connected
downstream system.

Retroactivity to the input

Equation 7.9 quantifies the #ect of retroactivity on the dynamics &fas a func-
tion of biochemical parameters that characterize the interconnection nm&ohan
with a downstream system. These parameters areflimtyaof the binding site
1/Kgq, the total concentration of such binding sfig;, and the level of the signal
X(t). Therefore, to reduce the retroactivity, we can choose parameteinstisat
(7.9 is small. A sifficient condition is to choosKy large (low dfinity) and piot
small, for example. Having small value pg: andor low afinity implies that there
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Figure 7.10: Diagram (a) shows the basic feedfmmiplification mechanism by which
amplifiers attenuate thefect of the retroactivity to the outpt Diagram (b) shows an
alternative representation of the same mechanism of diageg which will be employed
to design biological insulation devices.

is a small “flow” of protein X toward its target sites. Thus, we can say thatva lo
retroactivity to the input is obtained when the “input flow” to the system is small.

Attenuation of retroactivity to the output: Principle 1

The basic mechanism for retroactivity attenuation is based on the corickgtL-
bance attenuation presented in Sec8dh In its simplest form, it can be illustrated
by diagram (a) of Figur&.1Q, in which the retroactivity to the outp@tplays the
same role as an additive disturbance. For large dainbe dtect of the retroac-
tivity sto the output is negligible as the following simple computation shows. The
outputy is given by

y=G(u-Ky)+s,
which leads to
a G S
~YT7kG T 17 KG

As G grows,y tends tau/K, which is independent of the retroactivity

Therefore, a central enabler to attenuate the retroactiffiégieat the output of
a component is to (1) amplify the input of the component through a large gdin a
(2) apply a large negative output feedback. The inset illustrates thesgledea in
the context of a simple hydraulic system.

y

Inset. Consider the academic hydraulic example consisting of two connected tanks
shown in Figurer.11 The objective is to attenuate th€et of the pressure applied
from the downstream tank to the upstream tank, so that the output preddhe
upstream system does not change when the downstream tank is caniéetet

the input flowfy be amplified by a large fact@. Also, we consider a large pipe in

the upstream tank with output flo@ +/p, with G’ > k andG’ > k;. Let p be the
pressure at the output pipe of the upstream tankmrttie pressure at the bottom

of the downstream tank. One can verify that the only equilibrium value fer th
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Figure 7.11: We amplify the input flowy through a large gai® and we apply a large
negative feedback by employing a large output pipe with aiflpw G’ /p.

pressurep at the output pipe of the upstream tank is obtainedpforp; and it is

given by
2

Gf
G’ + (Kky)/ A[K2 +K2

If we let G’ be suficiently larger thark; andk and we letG’ = KG for some
positiveK, then forG sufficiently largepeq = (fo/K)?, which does not depend on
the presence of the downstream system. In fact, it is the same as the equilibriu
value of the isolated upstream system described by

d /
Ad—lto =pGfo—pG Vp-pk+/p
for G suficiently large and foG” = KG.

peq =

¢

Going back to the transcriptional example, consider the approximated dysiamic
of equation 7.8) for X. Let us thus assume that we can apply a @gato the input
k(t) and a negative feedback gaBi to X with G’ = KG. This leads to the new
differential equation for the connected syst&n8)given by

dd_)t< = (Gk(t) - (G" +6)X) (1 -d(t)), (7.13)
in which we have defined(t) = (dy/dX)/(1+ dy/dX). Sinced(t) < 1, lettingG’ =
KG, we can verify (see exercises) that@agrowsX(t) tends tdk(t)/K for both the
connected system in the form of equati@nl@ and the isolated system

?:I_)t( =Gk(t) - (G"+o)X. (7.14)
That is, the solution¥(t) of the connected and isolated system tend to each other
asG increases. As a consequence, the presence of the disturbancitjexiti not
significantly d@fect the time behavior of(t). Sinced(t) is a measure of retroactivity,
its effect on the behavior oX(t) is attenuated by employing large ga@sandG’.
The next questions we address is how we can implement such amplification and

feedback gains in a biomolecular system.
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Figure 7.12: In this design, the input Z is amplifed throughkti@ng promoter ¢ The
negative feedback on the output X is obtained by enhancinddgradation through the
protease Y.

Biomolecular realizations of Principle 1

In the previous section, we have proposed a general principle to aitethea
retroactivity to the output. Such a principle consists of a large amplification of
the input and a large negative output feedback. In this section, wendetetwo
possible biomolecular implementations to obtain a large amplification gain to the
input Z of the insulation component and a large negative feedback on the output
X. Both mechanisms realize the negative feedback through enhanced albgn.

The first design realizes amplification through transcriptional activatibiigwhe
second design through phosphorylation.

Design 1: Amplification through transcriptional activation

In this design, we obtain a large amplification of the input sigf(® by having
promoter g (to which Z binds) be a strong, non-leaky promoter. The negative
feedback mechanism on X relies on enhanced degradation of X. Sinaaubts
be large, one possible way to obtain an enhanced degradation for X isécaha
protease, called Y, be expressed by a strong constitutive promotepraiease Y
will cause a degradation rate for X, which is larger if Y is more abundanten th
system. This design is schematically shown in Figlie2
In order to investigate whether such a design realizes a large amplification an
a large negative feedback otias needed, we analyze the model for the system
of Figure7.12 The reaction of the protease Y with protein X is modeled as the
two-step reaction
1 B
X+Y=W->=Y,
2
which can be found in Sectidh3.
The inpufoutput system model of the insulation component that tZkas an
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input and givesX as an output is given by the following equations
dz

5 - k(t) = 6Z+ k- Zp— K, Z(potor—Zp)] (7.15)
dz,
gt K+ Z(Po,tot — Zp) —K-Zp (7.16)
%%-: GZp— 61mx (7.17)
aw = mXY-1pW-pW (7.18)
dt
% = —-mYX+BW+aG—yY +mW (7.19)
dX
gt = Y™ mY X mW = 62X+ [korC —konX(Pot = C)] - (7.20)
dC
rra ~KoftC + KonX(pPtot — C), (7.21)

in which we have assumed that the expression of gene z is controlled bgnater

with activity k(t). In this system, we have denotedlkyandk_ the association and
dissociation rates of Z with its promoter sitg ip total concentrationg o is the

total concentration of the promotey.jAlso, Z, denotes the complex of Z with such

a promoter sitemy is the concentration of mMRNA of XC is the concentration of

X bound to the downstream binding sites with total concentratigmandy is the
decay rate of the protease Y. The promoter controlling gene y has stre@gtor

some constant, and it has the same order of magnitude strength as the promoter
controllingx.

The terms in the square brackets in equatibri® represent the retroactivity
r to the input of the insulation component in Figatd2 The terms in the square
brackets in equatior7(20 represent the retroactivityto the output of the insula-
tion component of Figur@.12 The dynamics of equation3.5—(7.21) without
s (the elements in the box in equationZ0) describe the dynamics of with no
downstream system.

Equations .19 and (7.16 simply determine the signdl(t) that is the input to
equations 1.17)—(7.23). For the discussion regarding the attenuation of tiiece
of s, itis not relevant what the specific form of sigrzg(t) is. Let thenZy(t) be any
bounded signal(t). Since equation/.17) takesv(t) as an input, we will have that
my = Gv(t), for a suitable signal(t). Let us assume for the sake of simplifying the
analysis that the protease reaction is a one step reaction, that is,

x+Y 5.

Therefore, equatiorn/(19 simplifies to

dy
i —Y
at aG—y
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Figure 7.13: Design 1: results forftBrent gainss. In all plots, k(t) = 0.01(1+ sin(wt)),
Prot = 100, kot = kon = 10, 6 = 0.01, andw = 0.005. The parameter values aig= 0.01,
Potot =1, 71 =m2=B8=y=0.01,k =200k, =10,0=0.1,62=0.1,v=0.1, andG =
100010010, 1. The retroactivity to the output is not well attenuatedvalues of the gain
G =1 and the attenuation capability begins to worserFer 10.

and equationq.20 simplifies to

(0):4
Pl = BY X= 62X + KotC — KonX(ptot — C).

If we consider the protease to be at its equilibrium, we haveX(idt oG/y.
As a consequence, thedynamics become

dx _
G vGV(t) — (BaG/y + 62) X + KotC — konX(Prot — C),

with C determined by equatior7 21). By using the same singular perturbation
argument employed in the previous section, we obtain that the dynamicsvidif
be (after a fast transient) approximatively given by

C(lj_i( = (vGV(t) — (BaG/y + 62)X)(1 - d(1)), (7.22)
in which 0< d(t) < 1 is the retroactivity measure. Then, @sncreasesX(t) be-
comes closer to the solution of the isolated system

(jj_)t( =vGV(t) — (BaG/y + 52) X,

as explained in the previous section.
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We now turn to the question of minimizing the retroactivity to the inpbte-
cause its ffect can alter the input signdl(t). In order to decrease we guar-
antee that the retroactivity measure given in equati@8) (n which we substi-
tute Z in place of X and potot in place of pyt, is small. This is seen to be true
if (Kg +Z)2/(po,t0th) is very large, in which 1Kq = k, /k_ is the dfinity of the
binding site p to Z. Since after a short transie, = (pototZ)/(Ka + Z), for Z,
not to be a distorted version df it is enough to ask tha{y > Z. This, combined
with the requirement thatk( +2)?/(po1otKa) is very large, leads to the require-
mentpo ot/ Kg < 1. Summarizing, for not having distortiotftects betwee and
Z, and small retroactivity, we need that

K_d > Z andpo,tot/ K_d < 1. (7.23)

Simulation results are presented for the insulation system of equafidris
(7.21) as the mathematical analysis of such a system is only valid under the ap-
proximation that the protease reaction is a one step reaction. In all simulatiens,
consider protein decay rates to h@Tmin to obtain a protein half life of about
one hour. We consider always a periodic forckit) = 0.01(1+ sin(wt)), in which
we assume that such a periodic signal has been generated by a syrithegjical
oscillator. Therefore, the oscillating signals are chosen to have a peaiad #bout
12 times the protein half life in accordance to what is experimentally observed in
the synthetic clock off].

For large gains@ = 1000,G = 100), the performance considerably improves
compared to the case in whichwas generated by a plain transcriptional com-
ponent accepting as an input (Figur&.6). For lower gainsG = 10,G = 1), the
performance starts to degrade f8r= 10 and becomes not acceptable @®eE 1
(Figure 7.13. Since we can views as the number of transcripts produced per
unit time (one minute) per complex of protein Z bound to promotgrvalues
G =100,1000 may be diicult to realizein vivo, while the valuess = 10,1 could
be more easily realized. The values of the parameters chosen in Figirare
such thatky > Z and pott < Kg. This is enough to guarantee that there is small
retroactivityr to the input of the insulation device independently of the value of
the gainG, according to relations7(23. The poorer performance of the device
for G = 1 is therefore entirely due to poor attenuation of the retroactiity the
output.

To obtain a large gain, we need to guarantee high expression of theg@otea
This may be diicult to do because in general proteases are not specific and target
for degradations all proteins. Hence, global undesitféeces on the cell behavior
may result. The next design avoids this problem by using dephosphonyéstithe
mechanism for enhanced degradation.
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Insulation device
Z .' :

Figure 7.14: In this design, negative feedback occurs tiir@phosphatase Y that converts
the active form X* back to its inactive forrK. Amplification occurs through Z activating
the phosphorylation of X.

Design 2: Amplification through phosphorylation

In this design, the amplification gafa of Z is obtained by having activate the
phosphorylation of a protein X, which is available in the system in abunddiheg
is, Z is a kinase for a protein X. The negative feedback ion X* is obtained
by having a phosphatase Y activate the dephosphorylation of actiteirpis .
Protein Y is also available in abundance in the system. This mechanism is depicted
in Figure7.14 A similar design has been proposed Bg,[84], in which a MAPK
cascade plus a negative feedback loop that spans the length of the kbisede
is considered as a feedback amplifier. The design presented here isrsasle
involves only one phosphorylation cycle and does not require any éxglad-
back loop. In fact, a strong negative feedback can be realized bctiom &f the
phosphatase that converts the active protein forrback to its inactive form X.

We consider a simplified model for the phosphorylation and dephosplioryla
processes, which will help in obtaining a conceptual understanding af relac-
tions realize the desired gai@andG’. The one step model that we consider is the
same as considered in Chapter 2 (Exercise 2.6):

Z+X 5 7z0x,

and
Y+ X2y X

We assume that there is an abundance of protein X and of phosphatag@er in
system and that these quantities are conserved. The conservation\E#SXg
X*+C = Xiot, in Which X is the inactive protein, Xis the phosphorylated protein
that binds to the downstream sites p, and C is the complex of the phosphdrylate
protein X' bound to the promoter p. Th& dynamics can be described by the first
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equation in the following model

dx* X* C
L klxtotza)(l— - [ED‘ KaY XC + [kotiC — konX*(Pot—C)]  (7.24)
% - ki +onX (Pt —C). (7.25)

The terms in the square brackets represent the retroacsititythe output of the
insulation system of Figuré.14 For a weakly activated pathwagd], X* < Xot.
Also, if we assume that the concentration of total X is large compared to the con
centration of the downstream binding sites, thaddg; > prot, €quation 7.24) is
approximatively equal to

dax* .
a - K XtotZ(t) — koY X' + Kot C — KonX*(Ptot — C).

Let G = ki Xt and G’ = koY. Exploiting again the dierence of time scales
between theX* dynamics and th€ dynamics, after a fast initial transient the dy-
namics ofX* can be well approximated by

df — (GZ(t) - G'X*)(1—d(1)), (7.26)

in which O< d(t) < 1 is the retroactivity contribution. Therefore, f6randG’ large
enough X*(t) tends to the solutioX*(t) of the isolated systeﬁ?ﬁ =GZ(t) -G’ X",
as explained before. As a consequence, ffexeof the retroactivity to the output
s is attenuated by increasinig Xy andk,Y enough. That is, to obtain large in-
put and feedback gains, one should have large phosphorytigigmosphorylation
rates anfbr a large amount of protein X and phosphatase Y in the system. This
reveals that the values of the phosphorylagii@phosphorylation rates cover an
important role toward the realization of the insulation property of the module of
Figure7.14

From a practical point of view, theffective rates can be increased by increas-
ing the total amounts of X and Y, which can be done by placing the corregmpn
genes under the control of inducible promoters. Experiments performadova-
lent modification cycle reconstituted vitro, showed that increasing these protein
amounts is anféective means to attain insulatiodl].

Attenuation of retroactivity to the output: Principle 2

In this section, we present a more general mechanism for insulation, tiatirs
spired by the design of electrical circuits and is naturally implemented by the stru
ture of biomolecular systems. For this purpose, consider Figl&® We illustrate
how the system can achieve insulation frewhenever its internal dynamics are
much faster compared to the dynamics of the inpufo this end, we consider the
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Figure 7.15: Interconnection of a device with inpLand outpuix to a downstream system
with internal statey applying retroactivitys.

following simple structure in which (for simplicity) we assume that all variables
are scalar:

du

a - fO(U, t) + r(u7 X)

dx —

i Gfi(x,u)+GgXx,u) (7.27)
dy <

HereG > 1 models the fact that the internal dynamics of the device is much faster
than that of the input; similarlyG > 1 models the fact that the dynamics of the
interconnection with downstream systems is also fast (as it is usually the case
being it due to binding mechanisms). The claim that we make about this system is
the following.

If G> 1 and the Jacobian df has eigenvalues with negative real part,
thenx(t) is not dfected by retroactivitys after a short initial transient,
independently of the value @&.

This result states that independently of the characteristics of the doamstre
system, the device can be tuned (by makhtarge enough) so to function as an
insulation device. To clarify why this would be the case, it is useful to rewite
above system in standard singular perturbation form by emplayirgl/G as a
small parameter ankl:= x+y as the slow variable. Hence, it can be re-written as

du
i fo(u,t) +r(u, X)
(6 ) o
S f1(X-y,u) (7.28)
day <~ o
Fri GLX-Y,y).

Sinced f1/0X has eigenvalues with negative real part, one can apply standard singu-
lar perturbation to show that after a very fast transient, the trajectoeesttaacted
to the slow manifold given byf1(X—y,u) = 0. This is locally given byx = y(u)
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solving f1(x,u) = 0. Hence, on the slow manifold we have tié) = y(u(t)), which
is independent of the downstream system, that is, it is fietted by retroactivity.

The same result holds for a more general class of systems in which thielearia
u, X,y are vectors:

du

a - fO(U, t) + r(u’ X)

dx —

i Gfi(x,u) + GAX,u) (7.29)
= GByxy)

dt ’

as long as there are matricBeandM such thaifl A+ MB =0 andT is invertible. In
fact, one can take the system to new coordinat&sy with X = T X+ My, in which
the system will have the fornv(28).

Biomolecular realizations of Principle 2

We next consider possible biomolecular structures that realize Princigmee

this principle is based on a fast time scale of the device dynamics when caimpare
to that of the device input, we focus on signaling systems, which are known to
evolve on faster time scales than those of protein production and decay.

Design 1: Implementation through phosphorylation

We consider a more complex model for the phosphorylation and dephy$gtiom
reactions in a phosphorylation cycle and perform a parametric analysghiaht
the roles of the various parameters for attaining the insulation propertieartio-
ular, we consider a two-step reaction model as seen in Sezdbrccording to
this model, we have the following two reactions for phosphorylation andateph
phorylation:

a ky " &2 ko
X+Z=C—>X"+2Z, Y+X*=C;— X+Y. (7.30)
dl d2

Additionally, we have the conservation equationig = Y + Cp, Xiot = X+ X* +
C1+C2+C, because proteins X and Y are not degraded. Therefore, fileeatfitial
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eguations modeling the insulation system of Figiwktbecome

dz X Ci G [ C ]

— =k(t)-6Z|-a1Z 1-—————~= —[— |+ (dy+kq)C 7.31
at () 1Z Xiot( Yo X X | X )+ (di+k)Cq| (7.31)
dc, X* C G [ C }
T (4 ke)Cy+ A Z Kol o — = 2 [ 7.32
at (d1 +k1)C1 +a1Z Xor( Yo X X | X ) (7.32)
dc . c
“2 = (ko + 0p)Cp + 3 YiorX* (1= —=2) (7.33)
dt Yiot
dax* % C2 *

e kiC1+ dbCo —apYiotX (1_ﬁ)+[koﬂfc—konx (Pt —C)] (7.34)

(0]
dC
at = —koffC + KonX* (Ptot — C), (7.35)

in which the expression of gene z is controlled by a promoter with acti(tly
The terms in the large square bracket in equati81) represent the retroactivity
r to the input, while the terms in the square brackets of equatiBg(@nd .34
represent the retroactivityto the output.

We assume thai,; > pyot SO that in equations(31) and (7.32 we can neglect
the termC/ X becauseC < pyt. Also, phosphorylation and dephosphorylation
reactions in equationg (30 can occur at a much faster rate than protein production
and decay processes (see Chapter 2). Chooga@nd Yior sufficiently large, let
G = kg Xiot/6 andG = kog/8, then we can re-write the system with, = kog/Kq,
b1 = a1 Xt/ (6G), a1 = a2 Yiot/(6G), b2 = d1/(6G), az = d2/(6G), ¢; = ki/(6G), and
kon = Gd/Kyg. Lettingz = Z+ C; we obtain the system in the form

dz
rria k(t) - 6(z—Cy)
dCy ( ( X C C ))
— =G|-0(bp+¢1)C1+b(z-C)|1l- ————-——
dt (b2 +€1)C1 +0ba( 1) Xiot  Xtot Xtot)
9% _g —6(Co+a)Co + 6a1 X" 1- &2 (7.36)
dt Yiot
X ~
d =G 6C1C1+5a2C2—5a1X* :|.—2 +G(6C—6/Kd(ptot—C)X*)
dt Yot
dC —
i ~G(6C - 6/Ka(prot — C)X),

which is in the form of system7(29 with u =z, x = (C1,Cp, X*), andy =C, in
which one can choosg as the 3 by 3 identity matrix anil = (0 0 1). Hence,

this system, folG suficiently larger than 1 attenuates thigeet of the retroactiv-

ity to the outputs. For G to be large, one has to require thak is suficiently

large and thad, Y is also comparatively large. These are the same design require-
ments obtained in the previous section based on the one-step reaction ffrtbeel o
enzymatic reactions.
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In order to understand théfect of retroactivity to the input on thé dynamics,
one can perform the following calculations. Lettikg, = (d; + k;)/a1 and Ky, =
(d2+kz)/az represent the Michaelis-Menten constants of the forward and badkwar
enzymatic reactions and settiag O in the third and fourth equations af.36) the
following relationships can be obtained:

X* Y'[Oth X Y[O'[
* Kmkl * Km
Ci=F(X)=———, Co=F(X")=———. 7.37
1= F1(X") xR & 2(X%) XK. (7.37)
Using expressions/(37) in the second of equation$.86) with € = 0 leads to

b,Z X* Fp(X*
Fa () (bp + &1+ 22y = byz(1— = P2y (7.38)

Xtot Xiot Kot

Assuming for simplicity thaX* < Km, we obtain thaF;(X*) =~ X*Yietko/Kmki
and thatF>(X*) ~ X*/KmYior. As a consequence of these simplifications, equation
(7.38 leads to
b;Z

X" = = m(2).
FZ2(1+ Yoot/ K+ (Yeotko) / (Kinka)) + 122 (b + C1)

In order not to have distortion fro to X*, we require that

Yior2 ﬁm
7« —Hakn__ (7.39)

1 + Yot Ytot + Etot ti
so thatm(Z) ~ ZXtotK_mkl/Ytothkz and therefore we have a linear relationship be-
tweenX* andZ with gain fromZ to X* given betotIkal/Ytothkz. In order not
to have attenuation frord to X* we require that the gain is greater than or equal to
one, that is, _
Xtothkl
Ytothkz

Requirements7.39, (7.40 andX* < Ky, are enough to guarantee that we do
not have nonlinear distortion betwegrand X* and thatX* is not attenuated with
respect t&Z. In order to guarantee that the retroactivityp the input is sfficiently
small, we need to quantify the retroactivitffect on theZ dynamics due to the
binding of Z with X. To achieve this, we proceed as in Secio®by computing
the Z dynamics on the slow manifold, which gives a good approximation of the
dynamics oZ if e ~ 0. Such a dynamics are given by

dz dF; dX*
2 -sofa- %)

inputoutput gairs >1. (7.40)

in which g;l d(fz measures thefkect of the retroactivity to the input on thez

dynamics. Direct computation % and ofddiZ along with X* < Km and with
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Figure 7.16: (a) Performance with fast time scales. Siranaesults for system in equa-
tions (7.31-7.35. In all plots, piot = 100,Keg = kon = 10,6 = 0.01, k(t) = 0.01(1+ sin(wt)),
and w = 0.005. In subplots A and Bk; = k; =50, ap = a; = 0.01, d; = d> = 10, and
Yiot = Xiot = 1500. In plot A, the isolated system is without downstreamdlrig sites p
and the connected system is with binding sites p. The smali shows that thefgect of
the retroactivity to the output is attenuated very well. In subplot B, the isolated system
stands for the case in which Z does not have X to bind to, whidkedonnected system
stands for the case in which Z binds to substraté; & 1500). The small error confirms
a small retroactivity to the input. (b) Performance with slow time scale. Phosphoryla-
tion and dephosphorylation rates are slower than the onés),irthat is,k; = ko = 0.01,
while the other parameters are left the same, thathis; d; = 10, a, = a; = 0.01, and
Yiot = Xiot = 1500.

(7.39 leads togf(} % ~ Xiot/Km, SO that in order to have small retroactivity to the
input, we require that

2ot 1 (7.41)

Hence, a design traddf@ppearsX: should be stiiciently large to provide a gain
G large enough to attenuate the retroactivity to the output. Xgtshould be small
enough compared t§,, so to apply minimal retroactivity to the input.

