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Chapter 1
Introductory Concepts

This chapter provides a brief introduction to concepts from systems biology, tools
from control theory, and approaches to modeling, analysis and design of biomolec-
ular feedback systems. We begin with a discussion of the role of modeling, analy-
sis and feedback in biological systems, followed by an overview of basic concepts
from cell biology, focusing on the dynamics of protein production and control. This
is followed by a short review of key concepts and tools from control and dynamical
systems theory, intended to provide insight into the main methodology described
in the text. Finally, we give a brief introduction to the field of synthetic biology,
which is the primary topic of the latter half of the text.

1.1 Systems Biology: Modeling, Analysis and the Role of
Feedback

At a variety of levels of organization—from molecular to cellular to organismal—
biology is becoming more accessible to approaches that are commonly used in
engineering: mathematical modeling, systems theory, computation and abstract ap-
proaches to synthesis. Conversely, the accelerating pace of discovery in biological
science is suggesting new design principles that may have important practical ap-
plications in man-made systems. This synergy at the interface of biology and en-
gineering offers unprecedented opportunities to meet challenges in both areas. The
guiding principles of feedback and control are central to many of the key ques-
tions in biological engineering and can play a enabling role in understanding the
complexity of biological systems.
In this section we summarize our view on the role that modeling and analysis

should (eventually) play in the study and understanding of biological systems, and
discuss some of the ways in which an understanding of feedback principles in biol-
ogy can help us better understand and design complex biomolecular circuits. There
are a wide variety of biological phenomena that provide a rich source of examples
for control, including gene regulation and signal transduction; hormonal, immuno-
logical, and cardiovascular feedback mechanisms; muscular control and locomo-
tion; active sensing, vision, and proprioception; attention and consciousness; and
population dynamics and epidemics. Each of these (and many more) provide op-
portunities to figure out what works, how it works and what can be done to affect
it. Our focus here is at the molecular scale, but the principles and approach that we
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describe can also be applied at larger time and length scales.

Modeling and analysis

Over the past several decades, there have been huge advances in modeling capabil-
ities for biological systems that have provided new insights into the complex inter-
actions of the molecular-scale processes that implement life. Reduced-order mod-
eling has become commonplace as a mechanism for describing and documenting
experimental results and high-dimensional stochastic models can now be simulated
in reasonable periods of time to explore underlying stochastic effects. Coupled with
our ability to collect large amounts of data from flow cytometry, micro-array anal-
ysis, single-cell microscopy and other modern experimental techniques, our under-
standing of biomolecular processes is advancing at a rapid pace.
Unfortunately, although models are becoming much more common in biolog-

ical studies, they are still far from playing the central role in explaining complex
biological phenomena. Although there are exceptions, the predominant use of mod-
els is to “document” experimental results: a hypothesis is proposed and tested us-
ing careful experiments, and then a model is developed to match the experimental
results and help demonstrate that the proposed mechanisms can lead to the ob-
served behavior. This necessarily limits our ability to explain complex phenomena
to those for which controlled experimental evidence of the desired phenomena can
be obtained.
This situation is much different than what is standard practice in the physi-

cal sciences and engineering. In those disciplines, experiments are routinely used
to help build models for individual components at a variety of levels of detail,
and then these component-level models are interconnected to obtain a system-level
model. This system-level model, carefully built to capture the appropriate level of
detail for a given question or hypothesis, is used to explain, predict and systemati-
cally analyze the behaviors of a system. Because of the ways in which models are
viewed, it becomes possible to prove (or invalidate) a hypothesis through analysis
of the model, and the fidelity of the models is such that decisions can be made
based on them. Indeed, in many areas of modern engineering—including electron-
ics, aeronautics, robotics and chemical processing, to name a few—models play a
primary role in the understanding of the underlying physics and/or chemistry, and
these models are used in predictive ways to explore design tradeoffs and failure
scenarios.
A key element in the successful application of modeling in engineering dis-

ciplines is the use of reduced-order models that capture the underlying dynamics
of the system without necessarily modeling every detail of the underlying mech-
anisms. The generation of these reduced-order models, either directly from data
or through analytical or computational methods, is critical in the effective applica-
tion of modeling since modeling of the detailed mechanisms produces high fidelity
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models that are too complicated to use with existing tools for analysis and design.
One area in which the development of reduced order models is fairly advanced is in
control theory, where input/output models such as transfer functions [1], describing
functions [31], Volterra series [41] and behavioral models [57] are used to capture
structured representations of dynamics at the appropriate level of fidelity for the
task at hand.
While developing predictive models and corresponding analysis tools for biol-

ogy is much more difficult, it is perhaps even more important that biology make
use of models, particularly reduced-order models, as a central element of under-
standing. Biological systems are by their nature extremely complex and can be-
have in counter-intuitive ways. Only by capturing the many interacting aspects of
the system in a formal model can we ensure that we are reasoning properly about
its behavior, especially in the presence of uncertainty. To do this will require sub-
stantial effort in building models that capture the relevant dynamics at the proper
scales (depending on the question being asked) as well as building an analytical
framework for answering questions of biological relevance.
The good news is that a variety of new techniques, ranging from experiments

to computation to theory, are enabling us to explore new approaches to modeling
that attempt to address some of these challenges. In this text we focus on the use
of a relevant classes of reduced-order models that can be used to capture many
phenomena of biological relevance.

