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Chapter 7
Interconnecting Components

In Chapter 2 and Chapter 6, we studied the behavior of simple biomolecular mod-
ules, such as oscillators, toggles, self repressing circuits, signal transduction and
amplification systems, based on reduced order models. One natural step forward is
to create larger and more complex systems by composing these modules together.
In this chapter, we illustrate problems that need to be overcome when interconnect-
ing components and propose a number of engineering solutions based on the feed-
back principles introduced in Chapter 3. Specifically, we explain how impedance-
like effects arise at the interconnection between modules, which change the ex-
pected circuit behavior. These impedance problems appear in several other engi-
neering domains, including electrical, mechanical, and hydraulic systems, and have
been largely addressed by the respective engineering communities. In this chapter,
we explain how similar engineering solutions can be employed in biomolecular
systems to defeat impedance effects and guarantee “modular” interconnection of
circuits. In Chapter 8, we further study loading of the cellular environment by syn-
thetic circuits employing the same framework developed in this chapter.

7.1 Input/Output Modeling and the Modularity Assumption

The input/output modeling introduced in Chapter 1 and further developed in Chap-
ter 3 has been employed so far to describe the behavior of various modules and
subsystems. Such an input/output description of a system allows to connect sys-
tems together by setting the input u2 of a downstream system equal to the output

u1 u2 = y1 y2

u1 y1 y2u2

Figure 7.1: In the input/output modeling framework, systems are interconnected by stati-
cally assigning to the input of the downstream system the value of the output of the up-
stream system.
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y1 of the upstream system (Figure 7.1). This interconnection framework has been
used extensively in the previous chapters.

Specifically, each node of a gene circuit has been modeled as an input/output
module taking as input the concentrations of transcription factors that regulate a
gene y and giving as output the concentration of protein Y expressed by gene y.
This is of course not the only possible choice for delimiting a module. We could
in fact let the mRNA or the RNA polymerase flowing along the DNA, called PoPS
(polymerase per second) [29], play the role of input and output signals. Similarly,
each node of a signal transduction network is usually a protein covalent modifi-
cation module, which takes as input a modifying enzyme (a kinase in the case of
phosphorylation) and gives as an output the modified protein.

For example, one of the models of the MAPK cascade considered in Section
2.5 was obtained by setting the value of the kinase concentration of a downstream
cycle equal to the value of the concentration of the modified protein of the upstream
cycle. A similar technique was employed for designing all the circuits of Chapter 6.
For example, the repressilator model was obtained by setting the concentration of
the input transcription factor of each gene equal to the concentration of the output
transcription factor of the upstream gene.

This input/output modeling framework is extremely useful because it allows
us to predict the behavior of an interconnected system based on the behavior of
the isolated modules. For example, the location and number of steady states in
the toggle switch of Section 6.3 were predicted by intersecting the steady state
input/output characteristics of the isolated modules A and B. Similarly, the number
of steady states in the repressilator was predicted by modularly composing the
input/output steady state characteristics of the three modules composing the circuit.

For this input/output interconnection framework to reliably predict the behavior
of connected modules, however, one must have that the input/output (dynamic)
behavior of a system does not change upon interconnection to another system. We
refer to the property by which a system input/output behavior does not change upon
interconnection as modularity. Of course, all the designs and modeling described
in the previous chapter assume that the modularity property holds. In this chapter,
we question this assumption and investigate when modularity holds in gene and in
signal transduction circuits.

7.2 Introduction to Retroactivity

The modularity assumption implies that when two modules are connected together,
their behavior does not change because of the interconnection. However, a funda-
mental systems-engineering issue that arises when interconnecting subsystems is
how the process of transmitting a signal to a “downstream” component affects the
dynamic state of the sending component. This issue, the effect of “loads” on the
output of a system, is well-understood in many engineering fields such as electrical
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Figure 7.2: The clock behavior can be destroyed by a load. As the number of downstream
binding sites for A, ptot, is increased in the load, the activator and repressor dynamics loose
their synchronization and ultimately the oscillations disappear.

engineering. It has often been pointed out that similar issues may arise for biolog-
ical systems. These questions are especially delicate in design problems, such as
those described in Chapter 6.

For example, consider a biomolecular clock, such as the activator-repressor
clock introduced in Section 6.5. Assume that the activator protein concentration
A(t) is now used as a means to synchronize or time some downstream systems.
From a systems/signals point of view, A(t) becomes an input to the second sys-
tem (Figure 7.2). The terms “upstream” and “downstream” reflect the direction in
which we think of signals as traveling, from the clock to the systems being syn-
chronized. However, this is only an idealization, because, as seen in Figure 7.2, the
binding and unbinding of A to promoter sites in a downstream system competes
with the biochemical interactions that constitute the upstream clock and may there-
fore disrupt the operation of the clock itself. We call this “back-effect” retroactivity
to extend the notion of impedance or loading to non-electrical systems and in par-
ticular to biomolecular systems. This phenomenon, while in principle may be used
in an advantageous way from natural systems, can be deleterious when designing
synthetic systems.

One possible approach to avoid disrupting the behavior of the clock is to in-
troduce a gene coding for a new protein X, placed under the control of the same
promoter as the gene for A, and using the concentration of X, which presumably
mirrors that of A, to drive the downstream system. This approach, however, still
has the problem that the behavior of the X concentration in time may be altered
and even disrupted by the addition of downstream systems that drain X, as we shall
see in the next section. The net result is that the downstream systems are not prop-
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Figure 7.3: A system S input and output signals. The r and s signals denote signals origi-
nating by retroactivity upon interconnection [22].

erly timed as X does not transmit the desired signal. Methods to model and prevent
retroactivity is the subject of this chapter.

To model a system with retroactivity, we add to the input/output modeling
framework used so far, an additional input, called s, to model any change that
may occur upon interconnection with a downstream system. That is, s models the
fact that whenever y is taken as an input to a downstream system the value of y
may change, because of the physics of the interconnection. This phenomenon is
also called in the physics literature “the observer effect”, implying that no phys-
ical quantity can be measured without being altered by the measurement device.
Similarly, we add a signal r as an additional output to model the fact that when a
system is connected downstream of another one, it will send a signal upstream that
will alter the dynamics of that system. More generally, we define a system S to
have internal state x, two types of inputs, and two types of outputs: an input “u”,
an output “y” (as before), a retroactivity to the input “r”, and a retroactivity to the
output “s” (Figure 7.3). We will thus represent a system S by the equations

dx
dt
= f (x,u, s), y = h(x,u, s), r = R(x,u, s), (7.1)

where f , g, and R are arbitrary functions and the signals x, u, s, r, and y may be
scalars or vectors. In such a formalism, we define the input/output model of the
isolated system as the one in equation (7.1) without r in which we have also set
s = 0.

Let S i be a system with inputs ui and si and with outputs yi and ri. Let S 1 and S 2
be two systems with disjoint sets of internal states. We define the interconnection
of an upstream system S 1 with a downstream system S 2 by simply setting y1 = u2
and s1 = r2. For interconnecting two systems, we require that the two systems do
not have internal states in common.

Inset. As a simple example, which may be more familiar to an engineering audi-
ence, consider the hydraulic system shown in Figure 7.4. We consider a constant
input flow f0 as input to the upstream tank and the pressure p as its output. The
corresponding output flow is given by k√p, in which k is a positive constant de-
pending on the geometry of the system. The pressure p is given by (neglecting the
atmospheric pressure for simplicity) p = ρh, in which h is the height of the water
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Figure 7.4: On the left, we represent a tank system that takes as input the constant flow f0
and gives as output the pressure p at the output pipe. On the right, we show a downstream
tank.

level in the tank and ρ is water density. Let A be the cross section of the tank, then
the tank system can be represented by the equation

A
dp
dt
= ρ f0−ρk

√
p. (7.2)

Hence, the steady state value of the pressure p is given by

peq = ( f0/k)2.

