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Chapter 6
Interconnecting Components

In Chapter 2 and Chapter 5 we studied the behavior of simple biomolecular mod-
ules, such as oscillators, toggles, self repressing circuits, signal transduction and
amplification systems, based on reduced order models. One natural step forward
is to create larger and more complex systems by composing these modules to-
gether. In this chapter, we illustrate problems that need to be overcome when in-
terconnecting components and propose a number of engineering solutions based
on the feedback principles introduced in Chapter 3. Specifically, we explain how
loading effects arise at the interconnection between modules, which change the ex-
pected circuit behavior. These loading problems appear in several other engineering
domains, including electrical, mechanical, and hydraulic systems, and have been
largely addressed by the respective engineering communities. In this chapter, we
explain how similar engineering solutions can be employed in biomolecular sys-
tems to defeat loading effects and guarantee “modular” interconnection of circuits.
In Chapter 7, we further study loading of the cellular environment by synthetic
circuits employing the same framework developed in this chapter.

6.1 Input/Output Modeling and the Modularity Assumption

The input/output modeling introduced in Chapter 1 and further developed in Chap-
ter 3 has been employed so far to describe the behavior of various modules and
subsystems. This input/output description of a system allows to connect systems
together by setting the input u2 of a downstream system equal to the output y1 of

u1 u2 = y1 y2

u1 y1 y2u2

Figure 6.1: In the input/output modeling framework, systems are interconnected by stati-
cally assigning the value of the output of the upstream system to the input of the down-
stream system.
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the upstream system (Figure 6.1) and has been extensively used in the previous
chapters.

Each node of a gene circuit, such as those in Figure 5.1 of the previous chapter,
has been modeled as an input/output system taking the concentrations of transcrip-
tion factors as input and giving, through the processes of transcription and trans-
lation, the concentration of another transcription factor as an output. For example,
node C in the repressilator has been modeled as a second order system that takes
the concentration of transcription factor B as an input through the Hill function
and gives transcription factor C as an output. This is of course not the only pos-
sible choice for decomposing the system. We could in fact let the mRNA or the
RNA polymerase flowing along the DNA, called PoPS (polymerase per second)
[28], play the role of input and output signals. Similarly, a signal transduction net-
work is usually composed of protein covalent modification modules, which take a
modifying enzyme (a kinase in the case of phosphorylation) as an input and gives
the modified protein as an output.

This input/output modeling framework is extremely useful because it allows us
to predict the behavior of an interconnected system from the behavior of the iso-
lated modules. For example, the location and number of equilibria in the toggle
switch of Section 5.3 were predicted by intersecting the steady state input/output
characteristics, determined by the Hill functions, of the isolated modules A and B.
Similarly, the number of equilibria in the repressilator of Section 5.4 was predicted
by modularly composing the input/output steady state characteristics, again deter-
mined by the Hill functions, of the three modules composing the circuit. Finally,
criteria for the existence of a limit cycle in the activator-repressor clock of Section
5.5 were based on comparing the speed of the activator module’s dynamics to that
of the repressor module’s dynamics.

For this input/output interconnection framework to reliably predict the behav-
ior of connected modules, it is necessary that the input/output (dynamic) behavior
of a system does not change upon interconnection to another system. We refer to
the property by which a system input/output behavior does not change upon in-
terconnection as modularity. All the designs and models described in the previous
chapter assume that the modularity property holds. In this chapter, we question
this assumption and investigate when modularity holds in gene and in signal trans-
duction circuits. Further, we illustrate design methods, based on the techniques of
Chapter 3, to create functionally modular systems.

6.2 Introduction to Retroactivity

The modularity assumption implies that when two modules are connected together,
their behavior does not change because of the interconnection. However, a funda-
mental systems engineering issue that arises when interconnecting subsystems is
how the process of transmitting a signal to a “downstream” component affects the
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Figure 6.2: Interconnection of an activator-repressor clock to a downstream system. (a) The
activator-repressor clock is isolated. (b) The clock is connected to a downstream system.
(c) When the clock is connected, perodic behavior of the proteins concentrations is lost and
oscillations are quenched. The clock hance fails to transmit the desired periodic stimulation
to the downstream system. In all simulations, we have chosen the parameters of the clock
as in Figure 5.9. For system in (b), we added the reversible binding reaction of A with
sites p in the downstream system: nA+ p −−−⇀↽−−− C with conservation law ptot = p+C, with
ptot = 5nM, association rate constant kon = 50 min−1 nM−n, and dissociation rate constant
koff = 50 min−1 (see Exercise 6.12).

dynamic state of the upstream sending component. This issue, the effect of “loads”
on the output of a system, is well-understood in many engineering fields such as
electrical engineering. It has often been pointed out that similar issues may arise
for biological systems. These questions are especially delicate in design problems,
such as those described in Chapter 5.

For example, consider a biomolecular clock, such as the activator-repressor
clock introduced in Section 5.5 and shown in Figure 6.2a. Assume that the acti-
vator protein concentration A(t) is now used as a communicating species to syn-
chronize or provide the timing to a downstream system D (Figure 6.2b). From a
systems/signals point of view, A(t) becomes an input to the downstream system D.
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Figure 6.3: A system S input and output signals. The r and s signals denote signals origi-
nating by retroactivity upon interconnection [22].

The terms “upstream” and “downstream” reflect the direction in which we think of
signals as traveling, from the clock to the systems being synchronized. However,
this is only an idealization because when A is taken as an input by the downstream
system it binds to (and unbinds from) the promoter that controls the expression
of D. These additional binding/unbinding reactions compete with the biochemical
interactions that constitute the upstream clock and may therefore disrupt the opera-
tion of the clock itself (Figure 6.2c). We call this back-effect retroactivity to extend
the notion of impedance or loading to non-electrical systems and in particular to
biomolecular systems. This phenomenon, which in principle may be used in an
advantageous way by natural systems, can be deleterious when designing synthetic
systems.

One possible approach to avoid disrupting the behavior of the clock is to in-
troduce a gene coding for a new protein X, placed under the control of the same
promoter as the gene for A, and using the concentration of X, which presumably
mirrors that of A, to drive the downstream system. However, this approach still has
the problem that the concentration of X may be altered and even disrupted by the
addition of downstream systems that drain X, as we shall see in the next section.
The net result is that the downstream systems are not properly timed as X does not
transmit the desired signal.

To model a system with retroactivity, we add to the input/output modeling
framework used so far an additional input, called s, to account for any change
that may occur upon interconnection with a downstream system (Figure 6.3). That
is, s models the fact that whenever y is taken as an input to a downstream sys-
tem the value of y may change, because of the physics of the interconnection. This
phenomenon is also called in the physics literature “the observer effect”, implying
that no physical quantity can be measured without being altered by the measure-
ment device. Similarly, we add a signal r as an additional output to model the fact
that when a system is connected downstream of another one, it will send a signal
upstream that will alter the dynamics of that system. More generally, we define a
system S to have internal state x, two types of inputs, and two types of outputs: an
input “u”, an output “y” (as before), a retroactivity to the input “r”, and a retroac-
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tivity to the output “s”. We will thus represent a system S by the equations

dx

dt
= f (x,u, s), y = h(x,u, s), r = R(x,u, s), (6.1)

where f , g, and R are arbitrary functions and the signals x, u, s, r, and y may be
scalars or vectors. In such a formalism, we define the input/output model of the
isolated system as the one in equation (6.1) without r in which we have also set
s = 0.

Let S i be a system with inputs ui and si and with outputs yi and ri. Let S 1 and S 2

be two systems with disjoint sets of internal states. We define the interconnection
of an upstream system S 1 with a downstream system S 2 by simply setting y1 = u2

and s1 = r2. For interconnecting two systems, we require that the two systems do
not have internal states in common.

It is important to note that while retroactivity s is a back action from the down-
stream system to the upstream one, it is conceptually different from feedback. In
fact, retroactivity s is nonzero any time y is transmitted to the downstream system.
That is, it is not possible to send signal y to the downstream system without retroac-
tivity s. By contrast, feedback from the downstream system can be removed even
when the upstream system sends signal y.

6.3 Retroactivity in Gene Circuits

In the previous section, we have introduced retroactivity as a general concept mod-
eling the fact that when an upstream system is input/output connected to a down-
stream one, its behavior can change. In this section, we focus on gene circuits and
show what form retroactivity takes and what its effects are.

Consider the interconnection of two transcriptional components illustrated in
Figure 6.4. A transcriptional component is an input/output system that takes the
transcription factor concentration Z as input and gives the transcription factor con-
centration X as output. The activity of the promoter controlling gene x depends
on the amount of Z bound to the promoter. If Z = Z(t), such an activity changes
with time and, to simplify notation, we denote it by k(t). We assume here that the
mRNA dynamics are at their quasi-steady state. The reader can verify that all the
results hold unchanged when the mRNA dynamics are included (see Exercise 6.1).
We write the dynamics of X as

dX

dt
= k(t)−γX, (6.2)

in which γ is the decay rate constant of the protein. We refer to equation (6.2) as
the isolated system dynamics.
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Figure 6.4: A transcriptional component takes as input u protein concentration Z and
gives as output y protein concentration X. The downstream transcriptional component takes
protein concentration X as its input.

