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Chapter 1

Introductory Concepts

This chapter provides a brief introduction to concepts from systems biology, tools
from differential equations and control theory, and approaches to modeling, anal-
ysis and design of biomolecular feedback systems. We begin with a discussion of
the role of modeling, analysis and feedback in biological systems, followed by an
overview of basic concepts from cell biology, focusing on the dynamics of protein
production and control. This is followed by a short review of key concepts and
tools from control and dynamical systems theory, intended to provide insight into
the main methodology described in the text. Finally, we give a brief introduction
to the field of synthetic biology, which is the primary topic of the latter portion of
the text. Readers who are familiar with one or more of these areas can skip the
corresponding sections without loss of continuity.

1.1 Systems Biology: Modeling, Analysis and Role of Feedback

At a variety of levels of organization—from molecular to cellular to organismal —
biology is becoming more accessible to approaches that are commonly used in
engineering: mathematical modeling, systems theory, computation and abstract ap-
proaches to synthesis. Conversely, the accelerating pace of discovery in biological
science is suggesting new design principles that may have important practical ap-
plications in human-made systems. This synergy at the interface of biology and
engineering offers many opportunities to meet challenges in both areas. The guid-
ing principles of feedback and control are central to many of the key questions in
biological science and engineering and can play an enabling role in understanding
the complexity of biological systems.

In this section we summarize our view on the role that modeling and analysis
should (eventually) play in the study and understanding of biological systems, and
discuss some of the ways in which an understanding of feedback principles in
biology can help us better understand and design complex biomolecular circuits.

There are a wide variety of biological phenomena that provide a rich source of
examples for control, including gene regulation and signal transduction; hormonal,
immunological, and cardiovascular feedback mechanisms; muscular control and
locomotion; active sensing, vision, and proprioception; attention and conscious-
ness; and population dynamics and epidemics. Each of these (and many more)
provide opportunities to figure out what works, how it works and what can be done
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to affect it. Our focus here is at the molecular scale, but the principles and approach
that we describe can also be applied at larger time and length scales.

Modeling and analysis

Over the past several decades, there have been significant advances in modeling
capabilities for biological systems that have provided new insights into the com-
plex interactions of the molecular-scale processes that implement life. Reduced-
order modeling has become commonplace as a mechanism for describing and doc-
umenting experimental results and high-dimensional stochastic models can now
be simulated in reasonable periods of time to explore underlying stochastic effects.
Coupled with our ability to collect large amounts of data from flow cytometry,
micro-array analysis, single-cell microscopy and other modern experimental tech-
niques, our understanding of biomolecular processes is advancing at a rapid pace.

Unfortunately, although models are becoming much more common in biolog-
ical studies, they are still far from playing the central role in explaining complex
biological phenomena. Although there are exceptions, the predominant use of mod-
els is to “document” experimental results: a hypothesis is proposed and tested us-
ing careful experiments, and then a model is developed to match the experimental
results and help demonstrate that the proposed mechanisms can lead to the ob-
served behavior. This necessarily limits our ability to explain complex phenomena
to those for which controlled experimental evidence of the desired phenomena can
be obtained.

This situation is much different than standard practice in the physical sciences
and engineering, as illustrated in Figure 1.1 (in the context of modeling, analysis
and control design for gas turbine aeroengines). In those disciplines, experiments
are routinely used to help build models for individual components at a variety of
levels of detail, and then these component-level models are interconnected to ob-
tain a system-level model. This system-level model, carefully built to capture the
appropriate level of detail for a given question or hypothesis, is used to explain,
predict and systematically analyze the behaviors of a system. Because of the ways
in which models are viewed, it becomes possible to prove (or invalidate) a hypoth-
esis through analysis of the model, and the fidelity of the models is such that deci-
sions can be made based on them. Indeed, in many areas of modern engineering—
including electronics, aeronautics, robotics and chemical processing, to name a
few —models play a primary role in the understanding of the underlying physics
and/or chemistry, and these models are used in predictive ways to explore design
tradeofls and failure scenarios.

A key element in the successful application of modeling in engineering dis-
ciplines is the use of reduced-order models that capture the underlying dynamics
of the system without necessarily modeling every detail of the underlying mech-
anisms. These reduced order models are often coupled with schematics diagrams,
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Figure 1.1: Sample modeling, analysis and design framework for an engineering system.

such as those shown in Figure 1.2, to provide a high level view of a complex sys-
tem. The generation of these reduced-order models, either directly from data or
through analytical or computational methods, is critical in the effective applica-
tion of modeling since modeling of the detailed mechanisms produces high fidelity
models that are too complicated to use with existing tools for analysis and design.
One area in which the development of reduced order models is fairly advanced is
in control theory, where input/output models, such as block diagrams and transfer
functions are used to capture structured representations of dynamics at the appro-
priate level of fidelity for the task at hand [1].

While developing predictive models and corresponding analysis tools for biol-
ogy is much more difficult, it is perhaps even more important that biology make
use of models, particularly reduced-order models, as a central element of under-
standing. Biological systems are by their nature extremely complex and can be-
have in counterintuitive ways. Only by capturing the many interacting aspects of
the system in a formal model can we ensure that we are reasoning properly about
its behavior, especially in the presence of uncertainty. To do this will require sub-
stantial effort in building models that capture the relevant dynamics at the proper
scales (depending on the question being asked) as well as building an analytical
framework for answering questions of biological relevance.

The good news is that a variety of new techniques, ranging from experiments to
computation to theory, are enabling us to explore new approaches to modeling that
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Figure 1.2: Schematic diagrams representing models in different disciplines. Each diagram
is used to illustrate the dynamics of a feedback system: (a) electrical schematics for a power
system [56], (b) a biological circuit diagram for a synthetic clock circuit [5], (c) a process
diagram for a distillation column [85] and (d) a Petri net description of a communication
protocol.

attempt to address some of these challenges. In this text we focus on the use of rele-
vant classes of reduced-order models that can be used to capture many phenomena
of biological relevance.

Dynamic behavior and phenotype

One of the key needs in developing a more systematic approach to the use of mod-
els in biology is to become more rigorous about the various behaviors that are im-
portant for biological systems. One of the key concepts that needs to be formalized
is the notion of “phenotype”. This term is often associated with the existence of an
equilibrium point in a reduced-order model for a system, but clearly more complex
(non-equilibrium) behaviors can occur and the “phenotypic response” of a system
to an input may not be well-modeled by a steady operating condition. Even more
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Figure 1.3: Conceptual modeling framework for biomolecular feedback systems. The dy-
namics consist of a set of linear dynamics, represented by the multi-input, multi-output
transfer function P(s), a static nonlinear map N and an interconnection matrix L. Uncer-
tainty is represented as unmodeled dynamics A, crosstalk A and system context 6. The
inputs and outputs to the system are denoted by u and y.

problematic is determining which regulatory structures are “active” in a given phe-
notype (versus those for which there is a regulatory pathway that is saturated and
hence not active).

Figure 1.3 shows a graphical representation of a class of systems that captures
many of the features we are interested in. The system is composed of M inter-
connected subsystems. The linear dynamics of the subsystems (possibly including
delay) are captured via their frequency responses, represented in the diagram by the
“transfer functions” P;(s). The outputs of the linear subsystems are transformed via
a nonlinear map N(-) and then interconnected back to the inputs of the subsystems
through the matrix L. The role of feedback is captured through the interconnec-
tion matrix L, which represents a weighted graph describing the interconnections
between subsystems.

In addition to the internal dynamics and nonlinear coupling, we separately keep
track of external inputs to the subsystems (#), measured outputs (y), stochastic dis-
turbances (w, not shown), and measurement noise (v, not shown). Three other fea-
tures are present in Fig. 1.3. The first is the uncertainty operator A, attached to the
linear dynamics block. This operator represents both parametric uncertainty in the
dynamics as well as unmodeled dynamics that have known (frequency-dependent)
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bounds. Tools for understanding this class of uncertainty are available for both lin-
ear and nonlinear control systems [1] and allow stability and performance analyses
in the presence of uncertainty. A similar term A is included in the interconnec-
tion matrix and represents (unmodeled) “crosstalk” between subsystems. Finally, 6
represents the context- and environment-dependent parameters of the system.

This particular structure is useful because it captures a large number of model-
ing frameworks in a single formalism. Mass action kinetics and chemical reaction
networks can be represented by equating the stoichiometry matrix with the inter-
connection matrix L and using the nonlinear terms to capture the fluxes, with 6 rep-
resenting the rate constants. We can also represent typical reduced-order models for
transcriptional regulatory networks by letting the nonlinear functions N() represent
various types of Hill functions and including the effects of mRNA/protein produc-
tion, degradation and dilution through the linear dynamics. These two classes of
systems can also be combined, allowing a very expressive set of dynamics that is
capable of capturing many relevant phenomena of interest in molecular biology.

In the context of the modeling framework described in Figure 1.3, it is possible
to consider a working definition of phenotype in terms of the patterns of the dy-
namics that are present. In the simplest case, consisting of operation near a single
equilibrium point, we can look at the effective gain of the different nonlinearities as
a measure of which regulatory pathways are “active” in a given state. Consider, for
example, labeling each nonlinearity in a system as being either on, off or active. A
nonlinearity that is on or off represents one in which changes of the input produce
very small deviations in the output, such as those that occur at very high or low
concentrations in interactions modeled by a Hill function. An active nonlinearity
is one in which there is a proportional response to changes in the input, with the
slope of the nonlinearity giving the effective gain. In this setting, the phenotype of
the system would consist of both a description of the nominal concentrations of the
measurable species (y) as well as the state of each nonlinearity (on, off, active).

