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Chapter 7
Interconnecting Components

7.1 Input/Output Modeling and the Modularity Assumption

Each node y of a transcriptional circuitry is usually modeled as an input/output
module taking as input the concentrations of transcription factors that regulate gene
y and giving as output the concentration of protein expressed by gene y, denoted Y.
This is not the only possible choice for delimiting a module: one could in fact let
the messenger RNA (mRNA) or the RNA polymerase flow along the DNA (as sug-
gested by [19]) play the role of input and output signals. The transcription factor
enters as input of the transcriptional module through the binding and unbinding dy-
namics of the transcription factors with the DNA promoter sites upstream of gene
y. The internal dynamics of the transcriptional component is determined by the
transcription and translation dynamics. The processes of transcription and trans-
lation are much slower than the binding dynamics of the transcription factor to
the promoter sites on the DNA [3]. Thus, the binding of the transcription factor to
the DNA promoter site reaches the equilibrium in seconds, while transcription and
translation of the target gene takes minutes to hours. This time scale separation,
a key feature of transcriptional circuits, leads to the following central modeling
simplification.

Modularity assumption. The dynamics of transcription factor/DNA
binding are considered at the equilibrium and each transcription factor
concentration enters the input/output transcriptional module through
static input functions that drive the transcription/translation dynamics
(Figure 7.1).

Transcriptional I/O module

Transcription
X

f (X)

YInput Function Translation

Figure 7.1: A transcriptional module is modeled as an input/output component with input
function given by the transcription regulation function f (X) and with internal dynamics
established by the transcription and translation processes.
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Figure 7.2: The clock behavior can be destroyed by a load. As the number of downstream
binding sites for A, pTOT , is increased in the load, the activator and repressor dynamics
loose their synchronization and ultimately the oscillations disappear.

For engineering a system with prescribed behavior, one has to be able to change
the physical features so as to change the values of the parameters of the model.
This is often possible. For example, the binding affinity (1/K in the Hill function
model) of a transcription factor to its site on the promoter can be affected by single
or multiple base pairs substitutions. The protein decay rate (constant α2 in equation
(2.16)) can be increased by adding degradation tags at the end of the gene express-
ing protein Y (http://parts.mit.edu/registry/index.php/Help:Tag). (Degradation) Tags
are genetic additions to the end of a sequence which modify expressed proteins in
different ways such as marking the protein for faster degradation. Promoters that
can accept multiple input transcription factors (called combinatorial promoters) to
implement regulation functions that take multiple inputs can be realized by com-
bining the operator sites of several simple promoters [?]. For example, the operators
OR1−OR2 from the λ promoter of the λ bacteriophage can be used as binding sites
for the λ transcription factor [44]. Then, the pair OR2−OR1 from the 434 promoter
from the 434 bacteriophage [11] can be placed at the end of theOR1−OR2 sequence
from the λ promoter. Depending on the relative positions of these sites and on their
distance from the RNA polymerase binding site, the 434 transcription factor may
act as a repressor as when this protein is bound to its OR2−OR1 sites it prevents the
polymerase to bind, while the λ transcription factor may act as an activator.
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7.2 Beyond the Modularity Assumption: Retroactivity

In the previous sections, we have outlined a circuit design process, often used
in synthetic biology, that relies on the interconnection of well characterized in-
put/output transcriptional modules through suitable static input functions. Exam-
ples of designs performed through this process can be found in Chapter 9. It deeply
relies on the modularity assumption, by virtue of which the behavior of the obtained
circuit topology can be directly predicted by the properties of the composing units.
For example, the monotonicity of the input functions of the transcriptional modules
composing the repressilator have been a key feature to formally show the existence
of periodic solutions. The form of the input functions in the activator-repressor
clock design have been key enablers to easily predict the location and number
of equilibria as the parameters are changed. The modularity assumption implies
that when two modules are connected together, their behavior does not change be-
cause of the interconnection. However, a fundamental systems-engineering issue
that arises when interconnecting subsystems is how the process of transmitting a
signal to a “downstream” component affects the dynamic state of the sending com-
ponent. Indeed, after designing, testing, and characterizing the input/output behav-
ior of an individual component in isolation, it is certainly desirable if its charac-
teristics do not change substantially when another component is connected to its
output channel. This issue, the effect of “loads” on the output of a system, is well-
understood in many fields of engineering, for example in electrical circuit design.
It has often been pointed out that similar issues arise for biological systems. Alon
states that “modules in engineering, and presumably also in biology, have special
features that make them easily embedded in almost any system. For example, out-
put nodes should have ‘low impedance,’ so that adding on additional downstream
clients should not drain the output to existing clients (up to some limit).” An ex-
tensive review on problems of loads and modularity in signaling networks can be
found in [50, 51, 52], where the authors propose concrete analogies with similar
problems arising in electrical circuits.

These questions are even more delicate in synthetic biology. For example, sup-
pose that we have built a timing device, a clock made up of a network of activation
and/or repression interactions among certain genes and proteins, such as the one of
diagram c) of Figure 6.1. Next, we want to employ this clock (upstream system) in
order to drive one or more components (downstream systems), by using as its out-
put signal the oscillating concentration A(t) of the activator. From a systems/signals
point of view, A(t) becomes an input to the second system (Figure 7.2). The terms
“upstream” and “downstream” reflect the direction in which we think of signals
as traveling, from the clock to the systems being synchronized. However, this is
only an idealization, because the binding and unbinding of A to promoter sites in a
downstream system competes with the biochemical interactions that constitute the
upstream block (retroactivity) and may therefore disrupt the operation of the clock
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Figure 7.3: On the left, we represent a tank system that takes as input the constant flow f0
and gives as output the pressure p at the output pipe. On the right, we show a downstream
tank.

itself (Figure 7.2). One possible approach to avoid disrupting the behavior of the
clock, motivated by the approach used with reporters such as GFP, is to introduce a
gene coding for a new protein X, placed under the control of the same promoter as
the gene for A, and using the concentration of X, which presumably mirrors that of
A, to drive the downstream system. This approach, however, has still the problem
that the behavior of the X concentration in time may be altered and even disrupted
by the addition of downstream systems that drain X. The net result is still that the
downstream systems are not properly timed.