Concluding, for having attenuation of théfext of the retroactivity to the out-
put s, we require that the time scale of the phosphoryldtephosphorylation re-
actions is much faster than the production and decay processes of Z (ftite in
to the insulation device) and thato > prot, that is, the total amount of protein
Xis in abundance compared to the downstream binding sites p. To obtain also a
small efect of the retroactivity to the input, we require th&f, > Xior. This is
satisfied if, for example, kinase Z has lofiaity to binding with X. To keep the
input/output gain betwee@ and X* close to one (from equatior? 40), one can
chooseXio; = Yior, @and equal caécients for the phosphorylation and dephospho-
rylation reactions, that ig¢,, = K_m andk; = ko.

System in equations/(317.35 was simulated with and without the down-
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stream binding sites p, that is, with and without, respectively, the terms in tHe sma
box of equation 7.31) and in the boxes in equation$.84) and (7.32. This is
performed to highlight theféect of the retroactivity to the outpston the dynam-
ics of X*. The simulations validate our theoretical study that indicates that when
Xiot > Prot @and the time scales of phosphorylatidephosphorylation are much
faster than the time scale of decay and production of the protein Z, theatiroa
ity to the outputs is very well attenuated (Figuré.16a), plot A). Similarly, the
time behavior ofZ was simulated with and without the terms in the large box in
equation 7.3J), that is, with and without X to which Z binds, to verify whether the
insulation component exhibits retroactivity to the input

In particular, the accordance of the behaviorZ @j with and without its down-
stream binding sites on X (Figuig1§a), plot B), indicates that there is no sub-
stantial retroactivity to the input generated by the insulation device. This is ob-
tained becaus¥,; < Ki, as indicated in equatiory 41), in which /K, can be
interpreted as theflanity of the binding of X to Z.

Our simulation study also indicates that a faster time scale of the phosphoryla-
tion/dephosphorylation reactions is necessary, even for high valugs ahd Y,
to maintain perfect attenuation of the retroactivity to the ouarid small retroac-
tivity to the outputr. In fact, slowing down the time scale of phosphorylation and
dephosphorylation, the system looses its insulation property (Figd@b)). In
particular, the attenuation of theéfect of the retroactivity to the outpis lost
because there is not enough separation of time scales betwe2dyhamics and
the internal device dynamics. The device also displays a non negligible aafoun
retroactivity to the input because the conditidf <« X is not satisfied anymore.

Design 2: Realization through phosphotransfer

Insulation device

Input TN
—_—

Figure 7.17: Syster$s is a phosphotransfer system. The output X* activates trgtgm
through the reversible binding of X* to downstream DNA prdercsites p.

Let X be a transcription factor in its inactive form and let be the same tran-
scription factor once it has been activated by the addition of a phospraip.g
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Let Z* be a phosphate donor, that is, a protein that can transfer its phospbaype g
to the acceptor X. The standard phosphotransfer reactions (seteCBafection
2.4) can be modeled according to the two-step reaction model

k ks
74X = Cp = X* +Z,
ko ka

in which G, is the complex of Z bound to X bound to the phosphate group. Ad-
ditionally, protein Z can be phosphorylated and proteindéphosphorylated by
other phosphotransfer interactions. These reactions are modeled ateprreac-
tions depending only on the concentrations of Z arigtiat is, 7= Z5, X" X,
Protein X is assumed to be conserved in the system, théis; X+Cy+ X* +C.

We assume that protein Z is produced with time-varying productionktend
decays with raté. The active transcription factorbinds to downstream DNA
binding sites p with total concentratign; to activate transcription through the

. . ko . .
reversible reaction  X* == C. Since the total amount of p is conserved, we also
ko

Ji
have thalC + p = pyt. The ODE model corresponding to this system is thus given
by the equations

((jj—f:k(t)—62+k301—k4X*Z—7le
R (e b
T kXt 1= 2 = 2 | || 27— keCr — keCy + KaXZ
dt L7t Xiot  Xiot | Xtot Ca-keCrths
dz* X* Ci C
_ ) X G [C)), 7.42
it mZ+k,Cq letOt(l X Yoo [th])z ( )
ax:* -
e k3C1 — kaX*Z + [KotC — konX*(Ptot — C) | — m2X*
dC

i KonX*(Ptot — C) — kostC.

Since phosphotransfer reaction are faster than protein productiodesay,
defineGl = Xtotkl/é SO thatk]_ = Xtotkl/Gl =0, k2 = k2/G1, k3 = k3/G;|_, k4 =
ka/Gq, m1 := m1/Gy, mp := n2/G; are of the same order &ft) ands. Similarly,
the process of protein binding and unbinding to promoter sites is much faater th
protein production and decay. L&t:= kog/6 and Kq := Kog/Kon. ASSUmMIng also
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Figure 7.18: Output response of the phosphotransfer sysithma periodic signak(t) =
6(1+ 0.5sinwt). The parameters are given By= 0.01, Xiot = 5000,k; = ko = k3 = kg =
m1 = mp = 0.01G in which G = 1 (left-side panel), ané = 100 (right-side panel). The
downstream system parameters are giveKpy 1 andkys = 0.01G,, in whichG assumes
the values indicated on the legend. The isolated syssen®) corresponds tpo; = O while
the connected systers £ 0) corresponds ty; = 100.

that pror < Xiot, We have tha€ <« Xiot SO that system7(42 can be rewritten as

‘i—f = k(t) - 6Z + G (keC1 — KuZ X —mZ)

% = G(El(l— ;(i; - %)Z* —ksC1 —koCy + QX*Z)

ddzt* = G(7?12+ koC1— El(l— ;(: ; -~ %)Z) (7.43)
% = G (kaCy — kaX'Z - mpX") - C:(KidX*(ptot— C) +6C)

o = X (P=0)=00)

TakingT = I3x3, the 3 by 3 identity matrix, anil = (0,0, 1)T, the coordinate trans-
formationX'= T x+ My brings the system to the form of systehd9 with u =2,
x=(Cq,Z*,X*), andy =C.

We illustrate the retroactivity to the output attenuation property of this system
using simulations for the cases in whiGr> G, G = G, andG « G. Figure7.18
shows that, for a periodic inpi(t), the system with low value fo& sufers the
impact of retroactivity to the output. However, for a large valu&pthe permanent
behavior of the connected system becomes similar to that of the isolated system,
whetherG > G, G = G or G <« G. Notice that, in the bottom panel of Figurelg
whenG > G, the impact of the retroactivity to the output is not as dramatic as it
is whenG = G or G <« G. This is due to the fact thatis scaled byG and it is
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not related to the retroactivity to the output attenuation property. This canfine
theoretical result that, independently of the order of magnitudg,dhe system
can arbitrarily attenuate retroactivity for large enough

Exercises

7.1 Include in the study of retroactivity in transcriptional systems the mRNA dy-
namics and demonstrate havihether the results change. Specifically, consider the
following model of a connected transcriptional component

mx

il k(t) —ymx

X

C:j_t = Bmy — 66X+ [KorC — kon(PTOT — C)X],
‘fj—f = —koiC+kon(proT—C)X

7.2 Consider the system in standard singular perturbation form, in whiehl.
Demonstrate that the slow manifold is locally exponentially stable.
dy _ dC

2 =kO-0y-C). el =~oC+ %(pm—cxy—cy

7.3 The characterization of retroactivityffects in a transcriptional module was
based on the following model of the interconnection:

?TT = K(t) — 6X + [KorC — Kon(Prot —~ C)X].
(?j_(t: = —kofC + Kon(ptot — C) X,

in which it was implicitly assumed that the complex C does not dilute. This is
often a fair assumption. However, depending on the experimental corgliton
more appropriate model may include dilution for the complex C. In this case, the
model modified to

‘;_1( = () - (u+ )X+ [koiiC — kon(Prot — )X,
O Kot Kon(Pror~ CX—4C.

in which u represents decay due to dilution ahdepresents protein degradation.
Employ singular perturbation to determine the reduced X dynamics andrféutse
of retroactivity in this case. Is the steady state characteristic of the tipinscal
module dected by retroactivity? How?
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7.4 We have illustrated that the expression of the point of half-maximal induction
in a covalent modification cycle idtacted by the #ective loadl as follows:

IZ]_ +0.5

Ys0 = R+ 1)+ 05

Study the behavior of this quantity when theetive loadl is changed.
7.5 Show how equation7(12 is derived in Sectiof7.4.

7.6 Demonstrate that in the following system

Oclj_>t( = G (k(t) - KX) (1-d(t)),

X(t) — k(t)/K becomes smaller &3 is increased.

7.7 Consider the activator-repressor clock from Atkingral. (Cell 2003), de-
scribed in Sectiorb.5. Take the same simulation model derived for that exercise
and pick parameter values to obtain a stable limit cycle. Then, assume thatithe ac
vator A connects to another transcriptional circuit through the reversibténg of

. . . Kon .
A with operator sites p to form activator-operator complex G: p—== C. This
Kot

occurs, for example, if you want to use this clock as a source gendoateome
downstream system. Answer the following questions:

e Simulate the system with this new binding phenomenon and vary the total
amount of p, that ispr. Explore how this fiects the behavior of the clock.

e Give a mathematical explanation of the phenomenon you saw in (i). To do
S0, use singular perturbation to approximate the dynamics of the clock with
downstream binding on the slow manifold (hekg,, ko > da,d8). You can
follow the process we used in class when we studied retroactivity for the
transcriptional component with downstream binding.



Chapter 8

Design Tradeoffs

In this chapter, we describe a number of design trédedue to the fact that the
synthetic circuits interact with the host organism. We specifically focus onswo
sues: €ects of retroactivity from synthetic circuits on the host organism et &5

of biological noise on the design of insulation devices. In particular, tFtse a
number of cellular resources that are shared among all circuits in the eelteH
they increase the loading on these resources, with possibly undesiegdussions
on the functioning of the circuits themselves. Specifically, independeniitsirare
actually coupled through sharing common resources. We analyzé&etsef this
general phenomenon by illustrating it on the RNA polymerase usage. Tine sa
reasoning can be applied to any shared resource that is not in subsaotiss
with respect to the amounts of circuit copies placed in the cell. We also illustrate
possible mechanisms to avoid this problem by employing several of the rebastn
tools of ChapteB. Further, we illustrate the possible tradisdetween retroactivity
attenuation and noise amplification, due to noisy cellular environments.

8.1 Metabolic Burden

All biomolecular circuits use cellular resources, such as ribosomes, RWA p
merase, and ATP, that are shared among all the circuitry of the cell, witathe
circuitry is synthetic or natural. As a consequence, the introduction dahstio
circuits in the cell environment is potentially perturbing the availability of these re
sources, leading to undesired and often unpredictable Setd®on cell metabolism.
In this chapter, we study thefect of the retroactivity or “back-action” from the
synthetic circuits to shared resources in the cellular environment byifapos the
demand for RNA polymerase, for simplicity. Thiexts that we highlight are sig-
nificant for any resource whose availability is not in substantial exaaepared to
the added demand by synthetic circuits. We will then study possible mechanisms
that can be engineered to attenuate the sitkces of retroactivity on shared re-
sources, focusing on RNA polymerase as an example and employing sdhee of
adaptation techniques outlined in Chapter 3 and Chapter 6.

In order to illustrate the problem, we consider the example system shown in
Figure8.2, in which two modules, an inducible promoter (module A) and a consti-
tutive promoter (module B), are both present in the cellular environmentebryh
module A should respond to changes in the inducer concentration while m®dule
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Shared resources

ATP, Ribosomes, RNAP,...

™ L) Iy

Circuit 1 Circuit 2 | = Circuit n

Figure 8.1: The cellular environment provides resourcaytdhetic circuits, such as RNA
polymerase, ribosomes, ATP, proteases, etc. Ciraises these resources and as a conse-
guence, it has a retroactivity to the inpyt The system generating shared resources has
thus a retroactivity to the outputthat encompasses all the retroactivities applied by the
circuits.

featuring a constitutive promoter, should display a constant expressiehttheat
is independent of the inducer amount. Experimental results, howeveraiadhat
this is not the case since module B also responds to changes in inducen€onc
tration. We illustrate how thisfBect can be justified mathematically by accounting
for competition of shared resources needed in gene expression. Tifsithe
analysis, we focus on one such shared resource, the RNA polymerase
Experimental observations indicate that increased amounts of inducetolead
decreased expression of the constitutive promoter in module B. In theotase
positive inducer, this can be qualitatively explained as follows. When thecerd
amount is increased, an increased amount of active activator will lsemreead-
ing to increased levels of transcription in module A. These increased |evedso
scription will increase the demand for RNA polymerase and, as a conssgjue
smaller amounts of RNA polymerase will be free to promote transcription in mod-

Module A ! A Module B B

Figure 8.2: Module A has an inducible promoter that can bivatedd (or repressed) by
transcription factor R. Such a transcription factor, whemetivator, is activated by inducer
I. When R is a repressor, it is repressed by the inducer |. Ttmubaf Module A is protein
A. Module B has a constitutive promoter producing protein B.
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ule B. Hence, module B will experience a decreased transcription rate. Bymila
the presence of larger amounts of transcript in module A will apply a large€lirg
on the concentration of ribosomes for the translation process. As a resaller
amounts of ribosomes will be free to promote translation in module B. The net
result is that lower expression will be observed in module B when the imaiice
module A is increased. A similar reasoning can be performed in the caseegfa n
ative inducer.

The extent of this@ect will depend on the availability of resources and whether
they are regulated. It is known that RNA polymerase and ribosomesgukated
by the cell through negative feedbad0] 59]. This may help compensating for
changes in the demand of such resources.

To mathematically demonstrate this phenomenon, we first perform a simple an-
alytical study assuming that gene expression is a one-step procesen/getform
a numerical study employing a mechanistic two-step model for gene expressio

Analytical study using a simple model with a positive induce r

To illustrate the essence of the problem under study, we assume thatqees-e
sion is a one-step process, in which the RNA polymerase binds to the promoter
region of a gene resulting in a transcriptionally active complex, which, in, turn
produces the corresponding protein at some constant rate. We éilgz@amodule

A, assuming module B is not present, and module B, assuming module A is not
present. Then, we consider the case in which both of them are presktchmpare

the levels of output proteins to the cases in which only one module is present.

Only module A is present

Let X denote the RNA polymerase, R the inactive activator, | the induceh®
active activator, that is, R bound to the activator |, p the amount of umbpuo-
moter of module A, and A the output protein of module A. The reactions desgrib
the system are given by (see Sectih):

ks ke K, k
R+l=R*, R'+p=—C, C+X=—=C" C'SA+C+X, A>0,
K i

K.

(8.1)
in which C is the complex promoter-activator and C* is the transcriptionally ectiv
complex promoter:activator:RNA polymerase. In addition, we assume that#he to
amount of X is conserved and denote such a total amountihy Further, we
assume that the total amount of promoter p is conserved and denote sueh a to
amount bypt. Let Rot ;= R+ R* denote the total amount of transcription factor.
We are interested in determining the steady state leve{sawfd of A as a function
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of the inducer amountls The steady state values satisfy

R* Rtot I

= Kot with Kq = k_/ks, (8.2)

C= B:(—p with  Kg=k /k,, (8.3)
d

= ix with K=K /K. (8.4)

d
Combining these along with the conservation l@dw C* + p = piot leads to

_ Ptot
R'/Kg+ R X/(KjKg) + 1’

p

in which, to simplify the derivations, we assume that

X
z(1+—) <1,

Kal™ K]

which, in turn, is satisfied if the amount of activatais suficiently small or if the

total amount of proteiiR is small. As a consequence, we assume in the remainder
of this section thap ~ piwt. Employing the conservation law fof, that is, Xt =
X+C*, we finally obtain that

_ Xtot _ Xtot
l+ﬂ‘,’—‘§* 1+ protReot! /(KjKa(Kg + 1))’
qfnd

as a consequence, as the positive inducer concentilaitancreased, the amount
of free RNA polymeraseX) decreases (see FiguBed). Also, sinceY = (k/5)C*,

we have that
ProtXtotReot|
Ao k [ K+ }

;. RiotXtot|
0\ K+ Ka+ proc s

which increases with as expected.

Only module B is present

When only module B is present, since its promoter is constitutive, it will display
a constant expression level for any fix€d;. Denotingg the amounts of unbound
promoter in Module B, we have the reactions

K _ _
g+X=C, Cc5B+C. B0, (8.5)
k.



8.1. METABOLIC BURDEN 259

1 470
\ — il
\: p=5 |
_09y” - - -p=10}{
o \
< \
Z 08 \
o \
© '
Lo
N—r ~
<
0.6
0.

O(.I'I
=
N
w
N
al

Figure 8.3: Plots showing that when the inducer levéd changed, the amount of free
RNA polymeraseX is also changed. The larger the amounts of prompté¢ne larger the
effect of the inducer on the free available RNA polymerase. Rersimulation, we chose
all the dissociation constants equal to oRg; = 0.1, Xiot = 1, andk = 0.02nMmin?, and

6 = 0.01minL. All the concentrations are in nM.

with conservation law foX given by Xt = X + C. The steady state values satisfy
X S kC

29 Ky=K/K, B=Z=

Kg 0

These relations along with the conservation lawXdead to

X:—xtoi1 andB:l—(( ﬁmq )
1+K—d, 0\Kq +q

C=

which increases witXi: and g as expected. Note that here, for simplifying the
derivations, we have not used the conservation dgyv= g+ C. The reader can

verify that the same result would hold accounting for the conservation dae (
Exercises).

Both modules A and B are present

When both modules are present, the set of reactions describing the sggtesm

the union of the set of reactions describing the two modules, that is, eqai@i@n

and equations8.5). The steady state values also still satisfy the same relations as
before. The only dference is the conservation law 6y which is now given by

X+C'+ C_Z Xtot-
Employing this conservation law along with the steady state relations gives

X = Xot _ _
1+ (R prot)/ (K;Ka) +a/Kg"”
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Figure 8.4: (Left) Eect on the expression of A when module B is added to the system:
expression level of A changes, but it maintains its respémske inducer. (Right) Eect
on the expression of B when Module A is added to the system. Whggtule A is absent,
the expression of B does not respond to inducer changes. Byast, when Module A
is present, the expression of B responds to inducer chaRgeshe simulation, we chose
all the dissociation constants equal to oRg; = 0.1, Xiot = 1, andk = 0.02nMmin?, and

6 = 0.01minL. All the concentrations are in nM.

ProtXtotReot!
k R Kk Xtotd
A= - Y — andB = 51 = | .
O Kg+ K+ Pror 8282 + KK Kd(1+Kp‘;’<' E;‘L)qu

From this expression, it is clear that

(1) due to the presence of module B, the amounts of output protein Y of module
A is lower for any given value of the inducér

(2) module B also responds to the inducer of module A. Specifically, the aoun
of output proteinZ decreases when the amounts of inducisrincreased.

These conclusions are summarized in Fig8r4 which shows the steady state
values ofB and A when the inducer amountis changed as compared to the case
in which the modules were not both present in the system.

As an exercise, the reader can verify that a similar result would hold &r th
case of a negative inducer (see Exercises).

Estimate of the effects of adding external plasmids on the av ailability of
RNAP

In the previous section, we illustrated qualitatively the mechanism by which the
change in the availability of a shared resouce, due to the addition of syntiretic
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cuits, can cause unexpected crosstalk between unconnected cirbeitsxtént of
this crosstalk depends on the amount by which the shared resourageshadihis
amount, in turn, depends on the specific values of the dissociation conskents
total resource amonts, and the fraction of resource that is used alvgathtural
circuits. In fact, as we will see in the following sections, if the resourceshaary
large number of clients already, i.e., a very large fan-out, its changetodhe
addition of more clients will be smaller. Hence, it is important to account foethes
in the calculation as follows.

In E. coli, the amount of RNA polymerase and its partitioning mainly depends
on the growth rate of the cellLlfl]: with 0.6 doublingghour there are only 1500
moleculegcell, but with 2.5 doubling&our this number is 11400. The fraction of
active RNA polymerase molecules also increases with the growth rate. Fer illus
tration purposes, we assume here that the growth rate is the lowest cedsiue
[14]. Therefore, a reasonable estimate is that the total number of RNA polgenera
is about 1000. Since the fraction of immature core enzyme at low growth rate is
only a few percentl5], we assume that the total number of functional RNA poly-
merase is 1000 per cell, that }o: = 1000nM. Based on the data presentedi,[
a reasonable partitioning of RNA polymerase is the following:

active core enzyme: 15% (150 molecutedl or X, = 150nM),
promoter-bound holoenzyme: 15% (150 molecidel or X, = 150nM),
free holoenzyme: 5% (50 molecujesll or X; = 50nM),

inactive DNA-bound core: 65% (650 molecylesll X; = 650nM).

There are about 1000 genes expressed in exponential growth[di8hdeence
the number of binding sites for X is about 1000,pg); = 1000nM, and we assume
that all the 150 promoter-bound holoenzymes are bound to these pronidiers
binding reaction is of the form

a
p+Xf?C1

where p is the RNA polymerase-free promoter anas@he RNA polymerase:promoter
complex. Consequently, we hayg = p+ C1. Since only one RNA polymerase
can bind to any given promoter, at the equilibrium we h@ye- X, = 150nM and

P = Ptot — C1 = Prot — Xp = 850nM. With dissociation constaily = g the equilib-

rium is given by 0= X;p— K4C1, hence we have that

p

Kg=—
o

Xs ~ 300nM

which is interpreted as an flective” dissociation constant. This is in the range
1-1000nM suggested byt{] for specific binding of RNA polymerase to DNA.
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Therefore, we are going to model the binding of RNA polymerase to the gesao
of the chromosome dE. coliin exponential phase as one promoter with concen-
tration pyo; and dfective dissociation constaKg.

Furthermore, we have to take into account the rather significant amoRi/f
polymerase bound to the DNA other than at the promoter reg{gn X; = 800nM).

To do so, we assume that the fraction= Xa+ X + X/ X, is approximately con-
stant at the equilibrium.

Now, we can consider the addition of synthetic plasmids. Specifically, we con
sider the plasmid pSB1AK3 (copy number 1:0800) with one copy of a gene
under the control of a constitutive promoter. The binding of RNA polynestas
the constitutive promoter is modeled by

’

+X;=C
A+ A =2

where ¢ is the RNA polymerase-free promoter angiCthe RNA polymerase:
promoter complex. Consequently, we hayg = g+ C,. The dissociation constant
is given byK, = g— The total concentration of promotegg; can be determined by
considering the copy number of the plasmid, which is 2300 plasmid&ell, so
that we setjor ~ 200nM. At the equilibrium, we have

Xt
Co = Oiot———.
2 qtot Ké n Xf
We also have
Ci= X
1= Prot Kgt X

The conservation law for RNA polymerase must be now considered i twde
determine the equilibrium concentrations:

Xf +m Cl + C2 = Xt0t~ (8.6)

Here, we did not account for RNA polymerase molecules paused, quanah
actively transcribing on the plasmid, moreover, we also neglected the ressta
genes on the pSB1AK3 plasmid. Hence, we are underestimatindgtdue ef load
presented by the plasmid.

Solving equation&.6) for the free RNA polymerase amoult gives the fol-
lowing results. These results depend on the ratio betweerfféetiee dissociation
constanKy and the dissociation constaff of RNA polymerase from the plasmid
promoter:

K = 0.1K4 (RNA polymerase binds better to the plasmid promoter) results
in X = 21nM, C; = 69nM andC, = 85nM. Hence, the concentration of free
RNA polymerase decreases by about 60%;
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K = Kg (binding is the same) results i = 41nM, C; = 126nM andC; =
25nM. Hence, the concentration of free RNA polymerase decreasssooy
20%;

K§ = 10Ky (RNA polymerase binds better to the chromosome) results in
Xs =49nM, C = 147nM andClB = 3nM. Hence, the concentration of free
RNA polymerase decreases by about 2%.