Another common situation is that a system may have multiple equilibrium
points and the “phenotype” of the system is represented by the particular equi-
librium point that the system converges to. In the simplest case, we can have bista-
bility, in which there are two equilibrium points x;, and xp, for a fixed set of pa-
rameters. Depending on the initial conditions and external inputs, a given system
may end up near one equilibrium point or the other, providing two distinct pheno-
types. A model with bistability (or multi-stability) provides one method of model-
ing memory in a system: the cell or organism remembers its history by virtue of
the equilibrium point to which it has converted.

For more complex phenotypes, where the subsystems are not at a steady op-
erating point, one can consider temporal patterns such as limit cycles (periodic
orbits) or non-equilibrium input/output responses. Analysis of these more compli-
cated behaviors requires more sophisticated tools, but again model-based analysis
of stability and input/output responses can be used to characterize the phenotypic
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behavior of a biological system under different conditions or contexts.

Additional types of analysis that can be applied to systems of this form include
sensitivity analysis (dependence of solution properties on selected parameters), un-
certainty analysis (impact of disturbances, unknown parameters and unmodeled dy-
namics), bifurcation analysis (changes in phenotype as a function of input levels,
context or parameters) and probabilistic analysis (distributions of states as a func-
tion of distributions of parameters, initial conditions or inputs). In each of these
cases, there is a need to extend existing tools to exploit the particular structure of
the problems we consider, as well as modify the techniques to provide relevance to
biological questions.

Stochastic behavior

Another important feature of many biological systems is stochasticity: biological
responses have an element of randomness so that even under carefully control con-
ditions, the response of a system to a given input may vary from experiment to
experiment. This randomness can have many possible sources, including external
perturbations that are modeled as stochastic processes and internal processes such
as molecular binding and unbinding, whose stochasticity stems from the underly-
ing thermodynamics of molecular reactions.

While for many engineered systems it is common to try to eliminate stochastic
behavior (yielding a “deterministic” response), for biological systems there appear
to be many situations in which stochasticity is important for the way in which or-
ganisms survive. In biology, nothing is 100% and so there is always some chance
that two identical organisms will respond differently. Thus viruses are never com-
pletely contagious and so some organisms will survive, and DNA replication is
never error free, and so mutations and evolution can occur. In studying circuits
where these types of effects are present, it thus becomes important to study the
distribution of responses of a given biomolecular circuit, and to collect data in a
manner that allows us to quantify these distributions.

One important indication of stochastic behavior is bimodality. We say that a cir-
cuit or system is bimodal if the response of the system to a given input or condition
has two or more distinguishable classes of behaviors. An example of bimodal-
ity is shown in Figure 1.4, which shows the response of the galactose metabolic
machinery in yeast. We see from the figure that even though genetically identical
organisms are exposed to the same external environment (a fixed galactose con-
centration), the amount of activity in individual cells can have a large amount of
variability. At some concentrations there are clearly two subpopulations of cells:
those in which the galactose metabolic pathway is turned on (higher reporter fluo-
rescence values on the y axis) and those for which it is off (lower reporter fluores-
cence).

Another characterization of stochasticity in cells is the separation of noisiness
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Figure 1.4: Galactose response in yeast [97]. (a) GAL signaling circuitry showing a num-
ber of different feedback pathways that are used to detect the presence of galactose and
switch on the metabolic pathway. (b) Pathway activity as a function of galactose concen-
tration. The points at each galactose concentration represent the activity level of the galac-
tose metabolic pathway in an individual cell. Black dots indicate the mean of a Gaussian
mixture model (GMM) classification [96]. Small random deviations were added to each
galactose concentration (horizontal axis) to better visualize the distributions.

in protein expression into two categories: “intrinsic” noise and “extrinsic” noise.
Roughly speaking, extrinsic noise represents variability in gene expression that
effects all proteins in the cell in a correlated way. Extrinsic noise can be due to
environmental changes that affect the entire cell (temperature, pH, oxygen level) or
global changes in internal factors such as energy or metabolite levels (perhaps due
to metabolic loading). Intrinsic noise, on the other hand, is the variability due to the
inherent randomness of molecular events inside the cell and represents a collection
of independent random processes. One way to attempt to measure the amount of
intrinsic and extrinsic noise is to take two identical copies of a biomolecular cir-
cuit and compare their responses [28, 92]. Correlated variations in the output of
the circuits corresponds (roughly) to extrinsic noise and uncorrelated variations to
intrinsic noise [44, 92].

The types of models that are used to capture stochastic behavior are very dif-
ferent than those used for deterministic responses. Instead of writing differential
equations that track average concentration levels, we must keep track of the indi-
vidual events that can occur with some probability per unit time (or “propensity”).
We will explore the methods for modeling and analysis of stochastic systems in
Chapter 4.

1.2 Dynamics and Control in the Cell

The molecular processes inside a cell determine its behavior and are responsible
for metabolizing nutrients, generating motion, enabling procreation and carrying
out the other functions of the organism. In multi-cellular organisms, different types
of cells work together to enable more complex functions. In this section we briefly
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describe the role of dynamics and control within a cell and discuss the basic pro-
cesses that govern its behavior and its interactions with its environment (including
other cells). We assume knowledge of the basics of cell biology at the level pro-
vided in Appendix A; a much more detailed introduction to the biology of the cell
and some of the processes described here can be found in standard textbooks on
cell biology such as Alberts et al. [2] or Phillips et al. [76]. (Readers who are fa-
miliar with the material at the level described in these latter references can skip this
section without any loss of continuity.)

The central dogma: production of proteins

The genetic material inside a cell, encoded in its DNA, governs the response of a
cell to various conditions. DNA is organized into collections of genes, with each
gene encoding a corresponding protein that performs a set of functions in the cell.
The activation and repression of genes are determined through a series of complex
interactions that give rise to a remarkable set of circuits that perform the functions
required for life, ranging from basic metabolism to locomotion to procreation. Ge-
netic circuits that occur in nature are robust to external disturbances and can func-
tion in a variety of conditions. To understand how these processes occur (and some
of the dynamics that govern their behavior), it will be useful to present a relatively
detailed description of the underlying biochemistry involved in the production of
proteins.

DNA is double stranded molecule with the “direction” of each strand specified
by looking at the geometry of the sugars that make up its backbone (see Figure 1.5).
The complementary strands of DNA are composed of a sequence of nucleotides
that consist of a sugar molecule (deoxyribose) bound to one of 4 bases: adenine
(A), cytocine (C), guanine (G) and thymine (T). The coding strand (by convention
the top row of a DNA sequence when it is written in text form) is specified from the
5’ end of the DNA to the 3’ end of the DNA. (As described briefly in Appendix A,
5’ and 3’ refer to carbon locations on the deoxyribose backbone that are involved
in linking together the nucleotides that make up DNA.) The DNA that encodes
proteins consists of a promoter region, regulator regions (described in more detail
below), a coding region and a termination region (see Figure 1.6). We informally
refer to this entire sequence of DNA as a gene.

Expression of a gene begins with the transcription of DNA into mRNA by RNA
polymerase, as illustrated in Figure 1.7. RNA polymerase enzymes are present in
the nucleus (for eukaryotes) or cytoplasm (for prokaryotes) and must localize and
bind to the promoter region of the DNA template. Once bound, the RNA poly-
merase “opens’” the double stranded DNA to expose the nucleotides that make up
the sequence. This reversible reaction, called isomerization, is said to transform
the RNA polymerase and DNA from a closed complex to an open complex. Af-
ter the open complex is formed, RNA polymerase begins to travel down the DNA
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(a) Base pairs (b) Double stranded

Figure 1.5: Molecular structure of DNA. (a) Individual bases (nucleotides) that make up
DNA: adenine (A), cytocine (C), guanine (G) and thymine (T). (b) Double stranded DNA
formed from individual nucleotides, with A binding to T and C binding to G. Each strand
contains a 5° and 3’ end, determined by the locations of the carbons where the next nu-
cleotide binds. Figure from Phillips, Kondev and Theriot [76]; used with permission of
Garland Science.

strand and constructs an mRNA sequence that matches the 5° to 3’ sequence of
the DNA to which it is bound. By convention, we number the first base pair that
is transcribed as ‘+1’ and the base pair prior to that (which is not transcribed) is
labeled as °-1°. The promoter region is often shown with the -10 and -35 regions
indicated, since these regions contain the nucleotide sequences to which the RNA
polymerase enzyme binds (the locations vary in different cell types, but these two
numbers are typically used).