We now connect the output pipe of the same tank to the input pipe of a down-
stream tank shown on the right of Figure 7.4. Let p1 = ρh1 be the pressure generated
by the downstream tank at its input and output pipes. Then, the flow at the output
of the upstream tank will change and will now be given by g(p, p1) = k

√

|p− p1| if
p > p1 and by g(p, p1) = −k

√

|p− p1| if p ≤ p1. As a consequence, the time behav-
ior of the pressure p generated at the output pipe of the upstream tank will change
to

A
dp
dt
= ρ f0−ρg(p, p1),

A1
dp1
dt
= ρg(p, p1)−ρk1

√
p1,

(7.3)

in which A1 is the cross section of the downstream tank and k1 is a positive param-
eter depending on the geometry of the downstream tank. Thus, the input/output
response of the tank measured in isolation (equation (7.2)) does not stay the same
when the tank is connected through its output pipe to another tank (equation (7.3)).
The resulting equilibrium pressure is also different and given by

peq =
(

f0
k

)2 
1+

k2

k2
1



 .

♦
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Figure 7.5: The transcriptional component takes as input u protein concentration Z and
gives as output y protein concentration X. The downstream transcriptional component takes
protein concentration X as its input.

7.3 Retroactivity in Gene Circuits

In the previous section, we have defined retroactivity as a general concept modeling
the fact that when an upstream system is input/output connected to a downstream
one, its behavior can change. In this section, we focus on gene circuits and show
what form retroactivity takes and what its net effects are.

Consider the transcriptional system of Figure 7.5 in the dashed box. It is an
input/output system that takes as input the transcription factor concentration Z and
gives as output the transcription factor concentration X(t). The activity of the pro-
moter controlling gene x depends on the amount of Z bound to the promoter. If
Z = Z(t), such an activity changes with time. To simplify notation, we denote it by
k(t). We assume here that the mRNA dynamics are at their quasi-steady state. The
reader can verify that all the results hold unchanged when the mRNA dynamics are
included (see exercises). We write the dynamics of X as

dX
dt
= k(t)−δX, (7.4)

in which δ is the decay rate constant of the protein. We refer to equation (7.4) as
the isolated system dynamics.

Now, assume that X drives a downstream transcriptional module by binding to
a promoter p with concentration p (Figure 7.5). The reversible binding reaction of
X with p is given by

X+p
koff−−−⇀↽−−−
kon

C

in which C is the complex protein-promoter and kon and koff are the association and
dissociation rate constants of protein X to promoter site p. Since the promoter is
not subject to decay, its total concentration ptot is conserved so that we can write
p+C = ptot. Therefore, the new dynamics of X are governed by the equations

dX
dt
= k(t)−δX+ [koffC− kon(ptot−C)X], (7.5)

dC
dt
= −koffC+ kon(ptot−C)X, (7.6)
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Figure 7.6: The effect of interconnection. Simulation results for the system in equations
(7.6). The solid line represents X(t) originating by equations (7.4), while the dashed line
represents X(t) obtained by equation (7.6). Both transient and permanent behaviors are
different. Here, k(t) = 0.01(1+ sin(ωt)) with ω = 0.005 in the left side plots and ω = 0
in the right side plots, kon = 10, koff = 10, δ = 0.01, ptot = 100, X(0) = 5. The choice of
protein decay rate (in min−1) corresponds to a half life of about one hour. The frequency of
oscillations is chosen to have a period of about 12 times the protein half life in accordance
to what is experimentally observed in the synthetic clock of [5].

in which
s = koffC− kon(ptot−C)X.

We refer to this system as connected system. The terms in the brackets represent
the signal s, that is, the retroactivity to the output, while the second of equation
(7.6) describes the dynamics of the downstream system driven by X. Then, we can
interpret s as being a mass flow between the upstream and the downstream system.
When s = 0, the first of equations (7.6) reduces to the dynamics of the isolated
system given in equation (7.4).

How large is the effect of retroactivity s on the dynamics of X and what are the
biological parameters that affect it? We focus on the retroactivity to the output s.
We can analyze the effect of the retroactivity to the input r on the upstream system
by simply analyzing the dynamics of Z, here modeled by k(t), in the presence of its
binding sites p0 in Figure 7.5 in a way similar to how we analyze the dynamics of
X in the presence of the downstream binding sites p.

The effect of retroactivity s on the behavior of X can be very large (Figure 7.6).
By looking at Figure 7.6, we notice that the effect of retroactivity is to “slow down”
the dynamics of X(t) as the response time to a step input increases and the response
to a periodic signal appears attenuated and phase-shifted. We will come back to this
more precisely in the next section.

These effects are undesirable in a number of situations in which we would like
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an upstream system to “drive” a downstream one as is the case, for example, when
a biological oscillator has to time a number of downstream processes. If, due to
the retroactivity, the output signal of the upstream process becomes too low and/or
out of phase with the output signal of the isolated system (as in Figure 7.6), the
coordination between the oscillator and the downstream processes will be lost. We
next provide a procedure to obtain an operative quantification of the effect of the
retroactivity on the dynamics of the upstream system.

Quantification of the retroactivity to the output

In this section, we provide a general approach to quantify the retroactivity to the
output. To do so, we quantify the difference between the dynamics of X in the iso-
lated system (7.4) and the dynamics of X in the connected system (7.6) by estab-
lishing conditions on the biological parameters that make the two dynamics close
to each other. This is achieved by exploiting the difference of time scales between
the protein production and decay processes and its binding and unbinding process
to the promoter p. By virtue of this separation of time scales, we can approximate
system (7.6) by a one dimensional system describing the evolution of X on the slow
manifold (see Section 3.6).

Consider again the full system in equations (7.6), in which the binding and
unbinding dynamics are much faster than protein production and decay, that is,
koff,kon % k(t),δ and define Kd = koff/kon as before. Even if the second equation
goes to equilibrium very fast compared to the first one, the above system is not in
standard singular perturbation form. In fact, while C clearly is a fast variable, X
is neither fast nor slow since its differential equation displays both fast and slow
terms. To explicitly model the difference of time scales, we introduce a parameter ε,
which we define as ε = δ/koff. Since koff% δ, we also have that ε & 1. Substituting
koff = δ/ε, kon = δ/(εKd), and letting y = X+C (the total protein concentration), we
obtain the system in standard singular perturbation form

dy
dt
= k(t)−δ(y−C), ε

dC
dt
= −δC+

δ

Kd
(ptot−C)(y−C), (7.7)

in which y is the slow variable. The reader can check as an exercise that the slow
manifold of system (7.7) is locally exponentially stable (see Exercises).

We can obtain an approximation of the dynamics of X in the limit in which ε is
very small, by setting ε = 0. This leads to

−δC+
δ

Kd
(ptot−C)X = 0→C = γ(X) with γ(X) =

ptotX
X+Kd

.

Since dy/dt = dX/dt+ dC/dt, we have that dy/dt = dX/dt+ (dγ/dX)dX/dt. This
along with dy/dt = k(t)−δX lead to

dX
dt
= (k(t)−δX)

(

1
1+dγ/dX

)

. (7.8)
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The difference between the dynamics in equation (7.8) (the connected system
after a fast transient) and the dynamics in equation (7.4) (the isolated system) is
zero when the term dγ(X)

dX in equation (7.8) is zero. We thus consider the factor dγ(X)
dX

as a quantification of the retroactivity s after a fast transient in the approximation
in which ε ≈ 0. We can also interpret the factor dγ(X)

dX as a percentage variation of
the dynamics of the connected system with respect to the dynamics of the isolated
system at the quasi steady state. We next determine the physical meaning of such a
factor by calculating a more useful expression that is a function of key biochemical
parameters.

By using the implicit function theorem, one can compute the following expres-
sion for dγ(X)/dX:

dγ(X)
dX

=
ptot/Kd

(X/Kd+1)2 =: R(X). (7.9)

The retroactivity measure R is low basically whenever the ratio ptot/Kd, which can
be seen as an effective load, is low. This is the case if the affinity of the binding sites
p is small (Kd large) or if ptot is low. Also, the retroactivity measure is dependent
on X in a nonlinear fashion and it is such that it is maximal when X is the smallest.
The expression of R(X) provides an operative quantification of the retroactivity:
such an expression can in fact be evaluated once the dissociation constant of X to p
is known, the concentration of the binding sites ptot is known, and X is also known.

Summarizing, the modularity assumption introduced in Section 7.1 holds only
when the value of R(X) is small enough. As a consequence, the design of a simple
circuit can assume modularity if the interconnections among the composing mod-
ules can be designed so that the value of R(X) is low. From a design point of view,
low retroactivity can be obtained by either choosing low-affinity binding sites p or
making sure that the amounts of p is not too high. This can be guaranteed by plac-
ing the promoter sites p on low copy number plasmids or even on the chromosome
(with copy number equal to 1). High copy number plasmids are expected to lead to
non-negligible retroactivity effects on X.