Input/output formalisms for biomolecular modeling

A key challenge in developing models for any class of problems is the selection of
an appropriate mathematical framework for the models. Among the features that
we believe are important for a wide variety of biological systems are capturing the
temporal response of a biomolecular system to various inputs and understanding
how the underlying dynamic behavior leads to a given phenotypes. The models
should reflect the subsystem structure of the underlying dynamical system to al-
low prediction of results, but need not necessarily be mechanistically accurate at
a detailed biochemical level. We are particularly interested in those problems that
include a number of molecular “subsystems” that interact with each other, and so
our models should support a level of modularity (with the additional advantage of
allowing multiple groups to develop detailed models for each module that can be
combined to form more complex models of the interacting components). Since we
are likely to be building models based on high-throughput experiments, it is also
key that the models capture the measurable outputs of the systems.
For many of the systems that we are interested in, a good starting point is to

use reduced-order models consisting of nonlinear differential equations, possible
with some time delay. In this setting, the model of a given component i in a multi-
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component system might be modeled using a differential equation of the form

ẋi = Aixi+Ni(xi,Lijy
∗ j,θ)+Biui+Fiw,

yi =Cixi+Hiv y∗i(t) = yi(t−τi).
(1.1)

The internal state of the subsystem is captured by the state xi ∈ Rni , which might
capture the concentrations of various species and complexes as well as other in-
ternal variables required to describe the dynamics. The “outputs” of the system,
which describe those species (or other quantities) that interact with other subsys-
tems in the cell is captured by the variable yi ∈ Rpi . The internal dynamics consist
of a set of linear dynamics (Aixi) as well as nonlinear terms that depend both on
the internal state and the state of other subsystems (Ni( · )), where θ is a set of pa-
rameters that represent the context of the system (described in more detail below).
We also allow for the possibility of time delays (due to folding, transport or other
processes) and write y∗i for the “functional” output seen by other subsystems.
The coupling between subsystems is captured using a weighted graph, whose

elements are represented by the coefficients Lij of an interconnection matrix L. In
the simplest version of the model, we simply combine different outputs from other
modules in some linear combination to obtain the “input” Lijy

∗ j (summation over
repeated indices is assumed). More general interconnections are possible, including
allowing multiple outputs from different subsystems to interact in nonlinear ways
(such as one often sees on combinatorial promoters in gene regulatory networks).
Finally, in addition to the internal dynamics and nonlinear coupling, we sepa-

rately keep track of external inputs to the subsystem (Biui), stochastic disturbances
(Fiwi) and measurement noise (Hivi). We treat the external inputs ui as determinis-
tic variables (representing inducer concentrations, nutrient levels, temperature, etc)
and the disturbances and noise wi and vi as random processes (representing extrin-
sic and intrinsic stochasticity). If desired, the mappings from the various inputs to
the states an outputs, represented by the matrices B, F and H can also depend on
the system state x (resulting in additional nonlinearities).
This particular structure is useful because it captures a large number of mod-

eling frameworks in a single formalism. In particular, mass action kinetics and
chemical reaction networks can be represented by equating the stoichiometry ma-
trix with the interconnection matrix L and using the nonlinear terms to capture
the fluxes, with θ representing the rate constants. We can also represent typical
reduced-order models for transcriptional regulatory networks by letting the nonlin-
ear functions Ni represent various types of Hill functions and including the effects
of mRNA/protein production, degradation and dilution through the linear dynam-
ics. These two classes of systems can also be combined, allowing a very expressive
set of dynamics that is capable of capturing many relevant phenomena of interest
in molecular biology.
Figure 1.1 shows a graphical representation of this structure applied to a set of

M subsystems, where for simplicity, we omit the stochastic disturbances and mea-
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Figure 1.1: Modeling framework. The dynamics consist of a set of linear dynamics, rep-
resented by the multi-input, multi-output transfer function P(s), a static nonlinear map N
and an interconnection matrix L. Uncertainty is represented as unmodeled dynamics ∆,
crosstalk Λ and system context θ. The inputs and outputs to the system are denoted by u
and y.

surement noise. The linear dynamics of the system are captured via the frequency
response (represented in the diagram by its Laplace transform, P(s)). The intercon-
nection matrix L is a matrix that takes outputs from the individual subsystems as
outputs and provides linear combinations of these variables as potential inputs to
the nonlinear maps represented by N. This graphical representation makes more
evident the role of feedback through the interconnection matrix L.
In addition to the nominal dynamics described in equation (1.1), two other fea-

tures are present in Figure 1.1. The first is the uncertainty operator ∆, attached to
the linear dynamics block. This operator represents both parametric uncertainty
in the dynamics as well as unmodeled dynamics that have known (timescale de-
pendent) bounds. Tools for understanding this class of uncertainty are available
for both linear and nonlinear control systems and allow stability and performance
analyses in the presence of uncertainty. A similar term Λ is included in the inter-
connection matrix and represents “crosstalk” between subsystems. While existing
tools in distributed control systems do not formally handle crosstalk, we believe
that it will be important to capture its effects and that it will be possible to use tools
similar to those developed in control theory to analyze them.
One of the appealing features of this particular structure is that variants of it
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are well studied and characterized in the control and dynamical systems literature.
For example, the effect of the nonlinearities can be studied using the method of
harmonic balance [44] or the related technique of describing functions (see Sec-
tion 3.4). Describing function analysis allows prediction of stability boundaries
and the onset of limit cycles, as well as some characterization of robustness. Sim-
ilarly, in the absence of the nonlinearities and with simplifying assumptions on
the linear dynamics, the effect of the interconnection topology can be captured by
investigating the location of the eigenvalues of the graph Laplacian L [25].
Despite being a well-studied class of systems, there are still many open ques-

tions with this framework, especially in the context of biomolecular systems. For
example, a rigorous theory of the effects of crosstalk, the role of context on the
nonlinear elements, and combining the effects of interconnection, uncertainty and
nonlinearity is just emerging. Adding stochastic effects, either through the distur-
bance and noise terms, initial conditions or in a more fundamental way, is also
largely unexplored. And the critical need for methods for performing model re-
duction in a way that respects of the structure of the subsystems has only recently
begun to be explored. Nonetheless, many of these research directions are being
pursued and we attempt to provide some insights in this text into the underlying
techniques that are available.