The RNA strand that is produced by RNA polymerase is also a sequence of nu-
cleotides with a sugar backbone. The sugar for RNA is ribose instead of deoxyri-
bose and mRNA typically exists as a single stranded molecule. Another difference
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Figure 1.6: Geometric structure of DNA. The layout of the DNA is shown at the top. RNA
polymerase binds to the promoter region of the DNA and transcribes the DNA starting at
the +1 side and continuing to the termination site.
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Figure 1.7: Production of messenger RNA from DNA. RNA polymerase, along with other
accessory factors, binds to the promoter region of the DNA and then “opens” the DNA to
begin transcription (initiation). As RNA polymerase moves down the DNA, producing an
RNA transcript (elongation), which is later translated into a protein. The process ends when
the RNA polymerase reaches the terminator (termination). Reproduced from Courey [18];
permission pending.

is that the base thymine (T) is replaced by uracil (U) in RNA sequences. RNA
polymerase produces RNA one base pair at a time, as it moves from in the 5’ to 3’
direction along the DNA coding strand. RNA polymerase stops transcribing DNA
when it reaches a termination region (or terminator) on the DNA. This termination
region consists of a sequence that causes the RNA polymerase to unbind from the
DNA. The sequence is not conserved across species and in many cells the termi-
nation sequence is sometimes “leaky”, so that transcription will occasionally occur
across the terminator.

Once the mRNA is produced, it must be translated into a protein. This process
is slightly different in prokaryotes and eukaryotes. In prokaryotes, there is a region
of the mRNA in which the ribosome (a molecular complex consisting of of both
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proteins and RNA) binds. This region, called the ribosome binding site (RBS), has
some variability between different cell species and between different genes in a
given cell. The Shine-Delgarno sequence, AGGAGG, is the consensus sequence
for the RBS. (A consensus sequence is a pattern of nucleotides that implements
a given function across multiple organisms; it is not exactly conserved, so some
variations in the sequence will be present from one organism to another.)

In eukaryotes, the RNA must undergo several additional steps before it is trans-
lated. The RNA sequence that has been created by RNA polymerase consists of
introns that must be spliced out of the RNA (by a molecular complex called the
spliceosome), leaving only the exons, which contain the coding sequence for the
protein. The term pre-mRNA is often used to distinguish between the raw transcript
and the spliced mRNA sequence, which is called mature mRNA. In addition to
splicing, the mRNA is also modified to contain a poly(A) (polyadenine) fail, con-
sisting of a long sequence of adenine (A) nucleotides on the 3* end of the mRNA.
This processed sequence is then transported out of the nucleus into the cytoplasm,
where the ribosomes can bind to it.

Unlike prokaryotes, eukaryotes do not have a well defined ribosome binding se-
quence and hence the process of the binding of the ribosome to the mRNA is more
complicated. The Kozak sequence A/GCCACCAUGG is the rough equivalent of
the ribosome binding site, where the underlined AUG is the start codon (described
below). However, mRNA lacking the Kozak sequence can also be translated.

Once the ribosome is bound to the mRNA, it begins the process of translation.
Proteins consist of a sequence of amino acids, with each amino acid specified by
a codon that is used by the ribosome in the process of translation. Each codon
consists of three base pairs and corresponds to one of the 20 amino acids or a “stop”
codon. The genetic code mapping between codons and amino acids is shown in
Table A.1. The ribosome translates each codon into the corresponding amino acid
using transfer RNA (tRNA) to integrate the appropriate amino acid (which binds
to the tRNA) into the polypeptide chain, as shown in Figure 1.8. The start codon
(AUG) specifies the location at which translation begins, as well as coding for the
amino acid methionine (a modified form is used in prokaryotes). All subsequent
codons are translated by the ribosome into the corresponding amino acid until it
reaches one of the stop codons (typically UAA, UAG and UGA).

The sequence of amino acids produced by the ribosome is a polypeptide chain
that folds on itself to form a protein. The process of folding is complicated and
involves a variety of chemical interactions that are not completely understood. Ad-
ditional post-translational processing of the protein can also occur at this stage,
until a folded and functional protein is produced. It is this molecule that is able to
bind to other species in the cell and perform the chemical reactions that underly
the behavior of the organism. The maturation time of a protein is the time required
for the polypeptide chain to fold into a functional protein.

Each of the processes involved in transcription, translation and folding of the
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Figure 1.8: Translation is the process of translating the sequence of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protein synthesis. The genetic
code describes the relationship between the sequence of base pairs in a gene and the cor-
responding amino acid sequence that it encodes. In the cell cytoplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assemble the protein. Figure and
caption courtesy the National Human Genome Research Institute.

protein takes time and affects the dynamics of the cell. Table 1.1 shows the rates of
some of the key processes involved in the production of proteins. It is important to
note that each of these steps is highly stochastic, with molecules binding together
based on some propensity that depends on the binding energy but also the other
molecules present in the cell. In addition, although we have described everything

Table 1.1: Rates of core processes involved in the creation of proteins from DNA in E. coli.

Process Characteristic rate | Source

mRNA transcription rate 24-29 bp/sec BioNumbers [12]
Protein translation rate 12-21 aa/sec BioNumbers [12]
Maturation time (fluorescent proteins) | 660 min BioNumbers [12]
mRNA half life ~ 100 sec YMO3 [103]

E. coli cell division time 20—-40 min BioNumbers [12]
Yeast cell division time 70-140 min BioNumbers [12]
Protein half life ~ 5% 10% sec YMO3 [103]
Protein diffusion along DNA up to 10* bp/sec PKT [76]
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Figure 1.9: Regulation of proteins. Figure from Phillips, Kondev and Theriot [76]; used
with permission of Garland Science.

as a sequential process, each of the steps of transcription, translation and folding
are happening simultaneously. In fact, there can be multiple RNA polymerases that
are bound to the DNA, each producing a transcript. In prokaryotes, as soon as
the ribosome binding site has been transcribed, the ribosome can bind and begin
translation. It is also possible to have multiple ribosomes bound to a single piece of
mRNA. Hence the overall process can be extremely stochastic and asynchronous.

Transcriptional regulation of protein production

There are a variety of mechanisms in the cell to regulate the production of proteins.
These regulatory mechanisms can occur at various points in the overall process that
produces the protein. Figure 1.9 shows some of the common points of regulation in
the protein production process. We focus first on transcriptional regulation, which
refers to regulatory mechanisms that control whether or not a gene is transcribed.

The simplest forms of transcriptional regulation are repression and activation,
which are controlled through transcription factors. In the case of repression, the
presence of a transcription factor (often a protein that binds near the promoter)
turns off the transcription of the gene and this type of regulation is often called
negative regulation or “down regulation”. In the case of activation (or positive reg-
ulation), transcription is enhanced when an activator protein binds to the promoter
site (facilitating binding of the RNA polymerase).
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Figure 1.10: Repression of gene expression. Figure from Phillips, Kondev and Theriot [76];
used with permission of Garland Science.

Represession. A common mechanism for repression is that a protein binds to a re-
gion of DNA near the promoter and blocks RNA polymerase from binding. The
region of DNA to which the repressor protein binds is called an operator region
(see Figure 1.10a). If the operator region overlaps the promoter, then the presence
of a protein at the promoter can “block” the DNA at that location and transcrip-
tion cannot initiate, as illustrated in Figure 1.10a. Repressor proteins often bind to
DNA as dimers or pairs of dimers (effectively tetramers). Figure 1.10b shows some
examples of repressors bound to DNA.

A related mechanism for repression is DNA looping. In this setting, two repres-
sor complexes (often dimers) bind in different locations on the DNA and then bind
to each other. This can create a loop in the DNA and block the ability of RNA poly-
merase to bind to the promoter, thus inhibiting transcription. Figure 1.11 shows an
example of this type of repression, in the lac operon. (An operon is a set of genes
that is under control of a single promoter.)

Activation. The process of activation of a gene requires that an activator protein be
present in order for transcription to occur. In this case, the protein must work to
either recruit or enable RNA polymerase to begin transcription.

The simplest form of activation involves a protein binding to the DNA near
the promoter in such a way that the combination of the activator and the promoter
sequence bind RNA polymerase. Figure 1.12 illustrates the basic concept. Like
repressors, many activators have inducers, which can act in either a positive or
negative fashion (see Figure 1.14b). For example, cyclic AMP (cAMP) acts as a
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Figure 1.11: Repression via DNA looping. Figure from Phillips, Kondev and Theriot [76];
used with permission of Garland Science.

positive inducer for CAP.

Another mechanism for activation of transcription, specific to prokaryotes, is
the use of sigma factors. Sigma factors are part of a modular set of proteins that
bind to RNA polymerase and form the molecular complex that performs transcrip-
tion. Different sigma factors enable RNA polymerase to bind to different promot-
ers, so the sigma factor acts as a type of activating signal for transcription. Table 1.2
lists some of the common sigma factors in bacteria. One of the uses of sigma fac-
tors is to produce certain proteins only under special conditions, such as when the
cell undergoes heat shock. Another use is to control the timing of the expression of
certain genes, as illustrated in Figure 1.13.

Inducers. A feature that is present in some types of transcription factors is the ex-
istence of an inducer molecule that combines with the protein to either activate or
inactivate its function. A positive inducer is a molecule that must be present in order
for repression or activation to occur. A negative inducer is one in which the pres-
ence of the inducer molecule blocks repression or activation, either by changing the
shape of the transcription factor protein or by blocking active sites on the protein
that would normally bind to the DNA. Figure 1.14a summarizes the various possi-
bilities. Common examples of repressor-inducer pairs include /acl and lactose (or
IPTG), tetR and aTc, and tryptophan repressor and tryptophan. Lactose/IPTG and
aTc are both negative inducers, so their presence causes the otherwise repressed

Table 1.2: Sigma factors in E. coli [2].