However, in the presence of very low affinity and/or very low amount of pro-
moter sites, the amount of complex C will be very low. As a consequence, the
amplitude of the transmitted signal to downstream may be also very small. Hence,
there will be a design compromise between guaranteeing a sufficiently high signal
while minimizing retroactivity. A better approach is to design insulation devices
(as opposed to designing the interconnection for low retroactivity) to buffer sys-
tems from retroactivity as explained later in the chapter.

Characterizing the effects of retroactivity

How do we explain the amplitude attenuation and phase shift due to retroactiv-
ity observed in Figure 7.6? In order to answer this question, we can linearize
the system about its steady state and determine the effect of retroactivity on the
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frequency response. Let the input be k(t) =  k + A0 sin(ωt) and let  X =  k/δ and
 C = ptot  X/(  X+Kd) be the equilibrium values corresponding to  k. The isolated sys-

tem is already linear, so there is no need to perform linearization and the transfer
function from k to X is given by

GI
Zk(s) =

1
s+δ
.

For the connected system, denote the displacements with respect to the steady state
( k,  X,  C) by k̃ = k−  k, x = X −  X, and c = C −  C. Then, the linearized dynamics are
given by

dx
dt
= k̃(t)−δx−

δ

εKd
x(ptot−  C)+

δ

ε
 Xc+
δ

ε
c

dc
dt
=
δ

εKd
x(ptot−  C)−

δ

ε
 Xc−
δ

ε
c

Letting y := c+ x, these can be taken to standard singular perturbation form:

dy
dt
= k̃(t)−δ(y− c),

ε
dc
dt
=
δ

εKd
x(ptot−  C)−

δ

ε
 Xc−
δ

ε
c .

Setting ε = 0, gives the expression of the slow manifold as c = x(ptot−  C)/(  X/Kd+

1) =:  γ(x). Using the expression of  C, the fact that dx/dt+dc/dt = dy/dt = k̃(t)−δx
and that dc/dt = (d  γ/dx)dx/dt, we finally obtain the expression of the x dynamics
on the slow manifold as

dx
dt
= (k̃(t)−δx)

1
1+ (ptot/Kd)/(  X/Kd+1)2 .

Denoting  R := (ptot/Kd)/(  X/Kd+1)2, we obtain the transfer function from k̃ to x of
the approximated connected system linearization as

GC
Zk =

1
1+  R

1
s+δ/(1+  R)

.

Hence, we have the following result for the frequency response amplitude and
phase shift:

MI
Zk(ω) =

1
√
ω2+δ2

, φIZk(ω) = tan−1(−ω/δ),

MC
Zk(ω) =

1
1+  R

1
√

ω2+δ2/(1+  R)2
, φCZk(ω) = tan−1(−ω(1+  R)/δ),

from which one obtains that MI
Zk(0) = MC

Zk(0) and, since  R > 0, the bandwidth of
the connected system is lower than that of the isolated system. Also, the phase shift
of the connected system will be larger than that of the isolated system.
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Figure 7.7: Covalent modification cycle (in the box) with its downstream system.

7.4 Retroactivity in Signaling Systems

Signaling systems are circuits that take external stimuli and through a sequence of
biolmolecular reactions transform them to useful signals that establish how cells
respond to their environment. These systems are usually composed of covalent
modification cycles (phosphorylation, methylation, urydylilation, etc.) connected
in cascade fashion, in which each cycle has multiple downstream targets (or sub-
strates). An example is that of the MAPK cascade, which we have analyzed in
Section 2.5. Since covalent modification cycles always have downstream targets,
such as DNA binding sites or other substrates, it is particularly important to un-
derstand whether and how retroactivity from these downstream systems affect the
response of the upstream cycles to input stimulation. In this section, we study this
question both for the steady state and dynamic response of a covalent modification
cycle to its input (refer to Figure 7.7).

Steady state effects of retroactivity

One important characteristic of signaling systems and, in particular, of covalent
modification cycles, is the steady state characteristics (also called dose response).
This describes the steady state output value in response to a constant input stimula-
tion. For a single covalent modification cycle, this has been extensively studied as
a function of important cycle parameters, such as the Michaelis-Menten constants
and the total amount of protein. In particular, it was found that when the Michaelis-
Menten constants are sufficiently small compared to the total protein amount, the
cycle characteristic becomes ultrasensitive, a condition called zero-order ultrasen-
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sitivity (Section 2.4).
However, when the cycle is interconnected to its downstream targets, this char-

acteristic may change shape. In order to understand how this may change, we
rewrite the reaction rates and corresponding differential equation model for the
covalent modification cycle incorporating the binding of X∗ to its downstream tar-
gets. Referring to Figure 7.7, we have the following reactions:

Z+X
a1−−⇀↽−−
d1

C1
k1−→ X∗+Z, X∗+Y

a2−−⇀↽−−
d2

C2
k2−→ X+Y,

to which we add the binding reaction of X* with its substrates S:

X∗+S
kon−−−⇀↽−−−
koff

C,

in which C is the complex of X* with S. In addition to this, we have the conserva-
tion laws Xtot = X∗+X+C1+C2+C, Z+C1 = Ztot, and Y +C2 = Ytot.

The rate equations governing the system are given by

dC1
dt
= a1XZ− (d1+ k1)C1

dX∗

dt
= −a2X∗Y +d2C2+ k1C1− konS X∗+ koffC

dC2
dt
= a2X∗Y − (d2+ k2)C2

dC
dt
= konX∗S − koffC.

The input/output characteristics are found by solving this system for the equilib-
rium. In particular, by setting dC1/dt = 0, dC2/dt = 0, using that Z = Ztot−C1 and
that Y = Ytot−C2, we obtain the familiar expressions for the complexes:

C1 =
ZtotX
K1+X

, C2 =
YtotX∗

K2+X∗
, with K1 =

d1+ k1
a1

and K2 =
d2+ k2
a2
.

By setting dX∗/dt+dC2/dt+dC/dt = 0, we obtain k1C2 = k2C2, which leads to

V1
X

K1+X
= V2

X∗

K2+X∗
, V1 = k1Ztot and V2 = k2Ytot. (7.10)

By assuming that the substrate Xtot is in excess compared to the enzymes, we have
that C1,C2& Xtot so that X ≈ Xtot−X∗ −C, in which (from setting dC/dt = 0) C =
X∗S/Kd with Kd = koff/kon, leading to X ≈ Xtot −X∗(1+ S/Kd). Calling λ = S/Kd,
equation (7.10) finally leads to

y :=
V1
V2
=
X∗

( K1
1+λ +

( Xtot
1+λ −X

∗
))

(K2+X∗)
( Xtot

1+λ −X∗
) . (7.11)
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Figure 7.8: The addition of downstream target sites make the input/output characteristic
more linear-like, that is, retroactivity makes a switch-like response into a more graded
response.

Here, we can interpret λ as an effective load, which increases with the amount of
targets of X∗ but also with the affinity of these targets (1/Kd). The ratio V1/V2 = y
is a normalized input stimulation as it linearly increases with the input Ztot.

We are interested in how the shape of the steady state curve of X∗ as function
of y changes when the effective load λ is changed. As seen in Section 2.4, a way to
characterize the shape of the steady state characteristic is to calculate the response
coefficient

R =
y90
y10
.

In the case of the current system, we have that the maximal value of X∗ obtained
as y→∞ is given by Xtot/(1+λ). Hence, from equation (7.11), we have that

y90 =
(  K1+0.1)0.9

(  K2(1+λ)+0.9)0.1
, y10 =

(  K1+0.9)0.1
(  K2(1+λ)+0.1)0.9

,

 K1 :=
K1
Xtot
, K2 =

K2
Xtot
,

so that
R = 81

(  K1+0.1)(  K2(1+λ)+0.1
(  K2(1+λ)+0.9)(  K1+0.9)

.

This expression clearly indicates that the net effect of the load is to increase the
Michaelis-Menten constant K2 of the backward enzymatic reaction.

