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Chapter 1
Introductory Concepts

This chapter provides a brief introduction to concepts from systems biology, tools
from differential equations and control theory, and approaches to modeling, anal-
ysis and design of biomolecular feedback systems. We begin with a discussion of
the role of modeling, analysis and feedback in biological systems. This is followed
by a short review of key concepts and tools from control and dynamical systems
theory, intended to provide insight into the main methodology described in the text.
Finally, we give a brief introduction to the field of synthetic biology, which is the
primary topic of the latter portion of the text. Readers who are familiar with one or
more of these areas can skip the corresponding sections without loss of continuity.

1.1 Systems Biology: Modeling, Analysis and Role of Feedback

At a variety of levels of organization—from molecular to cellular to organismal—
biology is becoming more accessible to approaches that are commonly used in
engineering: mathematical modeling, systems theory, computation and abstract ap-
proaches to synthesis. Conversely, the accelerating pace of discovery in biological
science is suggesting new design principles that may have important practical ap-
plications in human-made systems. This synergy at the interface of biology and
engineering offers many opportunities to meet challenges in both areas. The guid-
ing principles of feedback and control are central to many of the key questions in
biological science and engineering and can play an enabling role in understanding
the complexity of biological systems.

In this section we summarize our view on the role that modeling and analysis
should (eventually) play in the study and understanding of biological systems, and
discuss some of the ways in which an understanding of feedback principles in
biology can help us better understand and design complex biomolecular circuits.

There are a wide variety of biological phenomena that provide a rich source of
examples for control, including gene regulation and signal transduction; hormonal,
immunological, and cardiovascular feedback mechanisms; muscular control and
locomotion; active sensing, vision, and proprioception; attention and conscious-
ness; and population dynamics and epidemics. Each of these (and many more) pro-
vide opportunities to figure out what works, how it works, and what can be done to
affect it. Our focus here is at the molecular scale, but the principles and approach
that we describe can also be applied at larger time and length scales.
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Modeling and analysis

Over the past several decades, there have been significant advances in modeling
capabilities for biological systems that have provided new insights into the com-
plex interactions of the molecular-scale processes that implement life. Reduced-
order modeling has become commonplace as a mechanism for describing and doc-
umenting experimental results and high-dimensional stochastic models can now
be simulated in reasonable periods of time to explore underlying stochastic effects.
Coupled with our ability to collect large amounts of data from flow cytometry,
micro-array analysis, single-cell microscopy, and other modern experimental tech-
niques, our understanding of biomolecular processes is advancing at a rapid pace.

Unfortunately, although models are becoming much more common in biolog-
ical studies, they are still far from playing the central role in explaining complex
biological phenomena. Although there are exceptions, the predominant use of mod-
els is to “document” experimental results: a hypothesis is proposed and tested us-
ing careful experiments, and then a model is developed to match the experimental
results and help demonstrate that the proposed mechanisms can lead to the ob-
served behavior. This necessarily limits our ability to explain complex phenomena
to those for which controlled experimental evidence of the desired phenomena can
be obtained.

This situation is much different than standard practice in the physical sciences
and engineering, as illustrated in Figure 1.1 (in the context of modeling, analysis,
and control design for gas turbine aeroengines). In those disciplines, experiments
are routinely used to help build models for individual components at a variety of
levels of detail, and then these component-level models are interconnected to ob-
tain a system-level model. This system-level model, carefully built to capture the
appropriate level of detail for a given question or hypothesis, is used to explain,
predict, and systematically analyze the behaviors of a system. Because of the ways
in which models are viewed, it becomes possible to prove (or invalidate) a hypoth-
esis through analysis of the model, and the fidelity of the models is such that deci-
sions can be made based on them. Indeed, in many areas of modern engineering—
including electronics, aeronautics, robotics, and chemical processing, to name a
few—models play a primary role in the understanding of the underlying physics
and/or chemistry, and these models are used in predictive ways to explore design
tradeoffs and failure scenarios.

A key element in the successful application of modeling in engineering dis-
ciplines is the use of reduced-order models that capture the underlying dynamics
of the system without necessarily modeling every detail of the underlying mech-
anisms. These reduced order models are often coupled with schematics diagrams,
such as those shown in Figure 1.2, to provide a high level view of a complex sys-
tem. The generation of these reduced-order models, either directly from data or
through analytical or computational methods, is critical in the effective applica-
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Figure 1.1: Sample modeling, analysis and design framework for an engineering system.

tion of modeling since modeling of the detailed mechanisms produces high fidelity
models that are too complicated to use with existing tools for analysis and design.
One area in which the development of reduced order models is fairly advanced is
in control theory, where input/output models, such as block diagrams and transfer
functions are used to capture structured representations of dynamics at the appro-
priate level of fidelity for the task at hand [1].

While developing predictive models and corresponding analysis tools for biol-
ogy is much more difficult, it is perhaps even more important that biology make
use of models, particularly reduced-order models, as a central element of under-
standing. Biological systems are by their nature extremely complex and can be-
have in counterintuitive ways. Only by capturing the many interacting aspects of
the system in a formal model can we ensure that we are reasoning properly about
its behavior, especially in the presence of uncertainty. To do this will require sub-
stantial effort in building models that capture the relevant dynamics at the proper
scales (depending on the question being asked) as well as building an analytical
framework for answering questions of biological relevance.

The good news is that a variety of new techniques, ranging from experiments to
computation to theory, are enabling us to explore new approaches to modeling that
attempt to address some of these challenges. In this text we focus on the use of rele-
vant classes of reduced-order models that can be used to capture many phenomena
of biological relevance.
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Figure 1.2: Schematic diagrams representing models in different disciplines. Each diagram
is used to illustrate the dynamics of a feedback system: (a) electrical schematics for a power
system [53], (b) a biological circuit diagram for a synthetic clock circuit [5], (c) a process
diagram for a distillation column [80] and (d) a Petri net description of a communication
protocol.