Now, assume that X drives a downstream transcriptional module by binding to
a promoter p (Figure 6.4). The reversible binding reaction of X with p is given by

X+p
kon−−−⇀↽−−−
koff

C

in which C is the complex protein-promoter and kon and koff are the association and
dissociation rate constants of protein X to promoter site p. Since the promoter is
not subject to decay, its total concentration ptot is conserved so that we can write
p+C = ptot. Therefore, the new dynamics of X are governed by the equations

dX

dt
= k(t)−γX+ [koffC−kon(ptot−C)X],

dC

dt
= −koffC+kon(ptot−C)X. (6.3)

We refer to this system as the connected system. Comparing the rate of change
of X in the connected system to that in the isolated system (6.2), we notice the
additional rate of change [koffC − kon(ptot −C)X] of X in the connected system.
Hence, we have

s = [koffC− kon(ptot−C)X],

and s = 0 when the system is isolated. We can interpret s as a mass flow between
the upstream and the downstream system, similar to a current in electrical circuits.

How large is the effect of retroactivity s on the dynamics of X and what are the
biological parameters that affect it? We focus on the retroactivity to the output s as
we can analyze the effect of the retroactivity to the input r on the upstream system
by simply analyzing the dynamics of Z in the presence of the promoter regulating
the expression of gene x.

The effect of retroactivity s on the behavior of X can be very large (Figure 6.5).
By looking at Figure 6.5, we notice that the effect of retroactivity is to “slow down”
the dynamics of X(t) as the response time to a step input increases and the response
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(b) Step-like stimulation

Figure 6.5: The effect of retroactivity. The solid line represents X(t) originating by equa-
tions (6.2), while the dashed line represents X(t) obtained by equation (6.3). Both transient
and permanent behaviors are different. Here, k(t) = 0.01(8+8sin(ωt)) with ω = 0.01 min−1

in (a) and k(t) = 0.18 in (b). The parameter values are given by kon = 10 min−1nM−1,
koff = 10 min−1, γ = 0.01 min−1, and ptot = 100 nM. The frequency of oscillations is cho-
sen to have a period of about 11 hours in accordance to what is experimentally observed in
the synthetic clock of [6].

to a periodic signal appears attenuated and phase-shifted. We will come back to this
more precisely in the next section.

These effects are undesirable in a number of situations in which we would like
an upstream system to “drive” a downstream one, for example when a biological
oscillator has to time a number of downstream processes. If, due to the retroactivity,
the output signal of the upstream process becomes too low and/or out of phase
with the output signal of the isolated system (as in Figure 6.5), the coordination
between the oscillator and the downstream processes will be lost. We next provide
a procedure to quantify the effect of retroactivity on the dynamics of the upstream
system.

Quantification of the retroactivity to the output

In this section, we provide a general approach to quantify the retroactivity to the
output. To do so, we quantify the difference between the dynamics of X in the iso-
lated system (6.2) and the dynamics of X in the connected system (6.3) by estab-
lishing conditions on the biological parameters that make the two dynamics close
to each other. This is achieved by exploiting the difference of time scales between
the protein production and decay processes and binding/unbinding reactions, math-
ematically described by koff≫ γ. By virtue of this separation of time scales, we can
approximate system (6.3) by a one dimensional system describing the evolution of
X on the slow manifold (see Section 3.5).
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To this end, note that equation (6.3) is not in standard singular perturbation
form: while C is a fast variable, X is neither fast nor slow since its differential
equation includes both fast and slow terms. To explicitly model the difference of
time scales, we let z = X+C be the total amount of protein X (bound and free) and
rewrite system (6.3) in the new variables (z,C). Letting ϵ = γ/koff, Kd = koff/kon,
and kon = γ/(ϵKd), system (6.3) can be rewritten as

dz

dt
= k(t)−γ(z−C), ϵ

dC

dt
= −γC+

γ

Kd
(ptot−C)(z−C), (6.4)

in which z is a slow variable. The reader can check that the slow manifold of system
(6.4) is locally exponentially stable (see Exercise 6.2).

We can obtain an approximation of the dynamics of X in the limit in which ϵ is
very small by setting ϵ = 0. This leads to

−γC+
γ

Kd
(ptot−C)X = 0 =⇒ C = g(X) with g(X) =

ptotX

X+Kd
.

Since ż = Ẋ+ Ċ, we have that ż = Ẋ+ (dg/dX)Ẋ. This along with ż = k(t)−γX lead
to

dX

dt
= (k(t)−γX)

(

1
1+dg/dX

)

. (6.5)

The difference between the dynamics in equation (6.5) (the connected system
after a fast transient) and the dynamics in equation (6.2) (the isolated system) is
zero when the term dg(X)/dX in equation (6.5) is zero. We thus consider the term
dg(X)/dX as a quantification of the retroactivity s after a fast transient in the ap-
proximation in which ϵ ≈ 0. We can also interpret the term dg(X)/dX as a percent-
age variation of the dynamics of the connected system with respect to the dynam-
ics of the isolated system at the quasi-steady state. We next determine the physical
meaning of such a term by calculating a more useful expression that is a function
of key biochemical parameters. Specifically, we have that

dg(X)
dX

=
ptot/Kd

(X/Kd+1)2 =: R(X). (6.6)

The retroactivity measure R is low whenever the ratio ptot/Kd, which can be seen
as an effective load, is low. This is the case if the affinity of the binding sites p is
small (Kd large) or if ptot is low. Also, the retroactivity measure is dependent on
X in a nonlinear fashion and it is such that it is maximal when X is the smallest.
The expression of R(X) provides an operative quantification of retroactivity: such
an expression can be evaluated once the dissociation constant of X is known, the
concentration of the binding sites ptot is known, and X is also measured. From
equations (6.5) and (6.6), it follows that the rate of change of X in the connected
system is smaller than that in the isolated system, that is, retroactivity slows down
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the dynamics of the transcriptional system. This has been also experimentally re-
ported in [49].

Summarizing, the modularity assumption introduced in Section 6.1 holds only
when the value of R(X) is small enough. Thus, the design of a simple circuit can
assume modularity if the interconnections among the composing modules can be
designed so that the value of R(X) is low. When designing the system, this can be
guaranteed by placing the promoter sites p on low copy number plasmids or even
on the chromosome (with copy number equal to 1). High copy number plasmids
are expected to lead to non-negligible retroactivity effects on X.

Note however that in the presence of very low affinity and/or very low amount
of promoter sites, the amount of complex C will be very low. As a consequence, the
amplitude of the transmitted signal to downstream systems may also be very small
sot that noise may become a bottleneck. A better approach may be to design insu-
lation devices (as opposed to designing the interconnection for low retroactivity)
to buffer systems from possibly large retroactivity as explained later in the chapter.

Effects of retroactivity on the frequency response

In order to explain the amplitude attenuation and phase shift due to retroactivity
observed in Figure 6.5, we linearize the system about its equilibrium and determine
the effect of retroactivity on the frequency response. To this end, consider the input
in the form k(t) = k̄ + A0 sin(ωt). Let Xe = k̄/γ and Ce = ptotXe/(Xe + Kd) be the
equilibrium values corresponding to k̄. The isolated system is already linear, so
there is no need to perform linearization and the transfer function from k to X is
given by

Gi
Xk(s) =

1
s+γ
.

For the connected system (6.5), let (k̄,Xe) denote the equilibrium, which is the same
as for the isolated system, and let k̃= k− k̄ and x= X−Xe denote small perturbations
about this equilibrium. Then, the linearization of system (6.5) about (k̄,Xe) is given
by

dx

dt
= (k̃(t)−γx)

1
1+ (ptot/Kd)/(Xe/Kd+1)2 .

Letting R̄ := (ptot/Kd)/(Xe/Kd+1)2, we obtain the transfer function from k̃ to x of
the connected system linearization as

Gc
Xk =

1
1+ R̄

1
s+γ/(1+ R̄)

.

Hence, we have the following result for the frequency response magnitude and
phase shift:

Mi(ω) =
1

√

ω2+γ2
, φi(ω) = tan−1(−ω/γ),
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Figure 6.6: Covalent modification cycle with its input, output, and downstream system.

Mc(ω) =
1

1+ R̄

1
√

ω2+γ2/(1+ R̄)2
, φc(ω) = tan−1(−ω(1+ R̄)/γ),

from which one obtains that Mi(0) = Mc(0) and, since R̄ > 0, the bandwidth of
the connected system γ/(1+ R̄) is lower than that of the isolated system γ. As a
consequence, we have that Mi(ω) > Mc(ω) for all ω > 0. Also, the phase shift of
the connected system is larger than that of the isolated system. This explains why
the plots of Figure 6.5 show attenuation and a phase shift in the response of the
connected system.

When the frequency of the input stimulation k(t) is sufficiently lower than the
bandwidth of the connected system γ/(1+ R̄), then the connected and isolated sys-
tems will respond similarly. Hence, the effects of retroactivity are tightly related to
the time scale properties of the input signals and of the system and mitigation of
retroactivity is required only when the frequency range of the signals of interest is
larger than the connected system bandwidth γ/(1+ R̄) (see Exercise 6.4).