Dynamic behavior and phenotype

One of the key needs in developing a more systematic approach to the use of mod-
els in biology is to become more rigorous about the various behaviors that are im-
portant for biological systems. One of the key concepts that needs to be formalized
is the notion of “phenotype”. This term is often associated with the existence of an
equilibrium point in a reduced-order model for a system, but clearly more complex
(non-equilibrium) behaviors can occur and the “phenotypic response” of a system
to an input may not be well-modeled by a steady operating condition. Even more
problematic is determining which regulatory structures are “active” in a given phe-
notype (versus those for which there is a regulatory pathway that is saturated and
hence not active).
In the context of the modeling framework described in equation (1.1) and Fig-

ure 1.1, it is possible to consider a working definition of phenotype in terms of
the patterns of the dynamics that are present. In the simplest case, consisting of
operation near equilibrium points, we can look at the effective gain of the different
nonlinearities as a measure of which regulatory pathways are “active” in a given
state. Consider, for example, labeling each nonlinearity in a system as being either
on, off or active. A nonlinearity that is on or off represents one in which changes
of the input produce very small deviations in the output, such as those that occur at
very high or low concentrations in interactions modeled by a Hill function. An ac-
tive nonlinearity is one in which there is a proportional response to changes in the
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input, with the slope of the nonlinearity giving the effective gain. In this setting, the
phenotype of the system would consist of both a description of the nominal con-
centrations of the measurable species (y) as well as the state of each nonlinearity
(on, off, active).
For more complex phenotypes, where the subsystems are not at a steady op-

erating point, one can consider the temporal patterns that are exhibited at various
points in Figure 1.1. This could correspond to traditional modal patterns such as
those that are obtained via either principle component analysis or balanced trunca-
tion (the latter being a generalization of the former), or temporal patterns of regu-
lation represented in the nonlinearities. Extending these ideas to consider changes
in context and changes in input combinations is harder still, but the structure of the
proposed representation presents several starting points for exploration.
Additional types of analysis that can be applied to systems of this form include

sensitivity analysis (dependence of solution properties on selected parameters), un-
certainty analysis (impact of disturbances, unknown parameters and unmodeled dy-
namics), bifurcation analysis (changes in phenotype as a function of input levels,
context or parameters) and probabilistic analysis (distributions of states as a func-
tion of distributions of parameters, initial conditions or inputs). In each of these
cases, there is a need to extend existing tools to exploit the particular structure of
the problems we consider, as well as modify the techniques to provide relevance to
biological questions.

Stochastic behavior

The role of feedback

One may view life in a cell as a huge “wireless” network of interactions among
proteins, DNA, and smaller molecules involved in signaling and energy transfer. As
a large system, the external inputs to a cell include physical signals (UV radiation,
temperature) as well as chemical signals (drugs, hormones, nutrients). Its outputs
include chemicals that affect other cells. Each cell can be thought of, in turn, as
composed of a large number of subsystems involved in cell growth, maintenance,
division and death. A typical diagram describing this complex set of interactions is
shown in Figure 1.2.
The study of cell networks leads to the formulation of a large number of ques-

tions, some of which we have already alluded to above. For example, what is spe-
cial about the information-processing capabilities, or input/output behaviors, of
such biological networks? What “modules” appear repeatedly in cellular signal-
ing cascades, and what are their system-theoretic properties? Inverse or “reverse
engineering” issues include the estimation of system parameters (such as reaction
constants) as well as the estimation of state variables (concentration of protein,
RNA, and other chemical substances) from input/output experiments.
One can also attempt to better understand the temporal properties of the various
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Figure 1.2: The wiring diagram of the growth signaling circuitry of the mammalian
cell [34].

cascades and feedback loops that appear in cellular signaling networks. Dynami-
cal properties such as stability and existence of oscillations in such networks are
of interest, and techniques from control theory such as the calculation of robust-
ness margins will likely play a central role in the future. At a more speculative
(but increasingly realistic) level, one wishes to study the possibility of using con-
trol strategies (both open and closed loop) for therapeutic purposes, such as drug
dosage scheduling.
From a theoretical perspective, feedback serves to minimize uncertainty and

increase accuracy in the presence of noise. The cellular environment is extremely
noisy in many ways, while at the same time variations in levels of certain chemi-
cals (such as transcriptional regulators) may be lethal to the cell. Feedback loops
are omnipresent in the cell and help regulate the appropriate variations. It is esti-
mated, for example, that in E. coli about 40% of transcription factors self-regulate.
One may ask whether the role of these feedback loops is indeed that of reducing
variability, as expected from principles of feedback theory. Recent work tested this
hypothesis in the context of tetracycline repressor protein (TetR) [11]. An experi-
ment was designed in which feedback loops in TetR production were modified by
genetic engineering techniques, and the increase in variability of gene expression
was correlated with lower feedback “gains,” verifying the role of feedback in re-
ducing the effects of uncertainty. Modern experimental techniques will afford the
opportunity for testing experimentally (and quantitatively) other theoretical predic-
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tions, and this may be expected to be an active area of study at the intersection of
control theory and molecular biology.
Another illustration of the interface between feedback theory and modern molec-

ular biology is provided by recent work on chemotaxis in bacterial motion. E. coli
moves, propelled by flagella, in response to gradients of chemical attractants or re-
pellents, performing two basic types of motions: tumbles (erratic turns, with little
net displacement) and runs. In this process, E. coli carries out a stochastic gradi-
ent search strategy: when sensing increased concentrations it stops tumbling (and
keeps running), but when it detects low gradients it resumes tumbling motions (one
might say that the bacterium goes into “search mode”).
The chemotactic signaling system, which detects chemicals and directs motor

actions, behaves roughly as follows: after a transient nonzero signal (“stop tum-
bling, run toward food”), issued in response to a change in concentration, the sys-
tem adapts and its signal to the motor system converges to zero (“OK, tumble”).
This adaptation happens for any constant nutrient level, even over large ranges of
scale and system parameters, and may be interpreted as robust (structurally stable)
rejection of constant disturbances. The internal model principle of control theory
implies (under appropriate technical conditions) that there must be an embedded
integral controller whenever robust constant disturbance rejection is achieved. Re-
cent models and experiments succeeded in finding, indeed, this embedded struc-
ture [10, 73].
This is only one of the many possible uses of control theoretic knowledge in

reverse engineering of cellular behavior. Some of the deepest parts of the theory
concern the necessary existence of embedded control structures, and in this man-
ner one may expect the theory to suggest appropriate mechanisms and validation
experiments for them.