Modeling retroactivity

We broadly call retroactivity the phenomenon by which the behavior of an up-
stream system is changed upon interconnection to a downstream system. As a sim-
ple example, which may be more familiar to an engineering audience, consider the
one-tank system shown on the left of Figure 7.3. We consider a constant input flow
f0 as input to the tank system and the pressure p at the output pipe is considered
the output of the tank system. The corresponding output flow is given by k√p,
in which k is a positive constant depending on the geometry of the system. The
pressure p is given by (neglecting the atmospheric pressure for simplicity) p = ρh,
in which h is the height of the water level in the tank and ρ is water density. Let
A be the cross section of the tank, then the tank system can be represented by the
equation

A
dp
dt
= ρ f0−ρk

√
p. (7.1)

Let us now connect the output pipe of the same tank to the input pipe of a down-
stream tank shown on the right of Figure 7.3. Let p1 = ρh1 be the pressure generated
by the downstream tank at its input and output pipes. Then, the flow at the output
of the upstream tank will change and will now be given by g(p, p1) = k

√

|p− p1| if
p > p1 and by g(p, p1) = −k

√

|p− p1| if p ≤ p1. As a consequence, the time behav-
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Figure 7.4: A system S input and output signals. The red signals denote signals originating
by retroactivity upon interconnection.

ior of the pressure p generated at the output pipe of the upstream tank will change
to

A
dp
dt
= ρ f0−ρg(p, p1)

A1
dp1
dt

= ρg(p, p1)−ρk1
√
p1, (7.2)

in which A1 is the cross section of the downstream tank and k1 is a positive param-
eter depending on the geometry of the downstream tank. Thus, the input/output
response of the tank measured in isolation (equation (7.1)) does not stay the same
when the tank is connected through its output pipe to another tank (equation (7.2)).
We will model this phenomenon by a signal that travels from downstream to up-
stream, which we call retroactivity. The amount of such a retroactivity will change
depending on the features of the interconnection and of the downstream system.
For example, if the aperture of the pipe connecting the two tanks is very small
compared to the aperture of an output pipe of the downstream tank, the pressure
p at the output of the upstream tank will not change much when the downstream
tank is connected.
We thus model a system by adding an additional input, called s, to the system

to model any change in its dynamics that may occur upon interconnection with
a downstream system. Similarly, we add to a system a signal r as another output
to model the fact that when such a system is connected downstream of another
system, it will send upstream a signal that will alter the dynamics of the upstream
system. More generally, we define a system S to have internal state x, two types
of inputs (I), and two types of outputs (O): an input “u” (I), an output “y” (O), a
retroactivity to the input “r” (O), and a retroactivity to the output “s” (I) (Figure
7.4). We will thus represent a system S by the equations

ẋ = f (x,u, s), y = Y(x,u, s), r = R(x,u, s), (7.3)

in which f ,Y,R are arbitrary functions and the signals x,u, s,r,y may be scalars
or vectors. In such a formalism, we define the input/output model of the isolated
system as the one in equations (7.3) without r in which we have also set s = 0. Let
S i be a system with inputs ui and si and with outputs yi and ri. Let S 1 and S 2 be
two systems with disjoint sets of internal states. We define the interconnection of
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Figure 7.5: The transcriptional component takes as input u protein concentration Z and
gives as output y protein concentration X. The transcription factor Z binds to operator sites
on the promoter. The red part belongs to a downstream transcriptional block that takes
protein concentration X as its input.

an upstream system S 1 with a downstream system S 2 by simply setting y1 = u2 and
s1 = r2. For interconnecting two systems, we require that the two systems do not
have internal states in common.

Retroactivity in gene transcriptional circuits

In the previous section, we have defined retroactivity as a general concept modeling
the fact that when an upstream system is input/output connected to a downstream
one, its dynamic behavior can change. In this section, we focus on transcriptional
circuits and show what form the retroactivity takes.
We denote by X the protein, by X (italics) the average protein concentration,

and by x (lower case) the gene expressing protein X. A transcriptional component
that takes as input protein Z and gives as output protein X is shown in Figure 7.5
in the dashed box. The activity of the promoter controlling gene x depends on the
amount of Z bound to the promoter. If Z = Z(t), such an activity changes with time.
We denote it by k(t). By neglecting the mRNA dynamics, which are not relevant
for the current discussion, we can write the dynamics of X as

dX
dt
= k(t)−δX, (7.4)

in which δ is the decay rate of the protein. We refer to equation (7.4) as the isolated
system dynamics. For the current study, the mRNA dynamics can be neglected
because we focus on how the dynamics of X changes when we add downstream
systems to which X binds. As a consequence, also the specific form of k(t) is not
relevant. Now, assume that X drives a downstream transcriptional module by bind-
ing to a promoter p with concentration p (the red part of Figure 7.5). The reversible
binding reaction of X with p is given by

X+p !konkoff C,

in which C is the complex protein-promoter and kon and koff are the binding and
dissociation rates of the protein X to the promoter site p. Since the promoter is
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not subject to decay, its total concentration pTOT is conserved so that we can write
p+C = pTOT . Therefore, the new dynamics of X is governed by the equations

dX
dt

= k(t)−δX+ koffC− kon(pTOT −C)X , s = koffC− kon(pTOT −C)X

dC
dt

= −koffC+ kon(pTOT −C)X, (7.5)

in which the terms in the box represent the signal s, that is, the retroactivity to
the output, while the second of equations (7.5) describes the dynamics of the input
stage of the downstream system driven by X. Then, we can interpret s as being a
mass flow between the upstream and the downstream system. When s = 0, the first
of equations (7.5) reduces to the dynamics of the isolated system given in equation
(7.4). Here, we have assumed that X binds directly to the promoter p. The case
in which a signal molecule is needed to transform X to the active form that then
binds to p, can be treated in a similar way by considering the additional reversible
reaction of X binding to the signal molecule. The end result of adding this reaction
is the one of having similar terms in the box of equation (7.5) involving also the
signaling molecule concentration.

How large is the effect of the retroactivity s on the dynamics of X and what are
the biological parameters that affect it? We focus on the retroactivity to the out-
put s. We can analyze the effect of the retroactivity to the input r on the upstream
system by simply analyzing the dynamics of Z in the presence of its binding sites
p0 in Figure 7.5 in a way similar to how we analyze the dynamics of X in the
presence of the downstream binding sites p. The effect of the retroactivity s on the
behavior of X can be very large (Figure 7.6). This is undesirable in a number of
situations in which we would like an upstream system to “drive” a downstream one
as is the case, for example, when a biological oscillator has to time a number of
downstream processes. If, due to the retroactivity, the output signal of the upstream
process becomes too low and/or out of phase with the output signal of the isolated
system (as in Figure 7.6), the coordination between the oscillator and the down-
stream processes will be lost. We next propose a procedure to obtain an operative
quantification of the effect of the retroactivity on the dynamics of the upstream
system.