6.4 Retroactivity in Signaling Systems

Signaling systems are circuits that take external stimuli as inputs and, through a se-
quence of biomolecular reactions, transform them to signals that control how cells
respond to their environment. These systems are usually composed of covalent
modification cycles such as phosphorylation, methylation, and urydylilation, and
connected in cascade fashion, in which each cycle has multiple downstream tar-
gets or substrates (refer to Figure 6.6). An example is the MAPK cascade, which
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we have analyzed in Section 2.5. Since covalent modification cycles always have
downstream targets, such as DNA binding sites or other substrates, it is particularly
important to understand whether and how retroactivity from these downstream sys-
tems affects the response of the upstream cycles to input stimulation. In this section,
we study this question both for the steady state and transient response of a covalent
modification cycle to its input.

Steady state effects of retroactivity

We have seen in Section 2.4 that one important characteristic of signaling systems
and, in particular, of covalent modification cycles, is the steady state input/output
characteristic curve. We showed in Section 2.4 that when the Michaelis-Menten
constants are sufficiently small compared to the amount of total protein, the char-
acteristic curve of the cycle become ultrasensitive, a condition called zero-order
ultrasensitivity. When the cycle is connected to its downstream targets, this steady
state characteristic curve changes. In order to understand how this happens, we
rewrite the reaction rates and the corresponding differential equation model for the
covalent modification cycle of Section 2.4, adding the binding of X∗ to its down-
stream target S. Referring to Figure 6.6, we have the following reactions:

Z+X
a1−−⇀↽−−
d1

C1
k1−→ X∗+Z, Y+X∗

a2−−⇀↽−−
d2

C2
k2−→ X+Y,

to which we add the binding reaction of X* with its substrate S:

X∗+S
kon−−−⇀↽−−−
koff

C,

in which C is the complex of X* with S. In addition to this, we have the conserva-
tion laws Xtot = X∗+X+C1+C2+C, Ztot = Z+C1, and Ytot = Y +C2.

The ordinary differential equations governing the system are given by

dC1

dt
= a1XZ− (d1+ k1)C1,

dX∗

dt
= −a2X∗Y +d2C2+ k1C1− konS X∗+ koffC,

dC2

dt
= a2X∗Y − (d2+ k2)C2,

dC

dt
= konX∗S − koffC.

The input/output characteristics are found by solving this system for the equilib-
rium. In particular, by setting Ċ1 = 0, Ċ2 = 0, using that Z = Ztot −C1 and that
Y = Ytot−C2, we obtain the familiar expressions for the complexes:

C1 =
ZtotX

K1+X
, C2 =

YtotX
∗

K2+X∗
,
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with
K1 =

d1+ k1

a1
, K2 =

d2+ k2

a2
.

By setting Ẋ∗+ Ċ2+ Ċ = 0, we obtain k1C2 = k2C2, which leads to

V1
X

K1+X
= V2

X∗

K2+X∗
, V1 = k1Ztot and V2 = k2Ytot. (6.7)

By assuming that the substrate Xtot is in excess compared to the enzymes, we have
that C1,C2 ≪ Xtot so that X ≈ Xtot − X∗ −C, in which (from setting dC/dt = 0)
C = X∗S/Kd with Kd = koff/kon, leading to X ≈ Xtot−X∗(1+S/Kd). Calling

λ =
S

Kd
,

equation (6.7) finally leads to

y :=
V1

V2
=

X∗ ((K1/(1+λ))+ ((Xtot/(1+λ))−X∗))
(K2+X∗) ((Xtot/(1+λ))−X∗)

. (6.8)

Here, we can interpret λ as an effective load, which increases with the amount of
targets of X∗ but also with the affinity of these targets (1/Kd).

We are interested in how the shape of the steady state input/output characteristic
curve of X∗ change as function of y when the effective load λ is changed. As seen
in Section 2.4, a way to quantify the sensitivity of the steady state characteristics is
to calculate the response coefficient R= y90/y10. The maximal value of X∗ obtained
as y→∞ is given by Xtot/(1+λ). Hence, from equation (6.8), we have that

y90 =
(K̄1+0.1)0.9

(K̄2(1+λ)+0.9)0.1
, y10 =

(K̄1+0.9)0.1
(K̄2(1+λ)+0.1)0.9

,

with
K̄1 :=

K1

Xtot
, K̄2 =

K2

Xtot
,

so that

R = 81
(K̄1+0.1)(K̄2(1+λ)+0.1
(K̄2(1+λ)+0.9)(K̄1+0.9)

.

Comparing this expression with the one obtained in equation (2.31) for the isolated
covalent modification cycle, we see that the net effect of the downstream target S is
that of increasing the Michaelis-Menten constant K2 by the factor (1+λ). Hence,
we should expect that with increasing load, the steady state characteristic curve
should be more linear-like. This is confirmed by the simulations shown in Fig-
ure 6.7 and it was also experimentally demonstrated in signal transduction circuits
reconstituted in vitro [92].

One can check that R is a monotonically increasing function of λ. In particular,
as λ increases, the value of R tends to 81(K̄1+0.1)/(K̄2+0.9), which, in turn, tends
to 81 for K̄1, K̄2→∞. When λ = 0, we recover the results of Section 2.4.
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Figure 6.7: Effect of retroactivity on the steady state input/output characteristic curve
of a covalent modification cycle. The addition of downstream target sites makes the in-
put/output characteristic curve more linear-like, that is, retroactivity makes a switch-like
response into a more graded response. The plot is obtained for K1/Xtot = K2/Xtot = 0.01
and the value of X∗ is normalized to its maximum given by Xtot/(1+λ).

Dynamic effects of retroactivity

In order to understand the effects of retroactivity on the temporal response of a
covalent modification cycle, we consider changes in Ztot and analyze the temporal
response of the cycle to these changes. To perform this analysis more easily, we
seek a one dimensional approximation of the X∗ dynamics by exploiting time scale
separation.

Specifically, we have that di,koff ≫ k1,k2, so we can choose ϵ = k1/koff as a
small parameter and w = X∗+C+C2 as a slow variable. By setting ϵ = 0, we obtain
C1 = ZtotX/(K1 + X), C2 = YtotX

∗/(K2 + X∗) =: g(X∗), and C = λX∗, where Ztot is
now a time-varying input signal. Hence, the dynamics of the slow variable w on
the slow manifold are given by

dw

dt
= k1

Ztot(t)X
K1+X

− k2Ytot
X∗

X∗+K2
.

Using

dw

dt
=

dX∗

dt
+

dC

dt
+

dC2

dt
,

dC

dt
= λ

dX∗

dt
,

dC2

dt
=

∂g

∂X∗
dX∗

dt
,

and the conservation law X = Xtot −X∗(1+λ), we finally obtain the approximated
X∗ dynamics as

dX∗

dt
=

1
1+λ

(

k1
Ztot(t)(Xtot−X∗(1+λ))
K1+ (Xtot−X∗(1+λ))

− k2Ytot
X∗

X∗+K2

)

, (6.9)
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Figure 6.8: Effect of retroactivity on the temporal response of a covalent modification
cycle. (a) Response to a negative step. The presence of the load makes the response slower.
(b) Step response of the cycle in the presence of a positive step. The response time is not
affected by the load. Here, K1/Xtot = K2/Xtot = 0.1, k1 = k2 = 1 min−1, and λ = 5. In the
plots, the concentration X∗ is normalized by Xtot.

where we have assumed that Ytot/K2 ≪ S/Kd, so that the effect of the binding
dynamics of X* with Y (modeled by ∂g/∂X∗) is negligible with respect to λ. The
reader can verify this derivation as an exercise (see Exercise 6.7).

From this expression, we can understand the effect of the load λ on the rise time
and decay time in response to large step input stimuli Ztot. For the decay time, we
can assume an initial condition X∗(0) ! 0 and Ztot(t) = 0 for all t. In this case, we
have that

dX∗

dt
= −k2Ytot

X∗

X∗+K2

1
1+λ

,

from which, since λ > 0, it follows that the transient will be slower than when λ = 0
and hence that the system will have an increased decay time due to retroactivity.
For the rise time, one can assume Ztot ≈ ∞ and X∗(0) = 0. In this case, at least
initially we have that

(1+λ)
dX∗

dt
=

(

k1
Ztot(Xtot−X∗(1+λ))

K1+ (Xtot−X∗(1+λ))

)

,

which is the same expression for the isolated system in which X∗ is scaled by
(1+λ). So, the rise time is not affected. The response of the cycle to positive and
negative steps changes of the input stimulus Ztot are shown in Figure 6.8.

In order to understand how the bandwidth of the system is affected by retroac-
tivity, we consider Ztot(t) = Z̄ +A0 sin(ωt). Let Xe be the equilibrium of X∗ corre-
sponding to Z̄. Let z = Ztot− Z̄ and x = X∗ −Xe denote small perturbations about the
equilibrium. The linearization of system (6.9) is given by

dx

dt
= −a(λ)x+b(λ)z(t),
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Figure 6.9: Behavior of the bandwidth as a function of the effective load λ for different
values of the constants K̄1, K̄2.

in which

a(λ) =
1

1+λ

(

k1Z̄
K1(1+λ)

(K1+ (Xtot−Xe(1+λ)))2 + k2Ytot
K2

(K2+Xe)2

)

and

b(λ) =
k1

1+λ

(

Xtot−Xe(1+λ)
K1+ (Xtot−Xe(1+λ))

)

,

so that the bandwidth of the system is given by ωB = a(λ).
Figure 6.9 shows the behavior of the bandwidth as a function of the load. When

the isolated system steady state input/output characteristic curves are linear-like
(K1,K2≫ Xtot), the bandwidth monotonically decreases with the load. By contrast,
when the isolated system static characteristics are ultrasensitive (K1,K2≪ Xtot), the
bandwidth of the connected system can be larger than that of the isolated system
for sufficiently large amounts of loads. In these conditions, one should expect that
the response of the connected system becomes faster than that of the isolated sys-
tem. These theoretical predictions have been experimentally validated in a covalent
modification cycle reconstituted in vitro [50].