Sigma factor Promoters recognized
o’ most genes
32 genes associated with heat shock
o genes involved in stationary phase and stress response
o8 genes involved in motility and chemotaxis
o genes dealing with misfolded proteins in the periplasm
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Figure 1.12: Activation of gene expression. (a) Conceptual operation of an activator. The
activator binds to DNA upstream of the gene and attracts RNA polymerase to the DNA
strand. (b) Examples of activiators: catablite activator protein (CAP), p5S3 tumor supressor,
zinc finger DNA binding domain and leucine zipper DAN binding domain. Figure from
Phillips, Kondev and Theriot [76]; used with permission of Garland Science.

gene to be expressed, while tryptophan is a positive inducer.

Combinatorial promoters. In addition to repressors and activators, many genetic
circuits also make use of combinatorial promoters that can act as either repressors
or activators for genes. This allows genes to be switched on and off based on more
complex conditions, represented by the concentrations of two or more activators or
repressors.

Figure 1.15 shows one of the classic examples, a promoter for the lac system.
In the lac system, the expression of genes for metabolizing lactose are under the
control of a single (combinatorial) promoter. CAP, which is positively induced by
cAMP, acts as an activator and Lacl (also called “lac repressor”), which is neg-

./intro/figures/MBoC09_07_43.eps

Figure 1.13: Use of sigma factors to controlling the timing of expression. Reproduced from
Alberts et al. [2]; permission pending.
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Figure 1.14: Effects of inducers. Reproduced from Alberts et al. [2]; permission pending.

atively induced by lactose, acts as a repressor. In addition, the inducer cAMP is
expressed only when glucose levels are low. The resulting behavior is that the pro-
teins for metabolizing lactose are expressed only in conditions where there is no
glucose (so CAP is active) and lactose is present.

More complicated combinatorial promoters can also be used to control tran-
scription in two different directions, an example that is found in some viruses.

Antitermination. A final method of activation in prokaryotes is the use of antiter-
mination. The basic mechanism involves a protein that binds to DNA and deacti-
vates a site that would normally serve as a termination site for RNA polymerase.
Additional genes are located downstream from the termination site, but without a
promoter region. Thus, in the presence of the anti-terminator protein, these genes
are not expressed (or expressed with low probability). However, when the antiter-
mination protein is present, the RNA polymerase maintains (or regains) its contact
with the DNA and expression of the downstream genes is enhanced. In this way,
antitermination allows downstream genes to be regulated by repressing “prema-
ture” termination. An example of an antitermination protein is the protein N in
phage A, which binds to a region of DNA labeled Nut (for N utilization), as shown
in Figure 1.16 [39].



1.2. DYNAMICS AND CONTROL IN THE CELL 19

RNA

CAP- polymerase-
binding binding site start site for RNA synthesis

site (promoter) |

1 1 L
operator lacZ gene

-80 -40 1 40 80 .
1 1 1 1 j nucleotide pairs
+ GLUCOSE bOPERoN COAF:
+LACTOSE b
not bound

repressor
OPERON OFF both
+ GLUCOSE

because Lac repressor

~LACTOSE bound and because
CAP not bound
! A%
—GLUCOSE F OPERON OFF because
—LACTOSE Lac repressor bound
RNA polymerase
2
- GLUCOSE
+ LACTOSE OPERON ON
mRNA T 8

Figure 4.15 Physical Biology of the Cell (© Garland Science 2009)

Figure 1.15: Combinatorial logic for the lac operator. Figure from Phillips, Kondev and
Theriot [76]; used with permission of Garland Science.

Post-transcriptional regulation of protein production

In addition to regulation that controls transcription of DNA into mRNA, a variety
of mechanisms are available for controlling expression after mRNA is produced.
These include control of splicing and transport from the nucleus (in eukaryotes),
the use of various secondary structure patterns in mRNA that can interfere with
ribosomal binding or cleave the mRNA into multiple pieces, and targeted degrada-
tion of mRNA. Once the polypeptide chain is formed, additional mechanisms are
available that regulate the folding of the protein as well as its shape and activity

./intro/figures/GNM93-antitermination.eps

Figure 1.16: Antitermination. Reproduced from [39]; permission pending.
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Figure 1.17: Phosphorylation of a protein via a kinase. Reproduced from Madhani [61];
permission pending.

level. We briefly describe some of the major mechanisms here.

Material to be written: SRNA, riboswitches.

One of the most common types of post-transcriptional regulation is through the
phosphorylation of proteins. Phosphorylation is an enzymatic process in which a
phosphate group is added to a protein and the resulting conformation of the protein
changes, usually from an inactive configuration to an active one. The enzyme that
adds the phosphate group is called a kinase (or sometimes a phosphotransferase)
and it operates by transferring a phosphate group from a bound ATP molecule to the
protein, leaving behind ADP and the phosphorylated protein. Dephosphorylation
is a complementary enzymatic process that can remove a phosphate group from
a protein. The enzyme that performs dephosphorylation is called a phosphatase.
Figure 1.17 shows the process of phosphorylation in more detail.

Phosphorylation is often used as a regulatory mechanism, with the phosphory-
lated version of the protein being the active conformation. Since phosphorylation
and dephosphorylation can occur much more quickly than protein production and
degradation, it is used in biological circuits in which a rapid response is required.
One common pattern is that a signaling protein will bind to a ligand and the result-
ing allosteric change allows the signaling protein to serve as a kinase. The newly
active kinase then phosphorylates a second protein, which modulates other func-
tions in the cell. Phosphorylation cascades can also be used to amplify the effect of
the original signal; we will describe this in more detail in Section 2.5.

Kinases in cells are usually very specific to a given protein, allowing detailed
signaling networks to be constructed. Phosphatases, on the other hand, are much
less specific, and a given phosphatase species may desphosphorylate many different
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types of proteins. The combined action of kinases and phosphatases is important in
signaling since the only way to deactivate a phosphorylated protein is by removing
the phosphate group. Thus phosphatases are constantly “turning off”” proteins, and
the protein is activated only when sufficient kinase activity is present.

Phosphorylation of a protein occurs by the addition of a charged phosphate
(PO,) group to the serine (Ser), threonine (Thr) or tyrosine (Tyr) amino acids. Sim-
ilar covalent modifications can occur by the attachment of other chemical groups
to select amino acids. Methylation occurs when a methyl group (CH;) is added
to lysine (Lys) and is used for modulation of receptor activity and in modifying
histones that are used in chromatin structures. Acetylation occurs when an acetyl
group (COCH,) is added to lysine and is also used to modify histones. Ubiquitina-
tion refers to the addition of a small protein, ubiquitin, to lysine; the addition of a
polyubiquitin chain to a protein targets it for degradation.

1.3 Control and Dynamical Systems Tools [AMO08]

To study the complex dynamics and feedback present in biological systems, we
will make use of mathematical models combined with analytical and computational
tools. In this section we present a brief introduction to some of the key concepts
from control and dynamical systems that are relevant for the study of biomolecular
systems considered in later chapters. More details on the application of specific
concepts listed here to biomolecular systems is provided in the main body of the
text. Readers who are familiar with introductory concepts in dynamical systems
and control, at the level described in Astrom and Murray [1] for example, can skip
this section.

Dynamics, feedback and control

A dynamical system is a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The term feedback refers to a situation
in which two (or more) dynamical systems are connected together such that each
system influences the other and their dynamics are thus strongly coupled. Simple
causal reasoning about a feedback system is difficult because the first system in-
fluences the second and the second system influences the first, leading to a circular
argument. This makes reasoning based on cause and effect tricky, and it is neces-
sary to analyze the system as a whole. A consequence of this is that the behavior
of feedback systems is often counterintuitive, and it is therefore necessary to resort
to formal methods to understand them.

Figure 1.18 illustrates in block diagram form the idea of feedback. We often
use the terms open loop and closed loop when referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a cycle, as
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Figure 1.18: Open and closed loop systems. (a) The output of system 1 is used as the input
of system 2, and the output of system 2 becomes the input of system 1, creating a closed
loop system. (b) The interconnection between system 2 and system 1 is removed, and the
system is said to be open loop.

shown in Figure 1.18a. If we break the interconnection, we refer to the configura-
tion as an open loop system, as shown in Figure 1.18b.

Biological systems make use of feedback in an extraordinary number of ways,
on scales ranging from molecules to cells to organisms to ecosystems. One ex-
ample is the regulation of glucose in the bloodstream through the production of
insulin and glucagon by the pancreas. The body attempts to maintain a constant
concentration of glucose, which is used by the body’s cells to produce energy.
When glucose levels rise (after eating a meal, for example), the hormone insulin
is released and causes the body to store excess glucose in the liver. When glucose
levels are low, the pancreas secretes the hormone glucagon, which has the opposite
effect. Referring to Figure 1.18, we can view the liver as system 1 and the pancreas
as system 2. The output from the liver is the glucose concentration in the blood,
and the output from the pancreas is the amount of insulin or glucagon produced.
The interplay between insulin and glucagon secretions throughout the day helps
to keep the blood-glucose concentration constant, at about 90 mg per 100 mL of
blood.