Quantification of the retroactivity to the output

In this section, we propose a general approach for providing an operative quantifi-
cation of the retroactivity to the output on the dynamics of the upstream system.
This approach can be generally applied whenever there is a separation of time-

scales between the dynamics of the output of the upstream module and the dynam-
ics of the input stage of the downstream module. This separation of time-scales is
always encountered in transcriptional circuits. In fact, the dynamics of the input
stage of a downstream system is governed by the reversible binding reaction of the
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Figure 7.6: The dramatic effect of interconnection. Simulation results for the system in
equations (7.5). The green plot (solid line) represents X(t) originating by equations (7.4),
while the blue plot (dashed line) represents X(t) obtained by equation (7.5). Both transient
and permanent behaviors are different. Here, k(t) = 0.01(1+ sin(ωt)) with ω = 0.005 in the
left side plots and ω = 0 in the right side plots, kon = 10, koff = 10, δ = 0.01, pTOT = 100,
X(0) = 5. The choice of protein decay rate (in min−1) corresponds to a half life of about
one hour. The frequency of oscillations is chosen to have a period of about 12 times the
protein half life in accordance to what is experimentally observed in the synthetic clock of
[6].

transcription factor with the operator sites. These reactions are often on the time
scales of a second and thus are fast compared to the time scales of transcription
and translation (often of several minutes) [3]. These determine, in turn, the dynam-
ics of the output of a transcriptional module. Such a separation of time-scales is
encountered even when we extend a transcriptional network to include as intercon-
nection mechanisms between transcriptional modules protein-protein interactions
(often with a subsecond timescale [55]), as encountered in signal transduction net-
works.
We quantify the difference between the dynamics of X in the isolated system

(equation (7.4)) and the dynamics of X in the connected system (equations (7.5))
by establishing conditions on the biological parameters that make the two dynam-
ics close to each other. This is achieved by exploiting the difference of time scales
between the protein production and decay processes and its binding and unbinding
process to the promoter p. By virtue of this separation of time scales, we can ap-
proximate system (7.5) by a one dimensional system describing the evolution of X
on the slow manifold [34]. This reduced system takes the form:

dX̄
dt
= k(t)−δX̄+ s̄,

where X̄ is an approximation of X and s̄ is an approximation of s, which can be
written as s̄ = −R(X̄)(k(t)− δX̄). If R(X̄) is zero, then also s̄ = 0 and the dynamics
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of X̄ becomes the same as the one of the isolated system (7.4). Since X̄ approxi-
mates X, the dynamics of X in the full system (7.5) is also close to the dynamics
of the isolated system (7.4) whenever R(X̄) = 0. The factor R(X̄) provides then a
measure of the retroactivity on the dynamics of X. It is also computable as a func-
tion of measurable biochemical parameters and of the signal X traveling across the
interconnection, as we next illustrate.
Consider again the full system in equations (7.5), in which the binding and

unbinding dynamics is much faster than protein production and decay, that is, koff%
k(t), koff % δ [3], and kon = koff/kd with kd = O(1). Even if the second equation
goes to equilibrium very fast compared to the first one, the above system is not in
“standard singular perturbation form” [34]. To explicitly model the difference in
time scales between the two equations of system (7.5), we introduce a parameter ε,
which we define as ε = δ/koff. Since koff% δ, we also have that ε & 1. Substituting
koff = δ/ε, kon = δ/(εkd), and letting y = X+C (the total protein concentration), we
obtain the system in singular perturbation form

dy
dt
= k(t)−δ(y−C)

ε
dC
dt

= −δC+
δ

kd
(pTOT −C)(y−C). (7.6)

This means, as some authors proposed [?], that y (total concentration of protein)
is the slow variable of the system (7.5) as opposed to X (concentration of free
protein). We can then obtain an approximation of the dynamics of X in the limit
in which ε is very small, by setting ε = 0. This leads to (see [17] for details) the
approximated X dynamics

dX̄
dt
= k(t)−δX̄− (k(t)−δX̄)

dγ(ȳ)
dȳ
. (7.7)

The smaller ε, the better is the approximation. Since X̄ well approximates X for ε
small, conditions for which the dynamics of equation (7.7) is close to the dynamics
of the isolated system (7.4) also guarantee that the dynamics of X given in system
(7.5) is close to the dynamics of the isolated system.
The difference between the dynamics in equation (7.7) (the connected system

after a fast transient) and the dynamics in equation (7.4) (the isolated system) is
zero when the term dγ(ȳ)

dȳ in equation (7.7) is also zero. We thus consider the factor
dγ(ȳ)
dȳ as a quantification of the retroactivity s after a fast transient in the approxima-
tion in which ε ≈ 0. We can also interpret the factor dγ(ȳ)dȳ as a percentage variation
of the dynamics of the connected system with respect to the dynamics of the iso-
lated system at the quasi steady state. We next determine the physical meaning of
such a factor by calculating a more useful expression that is a function of key bio-
chemical parameters. By using the implicit function theorem, one can compute the
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following expression for dγ(ȳ)dȳ :

dγ(ȳ)
dȳ
=

1
1+ (1+X̄/kd)

2

pTOT /kd

=: R(X̄), (7.8)

in which one can verify that R(X̄) < 1 (see [17] for details). The expression R(X̄)
quantifies the retroactivity to the output on the dynamics of X after a fast transient,
when we approximate X with X̄ in the limit in which ε ≈ 0. The retroactivity mea-
sure is thus low if the affinity of the binding sites p is small (kd large) or if the
signal X(t) is large enough compared to pTOT . Thus, the expression of R(X̄) pro-
vides an operative quantification of the retroactivity: such an expression can in fact
be evaluated once the association and dissociation constants of X to p are known,
the concentration of the binding sites pTOT is known, and the range of operation of
the signal X̄(t) that travels across the interconnection is also known.
Therefore, the modularity assumption introduced in Section 7.1 holds if the

value of R(X̄) is low enough. As a consequence, the design of a simple circuit
motif such as the ones of Figure 6.1 can assume modularity if the interconnections
among the composing modules can be designed so that the value of R(X̄) as given
in expression (7.8) is low.