Dynamic behavior and phenotype

One of the key needs in developing a more systematic approach to the use of mod-
els in biology is to become more rigorous about the various behaviors that are im-
portant for biological systems. One of the key concepts that needs to be formalized
is the notion of “phenotype”. This term is often associated with the existence of an
equilibrium point in a reduced-order model for a system, but clearly more complex
(non-equilibrium) behaviors can occur and the “phenotypic response” of a system
to an input may not be well-modeled by a steady operating condition. Even more
problematic is determining which regulatory structures are “active” in a given phe-
notype (versus those for which there is a regulatory pathway that is saturated and
hence not active).

Figure 1.3 shows a graphical representation of a class of systems that captures
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Figure 1.3: Conceptual modeling framework for biomolecular feedback systems. The
chemical kinetics block represents reactions between molecular species, resulting in signal-
ing molecules and bound promoters. The DNA layout block accounts for the organization
of the DNA, which may be “rewired” to achieve a desired function. The TX-TL processes
block represents the core transcription and translation processes, which are often much
slower than the reactions between various species. The inputs and outputs of the various
blocks represent interconnections and external interactions.

many of the features we are interested in. The chemical kinetics of the system
are typically modeled using mass action kinetics (reaction rate equations) and rep-
resent the fast dynamics of chemical reactions. The reactions include the binding
of activators and repressors to DNA, as well as the initiation of transcription. The
DNA layout block represents the physical layout of the DNA, which determines
which genes are controlled by which promoters. The core processes of transcrip-
tion (TX) and translation (TL) represent the slow dynamics (relative to the chemical
kinetics) of protein expression (including maturation).

Several other inputs and outputs are represented in the figure. In the chemical
kinetics block, we allow external inputs, such as chemical inducers, and external
parameters (rate parameters, enzyme concentrations, etc) that will effect the reac-
tions that we are trying to capture in our model. We also include a (simplified)
notion of disturbances, represented in the diagram as an external input that affects
the rate of transcription. This disturbance is typically a stochastic input that rep-
resents the fact that gene expression can be noisy. In terms of outputs, we capture
two possibilities in the diagram: small molecule outputs—often used for signaling
to other subsystems but which could include outputs from metabolic processes—
and protein outputs, such as as fluorescent reporters.

Another feature of the diagram is the block labeled “unmodeled dynamics”,
which represents the fact that our models of the core processes of gene expression
are likely to be simplified models that ignore many details. These dynamics are
modeled as a feedback interconnection with transcription and translation, which
turns out to provide a rich framework for application of tools from control theory
(but unfortunately one that we will not explore in great detail within this text).
Tools for understanding this class of uncertainty are available for both linear and
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nonlinear control systems [1] and allow stability and performance analyses in the
presence of uncertainty.

The combination of partially unknown parameters, external disturbances, and
unmodeled dynamics are collectively referred to as model uncertainty and are an
important element of our analysis of biomolecular feedback systems. Often we will
analyze the dynamic behavior of a system assuming that the parameters are known,
disturbances are small and our models are accurate. This analysis can give valuable
insights into the behavior of the system, but it is important to make sure that this
behavior is robust with respect to uncertainly, a topic that we will discuss in some
detail in Chapter 3.

A somewhat common situation is that a system may have multiple equilib-
rium points and the “phenotype” of the system is represented by the particular
equilibrium point that the system converges to. In the simplest case, we can have
bistability, in which there are two equilibrium points x1e and x2e for a fixed set of
parameters. Depending on the initial conditions and external inputs, a given sys-
tem may end up near one equilibrium point or the other, providing two distinct
phenotypes. A model with bistability (or multi-stability) provides one method of
modeling memory in a system: the cell or organism remembers its history by virtue
of the equilibrium point to which it has converted.

For more complex phenotypes, where the subsystems are not at a steady op-
erating point, one can consider temporal patterns such as limit cycles (periodic
orbits) or non-equilibrium input/output responses. Analysis of these more compli-
cated behaviors requires more sophisticated tools, but again model-based analysis
of stability and input/output responses can be used to characterize the phenotypic
behavior of a biological system under different conditions or contexts.

Additional types of analysis that can be applied to systems of this form include
sensitivity analysis (dependence of solution properties on selected parameters), un-
certainty analysis (impact of disturbances, unknown parameters and unmodeled dy-
namics), bifurcation analysis (changes in phenotype as a function of input levels,
context or parameters) and probabilistic analysis (distributions of states as a func-
tion of distributions of parameters, initial conditions or inputs). In each of these
cases, there is a need to extend existing tools to exploit the particular structure of
the problems we consider, as well as modify the techniques to provide relevance to
biological questions.

Stochastic behavior

Another important feature of many biological systems is stochasticity: biological
responses have an element of randomness so that even under carefully control con-
ditions, the response of a system to a given input may vary from experiment to
experiment. This randomness can have many possible sources, including external
perturbations that are modeled as stochastic processes and internal processes such
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Figure 1.4: Galactose response in yeast [93]. (a) GAL signaling circuitry showing a num-
ber of different feedback pathways that are used to detect the presence of galactose and
switch on the metabolic pathway. (b) Pathway activity as a function of galactose concen-
tration. The points at each galactose concentration represent the activity level of the galac-
tose metabolic pathway in an individual cell. Black dots indicate the mean of a Gaussian
mixture model classification [92]. Small random deviations were added to each galactose
concentration (horizontal axis) to better visualize the distributions.

as molecular binding and unbinding, whose stochasticity stems from the underly-
ing thermodynamics of molecular reactions.

While for many engineered systems it is common to try to eliminate stochastic
behavior (yielding a “deterministic” response), for biological systems there appear
to be many situations in which stochasticity is important for the way in which or-
ganisms survive. In biology, nothing is 100% and so there is always some chance
that two identical organisms will respond differently. Thus viruses are never com-
pletely contagious and so some organisms will survive, and DNA replication is
never error free, and so mutations and evolution can occur. In studying circuits
where these types of effects are present, it thus becomes important to study the
distribution of responses of a given biomolecular circuit, and to collect data in a
manner that allows us to quantify these distributions.

One important indication of stochastic behavior is bimodality. We say that a cir-
cuit or system is bimodal if the response of the system to a given input or condition
has two or more distinguishable classes of behaviors. An example of bimodal-
ity is shown in Figure 1.4, which shows the response of the galactose metabolic
machinery in yeast. We see from the figure that even though genetically identical
organisms are exposed to the same external environment (a fixed galactose con-
centration), the amount of activity in individual cells can have a large amount of
variability. At some concentrations there are clearly two subpopulations of cells:
those in which the galactose metabolic pathway is turned on (higher reporter fluo-
rescence values on the y axis) and those for which it is off (lower reporter fluores-
cence).