Feedback has many interesting properties that can be exploited in designing sys-
tems. As in the case of glucose regulation, feedback can make a system resilient
toward external influences. It can also be used to create linear behavior out of non-
linear components, a common approach in electronics. More generally, feedback
allows a system to be insensitive both to external disturbances and to variations in
its individual elements.

Feedback has potential disadvantages as well. It can create dynamic instabilities
in a system, causing oscillations or even runaway behavior. Another drawback,
especially in engineering systems, is that feedback can introduce unwanted sensor
noise into the system, requiring careful filtering of signals. It is for these reasons
that a substantial portion of the study of feedback systems is devoted to developing
an understanding of dynamics and a mastery of techniques in dynamical systems.

The mathematical study of the behavior of feedback systems is an area known
as control theory. The term control has many meanings and often varies between
communities. In engineering applications, we typical define control to be the use
of algorithms and feedback in engineered systems. Thus, control includes such ex-
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amples as feedback loops in electronic amplifiers, setpoint controllers in chemical
and materials processing, “fly-by-wire” systems on aircraft and even router proto-
cols that control traffic flow on the Internet. Emerging applications include high-
confidence software systems, autonomous vehicles and robots, real-time resource
management systems and biologically engineered systems. At its core, control is an
information science and includes the use of information in both analog and digital
representations.

Feedback properties

Feedback is a powerful idea that is used extensively in natural and technological
systems. The principle of feedback is simple: implement correcting actions based
on the difference between desired and actual performance. In engineering, feed-
back has been rediscovered and patented many times in many different contexts.
The use of feedback has often resulted in vast improvements in system capability,
and these improvements have sometimes been revolutionary, as discussed above.
The reason for this is that feedback has some truly remarkable properties, which
we discuss briefly here.

Robustness to Uncertainty. One of the key uses of feedback is to provide robust-
ness to uncertainty. By measuring the difference between the sensed value of a
regulated signal and its desired value, we can supply a corrective action. If the sys-
tem undergoes some change that affects the regulated signal, then we sense this
change and try to force the system back to the desired operating point. This is pre-
cisely the effect that Watt exploited in his use of the centrifugal governor on steam
engines.

As an example of this principle, consider the simple feedback system shown in
Figure 1.19. In this system, the speed of a vehicle is controlled by adjusting the
amount of gas flowing to the engine. Simple proportional-integral (PI) feedback
is used to make the amount of gas depend on both the error between the current
and the desired speed and the integral of that error. The plot on the right shows
the results of this feedback for a step change in the desired speed and a variety of
different masses for the car, which might result from having a different number of
passengers or towing a trailer. Notice that independent of the mass (which varies by
a factor of 3!), the steady-state speed of the vehicle always approaches the desired
speed and achieves that speed within approximately 5 s. Thus the performance of
the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide robustness is the neg-
ative feedback amplifier. When telephone communications were developed, ampli-
fiers were used to compensate for signal attenuation in long lines. A vacuum tube
was a component that could be used to build amplifiers. Distortion caused by the
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-
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Figure 1.19: A feedback system for controlling the speed of a vehicle. In the block diagram
on the left, the speed of the vehicle is measured and compared to the desired speed within
the “Compute” block. Based on the difference in the actual and desired speeds, the throttle
(or brake) is used to modify the force applied to the vehicle by the engine, drivetrain and
wheels. The figure on the right shows the response of the control system to a commanded
change in speed from 25 m/s to 30 m/s. The three different curves correspond to differing
masses of the vehicle, between 1000 and 3000 kg, demonstrating the robustness of the
closed loop system to a very large change in the vehicle characteristics.

jor breakthrough was the invention of the feedback amplifier in 1927 by Harold S.
Black, an electrical engineer at Bell Telephone Laboratories. Black used negative
feedback, which reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier.

Feedback is also pervasive in biological systems, where transcriptional, trans-
lational and allosteric mechanisms are used to regulate internal concentrations of
various species, and much more complex feedbacks are used to regulate proper-
ties at the organism level (such as body temperature, blood pressure and circadian
rhythm). One difference in biological systems is that the separation of sensing, ac-
tuation and computation, a common approach in most engineering control systems,
is less evident. Instead, the dynamics of the molecules that sense the environmen-
tal condition and make changes to the operation of internal components may be
integrated together in ways that make it difficult to untangle the operation of the
system. Similarly, the “reference value” to which we wish to regulate a system may
not be an explicit signal, but rather a consequence of many different changes in the
dynamics that are coupled back to the regulatory elements. Hence we do not see
a clear “setpoint” for the desired ATP concentration, blood oxygen level or body
temperature, for example. These difficulties complicate our analysis of biological
systems, though many important insights can still be obtained.

Design of Dynamics. Another use of feedback is to change the dynamics of a sys-
tem. Through feedback, we can alter the behavior of a system to meet the needs of
an application: systems that are unstable can be stabilized, systems that are slug-
gish can be made responsive and systems that have drifting operating points can
be held constant. Control theory provides a rich collection of techniques to analyze
the stability and dynamic response of complex systems and to place bounds on the
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behavior of such systems by analyzing the gains of linear and nonlinear operators
that describe their components.

An example of the use of control in the design of dynamics comes from the area
of flight control. The following quote, from a lecture presented by Wilbur Wright
to the Western Society of Engineers in 1901 [66], illustrates the role of control in
the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at sufficient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of sufficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the age
of flying will have arrived, for all other difficulties are of minor impor-
tance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
tried to build stable airplanes. These would have been easier to fly, but because of
their poor maneuverability they could not be brought up into the air. By using their
insight and skillful experiments the Wright brothers made the first successful flight
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, invented
by Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized
pendulum to provide an indication of the vertical. He then arranged a feedback
mechanism that would pull the stick to make the plane go up if it was pointing
down, and vice versa. The Sperry autopilot was the first use of feedback in aero-
nautical engineering, and Sperry won a prize in a competition for the safest airplane
in Paris in 1914. Figure 1.20 shows the Curtiss seaplane and the Sperry autopilot.
The autopilot is a good example of how feedback can be used to stabilize an unsta-
ble system and hence “design the dynamics” of the aircraft.

One of the other advantages of designing the dynamics of a device is that it
allows for increased modularity in the overall system design. By using feedback to
create a system whose response matches a desired profile, we can hide the com-
plexity and variability that may be present inside a subsystem. This allows us to
create more complex systems by not having to simultaneously tune the responses
of a large number of interacting components. This was one of the advantages of
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Figure 1.20: Aircraft autopilot system. The Sperry autopilot (left) contained a set of four
gyros coupled to a set of air valves that controlled the wing surfaces. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able to maintain level
flight as a mechanic walked on the wing (right) [46].

Black’s use of negative feedback in vacuum tube amplifiers: the resulting device
had a well-defined linear input/output response that did not depend on the individ-
ual characteristics of the vacuum tubes being used.

Drawbacks of Feedback. While feedback has many advantages, it also has some
drawbacks. Chief among these is the possibility of instability if the system is not
designed properly. We are all familiar with the undesirable effects of feedback
when the amplification on a microphone is turned up too high in a room. This
is an example of feedback instability, something that we obviously want to avoid.
This is tricky because we must design the system not only to be stable under nom-
inal conditions but also to remain stable under all possible perturbations of the
dynamics.

In addition to the potential for instability, feedback inherently couples different
parts of a system. One common problem is that feedback often injects measurement
noise into the system. Measurements must be carefully filtered so that the actuation
and process dynamics do not respond to them, while at the same time ensuring that
the measurement signal from the sensor is properly coupled into the closed loop
dynamics (so that the proper levels of performance are achieved).

Another potential drawback of control is the complexity of embedding a control
system in a product. While the cost of sensing, computation and actuation has de-
creased dramatically in the past few decades, the fact remains that control systems
are often complicated, and hence one must carefully balance the costs and benefits.
An early engineering example of this is the use of microprocessor-based feedback
systems in automobiles.The use of microprocessors in automotive applications be-
gan in the early 1970s and was driven by increasingly strict emissions standards,
which could be met only through electronic controls. Early systems were expensive
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and failed more often than desired, leading to frequent customer dissatisfaction. It
was only through aggressive improvements in technology that the performance,
reliability and cost of these systems allowed them to be used in a transparent fash-
ion. Even today, the complexity of these systems is such that it is difficult for an
individual car owner to fix problems.

Feedforward. Feedback is reactive: there must be an error before corrective actions
are taken. However, in some circumstances it is possible to measure a disturbance
before it enters the system, and this information can then be used to take corrective
action before the disturbance has influenced the system. The effect of the distur-
bance is thus reduced by measuring it and generating a control signal that coun-
teracts it. This way of controlling a system is called feedforward. Feedforward is
particularly useful in shaping the response to command signals because command
signals are always available. Since feedforward attempts to match two signals, it
requires good process models; otherwise the corrections may have the wrong size
or may be badly timed.

The ideas of feedback and feedforward are very general and appear in many dif-
ferent fields. In economics, feedback and feedforward are analogous to a market-
based economy versus a planned economy. In business, a feedforward strategy
corresponds to running a company based on extensive strategic planning, while a
feedback strategy corresponds to a reactive approach. In biology, feedforward has
been suggested as an essential element for motion control in humans that is tuned
during training. Experience indicates that it is often advantageous to combine feed-
back and feedforward, and the correct balance requires insight and understanding
of their respective properties.