7.3 Insulation Devices to Enforce Modularity

Of course, it is not always possible to design an interconnection such that the
retroactivity is low. This is, for example, the case of an oscillator that has to time
a downstream load: the load cannot be in general designed and the oscillator must
perform well in the face of unknown and possibly variable load properties (Figure
7.2). Therefore, in analogy to what is performed in electrical circuits, one can de-
sign a device to be placed between the oscillator and the load so that the device
output is not changed by the load and the device does not affect the behavior of the
upstream oscillator. Specifically, consider a system S as the one shown in Figure
7.4 that takes u as input and gives y as output. We would like to design it in such
a way that (a) the retroactivity r to the input is very small; (b) the effect of the
retroactivity s to the output on the internal dynamics of the system is very small
independently of s itself; (c) its input/output relationship is about linear. Such a
system is said to enjoy the insulation property and will be called an insulation
component or insulation device. Indeed, such a system will not affect an upstream
system because r ≈ 0 and it will keep the same output signal y independently of
any connected downstream system. In electronics, amplifiers enjoy the insulation
property by virtue of the features of the operational amplifier (op amp) that they
employ [54] (Figure 7.7).
The concept of amplifier in the context of a biochemical network has been

considered before in relation to its robustness and insulation property from ex-
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Figure 7.7: In diagram (a), we show the basic non-inverting amplifier circuit that is com-
posed of the op amp plus a feedback circuit. The op amp is the triangular shape that takes
as input the differential voltage V+ −V− and gives as (open) output Vout = A(V+ −V−), in
which the gain A is infinity in the ideal op amp. The blue circuit components represent
the feedback circuit, while the red component is the load. Letting K = R1/(R1+R2), direct
computation leads to Vout → V+/K as A→∞. That is, the output voltage does not depend
on the load: the retroactivity to the output is almost completely attenuated. In diagram (b),
we zoom inside the op amp to show the abstraction of its internal structure. In an ideal
op amp, Ri =∞ so that it absorbs almost zero current and any upstream voltage generator
will not experience a voltage drop at its output terminals upon interconnection with the
amplifier. That is, the retroactivity to the input of the amplifier is almost zero.

ternal disturbances ([52] and [51]). Here, we revisit the amplifier mechanism in the
context of gene transcriptional networks with the objective of mathematically and
computationally proving how suitable biochemical realizations of such a mecha-
nism can attain properties (a), (b), and (c).

Retroactivity to the input

In electronic amplifiers, r is very small because the input stage of an op amp ab-
sorbs almost zero current (Figure 7.7). This way, there is no voltage drop across
the output impedance of an upstream voltage source. Equation (7.8) quantifies the
effect of retroactivity on the dynamics of X as a function of biochemical param-
eters that characterize the interconnection mechanism with a downstream system.
These parameters are the affinity of the binding site 1/kd, the total concentration
of such binding site pTOT , and the level of the signal X(t). Therefore, to reduce
the retroactivity, we can choose parameters such that (7.8) is small. A sufficient
condition is to choose kd large (low affinity) and pTOT small, for example. Hav-
ing small value of pTOT and/or low affinity implies that there is a small “flow” of
protein X toward its target sites. Thus, we can say that a low retroactivity to the
input is obtained when the “input flow” to the system is small. This interpretation
establishes a nice analogy to the electrical case, in which low retroactivity to the
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Figure 7.8: Diagram (a) shows the basic feedback/amplification mechanism by which am-
plifiers attenuate the effect of the retroactivity to the output s. Diagram (b) shows an alter-
native representation of the same mechanism of diagram (a), which will be employed to
design biological insulation devices.

input is obtained, as explained above, by a low input current. Such an interpretation
can be further carried to the hydraulic example. In such an example, if the input
flow to the downstream tank is small compared, for example, to the output flow of
the downstream tank, the output pressure of the upstream tank will not be affected
by the connection. Therefore, the retroactivity to the input of the downstream tank
will be small.

Retroactivity to the output

In electronic amplifiers, the effect of the retroactivity to the output s on the ampli-
fier behavior is reduced to almost zero by virtue of a large (theoretically infinite)
amplification gain of the op amp and an equally large negative feedback mechanism
that regulates the output voltage (Figure 7.7). Genetic realization of amplifiers have
been previously proposed (see [47], for example). However, such realizations fo-
cus mainly on trying to reproduce the layout of the device instead of implementing
the fundamental mechanism that allows it to properly work as an insulator. Such
a mechanism can be illustrated in its simplest form by diagram (a) of Figure 7.8,
which is very well known to control engineers. For simplicity, we have assumed in
such a diagram that the retroactivity s is just an additive disturbance. The reason
why for large gainsG the effect of the retroactivity s to the output is negligible can
be verified through the following simple computation. The output y is given by

y =G(u−Ky)+ s,

which leads to
y = u

G
1+KG

+
s

1+KG
.

As G grows, y tends to u/K, which is independent of the retroactivity s.
Therefore, a central enabler to attenuate the retroactivity effect at the output of

a component is to (1) amplify through a large gain the input of the component and
(2) to apply a large negative output feedback. We next illustrate this general idea in
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h1G′ √p

G f0

Figure 7.9: We amplify the input flow f0 through a large gain G and we apply a large
negative feedback by employing a large output pipe with output flow G′ √p.

the context of a simple hydraulic system.

Hydraulic example.Consider the academic hydraulic example consisting of two
connected tanks shown in Figure 7.9. The objective is to attenuate the effect of the
pressure applied from the downstream tank to the upstream tank, so that the output
pressure of the upstream system does not change when the downstream tank is
connected. We let the input flow f0 be amplified by a large factor G. Also, we
consider a large pipe in the upstream tank with output flow G′ √p, with G′ % k
and G′ % k1. Let p be the pressure at the output pipe of the upstream tank and p1
the pressure at the bottom of the downstream tank. One can verify that the only
equilibrium value for the pressure p at the output pipe of the upstream tank is
obtained for p > p1 and it is given by

peq =

























G f0
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k21 + k2

























2

.