6.5 Insulation Devices: Retroactivity Attenuation

As explained in the previous section, it is not always possible or advantageous to
design the downstream system, which we here call module B, such that it applies
low retroactivity to the upstream system, here called module A. In fact, module
B may already have been designed and optimized for other purposes. A different
approach, in analogy to what is performed in electrical circuits, is to design a device
to be placed between module A and module B (Figure 6.10) such that the device can
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Figure 6.10: An insulation device is placed between an upstream module A and a down-
stream module B in order to protect these systems from retroactivity. An insulation device
should have r ≈ 0 and the dynamic response of y to u should be practically independent of
s.

transmit the output signal of module A to module B even in the presence of large
retroactivity s. That is, the output y of the device should follow the behavior of the
output of module A independent of a potentially large load applied by module B.
This way module B will receive the desired input signal.

Specifically, consider a system S such as the one shown in Figure 6.3. We would
like to design such a system such that

(a) the retroactivity r to the input is very small;

(b) the effect of the retroactivity s on the system is very small (retroactivity
attenuation);

(c) when s = 0, we have that y ≈ Ku for some K > 0.

Such a system is said to have the insulation property and will be called an insu-
lation device. Indeed, such a system does not affect an upstream system because
r ≈ 0 (requirement (a)), it keeps the same output signal y(t) independently of any
connected downstream system (requirement (b)), and the output is a linear func-
tion of the input in the absence of retroactivity to the output (requirement (c)). This
requirement rules out trivial cases in which y is saturated to a maximal level for
all values of the input, leading to no signal transmission. Of course, other require-
ments may be important, such as the stability of the device and especially the speed
of response.

Equation (6.6) quantifies the effect of retroactivity on the dynamics of X as a
function of biochemical parameters. These parameters are the affinity of the bind-
ing site 1/Kd, the total concentration of such binding site ptot, and the level of the
signal X(t). Therefore, to reduce retroactivity, we can choose parameters such that
R(X) in equation (6.6) is small. A sufficient condition is to choose Kd large (low
affinity) and ptot small, for example. Having a small value of ptot and/or low affinity
implies that there is a small “flow” of protein X toward its target sites. Thus, we
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(a) High gain feedback mechanism (b) Alternative representation

Figure 6.11: The block diagram in (a) shows the basic high gain feedback mechanism to
attenuate the contribution of disturbance s to the output y. The diagram in (b) shows an
alternative representation, which will be employed to design biological insulation devices.

can say that a low retroactivity to the input is obtained when the “input flow” to the
system is small. In the next sections, we focus on the retroactivity to the output,
that is, on the retroactivity attenuation problem, and illustrate how the problem
of designing a device that is robust to s can be formulated as a classical distur-
bance attenuation problem (Section 3.2). We provide two main design techniques
to attenuate retroactivity: the first one is based on the idea of high gain feedback,
while the second one uses time-scale separation and leverages the structure of the
interconnection.

Attenuation of retroactivity to the output using high gain feedback

The basic mechanism for retroactivity attenuation is based on the concept of dis-
turbance attenuation through high gain feedback presented in Section 3.2. In its
simplest form, it can be illustrated by the diagram of Figure 6.11a, in which the
retroactivity to the output s plays the same role as an additive disturbance. For
large gains G, the effect of the retroactivity s to the output is negligible as the
following simple computation shows. The output y is given by

y =G(u−Ky)+ s,

which leads to
y = u

G

1+KG
+

s

1+KG
.

As G grows, y tends to u/K, which is independent of the retroactivity s.
Figure 6.11b illustrates an alternative representation of the diagram depicting

high gain feedback. This alternative depiction is particularly useful as it highlights
that to attenuate retroactivity we need to (1) amplify the input of the system through
a large gain and (2) apply a similarly large negative feedback on the output. The
question of how to realize a large input amplification and a similarly large nega-
tive feedback on the output through biomolecular interactions is the subject of the
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next section. In what follows, we fist illustrate how this strategy also works for a
dynamical system of the form of equation (6.5).

Consider the dynamics of the connected transcriptional system given by

dX

dt
= (k(t)−γX)

(

1
1+R(X)

)

.

Assume that we can apply a gain G to the input k(t) and a negative feedback gain
G′ to X with G′ = KG. This leads to the new differential equation for the connected
system given by

dX

dt
=

(

Gk(t)− (G′+γ)X
)

(1−d(t)), (6.10)

in which we have defined d(t) = R(X)/(1+R(X)). Since d(t) < 1, we can verify
(see Exercise 6.8) that as G grows X(t) tends to k(t)/K for both the connected
system (6.10) and the isolated system

dX

dt
=Gk(t)− (G′+γ)X. (6.11)

Specifically, we have the following fact:

Proposition 6.1. Consider the scalar system ẋ =G(t)(k(t)−Kx) with G(t) ≥G0 > 0
and k̇(t) bounded. Then, there are positive constants C0 and C1 such that

∣
∣
∣
∣
∣
x(t)−

k(t)
K

∣
∣
∣
∣
∣
≤C0e−G0Kt +

C1

G0
.

As a consequence, the solutions X(t) of the connected and isolated systems tend
to each other as G increases. Hence, the presence of the disturbance d(t) will not
significantly affect the time behavior of X(t). It follows that the effect of retroactiv-
ity can be arbitrarily attenuated by increasing gains G and G′.

The next questions we address is how we can implement such amplification and
feedback gains in a biomolecular system.

Biomolecular realizations of high gain feedback

In this section, we illustrate two possible biomolecular implementations to obtain a
large input amplification gain and a similarly large negative feedback on the output.
Both implementations realize the negative feedback through enhanced degradation.
The first design realizes amplification through transcriptional activation, while the
second design uses phosphorylation.

Design 1: Amplification through transcriptional activation

This design is depicted in Figure 6.12. We implement a large amplification of the
input signal Z(t) by having Z be a transcription activator for protein X, such that
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Figure 6.12: Implementation of high gain feedback (Design 1). The input Z(t) is amplified
by virtue of a strong promoter p0. The negative feedback on the output X is obtained by
enhancing its degradation through the protease Y.

the promoter p0 controlling the expression of X is a strong, non-leaky promoter
activated by Z. The signal Z(t) can be further amplified by increasing the strength
of the ribosome binding site of gene x. The negative feedback mechanism on X
relies on enhanced degradation of X. Since this must be large, one possible way to
obtain an enhanced degradation for X is to have a specific protease, called Y, be
expressed by a strong constitutive promoter.

To investigate whether such a design realizes a large amplification and a large
negative feedback on X as needed to attenuate retroactivity to the output, we con-
struct a model. The reaction of the protease Y with protein X is modeled as the
two-step reaction

X+Y
a
−⇀↽−
d

W
k̄
−→ Y.

The input/output system model of the insulation device that takes Z as an input and
gives X as an output is given by the following equations

dZ

dt
=k(t)−γZZ+

[

k′off C̄− k′on Z(p0,tot− C̄)
]

, (6.12)

dC̄

dt
=k′onZ(p0,tot− C̄)− k′offC̄, (6.13)

dmX

dt
=GC̄−δmX , (6.14)

dW

dt
=aXY −dW − k̄W, (6.15)

dY

dt
=−aYX+ k̄W +αG−γYY +dW, (6.16)

dX

dt
=κmX −aYX+dW −γXX+

[

koffC− konX(ptot−C)
]

, (6.17)

dC

dt
=− koffC+ konX(ptot−C), (6.18)

in which we have assumed that the expression of gene z is controlled by a promoter
with activity k(t). In this system, we have denoted by k′on and k′off the association
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and dissociation rate constants of Z with its promoter site p0 in total concentration
p0,tot. Also, C̄ is the complex of Z with such a promoter site. Here, mX is the
mRNA of X, and C is the complex of X bound to the downstream binding sites
p with total concentration ptot. The promoter controlling gene y has strength αG,
for some constant α, and it has about the same strength as the promoter controlling
gene x.

The terms in the square brackets in equation (6.12) represent the retroactivity r

to the input of the insulation device in Figure 6.12. The terms in the square brackets
in equation (6.17) represent the retroactivity s to the output of the insulation device.
The dynamics of equations (6.12)–(6.18) without s describe the dynamics of X with
no downstream system (isolated system).

Equations (6.12) and (6.13) determine the signal C̄(t) that is the input to equa-
tions (6.14)–(6.18). For the discussion regarding the attenuation of the effect of s, it
is not relevant what the specific form of signal C̄(t) is. Let then C̄(t) be any bounded
signal. Since equation (6.14) takes C̄(t) as an input, we will have that mX(t)=Gv(t),
for a suitable signal v(t). Let us assume for the sake of simplifying the analysis that
the protease reaction is a one step reaction. Therefore, equation (6.16) simplifies to

dY

dt
= αG−γYY

and equation (6.17) simplifies to

dX

dt
= κmX − k̄′YX−γXX+ koffC− konX(ptot−C),

for a suitable positive constant k̄′. If we further consider the protease to be at its
equilibrium, we have that Y(t) = αG/γY .