Another characterization of stochasticity in cells is the separation of noisiness
in protein expression into two categories: “intrinsic” noise and “extrinsic” noise.
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Roughly speaking, extrinsic noise represents variability in gene expression that
effects all proteins in the cell in a correlated way. Extrinsic noise can be due to
environmental changes that affect the entire cell (temperature, pH, oxygen level) or
global changes in internal factors such as energy or metabolite levels (perhaps due
to metabolic loading). Intrinsic noise, on the other hand, is the variability due to the
inherent randomness of molecular events inside the cell and represents a collection
of independent random processes. One way to attempt to measure the amount of
intrinsic and extrinsic noise is to take two identical copies of a biomolecular cir-
cuit and compare their responses [24, 88]. Correlated variations in the output of
the circuits corresponds (roughly) to extrinsic noise and uncorrelated variations to
intrinsic noise [40, 88].

The types of models that are used to capture stochastic behavior are very dif-
ferent than those used for deterministic responses. Instead of writing differential
equations that track average concentration levels, we must keep track of the indi-
vidual events that can occur with some probability per unit time (or “propensity”).
We will explore the methods for modeling and analysis of stochastic systems in
Chapter 4.

1.2 The Cell as a System

The molecular processes inside a cell determine its behavior and are responsible
for metabolizing nutrients, generating motion, enabling procreation and carrying
out the other functions of the organism. In multi-cellular organisms, different types
of cells work together to enable more complex functions. In this section we briefly
describe the role of dynamics and control within a cell and discuss the basic pro-
cesses that govern its behavior and its interactions with its environment. We assume
knowledge of the basics of cell biology at the level found in standard textbooks on
cell biology such as Alberts et al. [2] or Phillips et al. [72].

Figure 1.5 shows a schematic of the major components in the cell: sensing,
signaling, regulation, and metabolism. Sensing of environmental signals typically
occurs through membrane receptors that are specific to different molecules. Cells
can also respond to light or pressure, allowing the cell to sense the environment,
including other cells. There are several types of receptors, some allow the signaling
molecules in the environment to enter the cell wall, such as in the case of ion
channels. Others activate proteins on the internal part of the cell membrane once
they externally bind to the signaling molecule, such as enzyme-linked receptors or
G-protein coupled receptors.

As a consequence of the sensing, a cascade of signal transduction occurs (sig-
naling), in which proteins are sequentially activated by (usually) receiving phos-
phate groups from ATP molecules through the processes of phosphorylation and/or
phosphotransfer. These cascades transmit information to downstream processes,
such as gene expression, by amplifying the information and dynamically filtering
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Figure 1.5: The cell as a system. The major subsystems are sensing, signaling, regulation,
and metabolism.

signals to select for useful features. The temporal dynamics of environmental sig-
nals and the kinetic properties of the stages in the signaling cascades determine
how a signal is transmitted/filtered. At the bottom stages of signaling cascades,
proteins are activated to become transcription factors, which can activate or re-
press the expression of other proteins through regulation of gene expression. The
temporal dynamics of this regulation, with timescales in the range of minutes to
hours, are usually much slower than that of the transmission in the signaling path-
way, which has timescales ranging from subseconds to seconds. “Orthogonally”
to signaling cascades, metabolic pathways, such as the glycolysis pathway, are in
charge of producing the necessary resources for all the other processes in the cells.
Through these pathways, nutrients in the environment, such as glucose, are broken
down through a series of enzymatic reactions, producing, among other products,
ATP, which is the energy currency in the cell used for many of the reactions, in-
cluding those involved in signaling and gene expression.

Example: Chemotaxis

As an example of a sensing-transmission-actuation process in the cell, we consider
chemotaxis, the process by which micro-organisms move in response to chemical
stimuli. Examples of chemotaxis include the ability of organisms to move in the
direction of nutrients or move away from toxins in the environment. Chemotaxis
is called positive chemotaxis if the motion is in the direction of the stimulus and
negative chemotaxis if the motion is away from the stimulant.

The chemotaxis system in E. coli consists of a sensing system that detects the
presence of nutrients, an actuation system that propels the organism in its envi-
ronment, and control circuitry that determines how the cell should move in the
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Figure 1.6: A simplified circuit diagram for chemotaxis, showing the biomolecular pro-
cesses involved in regulating flagellar motion.

presence of chemicals that stimulate the sensing system. The approximate location
of these elements are shown in Figure 1.6. The sensing component is responsible
for detecting the presence of ligands in the environment and initiating signaling
cascades. The computation component, also realized through protein phosphoryla-
tion, implements a feedback (integral) controller that allows the bacterium to adapt
to changes in the environmental ligand concentration. This adaptation occurs by an
actuator that allows the bacterium to ultimately move in the direction in which the
ligand concentration increases.

The actuation system in the E. coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown in
Figure 1.7a. When the flagella all spin in the counter clockwise direction, the indi-
vidual flagella form a bundle and cause the organism to move roughly in a straight
line. This behavior is called a “run” motion. Alternatively, if the flagella spin in the
clockwise direction, the individual flagella do not form a bundle and the organism
“tumbles”, causing it to rotate (Figure 1.7b). The selection of the motor direc-
tion is controlled by the protein CheY: if phosphorylated CheY binds to the motor
complex, the motor spins clockwise (tumble), otherwise it spins counter-clockwise
(run). As a consequence, the chemotaxis mechanisms is stochastic in nature, with
biased random motions causing the average behavior to be either positive, negative
or neutral (in the absence of stimuli).

1.3 Control and Dynamical Systems Tools1

To study the complex dynamics and feedback present in biological systems, we
will make use of mathematical models combined with analytical and computational
tools. In this section we present a brief introduction to some of the key concepts

1The material in this section is adapted from Feedback Systems, Chapter 1 [1].
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Figure 1.7: Bacterial chemotaxis. Figures from Phillips, Kondev and Theriot [72]; used
with permission of Garland Science.

from control and dynamical systems that are relevant for the study of biomolecular
systems considered in later chapters. More details on the application of specific
concepts listed here to biomolecular systems is provided in the main body of the
text. Readers who are familiar with introductory concepts in dynamical systems
and control, at the level described in Åström and Murray [1] for example, can skip
this section.