If we let G′ be sufficiently larger than k1 and k and we let G′ = KG for some pos-
itive K = O(1), then for G sufficiently large peq ≈ ( f0/K)2, which does not depend
on the presence of the downstream system. In fact, it is the same as the equilibrium
value of the isolated upstream system Adp

dt = ρG f0 − ρG
′ √p− ρk√p for G suffi-

ciently large and for G′ = KG with K = O(1).

Coming back to the transcriptional example, consider the approximated dynam-
ics of equation (7.7) for X. Let us thus assume that we can apply a gain G to the
input k(t) and a negative feedback gain G′ to X with G′ = KG. This leads to the
new differential equation for the connected system (7.7) given by

dX
dt
=
(

Gk(t)− (G′+δ)X
)

(1−d(t)), (7.9)

in which we have defined d(t) := dγ(y)
dy , where y(t) is given by the reduced system

dy
dt =Gk(t)− (G

′ + δ)(y−γ(y)). It can be shown (see [56] for details) that as G and
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thus as G′ grow, the signal X(t) generated by the connected system (7.9) becomes
close to the solution X(t) of the isolated system

dX
dt
=Gk(t)− (G′+δ)X, (7.10)

that is, the presence of the disturbance term d(t) will not significantly affect the time
behavior of X(t). Since d(t) is a measure of the retroactivity effect on the dynamics
of X, such an effect is thus attenuated by employing large gains G and G′. How
can we obtain a large amplification gain G and a large negative feedback G′ in
a biological insulation component? This question is addressed in the following
chapter, in which we show two possible realizations of insulation devices.

7.4 Design of genetic circuits under the modularity assumption

Based on the modeling assumptions introduced in Chapter 2 and on the tools for
studying the dynamics of a nonlinear system introduced in Chapter 3, a number
of synthetic genetic circuits have been designed and fabricated by composing tran-
scriptional modules through input/output connection (Figure 6.1). Through such
a design procedure one seeks to predict the behavior of a circuit by the behavior
of the composing units, once these have been well characterized in isolation. This
approach is standard also in the design and fabrication of electronic circuitry.

7.5 Biological realizations of an insulation component

In the previous section, we have proposed a general mechanism in order to create
an insulation component. In particular, we have specified how one can alter the bio-
logical features of the interconnection mechanism in order to have low retroactivity
to the input r and we have shown a general method to attenuate the retroactivity
to the output s. Such a method consists of a large amplification of the input and a
large negative output feedback. The insulation component will be inserted in place
of the transcriptional component of Figure 7.5. This will guarantee that the sys-
tem generating Z, an oscillator, for example, will maintain the same behavior as
in isolation and also that the downstream system that accepts X as its input will
not alter the behavior of X. The net result of this is that the oscillator generating
signal Z will be able to time downstream systems with the desired phase and ampli-
tude independently of the number and the features of downstream systems. In this
section, we determine two possible biological mechanisms that can be exploited
to obtain a large amplification gain to the input Z of the insulation component
and a large negative feedback on the output X of the insulation component. Both
mechanisms realize the negative feedback through enhanced degradation. The first
design realizes amplification through transcriptional activation, while the second
design through phosphorylation of a protein that is in abundance in the system.
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Figure 7.10: We highlight in blue the parts that Design 1 affects. In particular, a negative
feedback occurring through post-translational regulation and a promoter that produces a
large signal amplification are the central parts of this design. The red part indicates the
downstream component that takes as input the concentration of protein X.

Design 1: Amplification through transcriptional activation

In this design, we obtain a large amplification of the input signal Z(t) by having
promoter p0 (to which Z binds) be a strong, non leaky, promoter. The negative
feedback mechanism on X relies on enhanced degradation of X. Since this must
be large, one possible way to obtain an enhanced degradation for X is to have a
protease, called Y, be expressed by a strong constitutive promoter. The protease Y
will cause a degradation rate for X, which is larger if Y is more abundant in the
system. This design is schematically shown in Figure 7.10.

In order to investigate whether such a design realizes a large amplification and
a large negative feedback on X as needed, we analyze the full input/output model
for the block in the dashed box of Figure 7.10. In particular, the expression of
gene x is assumed to be a two-step process, which incorporates also the mRNA
dynamics. Incorporating these dynamics in the model is relevant for the current
study because they may contribute to an undesired delay between the Z and X
signals. The reaction of the protease Y with protein X is modeled as the two-step
reaction

X+Y!η1η2 W→β Y,

which can be found in standard references (see [?], for example). The input/output
system model of the insulation component that takes Z as an input and gives X as
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an output is given by the following equations

dZ
dt

= k(t)−δZ+ k−Zp− k+Z(p0,TOT −Zp) (7.11)

dZp
dt

= k+Z(p0,TOT −Zp)− k−Zp (7.12)

dmX
dt

= GZp−δ1mX (7.13)

dX
dt

= νmX −η1YX+η2W −δ2X+ koffC− konX(pTOT −C) (7.14)

dW
dt

= η1XY −η2W −βW (7.15)

dY
dt

= −η1YX+βW +αG−γY +η2W (7.16)

dC
dt

= −koffC+ konX(pTOT −C), (7.17)

in which we have assumed that the expression of gene z is controlled by a promoter
with activity k(t). These equations will be studied numerically and analyzed math-
ematically in a simplified form. The variable Zp is the concentration of protein Z
bound to the promoter controlling gene x, p0,TOT is the total concentration of the
promoter p0 controlling gene x, mX is the concentration of messenger RNA of X,C
is the concentration of X bound to the downstream binding sites with total concen-
tration pTOT , γ is the decay rate of the protease Y. The value ofG is the production
rate of X mRNA per unit concentration of Z bound to the promoter controlling x;
the promoter controlling gene y has strength αG, for some constant α, and it has
the same order of magnitude strength as the promoter controlling x. The terms in
the box in equation (7.11) represent the retroactivity r to the input of the insulation
component in Figure 7.10. The terms in the box in equation (7.14) represent the
retroactivity s to the output of the insulation component of Figure 7.10. The dy-
namics of equations (7.11)–(7.17) without s (the elements in the box in equation
(7.14)) describe the dynamics of X with no downstream system.
We mathematically explain why system (7.11)–(7.17) allows to attenuate the