One can check that R is a monotonically increasing function of λ. In particular,
as λ increases, the value of R tends to 81(  K1+0.1)/(  K2+0.9), which, in turn, tends



234 CHAPTER 7. INTERCONNECTING COMPONENTS

to 81 for  K1,  K2→∞. When λ = 0, we recover the results of Section 2.4, according
to which R approaches 81 (Michaelis-Menten type of response) for  K1,  K2 large,
while R decreases for decreasing values of  K1,  K2, corresponding to an ultrasensi-
tive response. Independently of the values of  K1 and  K2, the addition of the load
makes any characteristic more linear-like (see Figure 7.8). This finding has been
experimentally confirmed employing signal transduction circuits reconstituted in
vitro [95].

We can also study the behavior of the point of half maximal induction

y50 =
 K1+0.5

 K2(1+λ)+0.5
,

to find that as λ increases, y50 decreases. That is, as more downstream load is
applied, a smaller stimulus is required to obtain a significant response of the output
(see exercises).

Dynamic effects of retroactivity

In order to understand the dynamic effects of retroactivity on the signaling module,
we seek a one dimensional approximation of the X∗ dynamics, which can be easily
analyzed. To do so, we exploit time scale separation and apply singular perturbation
analysis.

Specifically, we have that ai,di,kon,koff % k1,k2, so we can choose as a small
parameter ε = k1/koff and slow variable y = X∗+C+C2. By setting ε = 0, we obtain
that C1 = ZtotX/(K1 + X), C2 = YtotX∗/(K2 + X∗) =: γ(X∗), and C = λX∗, in which
Ztot is now a time-varying signal. Hence, the dynamics of the slow variable y on
the slow manifold is given by

dy
dt
= k1

Ztot(t)X
K1+X

− k2Ytot
X∗

X∗+K2
.

Using dy/dt= dX∗/dt+dC/dt+dC2/dt, dC/dt= λdX∗/dt, dC2/dt= ∂γ/∂X∗dX∗/dt,
and the conservation law X = Xtot −X∗(1+λ), we finally obtain the approximated
X∗ dynamics as

dX∗

dt
=

1
1+λ

(

k1
Ztot(t)(Xtot−X∗(1+λ))
K1+ (Xtot−X∗(1+λ))

− k2Ytot
X∗

X∗+K2

)

, (7.12)

where we have assumed that that Ytot/K2& S/Kd, so that the effect of the binding
dynamics of X* with Y (modeled by ∂γ/∂X∗) is negligible with respect to λ. The
reader can verify this derivation as an exercise (see exercises).

From this expression, one can understand immediately the effect of the load λ
on the rise time and decay time in response to extreme input stimuli. For the decay
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Figure 7.9: Behavior of the bandwidth as a function of the load for different values of the
Michaelis-Menten constants K1,K2. Here Xtot = 1.

time, one has to assume an initial condition X∗(0) ! 0 and Ztot(t) = 0 for all t. In
this case, we have that

dX∗

dt
= −k2Ytot

X∗

X∗+K2

1
1+λ

,

from which, since λ > 0, it is apparent that the transient will be slower and hence
that the system will have an increased decay time due to retroactivity. For the rise
time, one can assume Ztot ≈∞ and X∗(0) = 0. Hence, we have that

(1+λ)
dX∗

dt
=

(

k1
Ztot(t)(Xtot−X∗(1+λ))
K1+ (Xtot−X∗(1+λ))

)

,

which is the same expression for the isolated system in which X∗ is scaled by
(1+λ). So, the rise time is not affected.

In order to understand how the bandwidth of the system is affected by retroac-
tivity, we consider Ztot(t) =  Z + A0 sin(ωt). Let  X be the equilibrium of X∗ cor-
responding to  Z and denote the displacements z = Ztot −  Z and x = X∗ −  X. The
linearized dynamics are given by

dx
dt
= −a(λ)x+b(λ)z(t),

in which

a(λ) =
1

1+λ

(

k1  Z
K1(1+λ)

(K1+ (Xtot−  X(1+λ)))2 + k2Ytot
K2

(K2+  X)2

)

and
b(λ) =

k1
1+λ

(

Xtot−  X(1+λ)
K1+ (Xtot−  X(1+λ))

)

,
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so that the bandwidth of the system is given by ωB = a(λ).
Figure 7.9 shows the behavior of the bandwidth as a function of the load. When

the isolated system static characteristics are linear-like (K1,K2 % Xtot), the band-
width monotonically decreases with the load. Hence applying any load decreases
system bandwidth. When the isolated system static characteristics are ultrasensi-
tive (K1,K2& Xtot), the bandwidth of the connected system can be larger than that
of the isolated system for sufficiently large amounts of loads. In these conditions,
one should expect that the response of the connected system becomes faster than
that of the isolated system.

7.5 Insulation Devices: Retroactivity Attenuation

As explained earlier, it is not always possible or advantageous to design the down-
stream system so that it applies low retroactivity. This is because the downstream
system may have already been designed and optimized for other purposes. A better
approach, in analogy to what is performed in electrical circuits, is to design a de-
vice to be placed between the upstream system (the oscillator, for example) and the
downstream load so that the device output is not changed by the load and the de-
vice does not affect the behavior of the upstream system. That is, the output of the
device should follow the prescribed behavior independently of any loading applied
by a downstream system.

Specifically, consider a system S such as the one shown in Figure 7.3 that takes
u as input and gives y as output. We would like to design such a system so that

(a) the retroactivity r to the input is very small;

(b) the effect of the retroactivity s to the output on the internal dynamics of the
system is very small independently of s itself.

Such a system is said to enjoy the insulation property and will be called an insu-
lation device. Indeed, such a system will not affect an upstream system because
r ≈ 0 and it will keep the same output signal y independently of any connected
downstream system.

Retroactivity to the input

Equation (7.9) quantifies the effect of retroactivity on the dynamics of X as a func-
tion of biochemical parameters that characterize the interconnection mechanism
with a downstream system. These parameters are the affinity of the binding site
1/Kd, the total concentration of such binding site ptot, and the level of the signal
X(t). Therefore, to reduce the retroactivity, we can choose parameters such that
(7.9) is small. A sufficient condition is to choose Kd large (low affinity) and ptot
small, for example. Having small value of ptot and/or low affinity implies that there



7.5. INSULATION DEVICES: RETROACTIVITY ATTENUATION 237

+
++

−

+

−

+ G′ = KG

(a)

yu

K

G

s

u y

G′
G

s(b)

Figure 7.10: Diagram (a) shows the basic feedback/amplification mechanism by which
amplifiers attenuate the effect of the retroactivity to the output s. Diagram (b) shows an
alternative representation of the same mechanism of diagram (a), which will be employed
to design biological insulation devices.

is a small “flow” of protein X toward its target sites. Thus, we can say that a low
retroactivity to the input is obtained when the “input flow” to the system is small.

Attenuation of retroactivity to the output: Principle 1

The basic mechanism for retroactivity attenuation is based on the concept of distur-
bance attenuation presented in Section 3.2. In its simplest form, it can be illustrated
by diagram (a) of Figure 7.10, in which the retroactivity to the output s plays the
same role as an additive disturbance. For large gains G, the effect of the retroac-
tivity s to the output is negligible as the following simple computation shows. The
output y is given by

y =G(u−Ky)+ s,

which leads to
y = u

G
1+KG

+
s

1+KG
.

As G grows, y tends to u/K, which is independent of the retroactivity s.
Therefore, a central enabler to attenuate the retroactivity effect at the output of

a component is to (1) amplify the input of the component through a large gain and
(2) apply a large negative output feedback. The inset illustrates this general idea in
the context of a simple hydraulic system.

Inset. Consider the academic hydraulic example consisting of two connected tanks
shown in Figure 7.11. The objective is to attenuate the effect of the pressure applied
from the downstream tank to the upstream tank, so that the output pressure of the
upstream system does not change when the downstream tank is connected. We let
the input flow f0 be amplified by a large factorG. Also, we consider a large pipe in
the upstream tank with output flow G′ √p, with G′ % k and G′ % k1. Let p be the
pressure at the output pipe of the upstream tank and p1 the pressure at the bottom
of the downstream tank. One can verify that the only equilibrium value for the
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Figure 7.11: We amplify the input flow f0 through a large gain G and we apply a large
negative feedback by employing a large output pipe with output flow G′ √p.

pressure p at the output pipe of the upstream tank is obtained for p > p1 and it is
given by

peq =





G f0

G′+ (kk1)/
√

k2
1 + k2





2

.