We conclude that if the promoter on the synthetic plasmids has a dissocia-
tion constant for RNA polymerase that is smaller than tiiective one calculated
above, the perturbation on the available free RNA polymerase can be cagiifi

Numerical study using a mechanistic model with a positive in ducer

In this section, we introduce a mechanistic model of the system in FR)@rén
which we consider both the RNA polymerase and the ribosome usage, raxapp
imating assumption are made, and biochemical parameters are chosen from the
literature. Specifically, for inducer | we consider AHL, transcriptiontéadR is
LuxR, the output of module A is RFP, and the output of module B is GFP. We
denote the concentration or RNA polymeraseXays, and the concentration of ri-
bosomes by,. We denote byna andA the concentrations of the mRNA of RFP
and of RFP protein, respectively, while we denotenfgyand B the concentrations

of the mMRNA of GFP and of GFP protein, respectively. Denotingrbthe concen-
tration of the complex of LUuxR with AHL (equal tbuxR:l /(Kg+ 1) with LUxRo¢

the total amount of LuxR), we have (see Sectibd the following reactions for
module A transcription

« Kx1 kx3 < 01
R*+p,; ? C,. C+ Xrnap —“—k TC,, TC,—my+ Xmap+ C,, my—0
X2 x4

and for module A translation

ke s
mA+xrbkr=z RC. RC,“5A+X,+my A0,

in which G is the complex of active transcription factor with the promoter con-
trolling A, TC is the complex of @with Xnap, 01 is the decay rate of mMRNA,

is the decay rate of protein, R@s the complex of X, with the mRNA ribosome
binding site,k; is the rate of transcription, ands is the rate of translation. The
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resulting system of dierential equations is given by

dC .
d_tl =kx1 R p1—ky2 C1 —Kyg XinapC1 + (Kxa + k1) TCy
dTC
at C Kxa XrnapC1 — (Kxa + k1) TCy
d my
TS =ky TC1—kr1 Xip Ma+ k2 RCL— 61 ma+ ki3 RG (8.7)
d RG
o = k1 X ma - (k2 +ka) RCy
dA
— =k3RC -6 A
it ki3 RCp— 02 A,

in which, we have thap; = p11ot —C1— TCy by the conservation law of DNA in
module A.
For module B, we have the following reactions for transcription
01

kx6 k2
Xrnap"‘ p2 ‘_k TCZ’ TCZ ? mB + Xrnap+ pza r'nB ?
X7

and the following reactions for translation
ke s
Mg+ Xy == RC,,  RC,~5 B+ X, +Mg, B30,
ks

in which TG is the transcriptionally active complex of promoter with RNA poly-
merasek; is the transcription rate, Rds the complex of ribosome binding site
with the ribosome, anl g is the translation rate. The resulting system difieden-
tial equations is given by

dTC
o = Ki6 Xmap P2 — (ke + ko) TC2
dmg
e ko TCo —kra Xep Mg + ks RG — 61 Mg+ kg RG (8.8)
dR
d_tcz =Kra Xip Mg — (k5 + krg) RG
dB
v ki RG — 02 B,

in which pz = p2tot — T Co from the conservation law of DNA in module B.

We consider two cases: (case 1) either Module A or Module B is preséms in
cellular environment and (case 2) Module A and Module B are both presére
cellular environment. In either case, thédiential equations for the two modules
are the same. Theftierence between the two cases is in the conservation law for
the shared resourcesyp and Xy,. Specifically, in case 1 we have that

Module A: Xinap,tot= Xmap+ TC1,  Xiptot = X+ RCy
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Figure 8.5: (Up: Module B) Eect on the mRNA and protein steady state response to the
stimulusR* in the presence of module Ap{iot # 0). In the presence of module A also
module B responds to the stimulus of module A. (Down: Modujé&e&ect on the mRNA

and protein steady state response to the stinfeilus the presence of module Bt # 0).

In the presence of module B, there is an increase of the apipidre of the steady state
characteristic (right-side plot). The values of the par@msefor the numerical simulation

of the mechanistic model are given ky =1 ([9]), kxz = 1 ([9]), kg = 100,k =1, kg = 1

([9)), ke = 2000,kg7 = 1, kp = 1, k1 = 100, kr2 = 1, ki = 9, kg = 100, ks = 1, kg = 9,

61 =0.04 ([9]), 52 = 0.05. RNA polymerase and ribosomes total concentrations bega
assumed to be equal to one. Concentration units are in nM.

and

Module B: Xinap,tot= Xrnap+ TC2,  Xip,tot = X+ R,
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Figure 8.6: Hectively, binding sites q introduce a reservoir for X, sat tmare X is freed
up from sites g when the demand increases.

in case 2, we have that

Xinap,tot= Xmap+ TC1+TCy,  Xiptot= Xip + RCL + RG,,

which leads to a coupling between the model of Module A and that of Module B.

The results are shown in FiguBeb. The presence of module A, causes module
B to also respond to the inducer of module A. The presence of module Bftdstsa
the response of module A to its inducer by decreasing the steady stateoftlues
output and by increasing the value of half maximal induction.

Engineering adaptation to changing demands of cellular res ources

We have seen that competition for shared resources leads unwargsthtkrdoe-
tween unconnected circuits. In order to prevent this, there are two mainidgees

that can be employed. The first approach is to make the amount of frebustro

to changes in the circuits that use it. That is, one would like to maintain a roughly
constant X when circuits are added or removed from the cell environifleasec-

ond approach is to allow potentially large excursions of X when circuitsdaed

or removed from the cell environment, but engineer circuits so that thedtifun

is unaltered by changes in X, that is, its function adapts to changes in X.
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Engineering X robustness to changing demands by large fan-out

In wild type E. coli cells, only 2% of the total amount of functional RNA poly-
merase is unbound (free) and only about 20% of the total amount oforifes

is unbound 86, 14]. This suggests that in a natural system the RNA polymerases
and ribosomes have a large number of sites, also called fan-out, to whydhbiride

so that only a small fraction is free to be employed in synthetic circuits. Here,
we illustrate that such a large number of sites contribute to the robustness of th
concentration of these resources to changes in the demand.

Assume the sites to which X binds are denoted q and assume that we add some
more sites, denoted p, belonging, for example to synthetic circuits. The uigtrod
tion of sites p will increase the demand of X and will tend to decrease the amount
of free X. However, such a decrease can be compensated by hagixgktbund
to sites g unbind and increase the amount of free X. In this sense, siteshg ca
thought of a reservoir of X, from which X is released when needethidfreser-
voir is much larger than the perturbatipnwe should expect tha will stay about
constant after the addition of sites p.

To mathematically justify this reasoning, assume that X is in total am¥gnt
and letp < q (Figure 8.6). Let Cy denote the concentration of the complex of
X with sites g andC; the concentration of the complex of X with sites p. The
guasi-steady state approximation of these binding reactions Giyes(q/Kqg)X
andC; = (p/Kg)X, in which Ky is the dissociation constant of X with the sites. The
conservation law for X gives the free amount of X as

X = Xtot
1+ (p/Kq)+ (a/Ka)’

due to the addition of binding sites p. The resulting perturbation is given by

p/Kg

M R T @R+ (p/Ka) + @ Ka)

from which, it is clear that agincreases, the perturbatiafX goes to zero. Sinck
also goes to zero apincreases, it is more meaningful to determine the percentage
variation of X, which is given by

AX p/Kq
X (L+(a/Ka) + (p/Ka))’

which can be made arbitrarily small by increasmdience, sfficiently large val-
ues ofq lead to low sensitivity of the change in X when additional circuits are
added or removed from the cell. As a consequence, the induced faidarbn the
circuits in the cell can be reduced by increasipg
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Figure 8.7: The output protein expressigrdoes not sensibly depend on the amounts of
available RNA polymerase (X) for fliciently high values ofo.

Engineering adaptation in circuits to changes of X

We have seen in Sectiéi2that incoherent feedforward loops can engineer adapta-
tion to changes in their input. Here, we show how this mechanism can be employe
in order to make the expression level of a protein in a synthetic circuit i

of the availability of X (RNA polymerase).

Let Y be a protein that is constitutively expressed by a promoter p in total
amountspy:. Its expression level is going to be proportionaMip:/Kg), So that
if there is a perturbation in the free amount of X, there is going to be a ptiopat
perturbation in the amount of Y. In order to make the expression level ofi¥-in
pendent of changes in X, we add to the circuit expressing Y an auxilieayitc
that constitutively expresses a repressor protein R, which competes viothtbxe
promoter sites p, causing affective repression of Y (Figur@ 7(a)).

The idea of this design is as follows. When the availability of X decreases, the
steady state value of Y should also decrease. At the same time, the amounts of R
also decreases, resulting in a consequent decrease of the rapofdsiso that the
steady state value of Y should increase. If these tikeces are well balanced, one
should expect that no substantial chang®& @§ observed. This is mathematically
studied by considering the reactions involved in the system and their assbcia
ODE.

Specifically, letpp denote the amounts of promoter expressing protein K’ let
be the concentration of the complex of protein R with promoter p, an@ le¢
the concentration of the complex of X with promoter p. Since X and R bind to p
competitively, we have thai. = p+C+C’. As a consequence, at the steady state,
we have that

_ Prot(X/Ka)
(X/Ka) +(R/KY +1°

in which R = Kpp(X/Kqg) with K proportional to the strength of promotes and
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K the dissociation constant of R with p. Since the steady state valMesopro-
portional to the amount of complex C, we have that

o ptot(x/ Kd)
X(1/Ka+(Kpo)/(K{Kq)) +1°

Y

As po becomes larger, we have that approximatély (piotK})/ (K po), which is
not dependent oK and, as a consequence, is nffeated by changes K. That is,
the circuit’'s outputy adapts to changes in its inpXt This is also shown in Figure
8.7 (b), in which the steady state value 6fbecomes more and more insensitive
to changes in X agg is increased. Of course, increasipg decreases also the
steady state value of, so the amounts of promotepsand pg should be chosen
comparably large in such a way that a desired valué isfnot too low.

8.2 Stochastic Effects: Design Tradeoffs between Retroactivity
and Noise

1As we have seen in Chapter 7, a biomolecular system can be rendenesitinee
to retroactivity by implementing a large input amplification gain in a negative feed-
back loop. However, relying on a large negative feedback, this typesign may
have undesiredffects as seen in aftirent context in Sectiof.2. Also, it is not
clear so far what thefgect of retroactivity is on the noise content of the upstream
system. Here, we employ the Langevin equation seen in Chapter 4 to ansger th
guestions.

Consider a transcriptional system that takes a transcription factor Uiapwn
and produces a transcription factor Z as output. The transcription rdte gene
z, which expresses the protein Z, is given by a time varying funaBé(t) that
depends on the transcription factor U. This dependency is not modeled,isia
not central to our discussion. The param&enodels the input amplification gain.
The degradation rate of protein Z is also assumed to be tunable and thusedentifi
by Gé. The variable gain parametér will be adjusted to improve the insulation
properties.

The transcription factor Z is also an input to the downstream load through the
reversible binding of Z to promoter sites p. Neglecting the Z messenger RNA dy
namics, the system can be modeled by the chemical equations

Go Kon
0—7  Zip=cC
G k() Koft

We assume that(t) and ¢ are of the same order and dendfg = Kog/Kon. We
also assume that the production and decay processes are slower tiag himd

1This section is extracted from Jayanthi and Del Vecchio CDC 2009.
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unbinding reactions, that ikeg > G, kon > G6 as performed before. Let the total
concentration of promoter gy The deterministic ordinary fierential equation
model is given by

dd_f = GK(t) ~ G6Z + konZ — kon(Prot— C)Z.
O = KiCtkan(Pa-O)Z (8.9)

To identify by what amount& should be increased to compensate the retroac-
tivity effect, we perform a linearized analysis 8{%) aboutk(t) = k, and the corre-
sponding equilibriunZ = k/6 andC = Z pot/(Z + Kg). By performing the linearized
analysis as in Section3, lettingz= Z — Z andk = k—k, we obtain

dZ_ G - 3 _ Kaprot
e NCORTCN

Thus, we should chooge ~ 1+ R to compensate for retroactivity from the load.
In real systems, however, there are practical limitations on how much thegain
be increased so that retroactivity may not be completely rejected.

Dynamic effects of retroactivity

We have shown that increasing the g@iis beneficial for rejecting retroactivity to
the upstream component. However, as shown in Fi§eincreasing the gaifs
impacts the frequency content of the noise in a single realization. For lows/afu
G, the error signal between a realization and the mean is of lower frequéray
compared to a higher gain.

6500 7600 Time (Z§OO 8600 8500
Figure 8.8: Increasing the value &f produces a disturbance signal of higher frequency.
Two realizations are shown withftérent values fo6 without load. The parameters used
in the simulations aré = 0.01nM1s™1, K4 = 20nM, ko = 50nM1s71, = 0.005rad's and

Q =10nM. The input signal used igt) = 6(1+ 0.8sint))s 1. The mean of the signal

is given as reference.
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To study this problem, we employ the Langevin equation
dX < M
o Zfijaj(x(t)) + Zfijajl/z(X(t))Nj(t),
j=1 j=1

in which N;j(t) are independent Gaussian white noise processes. For our system,
we obtain
dd—f =Gk(t) — G6Z — Kon(Prot — C)Z + koitC + vGK(t) N1(t) — VGSZ No(t)  (8.11)
~ Vkon(Prot=C)Z Na(t) + VionC Natt),
% an(Pror = CZ ko + Vhon(Pror—CIZ Not) ~ VhorC N1,

The above system can be viewed as a non-linear system with five ifgits,
andN;(t) fori = 1,2,3,4. Letk(t) = k, Ny (t) = Na(t) = N3(t) = N4(t) = 0 be constant
inputs and letZ andC be the corresponding equilibrium points. Then for small
amplitude signal(t) the linearization of the systen8.(L1) leads, with abuse of
notation, to

€2 = Gk() - GZ - kon(Pror~ O +knZC + ki C

+ VBK Nu®) = V6Z No(t) = y/koriC Na(t) + /Kon(Prot— C)Z Na(®)

9C  on(Prot = C)Z = kenZC— koiC + fkoC Na(t) = +/kon(Prot— C)Z Na).

dt
(8.12)

We can further simplify the above expressions by notingdBat Gk andkon( Prot—

C)Z = koC. Also, sinceN; are independent identical Gaussian white noises, we
can writeNy (t) — No(t) = V2I1(t) and Na(t) — Na(t) = V2Ia(t), in whichT(t) and
I'>(t) are independent Gaussian white noises identichl;{9. This simplification
leads to the system

dd—f = GK(t) = G6Z — Kon(Prot — C)Z + konZC + kotC + V2GKT1(t) — +/2korCT2(t),
O = Ken(Pot— C)Z ~KonZC—konC+ [2KorCI(1). (8.13)

This is a system with three inputs: the deterministic inkftit and two inde-
pendent white noise sourcEsg(t) andI'»(t). One can interprdi; as the source of
the fluctuations caused by the production and degradation reactiondwisléhe
source of fluctuations caused by binding and unbinding reactions. Biesgstem
is linear, we can analyze theffiirent contributions of each noise source separately
and independent from the sigrigt).
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The transfer function froriv; to Z is (after setting/kog = € = 0)

V2Gk

"= girRyres

(8.14)

The zero frequency gain of this transfer function is equéd g, (0) = V2k/ VGs.
Thus, asG increases, the zero frequency gain decreases. But for largglefred
quenciesw, jw(1+R)+Gs ~ jw(1+R), and the amplitudéHzr, (jw)|  V2kG/
w(1+R) becomes a monotone function®f This fect is illustrated in the upper
plot of Figure8.9. The frequency at which the amplitude |bfzr, (jw)| computed
with G = 1 intersects the amplitudBzr, (jw)| computed withG > 1 is given by the
expression

(0] _—6\/6
7 (1+R)’

T, ()| (dB)

-80} - G=1
-100 — — —G=25
-120 -

[T, ()| (dB)
\

10 10° 107 10" 10°

Frequency (rad/sec)
Figure 8.9: Magnitude of the transfer functiofgr, (s) andHzr,(s). The parameters used
in this plot ares = 0.01nM1s™1, K4 = 1nM, kog = 50nM1s71, w = 0.005rad'’s, prot =
100nM. WherG increases from 1 to4 R, = 25, contribution fronT'; decreases but it now
spreads to a higher range of the spectrum. Note that thereamwarease on the noise
at the frequency of interest. IncreasingG reduces the contribution froi, in the low
frequency range, leaving the high frequency rangefented. Note also that the amplitude
of Hzr, is significantly smaller than that ¢fzr, .

Thus, when increasing the gain from 1Go- 1, we reduce the noise at frequen-
cies lower thanwe but we increase it at frequencies larger thaan

The transfer function from the second white noise soligc® Z is given by

Hzr, (9) = [ Ve «/2555] /[€? +(€G6 + 6(prot — C) + 6Z + 6Ka) s+ GS(6Z + 6Kq) |
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This transfer function has one zerosat 0 and two poles at
6 — —
. = |~ €G- (Poi-0) - Z+Kg
2e
+ \/(EG +(Prot—C) + Z + Kg)2 — 4eG(Z + Kyg) | (8.15)

Whene —» 0,s. —» —o ands, —» —G§/(1+R)). Thus, the contribution dfy(t) to

Z is relevant only on the high frequency range due to the high-passenaittine
transfer function. Furthermore, increasing the gaincreases the cufidfrequency
given by the poles,. It is also important to note that;r,(s) is scaled byve, mak-
ing the noise on the low-frequency causedy, (t) negligible when compared to
that caused b¥zr, (t). The Bode plot of the transfer functidthzr,(s) is shown in
the lower plot of Figure3.9.

While retroactivity contributes to filtering noise in the upstream system as it
decreases the bandwidth of the noise transfer function, high gainsbcaatio in-
creasing noise at frequencies higher thanin particular, when increasing the gain
from 1 toG we reduce the noise in the frequency ranges belew 5 VG/(R + 1),
but the noise at frequencies abavg increases. If we were able to indefinitely
increaseG, we could sends to infinity attenuating the deterministidfects of
retroactivity while amplifying noise only at very high. hence not relevaegjden-
cies.

In practice, however, the value &f is limited. For example, in the insulation
device based on phosphorylatidg,is limited by the amounts of substrate and
phosphatase thar we can have in the system. Hence, a designfitnagieds to
be considered when designing insulation devices: placing the largesbleds
attenuates retroactivity but it increases noise in a possibly relevanefney range.

Exercises

8.1 Consider the reactions in equatidhg). Consider the conservation law for the
sites q, that isgot = g+ C. Determine how the final expression for X would modify
in this case.

8.2 In the case of a negative inducer, a similar derivation can be carried dR &
repressor and R* was the inactive form of the repressor when bouhd tegative
inducer, denoted I. The reactions in this case are given by

k“L * E“L kﬂr * * k * 0
R+I=R"R+p=0C p+X=C"C >A+C A=, (8.16)
K. k.

in which now C is the complex of the promoter bound to the repressor, to whéch th
RNA polymerase X cannot bind to start transcription, wkites the complex of X
with the free promoter, which is transcriptionally active. Determine the exjmes

for the steady state values Xf A, andB.
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8.3 Consider a transcriptional component expressing protein X and assatwesth
connect this transcriptional component to a downstream transcriptiomgdanent

by having X bind to promoter sites p in the downstream system. Neglecting the
MRNA dynamics gives the system of equations

X
C

k—6X—konX(pr - C) + kotC
KonX(pr — C) kot C,

as we have seen in class, in whiph is the total amount of downstream system
promoter binding sites aridis the constant production rate. We want to show here
that the steady state responsexofdapts to the introduction of binding sites p.
To do so, we would like to show that there is a “hidden” integral feedbatkign
system. Address this by the following two steps:

(a) Letu:= pr and find a good choice of andy such that the above system
takes the standard form for integral feedback seen in class:

f(y)
= g(xy,u),

and show that the steady state valu&Xafoes not depend opy.

(b) Show thatx,y) — 0 ast — o0, so that you know that upon a constant change
in u, y returns to its original value after a transient.



Appendix A
Cell Biology Primer

This appendix proves a brief overview of some of the key elements ofioédidy.
It is not intended to be read sequentially, but rather to be used as anedeior
terms concepts that may not be familiar to some readers.

Note The text and figures in this appendix are based\ddcience Primeby
the National Center for Biotechnology Information (NCBI) of the Nationiakrary
of Medicine (NLM) at the National Institutes of Health (NIHjJ]. The text in this
chapter is not subject to copyright and may be used freely for anyoparms
described by the NLM:

Information that is created by or for the US government on this site is
within the public domain. Public domain information on the National
Library of Medicine (NLM) Web pages may be freely distributed and
copied. However, it is requested that in any subsequent use of this
work, NLM be given appropriate acknowledgment.

Some minor modifications have been made, including insertion of additional fig-
ures (from the NHGRI Talking Glossary4]), deletion of some of the text not
needed here, and minor editorial changes to maintain consistency with the main
text.

The original material included here can be retrieved from the following web
sites:

e http://www.ncbi.nlm.nih.gov/About/primer/genetics.html
e http://www.genome.gov/glossary

We gratefully acknowledge the National Library of Medicine for this material.
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Eukaryote Prokaryote

" 4.5 billion years ago —— Earth Formed
Nucleolis Mitochondria | 8
’ 3.5 billion years ago —— First Life -- Prokaryotic
-+ Bacteria Dominate
1.5 billion years ago —+— Nucleated Cells Arise
0.5 billion years ago —— Multi-Cellular
Eukaryotes Arise
(a) Cell types (b) Timeline

Figure A.1: Eukaryotes and prokaryotes. (a) This figurestfiates a typical human cell
(eukaryotg and a typical bacteriunpokaryot§. The drawing on the left highlights the
internal structures of eukaryotic cells, including the leus (light blue), the nucleolus
(intermediate blue), mitochondria (orange), and riboso(dark blue). The drawing on the
right demonstrates how bacterial DNA is housed in a strectatled the nucleoid (very
light blue), as well as other structures normally found irr@karyotic cell, including the
cell membrane (black), the cell wall (intermediate blubg tapsule (orange), ribosomes
(dark blue), and a flagellum (also black). (b) History of lifie earth. Figures courtesy the
National Library of Medicine.

A.1 Whatis a Cell

Cells are the structural and functional units of all living organisms. Some or
ganisms, such as bacteria, are unicellular, consisting of a single cell. Qther
ganisms, such as humans, are multicellular, or have many cells—an estimated
100,000,000,000,000 cells! Each cell is an amazing world unto itself: it caririak
nutrients, convert these nutrients into energy, carry out specializedidns, and
reproduce as necessary. Even more amazing is that each cell stores getomf
instructions for carrying out each of these activities.

Cell Organization

Before we can discuss the various components of a cell, it is important @@ kno
what organism the cell comes from. There are two general categorieslisf
prokaryotesandeukaryotegsee Figuré.1a).

Prokaryotic Organisms

It appears that life arose on earth about 4 billion years ago (see FAglire The
simplest of cells, and the first types of cells to evolve, were prokaryotis—ee
organisms that lack a nuclear membrane, the membrane that surroundsléwsnu
of a cell. Bacteria are the best known and most studied form of protiarge
ganisms, although the recent discovery of a second group of ptkarycalled
archaea has provided evidence of a third cellular domain of life and new insights
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into the origin of life itself.

Prokaryotes are unicellular organisms that do not developfterditiate into
multicellular forms. Some bacteria grow in filaments, or masses of cells, but each
cell in the colony is identical and capable of independent existence. &lilge c
may be adjacent to one another because they did not separate aftévisahd
or because they remained enclosed in a common sheath or slime secreted by the
cells. Typically though, there is no continuity or communication between the cells.
Prokaryotes are capable of inhabiting almost every place on the eanth,tlie
deep ocean, to the edges of hot springs, to just about every soffagebodies.