1.2 Dynamics and Control in the Cell

The molecular processes inside a cell determine its behavior and are responsible
for metabolizing nutrients, generating motion, enabling procreation and carrying
out the other functions of the organism. In multi-cellular organisms, different types
of cells work together to enable more complex functions. In this section we briefly
describe the role of dynamics and control within a cell and discuss the basic pro-
cesses that govern its behavior and its interactions with its environment (including
other cells). We assume knowledge of the basics of cell biology at the level pro-
vided in Appendix A; a much more detailed introduction to the biology of the cell
and some of the processes described here can be found in standard textbooks on
cell biology such as Alberts et al. [2] or Phillips et al. [56]. (Readers who are fa-
miliar with the material at the level described in these latter references can skip this
section without any loss of continuity.)
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(a) Base pairs (b) Double stranded

Figure 1.3: Molecular structure of DNA. (a) Individual bases (nucleotides) that make up
DNA: adenine (A), cytocine (C), guanine (G) and thymine (T). (b) Double stranded DNA
formed from individual nucleotides, with A binding to T and C binding to G. Each strand
contains a 5’ and 3’ end, determined by the locations of the carbons where the next nu-
cleotide binds. Figure from Phillips, Kondev and Theriot [56]; used with permission of
Garland Science.

The central dogma: production of proteins

The genetic material inside a cell, encoded in its DNA, governs the response of a
cell to various conditions. DNA is organized into collections of genes, with each
gene encoding a corresponding protein that performs a set of functions in the cell.
The activation and repression of genes are determined through a series of complex
interactions that give rise to a remarkable set of circuits that perform the functions
required for life, ranging from basic metabolism to locomotion to procreation. Ge-
netic circuits that occur in nature are robust to external disturbances and can func-
tion in a variety of conditions. To understand how these processes occur (and some
of the dynamics that govern their behavior), it will be useful to present a relatively
detailed description of the underlying biochemistry involved in the production of
proteins.
DNA is double stranded molecule with the “direction” of each strand specified

by looking at the geometry of the sugars that make up its backbone (see Figure 1.3).
The complementary strands of DNA are composed of a sequence of nucleotides
that consist of a sugar molecule (deoxyribose) bound to one of 4 bases: adenine
(A), cytocine (C), guanine (G) and thymine (T). The coding strand (by convention
the top row of a DNA sequence when it is written in text form) is specified from the
5’ end of the DNA to the 3’ end of the DNA. (As described briefly in Appendix A,
5’ and 3’ refer to carbon locations on the deoxyribose backbone that are involved
in linking together the nucleotides that make up DNA.) The DNA that encodes
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Figure 1.4: Geometric structure of DNA. The layout of the DNA is shown at the top. RNA
polymerase binds to the promoter region of the DNA and transcribes the DNA starting at
the +1 side and continuing to the termination site.

proteins consists of a promoter region, regulator regions (described in more detail
below), a coding region and a termination region (see Figure 1.4).
RNA polymerase enzymes are present in the nucleus (for eukaryotes) or cyto-

plasm (for prokaryotes) and must localize and bind to the promoter region of the
DNA template. Once bound, the RNA polymerase “opens” the double stranded
DNA to expose the nucleotides that make up the sequence, as shown in Figure 1.5.
This reversible reaction, called isomerization, is said to transform the RNA poly-
merase and DNA from a closed complex to an open complex. After the open com-
plex is formed, RNA polymerase begins to travel down the DNA strand and con-
structs an mRNA sequence that matches the 5’ to 3’ sequence of the DNA to which
it is bound. By convention, we number the first base pair that is transcribed as ‘+1’
and the base pair prior to that (which is not transcribed) is labeled as ‘-1’. The
promoter region is often shown with the -10 and -35 regions indicated, since these
regions contain the nucleotide sequences to which the RNA polymerase enzyme
binds (the locations vary in different cell types, but these two numbers are typically
used).
The RNA strand that is produced by RNA polymerase is also a sequence of

nucleotides with a sugar backbone. The sugar for RNA is ribose instead of de-
oxyribose and mRNA typically exists as a single stranded molecule. Another dif-
ference is that the base thymine (T) is replaced by uracil (U) in RNA sequences.
RNA polymerase produces RNA one base pair at a time, as it moves from in the 5’
to 3’ direction along the DNA coding strand. RNA polymerase stops transcribing
DNA when it reaches a termination region (or terminator) on the DNA. This ter-
mination region consists of a sequence that causes the RNA polymerase to unbind
from the DNA. The sequence is not conserved across species and in many cells the
termination sequence is sometimes “leaky”, so that transcription will occasionally
occur across the terminator (we will see examples of this in the λ phage circuitry
described in Chapter 5).
Once the mRNA is produced, it must be translated into a protein. This process

is slightly different in prokaryotes and eukaryotes. In prokaryotes, there is a region
of the mRNA in which the ribosome (a molecular complex consisting of of both
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Figure 1.5: Production of messenger RNA from DNA. RNA polymerase, along with other
accessory factors, binds to the promoter region of the DNA and then “opens” the DNA to
begin transcription (initiation). As RNA polymerase moves down the DNA, producing an
RNA transcript (elongation), which is later translated into a protein. The process ends when
the RNA polymerase reaches the terminator (termination). Reproduced from Courey [16];
permission pending.

proteins and RNA) binds. This region, called the ribosome binding site (RBS), has
some variability between different cell species and between different genes in a
given cell. The Shine-Delgarno sequence, AGGAGG, is the consensus sequence
for the RBS. (A consensus sequence is a pattern of nucleotides that implements
a given function across multiple organisms; it is not exactly conserved, so some
variations in the sequence will be present from one organism to another.)
In eukaryotes, the RNA must undergo several additional steps before it is trans-

lated. The RNA sequence that has been created by RNA polymerase consists of
introns that must be spliced out of the RNA (by a molecular complex called the
spliceosome), leaving only the exons, which contain the coding sequence for the
protein. The term “pre-mRNA” is often used to distinguish between the raw tran-
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script and the spliced mRNA sequence, which is called “mature RNA”. In addition
to splicing, the mRNA is also modified to contain a poly(A) (polyadenine) tail, con-
sisting of a long sequence of adenine (A) nucleotides on the 3’ end of the mRNA.
This processed sequence is then transported out of the nucleus into the cytoplasm,
where the ribosomes can bind to it.