If we let G′ be sufficiently larger than k1 and k and we let G′ = KG for some
positive K, then for G sufficiently large peq ≈ ( f0/K)2, which does not depend on
the presence of the downstream system. In fact, it is the same as the equilibrium
value of the isolated upstream system described by

A
dp
dt
= ρG f0−ρG′

√
p−ρk

√
p

for G sufficiently large and for G′ = KG.
♦

Going back to the transcriptional example, consider the approximated dynamics
of equation (7.8) for X. Let us thus assume that we can apply a gain G to the input
k(t) and a negative feedback gain G′ to X with G′ = KG. This leads to the new
differential equation for the connected system (7.8) given by

dX
dt
=

(

Gk(t)− (G′+δ)X
)

(1−d(t)), (7.13)

in which we have defined d(t) = (dγ/dX)/(1+dγ/dX). Since d(t) < 1, letting G′ =
KG, we can verify (see exercises) that as G grows X(t) tends to k(t)/K for both the
connected system in the form of equation (7.13) and the isolated system

dX
dt
=Gk(t)− (G′+δ)X. (7.14)

That is, the solutions X(t) of the connected and isolated system tend to each other
asG increases. As a consequence, the presence of the disturbance term d(t) will not
significantly affect the time behavior of X(t). Since d(t) is a measure of retroactivity,
its effect on the behavior of X(t) is attenuated by employing large gains G and G′.

The next questions we address is how we can implement such amplification and
feedback gains in a biomolecular system.
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Figure 7.12: In this design, the input Z is amplifed through a strong promoter p0. The
negative feedback on the output X is obtained by enhancing its degradation through the
protease Y.

Biomolecular realizations of Principle 1

In the previous section, we have proposed a general principle to attenuate the
retroactivity to the output. Such a principle consists of a large amplification of
the input and a large negative output feedback. In this section, we determine two
possible biomolecular implementations to obtain a large amplification gain to the
input Z of the insulation component and a large negative feedback on the output
X. Both mechanisms realize the negative feedback through enhanced degradation.
The first design realizes amplification through transcriptional activation, while the
second design through phosphorylation.

Design 1: Amplification through transcriptional activation

In this design, we obtain a large amplification of the input signal Z(t) by having
promoter p0 (to which Z binds) be a strong, non-leaky promoter. The negative
feedback mechanism on X relies on enhanced degradation of X. Since this must
be large, one possible way to obtain an enhanced degradation for X is to have a
protease, called Y, be expressed by a strong constitutive promoter. The protease Y
will cause a degradation rate for X, which is larger if Y is more abundant in the
system. This design is schematically shown in Figure 7.12.

In order to investigate whether such a design realizes a large amplification and
a large negative feedback on X as needed, we analyze the model for the system
of Figure 7.12. The reaction of the protease Y with protein X is modeled as the
two-step reaction

X+Y
η1−−⇀↽−−
η2

W
β
−→ Y,

which can be found in Section 2.3.
The input/output system model of the insulation component that takes Z as an
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input and gives X as an output is given by the following equations

dZ
dt

= k(t)−δZ+
[

k− Zp− k+ Z(p0,tot−Zp)
]

(7.15)

dZp
dt

= k+Z(p0,tot−Zp)− k−Zp (7.16)

dmX
dt

= GZp−δ1mX (7.17)

dW
dt

= η1XY −η2W −βW (7.18)

dY
dt

= −η1YX+βW +αG−γY +η2W (7.19)

dX
dt

= νmX −η1YX+η2W −δ2X+
[

koffC− konX(ptot−C)
]

(7.20)

dC
dt

= −koffC+ konX(ptot−C), (7.21)

in which we have assumed that the expression of gene z is controlled by a promoter
with activity k(t). In this system, we have denoted by k+ and k− the association and
dissociation rates of Z with its promoter site p0 in total concentration p0,tot is the
total concentration of the promoter p0. Also, Zp denotes the complex of Z with such
a promoter site. mX is the concentration of mRNA of X, C is the concentration of
X bound to the downstream binding sites with total concentration ptot, and γ is the
decay rate of the protease Y. The promoter controlling gene y has strength αG, for
some constant α, and it has the same order of magnitude strength as the promoter
controlling x.

The terms in the square brackets in equation (7.15) represent the retroactivity
r to the input of the insulation component in Figure 7.12. The terms in the square
brackets in equation (7.20) represent the retroactivity s to the output of the insula-
tion component of Figure 7.12. The dynamics of equations (7.15)–(7.21) without
s (the elements in the box in equation (7.20)) describe the dynamics of X with no
downstream system.

Equations (7.15) and (7.16) simply determine the signal Zp(t) that is the input to
equations (7.17)–(7.21). For the discussion regarding the attenuation of the effect
of s, it is not relevant what the specific form of signal Zp(t) is. Let then Zp(t) be any
bounded signal v(t). Since equation (7.17) takes v(t) as an input, we will have that
mX =G  v(t), for a suitable signal  v(t). Let us assume for the sake of simplifying the
analysis that the protease reaction is a one step reaction, that is,

X+Y
β
−→ Y.

Therefore, equation (7.19) simplifies to

dY
dt
= αG−γY
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Figure 7.13: Design 1: results for different gains G. In all plots, k(t) = 0.01(1+ sin(ωt)),
ptot = 100, koff = kon = 10, δ = 0.01, and ω = 0.005. The parameter values are δ1 = 0.01,
p0,tot = 1, η1 = η2 = β = γ = 0.01, k− = 200, k+ = 10, α = 0.1, δ2 = 0.1, ν = 0.1, and G =
1000,100,10,1. The retroactivity to the output is not well attenuated for values of the gain
G = 1 and the attenuation capability begins to worsen for G = 10.

and equation (7.20) simplifies to

dX
dt
= νmX −βYX−δ2X+ koffC− konX(ptot−C).

If we consider the protease to be at its equilibrium, we have that Y(t) = αG/γ.
As a consequence, the X dynamics become

dX
dt
= νG  v(t)− (βαG/γ+δ2)X+ koffC− konX(ptot−C),

with C determined by equation (7.21). By using the same singular perturbation
argument employed in the previous section, we obtain that the dynamics of X will
be (after a fast transient) approximatively given by

dX
dt
= (νG  v(t)− (βαG/γ+δ2)X)(1−d(t)), (7.22)

in which 0 < d(t) < 1 is the retroactivity measure. Then, as G increases, X(t) be-
comes closer to the solution of the isolated system

dX
dt
= νG  v(t)− (βαG/γ+δ2)X,

as explained in the previous section.
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We now turn to the question of minimizing the retroactivity to the input r be-
cause its effect can alter the input signal Z(t). In order to decrease r, we guar-
antee that the retroactivity measure given in equation (7.9) in which we substi-
tute Z in place of X and p0,tot in place of ptot, is small. This is seen to be true
if (  Kd + Z)2/(p0,tot  Kd) is very large, in which 1/  Kd = k+/k− is the affinity of the
binding site p0 to Z. Since after a short transient, Zp = (p0,totZ)/(  Kd + Z), for Zp
not to be a distorted version of Z, it is enough to ask that  Kd % Z. This, combined
with the requirement that (  Kd + Z)2/(p0,tot  Kd) is very large, leads to the require-
ment p0,tot/  Kd & 1. Summarizing, for not having distortion effects between Z and
Zp and small retroactivity r, we need that

 Kd% Z and p0,tot/  Kd& 1. (7.23)

Simulation results are presented for the insulation system of equations (7.15)–
(7.21) as the mathematical analysis of such a system is only valid under the ap-
proximation that the protease reaction is a one step reaction. In all simulations, we
consider protein decay rates to be 0.01min−1 to obtain a protein half life of about
one hour. We consider always a periodic forcing k(t) = 0.01(1+ sin(ωt)), in which
we assume that such a periodic signal has been generated by a synthetic biological
oscillator. Therefore, the oscillating signals are chosen to have a period that is about
12 times the protein half life in accordance to what is experimentally observed in
the synthetic clock of [5].

For large gains (G = 1000, G = 100), the performance considerably improves
compared to the case in which X was generated by a plain transcriptional com-
ponent accepting Z as an input (Figure 7.6). For lower gains (G = 10, G = 1), the
performance starts to degrade for G = 10 and becomes not acceptable for G = 1
(Figure 7.13). Since we can view G as the number of transcripts produced per
unit time (one minute) per complex of protein Z bound to promoter p0, values
G = 100,1000 may be difficult to realize in vivo, while the values G = 10,1 could
be more easily realized. The values of the parameters chosen in Figure 7.13 are
such that  Kd % Z and p0,tot &  Kd. This is enough to guarantee that there is small
retroactivity r to the input of the insulation device independently of the value of
the gain G, according to relations (7.23). The poorer performance of the device
for G = 1 is therefore entirely due to poor attenuation of the retroactivity s to the
output.