effect of s on the X dynamics. Equations (7.11) and (7.12) simply determine the
signal Zp(t) that is the input to equations (7.13)–(7.17). For the discussion regarding
the attenuation of the effect of s, it is not relevant what the specific form of signal
Zp(t) is. Let then Zp(t) be any bounded signal v(t). Since equation (7.13) takes v(t)
as an input, we will have that mX =Gv̄(t), for a suitable signal v̄(t). Let us assume
for the sake of simplifying the analysis that the protease reaction is a one step
reaction, that is, X+Y→β Y. Therefore, equation (7.16) simplifies to dY

dt = αG−γY
and equation (7.14) simplifies to dX

dt = νmX −βYX − δ2X + koffC − konX(pTOT −C).
If we consider the protease to be at its equilibrium, we have that Y(t) = αG/γ. As a
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consequence, the X dynamics becomes

dX
dt
= νGv̄(t)− (βαG/γ+δ2)X+ koffC− konX(pTOT −C) ,

with C determined by equation (7.17). By using the same singular perturbation
argument employed in the previous section, we obtain that the dynamics of X will
be after a fast transient approximatively given by

dX
dt
= (νGv̄(t)− (βαG/γ+δ2)X)(1−d(t)), (7.18)

in which 0 < d(t) < 1 is the effect of the retroactivity s. Then, as G increases, X(t)
becomes closer to the solution of the isolated system

dX
dt
= νGv̄(t)− (βαG/γ+δ2)X,

as explained in Section 7.31.
We now turn to the question of minimizing the retroactivity to the input r be-

cause its effect can alter the input signal Z(t). In order to decrease r, we guarantee
that the retroactivity measure given in equation (??) is small. This is seen to be true
if (k̄d + Z)2/(p0,TOT k̄d) is very large, in which 1/k̄d = k+/k− is the affinity of the
binding site p0 to Z. Since after a short transient, Zp = (p0,TOTZ)/(k̄d +Z), for Zp
not to be a distorted version of Z, it is enough to ask that k̄d % Z. This, combined
with the requirement that (k̄d +Z)2/(p0,TOT k̄d) is very large, leads to the require-
ment p0,TOT/k̄d& 1. Summarizing, for not having distortion effects between Z and
Zp and small retroactivity r, we need that

k̄d % Z and p0,TOT /k̄d & 1. (7.19)

Simulation results. Simulation results are presented for the insulation system of
equations (7.11)–(7.17) as the mathematical analysis of such a system is only
valid under the approximation that the protease reaction is a one step reaction.
In all simulations, we consider protein decay rates to be 0.01min−1 to obtain a
protein half life of about one hour. We consider always a periodic forcing k(t) =
0.01(1+ sin(ωt)), in which we assume that such a periodic signal has been gener-
ated by a synthetic biological oscillator. Therefore, the oscillating signals are cho-
sen to have a period that is about 12 times the protein half life in accordance to what
is experimentally observed in the synthetic clock of [6]. All simulation results were
obtained by using MATLAB (Simulink), with variable step ODE solver ODE23s.
For large gains (G = 1000,G = 100), the performance considerably improves com-
pared to the case in which X was generated by a plain transcriptional component
accepting Z as an input (Figure 7.6). For lower gains (G = 10, G = 1), the perfor-
mance starts to degrade for G = 10 and becomes not acceptable for G = 1 (Figure

1See the supplementary material for the mathematical details.
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Figure 7.11: Design 1: results for different gains G. In all plots, red (dotted line) is the
input Z to the insulation device, green (solid line) is the output X of the insulation device in
isolation (without the downstream binding sites p), blue (dashed line) is the output X of the
insulation device when downstream sites p are present. In all plots, k(t) = 0.01(1+ sin(ωt)),
pTOT = 100, koff = kon = 10, δ = 0.01, and ω = 0.005. The parameter values are δ1 = 0.01,
p0,TOT = 1, η1 = η2 = β = γ = 0.01, k− = 200, k+ = 10, α = 0.1, δ2 = 0.1, ν = 0.1, and
G = 1000,100,10,1. The retroactivity to the output is not well attenuated for values of the
gain G = 1 and the attenuation capability begins to worsen for G = 10.

7.11). Since we can view G as the number of transcripts produced per unit time
(one minute) per complex of protein Z bound to promoter p0, valuesG = 100,1000
may be difficult to realize in vivo, while the values G = 10,1 could be more easily
realized. The values of the parameters chosen in Figure 7.11 are such that k̄d % Z
and p0,TOT & k̄d. This is enough to guarantee that there is small retroactivity r to
the input of the insulation device independently of the value of the gain G, accord-
ing to relations (7.19). The poorer performance of the device forG = 1 is therefore
entirely due to poor attenuation of the retroactivity s to the output.

Design 2: Amplification through phosphorylation

In this design, the amplification of Z is obtained by having Z activate the phos-
phorylation of a protein X, which is available in the system in abundance. That is,
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Figure 7.12: The dashed box contains the insulation device. The blue parts highlight the
mechanism that provides negative feedback and amplification. Negative feedback occurs
through a phosphatase Y that converts the active form Xp back to its inactive form X.
Amplification occurs through Z activating the phosphorylation of X.

Z is a kinase for a protein X. The phosphorylated form of X, called Xp, binds to
the downstream sites, while X does not. A negative feedback on Xp is obtained by
having a phosphatase Y activate the dephosphorylation of protein Xp. Protein Y is
also available in abundance in the system. This mechanism is depicted in Figure
7.12. A similar design has been proposed by [52, 51], in which a MAPK cascade
plus a negative feedback loop that spans the length of the MAPK cascade is con-
sidered as a feedback amplifier. Our design is much simpler as it involves only
one phosphorylation cycle and does not require the additional feedback loop. In
fact, we realize a strong negative feedback by the action of the phosphatase that
converts the active protein form Xp to its inactive form X. This negative feedback,
whose strength can be tuned by varying the amount of phosphatase in the system,
is enough to mathematically and computationally show that the desired insulation
properties are satisfied.
We consider two different models for the phosphorylation and dephosphoryla-

tion processes. A one step reaction model is initially considered to illustrate what
biochemical parameters realize the input gain G and the negative feedback G′.
Then, we turn to a more realistic two step model to perform a parametric analysis
and numerical simulation. The one step model that we consider is the one of [28]:

Z+X→k1Z+Xp,

and
Y+Xp→k2Y+X.