Positive Feedback. In most of control theory, the emphasis is on the role of negative
feedback, in which we attempt to regulate the system by reacting to disturbances in
a way that decreases the effect of those disturbances. In some systems, particularly
biological systems, positive feedback can play an important role. In a system with
positive feedback, the increase in some variable or signal leads to a situation in
which that quantity is further increased through its dynamics. This has a destabi-
lizing effect and is usually accompanied by a saturation that limits the growth of
the quantity. Although often considered undesirable, this behavior is used in bio-
logical (and engineering) systems to obtain a very fast response to a condition or
signal.

One example of the use of positive feedback is to create switching behavior,
in which a system maintains a given state until some input crosses a threshold.
Hysteresis is often present so that noisy inputs near the threshold do not cause the
system to jitter. This type of behavior is called bistability and is often associated
with memory devices.
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Figure 1.21: Input/output characteristics of on-off controllers. Each plot shows the input on
the horizontal axis and the corresponding output on the vertical axis. Ideal on-off control is
shown in (a), with modifications for a dead zone (b) or hysteresis (c). Note that for on-off
control with hysteresis, the output depends on the value of past inputs.

Simple forms of feedback

The idea of feedback to make corrective actions based on the difference between
the desired and the actual values of a quantity can be implemented in many different
ways. The benefits of feedback can be obtained by very simple feedback laws such
as on-off control, proportional control and proportional-integral-derivative control.
In this section we provide a brief preview of some of these topics to provide a basis
of understanding for their use in the chapters that follows.

On-Off Control. A simple feedback mechanism can be described as follows:

(1.1)

_ Jumax ife>0

TN ife<0,

where the control error e = r —y is the difference between the reference signal (or

command signal) r and the output of the system y and u is the actuation command.

Figure 1.21a shows the relation between error and control. This control law implies
that maximum corrective action is always used.

The feedback in equation (1.1) is called on-off control. One of its chief advan-
tages is that it is simple and there are no parameters to choose. On-off control often
succeeds in keeping the process variable close to the reference, such as the use of
a simple thermostat to maintain the temperature of a room. It typically results in
a system where the controlled variables oscillate, which is often acceptable if the
oscillation is sufficiently small.

Notice that in equation (1.1) the control variable is not defined when the error
is zero. It is common to make modifications by introducing either a dead zone or
hysteresis (see Figure 1.21b and 1.21c¢).

PID Control. The reason why on-off control often gives rise to oscillations is that
the system overreacts since a small change in the error makes the actuated variable
change over the full range. This effect is avoided in proportional control, where the
characteristic of the controller is proportional to the control error for small errors.
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This can be achieved with the control law

Umax 1f € > emax
u=ikpe if epin <e <emax (1.2)

Unin  if € < emin,

where k), is the controller gain, eyin = Umin/kp and emax = Umax/kp. The interval
(emin»emax) 18 called the proportional band because the behavior of the controller
is linear when the error is in this interval:

u=ky(r-y)=kpe if emin < € < emax. (1.3)

While a vast improvement over on-off control, proportional control has the
drawback that the process variable often deviates from its reference value. In partic-
ular, if some level of control signal is required for the system to maintain a desired
value, then we must have e # 0 in order to generate the requisite input.

This can be avoided by making the control action proportional to the integral of
the error:

u(t) = k; f e(t)dr. (1.4)
0

This control form is called integral control, and k; is the integral gain. It can be
shown through simple arguments that a controller with integral action has zero
steady-state error. The catch is that there may not always be a steady state because
the system may be oscillating.

An additional refinement is to provide the controller with an anticipative abil-
ity by using a prediction of the error. A simple prediction is given by the linear
extrapolation
de(t)

dr ’
which predicts the error 7; time units ahead. Combining proportional, integral and
derivative control, we obtain a controller that can be expressed mathematically as

de(t)
dt

e(t+Ty) ~e(t)+Ty

t
u(t) = kpe(t)+k,-f e(t)ydr+ky (1.5)
0

The control action is thus a sum of three terms: the past as represented by the
integral of the error, the present as represented by the proportional term and the
future as represented by a linear extrapolation of the error (the derivative term).
This form of feedback is called a proportional-integral-derivative (PID) controller
and its action is illustrated in Figure 1.22.

A PID controller is very useful and is capable of solving a wide range of con-
trol problems. More than 95% of all industrial control problems are solved by PID
control, although many of these controllers are actually proportional-integral (PI)
controllers because derivative action is often not included [23]. There are also more
advanced controllers, which differ from PID controllers by using more sophisti-
cated methods for prediction.
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Figure 1.22: Action of a PID controller. At time ¢, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedback is based on the integral
of the error up to time # (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of change of the error. T4
represents the approximate amount of time in which the error is projected forward (see
text).

1.4 Input/Output Modeling [AMO08]

A model is a mathematical representation of a physical, biological or information
system. Models allow us to reason about a system and make predictions about
how a system will behave. In this text, we will mainly be interested in models of
dynamical systems describing the input/output behavior of systems, and we will
often work in “state space” form. In the remainder of this section we provide an
overview of some of the key concepts in input/output modeling. The mathematical
details introduced here are explored more fully in Chapter 3.

The heritage of electrical engineering

The approach to modeling that we take builds on the view of models that emerged
from electrical engineering, where the design of electronic amplifiers led to a focus
on input/output behavior. A system was considered a device that transforms inputs
to outputs, as illustrated in Figure 1.23. Conceptually an input/output model can be
viewed as a giant table of inputs and outputs. Given an input signal u(f) over some
interval of time, the model should produce the resulting output y(7).

The input/output framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio or
a television and break it down into manageable pieces such as the receiver, demod-
ulator, amplifier and speakers. Each of these pieces has a set of inputs and outputs
and, through proper design, these components can be interconnected to form the
entire system.

The input/output view is particularly useful for the special class of linear time-
invariant systems. This term will be defined more carefully below, but roughly
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Figure 1.23: INustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the one on the right is its
representation as a block diagram.

speaking a system is linear if the superposition (addition) of two inputs yields an
output that is the sum of the outputs that would correspond to individual inputs be-
ing applied separately. A system is time-invariant if the output response for a given
input does not depend on when that input is applied. While most biomolecular sys-
tems are neither linear nor time-invariant, they can often be approximated by such
models, often by looking at perturbations of the system from its nominal behavior,
in a fixed context.

One of the reasons that linear time-invariant systems are so prevalent in model-
ing of input/output systems is that a large number of tools have been developed to
analyze them. One such tool is the step response, which describes the relationship
between an input that changes from zero to a constant value abruptly (a step input)
and the corresponding output. The step response is very useful in characterizing
the performance of a dynamical system, and it is often used to specify the desired
dynamics. A sample step response is shown in Figure 1.24a.

Another way to describe a linear time-invariant system is to represent it by its
response to sinusoidal input signals. This is called the frequency response, and a
rich, powerful theory with many concepts and strong, useful results has emerged
for systems that can be described by their frequency response. The results are based
on the theory of complex variables and Laplace transforms. The basic idea behind
frequency response is that we can completely characterize the behavior of a system
by its steady-state response to sinusoidal inputs. Roughly speaking, this is done
by decomposing any arbitrary signal into a linear combination of sinusoids (e.g.,
by using the Fourier transform) and then using linearity to compute the output by
combining the response to the individual frequencies. A sample frequency response
is shown in Figure 1.24b.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
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Figure 1.24: Input/output response of a linear system. The step response (a) shows the
output of the system due to an input that changes from O to 1 at time ¢ =5 s. The fre-
quency response (b) shows the amplitude gain and phase change due to a sinusoidal input
at different frequencies.

particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.

The control view

When control theory emerged as a discipline in the 1940s, the approach to dy-
namics was strongly influenced by the electrical engineering (input/output) view.
A second wave of developments in control, starting in the late 1950s, was inspired
by mechanics, where the state space perspective was used. The emergence of space
flight is a typical example, where precise control of the orbit of a spacecraft is es-
sential. These two points of view gradually merged into what is today the state
space representation of input/output systems.

The development of state space models involved modifying the models from
mechanics to include external actuators and sensors and utilizing more general
forms of equations. In control, models often take the form

dx
E = f(xa M)9 y = h(x’ M), (1 6)

where x is a vector of state variables, u is a vector of control signals and y is a
vector of measurements. The term dx/dt (sometimes also written as ) represents
the derivative of x with respect to time, now considered a vector, and f and h
are (possibly nonlinear) mappings of their arguments to vectors of the appropriate
dimension.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice of u (reachability) and if the measurement y
contains enough information to reconstruct the state (observability). These topics
are addressed in greater detail in AMOS.
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A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views of input/output repre-
sentations and state space representations are particularly useful when modeling
uncertainty since state models are convenient to describe a nominal model but un-
certainties are easier to describe using input/output models (often via a frequency
response description).

An interesting observation in the design of control systems is that feedback sys-
tems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system valida-
tion, where one wishes to verify that the detailed response of the system performs
as it was designed. Because of these different uses of models, it is common to use
a hierarchy of models having different complexity and fidelity.