To obtain a large gain, we need to guarantee high expression of the protease.
This may be difficult to do because in general proteases are not specific and target
for degradations all proteins. Hence, global undesired effects on the cell behavior
may result. The next design avoids this problem by using dephosphorylation as the
mechanism for enhanced degradation.
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Figure 7.14: In this design, negative feedback occurs through a phosphatase Y that converts
the active form X* back to its inactive form X. Amplification occurs through Z activating
the phosphorylation of X.

Design 2: Amplification through phosphorylation

In this design, the amplification gain G of Z is obtained by having Z activate the
phosphorylation of a protein X, which is available in the system in abundance. That
is, Z is a kinase for a protein X. The negative feedback gain G′ on X∗ is obtained
by having a phosphatase Y activate the dephosphorylation of active protein X∗.
Protein Y is also available in abundance in the system. This mechanism is depicted
in Figure 7.14. A similar design has been proposed by [83, 84], in which a MAPK
cascade plus a negative feedback loop that spans the length of the MAPK cascade
is considered as a feedback amplifier. The design presented here is simpler as it
involves only one phosphorylation cycle and does not require any explicit feed-
back loop. In fact, a strong negative feedback can be realized by the action of the
phosphatase that converts the active protein form X∗ back to its inactive form X.

We consider a simplified model for the phosphorylation and dephosphorylation
processes, which will help in obtaining a conceptual understanding of what reac-
tions realize the desired gainsG andG′. The one step model that we consider is the
same as considered in Chapter 2 (Exercise 2.6):

Z+X
k1−→ Z+X∗,

and
Y+X∗

k2−→ Y+X.

We assume that there is an abundance of protein X and of phosphatase Y in the
system and that these quantities are conserved. The conservation of X gives X +
X∗ +C = Xtot, in which X is the inactive protein, X∗ is the phosphorylated protein
that binds to the downstream sites p, and C is the complex of the phosphorylated
protein X∗ bound to the promoter p. The X∗ dynamics can be described by the first
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equation in the following model

dX∗

dt
= k1XtotZ(t)

(

1−
X∗

Xtot
−

[

C
Xtot

])

− k2YX∗+ [koffC− konX∗(ptot−C)] (7.24)

dC
dt
= −koffC+ konX∗(ptot−C). (7.25)

The terms in the square brackets represent the retroactivity s to the output of the
insulation system of Figure 7.14. For a weakly activated pathway [42], X∗ & Xtot.
Also, if we assume that the concentration of total X is large compared to the con-
centration of the downstream binding sites, that is, Xtot % ptot, equation (7.24) is
approximatively equal to

dX∗

dt
= k1XtotZ(t)− k2YX∗+ koffC− konX∗(ptot−C).

Let G = k1Xtot and G′ = k2Y . Exploiting again the difference of time scales
between the X∗ dynamics and the C dynamics, after a fast initial transient the dy-
namics of X∗ can be well approximated by

dX∗

dt
= (GZ(t)−G′X∗)(1−d(t)), (7.26)

in which 0 < d(t) < 1 is the retroactivity contribution. Therefore, forG andG′ large
enough, X∗(t) tends to the solution X∗(t) of the isolated system dX∗

dt =GZ(t)−G′X∗,
as explained before. As a consequence, the effect of the retroactivity to the output
s is attenuated by increasing k1Xtot and k2Y enough. That is, to obtain large in-
put and feedback gains, one should have large phosphorylation/dephosphorylation
rates and/or a large amount of protein X and phosphatase Y in the system. This
reveals that the values of the phosphorylation/dephosphorylation rates cover an
important role toward the realization of the insulation property of the module of
Figure 7.14.

From a practical point of view, the effective rates can be increased by increas-
ing the total amounts of X and Y, which can be done by placing the corresponding
genes under the control of inducible promoters. Experiments performed on a cova-
lent modification cycle reconstituted in vitro, showed that increasing these protein
amounts is an effective means to attain insulation [51].

Attenuation of retroactivity to the output: Principle 2

In this section, we present a more general mechanism for insulation, that is not in-
spired by the design of electrical circuits and is naturally implemented by the struc-
ture of biomolecular systems. For this purpose, consider Figure 7.15. We illustrate
how the system can achieve insulation from s whenever its internal dynamics are
much faster compared to the dynamics of the input u. To this end, we consider the
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Figure 7.15: Interconnection of a device with input u and output x to a downstream system
with internal state y applying retroactivity s.

following simple structure in which (for simplicity) we assume that all variables
are scalar:

du
dt
= f0(u, t)+ r(u, x)

dx
dt
=G f1(x,u)+  Gs(x,u) (7.27)

dy
dt
= −  Gs(x,y).

Here G% 1 models the fact that the internal dynamics of the device is much faster
than that of the input; similarly,  G % 1 models the fact that the dynamics of the
interconnection with downstream systems is also fast (as it is usually the case,
being it due to binding mechanisms). The claim that we make about this system is
the following.

IfG% 1 and the Jacobian of f1 has eigenvalues with negative real part,
then x(t) is not affected by retroactivity s after a short initial transient,
independently of the value of  G.

This result states that independently of the characteristics of the downstream
system, the device can be tuned (by making G large enough) so to function as an
insulation device. To clarify why this would be the case, it is useful to rewrite the
above system in standard singular perturbation form by employing ε := 1/G as a
small parameter and x̃ := x+ y as the slow variable. Hence, it can be re-written as

du
dt
= f0(u, t)+ r(u, x)

ε
dx̃
dt
= f1(x̃− y,u) (7.28)

dy
dt
= −  Gs(x̃− y,y).

Since ∂ f1/∂x̃ has eigenvalues with negative real part, one can apply standard singu-
lar perturbation to show that after a very fast transient, the trajectories are attracted
to the slow manifold given by f1(x̃− y,u) = 0. This is locally given by x = γ(u)
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solving f1(x,u) = 0. Hence, on the slow manifold we have that x(t) = γ(u(t)), which
is independent of the downstream system, that is, it is not affected by retroactivity.

The same result holds for a more general class of systems in which the variables
u, x,y are vectors:

du
dt
= f0(u, t)+ r(u, x)

dx
dt
=G f1(x,u)+  GAs(x,u) (7.29)

dy
dt
= −  GBs(x,y)

as long as there are matrices T and M such that TA+MB= 0 and T is invertible. In
fact, one can take the system to new coordinates u, x̃,y with x̃ = T x+My, in which
the system will have the form (7.28).

Biomolecular realizations of Principle 2

We next consider possible biomolecular structures that realize Principle 2. Since
this principle is based on a fast time scale of the device dynamics when compared
to that of the device input, we focus on signaling systems, which are known to
evolve on faster time scales than those of protein production and decay.

Design 1: Implementation through phosphorylation

We consider a more complex model for the phosphorylation and dephosphorylation
reactions in a phosphorylation cycle and perform a parametric analysis to highlight
the roles of the various parameters for attaining the insulation properties. In partic-
ular, we consider a two-step reaction model as seen in Section 2.4. According to
this model, we have the following two reactions for phosphorylation and dephos-
phorylation:

X+Z
a1−−⇀↽−−
d1

C1
k1−→ X∗+Z, Y+X∗

a2−−⇀↽−−
d2

C2
k2−→ X+Y. (7.30)

Additionally, we have the conservation equations Ytot = Y +C2, Xtot = X + X∗ +
C1+C2+C, because proteins X and Y are not degraded. Therefore, the differential
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equations modeling the insulation system of Figure 7.14 become

dZ
dt
= k(t)−δZ

[

−a1ZXtot(1−
X∗

Xtot
−
C1
Xtot
−
C2
Xtot
−

[

C
Xtot

]

)+ (d1+ k1)C1

]

(7.31)

dC1
dt
= −(d1+ k1)C1+a1ZXtot(1−

X∗

Xtot
−
C1
Xtot
−
C2
Xtot
−

[

C
Xtot

]

) (7.32)

dC2
dt
= −(k2+d2)C2+a2YtotX∗(1−

C2
Ytot

) (7.33)

dX∗

dt
= k1C1+d2C2−a2YtotX∗(1−

C2
Ytot

)+
[

koffC− konX∗(ptot−C)
]

(7.34)

dC
dt
= −koffC+ konX∗(ptot−C), (7.35)

in which the expression of gene z is controlled by a promoter with activity k(t).
The terms in the large square bracket in equation (7.31) represent the retroactivity
r to the input, while the terms in the square brackets of equations (7.32) and (7.34)
represent the retroactivity s to the output.