Prokaryotes are distinguished from eukaryotes on the basis of nwctgami-
zation, specifically their lack of a nuclear membrane. Prokaryotes als@igckf
the intracellular organelles and structures that are characteristic afyetikaells.
Most of the functions of organelles, such as mitochondria, chloroplaststhe
Golgi apparatus, are taken over by the prokaryotic plasma membraheriRytc
cells have three architectural regions: appendages dipellaandpili—proteins
attached to the cell surfacerell envelopeonsisting of a capsule,cell wall, and
aplasma membranand acytoplasmic regiothat contains theell genomé&DNA)
and ribosomes and various sorts of inclusions.

Eukaryotic Organisms

Eukaryotednclude fungi, animals, and plants as well as some unicellular organ-
isms. Eukaryotic cells are about 10 times the size of a prokaryote and can be
as much as 1000 times greater in volume. The major and extremely significant
difference between prokaryotes and eukaryotes is that eukaryotic cetiirco
membrane-bound compartments in which specific metabolic activities take place.
Most important among these is the presence of a nucleus, a membranextgeline
compartment that houses the eukaryotic cell’s DNA. Itis this nucleus thes the
eukaryote—literally, true nucleus—its name.

Eukaryotic organisms also have other specialized structures, cafjadelles
which are small structures within cells that perform dedicated functionghés
name implies, you can think of organelles as small organs. There are a dibze
ferent types of organelles commonly found in eukaryotic cells. In this primer
will focus our attention on only a handful of organelles and will examineghes
organelles with an eye to their role at a molecular level in the cell.

The origin of the eukaryotic cell was a milestone in the evolution of life. Al-
though eukaryotes use the same genetic code and metabolic processdans p
otes, their higher level of organizational complexity has permitted the develop
ment of truly multicellular organisms. Without eukaryotes, the world would lack
mammals, birds, fish, invertebrates, mushrooms, plants, and complex sitigkk-c
organisms.
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Organelles e
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Figure A.2: An organelle is a subcellular structure that das or more specific jobs to
perform in the cell, much like an organ does in the body. Amtivegmore important cell
organelles are the nuclei, which store genetic informatioitochondria, which produce
chemical energy; and ribosomes, which assemble proteins.

Cell Structures: The Basics
The Plasma Membrane—A Cell’s Protective Coat

The outer lining of a eukaryotic cell is called tipglasma membranel his mem-
brane serves to separate and protect a cell from its surroundingemént and

is made mostly from a double layer of proteins and lipids, fat-like molecules. Em-
bedded within this membrane are a variety of other molecules that act asethann
and pumps, moving éfierent molecules into and out of the cell. A form of plasma
membrane is also found in prokaryotes, but in this organism it is usuallyreefe

to as thecell membrane

The Cytoskeleton—A Cell’'s Scaffold

Thecytoskeletoris an important, complex, and dynamic cell component. It acts to
organize and maintain the cell's shape; anchors organelles in place;chelpg
endocytosisthe uptake of external materials by a cell; and moves parts of the cell
in processes of growth and motility. There are a great number of protspsiated
with the cytoskeleton, each controlling a cell’s structure by directing, bugdind
aligning filaments.
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Figure A.3: The cell membrane, also called the plasma memebria found in all cells
and separates the interior of the cell from the outside enuient. The cell membrane
consists of a lipid bilayer that is semipermeable. The celinbrane regulates the transport
of materials entering and exiting the cell.

The Cytoplasm—A Cell’s Inner Space

Inside the cell there is a large fluid-filled space called ¢ii®plasm sometimes
called thecytosol In prokaryotes, this space is relatively free of compartments. In
eukaryotes, theytosolis the “soup” within which all of the cell’'s organelles reside.

It is also the home of the cytoskeleton. The cytosol contains dissolved mistrie
helps break down waste products, and moves material around the celyjlthao
process calledytoplasmic streamind'he nucleus often flows with the cytoplasm
changing its shape as it moves. The cytoplasm also contains many salts and is a
excellent conductor of electricity, creating the perfect environment ontbchan-

ics of the cell. The function of the cytoplasm, and the organelles which risitje

are critical for a cell’'s survival.

Genetic Material

Two different kinds of genetic material existeoxyribonucleic acid (DNAgndri-
bonucleic acid (RNA)Most organisms are made of DNA, but a few viruses have
RNA as their genetic material. The biological information contained in an onganis
is encoded in its DNA or RNA sequence. Prokaryotic genetic material is gz

in a simple circular structure that rests in the cytoplasm. Eukaryotic genetic mate-
rial is more complex and is divided into discrete units caiedesHuman genetic
material is made up of two distinct components: iielear genomand themito-
chondrial genomeThe nuclear genome is divided into 24 linear DNA molecules,
each contained in a flierentchromosomeThe mitochondrial genomés a circu-

lar DNA molecule separate from the nuclear DNA. Although the mitochondrial
genome is very small, it codes for some very important proteins.



280 APPENDIX A. CELL BIOLOGY PRIMER

Nucleus

Nuclear Membrane

Nucleolus
> Nucleopore

Chromatin

Figure A.4: A nuclear membrane is a double membrane thabseslthe cell nucleus.
It serves to separate the chromosomes from the rest of theTbel nuclear membrane
includes an array of small holes or pores that permit thegagesef certain materials, such
as nucleic acids and proteins, between the nucleus andliagtop

Organelles

The human body contains manyfféirent organs, such as the heart, lung, and kid-
ney, with each organ performing aldirent function. Cells also have a set of “little
organs”, calledbrganellesthat are adapted afud specialized for carrying out one
or more vital functions. Organelles are found only in eukaryotes andlemzys
surrounded by a protective membrane. It is important to know some batsc fa
about the following organelles.

The Nucleus—A Cell's Centefhe nucleusis the most conspicuous organelle
found in a eukaryotic cell. It houses the cell's chromosomes and is the\plere
almost all DNA replication and RNA synthesis occur. The nucleus is sfhero
in shape and separated from the cytoplasm by a membrane calledit¢hesar
envelope The nuclear envelope isolates and protects a cell’'s DNA from various
molecules that could accidentally damage its structure or interfere with itsgsroce
ing. During processing, DNA iranscribed or synthesized, into a special RNA,
called mRNA. This mRNA is then transported out of the nucleus, where it istran
lated into a specific protein molecule. In prokaryotes, DNA processing fellaee

in the cytoplasm.

The Ribosome—The Protein Production Machine. Ribosaredound in both
prokaryotes and eukaryotes. The ribosome is a large complex composethp
molecules, including RNAs and proteins, and is responsible for procettsrge-
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Mitochondria

Outer membrane

Inner membrane

Figure A.5: Mitochondria are membrane-bound cell orgase{mitochondrion, singular)
that generate most of the chemical energy needed to poweelifsshiochemical reactions.
Chemical energy produced by the mitochondria is stored mallsnolecule called adeno-
sine triphosphate (ATP). Mitochondria contain their owrairahromosomes. Generally,
mitochondria, and therefore mitochondrial DNA, are inteztionly from the mother.

netic instructions carried by an mRNA. The process of converting an mRNA
genetic code into the exact sequence of amino acids that make up a protein is
calledtranslation Protein synthesis is extremely important to all cells, and there-
fore a large number of ribosomes—sometimes hundreds or even thouszamls
be found throughout a cell.

Ribosomes float freely in the cytoplasm or sometimes bind to another organelle
called the endoplasmic reticulum. Ribosomes are composed of one largeeand on
small subunit, each having affirent function during protein synthesis.

Mitochondria and Chloroplasts—The Power Generators. Mitochondra self-
replicating organelles that occur in various numbers, shapes, andrsthescyto-
plasm of all eukaryotic cells. As mentioned earlier, mitochondria contain tixgir o
genome that is separate and distinct from the nuclear genome of a cell. bfitoch
dria have two functionally distinct membrane systems separated by a space: th
outer membranewhich surrounds the whole organelle; and tineer membrang
which is thrown into folds or shelves that project inward. These inwaldkfare
called cristae The number and shape of cristae in mitochondrifedi depend-
ing on the tissue and organism in which they are found, and serve to $ectiea
surface area of the membrane.

Mitochondria play a critical role in generating energy in the eukaryotic cell,
and this process involves a number of complex pathways. Let's break daah
of these steps so that you can better understand how food and nutreetisreed
into energy packets and water. Some of the best energy-supplying thatlwe
eat contain complex sugars. These complex sugars can be brokenimowan
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Figure A.6: Cell energy production. Reproduced from Albat al. P]; permission pend-
ing.

less chemically complex sugar molecule caltgdcose Glucose can then enter
the cell through special molecules found in the membrane, cgllgzbse trans-
porters Once inside the cell, glucose is broken down to mattenosine triphos-
phate (ATP)a form of energy, via two dierent pathways.

The first pathwayglycolysis requires no oxygen and is referred teaasierobic
metabolismGlycolysis occurs in the cytoplasm outside the mitochondria. During
glycolysis, glucose is broken down into a molecule cafigcuvate Each reaction
is designed to produce some hydrogen ions that can then be used to reele en
packets ATP). However, only four ATP molecules can be made from one molecule
of glucose in this pathway. In prokaryotes, glycolysis is the only method fose
converting energy.

The second pathway, called tikaeb’s cycle or thecitric acid cycle occurs
inside the mitochondria and is capable of generating enough ATP to run aklihe
functions. Once again, the cycle begins with a glucose molecule, whichgdiien
process of glycolysis is stripped of some of its hydrogen atoms, transfgrimén
glucose into two molecules gfyruvic acid Next, pyruvic acid is altered by the
removal of a carbon and two oxygens, which go on to form carbon dto¥ihen
the carbon dioxideis removed, energy is giverffpand a molecule called NAD
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is converted into the higher energy form, NADH. Another molecateenzyme A
(CoA) then attaches to the remaining acetyl unit, formacgtyl CoA

Acetyl CoAenters the Kreb’s cycle by joining to a four-carbon molecule called
oxaloacetateOnce the two molecules are joined, they make a six-carbon molecule
called citric acid. Citric acid is then broken down and modified in a stepwise fash
ion. As this happens, hydrogen ions and carbon molecules are rel&agsachrbon
molecules are used to make more carbon dioxide. The hydrogen ionsled pjT
by NAD and another molecule calldlivin-adenine dinucleotide (FADEventu-
ally, the process produces the four-carbon oxaloacetate againgamuiwhere it
started €. All in all, the Kreb's cycle is capable of generating from 24 to 28 ATP
molecules from one molecule of glucose converted to pyruvate. Therdafds
easy to see how much more energy we can get from a molecule of glucase if o
mitochondria are working properly and if we have oxygen.

Chloroplastsare similar to mitochondria but are found only in plants. Both
organelles are surrounded by a double membrane with an intermembramee spa
both have their own DNA and are involved in energy metabolism; and both have
reticulations, or many foldings, filling their inner spaces. Chloroplastsarbtight
energy from the sun into ATP through a process cagbledtosynthesis

The Endoplasmic Reticulum and the Golgi Apparatus—Macromoleculedé¢ana
Theendoplasmic reticulum (ER the transport network for molecules targeted for
certain modifications and specific destinations, as compared to moleculeslthat w
float freely in the cytoplasm. The ER has two forms: thegh ERand thesmooth
ER The rough ER is labeled as such because it has ribosomes adheringiteiits o
surface, whereas the smooth ER does not. Translation of the mMRNA far pinos
teins that will either stay in the ER or lexportedmoved out of the cell) occurs at
the ribosomes attached to the rough ER. The smooth ER serves as the tdoipien
those proteins synthesized in the rough ER. Proteins to be exportedsaeziia
the Golgi apparatus sometimes called a Golgi body or Golgi complex, for further
processing, packaging, and transport to a variety of other cellulaidosa

Lysosomes and Peroxisomes—The Cellular Digestive System. Lysesuiper-
oxisomesre often referred to as the garbage disposal system of a cell. Both or-
ganelles are somewhat spherical, bound by a single membrane, and rigkesn d
tive enzymes, naturally occurring proteins that speed up biochemiceé$ses.
For example, lysosomes can contain more than three dozen enzymesraaidgg
proteins, nucleic acids, and certain sugars called polysaccharidesf.tA#se en-
zymes work best at a low pH, reducing the risk that these enzymes willtdiges
own cell should they somehow escape from the lysosome. Here we cdhesee
importance behind compartmentalization of the eukaryotic cell. The cell cotld no
house such destructive enzymes if they were not contained in a mentiwand-
system.

One function of a lysosome is to digest foreign bacteria that invade a cedir Oth
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Figure A.7: Endoplasmic reticulum is a network of membransile a cell through which
proteins and other molecules move. Proteins are assentiegbaelles called ribosomes.
(a) When proteins are destined to be part of the cell membraegported from the cell,
the ribosomes assembling them attach to the endoplasnitlteh, giving it a rough
appearance. (b) Smooth endoplasmic reticulum lacks rihes@nd helps synthesize and
concentrate various substances needed by the cell.

functions include helping to recycle receptor proteins and other memboamgoes

nents and degrading worn out organelles such as mitochondria. logesscan

even help repair damage to the plasma membrane by serving as a membrane patch
sealing the wound.

Peroxisomes function to rid the body of toxic substances, such as lgrdrog
peroxide, or other metabolites and contain enzymes concerned with ouijlipax
tion. High numbers of peroxisomes can be found in the liver, where toxicololy
ucts are known to accumulate. All of the enzymes found in a peroxisome are im-
ported from the cytosol. Each enzyme transferred to a peroxisime hascilsp
sequence at one end of the protein, calld@iT&or peroxisomal targeting signal
that allows the protein to be taken into that organelle, where they then furiotion
rid the cell of toxic substances.

Peroxisomes often resemble a lysosome. However, peroxisomes arep$ielf r
cating, whereas lysosomes are formed in the Golgi complex. Peroxisontes als
have membrane proteins that are critical for various functions, suatr &sport-
ing proteins into their interiors and to proliferate and segregate into daugiter

Where Do Viruses Fit?

Viruses are not classified as cells and therefore are neither unicelrianunti-
cellular organisms. Most people do not even classify viruses as “livimgause
they lack a metabolic system and are dependent on the host cells that twytonf
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Figure A.8: A Golgi body, also known as a Golgi apparatus, ¢gelhorganelle that helps
process and package proteins and lipid molecules, eslyepiateins destined to be ex-
ported from the cell. Named after its discoverer, Camilldggahe Golgi body appears as
a series of stacked membranes.

reproduce. Viruses have genomes that consist of either DNA or RiNvAthere are
examples of viruses that are either double-stranded or single-strangextantly,
their genomes code not only for the proteins needed to package its genetiama
but for those proteins needed by the virus to reproduce during its vdentcle.

Making New Cells and Cell Types

For most unicellular organisms, reproduction is a simple matteelbfluplication

also known ageplication But for multicellular organisms, cell replication and
reproduction are two separate processes. Multicellular organismseeafdataged

or worn out cells through a replication process calteitosis the division of a
eukaryotic cell nucleus to produce two identicklughter nuclei To reproduce,
eukaryotes must first create special cells cafjathetes-eggs and sperm—that
then fuse to form the beginning of a new organism. Gametes are but one of th
many unique cell types that multicellular organisms need to function as a complete
organism.

Making New Cells

Most unicellular organisms create their next generation by replicating &tleaf
parts and then splitting into two cells, a typeasiexual reproductiocalledbinary
fission This process spawns not just two new cells, but also two new organisms.
Multicellullar organisms replicate new cells in much the same way. For example,
we produce new skin cells and liver cells by replicating the DNA found indkkt



286 APPENDIX A. CELL BIOLOGY PRIMER

Interphase

Chromosomes

1 Diploid cell
46 Chromosomes (2n)

i > O\ W
" Chromatin . replication 4n

Prophase > Metaphase > Anaphase > Telophase

2 Diploid cells
46 Chromosomes

-y,
Interphase

2n

Figure A.9: Mitosis is a cellular process that replicatesoofiosomes and produces two
identical nuclei in preparation for cell division. Gendyamitosis is immediately followed
by the equal division of the cell nuclei and other cell cotgento two daughter cells.

through mitosis. Yet, producing a whole new organism requseial reproduc-

tion, at least for most multicellular organisms. In the first step, specialized cells
calledgametes-eggs and sperm—are created through a process called meiosis.
Meiosisserves to reduce the chromosome number for that particular organism by
half. In the second step, the sperm and egg join to make a single cell, whioha®

the chromosome number. This joined cell then divides afiéréntiates into dif-
ferent cell types that eventually form an entire functioning organism.

Mitosis. Every time a cell divides, it must ensure that its DNA is shared between
the two daughter cells. Mitosis is the process of “divvying up” the genortvedsm

the daughter cells. To easier describe this process, let's imagine a cellmgth o
one chromosome. Before a cell enters mitosis, we say the cellngirphasethe
state of a eukaryotic cell when not undergoing division. Every time a sedlak, it
must first replicate all of its DNA. Because chromosomes are simply DNA veicpp
around protein, the cell replicates its chromosomes also. These two clmmess
positioned side by side, are callsidter chromatidsind are identical copies of one
another. Before this cell can divide, it must separate these sister dinlerfram

one another. To do this, the chromosomes have to condense. This stajesi$

is calledprophase Next, the nuclear envelope breaks down, and a large protein
network, called thespindle attaches to each sister chromatid. The chromosomes
are now aligned perpendicular to the spindle in a process calétdphaseNext,
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Figure A.10: Meiosis is the formation of egg and sperm cefissexually reproducing
organisms, body cells are diploid, meaning they containgets of chromosomes (one set
from each parent). To maintain this state, the egg and sgetuhite during fertilization
must be haploid, meaning they each contain a single set ofraiBomes. During meiosis,
diploid cells undergo DNA replication, followed by two radsof cell division, producing
four haploid sex cells.

“molecular motors” pull the chromosomes away from the metaphase plate to the
spindle poles of the cell. This is calleshaphaseOnce this process is completed,
the cells divide, the nuclear envelope reforms, and the chromosomesaredax
decondense durintelophase The cell can now replicate its DNA again during
interphase and go through mitosis once more.

Meiosis. Meiosiss a specialized type of cell division that occurs during the forma-
tion of gametes. Although meiosis may seem much more complicated than mitosis,
it is really just two cell divisions in sequence. Each of these sequendesama
strong similarities to mitosis.

Meiosis Irefers to the first of the two divisions and is often calledréduction
division This is because it is here that the chromosome complement is reduced
from diploid (two copies) tchaploid (one copy). Interphase in meiosis is identical
to interphase in mitosis. At this stage, there is no way to determine what type of
division the cell will undergo when it divides. Meiotic division will only oacun
cells associated with male or female sex orgddrephase lis virtually identical
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to prophase in mitosis, involving the appearance ofd®mosomeshe devel-
opment of the spindle apparatus, and the breakdown of the nuclear nmembra
Metaphase | is where the criticalffirence occurs between meiosis and mitosis.
In mitosis, all of the chromosomes line up on the metaphase plate in no particu-
lar order. In Metaphase |, the chromosome pairs are aligned on eithesfdide
metaphase plate. It is during this alignment that the chromatid arms may overlap
and temporarily fuse, resulting in what is callesssoversDuring Anaphase ||

the spindle fibers contract, pulling the homologous pairs away from eaehanti
toward each pole of the cell. [felophase ,la cleavage furrow typically forms,
followed by cytokinesisthe changes that occur in the cytoplasm of a cell during
nuclear division; but the nuclear membrane is usually not reformed, anchtio-
mosomes do not disappear. At the end of Telophase |, each daughteasa
single set of chromosomes, half the total number in the original cell, that ik wh
the original cell was diploid; the daughter cells are now haploid.

Meiosis llis quite simply a mitotic division of each of the haploid cells pro-
duced in Meiosis |. There is no Interphase between Meiosis | and Meipsis |
and the latter begins witRrophase Il At this stage, a new set of spindle fibers
forms and the chromosomes begin to move toward the equator of the cell. During
Metaphase |l all of the chromosomes in the two cells align with the metaphase
plate. InAnaphase lIthe centromeres split, and the spindle fibers shorten, drawing
the chromosomes toward each pole of the cellTdfophase lla cleavage furrow
develops, followed by cytokinesis and the formation of the nuclear membraee
chromosomes begin to fade and are replaced bygthrular chromatin a char-
acteristic of interphase. When Meiosis Il is complete, there will be a totalwf fo
daughter cells, each with half the total number of chromosomes as the original
cell. In the case afnale structuresall four cells will eventually develop intsperm
cells In the case of théemale life cyclesn higher organisms, three of the cells
will typically abort, leaving a single cell to develop into an egg cell, which is much
larger than a sperm cell.

Recombination—The Physical Exchange of DIA.organisms sifer a certain
number of smalimutations or random changes in a DNA sequence, during the
process of DNA replication. These are callggbntaneous mutatiorend occur

at a rate characteristic for that organisBenetic recombinationefers more to a
large-scale rearrangement of a DNA molecule. This process involvesgobe-
tween complementary strands of two parental duplex, or double-strddiAd,

and results from a physical exchange of chromosome material.

The position at which a gene is located on a chromosome is calteia In a
given individual, one might find two €fierent versions of this gene at a particular
locus. These alternate gene forms are cadléeles During Meiosis |, when the
chromosomes line up along the metaphase plate, the two strands of a chromosome
pair may physically cross over one another. This may cause the strandsato b
apart at the crossover point and reconnect to the other chromosesoitjirg in
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the exchange of part of the chromosome.

Recombination results in a new arrangement of maternal and paternal alleles
on the same chromosome. Although the same genes appear in the same erder, th
alleles are dferent. This process explains whifspring from the same parents can
look so diferent. In this way, it is theoretically possible to have any combination
of parental alleles in anftspring, and the fact that two alleles appear together in
one dfspring does not have any influence on the statistical probability that anothe
offspring will have the same combination. This theoryioffependent assortmént
of alleles is fundamental to genetic inheritance. However, having said teag, ith
an exception that requires further discussion.

The frequency of recombination is actually not the same for all gene combi-
nations. This is because recombination is greatly influenced by the proximity of
one gene to another. If two genes are located close together on a cbrogdke
likelihood that a recombination event will separate these two genes is less than
they were farther apartinkagedescribes the tendency of genes to be inherited
together as a result of their location on the same chromosoimieage disequilib-
rium describes a situation in which some combinations of genes or genetic markers
occur more or less frequently in a population than would be expected freim th
distances apart. Scientists apply this concept when searching for dhgémeay
cause a particular disease. They do this by comparing the occurreacpetific
DNA sequence with the appearance of a disease. When they find a higlaton
between the two, they know they are getting closer to finding the appropéate g
sequence.

Binary Fission—How Bacteria ReproducBacteria reproduce through a fairly
simple process calldoinary fission or the reproduction of a living cell by division
into two equal, or near equal, parts. As just noted, this type of asexaraldection
theoretically results in two identical cells. However, bacterial DNA has divels
high mutation rate. This rapid rate of genetic change is what makes bacteaa ca
ble of developing resistance to antibiotics and helps them exploit invasion into a
wide range of environments.

Similar to more complex organisms, bacteria also have mechanisms for ex-
changing genetic material. Although not equivalent to sexual reprodudtie
end result is that a bacterium contains a combination of traits from tffereint
parentalcells. Three dierent modes of exchange have thus far been identified in
bacteria.

Conjunctioninvolves the direct joining of two bacteria, which allows their cir-
cular DNAs to undergo recombination. Bacteria can also undeagsformation
by absorbing remnants of DNA from dead bacteria and integrating tregeénts
into their own DNA. Lastly, bacteria can exchange genetic material thropgb-a
cess calledransduction in which genes are transported into and out of the cell
by bacterial viruses, callebacteriophagesor by plasmids an autonomous self-
replicating extrachromosomal circular DNA.
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Figure A.11: Types of viruses. This illustration depictsethtypes of viruses: a bacterial
virus, otherwise called a bacteriophage (left center); @imal virus (top right); and a
retrovirus (bottom right). Viruses depend on the host dallt they infect to reproduce.
When found outside of a host cell, viruses, in their simplestfs, consist only of genomic
nucleic acid, either DNA or RNA (depicted as blue), surrceshdy a protein coat, or
capsid.