Dynamics, feedback and control

A dynamical system is a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The term feedback refers to a situation
in which two (or more) dynamical systems are connected together such that each
system influences the other and their dynamics are thus strongly coupled. Simple
causal reasoning about a feedback system is difficult because the first system in-
fluences the second and the second system influences the first, leading to a circular
argument. This makes reasoning based on cause and effect tricky, and it is neces-
sary to analyze the system as a whole. A consequence of this is that the behavior
of feedback systems is often counterintuitive, and it is therefore often necessary to
resort to formal methods to understand them.

Figure 1.8 illustrates in block diagram form the idea of feedback. We often use
the terms open loop and closed loop when referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a cycle, as
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Figure 1.8: Open and closed loop systems. (a) The output of system 1 is used as the input
of system 2, and the output of system 2 becomes the input of system 1, creating a closed
loop system. (b) The interconnection between system 2 and system 1 is removed, and the
system is said to be open loop.

shown in Figure 1.8a. If we break the interconnection, we refer to the configuration
as an open loop system, as shown in Figure 1.8b.

Biological systems make use of feedback in an extraordinary number of ways,
on scales ranging from molecules to cells to organisms to ecosystems. One ex-
ample is the regulation of glucose in the bloodstream through the production of
insulin and glucagon by the pancreas. The body attempts to maintain a constant
concentration of glucose, which is used by the body’s cells to produce energy.
When glucose levels rise (after eating a meal, for example), the hormone insulin
is released and causes the body to store excess glucose in the liver. When glucose
levels are low, the pancreas secretes the hormone glucagon, which has the opposite
effect. Referring to Figure 1.8, we can view the liver as system 1 and the pancreas
as system 2. The output from the liver is the glucose concentration in the blood,
and the output from the pancreas is the amount of insulin or glucagon produced.
The interplay between insulin and glucagon secretions throughout the day helps
to keep the blood-glucose concentration constant, at about 90 mg per 100 mL of
blood.

Feedback has many interesting properties that can be exploited in designing sys-
tems. As in the case of glucose regulation, feedback can make a system resilient
toward external influences. It can also be used to create linear behavior out of non-
linear components, a common approach in electronics. More generally, feedback
allows a system to be insensitive both to external disturbances and to variations in
its individual elements.

Feedback has potential disadvantages as well. It can create dynamic instabilities
in a system, causing oscillations or even runaway behavior. Another drawback,
especially in engineering systems, is that feedback can introduce unwanted sensor
noise into the system, requiring careful filtering of signals. It is for these reasons
that a substantial portion of the study of feedback systems is devoted to developing
an understanding of dynamics and a mastery of techniques in dynamical systems.
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Figure 1.9: A feedback system for controlling the speed of a vehicle. In the block diagram
on the left, the speed of the vehicle is measured and compared to the desired speed within
the “Compute” block. Based on the difference in the actual and desired speeds, the throttle
(or brake) is used to modify the force applied to the vehicle by the engine, drivetrain and
wheels. The figure on the right shows the response of the control system to a commanded
change in speed from 25 m/s to 30 m/s. The three different curves correspond to differing
masses of the vehicle, between 1000 and 3000 kg, demonstrating the robustness of the
closed loop system to a very large change in the vehicle characteristics.

Feedback properties

Feedback is a powerful idea that is used extensively in natural and technological
systems. The principle of feedback is simple: implement correcting actions based
on the difference between desired and actual performance. In engineering, feed-
back has been rediscovered and patented many times in many different contexts.
The use of feedback has often resulted in vast improvements in system capability,
and these improvements have sometimes been revolutionary, as discussed above.
The reason for this is that feedback has some truly remarkable properties, which
we discuss briefly here.

Robustness to Uncertainty. One of the key uses of feedback is to provide robust-
ness to uncertainty. By measuring the difference between the sensed value of a
regulated signal and its desired value, we can supply a corrective action. If the sys-
tem undergoes some change that affects the regulated signal, then we sense this
change and try to force the system back to the desired operating point.

As an example of this principle, consider the simple feedback system shown
in Figure 1.9. In this system, the speed of a vehicle is controlled by adjusting the
amount of gas flowing to the engine. Simple proportional-integral (PI) feedback
is used to make the amount of gas depend on both the error between the current
and the desired speed and the integral of that error. The plot on the right shows
the results of this feedback for a step change in the desired speed and a variety of
different masses for the car, which might result from having a different number of
passengers or towing a trailer. Notice that independent of the mass (which varies by
a factor of 3!), the steady-state speed of the vehicle always approaches the desired
speed and achieves that speed within approximately 5 s. Thus the performance of
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide robustness is the neg-
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ative feedback amplifier. When telephone communications were developed, ampli-
fiers were used to compensate for signal attenuation in long lines. A vacuum tube
was a component that could be used to build amplifiers. Distortion caused by the
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-
jor breakthrough was the invention of the feedback amplifier in 1927 by Harold S.
Black, an electrical engineer at Bell Telephone Laboratories. Black used negative
feedback, which reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier.

Feedback is also pervasive in biological systems, where transcriptional, trans-
lational and allosteric mechanisms are used to regulate internal concentrations of
various species, and much more complex feedbacks are used to regulate proper-
ties at the organism level (such as body temperature, blood pressure and circadian
rhythm). One difference in biological systems is that the separation of sensing, ac-
tuation and computation, a common approach in most engineering control systems,
is less evident. Instead, the dynamics of the molecules that sense the environmen-
tal condition and make changes to the operation of internal components may be
integrated together in ways that make it difficult to untangle the operation of the
system. Similarly, the “reference value” to which we wish to regulate a system may
not be an explicit signal, but rather a consequence of many different changes in the
dynamics that are coupled back to the regulatory elements. Hence we do not see
a clear “setpoint” for the desired ATP concentration, blood oxygen level or body
temperature, for example. These difficulties complicate our analysis of biological
systems, though many important insights can still be obtained.