Unlike prokaryotes, eukaryotes do not have a well defined ribosome binding se-
quence and hence the process of the binding of the ribosome to the mRNA is more
complicated. The Kozak sequence A/GCCACCAUGG is the rough equivalent of
the ribosome binding site, where the underlined AUG is the start codon (described
below). However, mRNA lacking the Kozak sequence can also be translated.

Once the ribosome is bound to the mRNA, it begins the process of translation.
Proteins consist of a sequence of amino acids, with each amino acid specified by
a codon that is used by the ribosome in the process of translation. Each codon
consists of three base pairs and corresponds to one of the 20 amino acids or a “stop”
codon. The genetic code mapping between codons and amino acids is shown in
Table A.1. The ribosome translates each codon into the corresponding amino acid
using transfer RNA (tRNA) to integrate the appropriate amino acid (which binds
to the tRNA) into the polypeptide chain, as shown in Figure 1.6. The start codon
(AUG) specifies the location at which translation begins, as well as coding for the
amino acid methionine (a modified form is used in prokaryotes). All subsequent
codons are translated by the ribosome into the corresponding amino acid until it
reaches one of the stop codons (typically UAA, UAG and UGA).

The sequence of amino acids produced by the ribosome is a polypeptide chain
that folds on itself to form a protein. The process of folding is complicated and
involves a variety of chemical interactions that are not completely understood. Ad-
ditional post-translational processing of the protein can also occur at this stage,
until a folded and functional protein is produced. It is this molecule that is able to
bind to other species in the cell and perform the chemical reactions that underly
the behavior of the organism.

Each of the processes involved in transcription, translation and folding of the
protein takes time and affects the dynamics of the cell. Table 1.1 shows the rates of
some of the key processes involved in the production of proteins. It is important to
note that each of these steps is highly stochastic, with molecules binding together
based on some propensity that depends on the binding energy but also the other
molecules present in the cell. In addition, although we have described everything
as a sequential process, each of the steps of transcription, translation and folding
are happening simultaneously. In fact, there can be multiple RNA polymerases that
are bound to the DNA, each producing a transcript. In prokaryotes, as soon as
the ribosome binding site has been transcribed, the ribosome can bind and begin
translation. It is also possible to have multiple ribosomes bound to a single piece of
mRNA. Hence the overall process can be extremely stochastic and asynchronous.
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Figure 1.6: Translation is the process of translating the sequence of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protein synthesis. The genetic
code describes the relationship between the sequence of base pairs in a gene and the cor-
responding amino acid sequence that it encodes. In the cell cytoplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assemble the protein. Figure and
caption courtesy the National Human Genome Research Institute.

Transcriptional regulation of protein production

There are a variety of mechanisms in the cell to regulate the production of proteins.
These regulatory mechanisms can occur at various points in the overall process that
produces the protein. Transcriptional regulation refers to regulatory mechanisms
that control whether or not a gene is transcribed.

Table 1.1: Rates of core processes involved in the creation of proteins from DNA in E. coli.

Process Characteristic rate Source
mRNA production 10–30 bp/sec Vogel and Jensen
Protein production 10–30 aa/sec PKT08
Protein folding ???
mRNA half life ∼ 100 sec YM03
Cell division time ∼ 3000 sec ???
Protein half life ∼ 5×104 sec YM03
Protein diffusion along DNA up to 104 bp/sec
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(a) Repression of gene expression
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(b) Examples of repressors

Figure 1.7: Repression of gene expression. Figure from Phillips, Kondev and Theriot [56];
used with permission of Garland Science.

The simplest forms of transcriptional regulation are repression and activation,
which are controlled through transcription factors. In the case of repression, the
presence of a transcription factor (often a protein that binds near the promoter)
turns off the transcription of the gene and this type of regulation is often called
negative regulation or “down regulation”. In the case of activation (or positive reg-
ulation), transcription is enhanced when an activator protein binds to the promoter
site (facilitating binding of the RNA polymerase).

A common mechanism for repression is that a protein binds to a region of DNA
near the promoter and blocks RNA polymerase from binding. The region of DNA
in which the repressor protein binds is called an operator region (see Figure 1.7a).
If the operator region overlaps the promoter, then the presence of a protein at the
promoter “blocks” the DNA at that location and transcription cannot initiate, as
illustrated in Figure 1.7a. Repressor proteins often bind to DNA as dimers or pairs
of dimers (effectively tetramers). Figure 1.7b shows some examples of repressors
bound to DNA.
A related mechanism for repression is DNA looping. In this setting, two repres-

sor complexes (often dimers) bind in different locations on the DNA and then bind
to each other. This can create a loop in the DNA and block the ability of RNA poly-
merase to bind to the promoter, thus inhibiting transcription. Figure 1.8 shows an
example of this type of repression, in the lac operon. (An operon is a set of genes
that is under control of a single promoter; this is discussed in more detail below.)
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(a) DNA looping

./intro/figures/PKT08_08_19.eps

(b) lac repressor

Figure 1.8: Repression via DNA looping. Figure from Phillips, Kondev and Theriot [56];
used with permission of Garland Science.