We assume that there is plenty of protein X and of phosphatase Y in the system and
that these quantities are conserved. The conservation of X gives X+Xp+C = XTOT ,
in which X is the inactive protein, Xp is the phosphorylated protein that binds to
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the downstream sites p, and C is the complex of the phosphorylated protein Xp
bound to the promoter p. The Xp dynamics can be described by the first equation
in the following model

dXp
dt
= k1XTOTZ(t)

(

1−
Xp
XTOT

− C
XTOT

)

− k2YXp+ koffC− konXp(pTOT −C)

(7.20)
dC
dt
= −koffC+ konXp(pTOT −C). (7.21)

The boxed terms represent the retroactivity s to the output of the insulation system
of Figure 7.12. For a weakly activated pathway ([28]), Xp & XTOT . Also, if we
assume that the concentration of total X is large compared to the concentration of
the downstream binding sites, that is, XTOT % pTOT , equation (7.20) is approxima-
tively equal to

dXp
dt
= k1XTOTZ(t)− k2YXp+ koffC− konXp(pTOT −C).

Denote G = k1XTOT and G′ = k2Y . Exploiting again the difference of time scales
between the Xp dynamics and the C dynamics, after a fast initial transient, the
dynamics of Xp can be well approximated by

dXp
dt
= (GZ(t)−G′Xp)(1−d(t)), (7.22)

in which 0 < d(t) < 1 is the effect of the retroactivity s to the output after a short
transient. Therefore, for G and G′ large enough, Xp(t) tends to the solution Xp(t)
of the isolated system dXp

dt =GZ(t)−G
′Xp, as explained in Section 7.32. As a con-

sequence, the effect of the retroactivity to the output s is attenuated by increasing
k1XTOT and k2Y enough. That is, to obtain large input and feedback gains, one
should have large phosphorylation/dephosphorylation rates and/or a large amount
of protein X and phosphatase Y in the system. This reveals that the values of the
phosphorylation/dephosphorylation rates cover an important role toward the real-
ization of the insulation property of the module of Figure 7.12.
We next consider a more complex model for the phosphorylation and dephos-

phorylation reactions and perform a parametric analysis to highlight the roles of
the various parameters for attaining the insulation properties. In particular, we con-
sider a two-step reaction model such as those in [29]. According to this model,
we have the following two reactions for phosphorylation and dephosphorylation,
respectively:

X+Z!β1β2C1→
k1 Xp+Z, (7.23)

2See the supplementary material for the mathematical details.
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and
Y+Xp!

α1
α2C2→

k2 X+Y, (7.24)
in which C1 is the [protein X/kinase Z] complex and C2 is the [phosphatase Y/protein
Xp] complex. Additionally, we have the conservation equations YTOT =Y+C2, XTOT =
X + Xp +C1 +C2 +C, because proteins X and Y are not degraded. Therefore, the
differential equations modeling the insulation system of Figure 7.12 become

dZ
dt
= k(t)−δZ −β1ZXTOT (1−

Xp
XTOT −

C1
XTOT −

C2
XTOT −

C
XTOT )+ (β2+ k1)C1

(7.25)
dC1
dt
= −(β2+ k1)C1+β1ZXTOT (1−

Xp
XTOT

−
C1
XTOT

−
C2
XTOT

− C
XTOT ) (7.26)

dC2
dt
= −(k2+α2)C2+α1YTOTXp(1−

C2
YTOT

) (7.27)

dXp
dt
= k1C1+α2C2−α1YTOTXp(1−

C2
YTOT

)+ koffC− konXp(pTOT −C) (7.28)

dC
dt
= −koffC+ konXp(pTOT −C), (7.29)

in which the expression of gene z is controlled by a promoter with activity k(t).
The terms in the large box in equation (7.25) represent the retroactivity r to the
input, while the terms in the small box in equation (7.25) and in the boxes of
equations (7.26) and (7.28) represent the retroactivity s to the output. We assume
that XTOT % pTOT so that in equations (7.25) and (7.26) we can neglect the term
C/XTOT because C < pTOT . Also, phosphorylation and dephosphorylation reac-
tions in equations (7.23) and (7.24) can occur at a much faster rate (on the time
scale of a second [33]) than protein production and decay processes (on the time
scale of minutes [3]). Choosing XTOT and YTOT sufficiently large, the separation
of time-scales between equation (7.25) and equations (7.26–7.29) can be explic-
itly modeled by letting ε = δ/koff, kon = koff/kd, and by defining the new rate con-
stants b1 = β1XTOT ε/δ, a1 = α1YTOT ε/δ, b2 = β2ε/δ, a2 = α2ε/δ, ci = εki/δ. Letting
z = Z +C1 (the total amount of kinase) be the slow variable, we obtain the system
in the standard singular perturbation form

dz
dt
= k(t)−δ(z−C1)

ε
dC1
dt

= −δ(b2+ c1)C1+δb1(z−C1)(1−
Xp
XTOT

−
C1
XTOT

−
C2
XTOT

)

ε
dC2
dt

= −δ(c2+a2)C2+δa1Xp(1−
C2
YTOT

)

ε
dXp
dt

= δc1C1+δa2C2−δa1Xp(1−
C2
YTOT

)+ δC−δ/kd(pTOT −C)Xp

ε
dC
dt

= −δC+δ/kd(pTOT −C)Xp, (7.30)
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in which the boxed terms represent the retroactivity to the output s. We then com-
pute the dynamics on the slow manifold by letting ε = 0. When we set ε = 0, the
terms due to the retroactivity s vanish. This means that if the internal dynamics of
the insulation device evolve on a time scale that is much faster than the dynamics
of the input signal Z, then (provided we also have XTOT % pTOT ) the retroactivity s
to the output has no effect on the dynamics of Xp at the quasi steady state. This is a
crucial feature of this design. Letting γ = (β2+ k1)/β1 and γ̄ = (α2+ k2)/α1, setting
ε = 0 in the third and fourth equations of (7.30) the following relationships can be
obtained:

C1 = F1(Xp) =
XpYTOT k2
γ̄k1

1+Xp/γ̄
, C2 = F2(Xp) =

XpYTOT
γ̄

1+Xp/γ̄
. (7.31)

Using expressions (7.31) in the second of equations (7.30) with ε = 0 leads to

F1(Xp)(b2+ c1+
b1Z
XTOT

) = b1Z(1−
Xp
XTOT

−
F2(Xp)
XTOT

). (7.32)

Assuming for simplicity that Xp & γ̄, we obtain that F1(Xp) ≈
XpYTOT k2
γ̄k1 and that

F2(Xp) ≈
Xp
γ̄ YTOT . As a consequence of these simplifications, equation (7.32) leads

to
Xp =

b1Z
b1Z
XTOT (1+YTOT /γ̄+ (YTOTk2)/(γ̄k1))+

YTOT k2
γ̄k1 (b2+ c1)

:= m(Z).