As a consequence, the X dynamics become

dX

dt
= κGv(t)− (k̄′αG/γY +γX)X+ koffC− konX(ptot−C),

with C determined by equation (6.18). By using the same singular perturbation
argument employed in the previous section, the dynamics of X can be reduced to

dX

dt
= (κGv(t)− (k̄′αG/γY +γX)X)(1−d(t)), (6.19)

in which 0 < d(t) < 1 is the retroactivity term given by R(X)/(1+R(X)). Then, as
G increases, X(t) becomes closer to the solution of the isolated system

dX

dt
= κGv(t)− (k̄′αG/γY +γX)X,

as explained in the previous section be virtue of Proposition 6.1.
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Figure 6.13: Design 1: results for different gains G. In all plots, k(t) = 0.01(1+ sin(ωt)),
ptot = 100 nM, koff = 10 min−1, kon = 10 min−1 nM−1, γZ = 0.01 = γY min−1, and ω =
0.005 rad/min. Also, we have set δ = 0.01 min−1, p0,tot = 1 nM, a = 0.01 min−1 nM−1,
d = k̄′ = 0.01 min−1, k′off = 200 min−1, k′on = 10 min−1 nM−1, α = 0.1 nM/min, γX = 0.1
min−1, κ = 0.1 min−1, and G = 1000,100,10,1. The retroactivity to the output is not well
attenuated for values of the gain G = 1 and the attenuation capability begins to worsen for
G = 10.

We now turn to the question of minimizing the retroactivity to the input r be-
cause its effect can alter the input signal Z(t). In order to decrease r, we must
guarantee that the retroactivity measure given in equation (6.6), in which we sub-
stitute Z in place of X, p0,tot in place of ptot, and K′d = k′on/k

′
off in place of Kd, is

small. This is the case if K′d≫ Z and p0,tot/K
′
d≪ 1.

Simulation results for the system described by equations (6.12)–(6.18) are shown
in Figure 6.13. For large gains (G = 1000, G = 100), the performance considerably
improves compared to the case in which X was generated by a transcriptional com-
ponent accepting Z as an input (Figure 6.5). For lower gains (G = 10, G = 1), the
performance starts to degrade for G = 10 and becomes poor for G = 1. Since we
can view G as the number of transcripts produced per unit time (one minute) per
complex of protein Z bound to promoter p0, values G = 100,1000 may be diffi-
cult to realize in vivo, while the values G = 10,1 could be more easily realized.
However, the value of κ increases with the strength of the ribosome binding site
and therefore the gain may be further increased by picking strong ribosme binding
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Figure 6.14: Implementation of high gain feedback (Design 2). Amplification of Z occurs
through the phosphorylation of substrate X. Negative feedback occurs through a phos-
phatase Y that converts the active form X∗ back to its inactive form X.

sites for x. The values of the parameters chosen in Figure 6.13 are such that K′d≫ Z

and p0,tot≪ K′d. This is enough to guarantee that there is small retroactivity r to the
input of the insulation device independently of the value of the gain G. The poorer
performance of the device for G = 1 is therefore entirely due to poor attenuation of
the retroactivity s to the output. To obtain a large negative feedback gain, we also
require high expression of the protease. It is therefore important that the protease
is highly specific to its target X.

Design 2: Amplification through phosphorylation

In this design, the amplification gain G of Z is obtained by having Z be a kinase
that phosphorylates a substrate X, which is available in abundance. The negative
feedback gain G′ on the phosphorylated protein X∗ is obtained by having a phos-
phatase Y dephosphorylate the active protein X∗. Protein Y should also be available
in abundance in the system. This implementation is depicted in Figure 6.14.

To illustrate what key parameters enable retroactivity attenuation, we first con-
sider a simplified model for the phosphorylation and dephosphorylation processes.
This model will help in obtaining a conceptual understanding of what reactions are
responsible in realizing the desired gains G and G′. The one step model that we
consider is the same as considered in Chapter 2 (Exercise 2.12):

Z+X
k1−→ Z+X∗, Y+X∗

k2−→ Y+X.

We assume that there is an abundance of protein X and of phosphatase Y in the
system and that these quantities are conserved. The conservation of X gives X +

X∗ +C = Xtot, in which X is the inactive protein, X∗ is the phosphorylated protein
that binds to the downstream sites p, and C is the complex of the phosphorylated
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protein X∗ bound to the promoter p. The X∗ dynamics can be described by the
following model

dX∗

dt
= k1XtotZ(t)

(

1−
X∗

Xtot
−

[

C

Xtot

])

− k2YX∗+ [koffC− konX∗(ptot−C)],

dC

dt
= −koffC+ konX∗(ptot−C).

(6.20)

The two terms in the square brackets represent the retroactivity s to the output of
the insulation device of Figure 6.14. For a weakly activated pathway [41], X∗ ≪
Xtot. Also, if we assume that the total concentration of X is large compared to the
concentration of the downstream binding sites, that is, Xtot ≫ ptot, equation (6.20)
is approximatively equal to

dX∗

dt
= k1XtotZ(t)− k2YX∗+ koffC− konX∗(ptot−C).

Let G = k1Xtot and G′ = k2Y . Exploiting again the difference of time scales
between the X∗ dynamics and the C dynamics, the dynamics of X∗ can be finally
reduced to

dX∗

dt
= (GZ(t)−G′X∗)(1−d(t)),

in which 0< d(t)< 1 is the retroactivity term. Therefore, for G and G′ large enough,
X∗(t) tends to the solution X∗(t) of the isolated system

dX∗

dt
=GZ(t)−G′X∗,

as explained before by virtue of Proposition 6.1. It follows that the effect of the
retroactivity to the output s is attenuated by increasing the effective rates k1Xtot and
k2Y . That is, to obtain large input and negative feedback gains, one should have
large phosphorylation/dephosphorylation rates and/or a large amount of protein X
and phosphatase Y in the system. This reveals that the values of the phosphoryla-
tion/dephosphorylation rates cover an important role toward the retroactivity atten-
uation property of the module of Figure 6.14. From a practical point of view, the
effective rates can be increased by increasing the total amounts of X and Y. These
amounts can be tuned, for example, by placing the x and y genes under the control
of inducible promoters. The reader can verify through simulation how increasing
the phosphatase and substrate amounts the effect of retroactivity can be attenuated
(see Exercise 6.9). Experiments performed on a covalent modification cycle recon-
stituted in vitro confirmed that increasing the effective rates of modification is an
effective means to attain retroactivity attenuation [50].

A design similar to the one illustrated here can be proposed in which a phos-
phorylation cascade, such as the MAPK cascade, realizes the input amplification
and an explicit feedback loop is added from the product of the cascade to its input
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Figure 6.15: Interconnection of a device with input u and output x to a downstream system
with internal state v applying retroactivity s.

[81]. The design presented here is simpler as it involves only one phosphorylation
cycle and does not require any explicit feedback loop. In fact, a strong negative
feedback can be realized by the action of the phosphatase that converts the active
protein form X∗ back to its inactive form X.

Attenuation of retroactivity to the output using time-scale separation

In this section, we present a more general mechanism for retroactivity attenuation,
which can be applied to systems of differential equations of arbitrary dimension.
This will allow us to consider more complex and realistic models of the phospho-
rylation reactions as well as more complicated systems.

For this purpose, consider Figure 6.15. We illustrate next how system S can at-
tenuate retroactivity s by employing the principle of time scale separation. Specif-
ically, when the internal dynamics of the system are much faster compared to the
input u, the system immediately reaches its quasi-steady state with respect to the
input. This quasi-steady state, in turn, is basically independent of s due to the in-
terconnection structure between the systems. To illustrate this idea mathematically,
consider the following simple structure in which (for simplicity) we assume that
all variables are scalar:

du

dt
= f0(u, t)+ r(u, x),

dx

dt
=G f1(x,u)+ Ḡs(x,v),

dv

dt
= −Ḡs(x,v). (6.21)

Here let G≫ 1 model the fact that the internal dynamics of the system are much
faster than that of the input. Similarly, Ḡ≫ 1 models the fact that the dynamics of
the interconnection with downstream systems are also very fast. This is usually the
case since the reactions contributing to s are usually binding/unbinding reactions,
which are much faster than most of other biochemical processes, including gene
expression and phosphorylation. We make the following informal claim:

If G≫ 1 and the Jacobian ∂ f1(x,u)/∂x has eigenvalues with negative
real part, then x(t) is not affected by retroactivity s after a short initial
transient, independently of the value of Ḡ.

A formal statement of this result can be found in [48]. This result states that inde-
pendently of the characteristics of the downstream system, system S can be tuned
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(by making G large enough) such that it attenuates the retroactivity to the output.
To clarify why this would be the case, it is useful to rewrite system (6.21) in stan-
dard singular perturbation form by employing ϵ := 1/G as a small parameter and
x̃ := x+ v as the slow variable. Hence, the dynamics can be rewritten as

du

dt
= f0(u, t)+ r(u, x), ϵ

dx̃

dt
= f1(x̃− v,u),

dv

dt
= −Ḡs(x̃− v,v). (6.22)

Since ∂ f1/∂x̃ has eigenvalues with negative real part, one can apply standard singu-
lar perturbation to show that after a very fast transient, the trajectories are attracted
to the slow manifold given by f1(x̃− v,u) = 0. This is locally given by x = g(u)
solving f1(x,u) = 0. Hence, on the slow manifold we have that x(t) = g(u(t)), which
is independent of the downstream system, that is, it is not affected by retroactivity.