A feature that is present in some types of repressor proteins is the existence of
an inducer molecule that combines with the protein to either activate or inactivate
its repression function. A positive inducer is a molecule that must be present in
order for repression to occur. A negative inducer is one in which the presence of
the inducer molecule blocks repression, either by changing the shape of the repres-
sor protein or by blocking active sites on the repressor protein that would normally
bind to the DNA. Figure 1.9a summarizes the various possibilities. Common ex-
amples of repressor-inducer pairs include lacI and lactose (or IPTG), tetR and ATc,
and tryptophan repressor and tryptophan. Lactose/IPTG and ATc are both negative
inducers, so their presence causes the otherwise repressed gene to be expressed,
while tryptophan is a positive inducer.

The process of activation of a gene requires that an activator protein be present
in order for transcription to occur. In this case, the protein must work to either
recruit or enable RNA polymerase to begin transcription.
The simplest form of activation involves a protein binding to the DNA near

the promoter in such a way that the combination of the activator and the pro-
moter sequence bind RNA polymerase. One of the most well-studied examples
is the catabolite activator protein (CAP)—also sometimes called the cAMP recep-
tor protein (CRP)—shown in Figure 1.10. Like repressors, many activators have
inducers, which can act in either a positive or negative fashion (see Figure 1.9b).
For example, cyclic AMP (cAMP) acts as a positive inducer for CAP.
Another mechanism for activation of transcription, specific to prokaryotes, is

the use of sigma factors. Sigma factors are part of a modular set of proteins that
bind to RNA polymerase and form the molecular complex that performs transcrip-
tion. Different sigma factors enable RNA polymerase to bind to different promot-
ers, so the sigma factor acts as a type of activating signal for transcription. Table 1.2
lists some of the common sigma factors in bacteria. One of the uses of sigma fac-
tors is to produce certain proteins only under special conditions, such as when the
cell undergoes heat shock (discussed in more detail in Chapter 5). Another use is to
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Figure 1.9: Effects of inducers. Reproduced from Alberts et al. [2]; permission pending.

control the timing of the expression of certain genes, as illustrated in Figure 1.11.

In addition to repressors and activators, many genetic circuits also make use of
combinatorial promoters that can act as either repressors or activators for genes.
This allows genes to be switched on and off based on more complex conditions,
represented by the concentrations of two or more activators or repressors.
Figure 1.12 shows one of the classic examples, a promoter for the lac system.

In the lac system, the expression of genes for metabolizing lactose are under the
control of a single (combinatorial) promoter. CAP, which is positively induced by
cAMP, acts as an activator and LacI (also called “lac repressor”), which is neg-
atively induced by lactose, acts as a repressor. In addition, the inducer cAMP is

Table 1.2: Sigma factors in E. coli [2].
Sigma factor Promoters recognized
σ70 most genes
σ32 genes associated with heat shock
σ28 genes involved in stationary phase and stress response
σ28 genes involved in motility and chemotaxis
σ24 genes dealing with misfolded proteins in the periplasm
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(a) Activation mechanism
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(b) Examples of activators

Figure 1.10: Activation of gene expression. Figure from Phillips, Kondev and Theriot [56];
used with permission of Garland Science.

expressed only when glucose levels are low. The resulting behavior is that the pro-
teins for metabolizing lactose are expressed only in conditions where there is no
glucose (so CAP is active) and lactose is present.
More complicated combinatorial promoters can also be used to control tran-

scription in two different directions, a example that is found in some viruses.
A final method of activation in prokaryotes is the use of antitermination. The

basic mechanism involves a protein that binds to DNA and deactivates a site that
would normally serve as a termination site for RNA polymerase. Additional genes
are located downstream from the termination site, but without a promoter region.
Thus, in the presence of the anti-terminator protein, these genes are not expressed
(or expressed with low probability). However, when the antitermination protein
is present, the RNA polymerase maintains (or regains) its contact with the DNA

./intro/figures/MBoC09_07_43.eps

Figure 1.11: Use of sigma factors to controlling the timing of expression. Reproduced from
Alberts et al. [2]; permission pending.
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Figure 1.12: Combinatorial logic for the lac operator. Figure from Phillips, Kondev and
Theriot [56]; used with permission of Garland Science.

and expression of the downstream genes is enhanced. In this way, antitermination
allows downstream genes to be regulated by repressing “premature” termination.
An example of an antitermination protein is the protein N in phage λ, which binds
to a region of DNA labeled Nut (for N utilization), as shown in Figure 1.13 and
discussed in more detail in Section 5.3.

./intro/figures/GNM93-antitermination.eps

Figure 1.13: Antitermination. Reproduced from [33]; permission pending.
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Figure 1.14: Phosphorylation of a protein via a kinase. Reproduced from Madhani [48];
permission pending.

Post-transcriptional regulation of protein production

In addition to regulation that controls transcription of DNA into mRNA, a variety
of mechanisms are available for controlling expression after mRNA is produced.
These include control of splicing and transport from the nucleus (in eukaryotes),
the use of various secondary structure patterns in mRNA that can interfere with
ribosomal binding or cleave the mRNA into multiple pieces, and targeted degrada-
tion of mRNA. Once the polypeptide chain is formed, additional mechanisms are
available that regulate the folding of the protein as well as its shape and activity
level. We briefly describe some of the major mechanisms here.

Material to be written.