State space systems

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a biochemical system the state
is composed of the variables required to account for the current context of the cell,
including the concentrations of the various species and complexes that are present.
It may also include the spatial locations of the various molecules. A key issue in
modeling is to decide how accurately this information has to be represented. The
state variables are gathered in a vector x € R” called the state vector. The control
variables are represented by another vector u € R?, and the measured signal by the
vector y € R?. A system can then be represented by the differential equation

dx
I f(x,u), y =h(x,u), (L.7)

where f:R"XR? — R" and h : R" X R? — R? are smooth mappings. We call a
model of this form a state space model.

The dimension of the state vector is called the order of the system. The sys-
tem (1.7) is called time-invariant because the functions f and 4 do not depend
explicitly on time #; there are more general time-varying systems where the func-
tions do depend on time. The model consists of two functions: the function f gives
the rate of change of the state vector as a function of state x and control u, and the
function 4 gives the measured values as functions of state x and control u.
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A system is called a linear state space system if the functions f and / are linear
in x and u. A linear state space system can thus be represented by

%:Ax+Bu, y =Cx+Du, (1.8)
where A, B, C and D are constant matrices. Such a system is said to be linear and
time-invariant, or LTI for short. The matrix A is called the dynamics matrix, the
matrix B is called the control matrix, the matrix C is called the sensor matrix and
the matrix D is called the direct term. Frequently systems will not have a direct
term, indicating that the control signal does not influence the output directly.

Input/output formalisms for biomolecular modeling

A key challenge in developing models for any class of problems is the selection of
an appropriate mathematical framework for the models. Among the features that
we believe are important for a wide variety of biological systems are capturing
the temporal response of a biomolecular system to various inputs and understand-
ing how the underlying dynamic behavior leads to a given phenotype. The models
should reflect the subsystem structure of the underlying dynamical system to al-
low prediction of results, but need not necessarily be mechanistically accurate at
a detailed biochemical level. We are particularly interested in those problems that
include a number of molecular “subsystems” that interact with each other, and so
our models should support a level of modularity (with the additional advantage of
allowing multiple groups to develop detailed models for each module that can be
combined to form more complex models of the interacting components). Since we
are likely to be building models based on high-throughput experiments, it is also
key that the models capture the measurable outputs of the systems.

For many of the systems that we are interested in, a good starting point is to
use reduced-order models consisting of nonlinear differential equations, possibly
with some time delay. Using the basic structure shown in Figure 1.3, a model for a
multi-component system might be descibed using a set of input/output differential
equations of the form

% = Ax;+ N(x;,Ly",0) + Bu; + Fw;, (19)
yi=Cxi+Hvi (1) =yt —70).

The internal state of the ith component (subsystem) is captured by the state x; € R,
which might represent the concentrations of various species and complexes as well
as other internal variables required to describe the dynamics. The “outputs” of the
system, which describe those species (or other quantities) that interact with other
subsystems in the cell is captured by the variable y; € R”". The internal dynamics
consist of a set of linear dynamics (Ax) as well as nonlinear terms that depend
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both on the internal state and the outputs of other subsystems (N(-)), where Ly*
represents interconnections with other subsystems and 6 is a set of parameters that
represent the context of the system (described in more detail below). We also allow
for the possibility of time delays (due to folding, transport or other processes) and
write y? for the “functional” output seen by other subsystems.

The coupling between subsystems is captured using a weighted graph, whose
elements are represented by the coefficients of the interconnection matrix L. In the
simplest version of the model, we simply combine different outputs from other
modules in some linear combination to obtain the “input” Ly*. More general inter-
connections are possible, including allowing multiple outputs from different sub-
systems to interact in nonlinear ways (such as one often sees on combinatorial
promoters in gene regulatory networks).

Finally, in addition to the internal dynamics and nonlinear coupling, we sepa-
rately keep track of external inputs to the subsystem (Bu), stochastic disturbances
(Fw) and measurement noise (Hv). We treat the external inputs u as deterministic
variables (representing inducer concentrations, nutrient levels, temperature, etc)
and the disturbances and noise w and v as (vector) random processes. If desired,
the mappings from the various inputs to the states an outputs, represented by the
matrices B, F and H can also depend on the system state x (resulting in additional
nonlinearities).

This particular structure is useful because it captures a large number of mod-
eling frameworks in a single formalism. In particular, mass action kinetics and
chemical reaction networks can be represented by equating the stoichiometry ma-
trix with the interconnection matrix L and using the nonlinear terms to capture
the fluxes, with 6 representing the rate constants. We can also represent typical
reduced-order models for transcriptional regulatory networks by letting the nonlin-
ear functions N represent various types of Hill functions and including the effects
of mRNA/protein production, degradation and dilution through the linear dynam-
ics. These two classes of systems can also be combined, allowing a very expressive
set of dynamics that is capable of capturing many relevant phenomena of interest
in molecular biology.

Despite being a well-studied class of systems, there are still many open ques-
tions with this framework, especially in the context of biomolecular systems. For
example, a rigorous theory of the effects of crosstalk, the role of context on the
nonlinear elements, and combining the effects of interconnection, uncertainty and
nonlinearity is just emerging. Adding stochastic effects, either through the distur-
bance and noise terms, initial conditions or in a more fundamental way, is also
largely unexplored. And the critical need for methods for performing model re-
duction in a way that respects of the structure of the subsystems has only recently
begun to be explored. Nonetheless, many of these research directions are being
pursued and we attempt to provide some insights in this text into the underlying
techniques that are available.



36 CHAPTER 1. INTRODUCTORY CONCEPTS

S ETTEEE——— . .
Birth of Genetic Birth of Synthetic
Engineering
recombinant DNA
1961 1968 1970 1978 1980s 1983 2000
W. Arbar discovers Firsf reporter gene
restriction enzimes waga isofafed: green K. Mullis: Polymerase Early “warking” synihelic
(Nobei Prize winner) | fiorascent protain (GFP) Chain Reaction (PCR) gy 0 0 B ey
(exponential amplficalion o o/ o0 oie switch, Elowitz
Jacob and Manod infroduce oTDNA) and Lelbler reprassiiator
for the first time the concept insulin bacames first
af oparon raguiaiion DN& synihesis was first recombinant ONA drug

demonstrated by Har
Gobind Khorana

Figure 1.25: Milestones in the history of synthetic biology.

1.5 From Systems to Synthetic Biology

The rapidly growing field of synthetic biology seeks to use biological principles
and processes to build useful engineering devices and systems. Applications of
synthetic biology range from materials production (drugs, biofuels) to biological
sensing and diagnostics (chemical detection, medical diagnostics) to biological ma-
chines (bioremediation, nanoscale robotics). Like many other fields at the time of
their infancy (electronics, software, networks), it is not yet clear where synthetic
biology will have its greatest impact. However, recent advances such as the abil-
ity to “boot up” a chemically synthesized genome [32] demonstrate the ability to
synthesize systems that offer the possibility of creating devices with substantial
functionality. At the same time, the tools and processes available to design systems
of this complexity are much more primitive, and de novo synthetic circuits typi-
cally use a tiny fraction of the number of genetic elements of even the smallest
microorganisms [78].

Several scientific and technological developments over the past four decades
have set the stage for the design and fabrication of early synthetic biomolecular
circuits (see Figure 1.25). An early milestone in the history of synthetic biology
can be traced back to the discovery of mathematical logic in gene regulation. In
their 1961 paper, Jacob and Monod introduced for the first time the idea of gene
expression regulation through transcriptional feedback [49]. Only a few years later
(1969), restriction enzymes that cut double-stranded DNA at specific recognition
sites were discovered by Arber and co-workers [4]. These enzymes were a major
enabler of recombinant DNA technology, in which genes from one organism are
extracted and spliced into the chromosome of another. One of the most celebrated
products of this technology was the large scale production of insulin by employing
E. coli bacteria as a cell factory [98].
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Another key innovation was the development of the polymerase chain reac-
tion (PCR), devised in the 1980s, which allows exponential amplification of small
amounts of DNA and can be used to obtain sufficient quantities for use in a variety
of molecular biology laboratory protocols where higher concentrations of DNA are
required. Using PCR, it is possible to “copy” genes and other DNA sequences out
of their host organisms.

The developments of recombinant DNA technology, PCR and artificial synthe-
sis of DNA provided the ability to “cut and paste” natural or synthetic promoters
and genes in almost any fashion. This cut and paste procedure is called cloning and
consists of four primary steps: fragmentation, ligation, transfection and screening.
The DNA of interest is first isolated using restriction enzymes and/or PCR amplifi-
cation. Then, a ligation procedure is employed in which the amplified fragment is
inserted into a vector. The vector is often a piece of circular DNA, called a plasmid,
that has been linearized by means of restriction enzymes that cleave it at appropri-
ate restriction sites. The vector is then incubated with the fragment of interest with
an enzyme called DNA ligase, producing a single piece of DNA with the target
DNA inserted. The next step is to transfect (or transform) the DNA into living
cells, where the natural replication mechanisms of the cell will duplicate the DNA
when the cell divides. This process does not transfect all cells, and so a selection
procedure if required to isolate those cells that have the desired DNA inserted in
them. This is typically done by using a plasmid that gives the cell resistance to a
specific antibiotic; cells grown in the presence of that antibiotic will only live if
they contain the plasmid. Further selection can be done to insure that the inserted
DNA is also present.