Design of Dynamics. Another use of feedback is to change the dynamics of a sys-
tem. Through feedback, we can alter the behavior of a system to meet the needs of
an application: systems that are unstable can be stabilized, systems that are slug-
gish can be made responsive and systems that have drifting operating points can
be held constant. Control theory provides a rich collection of techniques to analyze
the stability and dynamic response of complex systems and to place bounds on the
behavior of such systems by analyzing the gains of linear and nonlinear operators
that describe their components.

An example of the use of control in the design of dynamics comes from the area
of flight control. The following quote, from a lecture presented by Wilbur Wright
to the Western Society of Engineers in 1901 [64], illustrates the role of control in
the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at sufficient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws



1.3. CONTROL AND DYNAMICAL SYSTEMS TOOLS 15

Figure 1.10: Aircraft autopilot system. The Sperry autopilot (left) contained a set of four
gyros coupled to a set of air valves that controlled the wing surfaces. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able to maintain level
flight as a mechanic walked on the wing (right) [42].

of sufficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the age
of flying will have arrived, for all other difficulties are of minor impor-
tance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
tried to build stable airplanes. These would have been easier to fly, but because of
their poor maneuverability they could not be brought up into the air. By using their
insight and skillful experiments the Wright brothers made the first successful flight
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, invented
by Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized
pendulum to provide an indication of the vertical. He then arranged a feedback
mechanism that would pull the stick to make the plane go up if it was pointing
down, and vice versa. The Sperry autopilot was the first use of feedback in aero-
nautical engineering, and Sperry won a prize in a competition for the safest airplane
in Paris in 1914. Figure 1.10 shows the Curtiss seaplane and the Sperry autopilot.
The autopilot is a good example of how feedback can be used to stabilize an unsta-
ble system and hence “design the dynamics” of the aircraft.
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One of the other advantages of designing the dynamics of a device is that it
allows for increased modularity in the overall system design. By using feedback to
create a system whose response matches a desired profile, we can hide the com-
plexity and variability that may be present inside a subsystem. This allows us to
create more complex systems by not having to simultaneously tune the responses
of a large number of interacting components. This was one of the advantages of
Black’s use of negative feedback in vacuum tube amplifiers: the resulting device
had a well-defined linear input/output response that did not depend on the individ-
ual characteristics of the vacuum tubes being used.

Drawbacks of Feedback. While feedback has many advantages, it also has some
drawbacks. Chief among these is the possibility of instability if the system is not
designed properly. We are all familiar with the undesirable effects of feedback
when the amplification on a microphone is turned up too high in a room. This is an
example of feedback instability, something that we obviously want to avoid. This
is tricky because we must design the system not only to be stable under nominal
conditions but also to remain stable under all possible perturbations of the dynam-
ics. In biomolecular systems, these types of instabilities may exhibit themselves as
situations in which cells no longer function properly due to over expression of en-
gineered genetic components, or small fluctuations in parameters cause the system
to suddenly cease to function properly.

In addition to the potential for instability, feedback inherently couples different
parts of a system. One common problem is that feedback often injects “crosstalk”
into the system. By coupling different parts of a biomolecular circuit, the fluctua-
tions in one part of the circuit affect other parts, which themselves may couple to
the initial source of the fluctuations. If we are designing a biomolecular system,
this crosstalk may make affect our ability to design independent “modules” whose
behavior can described in isolation.

Coupled to the problem of crosstalk is the substantial increase in complexity
that results when embedding multiple feedback loops in a system. An early engi-
neering example of this was the use of microprocessor-based feedback systems in
automobiles. The use of microprocessors in automotive applications began in the
early 1970s and was driven by increasingly strict emissions standards, which could
be met only through electronic controls. Early systems were expensive and failed
more often than desired, leading to frequent customer dissatisfaction. It was only
through aggressive improvements in technology that the performance, reliability
and cost of these systems allowed them to be used in a transparent fashion. Even
today, the complexity of these systems is such that it is difficult for an individual
car owner to fix problems. While nature has evolved many feedback structures that
are robust and reliable, engineered biomolecular systems are still quite rudimen-
tary and we can anticipate that as we increase the use of feedback to compensate
for uncertainty, we will see a similar period in which engineers must overcome a
steep learning curve before we can get robust and reliable behavior as a matter of
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course.
Feedforward. Feedback is reactive: there must be an error before corrective actions
are taken. However, in some circumstances it is possible to measure a disturbance
before it enters the system, and this information can then be used to take corrective
action before the disturbance has influenced the system. The effect of the distur-
bance is thus reduced by measuring it and generating a control signal that coun-
teracts it. This way of controlling a system is called feedforward. Feedforward is
particularly useful in shaping the response to command signals because command
signals are always available. Since feedforward attempts to match two signals, it
requires good process models; otherwise the corrections may have the wrong size
or may be badly timed.

The ideas of feedback and feedforward are very general and appear in many dif-
ferent fields. In economics, feedback and feedforward are analogous to a market-
based economy versus a planned economy. In business, a feedforward strategy
corresponds to running a company based on extensive strategic planning, while a
feedback strategy corresponds to a reactive approach. In biology, feedforward has
been suggested as an essential element for motion control in humans that is tuned
during training. Experience indicates that it is often advantageous to combine feed-
back and feedforward, and the correct balance requires insight and understanding
of their respective properties.
Positive Feedback. In most of control theory, the emphasis is on the role of negative
feedback, in which we attempt to regulate the system by reacting to disturbances in
a way that decreases the effect of those disturbances. In some systems, particularly
biological systems, positive feedback can play an important role. In a system with
positive feedback, the increase in some variable or signal leads to a situation in
which that quantity is further increased through its dynamics. This has a destabi-
lizing effect and is usually accompanied by a saturation that limits the growth of
the quantity. Although often considered undesirable, this behavior is used in bio-
logical (and engineering) systems to obtain a very fast response to a condition or
signal.

One example of the use of positive feedback is to create switching behavior,
in which a system maintains a given state until some input crosses a threshold.
Hysteresis is often present so that noisy inputs near the threshold do not cause the
system to jitter. This type of behavior is called bistability and is often associated
with memory devices.