One of the most common types of post-transcriptional regulation is through the
phosphorylation of proteins. Phosphorylation is an enzymatic process in which a
phosphate group is added to a protein and the resulting conformation of the protein
changes, usually from an inactive configuration to an active one. The enzyme that
adds the phosphate group is called a kinase (or sometimes a phosphotransferase)
and it operates by transferring a phosphate group from a bound ATPmolecule to the
protein, leaving behind ADP and the phosphorylated protein. Dephosphorylation
is a complementary enzymatic process that can remove a phosphate group from
a protein. The enzyme that performs dephosphorylation is called a phosphatase.
Figure 1.14 shows the process of phosphorylation in more detail.
Phosphorylation is often used as a regulatory mechanism, with the phosphory-

lated version of the protein being the active conformation. Since phosphorylation
and dephosphorylation can occur much more quickly than protein production and
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degradation, it is used in my biological circuits in which a rapid response is re-
quired. One common motif is that a signaling protein will bind to a ligand and the
resulting allosteric change allows the signaling protein to serve as a kinase. The
newly active kinase then phosphorylates a second protein, which modulates other
functions in the cell. Phosphorylation cascades can also be used to amplify the
effect of the original signal; we will describe this in more detail in Section 2.5.
Kinases in cells are usually very specific to a given protein, allowing detailed

signaling networks to be constructed. Phosphatases, on the other hand, are much
less specific, and a given phosphatase species may desphosphorylate many different
types of proteins. The combined action of kinases and phosphatases is important in
signaling since the only way to deactivate a phosphorylated protein is by removing
the phosphate group. Thus phosphatases are constantly “turning off” proteins, and
the protein is activated only when sufficient kinase activity is present.
Phosphorylation of a protein occurs by the addition of a charged phosphate

(PO4) group to the serine (Ser), threonine (Thr) or tyrosine (Tyr) amino acids. Sim-
ilar covalent modifications can occur by the attachment of other chemical groups
to select amino acids. Methylation occurs when a methyl group (CH3) is added
to lysine (Lys) and is used for modulation of receptor activity and in modifying
histones that are used in chromatin structures. Acetylation occurs when an acetyl
group (COCH3) is added to lysine and is also used to modify histones. Ubiquitina-
tion refers to the addition of a small protein, ubiquitin, to lysine; the addition of a
polyubiquitin chain to a protein targets it for degradation.

1.3 Control and Dynamical Systems Tools [AM08]

In this section we present a brief introduction to some of the key concepts from
control and dynamical systems that are relevant for the study of biological systems.
More details on the application of specific concepts listed here to biomolecular
systems is provided in the main body of the text. Readers who are familiar with
introductory concepts in dynamical systems and control, at the level described in
Åströ and Murray [1] for example, can skip this section.

Dynamics, feedback and control

A dynamical system is a system whose behavior changes over time, often in re-
sponse to external stimulation or forcing. The term feedback refers to a situation
in which two (or more) dynamical systems are connected together such that each
system influences the other and their dynamics are thus strongly coupled. Simple
causal reasoning about a feedback system is difficult because the first system in-
fluences the second and the second system influences the first, leading to a circular
argument. This makes reasoning based on cause and effect tricky, and it is neces-
sary to analyze the system as a whole. A consequence of this is that the behavior
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Figure 1.15: Open and closed loop systems. (a) The output of system 1 is used as the input
of system 2, and the output of system 2 becomes the input of system 1, creating a closed
loop system. (b) The interconnection between system 2 and system 1 is removed, and the
system is said to be open loop.

of feedback systems is often counterintuitive, and it is therefore necessary to resort
to formal methods to understand them.
Figure 1.15 illustrates in block diagram form the idea of feedback. We often

use the terms open loop and closed loop when referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a cycle, as
shown in Figure 1.15a. If we break the interconnection, we refer to the configura-
tion as an open loop system, as shown in Figure 1.15b.
A major source of examples of feedback systems is biology. Biological sys-

tems make use of feedback in an extraordinary number of ways, on scales ranging
from molecules to cells to organisms to ecosystems. One example is the regulation
of glucose in the bloodstream through the production of insulin and glucagon by
the pancreas. The body attempts to maintain a constant concentration of glucose,
which is used by the body’s cells to produce energy. When glucose levels rise (after
eating a meal, for example), the hormone insulin is released and causes the body to
store excess glucose in the liver. When glucose levels are low, the pancreas secretes
the hormone glucagon, which has the opposite effect. Referring to Figure 1.15, we
can view the liver as system 1 and the pancreas as system 2. The output from the
liver is the glucose concentration in the blood, and the output from the pancreas
is the amount of insulin or glucagon produced. The interplay between insulin and
glucagon secretions throughout the day helps to keep the blood-glucose concentra-
tion constant, at about 90 mg per 100 mL of blood.
Feedback has many interesting properties that can be exploited in designing sys-

tems. As in the case of glucose regulation, feedback can make a system resilient
toward external influences. It can also be used to create linear behavior out of non-
linear components, a common approach in electronics. More generally, feedback
allows a system to be insensitive both to external disturbances and to variations in
its individual elements.
Feedback has potential disadvantages as well. It can create dynamic instabilities

in a system, causing oscillations or even runaway behavior. Another drawback,
especially in engineering systems, is that feedback can introduce unwanted sensor
noise into the system, requiring careful filtering of signals. It is for these reasons
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that a substantial portion of the study of feedback systems is devoted to developing
an understanding of dynamics and a mastery of techniques in dynamical systems.
Feedback systems are ubiquitous in both natural and engineered systems. Con-

trol systems maintain the environment, lighting and power in our buildings and
factories; they regulate the operation of our cars, consumer electronics and manu-
facturing processes; they enable our transportation and communications systems;
and they are critical elements in our military and space systems. For the most part
they are hidden from view, buried within the code of embedded microprocessors,
executing their functions accurately and reliably. Feedback has also made it pos-
sible to increase dramatically the precision of instruments such as atomic force
microscopes (AFMs) and telescopes.
In nature, homeostasis in biological systems maintains thermal, chemical and

biological conditions through feedback. At the other end of the size scale, global
climate dynamics depend on the feedback interactions between the atmosphere, the
oceans, the land and the sun. Ecosystems are filled with examples of feedback due
to the complex interactions between animal and plant life. Even the dynamics of
economies are based on the feedback between individuals and corporations through
markets and the exchange of goods and services.
The mathematical study of the behavior of feedback systems is an area known

as control theory. The term control has many meanings and often varies between
communities. In engineering applications, we typical define control to be the use
of algorithms and feedback in engineered systems. Thus, control includes such ex-
amples as feedback loops in electronic amplifiers, setpoint controllers in chemical
and materials processing, “fly-by-wire” systems on aircraft and even router proto-
cols that control traffic flow on the Internet. Emerging applications include high-
confidence software systems, autonomous vehicles and robots, real-time resource
management systems and biologically engineered systems. At its core, control is an
information science and includes the use of information in both analog and digital
representations.
A modern engineering control system senses the operation of a system, com-