Viral ReproductionBecause viruses are acellular and do not use ATP, they must
utilize the machinery and metabolism of a host cell to reproduce. For thisrreas
viruses are calledbligate intracellular parasitesBefore a virus has entered a host
cell, it is called a virion—a package of viral genetic matefiations—infectious

viral particles—can be passed from host to host either through dicetact or
through a vector, or carrier. Inside the organism, the virus can entf & war-

ious ways. Bacteriophages—bacterial viruses—attach to the cell wécsuin
specific places. Once attached, enzymes make a small hole in the cell wall, and
the virus injects its DNA into the cell. Other viruses (such as HIV) enter the hos
via endocytosisthe process whereby cells take in material from the external envi-
ronment. After entering the cell, the virus’'s genetic material begins the dagéu
process of taking over the cell and forcing it to produce new viruses.

There are three fferent ways genetic information contained in a viral genome
can be reproduced. The form of genetic material contained imithecapsid the
protein coat that surrounds the nucleic acid, determines the exact tigplipgo-
cess. Some viruses have DNA, which once inside the host cell is replicatibe
host along with its own DNA. Then, there are twdtdrent replication processes
for viruses containing RNA. In the first process, the viral RNA is directipied
using an enzyme calle@NA replicaseThis enzyme then uses that RNA copy as
a template to make hundreds of duplicates of the original RNA. A seconggrou
of RNA-containing viruses, called thetroviruses uses the enzyme reverse tran-
scriptase to synthesize a complementary strand of DNA so that the virugsge
information is contained in a molecule of DNA rather than RNA. The viral DNA
can then be further replicated using the host cell machinery.

Steps Associated with Viral Reproduction.
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1. Attachmentsometimes calledbsorption The virus attaches to receptors on
the host cell wall.

2. Penetration The nucleic acid of the virus moves through the plasma mem-
brane and into the cytoplasm of the host cell. The capsid of a phagetea bac
rial virus, remains on the outside. In contrast, many viruses that infengan
cells enter the host cell intact.

3. Replication The viral genome contains all the information necessary to pro-
duce new viruses. Once inside the host cell, the virus induces the Hdst ce
synthesize the necessary components for its replication.

4. AssemblyThe newly synthesized viral components are assembled into new
viruses.

5. Release Assembled viruses are released from the cell and can now infect
other cells, and the process begins again.

When the virus has taken over the cell, it immediately directs the host to begin
manufacturing the proteins necessary for virus reproduction. Thiepnoduces
three kinds of proteinsearly proteins enzymes used in nucleic acid replication;
late proteins proteins used to construct the virus coat; gt proteing enzymes
used to break open the cell for viral exit. The final viral product ieagsed spon-
taneously, that is, the parts are made separately by the host and areqgetter
by chance. This self-assembly is often aided by molealiaperonesor proteins
made by the host that help the capsid parts come together.

The new viruses then leave the cell either by exocytosis or by lysis. Bre«lo
bound animal viruses instruct the host’'s endoplasmic reticulum to make certain
proteins, calledylycoproteins which then collect in clumps along the cell mem-
brane. The virus is then discharged from the cell at these exit sitestadfto as
exocytosis. On the other hand, bacteriophages must break odgse dhe cell to
exit. To do this, the phages have a gene that codes for an enzymelgatiegme
This enzyme breaks down the cell wall, causing the cell to swell and burst. T
new viruses are released into the environment, killing the host cell in thegsoc

One family of animal viruses, called the retroviruses, contains RNA genomes
in their virus particles but synthesize a DNA copy of their genome in infected
cells. Retroviruses provide an excellent example of how viruses carmapliypor-
tant role as models for biological research. Studies of these viruseghatdirst
demonstrated the synthesis of DNA from RNA templates, a fundamental mode fo
transferring genetic material that occurs in both eukaryotes and yuaikar

Why Study Viruses?. Virusese important to the study oholecular and cellu-

lar biology because they provide simple systems that can be used to manipulate
and investigate the functions of many cell types. We have just discusseditab
replication depends on the metabolism of the infected cell. Therefore, tte stu
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of viruses can provide fundamental information about aspects of cétigyiand
metabolism. The rapid growth and small genome size of bacteria make them excel-
lent tools for experiments in biology. Bacterial viruses have also furihgslgied

the study of bacterial genetics and have deepened our understamndiegbasic
mechanisms of molecular genetics. Because of the complexity of an animal cell
genome, viruses have been even more important in studies of animal cells than
in studies of bacteria. Numerous studies have demonstrated the utility of animal
viruses as probes for investigatingfdrent activities of eukaryotic cells. Other
examples in which animal viruses have provided important models for biologica
research of their host cells include studieDNA replication transcription RNA
processingandprotein transport

Deriving New Cell Types

Look closely at the human body, and it is clear that not all cells are alike. Fo
example, cells that make up our skin are certainffedént from cells that make

up our inner organs. Yet, all of theftirent cell types in our body are alérived

or arise, from a single, fertilized egg cell througHfeientiation.Differentiation

is the process by which an unspecialized cell becomes specialized intd thee o
many cells that make up the body, such as a heart, liver, or muscle cell. During
differentiation, certain genes are turned on, or becactigated while other genes

are switched f§, orinactivated This process is intricately regulated. As a result, a
differentiated cell will develop specific structures and perform certairtifurs

Mammalian Cell TypesThree basic categories of cells make up the mammalian
body: germ cells somatic cellsand stem cells Each of the approximately 100
trillion cells in an adult human has its own copy, or copies, of the genome, with the
only exception being certain cell types that lack nuclei in their fulledentiated
state, such as red blood cells. The majority of these celldigteid, or have two
copies of each chromosome. These cells are calhedatic cellsThis category of
cells includes most of the cells that make up our body, such as skin and muscle
cells. Germ line cellsare any line of cells that give rise gametes—eggs and
sperm—and are continuous through the generat®iesn cellson the other hand,
have the ability to divide for indefinite periods and to give rise to specialietsl.c
They are best described in the context of normal human development.

Human developmettegins when a sperm fertilizes an egg and creates a sin-
gle cell that has the potential to form an entire organism. In the first hdtas a
fertilization, this cell divides into identical cells. Approximately 4 days after fe
tilization and after several cycles of cell division, these cells begin toisles
forming a hollow sphere of cells, calledodastocyst The blastocyst has an outer
layer of cells, and inside this hollow sphere, there is a cluster of cells caked th
inner cell mass The cells of the inner cell mass will go on to form virtually all
of the tissues of the human body. Although the cells of the inner cell mass can
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Figure A.12: Diferentiation of human tissues. Human development begins atsperm
fertilizes an egg and creates a single cell that has the paittémform an entire organism,
called the zygote (top panel, mauve). In the first hours déteilization, this cell divides
into identical cells. These cells then begin to speciafiaening a hollow sphere of cells,
called a blastocyst (second panel, purple). The blastd@stan outer layer of cells (yel-
low), and inside this hollow sphere, there is a cluster ofscedlled the inner cell mass
(light blue). The inner cell mass can give rise to the gerriseeéggs and sperm—as well
as cells derived from all three germ layers (ectoderm, lijhe; mesoderm, light green;
and endoderm, light yellow), depicted in the bottom panwluding nerve cells, muscle
cells, skin cells, blood cells, bone cells, and cartilagepf@duced with permission from
the Office of Science Policy, the National Institutes of Health.

form virtually every type of cell found in the human body, they cannoinf@n
organism. Therefore, these cells are referred fg@potent that is, they can give

rise to many types of cells but not a whole organism. Pluripotent stem cells un-
dergo further specialization into stem cells that are committed to give rise to cells
that have a particular function. Examples include blood stem cells that igive r

to red blood cells, white blood cells, and platelets, and skin stem cells that give
rise to the various types of skin cells. These more specialized stem cellsllack ¢
multipotert—capable of giving rise to several kinds of cells, tissues, or structures.

The Working Cell: DNA, RNA, and Protein Synthesis
DNA Replication

DNA replication or the process of duplicating a cell's genome, is required every
time a cell divides. Replication, like all cellular activities, requires specialmzed
teins for carrying out the job. In the first step of replication, a specdtkm, called
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Template Strands

Replication Fork

Figure A.13: An overview of DNA replication. Before a cellrcdivide, it must first du-
plicate its DNA. This figure provides an overview of the DN/Aplieation process. In the
first step, a portion of the double helix (blue) is unwound byeécase. Next, a molecule
of DNA polymerase (green) binds to one strand of the DNA. Ivesalong the strand,
using it as a template for assembling a leading strand (fetl@eotides and reforming a
double helix. Because DNA synthesis can only occur 5’ to 3eeond DNA polymerase
molecule (also green) is used to bind to the other templedadts the double helix opens.
This molecule must synthesize discontinuous segmentdyrifipceotides (called Okazaki
Fragments). Another enzyme, DNA Ligase (yellow), therchés these together into the
lagging strand.

a helicase unwinds a portion of the parental DNA double helix. Next, a molecule
of DNA polymerase-a common name for two categories of enzymes that influ-
ence the synthesis of DNA— binds to one strand of the DNA. DNA polymerase
begins to move along the DNA strand in the 3’ to 5’ direction, using the single-
stranded DNA as a template. This newly synthesized strand is callddatimg
strandand is necessary for forming new nucleotides and reforming a double helix
Because DNA synthesis can only occur in the 5’ to 3’ direction, a secdwd D
polymerase molecule is used to bind to the other template strand as the double he-
lix opens. This molecule synthesizes discontinuous segments of polynuekotid
calledOkazaki fragmentsAnother enzyme, calleBNA ligase is responsible for
stitching these fragments together into what is calledabging strand

The average human chromosome contains an enormous number of nucleotide
pairs that are copied at about 50 base pairs per second. Yet, thereptication
process takes only about an hour. This is because there areremioation ori-
gin siteson a eukaryotic chromosome. Therefore, replication can begin at some
origins earlier than at others. As replication nears completion, “bubbfaséwly
replicated DNA meet and fuse, forming two new molecules.

With multiple replication origin sites, one might ask, how does the cell know
which DNA has already been replicated and which still awaits replicationafg d
two replication control mechanisntsave been identified: one positive and one neg-
ative. For DNA to be replicated, each replication origin site must be boural by
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Figure A.14: Transcription is the process of making an RNpyoof a gene sequence. This
copy, called a messenger RNA (mMRNA) molecule, leaves tHenoeleus and enters the
cytoplasm, where it directs the synthesis of the proteiricivtt encodes.

set of proteins called th®rigin Recognition ComplexThese remain attached to
the DNA throughout the replication process. Specific accessory psotahedi-
censing factorsmust also be present for initiation of replication. Destruction of
these proteins after initiation of replication prevents further replication syoben
occurring. This is because licensing factors are only produced wigenutiear
membrane of a cell breaks down during mitosis.

DNA Transcription—Making mRNA

DNA transcriptionrefers to the synthesis of RNA from a DNA template. This pro-
cess is very similar to DNA replication. Of course, there affedent proteins that
direct transcription. The most important enzymeRiNA polymerasean enzyme
that influences the synthesis of RNA from a DNA template. For transcription to
be initiated, RNA polymerase must be able to recognize the beginning sequenc
of a gene so that it knows where to start synthesizing an mRNA. It is ditecte
this initiation site by the ability of one of its subunits to recognize a specific DNA
sequence found at the beginning of a gene, callegtbmoter sequencdhe pro-
moter sequence is a unidirectional sequence found on one strand oR¢hBt
instructs the RNA polymerase in both where to start synthesis and in which di-
rection synthesis should continue. The RNA polymerase then unwinds tixtedo
helix at that point and begins synthesis of a RNA strand complementary tofone
the strands of DNA. This strand is called thatisenser template strangwhereas

the other strand is referred to as thenseor coding strand. Synthesis can then
proceed in a unidirectional manner.
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Although much is known about transcript processing, the signals antsaat
instruct RNA polymerase to stop transcribing and dréjtloe DNA template re-
main unclear. Experiments over the years have indicated that processagatic
messages contairpaly(A) addition signa{]AAUAAA) at their 3’ end, followed by
a string of adenines. This poly(A) addition, also calledpbéy/(A) site contributes
not only to the addition of the poly(A) tail but also to transcription termination and
the release of RNA polymerase from the DNA template. Yet, transcription does
not stop here. Rather, it continues for another 200 to 2000 basesd#yis site
before it is aborted. It is either before or during this termination processtltle
nascent transcript isleaved or cut, at the poly(A) site, leading to the creation of
two RNA molecules. The upstream portion of the newly formedamscentRNA
then undergoes further modifications, calpegst-transcriptional modificatigrand
becomes mMRNA. The downstream RNA becomes unstable and is rapidlylddgra

Although the importance of the poly(A) addition signal has been established,
the contribution of sequences further downstream remains uncertaneAtrstudy
suggests that a defined region, calledt#renination regionis required for proper
transcription termination. This study also illustrated that transcription termination
takes place in two distinct steps. In the first step, the nascent RNA is dledve
specific subsections of the termination region, possibly leading to its release f
RNA polymerase. In a subsequent step, RNA polymerase disengagestie
DNA. Hence, RNA polymerase continues to transcribe the DNA, at leash fo
short distance.

Protein Translation—How Do Messenger RNAs Direct Protein Synthesis?

The cellular machinery responsible for synthesizing proteins isiltlosome The
ribosome consists of structural RNA and about &Bedéent proteins. In its inactive
state, it exists as two subunitstaaige subunitand asmall subunitWhen the small
subunit encounters an mMRNA, the procesgrahslatingan mRNA to a protein
begins. In the large subunit, there are two sites for amino acids to bind asd thu
be close enough to each other to form a bond. Thsite’ accepts a newransfer

RNA or tRNA—the adaptor molecule that acts as a translator between mRNA and
protein—bearing an amino acid. The “P skeSitebinds the tRNA that becomes
attached to the growing chain.

As we just discussed, the adaptor molecule that acts as a translator between
MRNA and protein is a specific RNA molecule, the tRNA. Each tRNA has a spe-
cific acceptor sitethat binds a particular triplet of nucleotides, called¢a@on
and ananti-codon sitethat binds a sequence of three unpaired nucleotides, the
anti-codon, which can then bind to the the codon. Each tRNA also has #icpec
charger protein called anaminoacyl tRNA synthetas€his protein can only bind
to that particular tRNA and attach the correct amino acid to the acceptor site.

The start signalfor translation is the codon ATG, which codes for methionine.
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Figure A.15: Translation is the process of translating #émguence of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protgiihesis. The genetic
code describes the relationship between the sequence@phas in a gene and the cor-
responding amino acid sequence that it encodes. In theyteplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assemebpedtein.

Not every protein necessarily starts with methionine, however. Oftentimefir #is
amino acid will be removed in later processing of the protein. A tRNA charged
with methionine binds to the translation start signal. The large subunit binds to
the mRNA and the small subunit, and so begiengation the formation of the
polypeptide chain. After the first charged tRNA appears in the A site, thsaiine
shifts so that the tRNA is now in the P site. New charged tRNAs, correspgndin
the codons of the mRNA, enter the A site, and a bond is formed between the two
amino acids. The first tRNA is now released, and the ribosome shifts agtiatso

a tRNA carrying two amino acids is now in the P site. A new charged tRNA then
binds to the A site. This process of elongation continues until the ribosoroke®a
what is called atop codona triplet of nucleotides that signals the termination of
translation. When the ribosome reaches a stop codon, no aminoacyl tRN# bind
to the empty A site. This is the ribosome signal to break apart into its large and
small subunits, releasing the new protein and the mRNA. Yet, this isn't althays
end of the story. A protein will often undergo further modification, caledt-
translational modificationFor example, it might be cleaved by a protein-cutting
enzyme, called a protease, at a specific place or have a few of its amirs acid
altered.
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Figure A.16: Transfer RNA (tRNA) is a small RNA molecule thpatrticipates in protein
synthesis. Each tRNA molecule has two important areasnadieéotide region called the
anticodon and a region for attaching a specific amino acidinguranslation, each time
an amino acid is added to the growing chain, a tRNA molecute$obase pairs with
its complementary sequence on the messenger RNA (mMRNA)mlelesnsuring that the
appropriate amino acid is inserted into the protein.

DNA Repair Mechanisms

Maintenance of the accuracy of the DNA genetic code is critical for botlotig
and short-term survival of cells and species. Sometimes, normal celttiitias,
such as duplicating DNA and making new gametes, introduce changestar
tionsin our DNA. Other changes are caused by exposure of DNA to chemicals,
radiation, or other adverse environmental conditions. No matter the soermetic
mutations have the potential for both positive and negatiiects on an individ-
ual as well as its species. A positive change results in a slighfilgrdnt version
of a gene that might eventually prove beneficial in the face of a new dismas
changing environmental conditions. Such beneficial changes are thersione
of evolution. Other mutations are considedleteriousor result in damage to a
cell or an individual. For example, errors within a particular DNA seqeenay
end up either preventing a vital protein from being made or encoding atiefe
protein. It is often these types of errors that lead to various diseass.state

The potential for DNA damage is counteracted by a vigorous surveillamte a
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Figure A.17: A stop codon is a trinucleotide sequence withmessenger RNA (mMRNA)
molecule that signals a halt to protein synthesis. The geoetle describes the relationship
between the sequence of DNA bases (A, C, G, and T) in a genehancbtresponding
protein sequence that it encodes. The cell reads the segjoétiee gene in groups of three
bases. Of the 64 possible combinations of three bases, 6fyspr amino acid, while the
remaining three combinations are stop codons.

repair system. Within this system, there are a number of enzymes capable of re
pairing damage to DNA. Some of these enzymes are specific for a particoéar ty
of damage, whereas others can handle a range of mutation types. Vhtsass
also difer in the degree to which they are able to restore the normaililditype
sequence.

Categories of DNA Repair Systems.

e Photoreactivationis the process whereby genetic damage caused by ultra-
violet radiation is reversed by subsequent illumination with visible or near-
ultraviolet light.

¢ Nucleotide excision repais used to fix DNA lesions, such as single-stranded
breaks or damaged bases, and occurs in stages. The first stagesmeaiog-
nition of the damaged region. In the second stage, two enzymatic reactions
serve to remove, or excise, the damaged sequence. The third stagesnvolv
synthesis by DNA polymerase of the excised nucleotides using the second
intact strand of DNA as a template. Lastly, DNA ligase joins the newly syn-
thesized segment to the existing ends of the originally damaged DNA strand.

e Recombination repajror post-replication repair fixes DNA damage by a
strand exchange from the other daughter chromosome. Because iesvolv
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Figure A.18: A peptide is one or more amino acids linked byneical bonds. The term also
refers to the type of chemical bond that joins the amino attigsther. A series of linked
amino acids is a polypeptide. The cell’s proteins are maa® fvne or more polypeptides.

homologous recombination, it is largely error free.

e Base excision repaiallows for the identification and removal of wrong
bases, typically attributable tteaminatior—the removal of an amino group
(NH2)—of normal bases as well as from chemical modification.

e Mismatch repairis a multi-enzyme system that recognizes inappropriately
matched bases in DNA and replaces one of the two bases with one that
“matches” the other. The major problem here is recognizing which of the
mismatched bases is incorrect and therefore should be removed argdepla

o Adaptivénducible repairdescribes several protein activities that recognize
very specific modified bases. They then transfer this modifying group fro
the DNA to themselves, and, in doing so, destroy their own function. These
proteins are referred to as inducible because they tend to regulate timeir ow
synthesis. For example, exposure to modifying agents induces, or turns on
more synthesis and therefore adaptation.

e SOS repairor inducible error-prone repailis a repair process that occurs
in bacteria and is induced, or switched on, in the presence of potentially
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Figure A.19: Proteins are an important class of moleculesdan all living cells. A protein
is composed of one or more long chains of amino acids, theesegof which corresponds
to the DNA sequence of the gene that encodes it. Proteingaplagiety of roles in the cell,
including structural (cytoskeleton), mechanical (musddochemical (enzymes), and cell
signaling (hormones). Proteins are also an essential pdigin

lethal stresses, such as UV irradiation or the inactivation of genestidsen
for replication. Some responses to this type of stress inaluatagenesis-

the production of mutations—or cell elongation without cell division. In this
type of repair process, replication of the DNA template is extremely inac-
curate. Obviously, such a repair system must be a desperate refauts

cell, allowing replication past a region where the wild-type sequence has
been lost.

From Cells to Genomes

Understanding what makes up a cell and how that cell works is fundahtenta
all of the biological sciences. Appreciating the similarities arftedences between
cell types is particularly important to the fields of cell and molecular biologgs€h
fundamental similarities and fiiérences provide a unifying theme, allowing the
principles learned from studying one cell type to be extrapolated andajzeel

to other cell types.
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Perhaps the most fundamental property of all living things is their ability to re-
produce. All cells arise from pre-existing cells, that is, their genetic mataat
be replicated and passed from parent cell to progeny. Likewise, all mliutir
organisms inherit their genetic information specifying structure and funtrioon
their parents. The next section of the genetics primer, What is a Genotaéds de
how genetic information is replicated and transmitted from cell to cell and ergan
ism to organism.
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Figure A.20: The four DNA bases. Each DNA base is made up oftigar 2’-deoxyribose
linked to a phosphate group and one of the four bases defbi@ee: adenine (top left),
cytosine (top right), guanine (bottom left), and thyminet{bm right).

A.2 Whatis a Genome

Life is specified bygenomesEvery organism, including humans, has a genome
that contains all of the biological information needed to build and maintain a liv-
ing example of that organism. The biological information contained in a genome
is encoded in itsleoxyribonucleic acid (DNAand is divided into discrete units
calledgenes Genes code for proteins that attach to the genome at the appropriate
positions and switch on a series of reactions called gene expression.

The Physical Structure of the Human Genome
Nuclear DNA

Inside each of our cells liesraucleus a membrane-bounded region that provides
a sanctuary for genetic information. The nucleus contains long stranD$lAf
that encode this genetic information.[2NA chain is made up of four chemical
basesadening/A) andguanineg(G), which are calleghurines andcytosingC) and
thymine(T), referred to apyrimidines Each base has a slightlyfitirent composi-
tion, or combination of oxygen, carbon, nitrogen, and hydrogen. IINA Bhain,
every base is attached to a sugar molecule (deoxyribose) and a pteosyttecule,
resulting in a nucleic acid arucleotide Individual nucleotides are linked through
the phosphate group, and it is the precise order, or sequence, lebtidies that
determines the product made from that gene.