We assume that Xtot% ptot so that in equations (7.31) and (7.32) we can neglect
the term C/Xtot because C < ptot. Also, phosphorylation and dephosphorylation
reactions in equations (7.30) can occur at a much faster rate than protein production
and decay processes (see Chapter 2). Choosing Xtot and Ytot sufficiently large, let
G = k1Xtot/δ and  G = koff/δ, then we can re-write the system with kon = koff/Kd,
b1 = a1Xtot/(δG), a1 = a2Ytot/(δG), b2 = d1/(δG), a2 = d2/(δG), ci = ki/(δG), and
kon =  Gδ/Kd. Letting z = Z+C1 we obtain the system in the form

dz
dt
= k(t)−δ(z−C1)

dC1
dt
=G

(

−δ(b2+ c1)C1+δb1(z−C1)
(

1−
X∗

Xtot
−
C1
Xtot
−
C2
Xtot

)
))

dC2
dt
=G

(

−δ(c2+a2)C2+δa1X∗
(

1−
C2
Ytot

))

(7.36)

dX∗

dt
=G

(

δc1C1+δa2C2−δa1X∗
(

1−
C2
Ytot

))

+  G
(

δC−δ/Kd(ptot−C)X∗
)

dC
dt
= −  G

(

δC−δ/Kd(ptot−C)X∗
)

,

which is in the form of system (7.29) with u = z, x = (C1,C2,X∗), and y = C, in
which one can choose T as the 3 by 3 identity matrix and M = (0 0 1)′. Hence,
this system, for G sufficiently larger than 1 attenuates the effect of the retroactiv-
ity to the output s. For G to be large, one has to require that k1Xtot is sufficiently
large and that a2Ytot is also comparatively large. These are the same design require-
ments obtained in the previous section based on the one-step reaction model of the
enzymatic reactions.
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In order to understand the effect of retroactivity to the input on the Z dynamics,
one can perform the following calculations. Letting Km = (d1 + k1)/a1 and  Km =
(d2+k2)/a2 represent the Michaelis-Menten constants of the forward and backward
enzymatic reactions and setting ε = 0 in the third and fourth equations of (7.36) the
following relationships can be obtained:

C1 = F1(X∗) =
X∗Ytotk2

 Kmk1

1+X∗/  Km
, C2 = F2(X∗) =

X∗Ytot
 Km

1+X∗/  Km
. (7.37)

Using expressions (7.37) in the second of equations (7.36) with ε = 0 leads to

F1(X∗)(b2+ c1+
b1Z
Xtot

) = b1Z(1−
X∗

Xtot
−
F2(X∗)
Xtot

). (7.38)

Assuming for simplicity that X∗ &  Km, we obtain that F1(X∗) ≈ X∗Ytotk2/  Kmk1
and that F2(X∗) ≈ X∗/  KmYtot. As a consequence of these simplifications, equation
(7.38) leads to

X∗ =
b1Z

b1Z
Xtot

(1+Ytot/  Km+ (Ytotk2)/(  Kmk1))+ Ytotk2
 Kmk1

(b2+ c1)
:= m(Z).

In order not to have distortion from Z to X∗, we require that

Z&
Ytot

k2
k1
Km
 Km

1+ Ytot
 Km
+
Ytot
 Km

k2
k1

, (7.39)

so that m(Z) ≈ ZXtot  Kmk1/YtotKmk2 and therefore we have a linear relationship be-
tween X∗ and Z with gain from Z to X∗ given by Xtot  Kmk1/YtotKmk2. In order not
to have attenuation from Z to X∗ we require that the gain is greater than or equal to
one, that is,

input/output gain ≈
Xtot  Kmk1
YtotKmk2

≥ 1. (7.40)

Requirements (7.39), (7.40) and X∗ &  Km are enough to guarantee that we do
not have nonlinear distortion between Z and X∗ and that X∗ is not attenuated with
respect to Z. In order to guarantee that the retroactivity r to the input is sufficiently
small, we need to quantify the retroactivity effect on the Z dynamics due to the
binding of Z with X. To achieve this, we proceed as in Section 7.3 by computing
the Z dynamics on the slow manifold, which gives a good approximation of the
dynamics of Z if ε ≈ 0. Such a dynamics are given by

dZ
dt
= (k(t)−δZ)

(

1−
dF1
dX∗

dX∗

dz

)

,

in which dF1
dX∗

dX∗
dz measures the effect of the retroactivity r to the input on the Z

dynamics. Direct computation of dF1
dX∗ and of dX∗

dz along with X∗ &  Km and with
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Figure 7.16: (a) Performance with fast time scales. Simulation results for system in equa-
tions (7.31–7.35). In all plots, ptot = 100, koff = kon = 10, δ = 0.01, k(t) = 0.01(1+ sin(ωt)),
and ω = 0.005. In subplots A and B, k1 = k2 = 50, a2 = a1 = 0.01, d1 = d2 = 10, and
Ytot = Xtot = 1500. In plot A, the isolated system is without downstream binding sites p
and the connected system is with binding sites p. The small error shows that the effect of
the retroactivity to the output s is attenuated very well. In subplot B, the isolated system
stands for the case in which Z does not have X to bind to, while the connected system
stands for the case in which Z binds to substrate X (Xtot = 1500). The small error confirms
a small retroactivity to the input r. (b) Performance with slow time scale. Phosphoryla-
tion and dephosphorylation rates are slower than the ones in (a), that is, k1 = k2 = 0.01,
while the other parameters are left the same, that is, d2 = d1 = 10, a2 = a1 = 0.01, and
Ytot = Xtot = 1500.

(7.39) leads to dF1
dX∗

dX∗
dz ≈ Xtot/Km, so that in order to have small retroactivity to the

input, we require that
Xtot
Km
& 1. (7.41)

Hence, a design trade-off appears: Xtot should be sufficiently large to provide a gain
G large enough to attenuate the retroactivity to the output. Yet, Xtot should be small
enough compared to Km so to apply minimal retroactivity to the input.

Concluding, for having attenuation of the effect of the retroactivity to the out-
put s, we require that the time scale of the phosphorylation/dephosphorylation re-
actions is much faster than the production and decay processes of Z (the input
to the insulation device) and that Xtot % ptot, that is, the total amount of protein
X is in abundance compared to the downstream binding sites p. To obtain also a
small effect of the retroactivity to the input, we require that Km % Xtot. This is
satisfied if, for example, kinase Z has low affinity to binding with X. To keep the
input/output gain between Z and X∗ close to one (from equation (7.40)), one can
choose Xtot = Ytot, and equal coefficients for the phosphorylation and dephospho-
rylation reactions, that is, Km =  Km and k1 = k2.

System in equations (7.31–7.35) was simulated with and without the down-
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stream binding sites p, that is, with and without, respectively, the terms in the small
box of equation (7.31) and in the boxes in equations (7.34) and (7.32). This is
performed to highlight the effect of the retroactivity to the output s on the dynam-
ics of X∗. The simulations validate our theoretical study that indicates that when
Xtot % ptot and the time scales of phosphorylation/dephosphorylation are much
faster than the time scale of decay and production of the protein Z, the retroactiv-
ity to the output s is very well attenuated (Figure 7.16(a), plot A). Similarly, the
time behavior of Z was simulated with and without the terms in the large box in
equation (7.31), that is, with and without X to which Z binds, to verify whether the
insulation component exhibits retroactivity to the input r.

In particular, the accordance of the behaviors of Z(t) with and without its down-
stream binding sites on X (Figure 7.16(a), plot B), indicates that there is no sub-
stantial retroactivity to the input r generated by the insulation device. This is ob-
tained because Xtot & Km as indicated in equation (7.41), in which 1/Km can be
interpreted as the affinity of the binding of X to Z.