The same result holds for a more general class of systems in which the variables
u, x,v are vectors:

du

dt
= f0(u, t)+ r(u, x),

dx

dt
=G f1(x,u)+ ḠAs(x,v),

dv

dt
= −ḠBs(x,v)

(6.23)
as long as there are matrices T and M such that T A−MB = 0 and T is invertible.
In fact, one can take the system to new coordinates u, x̃,v with x̃ = T x+Mv, in
which the system will have the singular perturbation form (6.22), where the state
variables are vectors. Note that matrices A and B are stoichiometry matrices and
s represents a vector of reactions, usually modeling binding and unbinding pro-
cesses. The existence of T and M such that T A−MB = 0 models the fact that in
these binding reactions species do not get destroyed or created, but simply trans-
formed between species that belong to the upstream system and species that belong
to the downstream system.

Biomolecular realizations of time-scale separation

We next consider possible biomolecular structures that realize the time-scale sep-
aration required for insulation. Since this principle is based on a fast time scale
of the device dynamics when compared to that of the device input, we focus on
signaling systems, which are known to evolve on faster time scales than those of
protein production and decay.

Design 1: Implementation through phosphorylation

We consider now a more realistic model for the phosphorylation and dephosphory-
lation reactions in a phosphorylation cycle than those considered in Section 6.5. In
particular, we consider a two-step reaction model as seen in Section 2.4. Accord-
ing to this model, we have the following two reactions for phosphorylation and
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dephosphorylation:

Z+X
a1−−⇀↽−−
d1

C1
k1−→ X∗+Z, Y+X∗

a2−−⇀↽−−
d2

C2
k2−→ X+Y. (6.24)

Additionally, we have the conservation equations Ytot = Y +C2, Xtot = X + X∗ +

C1+C2+C, because proteins X and Y are not degraded. Therefore, the differential
equations modeling the system of Figure 6.14 become

dZ

dt
= k(t)−γZ

[

−a1ZXtot

(

1−
X∗

Xtot
−

C1

Xtot
−

C2

Xtot
−

[

C

Xtot

])

+ (d1+ k1)C1

]

, (6.25)

dC1

dt
= −(d1+ k1)C1+a1ZXtot

(

1−
X∗

Xtot
−

C1

Xtot
−

C2

Xtot
−

[

C

Xtot

])

, (6.26)

dC2

dt
= −(k2+d2)C2+a2YtotX

∗
(

1−
C2

Ytot

)

, (6.27)

dX∗

dt
= k1C1+d2C2−a2YtotX

∗
(

1−
C2

Ytot

)

+
[

koffC− konX∗(ptot−C)
]

, (6.28)

dC

dt
= −koffC+ konX∗(ptot−C), (6.29)

in which the production of Z is controlled by a promoter with activity k(t). The
terms in the large square bracket in equation (6.25) represent the retroactivity r

to the input, while the terms in the square brackets of equations (6.26) and (6.28)
represent the retroactivity s to the output.

We assume that Xtot≫ ptot so that in equations (6.25) and (6.26) we can neglect
the term C/Xtot since C < ptot. Choose Xtot to be sufficiently large so that G =

a1Xtot/γ≫ 1. Also, let Ḡ = koff/γ, which is also much larger than 1 since binding
reactions are much faster than protein production and decay rates (koff ≫ γ) and
write kon = koff/Kd. Choosing Ytot to also be sufficiently large, we can guarantee
that a2Ytot is of the same order as a1Xtot and we can let α1 = a1Xtot/(γG), α2 =

a2Ytot/(γG), δ1 = d1/(γG), and δ2 = d2/(γG). Finally, since the catalytic rates k1,k2

are much larger than protein decay, we can assume that they are of the same order
of magnitude as a1Xtot and a2Ytot, so that we define ci = ki/(γG). With these, letting
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z = Z+C1 we obtain the system in the form

dz

dt
= k(t)−γ(z−C1),

dC1

dt
=G

(

−γ(δ1+ c1)C1+γα1(z−C1)
(

1−
X∗

Xtot
−

C1

Xtot
−

C2

Xtot

))

,

dC2

dt
=G

(

−γ(δ2+ c2)C2+γα2X∗
(

1−
C2

Ytot

))

, (6.30)

dX∗

dt
=G

(

γc1C1+γδ2C2−γα2X∗
(

1−
C2

Ytot

))

+ Ḡ
(

γC−γ/Kd(ptot−C)X∗
)

,

dC

dt
= −Ḡ

(

γC−γ/Kd(ptot−C)X∗
)

,

which is in the form of system (6.23) with u = z, x = (C1,C2,X
∗), and v = C, in

which one can choose T as the 3×3 identity matrix and

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is also possible to show that the Jacobian of f1 has eigenvalues with negative
real part (see Exercise 6.11). Hence, for G sufficiently larger than 1, this system
attenuates the effect of the retroactivity to the output s. For G to be large, one has
to require that a1Xtot is sufficiently large and that a2Ytot is also comparatively large.
These are compatible with the design requirements obtained in the previous section
based on the one-step reaction model of the enzymatic reactions.

In order to understand the effect of retroactivity to the input on the Z dynamics,
one can consider the reduced system describing the dynamics on the time scale
of Z. To this end, let Km,1 = (d1 + k1)/a1 and Km,2 = (d2 + k2)/a2 represent the
Michaelis-Menten constants of the forward and backward enzymatic reactions, let
G = 1/ϵ in equations (6.30), and take ϵ to the left-hand side. Setting ϵ = 0, the
following relationships can be obtained:

C1 = g1(X∗) =
(X∗Ytotk2)/(Km,2k1)

1+X∗/Km,2
, C2 = g2(X∗) =

(X∗Ytot)/Km,2

1+X∗/Km,2
. (6.31)

Using expressions (6.31) in the second of equations (6.30) with ϵ = 0 leads to

g1(X∗)
(

δ1+ c1+
α1Z

Xtot

)

= α1Z

(

1−
X∗

Xtot
−

g2(X∗)
Xtot

)

. (6.32)

Assuming for simplicity that X∗ ≪ Km,2, we obtain that

g1(X∗) ≈ (X∗Ytotk2)/(Km,2k1)
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and that
g2(X∗) ≈ X∗/Km,2Ytot.

As a consequence of these simplifications, equation (6.32) leads to

X∗(Z) =
α1Z

(α1Z/Xtot)(1+Ytot/Km,2+ (Ytotk2)/(Km,2k1))+ (Ytotk2)/(Km,2k1)(δ1+ c1)
.

In order not to have distortion from Z to X∗, we require that

Z≪
Ytot(k2/k1)(Km/Km,2)

1+Ytot/Km,2+ (Ytot/Km,2)(k2/k1)
, (6.33)

so that X∗(Z) ≈ Z(XtotKm,2k1)/(YtotKm,1k2) and therefore we have a linear relation-
ship between X∗ and Z with gain from Z to X∗ given by (XtotKm,2k1)/(YtotKm,1k2).
In order not to have attenuation from Z to X∗ we require that the gain is greater
than or equal to one, that is,

input/output gain ≈
XtotKm,2k1

YtotKm,1k2
≥ 1. (6.34)

Requirements (6.33), (6.34) and X∗ ≪ Km,2 are enough to guarantee that we do
not have nonlinear distortion between Z and X∗ and that X∗ is not attenuated with
respect to Z. In order to guarantee that the retroactivity r to the input is sufficiently
small, we need to quantify the retroactivity effect on the Z dynamics due to the
binding of Z with X. To achieve this, we proceed as in Section 6.3 by computing
the Z dynamics on the slow manifold, which gives a good approximation of the
dynamics of Z if ϵ ≈ 0. These dynamics are given by

dZ

dt
= (k(t)−γZ)

(

1−
dg1

dX∗
dX∗

dz

)

,

in which (dg1/dX∗)(dX∗/dz) measures the effect of the retroactivity r to the input
on the Z dynamics. Direct computation of dg1/dX∗ and of dX∗/dz along with X∗ ≪
Km,2 and with (6.33) leads to (dg1/dX∗)(dX∗/dz) ≈ Xtot/Km,1, so that in order to
have small retroactivity to the input, we require that

Xtot

Km,1
≪ 1. (6.35)

Hence, a design trade-off appears: Xtot should be sufficiently large to provide a gain
G large enough to attenuate the retroactivity to the output. Yet, Xtot should be small
enough compared to Km,1 so to apply minimal retroactivity to the input.