A DNA chain, also called a strand, has a sense of direction, in which athe en
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Figure A.21: A nucleotide is the basic building block of reiclacids. RNA and DNA are

polymers made of long chains of nucleotides. A nucleotidesigis of a sugar molecule (ei-
ther ribose in RNA or deoxyribose in DNA) attached to a pha@éplyroup and a nitrogen-
containing base. The bases used in DNA are adenine (A),ingt¢€), guanine (G), and

thymine (T). In RNA, the base uracil (U) takes the place ohtime.

is chemically diferent than the other. The so-called 5’ end terminates in a 5’ phos-
phate group (-PO4); the 3’ end terminates in a 3’ hydroxyl group (-GH)s is
important because DNA strands are always synthesized in the 5’ to 8tidine

The DNA that constitutes a gene is a double-stranded molecule consisting of
two chains running in opposite directions. The chemical nature of the lases
double-stranded DNA creates a slight twisting force that gives DNA itsacher-
istic gently coiled structure, known as the double helix. The two strandsoare ¢
nected to each other by chemical pairing of each base on one strandeoificsp
partner on the other strand. Adenine (A) pairs with thymine (T), and gedi@h
pairs with cytosine (C). Thu®-T andG-C base pairsare said to beomplemen-
tary. This complementary base pairing is what makes DNA a suitable molecule
for carrying our genetic information—one strand of DNA can act sanagplateto
direct the synthesis of a complementary strand. In this way, the information in a
DNA sequence is readily copied and passed on to the next generatieltsof ¢

Organelle DNA

Not all genetic information is found in nuclear DNA. Both plants and animals hav
an organelle—a “little organ” within the cell— called tmitochondrion Each
mitochondrion has its own set of genes. Plants also have a second gt
chloroplast which also has its own DNA. Cells often have multiple mitochon-
dria, particularly cells requiring lots of energy, such as active muscle ddiis is
because mitochondria are responsible for converting the energy $toneaicro-
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Figure A.22: A base pair is two chemical bases bonded to oathanforming a "rung of
the DNA ladder.” The DNA molecule consists of two strandg thiend around each other
like a twisted ladder. Each strand has a backbone made afiaitey sugar (deoxyribose)
and phosphate groups. Attached to each sugar is one of feasbadenine (A), cytosine
(C), guanine (G), or thymine (T). The two strands are helettiogr by hydrogen bonds
between the bases, with adenine forming a base pair withitigyrand cytosine forming a
base pair with guanine.

molecules into a form usable by the cell, namely,@ldenosine triphosphate (ATP)
molecule. Thus, they are often referred to as the power generators célth

Unlike nuclear DNA(the DNA found within the nucleus of a cell), half of which
comes from our mother and half from our father, mitochondrial DNA is ortein
ited from our mother. This is because mitochondria are only found in the female
gametes or “eggs” of sexually reproducing animals, not in the male gamete, or
sperm. Mitochondrial DNA also does not recombine; there is nétiahgi of genes
from one generation to the other, as there is with nuclear genes.

Large numbers of mitochondria are found in the tail of sperm, providing them
with an engine that generates the energy needed for swimming toward the egg
However, when the sperm enters the egg during fertilization, the tail félla&ing
away the father’s mitochondria.
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Mitochondria

Mitochondrial DNA

Figure A.23: Mitochondrial DNA is the small circular chrosmme found inside mitochon-
dria. The mitochondria are organelles found in cells thatlae sites of energy production.
The mitochondria, and thus mitochondrial DNA, are passechfmother to &spring.

Why Is There a Separate Mitochondrial Genome?

The energy-conversion process that takes place in the mitochondisglakeaer-
obically, in the presence of oxygen. Other energy conversion processes éelth
take placeanaerobically or without oxygen. The independent aerobic function of
these organelles is thought to have evolved from bacteria that lived iosatber
simple organisms in a mutually beneficial, ®ymbioti¢ relationship, providing
them with aerobic capacity. Through the process of evolution, these iaysms
became incorporated into the cell, and their genetic systems and cellular fisctio
became integrated to form a single functioning cellular unit. Because mitodhond
have their own DNA, RNA, and ribosomes, this scenario is quite possibigtfid:
ory is also supported by the existence of a eukaryotic organism, callechtheba,
which lacks mitochondria. Therefore, amoeba must always have a symigiatic
tionship with an aerobic bacterium.

Why Study Mitochondria?

There are many diseases caused by mutatiomaitochondrial DNA (mtDNA)
Because the mitochondria produce energy in cells, symptoms of mitochondrial
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diseases often involve degeneration or functional failure of tissue. >ong@e,
mMtDNA mutations have been identified in some forms of diabetes, deafness, and
certain inherited heart diseases. In addition, mutations in mtDNA are able to ac-
cumulate throughout an individual's lifetime. This idfdrent from mutations in
nuclear DNA, which has sophisticated repair mechanisms to limit the accumula-
tion of mutations. Mitochondrial DNA mutations can also concentrate in the mi-
tochondria of specific tissues. A variety of deadly diseases are attributata

large number of accumulated mutations in mitochondria. There is even a theory,
the Mitochondrial Theory of Agingthat suggests that accumulation of mutations

in mitochondria contributes to, or drives, the aging process. Thesetdeaif®e asso-
ciated with Parkinson’s and Alzheimer’s disease, although it is not knduathver

the defects actually cause or are a direct result of the diseases. efpeedence
suggests that the mutations contribute to the progression of both diseases.

In addition to the critical cellular energy-related functions, mitochondrinége
are useful to evolutionary biologists because of their maternal inheritartthigh
rate of mutation. By studying patterns of mutations, scientists are able to recon-
struct patterns of migration and evolution within and between species. &ope,
mMtDNA analysis has been used to trace the migration of people from Asiasacros
the Bering Strait to North and South America. It has also been used to idantify
ancient maternal lineage from which modern man evolved.

Ribonucleic Acids

Just like DNA,ribonucleic acid (RNA)s a chain, or polymer, of nucleotides with
the same 5’ to 3’ direction of its strands. However, the ribose sugar cagnpon
of RNA is slightly different chemically than that of DNA. RNA has a 2’ oxygen
atom that is not present in DNA. Other fundamental structurdéiinces exist.
For example, uracil takes the place of the thymine nucleotide found in DN&#, an
RNA is, for the most part, a single-stranded molecule. DNA directs the ssisthe
of a variety of RNA molecules, each with a unique role in cellular function. For
example, all genes that code for proteins are first made into an RNA strand
the nucleus called messenger RNA (MRNA)he mRNA carries the information
encoded in DNA out of the nucleus to the protein assembly machinery, cafled th
ribosome in the cytoplasm. The ribosome complex uses mRNA as a template to
synthesize the exact protein coded for by the gene.

In addition to mRNA, DNA codes for other forms of RNA, including riboso-
mal RNAs (rRNAs), transfer RNAs (tRNAs), and small nuclear RNASR(SAS).
rRNAs and tRNAs patrticipate in protein assembly whereas snRNAs aid in-a pro
cess called splicing —the process of editing of mRNA before it can be sad a
template for protein synthesis.
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Figure A.24: Messenger RNA (mMRNA) is a single-stranded RN#auoule that is comple-
mentary to one of the DNA strands of a gene. The mRNA is an RNA&iee of the gene
that leaves the cell nucleus and moves to the cytoplasm wireteins are made. During
protein synthesis, an organelle called a ribosome movegdlee mRNA, reads its base
sequence, and uses the genetic code to translate eactb&seeriplet, or codon, into its
corresponding amino acid.

Proteins

Although DNA is the carrier of genetic information in a cell, proteins do the bulk
of the work. Proteins are long chains containing as many as 2€relt kinds

of amino acids. Each cell contains thousands €fiedént proteinsenzymeshat
make new molecules and catalyze nearly all chemical processes instalis;
tural componentshat give cells their shape and help them move; hormones that
transmit signals throughout the bo@ntibodieshat recognize foreign molecules;
andtransport moleculeshat carry oxygen. The genetic code carried by DNA is
what specifies the order and number of amino acids and, therefore,ape ahd
function of the protein.

The “Central Dogmé&—a fundamental principle of molecular biology—states
that genetic information flows from DNA to RNA to protein. Ultimately, however,
the genetic code resides in DNA because only DNA is passed from giemet@
generation. Yet, in the process of making a protein, the encoded infornmatish
be faithfully transmitted first to RNA then to protein. Transferring the codenfr
DNA to RNA is a fairly straightforward process callt@nscription Deciphering
the code in the resulting mRNA is a little more complex. It first requires that the
MRNA leave the nucleus and associate with a large complex of specialized RNAs
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Figure A.25: Amino acids are a set of 2@férent molecules used to build proteins. Proteins
consist of one or more chains of amino acids called polydepti The sequence of the
amino acid chain causes the polypeptide to fold into a shegied biologically active. The
amino acid sequences of proteins are encoded in the genes.

and proteins that, collectively, are called ttigosome Here the mRNA is trans-
lated into protein by decoding the mRNA sequence in blocks of three RNAspase
calledcodons where each codon specifies a particular amino acid. In this way, the
ribosomal complesbuilds a protein one amino acid at a time, with the order of
amino acids determined precisely by the order of the codons in the mMRNA.

A given amino acid can have more than one codon. These redundasriscod
usually difer at the third position. For example, the amino acid serine is encoded
by UCU, UCC, UCA, angbr UCG. This redundancy is key to accommodating
mutations that occur naturally as DNA is replicated and new cells are prdduce
By allowing some of the random changes in DNA to have flieat on the ultimate
protein sequence, a sort of genetic safety net is created. Some amonscode
for an amino acid at all but instruct the ribosome when to stop adding new amino
acids.

The Core Gene Sequence: Introns and Exons

Genes make up about 1 percent of the total DNA in our genome. In the human
genome, the coding portions of a gene, caégdns are interrupted by intervening
sequences, calledtrons In addition, a eukaryotic gene does not code for a protein
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AUGACGGAUCAGCCGCAAGCGGAAUUG ~ |JUAA

Codlon2 I—l_‘

Stop
Codon1 Codon3 Codon

Figure A.26: A codon is a trinucleotide sequence of DNA or RNt corresponds to
a specific amino acid. The genetic code describes the ne&ip between the sequence
of DNA bases (A, C, G, and T) in a gene and the correspondintgipréequence that
it encodes. The cell reads the sequence of the gene in grétipee bases. There are 64
different codons: 61 specify amino acids while the remaininegtiare used as stop signals.

in one continuous stretch of DNA. Both exons and introns &ran'scribed into
MRNA, but before it is transported to the ribosome, the primary mRNA trarigsrip
edited. This editing process removes the introns, joins the exons togettiedds
unique features to each end of the transcript to makeattreé mRNA. One might
then ask what the purpose of an intron is if it is spliced out after it is trévedt?

It is still unclear what all the functions of introns are, but scientists belibat
some serve as the site feecombination the process by which progeny derive a
combination of genes fierent from that of either parent, resulting in novel genes
with new combinations of exons, the key to evolution.

Gene Prediction Using Computers

When the complete mRNA sequence for a gene is known, computer programs ar
used to align the mRNA sequence with the appropriate region of the genomic DNA
sequence. This provides a reliable indication of the beginning and ene cdtling
region for that gene. In the absence of a complete mMRNA sequence uhédres

can be estimated by ever-improving, but still inexact, gene prediction seftwhe
problem is the lack of a single sequence pattern that indicates the begim®@ingd o

of a eukaryotic gene. Fortunately, the middle of a gene, referred to asthigene
sequencehas enough consistent features to allow more reliable predictions.

From Genes to Proteins: Start to Finish

We just discussed that the journey from DNA to mRNA to protein requires that
a cell identify where a gene begins and ends. This must be done botly diugin
transcription and the translation process.
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Table A.1: RNA triplet codons and their corresponding ananils.
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U C A G
UUU Phenylalanine] UCU Serine UAU Tyrosine UGU Cysteine
UUC Phenylalanine] UCC Serine UAC Tyrosine UGC Cysteine
UUA Leucine UCA Serine UAA Stop UGA Stop
UUG Leucine UCG Serine UAG Stop UGG Tryptophan
CUU Leucine CCU Proline CAU Histidine CGU Arginine
CUC Leucine CCC Proline CAC Histidine CGC Arginine
CUA Leucine CCA Proline CAA Glutamine | CGA Arginine
CUG Leucine CCG Proline CAG Glutamine | CGG Arginine
AUU Isoleucine ACU Threonine| AAU Asparagine| AGU Serine
AUC Isoleucine ACC Threonine| AAC Asparagine| AGC Serine
AUA Isoleucine ACA Threonine | AAA Lysine AGA Arginine
AUG Methionine ACG Threonine| AAG Lysine AGG Arginine
GUU Valine GCU Alanine GAU Aspartate | GGU Glycine
GUC Valine GCC Alanine GAC Aspartate | GGC Glycine
GUA Valine GCA Alanine GAA Glutamate | GGA Glycine
GUG Valine GCG Alanine GAG Glutamate | GGG Glycine
Transcription

Transcription the synthesis of an RNA copy from a sequence of DNA, is carried
out by an enzyme calle®NA polymeraseThis molecule has the job of recogniz-
ing the DNA sequence where transcription is initiated, callegbtbenoter siten
general, there are two “promoter” sequences upstream from the begirevery
gene. The location and base sequence of each promoter site vampltaryotes
(bacteria) an@ukaryoteghigher organisms), but they are both recognized by RNA
polymerase, which can then grab hold of the sequence and drive tthecpian of

an mRNA.

Eukaryotic cells have threeftierent RNA polymerases, each recognizing three
classes of gene®NA polymerase lis responsible for synthesis of mMRNAs from
protein-coding genes. This polymerase requires a sequence resefilifg,
commonly referred to as thEATA boxwhich is found 25-30 nucleotides upstream
of the beginning of the gene, referred to asitfigator sequence

Transcription terminates when the polymerase stumbles upon a termination,
or stop signal. In eukaryotes, this process is not fully understoodkaPByrotes,
however, tend to have a short region composed of G’s and C’s thaleisaafold
in on itself and form complementary base pairs, creating a stem in the new mRNA.
This stem then causes the polymerase to trip and releaseaotent or newly
formed, mRNA.

Translation

The beginning ofranslation the process in which the genetic code carried by
MRNA directs the synthesis of proteins from amino acid$eds slightly for prokary-
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Figure A.27: An exon is the portion of a gene that codes fomanaicids. In the cells of
plants and animals, most gene sequences are broken up by or@e DNA sequences
called introns. The parts of the gene sequence that aressquré the protein are called ex-
ons, because they are expressed, while the parts of the ggmerse that are not expressed
in the protein are called introns, because they come in legtwar interfere with—the ex-
ons. In the cells of plants and animals, most gene sequerebsaken up by one or more
introns.

otes and eukaryotes, although both processes always initiate at a foodoe-
thionine. For prokaryotes, the ribosome recognizes and attaches aqhense
AGGAGGU on the mRNA, called th8hine-Delgarno sequendiat appears just
upstream from the methionine (AUG) codon. Curiously, eukaryotes laskebog-
nition sequence and simply initiate translation at the amino acid methionine, usu-
ally coded for by the bases AUG, but sometimes GUG. Translation is terminated
for both prokaryotes and eukaryotes when the ribosome reached tdmetbree

stop codons.

Structural Genes, Junk DNA, and Regulatory Sequences

Over 98 percent of the genome is of unknown function. Although ofterned to
as “junk” DNA, scientists are beginning to uncover the function of many e$¢h
intergenic sequences—the DNA found between genes.
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Parental DNA Molecules
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Figure A.28: Recombination. Recombination involves pajrbetween complementary
strands of two parental duplex DNAs (top and middle panéijs Process creates a stretch
of hybrid DNA (bottom panel) in which the single strand of ahglex is paired with its
complement from the other duplex.

Structural GenesSequences that code for proteins are cadledctural genesAl-
though it is true that proteins are the major components of structural elements in
cell, proteins are also the real workhorses of the cell. They perfocim feunctions

as transporting nutrients into the cell; synthesizing new DNA, RNA, and iprote
molecules; and transmitting chemical signals from outside to inside the cell, as
well as throughout the cell—both critical to the process of making proteins.

Regulatory Sequences class of sequences callegjulatory sequencanakes up

a numerically insignificant fraction of the genome but provides critical tions.

For example, certain sequences indicate the beginning and end of gikegsor
initiating replication and recombination, or provide landing sites for proteirts tha
turn genes on andfio Like structural genes, regulatory sequences are inherited,;
however, they are not commonly referred to as genes.

Other DNA Regiong-orty to forty-five percent of our genome is made up of short
sequences that are repeated, sometimes hundreds of times. Therenareusu
forms of this ‘tepetitive DNA, and a few have known functions, such as stabiliz-
ing the chromosome structure or inactivating one of the two X chromosomes in
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Figure A.29: An overview of transcription and translatidhis drawing provides a graphic
overview of the many steps involved in transcription andgtation. Within the nucleus of
the cell (light blue), genes (DNA, dark blue) are transalib#o RNA. This RNA molecule
is then subject to post-transcriptional modification anctad, resulting in a mature mRNA
molecule (red) that is then transported out of the nucledsirto the cytoplasm (peach),
where it undergoes translation into a protein. mRNA molesalre translated by ribosomes
(purple) that match the three-base codons of the mRNA middouthe three-base anti-
codons of the appropriate tRNA molecules. These newly ggitled proteins (black) are
often further modified, such as by binding to affieetor molecule (orange), to become
fully active.

developing females, a process calkdhactivation The most highly repeated se-
guences found so far in mammals are callsaitéllite DNA because their unusual
composition allows them to be easily separated from other DNA. Thesersszpie
are associated with chromosome structure and are found aetiteomeregor
centers) andelomereqends) of chromosomes. Although they do not play a role
in the coding of proteins, they do play a significant role in chromosome stajctu
duplication, and cell division. The highly variable nature of these sempsgemakes
them an excellentrharker’ by which individuals can be identified based on their
unique pattern of their satellite DNA.

Another class of non-coding DNA is th@Seudogerie so named because it is
believed to be a remnant of a real gene that h&&sed mutations and is no longer
functional. Pseudogenes may have arisen through the duplication ot&ofad
gene, followed by inactivation of one of the copies. Comparing the pcesen
absence of pseudogenes is one method used by evolutionary genetigisiso
species and to determine relatedness. Thus, these sequences dnetthoagy a
record of our evolutionary history.
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Figure A.30: A chromosome. A chromosome is composed of aleegymolecule of DNA
and associated proteins that carry hereditary informafidve centromere, shown at the
center of this chromosome, is a specialized structure fhyatars during cell division and
ensures the correct distribution of duplicated chromosotoadaughter cells. Telomeres
are the structures that seal the end of a chromosome. Tedemlkay a critical role in chro-
mosome replication and maintenance by counteracting tuetey of the chromosome to
otherwise shorten with each round of replication.

How Many Genes Do Humans Have?

In February 2001, two largely independent draft versions of the hugesmome
were published. Both studies estimated that there are 30,000 to 40,000rgtdTees
human genome, roughly one-third the number of previous estimates. Merelse
scientists estimated that there are less than 30,000 human genes. Hoveestdl, w
have to make guesses at the actual number of genes, because ndt@khoman
genome sequence is annotated and not all of the known sequencehasbigned
a particular position in the genome.

So, how do scientists estimate the number of genes in a genome? For the most
part, they look for tell-tale signs of genes in a DNA sequence. These mapen
reading framesstretches of DNA, usually greater than 100 bases, that are not in-
terrupted by a stop codon such as TAA, TAG or TG#art codonssuch as ATG;
specific sequences foundsglice junctionsa location in the DNA sequence where
RNA removes the non-coding areas to form a continuous gene tranfecrifgns-
lation into a protein; andene regulatory sequencékhis process is dependent on
computer programs that search for these patterns in various sequa¢alcases and
then make predictions about the existence of a gene.

From One Gene—One Protein to a More Global Perspective

Only a small percentage of the 3 billion bases in the human genome becomes an
expressed gene product. However, of the approximately 1 percent giemome



316 APPENDIX A. CELL BIOLOGY PRIMER

that is expressed, 40 percent is alternatively spliced to produce multiptieins
from a single geneAlternative splicingrefers to the cutting and pasting of the
primary mRNA transcript into various combinations of mature mRNA. Therefore
the one gene—one protein theory, originally framed as “one gene—ayened,
does not precisely hold.

With so much DNA in the genome, why restrict transcription to a tiny portion,
and why make that tiny portion work overtime to produce many alternate tran-
scripts? This process may have evolved as a way to limit the deleteffecsseof
mutations. Genetic mutations occur randomly, and ffeceof a small number of
mutations on a single gene may be minimal. However, an individual having many
genes each with small changes could weaken the individual, and thussitiesp
On the other hand, if a single mutatiofiexts several alternate transcripts at once,
it is more likely that the ffect will be devastating—the individual may not survive
to contribute to the next generation. Thus, alternate transcripts from le gjege
could reduce the chances that a mutated gene is transmitted.

Gene Switching: Turning Genes On and Off

The estimated number of genes for humans, less than 30,000, is ndteserdi
from the 25,300 known genes of Arabidopsis thaliana, commonly called rdustar
grass. Yet, we appear, at least at first glance, to be a far more coogl@xism.

A person may wonder how this increased complexity is achieved. One alissve

in the regulatory system that turns genes on affidTthis system also precisely
controls the amount of a gene product that is produced and can fumibaify

the product after it is made. This exquisite control requires multiple regylater
put points. One veryf&cient point occurs at transcription, such that an mRNA is
produced only when a gene product is needed. Cells also regulatecgpres-
sion bypost-transcriptional maodificatigrby allowing only a subset of the mRNAs
to go on to translation; or by restricting translation of specific mMRNAs to only
when the product is needed. At other levels, cells regulate gene sigréisrough
DNA folding, chemical modification of the nucleotide bases, and intrickded-
back mechanism# which some of the gene’s own protein product directs the cell
to cease further protein production.

Controlling Transcription

Promoters and Regulatory SequencEsnscription is the process whereby RNA
is made from DNA. It is initiated when an enzym@NA polymerasebinds to

a site on the DNA called aromoter sequencdn most cases, the polymerase is
aided by a group of proteins callettdnscription factorsthat perform specialized
functions, such as DNA sequence recognition and regulation of the prageie
enzyme activity. Other regulatory sequences incladtvators repressors and
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enhancersThese sequences candis-acting(affecting genes that are adjacent to
the sequence) drans-acting(affecting expression of the gene from a distant site),
even on another chromosome.

The Globin Genes: An Example of Transcriptional Regulatidn.example of
transcriptional control occurs in the family of genes responsible for thdye-
tion of globin. Globin is the protein that complexes with the iron-containing heme
molecule to make hemoglobiflemoglobintransports oxygen to our tissues via
red blood cells. In the adult, red blood cells do not contain DNA for makivg ne
globin; they are ready-made with all of the hemoglobin they will need.

During the first few weeks of life, embryonic globin is expressed in the yolk
sac of the egg. By week five of gestation, globin is expressed in earlydatks.
By birth, red blood cells are being produced, and globin is expressee inahe
marrow. Yet, the globin found in the yolk is not produced from the same gene
is the globin found in the liver or bone marrow stem cells. In fact, at eadesta
of development, dierent globin genes are turned on arititbrough a process of
transcriptional regulation callegivitching.

To further complicate matters, globin is made from twidatient protein chains:
an alpha-like chain coded for on chromosome 16; and a beta-like chagad dod
on chromosome 11. Each chromosome has the embryonic, fetal, and adult fo
lined up on the chromosome in a sequential order for developmental skpres
The developmentally regulated transcription of globin is controlled by a nuatber
cis-acting DNA sequences, and although there remains a lot to be ledmaictize
interaction of these sequences, one known control sequence is amcenicalled
the Locus Control Region (LCRYhe LCR sits far upstream on the sequence and
controls the alpha genes on chromosome 16. It may also interact with othansfa
to determine which alpha gene is turned on.

Thalassemiaare a group of diseases characterized by the absence or decreased
production of normal globin, and thus hemoglobin, leading to decreaseptoxn
the system. There are alpha and beta thalassemias, defined by the defenty
and there are variations of each of these, depending on whether thgosrchfe-
tal, or adult forms areffected angr expressed. Although there is no known cure
for the thalassemias, there are medical treatments that have been debzepdd
on our current understanding of both gene regulation and d¢tdrdntiation. Treat-
ments include blood transfusions, iron chelators, and bone marrow laatsp
With continuing research in the areas of gene regulation and digrelntiation,
new and more fective treatments may soon be on the horizon, such as the advent
of gene transfer therapies.