Once a circuit has been constructed, its performance must be verified and, if
necessary, debugged. This is often done with the help of fluorescent reporters. The
most famous of these is GFP, which was isolated from the jellyfish Aequorea vic-
toria in 1978 by Shimomura [88]. Further work by Chalfie and others in the 1990s
enabled the use of GFP in E. coli as a fluorescent reporter by inserting it into an ap-
propriate point in an artificial circuit [17]. By using spectrofluorometry, fluorescent
microscopy or flow cytometry, it is possible to measure the amount of fluorescence
in individual cells or collections of cells and characterize the performance of a
circuit in the presence of inducers or other factors.

Two early examples of the application of these technologies were the repressi-
lator [27] and a synthetic genetic switch [31].

The repressilator is a synthetic circuit in which three proteins each repress an-
other in a cycle. This is shown schematically in Figure 1.26a, where the three pro-
teins are TetR, A cl and Lacl. The basic idea of the repressilator is that if TetR is
present, then it represses the production of A cl. If Acl is absent, then Lacl is pro-
duced (at the unregulated transcription rate), which in turn represses TetR. Once
TetR is repressed, then Acl is no longer repressed, and so on. If the dynamics of
the circuit are designed properly, the resulting protein concentrations will oscillate,
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Figure 1.26: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well
as the circuit diagram (center). The flat headed arrow between the protein names represents
repression. (b) A simulation of a simple model for the repressilator, showing the oscillation
of the individual protein concentrations. (Figure courtesy M. Elowitz.)

as shown in Figure 1.26b.

The repressilator can be constructed using the techniques described above. First,
we can make copies of the individual promoters and genes that form our circuit by
using PCR to amplify the selected sequences out of the original organisms in which
they were found. TetR is the tetracycline resistance repressor protein that is found
in gram-negative bacteria (such as E. coli) and is part of the circuitry that provides
resistance to tetracycline. Lacl is the gene that produces lac repressor, responsible
for turning off the lac operon in the lactose metabolic pathway in E. coli (see Sec-
tion 5.1). And Acl comes from A phage, where it is part of the regulatory circuitry
that regulates lysis and lysogeny.

By using restriction enzymes and related techniques, we can separate the nat-
ural promoters from their associated genes, and then ligate (reassemble) them in
a new order and insert them into a “backbone” vector (the rest of the plasmid, in-
cluding the origin of replication and appropriate antibiotic resistance). This DNA
is then transformed into cells that are grown in the presence of an antibiotic, so that
only those cells that contain the represillator can replicate. Finally, we can take
individual cells containing our circuit and let them grow under a microscope to
image fluorescent reporters coupled to the oscillator.

Another early circuit in the synthetic biology toolkit is a genetic switch built
by Gardner et al. [31]. The genetic switch consists of two repressors connected
together in a cycle, as shown in Figure 1.27a. The intuition behind this circuit is
that if the gene A is being expressed, it will repress production of B and maintain
its expression level (since the protein corresponding to B will not be present to re-
press A). Similarly, if B is being expressed, it will repress the production of A and
maintain its expression level. This circuit thus implements a type of bistability that
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Figure 1.27: Stability of a genetic switch. The circuit diagram in (a) represents two proteins
that are each repressing the production of the other. The inputs u; and u, interfere with this
repression, allowing the circuit dynamics to be modified. The simulation in (b) shows the
time response of the system starting from two different initial conditions. The initial portion
of the curve corresponds to protein B having higher concentration than A, and converges to
an equilibrium where A is off and B is on. At time 7 = 10, the concentrations are perturbed,
moving the concentrations into a region of the state space where solutions converge to the
equilibrium point with the A on and B off.

can be used as a simple form of memory. Figure 1.27b shows the time traces for
a system, illustrating the bistable nature of the circuit. When the initial condition
starts with a concentration of protein B greater than that of A, the solution con-
verges to the equilibrium point where B is on and A is off. If A is greater than B,
then the opposite situation results.

These seemingly simple circuits took years to get to work, but showed that it
was possible to synthesize a biological circuit that performed a desired function
that was not originally present in a natural system. Today, commercial synthesis
of DNA sequences and genes has become cheaper and faster, with a price often
below $0.30 per base pair.! The combination of inexpensive synthesis technolo-
gies, new advances in cloning techniques, and improved devices for imaging and
measurement has vastly simplified the process of producing a sequence of DNA
that encodes a given set of genes, operator sites, promoters and other functions,
and these techniques are a routine part of undergraduate courses in molecular and
synthetic biology.

As illustrated by the examples above, current techniques in synthetic biology
have demonstrated the ability to program biological function by designing DNA
sequences that implement simple circuits. Most current devices make use of tran-
scriptional or post-transcriptional processing, resulting in very slow timescales (re-
sponse times typically measured in tens of minutes to hours). This restricts their
use in systems where faster response to environmental signals is needed, such as

I'As of this writing; divide by a factor of two for every two years after the publication date.
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Figure 1.28: Expression of a protein using an inducible promoter [16]. (a) The circuit
diagram indicates the DNA sequences that are used to construct the part (chosen from the
BioBrick library). (b) The measured response of the system to a step change in the inducer
level (HSL).

rapid detection of a chemical signal or fast response to changes in the internal envi-
ronment of the cell. In addition, existing methods for biological circuit design have
limited modularity (reuse of circuit elements requires substantial redesign or tun-
ing) and typically operate in very narrow operating regimes (e.g., a single species
grown in a single type of media under carefully controlled conditions). Further-
more, engineered circuits inserted into cells can interact with the host organism
and have other unintended interactions.

As an illustration of the dynamics of synthetic devices in use today, Figure 1.28
shows a typical response of a genetic element to an inducer molecule [16]. In this
circuit, an external signal of homoserine lactone (HSL) is applied at time zero and
the system reaches 10% of the steady state value in approximately 15 minutes. This
response is limited in part by the time required to synthesize the output protein
(GFP), including delays due to transcription, translation and folding. Since this
is the response time for the underlying “actuator”, circuits that are composed of
feedback interconnections of such genetic elements will typically operate at 5-10
times slower speeds. While these speeds are appropriate in many applications (e.g.,
regulation of steady state enzyme levels for materials production), in the context
of biochemical sensors or systems that must maintain a steady operating point in
more rapidly changing thermal or chemical environments, this response time is too
slow to be used as an effective engineering approach.

By comparison, the input/output response for the signaling component in E. coli
chemotaxis is shown in Figure 1.29 [87]. Here the response of the kinase CheA is
plotted in response to an exponential ramp in the ligand concentration. The re-
sponse is extremely rapid, with the timescale measured in seconds. This rapid re-
sponse is implemented by conformational changes in the proteins involved in the
circuit, rather than regulation of transcription or other slower processes.
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Figure 1.29: Responses of E. coli signaling network to exponential ramps in ligand con-
centration. (a) A simplified circuit diagram for chemotaxis, showing the biomolecular pro-
cesses involved in regulating flagellar motion. (b) Time responses of the “sensing” subsys-
tem (from Shimizu, Tu and Berg; Molecular Systems Biology, 2010), showing the response
to exponential inputs.

The field of synthetic biology has the opportunity to provide new approaches
to solving engineering and scientific problems. Sample engineering applications
include the development of synthetic circuits for producing biofuels, ultrasensitive
chemical sensors, or production of materials with specific properties that are tuned
to commercial needs. In addition to the potential impact on new biologically engi-
neered devices, there is also the potential for impact in improved understanding of
biological processes. For example, many diseases such as cancer and Parkinson’s
disease are closely tied to kinase dysfunction. Our analysis of robust systems of
kinases and the ability to synthesize systems that support or invalidate biological
hypotheses may lead to a better systems understanding of failure modes that lead
to such diseases.

1.6 Further Reading

There are numerous survey articles and textbooks that provide more detailed intro-
ductions to the topics introduced in this chapter. In the field of systems biology, the
textbook by Alon [3] provides a broad view of some of the key elements of mod-
ern systems biology. A more comprehensive set of topics is covered in the recent
textbook by Klipp [55], while a more engineering-oriented treatment of modeling
of biological circuits can be found in the text by Myers [71]. Two other books that
are particularly noteworthy are Ptashne’s book on the phage A [77] and Madhani’s
book on yeast [61], both of which use well-studied model systems to describe a
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general set of mechanisms and principles that are present in many different types
of organisms.

Several textbooks and research monographs provide excellent resources for
modeling and analysis of biomolecular dynamics and regulation. J. D. Murray’s
two-volume text [69] on biological modeling is an excellent reference with many
examples of biomolecular dynamics. The textbook by Phillips, Kondev and The-
riot [76] provides a quantitative approach to understanding biological systems, in-
cluding many of the concepts discussed in this chapter. Courey [ 18] gives a detailed
description of mechanisms transcriptional regulation.

The topics in dynamical systems and control theory that are briefly introduced
here are covered in more detail in AMOS [1], to which this text is a supplement.
Other books that introduce tools for modeling and analysis of dynamical systems
with applications in biology include J. D. Murray’s text [69] and the recent text by
and Ellner and Guckenheimer [26].

Synthetic biology is a rapidly evolving field that includes many different sub-
areas of research, but few textbooks are currently available. In the specific area of
biological circuit design that we focus on here, there are a number of good survey
and review articles. The article by Baker et al. [7] provides a high level description
of the basic approach and opportunities. Recent survey and review papers include
Voigt [99] and Khalil and Collins [53].
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