In conclusion, in order to have attenuation of the effect of the retroactivity to the
output s, we require that the time scale of the phosphorylation/dephosphorylation
reactions is much faster than the production and decay processes of Z (the input
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Figure 6.16: Time-scale separation mechanism for insulation: Implementation through
phosphorylation. Simulation results for system in equations (6.25)–(6.29). In all plots,
ptot = 100 nM, koff = 10 min−1, kon = 10 min−1 nM−1, γ = 0.01 min−1, k(t) = 0.01(1+
sin(ωt)) min−1, and ω = 0.005 rad/min. (a) Performance with fast phosphorylation cy-
cle. Here, k1 = k2 = 50 min−1, a2 = a1 = 0.01 min−1 nM−1 , d1 = d2 = 10 min−1, and
Ytot = Xtot = 1500 nM. The small error shows that the effect of the retroactivity to the out-
put s is attenuated very well. In the Z plot, the isolated system stands for the case in which
Z does not have X to bind to, while the connected system stands for the case in which
Z binds to substrate X. The small error confirms a small retroactivity to the input r. (b)
Performance with a slow phosphorylation cycle. Here, we set k1 = k2 = 0.01 min−1, while
the other parameters are left the same.

to the insulation device) and that Xtot ≫ ptot, that is, the total amount of protein
X is in abundance compared to the downstream binding sites p. To also obtain a
small effect of the retroactivity to the input, we require that Km,1 ≫ Xtot. This is
satisfied if, for example, kinase Z has low affinity to binding with X. To keep the
input/output gain between Z and X∗ close to one (from equation (6.34)), one can
choose Xtot = Ytot, and equal coefficients for the phosphorylation and dephospho-
rylation reactions, that is, Km,1 = Km,2 and k1 = k2.

The system in equations (6.25)–(6.29) was simulated with and without the
downstream binding sites p, that is, with and without, respectively, the terms in
the small box of equation (6.25) and in the boxes in equations (6.28) and (6.26).
This is performed to highlight the effect of the retroactivity to the output s on
the dynamics of X∗. The simulations validate our theoretical study that indicates
that when Xtot ≫ ptot and the time scales of phosphorylation/dephosphorylation
are much faster than the time scale of decay and production of the protein Z, the
retroactivity to the output s is very well attenuated (Figure 6.16a). Similarly, the
time behavior of Z was simulated with and without the terms in the square brack-
ets in equation (6.25), which represent the retroactivity to the input r, to verify
whether the insulation device exhibits small retroactivity to the input r. The simi-
larity of the behaviors of Z(t) with and without its downstream binding sites on X
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Figure 6.17: The insulation device is a phosphotransfer system. The output X∗ activates
transcription through the reversible binding of X∗ to downstream DNA promoter sites p.

(Figure 6.16a) indicates that there is no substantial retroactivity to the input r gen-
erated by the insulation device. This is obtained because Xtot ≪ Km,1 as indicated
in equation (6.35), in which 1/Km can be interpreted as the affinity of the binding
of X to Z.

Our simulation study also indicates that a faster time scale of the phosphory-
lation/dephosphorylation reactions is necessary, even for high values of Xtot and
Ytot, to maintain perfect attenuation of the retroactivity to the output s and small
retroactivity to the output r. In fact, slowing down the time scale of phosphorylation
and dephosphorylation, the system looses its insulation property (Figure 6.16b). In
particular, the attenuation of the effect of the retroactivity to the output s is lost
because there is not enough separation of time scales between the Z dynamics and
the internal device dynamics. The device also displays a non negligible amount of
retroactivity to the input because the condition Km≪ Xtot is not satisfied anymore.

Design 2: Realization through phosphotransfer

Here we illustrate that another possible implementation of the mechanism for in-
sulation based on time-scale separation is provided by phosphotransfer systems.
These systems, just like phosphorylation cycles, have a very fast dynamics when
compared to gene expression. Specifically, we consider the realization shown in
Figure 6.17, in which the input is a phosphate donor Z and the output is the active
transcription factor X∗. We let X be the transcription factor in its inactive form and
let Z∗ be the active phosphate donor, that is, a protein that can transfer its phosphate
group to the acceptor X. The standard phosphotransfer reactions can be modeled
according to the two-step reaction model

Z∗+X
k1−−⇀↽−−
k2

C1
k3−−⇀↽−−
k4

X∗+Z,
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in which C1 is the complex of Z bound to X bound to the phosphate group. Addi-
tionally, we assume that protein Z can be phosphorylated and protein X∗ dephos-
phorylated by other phosphotransfer interactions. These reactions are modeled as
one-step reactions depending only on the concentrations of Z and X∗, that is,

Z
π1−−→ Z∗, X∗

π2−−→ X.

Protein X is assumed to be conserved in the system, that is, Xtot = X+C1+X∗+C.
We assume that protein Z is produced with time-varying production rate k(t) and
decays with rate γ. The active transcription factor X∗ binds to downstream DNA
binding sites p with total concentration ptot to activate transcription through the
reversible reaction

p+X∗
kon−−−⇀↽−−−
koff

C.

Since the total amount of p is conserved, we also have that C+ p = ptot. The ODE
model corresponding to this system is thus given by the equations

dZ

dt
= k(t)−γZ+ k3C1− k4X∗Z−π1Z,

dC1

dt
= k1Xtot

(

1−
X∗

Xtot
−

C1

Xtot
−

[

C

Xtot

])

Z∗ − k3C1− k2C1+ k4X∗Z,

dZ∗

dt
= π1Z+ k2C1− k1Xtot

(

1−
X∗

Xtot
−

C1

Xtot
−

[

C

Xtot

])

Z∗,

dX∗

dt
= k3C1− k4X∗Z+

[

koffC− konX∗(ptot−C)
]

−π2X∗,

dC

dt
= konX∗(ptot−C)− koffC.

(6.36)

Just like phosphorylation, phosphotransfer reactions are much faster than pro-
tein production and decay. Hence, as performed before, define G = Xtotk1/γ so that
k̄1 = Xtotk1/G, k̄2 = k2/G, k̄3 = k3/G, k̄4 = Xtotk4/G, π̄1 = π1/G, and π̄2 = π2/G are
of the same order of k(t) and γ. Similarly, the process of protein binding and un-
binding to promoter sites is much faster than protein production and decay. We let
Ḡ = koff/γ and Kd = koff/kon. Assuming also that ptot≪ Xtot, we have that C≪ Xtot
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Figure 6.18: Output response of the phosphotransfer system with a periodic signal k(t) =
γ(1+ 0.5sinωt). The parameters are given by γ = 0.01 min−1, Xtot = 5000 nM, k1 = k2 =

k3 = k4 = 0.01 min−1 nM−1, π1 = π2 = 0.01G min−1 in which G = 1 in (a), and G = 100 in
(b). The downstream system parameters are given by Kd = 1 nM and koff = 0.01Ḡ min−1, in
which Ḡ takes the values indicated on the legend. The isolated system (s = 0) corresponds
to ptot = 0 while the connected system (s ! 0) corresponds to ptot = 100 nM.

so that system (6.36) can be rewritten as

dZ

dt
= k(t)−γZ−Gπ̄1Z+G

(

k̄3C1− k̄4

(

X∗

Xtot

)

Z

)

,

dC1

dt
=G

(

k̄1

(

1−
X∗

Xtot
−

C1

Xtot

)

Z∗ − k̄3C1− k̄2C1+ k̄4

(

X∗

Xtot

)

Z

)

,

dZ∗

dt
=G

(

π̄1Z+ k̄2C1− k̄1

(

1−
X∗

Xtot
−

C1

Xtot

)

Z∗
)

,

dX∗

dt
=G

(

k̄3C1− k̄4

(

X∗

Xtot

)

Z− π̄2X∗
)

+ Ḡ

(

γC−
γ

Kd
X∗(ptot−C)

)

,

dC

dt
= −Ḡ

(

γC−
γ

Kd
X∗(ptot−C)

)

.

(6.37)

Taking T = I3×3, the 3×3 identity matrix, and

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

the coordinate transformation x̃ = T x+Mv brings the system to the form of sys-
tem (6.23) with u = Z, x = (C1,Z

∗,X∗), and v = C. The reader can verify that the
Jacobian of f1(x,u) has eigenvalues with negative real part (Exercise 6.10).

Figure 6.18a shows that, for a periodic input k(t), the system with low value for
G suffers from retroactivity to the output. However, for a large value of G (Figure
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Figure 6.19: The activator-repressor clock connected to its downstream system through the
insulation device of Figure 6.14. The top diagram illustrates a simplified genetic layout of
the activator-repressor clock of Figure 6.2a. The bottom diagram illustrates how the genetic
layout of the clock should be modified such that it can connect to the phosphorylation cycle
that takes as input the kinase Z. In this case, the downstream system still expresses protein
D, but its expression is controlled by a different promoter that is activated by X∗ as opposed
to being activated by A.

6.18b), the permanent behavior of the connected system becomes similar to that of
the isolated system, whether G≫ Ḡ, G = Ḡ or G≪ Ḡ. This confirms the theoretical
result that, independently of the order of magnitude of Ḡ, the system can arbitrarily
attenuate retroactivity for large enough G. Note that this robustness to the load
applied on X∗ is achieved even if the concentration of X∗ is about 100 times smaller
than the concentration of the load applied to it. This allows to design the system
such that it can output any desired value while being robust to retroactivity.

6.6 A Case Study on the Use of Insulation Devices

In this section, we consider again the problem illustrated at the beginning of the
chapter in which we would like to transmit the periodic stimulation of the activator-
repressor clock to a downstream system (Figure 6.2b). We showed before that con-
necting the clock directly to the downstream system causes the oscillations to be
attenuated and even quenched (Figure 6.2c), so that we fail to transmit the de-
sired periodic stimulation to the downstream system. Here, we describe a solution
to this problem that implements an insulation device to connect the clock to the
downstream system. This way, the downstream system receives the desired peri-
odic input stimulation despite the potentially large retroactivity s that this system
applies to the insulation device. In particular, we employ the insulation device re-
alized by a phosphorylation cycle in the configuration shown in Figure 6.19. The
top diagram illustrates a simplified genetic layout of the clock. The activator A
is expressed from a gene under the control of a promoter activated by A and re-
pressed by B, while the repressor is expressed from a gene under the control of a
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Figure 6.20: Simulation results for the concentration of protein Z in Figure 6.19 in the case
in which this were used directly as an input to the downstream system, thus binding sites p’
(dashed red plot). The clock parameters are the same as those in Figure 6.2c and γK = γA.

promoter activated by A. Protein A, in turn, activates the expression of protein D
in the downstream system. In this case, the promoter p controlling the expression
of D contains operator regions that A recognizes, so that A can bind to it.