The Influence of DNA Structure and Binding DomaiSequences that are im-
portant in regulating transcription do not necessarily code for trarigmifiac-
tors or other proteins. Transcription can also be regulated by subtldioasian
DNA structure and by chemical changes in the bases to which transcriptitor$
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bind. As stated previously, the chemical properties of the four DNA bdiskss
slightly, providing each base with unique opportunities to chemically react with
other molecules. One chemical modification of DNA, calheethylation involves

the addition of anethyl group (-CH3)Methylation frequently occurs at cytosine
residues that are preceded by guanine bases, oftentimes in the vicinipnudter
sequences. The methylation status of DNA often correlates with its funcagnal
tivity, where inactive genes tend to be more heavily methylated. This is betas
methyl group serves to inhibit transcription by attracting a protein that bjpetsifs
ically to methylated DNA, thereby interfering with polymerase binding. Methyla-
tion also plays an important role ienomic imprintingwhich occurs when both
maternal and paternal alleles are present but only one allele is exprelsse the
other remains inactive. Another way to think of genomic imprinting iseént

of origin differences in the expression of inherited traits. Considerable intrigue
surrounds theféects of DNA methylation, and many researchers are working to
unlock the mystery behind this concept.

Controlling Translation

Translationis the process whereby the genetic code carried by an mRNA directs
the synthesis of protein3ranslational regulationoccurs through the binding of
specific molecules, calletepressor proteinsto a sequence found on an RNA
molecule. Repressor proteins prevent a gene from being expréssad: have

just discussed, the default state for a gene is that of being expreissi vecog-
nition of its promoter by RNA polymerase. Close to the promoter region is another
cis-acting site called theperator, the target for the repressor protein. When the re-
pressor protein binds to the operator, RNA polymerase is preventedditating
transcription, and gene expression is turnéd o

Translational control plays a significant role in the process of embrydmviel-
opment and cell dierentiation. Upon fertilization, an egg cell begins to multiply
to produce a ball of cells that are all the same. At some point, howeveg, teds
begin todifferentiate or change into specific cell types. Some will become blood
cells or kidney cells, whereas others may become nerve or brain cells) ¥he
of the cells formed are alike, the same genes are turned on. Howeverdifiec-
entiation begins, various genes irffdrent cells must become active to meet the
needs of that cell type. In some organisms, the egg houses store immatufesmRN
that become translationally active only after fertilization. Fertilization theneserv
to trigger mechanisms that initiate thfieient translation of mRNA into proteins.
Similar mechanisms serve to activate mRNAs at other stages of development and
differentiation, such as when specific protein products are needed.
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Molecular Genetics: The Study of Heredity, Genes, and DNA

As we have just learned, DNA provides a blueprint that directs all celadtvi-

ties and specifies the developmental plan of multicellular organisms. Therafor
understanding of DNA, gene structure, and function is fundamentarf@ppre-
ciation of the molecular biology of the cell. Yet, it is important to recognize that
progress in any scientific field depends on the availability of experimenttd too
that allow researchers to make new scientific observations and conuledtex-
periments. The last section of the genetic primer concludes with a discugsion o
some of the laboratory tools and technologies that allow researchers yocstisl

and their DNA.
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A.3 Molecular Genetics: Piecing It Together

Molecular genetics is the study of the agents that pass information frommagene
tion to generation. These molecules, genesare long polymers adeoxyribonu-
cleic acid or DNA. Just four chemical building blocks—guanine (G), adening (A)
thymine (T), and cytosine (C)—are placed in a unique order to code fof #ie
genes in all living organisms.

Genes determinbereditary traits such as the color of our hair or our eyes.
They do this by providing instructions for how every activity in every célbor
body should be carried out. For example, a gene may tell a liver cell to emov
excess cholesterol from our bloodstream. How does a gene do thigRitistvuct
the cell to make a particular protein. It is this protein that then carries out the
actual work. In the case of excess blood cholesterol, it is the receitaigs on
the outside of a liver cell that bind to and remove cholesterol from the blDoel
cholesterol molecules can then be transported into the cell, where theyrtier f
processed by other proteins.

Many diseases are caused foytations or changes in the DNA sequence of
a gene. When the information coded for by a gene changes, the resutiteinp
may not function properly or may not even be made at all. In either caseglise
containing that genetic change may no longer perform as expected. Wienow
that mutations in genes code for ttleolesterol receptor proteiassociated with a
disease callefamilial hypercholesterolemiarhe cells of an individual with this
disease end up having reduced receptor function and cannot rensaffecent
amount of low density lipoprotein (LDL), or bad cholesterol, from their kloo
stream. A person may then develop dangerously high levels of cholegtettohg
them at increased risk for both heart attack and stroke.

How do scientists study and find these genetic mutations? They have available
to them a variety of tools and technologies to compare a DNA sequence isolated
from a healthy person to the same DNA sequence extracted frofil@ted per-
son. Advanced computer technologies, combined with the explosion ofigene
data generated from the various whole genome sequencing projedik soci@n-
tists to use these molecular genetic tools to diagnose disease and to design new
drugs and therapies. Below is a review of some common laboratory methads tha
geneticists— scientists who study the inheritance pattern of specific traitsusean
to obtain and work with DNA, followed by a discussion of some applications.

Laboratory Tools and Techniques

The methods used by molecular geneticists to obtain and study DNA have been
developed through keen observation and adaptation of the chemictibnsaand
biological processes that occur naturally in all cells. Many of the enzytimags
copy DNA, make RNA from DNA, and synthesize proteins from an RNA tem-
plate were first characterized in bacteria. These basic researdts teste become
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Figure A.31: Polymerase chain reaction (PCR) is a laboyaewhnique used to amplify
DNA sequences. The method involves using short DNA seqetadied primers to select
the portion of the genome to be amplified. The temperaturd@fsample is repeatedly
raised and lowered to help a DNA replication enzyme copydhget DNA sequence. The
technique can produce a billion copies of the target sequinjcist a few hours.

fundamental to our understanding of the function of human cells and hdwe le
immense practical applications for studying a gene and its corresponditegrpr
For example, large-scale protein production now provides an inexgewsiy to
generate abundant quantities of certain therapeutic agents, such lasfimsthe
treatment of diabetes. As science advances, so do the number of talalblavhat
are applicable to the study of molecular genetics.

Obtaining DNA for Laboratory Analysis

Isolating DNA from just a single cell provides a complete set of all a pésson
genes, that is, two copies of each gene. However, many laboratoryidael re-
quire that a researcher have access to hundreds of thousandsied oba par-
ticular gene. One way to obtain this many copies is to isolate DNA from millions
of cells grown artificially in the laboratory. Another method, cal#oning uses
DNA manipulation procedures to produce multiple copies of a single gengyor se
ment of DNA. Thepolymerase chain reactiofPCR) is a third method whereby

a specific sequence within a double-stranded DNA is copiedyslified PCR
amplification has become an indispensable tool in a great variety of applieation
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Methods for Amplifying DNA

Cloning DNA in BacteriaThe word ‘tloning’ can be used in many ways. In this
document, it refers to making multiple, exact copies of a particular sequance
DNA. To make a clone, a target DNA sequence is inserted into what is called
a cloning vector A cloning vector is a DNA molecule originating from a virus,
plasmid, or the cell of a higher organism into which another DNA fragmeapef
propriate size can be integrated without interfering with the vector's dgpfac
self-replication. The target and vector DNA fragments are figated, or joined
together, to create what is calledewombinant DNA molecul®ecombinant DNA
molecules are usually introduced irEscherichia colior E. col—a common lab-
oratory strain of a bacterium— hyansformation the natural DNA uptake mech-
anism possessed by bacteria. Within the bacterium, the vector directs the multipli-
cation of the recombinant DNA molecule, producing a number of identicaésop
The vector replication process is such that only one recombinant DNA mielec
can propagate within a single bacterium; therefore, each resulting clonait®
multiple copies of just one DNA insert. The DNA can then be isolated using the
techniques described earlier.

A restriction enzymés a protein that binds to a DNA molecule at a specific
sequence and makes a double-stranded cut at, or near, that sadrestiction
enzymes have specialized applications in various scientific techniquesasuta-
nipulating DNA molecules during cloning. These enzymes can cut DNA in two
different ways. Many make a simple double-stranded cut, giving a sequérate
are calledoblunt or flush endsOthers cut the two DNA strands atfidirent posi-
tions, usually just a few nucleotides apart, such that the resulting DNAniats
have short single-stranded overhangs, cadtitkyor cohesive endsy carefully
choosing the appropriate restriction enzymes, a researcher cart aitioget DNA
sequence, open up a cloning vector, and join the two DNA fragments todoem
combinant DNA molecule.

More on Cloning Vectordn general, a bacterial genome consists of a single, cir-
cular chromosome. They can also contain much smaller extrachromosoratitgen
elements, calleglasmids that are distinct from the normal bacterial genome and
are nonessential for cell survival under normal conditions. Plasmédsagpable of
copying themselves independently of the chromosome and can easily move fro
one bacterium to another. In addition, some plasmids are capable of intggratin
into a host genome. This makes them an excellent vehichedor, for shuttling
target DNA into a bacterial host. By cutting both the target and plasmid DNA with
the same restriction enzyme, complementary base pairs are formed on eAch DN
fragment. These fragments may then be joined together, creating a nevarcircu
plasmid that contains the target DNA. Thiscombinant plasmids then coaxed
into a bacterial host where it is copied, mplicated as though it were a normal
plasmid.
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Bacterial plasmidswvere the first vectors used to transfer genetic information
and are still used extensively. However, their use is sometimes limited by the
amount of target DNA they can accept, approximately 15,000 basesKdr. Vgith
DNA sequences beyond this size, tiBatency of the vector decreases because it
now has trouble entering the cell and replicating itself. However, oth¢orsekave
been discovered or created that can accept larger target DNA ingluzfinterio-
phages bacterial viruses that accept inserts up to 20 Etsmids recombinant
plasmids with bacteriophage components that accept inserts up to 4&aeterial
artificial chromosome¢BACS) that accept inserts up to 150 Kb; ayehst arti-
ficial chromosomeg§YACs) that accept inserts up to 1000 kb. Many viruses have
also been modified for use as cloning vectors.

Polymerase Chain Reaction (PCR)he polymerase chain reaction (PCRy an
amazingly simple technique that results in the exponeatiglificationof almost
any region of a selected DNA molecule. It works in a way that is similar to DNA
replication in nature. The primary materials, or reagents, used in PCR are:

¢ DNA nucleotidesthe building blocks for the new DNA
e Template DNAthe DNA sequence that you want to amplify

e Primers single-stranded DNAs between 20 and 50 nucleotides long that are
complementary to a short region on either side of the template DNA

e Taq polymerasea heat stable enzyme that drives, or catalyzes, the synthesis
of new DNA

Taqg polymerase was first isolated from a bacterium that lives in the hiogspgn
Yellowstone National Park. The Taq polymerase enzyme has evolved tdamiths
the extreme temperatures in which the bacteria live and can therefore retaain in
during the high temperatures used in PCR.

The PCR reaction is carried out by mixing together in a small test tube the
template DNA, DNA nucleotides, primers, and Taq polymerase. The primefts mus
anneal, or pair to, the template DNA on either side of the region that is to be am-
plified, or copied. This means that the DNA sequences of these bordstsheu
known so that the appropriate primers can be made. These oligonuclesstiges
to initiate the synthesis of the new complementary strand of DNA. Because Taq
polymerase, a form of DNA polymerase that catalyzes the synthesis oDy
is incredibly heat stable (thermostable), the reaction mixture can be heatpd to a
proximately 90 degrees centigrade without destroying the molecules’ etizyma
activity. At this temperature, the newly created DNA strands detach fronrethe
plate DNA.

The reaction mixture is then cooled again, allowing more primers to anneal to
the template DNA and also to the newly created DNA. The Taq polymerase can
now carry out a second cycle of DNA synthesis. This cycle of heatioglirt,
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and heating is repeated over and over. Because each cycle doubéesdbet of
template DNA in the previous cycle, one template DNA molecule rapidly becomes
hundreds of thousands of molecules in just a couple of hours.

PCR has many applications in biology. It is used in DNA mapping, DNA se-
guencing, and molecular phylogenetics. A modified version of PCR carbalso
used to amplify DNA copies of specific RNA molecules. Because PCR require
very little starting material, or template DNA, it is frequently used in forensic sci-
ence and clinical diagnosis.

Preparing DNA for Experimental Analysis

Gel Electrophoresis: Separating DNA Molecules off@&ent Lengths. Gelare
usually made fronagarose—a chain of sugar molecules extracted from seaweed—
or some other synthetic molecule. Purified agarose is generally purchased
powdered form and is dissolved in boiling water. While the solution is still hot,
it is poured into a special gel casting apparatus that contains three laatsc
tray, a support, and a comb. The tray serves as the mold that will providéaape
and size for the gel. The support prevents the liquid agarose from ggakinof
the mold during the solidification process. As the liquid agarose starts to cool, it
undergoes what is known @®lymerization Rather than staying dissolved in the
water, the sugar polymers crosslink with each other, causing the solutiehitdo
a semi-solid matrix much like Jello, only more firm. The support also allows the
polymerized gel to be removed from the mold without breaking. The job of the
comb is to generate smallellsinto which a DNA sample will be loaded.

Once a gel has polymerized, it is lifted from the casting tray, placed into a
running tank, and submerged in a special aqueotiehalled arunning byfer.
The gel apparatus is then connected to a power supply via two plugieadrodes
Each plug leads to a thin wire at opposite ends of the tank. Because otredsdec
is positive and the other is negative, a strong electric current will flonutjinahe
tank when the power supply is turned on.

Next, DNA samples of interest are dissolved in a tiny volume of liquid contain-
ing a small amount of glycerol. Because glycerol has a density greatenttar,
it serves to weight down the sample and stops it from floating away onceaurine s
ple has been loaded into a well. Also, because it is helpful to be able to monitor a
DNA sample as it migrates across a gel, charged molecules, ebleegare also
added to the sample fier. These dyes are usually of twdldrent colors and two
differentmolecular weightsor sizes. One of the dyes is usually smaller than most,
if not all, of the sample DNA fragments and will migrate faster than the smallest
DNA sample. The other dye is usually large and will migrate with the larger DNA
samples. It is assumed that most of the DNA fragments of interest will migrate
somewhere in between these two dyes. Therefore, when the small dhesdhe
end of the gel, electrophoresis is usually stopped.
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Once the gel has been prepared and loaded, the power supply is turned
The electric current flowing through the gel causes the DNA fragments t@taigr
toward the bottom, opositively chargee@nd, of the gel. This is because DNA has
an overall negative charge because of the combination of molecules inittisé.
Smaller fragments of DNA are less impeded by the crosslinks formed within the
polymerized gel than are larger molecules. This means that smaller DNA fragme
tend to move faster and farther in a given amount of time. The result is & shrea
gradient of larger to smaller DNA pieces. In those instances where multiple copies
of DNA all have the same length, a concentration of DNA occurs at thatigos
in the gel, called a band. Bands can result from a restriction enzyme difjast
sample containing thousands of copies of plasmid DNA, or PCR amplification of
a DNA sequence. The banded DNA is then detected by soaking the gé} bria
solution containing a dye callezthidium bromid€EtBr). EtBr is anintercalating
agent which means that it is capable of wedging itself into the grooves of DNA,
where it remains. The more base pairs present within a DNA fragment, taegre
the number of grooves available for EtBr to insert itself. EtBr also flu@ssader
ultraviolet (UV) light. Therefore, if a gel soaked in a solution containing BB
placed under a UV source, a researcher can actually detect DNA balizisg
where the EtBr fluoresces. Because a scientist always loads and fooatrol”
sample that contains multiple fragments of DNA with known sizes, the sizes of
the sample DNA fragments can be estimated by comparing the control and sample
bands.

DNA Blotting. The porous and thin nature of a gel is ideal for separating DNA
fragments using electrophoresis, but as we mentioned earlier, theseaelsla
icate and rarely usable for other techniques. For this reason, DNA #isalbéen
separated by electrophoresis is transferred from a gel to an e&syitte inert
membrane, a process callplbtting. The term “blotting” describes the overlaying
of the membrane on the gel and the application of a pad to ensure eventcontac
without disturbing the positions of the DNA fragments. In the first step, th& DN
trapped in the gel islenatureé—the double-stranded DNA is broken into single
strands by soaking the gel in an alkaline solution. This readies the DNAyfor h
bridization with aprobe a piece of DNA that is complementary to the sequence
under investigation. A membrane, usually made of a compound aailiedellu-
losg is then placed on top of the gel and compressed with a heavy weight. The
DNA is transferred from the gel to the membrane by simple capillary action. This
procedure reproduces the exact pattern of DNA captured in the gdleomem-
brane. The membrane can then be probed with a DNA marker to verify themoe
of a target sequence.

Southern blottings the name of the procedure for transferring denatured DNA
from an agarose gel to a solid support membrane. This procedureatdkastage
of a special property of nitrocellulose, its ability to bind very strongly to single
stranded DNA but not double-stranded DNA. On the other hilodthern blotting
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Figure A.32: Chain termination DNA sequencing. Chain tertion sequencing involves
the synthesis of new strands of DNA complementary to a sisfgnded template (step ).
The template DNA is supplied with a mixture of all four deoxgieotides, four dideoxynu-
cleotides (each labeled with aidirent colored fluorescent tag), and DNA polymerase (step
I1). Because all four deoxynucleotides are present, chiingation proceeds until, by
chance, DNA polymerase inserts a dideoxynucleotide. Theltrés a new set of DNA
chains, all of diferent lengths (step Ill). The fragments are then separatsizb using gel
electrophoresis (step IV). As each labeled DNA fragmens@ss detector at the bottom
of the gel, the color is recorded. The DNA sequence is theonsoucted from the pattern

of colors representing each nucleotide sequence (step V).

refers to any blotting procedure in which electrophoresis is performad &NA.

Methods for Analyzing DNA

Once DNA has been isolated and purified, it can be further analyzedanetyof
ways, such as to identify the presence or absence of specific segu@rto locate
nucleotide changes, called mutations, within a specific sequence.

DNA SequencingThe process of determining the order of the nucleotide bases
along a DNA strand is calledequencingln 1977, 24 years after the discovery

of the structure of DNA, two separate methods for sequencing DNA weareld
oped: thechain termination methodnd thechemical degradation metho&oth
methods were equally popular to begin with, but, for many reasons, the chain te
mination method is the method more commonly used today. This method is based
on the principle that single-stranded DNA molecules th&ediin length by just

a single nucleotide can be separated from one another using polyacrylgelid
electrophoresis, described earlier.

The DNA to be sequenced, called teenplate DNAis first prepared as a single-
stranded DNA. Next, a short oligonucleotideaisnealed or joined, to the same
position on each template strand. The oligonucleotide acts as a primer fonthe sy
thesis of a new DNA strand that will be complementary to the template DNA. This
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DNA sequence data from an automated sequencing machine

Figure A.33: DNA sequencing is a laboratory technique usedetermine the exact se-
qguence of bases (A, C, G, and T) in a DNA molecule. The DNA bageence carries the
information a cell needs to assemble protein and RNA moésciDNA sequence informa-
tion is important to scientists investigating the funcsai genes. The technology of DNA
sequencing was made faster and less expensive as a parttirtieen Genome Project.

technique requires that four nucleotide-specific reactions—one each, fA, C,
and T—be performed on four identical samples of DNA. The four segjngnre-
actions require the addition of all the components necessary to synthedilebal
new DNA, including:

e A DNA template

e A primertagged with a mildly radioactive molecule or a light-emitting chem-
ical

e DNA polymerasgan enzyme that drives the synthesis of DNA
e Fourdeoxynucleotidegs, A, C,and T)
e Onedideoxynucleotideeither ddG, ddA, ddC, or ddT

After the first deoxynucleotide is added to the growing complementary segue
DNA polymerase moves along the template and continues to add base after base
The strand synthesis reaction continues until a dideoxynucleotide is duldek-
ing further elongation. This is because dideoxynucleotides are missingcéakp
group of molecules, called a 3’-hydroxyl group, needed to form aeotion with
the next nucleotide. Only a small amount of a dideoxynucleotide is addedho ea
reaction, allowing dterent reactions to proceed for various lengths of time until
by chance, DNA polymerase inserts a dideoxynucleotide, terminating ttigorea
Therefore, the result is a set of new chains, all dfeslent lengths.

To read the newly generated sequence, the four reactions are reioyssiide
on a polyacrylamide sequencing gel. The family of molecules generated in the
presence of ddATP is loaded into one lane of the gel, and the other thnde&
generated with ddCTP, ddGTP, and ddTTP, are loaded into three adjanes.
After electrophoresis, the DNA sequence can be read directly fronoiggns of
the bands in the gel.
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Variations of this method have been developed for automated sequencing ma-
chines. In one method, callerycle sequencinghe dideoxynucleotides, not the
primers, are tagged with fiierent colored fluorescent dyes; thus, all four reac-
tions occur in the same tube and are separated in the same lane on the gel. As
each labeled DNA fragment passes a detector at the bottom of the gelldhésco
recorded, and the sequence is reconstructed from the pattern of cepoesenting
each nucleotide in the sequence.

Impact of Molecular Genetics

Most sequencing and analysis technologies were developed fromssafdien-
human genomes, notably those of the bacteiigtherichia colithe yeast Saccha-
romyces cerevisiae, the fruit fly Drosophila melanogaster, the roumd@aenorhab-
ditis elegans, and the laboratory mouse Mus musculus. These simpler systems p
vide excellent models for developing and testing the procedures neadstdidy-

ing the much more complex human genome.

A large amount of genetic information has already been derived frone thes
organisms, providing valuable data for the analysis of normal human ggn&ar
tion, genetic diseases, and evolutionary processes. For examphbacress have
already identified single genes associated with a number of diseaseasstydtic
fibrosis. As research progresses, investigators will also uncovergébbanisms for
diseases caused by several genes or by single genes interactingvivitimerental
factors. Genetic susceptibilities have been implicated in many major disabling and
fatal diseases including heart disease, stroke, diabetes, and &awésaf cancer.
The identification of these genes and their proteins will pave the way to more ef
fective therapies and preventive measures. Investigators determinimgdésdying
biology of genome organization and gene regulation will also begin to utathers
how humans develop, why this process sometimes goes awry, and wihgesha
take place as people age.



Appendix B

Probability and Random Procesess

This appendix provides a summary of random processes in continuous time w
continuous and discrete states. Some of the material in this section is drawn fro
the AMO8 supplement on Optimization-Based Contitd]|

B.1 Random Variables

Random variables and processes are defined in terms of an undentgbrapility
spacethat captures the nature of the stochastic system we wish to study. A proba-
bility space 2, ¥ ,P) consists of:

e asample spac® that represents the set of all possible outcomes;

e a set ofeventsf the captures combinations of elementary outcomes that are
of interest; and

e aprobability measuré that describes the likelihood of a given event occur-
ring.

Q can be any set, either with a finite, countable or infinite number of elements. The
event spacé consists of subsets 6f. There are some mathematical limits on the
properties of the sets iff, but these are not critical for our purposes here. The
probability measur® is a mapping fron? : ¥ — [0, 1] that assigns a probability
to each event. It must satisfy the property that given any two disjoins&s ¥,
P(AU B) = P(A) + P(B).

With these definitions, we can model manyfeient stochastic phenomena.
Given a probability space, we can choose samples and identify each sample
with a collection of events chosen froffi. These events should correspond to
phenomena of interest and the probability mea®wbould capture the likelihood
of that event occurring in the system that we are modeling. This definitian of
probability space is very general and allows us to consider a number aficiis
as special cases.

A random variable Xis a functionX : Q — S that gives a value s, called
the state space, for any samples Q. Given a subseA c S, we can write the
probability thatX € A as

P(Xe A) =P({we Q: X(w) € A}).
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We will often find it convenient to omitv when working random variables and
hence we writeX € S rather than the more corre¥{w) € S. The termprobability
distributionis used to describe the set of possible valuesXhzdn take.

A discrete random variable Xs a variable that can take on any value from
a discrete se§ with some probability for each element of the set. We model a
discrete random variable by ifgobability mass function y{s), which gives the
probability that the random variabktakes on the specific valuge S:

px(s) = probability thatX takes on the valuee S.