1.4 Input/Output Modeling2

A model is a mathematical representation of a physical, biological or information
system. Models allow us to reason about a system and make predictions about

2The material in this section is adapted from Feedback Systems, Sections 2.1–2.2 [1].
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Figure 1.11: Illustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the one on the right is its
representation as a block diagram.

how a system will behave. In this text, we will mainly be interested in models of
dynamical systems describing the input/output behavior of systems, and we will
often work in “state space” form. In the remainder of this section we provide an
overview of some of the key concepts in input/output modeling. The mathematical
details introduced here are explored more fully in Chapter 3.

The heritage of electrical engineering

The approach to modeling that we take builds on the view of models that emerged
from electrical engineering, where the design of electronic amplifiers led to a focus
on input/output behavior. A system was considered a device that transforms inputs
to outputs, as illustrated in Figure 1.11. Conceptually an input/output model can be
viewed as a giant table of inputs and outputs. Given an input signal u(t) over some
interval of time, the model should produce the resulting output y(t).

The input/output framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio or
a television and break it down into manageable pieces such as the receiver, demod-
ulator, amplifier and speakers. Each of these pieces has a set of inputs and outputs
and, through proper design, these components can be interconnected to form the
entire system.

The input/output view is particularly useful for the special class of linear time-
invariant systems. This term will be defined more carefully below, but roughly
speaking a system is linear if the superposition (addition) of two inputs yields an
output that is the sum of the outputs that would correspond to individual inputs be-
ing applied separately. A system is time-invariant if the output response for a given
input does not depend on when that input is applied. While most biomolecular sys-
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Figure 1.12: Input/output response of a linear system. The step response (a) shows the
output of the system due to an input that changes from 0 to 1 at time t = 5 s. The fre-
quency response (b) shows the amplitude gain and phase change due to a sinusoidal input
at different frequencies.

tems are neither linear nor time-invariant, they can often be approximated by such
models, often by looking at perturbations of the system from its nominal behavior,
in a fixed context.

One of the reasons that linear time-invariant systems are so prevalent in model-
ing of input/output systems is that a large number of tools have been developed to
analyze them. One such tool is the step response, which describes the relationship
between an input that changes from zero to a constant value abruptly (a step input)
and the corresponding output. The step response is very useful in characterizing
the performance of a dynamical system, and it is often used to specify the desired
dynamics. A sample step response is shown in Figure 1.12a.

Another way to describe a linear time-invariant system is to represent it by its
response to sinusoidal input signals. This is called the frequency response, and a
rich, powerful theory with many concepts and strong, useful results has emerged
for systems that can be described by their frequency response. The results are based
on the theory of complex variables and Laplace transforms. The basic idea behind
frequency response is that we can completely characterize the behavior of a system
by its steady-state response to sinusoidal inputs. Roughly speaking, this is done
by decomposing any arbitrary signal into a linear combination of sinusoids (e.g.,
by using the Fourier transform) and then using linearity to compute the output by
combining the response to the individual frequencies. A sample frequency response
is shown in Figure 1.12b.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.
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The control view

When control theory emerged as a discipline in the 1940s, the approach to dy-
namics was strongly influenced by the electrical engineering (input/output) view.
A second wave of developments in control, starting in the late 1950s, was inspired
by mechanics, where the state space perspective was used. The emergence of space
flight is a typical example, where precise control of the orbit of a spacecraft is es-
sential. These two points of view gradually merged into what is today the state
space representation of input/output systems.

The development of state space models involved modifying the models from
mechanics to include external actuators and sensors and utilizing more general
forms of equations. In control, models often take the form

dx
dt
= f (x,u), y = h(x,u), (1.1)

where x is a vector of state variables, u is a vector of control signals and y is a
vector of measurements. The term dx/dt (sometimes also written as ẋ) represents
the derivative of x with respect to time, now considered a vector, and f and h
are (possibly nonlinear) mappings of their arguments to vectors of the appropriate
dimension.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice of u (reachability) and if the measurement y
contains enough information to reconstruct the state (observability). These topics
are addressed in greater detail in AM08.

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views of input/output repre-
sentations and state space representations are particularly useful when modeling
uncertainty since state models are convenient to describe a nominal model but un-
certainties are easier to describe using input/output models (often via a frequency
response description).

An interesting observation in the design of control systems is that feedback sys-
tems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system valida-
tion, where one wishes to verify that the detailed response of the system performs



1.5. FROM SYSTEMS TO SYNTHETIC BIOLOGY 21

as it was designed. Because of these different uses of models, it is common to use
a hierarchy of models having different complexity and fidelity.

State space systems

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a biochemical system the state
is composed of the variables required to account for the current context of the cell,
including the concentrations of the various species and complexes that are present.
It may also include the spatial locations of the various molecules. A key issue in
modeling is to decide how accurately this information has to be represented. The
state variables are gathered in a vector x ∈ Rn called the state vector. The control
variables are represented by another vector u ∈ Rp, and the measured signal by the
vector y ∈ Rq. A system can then be represented by the differential equation

dx
dt
= f (x,u), y = h(x,u), (1.2)

where f : Rn ×Rp → Rn and h : Rn ×Rp → Rq are smooth mappings. We call a
model of this form a state space model.

The dimension of the state vector is called the order of the system. The sys-
tem (1.2) is called time-invariant because the functions f and h do not depend
explicitly on time t; there are more general time-varying systems where the func-
tions do depend on time. The model consists of two functions: the function f gives
the rate of change of the state vector as a function of state x and control u, and the
function h gives the measured values as functions of state x and control u.

A system is called a linear state space system if the functions f and h are linear
in x and u. A linear state space system can thus be represented by

dx
dt
= Ax+Bu, y =Cx+Du, (1.3)

where A, B, C and D are constant matrices. Such a system is said to be linear and
time-invariant, or LTI for short. The matrix A is called the dynamics matrix, the
matrix B is called the control matrix, the matrix C is called the sensor matrix and
the matrix D is called the direct term. Frequently systems will not have a direct
term, indicating that the control signal does not influence the output directly.