When the insulation device of Figure 6.14 is employed to interconnect the clock
to the downstream system, two modifications need to be made to enable the con-
nections. Since A is not a kinase, we need to insert downstream of the gene ex-
pressing A another gene expressing the kinase Z (bottom diagram of Figure 6.19).
Since both A and Z are under the control of the same promoter, they will be pro-
duced at the same rates and hence the concentration of Z should mirror that of A
if the decay rates are the same for both proteins. Note that a solution in which we
insert downstream of the gene expressing A a transcription factor Z that directly
binds to downstream promoter sites p’ to produce D (without the insulation device
in between) would not solve the problem. In fact, while the clock behavior would
be preserved in this case, the behavior of the concentration of Z would not mirror
that of A since protein Z would be loaded by the downstream promoter sites p’
(Figure 6.20). As a consequence, we would still fail to transmit the clock signal
A(t) to protein D. The second modification that needs to be made is to change the
promoter p to a new promoter p’ that has an operator that protein X* recognizes
(bottom diagram of Figure 6.19).

In the case of the bottom diagram of Figure 6.19, the dynamics of the clock
proteins remain the same as that of model (5.11) and given by

dA

dt
=
κA

δA

αA(A/KA)n+αA0

1+ (A/KA)n+ (B/KB)m
−γAA,

dB

dt
=
κB

δB

αB(A/KA)n+αB0

1+ (A/KA)n
−γBB.

To these equations, we need to add the dynamics of the kinase Z(t), which, when
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Figure 6.21: Simulation results for the system of Figure 6.19. Panel (a) shows the concen-
tration of the kinase Z with and without (r = 0 in equation (6.25)) the insulation device.
Panel (b) shows the behavior of the output of the insulation device X∗ without (s = 0) and
with the downstream system. The clock parameters are the same as those in Figure 6.2c and
γK = γA. The phosphorylation cycle parameters are as in Figure 6.16a. The load parameters
are given by kon = 50 min−1 nM−1, koff = 50 min−1, and ptot = 100 nM.

the phosphorylation cycle is not present, will be given by

dZ

dt
=
κA

δA

αA(A/KA)n+αA0

1+ (A/KA)n+ (B/KB)m
−γZZ. (6.38)

Note that we are using for simplicity the two-dimensional model of the activator-
repressor clock. A similar result would be obtained using the four dimensional
model that incorporates the mRNA dynamics (see Exercise 6.13).

When the phosphorylation cycle is present, the differential equation for Z given
by (6.38) changes to

dZ

dt
=
κA

δA

αA(A/KA)n+αA0

1+ (A/KA)n+ (B/KB)m
−γZZ

−
[

a1XtotZ

(

1−
X∗

Xtot
−

C1

Xtot
−

C2

Xtot
−

C

Xtot

)

− (d1+ k1)C1
]

,

(6.39)

in which the term in the square brackets is the retroactivity to the input r of the
insulation device. The model of the insulation device with the downstream system
remains the same as before and given by equations (6.26)–(6.29).

Figure 6.21 shows the trajectories of Z(t), and X∗(t) for the system of Figure
6.19. As desired, the signal X∗(t), which drives the downstream system, closely
tracks A(t) plotted in Figure 6.20 despite the retroactivity due to load applied by
the downstream sites p’. Note that because of a nonzero retroactivity to the input
r of the insulation device, the trajectory of Z(t) is slightly different from the same
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trajectory in the absence of the insulation device (Figure 6.21a). The retroactivity to
the output s only slightly affects the output of the insulation device (Figure 6.21b).
The plot of Figure 6.21b, showing the signal that drives the downstream system,
can be directly compared to the signal that would drive the downstream system in
the case in which the insulation device would not be used (Figure 6.20, dashed red
plot). In the latter case, the downstream system would not be properly driven, while
with the insulation device it is even in the face of a large load.

Exercises

6.1 Include in the study of retroactivity in transcriptional systems the mRNA dy-
namics and demonstrate how/whether the results change. Specifically, consider the
following model of a connected transcriptional system

dmX

dt
= k(t)−δmX ,

dX

dt
= κmX −γX+ [koffC− kon(ptot−C)X],

dC

dt
= −koffC+ kon(ptot−C)X.

6.2 Consider the connected transcriptional system model in standard singular per-
turbation form with ϵ ≪ 1:

dz

dt
= k(t)−γ(z−C), ϵ

dC

dt
= −γC+

γ

kd
(ptot−C)(z−C).

Demonstrate that the slow manifold is locally asymptotically stable.

6.3 The characterization of retroactivity effects in a transcriptional module was
based on the following model of the interconnection:

dX

dt
= k(t)−γX+ [koffC− kon(ptot−C)X],

dC

dt
= −koffC+ kon(ptot−C)X,

in which the dilution of the complex C was neglected. This is often a fair assump-
tion, but depending on the experimental conditions, a more appropriate model may
include dilution for the complex C. In this case, the model modifies to

dX

dt
= k(t)− (µ+ γ̄)X+ [koffC− kon(ptot−C)X],

dC

dt
= −koffC+ kon(ptot−C)X−µC,
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in which µ represents decay due to dilution and γ̄ represents protein degradation.
Employ singular perturbation to determine the reduced X dynamics and the effects
of retroactivity in this case. Is the steady state characteristic of the transcription
module affected by retroactivity? Determine the extent of this effect as µ/γ de-
creases.

6.4 In this problem, we study the frequency dependent effects of retroactivity in
gene circuits through simulation to validate the findings obtained through lineariza-
tion in Section 6.3. In particular, consider the model of a connected transcriptional
component (6.3). Consider the parameters provided in Figure 6.5 and simulate the
system with input k(t) = γ(1+ sin(ωt)) with ω = 0.005. Then, decrease and in-
crease the frequency progressively and make a frequency/amplitude plot for both
connected and isolated systems. Increase γ and redo the frequency/amplitude plot.
Comment on the retroactivity effects that you observe.

6.5 Consider the negatively autoregulated gene illustrated in Section 5.2. Instead
of modeling negative autoregulation using the Hill function, explicitly model the
binding of A with its own promoter. In this case, the formed complex C will be
transcriptionally inactive (see Section 2.3). Explore through simulation how the
response of the system without negative regulation compares to that with negative
regulation when the copy number of the A gene is increased and the unrepressed
expression rate β is decreased.

6.6 We have illustrated that the expression of the point of half-maximal induction
in a covalent modification cycle is affected by the effective load λ as follows:

y50 =
K̄1+0.5

K̄2(1+λ)+0.5
.

Study the behavior of this quantity when the effective load λ is changed.

6.7 Show how equation (6.9) is derived in Section 6.4.

6.8 Demonstrate through a mathematical proof that in the following system

dX

dt
=G (k(t)−KX) (1−d(t)),

in which 0 < d(t) < 1 and |k̇(t)| is bounded, we have that X(t)− k(t)/K becomes
smaller as G is increased.

6.9 Consider the one-step reaction model of the phosphorylation cycle with down-
stream binding sites given in (6.20). Simulate the system and determine how the
behavior of the connected system compares to that of the isolated system when the
amounts of substrate and phosphatase Xtot and Ytot are increased.
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6.10 Demonstrate that the Jacobian ∂ f1(x,u)/∂x for the system in equations (6.30)
has eigenvalues with negative real part. You can demonstrate this by using symbolic
computation, or you can use the parameter values of Figure 6.16.

6.11 Demonstrate that the Jacobian ∂ f1(x,u)/∂x for the system in equations (6.37)
has eigenvalues with negative real part. You can demonstrate this by using symbolic
computation, or you can use the parameter values of Figure 6.18.

6.12 Consider the activator-repressor clock described in Section 5.5 and take the
parameter values of Figure 5.9 that result in a limit cycle. Then, assume that the
activator A connects to another transcription circuit through the reversible binding
of n copies of A with operator sites p to form the complex C:

nA+p
kon−−−⇀↽−−−
koff

C

with conservation law p+C = ptot (connected clock). Answer the following ques-
tions:

(a) Simulate the connected clock and vary the total amount of p, that is, ptot.
Explore how this affects the behavior of the clock.

(b) Give a mathematical explanation of the phenomenon you saw in (a). To do
so, use singular perturbation to approximate the dynamics of the clock with
downstream binding on the slow manifold (here, koff≫ γA,γB).

(c) Assume now that A does not bind to sites p, while the repressor B does. Take
the parameter values of Figure 5.9 that result in a stable equilibrium. Explore
how increasing ptot affects the clock trajectories.

6.13 Consider the system depicted in Figure 6.19 and model the activator-repressor
clock including the mRNA dynamics as shown in Section 5.5. Demonstrate through
simulation that the same results obtained in Section 6.6 with a two-dimensional
model of the clock still hold.
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