The sum of the probabilities over the entire set of states must be unity, amel so

have that
> ipx(9=1
seS

If Ais asubset 08, then we can writ®(X € A) for the probability thaX will take
on some value in the sét It follows from our definition that

B(XeA) =) Px(9).
scA

Definition B.1 (Bernoulli distribution) The Bernoulli distribution is used to model
a random variable that takes the value 1 with probabpignd O with probability
1-p:

P(X=1)=p, P(X=0)=1-p.

Alternatively, it can be written in terms of its probability mass function

p s=1
p(s)=y1-p s=0
0 otherwise.

Bernoulli distributions are used to model independent experiments with/mogr
comes, such as flipping a coin.

Definition B.2 (Binomial distribution) Thebinomial distributionmaodels the prob-
ability of successful trials in experiments, given that a single experiment has prob-
ability of succes®. If we let X, be a random variable that indicates the number of
success im trials, then the binomial distribution is given by

P =0 =K = (- prt

fork=1,...,n. The probability mass function is shown in FigiBela
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Figure B.1: Probability mass functions for common discoigributions.

Definition B.3 (Poisson distribution) The Poisson distributions used to describe
the probability that a given number of events will occur in a fixed intervainoé
t. The Poisson distribution is defined as

k
P (K) = P(Ne =K) = %e‘“, (B.1)

whereN; is the number of events that occur in a pertaghd A is a real number
parameterizing the distribution. This distribution can be considered as a model
counting process, where we assume that the average rate of ocesrie period
tis given byt andA represents the rate of the counting process. Figutbshows
the form of the distribution for diierent values ok andat.

A continuous (real-valued) random variableika variable that can take on any
value in the set of real numbeks We can model the random varial¥eaccording
to its probability distribution function E R — [0, 1]:

F(X) = P(X < X) = probability thatX takes on a value in the rangec, X].

It follows from the definition that ifX is a random variable in the range, [J] then
P(L < X<U)=1. Similarly, ifye [L,U] thenP(L < X <y) =1-P(y < X< U).

We characterize a random variable in terms of giebability density function
(pdf) p(x). The density function is defined so that its integral over an intervabkgive
the probability that the random variable takes its value in that interval:

P(x < X < X;) = f " odx (B.2)

Itis also possible to compuf#x) given the distributior? as long as the distribution
function is suitably smooth:

P09 = % ().

We will sometimes writepx(x) when we wish to make explicit that the pdf is
associated with the random variaideNote that we use capital letters to refer to a
random variable and lower case letters to refer to a specific value.
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Figure B.2: Probability density function (pdf) for uniforr@aussian and exponential dis-
tributions.

Definition B.4 (Uniform distribution) The uniform distributionon an interval
[L,U] assigns equal probability to any number in the interval. Its pdf is given by

P09 = G- (B.3)

The uniform distribution is illustrated in Figui.2a

Definition B.5 (Gaussian distribution)The Gaussian distributior(also called a
normal distributior) has a pdf of the form

NI

=l 8.4)

PO = —=
V2ro?
The parametey is called themeanof the distribution andr is called thestan-
dard deviationof the distribution. Figurd3.2b shows a graphical representation a
Gaussian pdf.

Definition B.6 (Exponential distribution) The exponential distribution is defined
for positive numbers and has a pdf of the form

p(x) = 1, x>0

whereA is a parameter defining the distribution. A plot of the pdf for an exponential
distribution is shown in Figur8.2c.

We now define a number of properties of collections of random variaWles.
focus on the continuous random variable case, but unless noted hahese
concepts can all be defined similarly for discrete random variables (trsérob-
ability mass function in place of the probability density function).

If two random variables are related, we can talk about jo@it probability dis-
tribution: Px vy (A, B) is the probability that both everitoccurs forX andB occurs
for Y. This is sometimes written &(An B), where we abuse notation by implic-
itly assuming thatA is associated witlX and B with Y. For continuous random
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variables, the joint probability distribution can be characterized in termgahta
probability density function

Fxvy(Xy)=P(X<x Y<y)= j:y fx p(u,v)dudv (B.5)

The joint pdf thus describes the relationship betw¥eandY, and for sifficiently
smooth distributions we have
0°F
p(X.y) = M’

We say thatX and Y are independentf p(x,y) = p(X) p(y), which implies that
Fxv(xy) = Fx(x) Fy(y) for all x,y. Equivalently,P(An B) = P(A)P(B) if AandB
are independent events.

The conditional probabilityfor an eventA given that an ever has occurred,
written asP(A | B), is given by

P(ANB)

P(A|B) = 5]

(B.6)

If the eventsA andB are independent, théi{A| B) = P(A). Note that the individual,
joint and conditional probability distributions are alfigirent, so if we are talking
about random variables we can wrig v(A, B), Pxy(A| B) and Py(B), whereA
andB are appropriate subsetskf

If X is dependent oiY thenY is also dependent oM. Bayes' theorennelates
the conditional and individual probabilities:

P(B | A)P(A)

P(AIB) = P®)

P(B) # 0. (B.7)
Bayes’ theorem gives the conditional probability of evArin eventB given the
inverse relationshipR given A). It can be used in situations in which we wish to
evaluate a hypothesks given dataD when we have some model for how likely the
data is given the hypothesis, along with the unconditioned probabilities tor bo
the hypothesis and the data.

The analog of the probability density function for conditional probability is the
conditional probability density function(p| y)

p(x.Y)
p(XIy)z{ p(y) 0<pO) < (B.8)

0 otherwise.

It follows that
pP(X.y) = p(x|y)p(y) (B.9)
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and
PX<x|y):=PX<x|Y=Y)

f p(u,y)du (B.10)
f pluly)du= ==

If X andY are independent thgn(x|y) = p(x) andp(y| X) = p(y). Note thatp(x, y)

and p(x | y) are diferent density functions, though they are related through equa-
tion (B.9). If X andY are related with joint probability density functiggx,y) and
conditional probability density functiop(x | y) then

P09 = [ plxyddy= [ poxIy)pi)dy
Example B.1(Conditional probability for sum)Consider three random variables
X, Y andZ related by the expression
Z=X+Y.

In other words, the value of the random variallés given by choosing values
from two random variableX andY and adding them. We assume thaandY
are independent Gaussian random variables with mgasnd u, and standard
deviationo = 1 (the same for both variables).

Clearly the random variablé is not independent oX (or Y) since if we know
the values o then it provides information about the likely value&fTo see this,
we compute the joint probability betwe@mandX. Let

A={x < X< Xy}, B={z<z<z}
The joint probability of both event& andB occurring is given by
Pxz(ANB) =P(X < X< Xy, Z < X+Y <Z)
=P(X S X< X0, Z-X<Yy<Z—X).

We can compute this probability by using the probability density functionfor
andY:

Xu Zu—X
panB)= [ ([ prsdy)pxod
XIXu ZIZ;X 2y Xu
= [ [ otz 0pedzdi: [ [ paxtz ez
X 2 2 X

Using Gaussians fox andY we have

1 3Ez—x—pv). 3 (X—pux)?
pz X(Za X) ——e 2 My —_— 2 MX
’ Vor

\/Z

1 (@ x—py)? + (x=px)?)

A similar expression holds fqozy. Vv
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Given a random variablX, we can define various standard measures of the
distribution. Theexpectatioror meanof a random variable is defined as

E(X)=<x>=f°xp<x>dx,

(o0

and themean squaref a random variable is

IﬂX%:(X%:‘[wxzmmdx

—00

If we let u represent the expectation (or meanXahen we define thearianceof
X as

B((X— 1)) = (X = (X0)?) = f " (k) P dx

We will often write the variance as?. As the notation indicates, if we have a
Gaussian random variable with meaand (stationary) standard deviationthen
the expectation and variance as computed above rptanuo?.

Example B.2 (Exponential distribution) The exponential distribution has mean
and variance given by

n=

Several useful properties follow from the definitions.
Proposition B.1 (Properties of random variables)

1. If X is a random variable with meanand variances2, thenaX is random
variable with meanmrX and variancer?c2.

2. If X and Y are two random variables, thE(wX + BY) = «E(X) + BE(Y).

3. If X and Y are Gaussian random variables with meagnsuy and variances

2 2
Oy Oy,

&%), p(y) = —— ()

1
2710'5( A /2770'\2(

then X+Y is a Gaussian random variable with mean= ux + xy and vari-
ancecs = 0% + 0?3,

p(x) =
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Proof. The first property follows from the definition of mean and variance:
E(aX) :f axX p(x)dx:af aX p(X)dx= aE(X)
E((@X)?) = f (@X)? p(x) dx = o? f X2 p(x) dx = ?E(X?).

The second property follows similarly, remembering that we must take the-expe
tation using the joint distribution (since we are evaluating a function of twoaeind
variables):

B(aX+Y) = f ) f (x4 By) Pry(xy) dxdy

=a f f X pxy(X,y) dxdy+ 3 f f y px.y(X.y)dxdy

—a f X px(x) dx+ 8 f y pe(y) dy= aB(X) + BE(Y).

(%)

The third item is left as an exercise. O

B.2 Continuous-State Random Processes

A random processs a collection of time-indexed random variables. Formally, we
consider a random proceXgo be a joint mapping of sample and a time to a state:
X:QxT — S, where7 is an appropriate time set. We view this mapping as a
generalized random variable: a sample corresponds to choosing anfenttion
of time. Of course, we can always fix the time and interptéb,t) as a regular
random variable, withX(w,t’) representing a flierent random variable if # t’.
Our description of random processes will consist of describing howahdom
variable at a time relates to the value of the random variable at an earlier ime
To build up some intuition about random processes, we will begin with theadéscr
time case, where the calculations are a bit more straightforward, and thezepr
to the continuous time case.

A discrete-time random processsa stochastic system characterized byahe-
lution of a sequence of random variabdk], wherek is an integer. As an example,
consider a discrete-time linear system with dynamics

X[k+1] = AX[K] + BUK] + FW[K],  Y[K] = CX[K] +V[K]. (B.11)

As in AM08, X € R" represents the state of the systdune RP is the vector of
inputs andY € RY is the vector of outputs. The (possibly vector-valued) signal
W represents disturbances to the process dynamic¥ aegresents noise in the
measurements. To try to fix the basic ideas, we will take0, n =1 (single state)
andF =1 for now.
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We wish to describe the evolution of the dynamics when the disturbances and
noise are not given as deterministic signals, but rather are chosesdomproba-
bility distribution. Thus we will letW[K] be a collection of random variables where
the values at each instaktare chosen from a probability distribution with pdf
pwk(X). As the notation indicates, the distributions might depend on the time in-
stantk, although the most common case is to hastagionarydistribution in which
the distributions are independentlofdefined more formally below).

In addition to stationarity, we will often also assume that distribution of values
of W at timek is independent of the values @f at timel if k # I. In other words,
WIK] and W[I] are two separate random variables that are independent of each
other. We say that the corresponding random proceassdsrrelated(also defined
more formally below). As a consequence of our independence assumptitiave

that 2
E(WIKIWI]) = EG2[K) (k1) = {E(W k) k=!I
0 k#1.

In the case thaiV[k] is a Gaussian with mean zero and (stationary) standard devi-
ationo, thenE(W[K]W[I]) = o2 6(k—1).

We next wish to describe the evolution of the staie equation B.11) in the
case wheW is a random variable. In order to do this, we describe the statea
sequence of random variabl¥fk], k= 1,---,N. Looking back at equatiorB(11),
we see that even W[K] is an uncorrelated sequence of random variables, then the
statesX[K] are not uncorrelated since

X[k+1] = AXK] + FWIK],

and hence the probability distribution fof at timek+ 1 depends on the value
of X at timek (as well as the value oV at timek), similar to the situation in
ExampleB.1.

Since eaclX[K] is a random variable, we can define the mean and variance as
u[K] ando?[K] using the previous definitions at each tike

(o9

UK = E(X[K]) = f X p(x, Ky dx

—00

Uz[k]2=E((X[k]—u[k])2)=£ (x—uKD)? p(x, k) dx:

To capture the relationship between the current state and the future statefine
the correlation functionfor a random process as

00

plke ko) = E(X[ki] X[ko]) = f oo P(X0, Xo: ki, ko) a3

—00

The functionp(x;, Xj; k1, ko) is thejoint probability density functiorwhich depends
on the timesk; andk,. A process isstationaryif p(x,k+d) = p(x,d) for all k,
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P(Xi, Xj; K1 + d, ko +d) = p(x;, Xj; k1, k), etc. In this case we can writg(x;, X;; d)
for the joint probability distribution. We will almost always restrict to this case.
Similarly, we will write p(ks, k) asp(d) = p(k,k+d).

We can compute the correlation function by explicitly computing the joint pdf
(see Exampl®.1) or by directly computing the expectation. Suppose that we take
a random process of the forrB.@L1) with X[0] = 0 andW having zero mean and
standard deviatioor. The correlation function is given by

k-1 ‘ ko—1 ‘
B(X[ka]X[ko]) = E{( D A“BWI])( D | ACTIBW 1))
i=0 j=0

ki—1ko—1

=E{> > ATBWIIWj]BAC].

i=0 j=0

We can now use the linearity of the expectation operator to pull this inside the
summations:

ki—1ko—1
Bkl X[ke]) = ), ) A BE(WITWj)) BA®
i=0 j=0
ki-1ko-1
=Y > AeTBo?s(i - j)BA]
i=0 j=0
ki—1
= » ATBsZBACT
i=0

Note that the correlation function dependskarandks,.
We can see the dependence of the correlation function on the time more clearly
by lettingd = k, — k1 and writing

ki—1
(k. k+d) = E(X[K]X[k+d]) = Z A B2 B AdHK-
i—0

k k
- Z AlBo2BAId = (Z AIBr?BAT)AY,
=1 =1

In particular, if the discrete time system is stable th&inc 1 and the correlation
function decays as we take points that are further departed in drizege). Fur-
thermore, if we lek — oo (i.e., look at the steady state solution) then the correlation
function only depends od (assuming the sum converges) and hence the steady
state random process is stationary.

In our derivation so far, we have assumed tK§t + 1] only depends on the
value of the state at timle(this was implicit in our use of equatioB(11) and the
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assumption thatV[K] is independent oK). This particular assumption is known as
the Markov propertyfor a random process: a Markovian process is one in which
the distribution of possible values of the state at thkhtepends only on the values

of the state at the prior time and not earlier. Written more formally, we say that a
discrete random process is Markovian if

Pxk(X | X[k—1], X[k—2],..., X[0]) = pxk(x| X[k—1]).

Markov processes are roughly equivalent to state space dynamstahss; where
the future evolution of the system can be completely characterized in terms of th
current value of the state (and not its history of values prior to that).

We now consider the case where our time index is no longer discrete, beaidns
varies continuously. A fully rigorous derivation requires careful akeneasure
theory and is beyond the scope of this text, so we focus here on theptsticat
will be useful for modeling and analysis of important physical properties.

A continuous-time random processa stochastic system characterized by the
evolution of a random variabl¥(t), t € [0, T]. We are interested in understanding
how the (random) state of the system is related at separate times. Thespgoces
defined in terms of the “correlation” of(t1) with X(t2). We assume, as above, that
the process is described by continuous random variables, but thetdistate case
(with time still modeled as a real variable) can be handled in a similar fashion.

We call X(t) € R" the stateof the random process at timeFor the case > 1,
we have a vector of random processes:

Xa(t)
X(t) =
Xn(t)

We can characterize the state in terms of a (joint) time-varying pdf,

Note that the state of a random process is not enough to determine thenextiact
state, but only the distribution of next states (otherwise it would be a detetiminis
process). We typically omit indexing of the individual states unless the mganin
not clear from context.

We can characterize the dynamics of a random process by its statisticat-cha
teristics, written in terms of joint probability density functions:

P(xy < Xi(t1) < Xqu, X2 < Xj(t2) < Xou)

Xou X1u
=f f Px..v; (X1, X2; t1, t2) dxgd X
X2l X1
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The functionp(x;, Xj; t1, t2) is called goint probability density functioand depends

both on the individual states that are being compared and the time instants over
which they are compared. Note that i |, thenpy, x, describes howX; at timet;

is related taX; at timet,.

In general, the distributions used to describe a random process depehd
specific time or times that we evaluate the random variables. However, in some
cases the relationship only depends on theedince in time and not the abso-
lute times (similar to the notion of time invariance in deterministic systems, as de-
scribed in AM08). A process stationaryif p(x,t+7) = p(x,t) for all 7, p(x;, Xj; t1+
7,12+ 7) = p(Xi, Xj; t1,12), etc. In this case we can writgx;, x;; r) for the joint prob-
ability distribution. Stationary distributions roughly correspond to the stetadg s
properties of a random process and we will often restrict our attentionstodbe.

We are often interested in random processes in which changes in thecstate o
cur when a random event occurs (such as a molecular reaction or dpiengemt).

In this case, it is natural to describe the state of the system in terms of a set of
timesty <ty <ty <--- <ty andX(t) is the random variable that corresponds to the
possible states of the system at titneNote that time time instants do not have

to be uniformly spaced and most often (for physical systems) they will @.oflb

of the definitions above carry through, and the process can now belsby a
probability distribution of the form

P(X(t) € [x. % +dx],i=1,....n)=
p(xn, Xn—l’ ey XOI tn’ tn—l, e ,tO)an dxn—ldxl,
wheredx are taken as infinitesimal quantities.
Just as in the case of discrete time processes, we define a continuoustime ra
dom process to be a Markov process if the probability of being in a gitata at

time t,, dependsnly on the state that we were in at the previous time instant
and not the entire history of states priortfo;:

P(X(tn) € [Xn, o+ dxa] | X(t) € [, % +dx],i=1,...,n-1)
= B(X(tn) € Xn. X0+ d%] | X(tr-1) € [¥n-1. X1+ d%-a]). (B.12)
In practice we do not usually specify random processes via the joibapiie
ity distribution p(x;, Xj;t1,t2) but instead describe them in terms op@pogater
function Let X(t) be a Markov process and define the Markov propogater as

E(dt; x,t) = X(t+dt) — X(t), given X(t) = x.

The propogater function describes how the random variable atttimeelated
to the random variable at timee+ dt. Since bothX(t + dt) and X(t) are random
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variables Z(dt; x,t) is also a random variable and hence it can be described by its
density function, which we denote Bg¢, x; dt, t):

X+&
P(x < X(t+dt)sx+§):f I(dx, x;dt,t) dx
X

The previous definitions for mean, variance and correlation can bededda
the continuous time, vector-valued case by indexing the individual states:

E{X1(1)}
E{XX®)} = : =1 u(t)
E{Xn(t)}
EXX®Xa()} ... E{XX(t)Xa(t)}
E{(X(t) — () (X(t) — (1))} = - : =1 (1)

E{Xn(t)Xn(t)}

EXi(OX1(9)} ... E{Xu()Xn(9)}

EX®XT(3)) = : = R(t.9)

E{Xn(t)Xn(9)}

Note that the random variables and their statistical properties are all shdgxtbe
timet (ands). The matrixR(t, s) is called thecorrelation matrixfor X(t) € R". If

t = sthenR(t,t) describes how the elementsyoéire correlated at time(with each
other) and in the case that the processes have zero Rgdh= X(t). The elements

on the diagonal oE(t) are the variances of the corresponding scalar variables. A
random process is uncorrelatedrit, s) = 0 for all t # s. This implies tha¥(t) and

X(s) are independent random events and is equivalepg igx,y) = px(X)py(y).

If a random process is stationary, then it can be showrRftatr, s+71) = R(t, 9)
and it follows that the correlation matrix depends onlyters. In this case we will
often write R(t, s) = R(s—t) or simply R(r) wherer is the correlation time. The
covariance matrix in this case is simg®0).

In the case wher& is also scalar random process, the correlation matrix is
also a scalar and we will write(r), which we refer to as the (scalar) correla-
tion function. Furthermore, for stationary scalar random processes;direla-
tion function depends only on the absolute value of the correlation funcmn,
r(r) =r(-7) = r(|r]). This property also holds for the diagonal entries of the corre-
lation matrix sinceR;i(s,t) = R;(t, s) from the definition.

Definition B.7 (Ornstein-Uhlenbeck processtonsider a scalar random process
defined by a Gaussian pdf with= 0,

_12
e 24 s

p(x.1) =

o2
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p(ti—12)

! T=01 -1

Figure B.3: Correlation function for a first-order Markowpess.

and a correlation function given by
r(te.to) = 3 gue-t
2wo

The correlation function is illustrated in FiguBe3. This process is known as an
Ornstein-Uhlenbeck processd it is a stationary process.

Note on terminologyl'he terminology and notation for covariance and correlation
varies between disciplines. The term covariance is often used to refethithe re-
lationship between éierent variableX andY and the relationship between a single
variable at diferent timesX(t) andX(s). The term “cross-covariance” is used to re-
fer to the covariance between two random veckendY, to distinguish this from
the covariance of the elementsXfwith each other. The term “cross-correlation”
is sometimes also used. Finally, the term “correlatiorfiecient” refers to the nor-
malized correlatiom(t, s) = E(X(t)X(9))/E(X(t)X(t))..

MATLAB has a number of functions to implement covariance and correlation,
which mostly match the terminology here:

e cov(X) -thisreturns the variance of the veciothat represents samples of a
given random variable or the covariance of the columns of a mAtvikere
the rows represent observations.

e cov(X, Y) -equivalenttocov([X(:), Y(:)1). Computes the covariance
between the columns of andY, where the rows are observations.

e xcorr(X, Y) - the “cross-correlation” between two random sequences. If
these sequences came from a random process, this is correlation riunctio

r(t).
e xcov(X, Y) -this returns the “cross-covariance”, whiBhTLAB defines as
the “mean-removed cross-correlation”.

The MATLAB help pages give the exact formulas used for each, so the main point
here is to be careful to make sure you know what you really want.

We will also make use of a special type of random process referredwhite
noise”. A white noise process (¥ satisfiesE{X(t)} = 0 andR(t,s) = Ws(s—1),
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whered(7) is the impulse function and/ is called thenoise intensityWhite noise

is an idealized process, similar to the impulse function or Heaviside (step) fanctio
in deterministic systems. In particular, we note thi) = E{X?(t)} = oo, so the
covariance is infinite and we never see this signal in practice. HoweverfHe
step and impulse functions, it is very useful for characterizing the respof a
linear system, as described in the following propaosition. It can be shovirthba
integral of a white noise process is a Wiener process, and so often valiste ia
described as the derivative of a Wiener process.

B.3 Discrete-State Random Processes

There are a number of specialized discrete random processes theleaeat for
biochemical systems. In this section we give a brief introduction to thesegses.

A birth-deathprocess is one in which the states of the process represent integer-
value counts of dferent species populations and the transitions between states are
restricted to either incrementing (birth) or decrementing (death) a givesiespe
This type of model is often used to represent chemical reactions suck ascth
duction and degradation of proteins.

Example B.3(Protein production) \%

A more general type of discrete random processviaekov chain In a Markov
chain, evolution of the discrete states occurs by execution of allowablsticas
between two states. Each transition has a specified probability, which igsaused
determine whether a system will transition from its current state intdfardnt
state (corresponding to an allowable transition). An important propeitgdche
Markov propertyis that the transition probability only depends on the value of the
current state, not the previous values of the state.

We define a Markov chain by giving the set of transition probabilities

qij (t,7) = P(X(t+7) = siIX(t) = s),

wheres, sj € S, tis the current time and is the time interval over which we are
interested. I (t,7) # 0 for somer # 0 then we say that the transition is allowable
attimet. If g;j is independent afthen we say that the processtationaryand we
omit the argument In the special case that we are only interested in a fixge.,
we are using a discrete-time model) then we omit this argument as well.

Itis generally dificult to describe the probability of being in a particular state in
a Markov process at a given time. Instead, we often resort to desgthersteady
state distributions, assuming that they exist. For a stationary Markov chaicarv
look at the equilibrium distributions, which are those distributierikat satisfy

T = qij(T)ﬂ'j, for all i, j

Example B.4(Protein expression) \%
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