1.5 From Systems to Synthetic Biology

The rapidly growing field of synthetic biology seeks to use biological principles
and processes to build useful engineering devices and systems. Applications of
synthetic biology range from materials production (drugs, biofuels) to biological
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Figure 1.13: Milestones in the history of synthetic biology.

sensing and diagnostics (chemical detection, medical diagnostics) to biological ma-
chines (bioremediation, nanoscale robotics). Like many other fields at the time of
their infancy (electronics, software, networks), it is not yet clear where synthetic
biology will have its greatest impact. However, recent advances such as the abil-
ity to “boot up” a chemically synthesized genome [28] demonstrate the ability to
synthesize systems that offer the possibility of creating devices with substantial
functionality. At the same time, the tools and processes available to design systems
of this complexity are much more primitive, and de novo synthetic circuits typi-
cally use a tiny fraction of the number of genetic elements of even the smallest
microorganisms [74].

Several scientific and technological developments over the past four decades
have set the stage for the design and fabrication of early synthetic biomolecular
circuits (see Figure 1.13). An early milestone in the history of synthetic biology
can be traced back to the discovery of mathematical logic in gene regulation. In
their 1961 paper, Jacob and Monod introduced for the first time the idea of gene
expression regulation through transcriptional feedback [45]. Only a few years later
(1969), restriction enzymes that cut double-stranded DNA at specific recognition
sites were discovered by Arber and co-workers [4]. These enzymes were a major
enabler of recombinant DNA technology, in which genes from one organism are
extracted and spliced into the chromosome of another. One of the most celebrated
products of this technology was the large scale production of insulin by employing
E. coli bacteria as a cell factory [94].

Another key innovation was the development of the polymerase chain reac-
tion (PCR), devised in the 1980s, which allows exponential amplification of small
amounts of DNA and can be used to obtain sufficient quantities for use in a variety
of molecular biology laboratory protocols where higher concentrations of DNA are
required. Using PCR, it is possible to “copy” genes and other DNA sequences out
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of their host organisms.
The developments of recombinant DNA technology, PCR and artificial synthe-

sis of DNA provided the ability to “cut and paste” natural or synthetic promoters
and genes in almost any fashion. This cut and paste procedure is called cloning
and traditionally consists of four primary steps: fragmentation, ligation, transfec-
tion and screening. The DNA of interest is first isolated using restriction enzymes
and/or PCR amplification. Then, a ligation procedure is employed in which the
amplified fragment is inserted into a vector. The vector is often a piece of circular
DNA, called a plasmid, that has been linearized by means of restriction enzymes
that cleave it at appropriate restriction sites. The vector is then incubated with the
fragment of interest with an enzyme called DNA ligase, producing a single piece
of DNA with the target DNA inserted. The next step is to transfect (or transform)
the DNA into living cells, where the natural replication mechanisms of the cell will
duplicate the DNA when the cell divides. This process does not transfect all cells,
and so a selection procedure if required to isolate those cells that have the desired
DNA inserted in them. This is typically done by using a plasmid that gives the cell
resistance to a specific antibiotic; cells grown in the presence of that antibiotic will
only live if they contain the plasmid. Further selection can be done to insure that
the inserted DNA is also present.

Once a circuit has been constructed, its performance must be verified and, if
necessary, debugged. This is often done with the help of fluorescent reporters. The
most famous of these is GFP, which was isolated from the jellyfish Aequorea vic-
toria in 1978 by Shimomura [82]. Further work by Chalfie and others in the 1990s
enabled the use of GFP in E. coli as a fluorescent reporter by inserting it into an ap-
propriate point in an artificial circuit [16]. By using spectrofluorometry, fluorescent
microscopy or flow cytometry, it is possible to measure the amount of fluorescence
in individual cells or collections of cells and characterize the performance of a
circuit in the presence of inducers or other factors.

Two early examples of the application of these technologies were the repressila-
tor [23] and a synthetic genetic switch [27].

The repressilator is a synthetic circuit in which three proteins each repress an-
other in a cycle. This is shown schematically in Figure 1.14a, where the three pro-
teins are TetR, λ cI and LacI. The basic idea of the repressilator is that if TetR is
present, then it represses the production of λ cI. If λ cI is absent, then LacI is pro-
duced (at the unregulated transcription rate), which in turn represses TetR. Once
TetR is repressed, then λ cI is no longer repressed, and so on. If the dynamics of
the circuit are designed properly, the resulting protein concentrations will oscillate,
as shown in Figure 1.14b.

The repressilator can be constructed using the techniques described above. First,
we can make copies of the individual promoters and genes that form our circuit by
using PCR to amplify the selected sequences out of the original organisms in which
they were found. TetR is the tetracycline resistance repressor protein that is found
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Figure 1.14: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well
as the circuit diagram (center). The flat headed arrow between the protein names represents
repression. (b) A simulation of a simple model for the repressilator, showing the oscillation
of the individual protein concentrations. (Figure courtesy M. Elowitz.)

in gram-negative bacteria (such as E. coli) and is part of the circuitry that provides
resistance to tetracycline. LacI is the gene that produces lac repressor, responsible
for turning off the lac operon in the lactose metabolic pathway in E. coli (see Sec-
tion 5.1). And λ cI comes from λ phage, where it is part of the regulatory circuitry
that regulates lysis and lysogeny.

By using restriction enzymes and related techniques, we can separate the nat-
ural promoters from their associated genes, and then ligate (reassemble) them in
a new order and insert them into a “backbone” vector (the rest of the plasmid, in-
cluding the origin of replication and appropriate antibiotic resistance). This DNA
is then transformed into cells that are grown in the presence of an antibiotic, so
that only those cells that contain the represilator can replicate. Finally, we can take
individual cells containing our circuit and let them grow under a microscope to
image fluorescent reporters coupled to the oscillator.