Our simulation study also indicates that a faster time scale of the phosphoryla-
tion/dephosphorylation reactions is necessary, even for high values of Xtot and Ytot,
to maintain perfect attenuation of the retroactivity to the output s and small retroac-
tivity to the output r. In fact, slowing down the time scale of phosphorylation and
dephosphorylation, the system looses its insulation property (Figure 7.16(b)). In
particular, the attenuation of the effect of the retroactivity to the output s is lost
because there is not enough separation of time scales between the Z dynamics and
the internal device dynamics. The device also displays a non negligible amount of
retroactivity to the input because the condition Km& Xtot is not satisfied anymore.

Design 2: Realization through phosphotransfer

Z Z*

X X*

Input

Insulation device

p

Figure 7.17: System S is a phosphotransfer system. The output X* activates transcription
through the reversible binding of X* to downstream DNA promoter sites p.

Let X be a transcription factor in its inactive form and let X∗ be the same tran-
scription factor once it has been activated by the addition of a phosphate group.
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Let Z∗ be a phosphate donor, that is, a protein that can transfer its phosphate group
to the acceptor X. The standard phosphotransfer reactions (see Chapter 2, Section
2.4) can be modeled according to the two-step reaction model

Z∗+X
k1−−⇀↽−−
k2

C1
k3−−⇀↽−−
k4

X∗+Z,

in which C1 is the complex of Z bound to X bound to the phosphate group. Ad-
ditionally, protein Z can be phosphorylated and protein X∗ dephosphorylated by
other phosphotransfer interactions. These reactions are modeled as one step reac-
tions depending only on the concentrations of Z and X∗, that is, Z

π1−−→ Z∗, X∗
π2−−→ X.

Protein X is assumed to be conserved in the system, that is, Xtot = X+C1+X∗+C.
We assume that protein Z is produced with time-varying production rate k(t) and
decays with rate δ. The active transcription factor X∗ binds to downstream DNA
binding sites p with total concentration ptot to activate transcription through the

reversible reaction p+X∗
kon−−−⇀↽−−−
koff

C. Since the total amount of p is conserved, we also

have that C + p = ptot. The ODE model corresponding to this system is thus given
by the equations

dZ
dt
= k(t)−δZ+ k3C1− k4X∗Z−π1Z

dC1
dt
= k1Xtot

(

1−
X∗

Xtot
−
C1
Xtot
−

[

C
Xtot

])

Z∗ − k3C1− k2C1+ k4X∗Z

dZ∗

dt
= π1Z+ k2C1− k1Xtot

(

1−
X∗

Xtot
−
C1
Xtot
−

[

C
Xtot

])

Z∗

dX∗

dt
= k3C1− k4X∗Z+

[

koffC− konX∗(ptot−C)
]

−π2X∗

dC
dt
= konX∗(ptot−C)− koffC.

(7.42)

Since phosphotransfer reaction are faster than protein production and decay,
define G1 := Xtotk1/δ so that  k1 := Xtotk1/G1 = δ,  k2 := k2/G1,  k3 := k3/G1,  k4 :=
k4/G1,  π1 := π1/G1,  π2 := π2/G1 are of the same order of k(t) and δ. Similarly,
the process of protein binding and unbinding to promoter sites is much faster than
protein production and decay. Let  G := koff/δ and Kd := koff/kon. Assuming also
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Figure 7.18: Output response of the phosphotransfer system with a periodic signal k(t) =
δ(1+ 0.5sinωt). The parameters are given by δ = 0.01, Xtot = 5000, k1 = k2 = k3 = k4 =
π1 = π2 = 0.01G in which G = 1 (left-side panel), and G = 100 (right-side panel). The
downstream system parameters are given by Kd = 1 and koff = 0.01G2, in which  G assumes
the values indicated on the legend. The isolated system (s= 0) corresponds to ptot = 0 while
the connected system (s ! 0) corresponds to ptot = 100.

that ptot& Xtot, we have that C& Xtot so that system (7.42) can be rewritten as

dZ
dt
= k(t)−δZ+G

(

 k3C1−  k4ZX∗ −  π1Z
)

dC1
dt
=G

(

 k1

(

1−
X∗

Xtot
−
C1
Xtot

)

Z∗ −  k3C1−  k2C1+  k4X∗Z
)

dZ∗

dt
=G

(

 π1Z+  k2C1−  k1

(

1−
X∗

Xtot
−
C1
Xtot

)

Z∗
)

dX∗

dt
=G

(

 k3C1−  k4X∗Z−  π2X∗
)

−  G
(

δ

Kd
X∗(ptot−C)+δC

)

dC
dt
=  G(

δ

Kd
X∗(ptot−C)−δC).

(7.43)

Taking T = I3×3, the 3 by 3 identity matrix, and M = (0,0,1)T , the coordinate trans-
formation x̃ = T x+My brings the system to the form of system (7.29) with u = Z,
x = (C1,Z∗,X∗), and y =C.

We illustrate the retroactivity to the output attenuation property of this system
using simulations for the cases in which G%  G, G =  G, and G&  G. Figure 7.18
shows that, for a periodic input k(t), the system with low value for G suffers the
impact of retroactivity to the output. However, for a large value ofG, the permanent
behavior of the connected system becomes similar to that of the isolated system,
whether G%  G, G =  G or G&  G. Notice that, in the bottom panel of Figure 7.18,
when G %  G, the impact of the retroactivity to the output is not as dramatic as it
is when G =  G or G &  G. This is due to the fact that s is scaled by  G and it is
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not related to the retroactivity to the output attenuation property. This confirms the
theoretical result that, independently of the order of magnitude of  G, the system
can arbitrarily attenuate retroactivity for large enough G.

Exercises

7.1 Include in the study of retroactivity in transcriptional systems the mRNA dy-
namics and demonstrate how/whether the results change. Specifically, consider the
following model of a connected transcriptional component

mX
dt

= k(t)−γmX

dX
dt

= βmX −δX+ [koffC− kon(pTOT −C)X],

dC
dt

= −koffC+ kon(pTOT −C)X,

7.2 Consider the system in standard singular perturbation form, in which ε & 1.
Demonstrate that the slow manifold is locally exponentially stable.

dy
dt
= k(t)−δ(y−C), ε

dC
dt
= −δC+

δ

kd
(pTOT −C)(y−C).

7.3 The characterization of retroactivity effects in a transcriptional module was
based on the following model of the interconnection:

dX
dt

= k(t)−δX+ [koffC− kon(ptot−C)X],

dC
dt

= −koffC+ kon(ptot−C)X,

in which it was implicitly assumed that the complex C does not dilute. This is
often a fair assumption. However, depending on the experimental conditions, a
more appropriate model may include dilution for the complex C. In this case, the
model modified to

dX
dt

= k(t)− (µ+  δ)X+ [koffC− kon(ptot−C)X],

dC
dt

= −koffC+ kon(ptot−C)X−µC,

in which µ represents decay due to dilution and  δ represents protein degradation.
Employ singular perturbation to determine the reduced X dynamics and the effects
of retroactivity in this case. Is the steady state characteristic of the transcriptional
module affected by retroactivity? How?
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7.4 We have illustrated that the expression of the point of half-maximal induction
in a covalent modification cycle is affected by the effective load λ as follows:

y50 =
 K1+0.5

 K2(1+λ)+0.5
.

Study the behavior of this quantity when the effective load λ is changed.

7.5 Show how equation (7.12) is derived in Section 7.4.

7.6 Demonstrate that in the following system

dX
dt
=G (k(t)−KX) (1−d(t)),

X(t)− k(t)/K becomes smaller as G is increased.

7.7 Consider the activator-repressor clock from Atkinson et al. (Cell 2003), de-
scribed in Section 6.5. Take the same simulation model derived for that exercise
and pick parameter values to obtain a stable limit cycle. Then, assume that the acti-
vator A connects to another transcriptional circuit through the reversible binding of

A with operator sites p to form activator-operator complex C: A+p
kon−−−⇀↽−−−
ko f f

C. This

occurs, for example, if you want to use this clock as a source generator for some
downstream system. Answer the following questions:

• Simulate the system with this new binding phenomenon and vary the total
amount of p, that is, pT . Explore how this affects the behavior of the clock.

• Give a mathematical explanation of the phenomenon you saw in (i). To do
so, use singular perturbation to approximate the dynamics of the clock with
downstream binding on the slow manifold (here, kon,koff% δA,δB). You can
follow the process we used in class when we studied retroactivity for the
transcriptional component with downstream binding.
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