In order not to have distortion from Z to Xp, we require that

Z&
YTOT k2k1

γ
γ̄

1+ YTOT
γ̄ +

YTOT
γ̄

k2
k1

, (7.33)

so thatm(Z)≈ Z XTOT γ̄k1
YTOTγk2 and therefore we have a linear relationship between Xp and

Z with gain from Z to Xp given by XTOT γ̄k1
YTOTγk2 . In order not to have attenuation from Z

to Xp we require that the gain is greater than or equal to one, that is,

input/output gain ≈
XTOT γ̄k1
YTOTγk2

≥ 1. (7.34)

Requirements (7.33), (7.34), and Xp & γ̄ are enough to guarantee that we do not
have nonlinear distortion between Z and Xp and that Xp is not attenuated with
respect to Z. In order to guarantee that the retroactivity r to the input is sufficiently
small, we need to quantify the retroactivity effect on the Z dynamics due to the
binding of Z with X. To achieve this, we proceed as in Section 7.2 by computing
the Z dynamics on the slow manifold, which gives a good approximation of the
dynamics of Z if ε ≈ 0. Such a dynamics is given by

dZ
dt
= (k(t)−δZ)

(

1−
dF1
dXp

dXp
dz

)

,
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in which dF1
dXp

dXp
dz measures the effect of the retroactivity r to the input on the Z

dynamics. Direct computation of dF1dXp and of
dXp
dz along with Xp& γ̄ and with (7.33)

leads to dF1
dXp

dXp
dz ≈ XTOT/γ, so that in order to have small retroactivity to the input,

we require that
XTOT
γ
& 1. (7.35)

Concluding, for having attenuation of the effect of the retroactivity to the output
s, we require that the time scale of the phosphorylation/dephosphorylation reac-
tions is much faster than the production and decay processes of Z (the input to
the insulation device) and that XTOT % pTOT , that is, the total amount of protein
X is in abundance compared to the downstream binding sites p. To obtain also a
small effect of the retroactivity to the input, we require that γ % XTOT as estab-
lished by relation (7.35). This is satisfied if, for example, kinase Z has low affinity
to binding with X. To keep the input/output gain between Z and Xp close to one
(from equation (7.34)), one can choose XTOT = YTOT , and equal coefficients for the
phosphorylation and dephosphorylation reactions, that is, γ = γ̄ and k1 = k2.
Simulation results. System in equations (7.25–7.29) was simulated with and

without the downstream binding sites p, that is, with and without, respectively, the
terms in the small box of equation (7.25) and in the boxes in equations (7.28) and
(7.26). This is performed to highlight the effect of the retroactivity to the output s
on the dynamics of Xp. The simulations validate our theoretical study that indicates
that when XTOT % pTOT and the time scales of phosphorylation/dephosphorylation
are much faster than the time scale of decay and production of the protein Z, the
retroactivity to the output s is very well attenuated (Figure 7.13, plot A). Similarly,
the time behavior of Z was simulated with and without the terms in the large box
in equation (7.25), that is, with and without X to which Z binds, to verify whether
the insulation component exhibits retroactivity to the input r. In particular, the ac-
cordance of the behaviors of Z(t) with and without its downstream binding sites
on X (Figure 7.13, plot B), indicates that there is no substantial retroactivity to the
input r generated by the insulation device. This is obtained because XTOT & γ as
indicated in equation (7.35), in which 1/γ can be interpreted as the affinity of the
binding of X to Z. Our simulation study also indicates that a faster time scale of
the phosphorylation/dephosphorylation reactions is necessary, even for high values
of XTOT and YTOT , to maintain perfect attenuation of the retroactivity to the output
s and small retroactivity to the output r. In fact, slowing down the time scale of
phosphorylation and dephosphorylation, the system looses its insulation property
(Figure 7.14). In particular, the attenuation of the effect of the retroactivity to the
output s is lost because there is not enough separation of time scales between the
Z dynamics and the internal device dynamics. The device also displays a non neg-
ligible amount of retroactivity to the input because the condition γ& XTOT is not
satisfied anymore.
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Phosphorylation and dephosphorylation with fast time scale
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Figure 7.13: Simulation results for system in equations (7.25–7.29). In all plots, pTOT =
100, koff = kon = 10, δ = 0.01, k(t) = 0.01(1+ sin(ωt)), and ω = 0.005. In subplots A and
B, k1 = k2 = 50, α1 = β1 = 0.01, β2 = α2 = 10, and YTOT = XTOT = 1500. In subplot A, the
signal Xp(t) without the downstream binding sites p is in green (solid line), while the same
signal with the downstream binding sites p is in blue (dashed line). The small error shows
that the effect of the retroactivity to the output s is attenuated very well. In subplot B, the
signal Z(t) without X to which Z binds is in red (solid), while the same signal Z(t) with
X present in the system (XTOT = 1500) is in black (dashed line). The small error confirms
a small retroactivity to the input. The values of the complexes concentrations C1 and C2
oscillate about 0.4, so they are comparable to the values of Xp.
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Phosphorylation and dephosphorylation with slow time scale
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Figure 7.14: In all plots, pTOT = 100 and koff = kon = 10, δ = 0.01, k(t) = 0.01(1+ sin(ωt)),
and ω = 0.005. Phosphorylation and dephosphorylation rates are slower than the ones in
Figure 7.13, that is, k1 = k2 = 0.01, while the other parameters are left the same, that is,
α2 = β2 = 10, α1 = β1 = 0.01, and YTOT = XTOT = 1500. In subplot A, the signal Xp(t)
without the downstream binding sites p is in green (solid line), while the same signal with
the downstream binding sites p is in blue (dashed line). The effect of the retroactivity to the
output s is dramatic. In subplot B, the signal Z(t) without X in the system is in red (solid
line), while the same signal Z(t) with X in the system is in black (dashed line). The device
thus also displays a large retroactivity to the input r.
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