Another early circuit in the synthetic biology toolkit is a genetic switch built
by Gardner et al. [27]. The genetic switch consists of two repressors connected
together in a cycle, as shown in Figure 1.15a. The intuition behind this circuit is
that if the gene A is being expressed, it will repress production of B and maintain
its expression level (since the protein corresponding to B will not be present to re-
press A). Similarly, if B is being expressed, it will repress the production of A and
maintain its expression level. This circuit thus implements a type of bistability that
can be used as a simple form of memory. Figure 1.15b shows the time traces for
a system, illustrating the bistable nature of the circuit. When the initial condition
starts with a concentration of protein B greater than that of A, the solution con-
verges to the equilibrium point where B is on and A is off. If A is greater than B,
then the opposite situation results.
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Figure 1.15: Stability of a genetic switch. The circuit diagram in (a) represents two proteins
that are each repressing the production of the other. The inputs u1 and u2 interfere with this
repression, allowing the circuit dynamics to be modified. The simulation in (b) shows the
time response of the system starting from two different initial conditions. The initial portion
of the curve corresponds to protein B having higher concentration than A, and converges to
an equilibrium where A is off and B is on. At time t = 10, the concentrations are perturbed,
moving the concentrations into a region of the state space where solutions converge to the
equilibrium point with the A on and B off.

These seemingly simple circuits took years of effort to get to work, but showed
that it was possible to synthesize a biological circuit that performed a desired func-
tion that was not originally present in a natural system. Today, commercial synthe-
sis of DNA sequences and genes has become cheaper and faster, with a price often
below $0.20 per base pair.3 The combination of inexpensive synthesis technolo-
gies, new advances in cloning techniques, and improved devices for imaging and
measurement has vastly simplified the process of producing a sequence of DNA
that encodes a given set of genes, operator sites, promoters and other functions.
These techniques are a routine part of undergraduate courses in molecular and syn-
thetic biology.

As illustrated by the examples above, current techniques in synthetic biology
have demonstrated the ability to program biological function by designing DNA
sequences that implement simple circuits. Most current devices make use of tran-
scriptional or post-transcriptional processing, resulting in very slow timescales (re-
sponse times typically measured in tens of minutes to hours). This restricts their
use in systems where faster response to environmental signals is needed, such as
rapid detection of a chemical signal or fast response to changes in the internal envi-
ronment of the cell. In addition, existing methods for biological circuit design have
limited modularity (reuse of circuit elements requires substantial redesign or tun-
ing) and typically operate in very narrow operating regimes (e.g., a single species
grown in a single type of media under carefully controlled conditions). Further-

3As of this writing; divide by a factor of two for every two years after the publication date.
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Figure 1.16: Expression of a protein using an inducible promoter [15]. (a) The circuit
diagram indicates the DNA sequences that are used to construct the part (chosen from the
BioBrick library). (b) The measured response of the system to a step change in the inducer
level (HSL).

more, engineered circuits inserted into cells can interact with the host organism
and have other unintended interactions.

As an illustration of the dynamics of synthetic devices, Figure 1.16 shows a
typical response of a genetic element to an inducer molecule [15]. In this circuit,
an external signal of homoserine lactone (HSL) is applied at time zero and the
system reaches 10% of the steady state value in approximately 15 minutes. This
response is limited in part by the time required to synthesize the output protein
(GFP), including delays due to transcription, translation and folding. Since this
is the response time for the underlying “actuator”, circuits that are composed of
feedback interconnections of such genetic elements will typically operate at 5–10
times slower speeds. While these speeds are appropriate in many applications (e.g.,
regulation of steady state enzyme levels for materials production), in the context
of biochemical sensors or systems that must maintain a steady operating point in
more rapidly changing thermal or chemical environments, this response time is too
slow to be used as an effective engineering approach.

By comparison, the input/output response for the signaling component in E. coli
chemotaxis is shown in Figure 1.17 [81]. Here the response of the kinase CheA is
plotted in response to an exponential ramp in the ligand concentration. The re-
sponse is extremely rapid, with the timescale measured in seconds. This rapid re-
sponse is implemented by conformational changes in the proteins involved in the
circuit, rather than regulation of transcription or other slower processes.

The field of synthetic biology has the opportunity to provide new approaches
to solving engineering and scientific problems. Sample engineering applications
include the development of synthetic circuits for producing biofuels, ultrasensitive
chemical sensors, or production of materials with specific properties that are tuned
to commercial needs. In addition to the potential impact on new biologically engi-
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Figure 1.17: Responses of E. coli chemotaxis signaling network to exponential ramps in
ligand concentration. Time responses of the “sensing” subsystem (from Shimizu, Tu and
Berg; Molecular Systems Biology, 2010), showing the response to exponential inputs.

neered devices, there is also the potential for impact in improved understanding of
biological processes. For example, many diseases such as cancer and Parkinson’s
disease are closely tied to kinase dysfunction. Our analysis of robust systems of
kinases and the ability to synthesize systems that support or invalidate biological
hypotheses may lead to a better systems understanding of failure modes that lead
to such diseases.

1.6 Further Reading

There are numerous survey articles and textbooks that provide more detailed intro-
ductions to the topics introduced in this chapter. In the field of systems biology, the
textbook by Alon [3] provides a broad view of some of the key elements of mod-
ern systems biology. A more comprehensive set of topics is covered in the recent
textbook by Klipp [52], while a more engineering-oriented treatment of modeling
of biological circuits can be found in the text by Myers [69]. Two other books that
are particularly noteworthy are Ptashne’s book on the phage λ [73] and Madhani’s
book on yeast [58], both of which use well-studied model systems to describe a
general set of mechanisms and principles that are present in many different types
of organisms.

Several textbooks and research monographs provide excellent resources for
modeling and analysis of biomolecular dynamics and regulation. J. D. Murray’s
two-volume text [67] on biological modeling is an excellent reference with many
examples of biomolecular dynamics. The textbook by Phillips, Kondev and The-
riot [72] provides a quantitative approach to understanding biological systems, in-
cluding many of the concepts discussed in this chapter. Courey [17] gives a detailed
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description of mechanisms transcriptional regulation.
The topics in dynamical systems and control theory that are briefly introduced

here are covered in more detail in AM08 [1]. Other books that introduce tools for
modeling and analysis of dynamical systems with applications in biology include
J. D. Murray’s text [67] and the recent text by and Ellner and Guckenheimer [22].

Synthetic biology is a rapidly evolving field that includes many different sub-
areas of research, but few textbooks are currently available. In the specific area of
biological circuit design that we focus on here, there are a number of good survey
and review articles. The article by Baker et al. [7] provides a high level description
of the basic approach and opportunities. Recent survey and review papers include
Voigt [95] and Khalil and Collins [50].
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