pares it against the desired behavior, computes corrective actions based on a model
of the system’s response to external inputs and actuates the system to effect the
desired change. This basic feedback loop of sensing, computation and actuation is
the central concept in control. The key issues in designing control logic are ensur-
ing that the dynamics of the closed loop system are stable (bounded disturbances
give bounded errors) and that they have additional desired behavior (good distur-
bance attenuation, fast responsiveness to changes in operating point, etc). These
properties are established using a variety of modeling and analysis techniques that
capture the essential dynamics of the system and permit the exploration of possible
behaviors in the presence of uncertainty, noise and component failure.
A typical example of a control system is shown in Figure 1.16. The basic el-

ements of sensing, computation and actuation are clearly seen. In modern control
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Figure 1.16: Components of a computer-controlled system. The upper dashed box rep-
resents the process dynamics, which include the sensors and actuators in addition to the
dynamical system being controlled. Noise and external disturbances can perturb the dy-
namics of the process. The controller is shown in the lower dashed box. It consists of a
filter and analog-to-digital (A/D) and digital-to-analog (D/A) converters, as well as a com-
puter that implements the control algorithm. A system clock controls the operation of the
controller, synchronizing the A/D, D/A and computing processes. The operator input is
also fed to the computer as an external input.

systems, computation is typically implemented on a digital computer, requiring the
use of analog-to-digital (A/D) and digital-to-analog (D/A) converters. Uncertainty
enters the system through noise in sensing and actuation subsystems, external dis-
turbances that affect the underlying system operation and uncertain dynamics in the
system (parameter errors, unmodeled effects, etc). The algorithm that computes the
control action as a function of the sensor values is often called a control law. The
system can be influenced externally by an operator who introduces command sig-
nals to the system.
Control engineering relies on and shares tools from physics (dynamics and

modeling), computer science (information and software) and operations research
(optimization, probability theory and game theory), but it is also different from
these subjects in both insights and approach.
Perhaps the strongest area of overlap between control and other disciplines is in

the modeling of physical systems, which is common across all areas of engineering
and science. One of the fundamental differences between control-oriented model-
ing and modeling in other disciplines is the way in which interactions between
subsystems are represented. Control relies on a type of input/output modeling that
allows many new insights into the behavior of systems, such as disturbance attenu-
ation and stable interconnection. Model reduction, where a simpler (lower-fidelity)
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Figure 1.17: A feedback system for controlling the speed of a vehicle. In the block diagram
on the left, the speed of the vehicle is measured and compared to the desired speed within
the “Compute” block. Based on the difference in the actual and desired speeds, the throttle
(or brake) is used to modify the force applied to the vehicle by the engine, drivetrain and
wheels. The figure on the right shows the response of the control system to a commanded
change in speed from 25 m/s to 30 m/s. The three different curves correspond to differing
masses of the vehicle, between 1000 and 3000 kg, demonstrating the robustness of the
closed loop system to a very large change in the vehicle characteristics.

description of the dynamics is derived from a high-fidelity model, is also naturally
described in an input/output framework. Perhaps most importantly, modeling in a
control context allows the design of robust interconnections between subsystems,
a feature that is crucial in the operation of all large engineered systems.

Feedback properties

Feedback is a powerful idea that is used extensively in natural and technological
systems. The principle of feedback is simple: implement correcting actions based
on the difference between desired and actual performance. In engineering, feed-
back has been rediscovered and patented many times in many different contexts.
The use of feedback has often resulted in vast improvements in system capability,
and these improvements have sometimes been revolutionary, as discussed above.
The reason for this is that feedback has some truly remarkable properties, which
we discuss briefly here.

Robustness to Uncertainty. One of the key uses of feedback is to provide robust-
ness to uncertainty. By measuring the difference between the sensed value of a
regulated signal and its desired value, we can supply a corrective action. If the sys-
tem undergoes some change that affects the regulated signal, then we sense this
change and try to force the system back to the desired operating point. This is pre-
cisely the effect that Watt exploited in his use of the centrifugal governor on steam
engines.
As an example of this principle, consider the simple feedback system shown in

Figure 1.17. In this system, the speed of a vehicle is controlled by adjusting the
amount of gas flowing to the engine. Simple proportional-integral (PI) feedback
is used to make the amount of gas depend on both the error between the current
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and the desired speed and the integral of that error. The plot on the right shows
the results of this feedback for a step change in the desired speed and a variety of
different masses for the car, which might result from having a different number of
passengers or towing a trailer. Notice that independent of the mass (which varies by
a factor of 3!), the steady-state speed of the vehicle always approaches the desired
speed and achieves that speed within approximately 5 s. Thus the performance of
the system is robust with respect to this uncertainty.
Another early example of the use of feedback to provide robustness is the neg-

ative feedback amplifier. When telephone communications were developed, ampli-
fiers were used to compensate for signal attenuation in long lines. A vacuum tube
was a component that could be used to build amplifiers. Distortion caused by the
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-
jor breakthrough was the invention of the feedback amplifier in 1927 by Harold S.
Black, an electrical engineer at Bell Telephone Laboratories. Black used negative
feedback, which reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier.

Design of Dynamics. Another use of feedback is to change the dynamics of a sys-
tem. Through feedback, we can alter the behavior of a system to meet the needs of
an application: systems that are unstable can be stabilized, systems that are slug-
gish can be made responsive and systems that have drifting operating points can
be held constant. Control theory provides a rich collection of techniques to analyze
the stability and dynamic response of complex systems and to place bounds on the
behavior of such systems by analyzing the gains of linear and nonlinear operators
that describe their components.
An example of the use of control in the design of dynamics comes from the area

of flight control. The following quote, from a lecture presented by Wilbur Wright
to the Western Society of Engineers in 1901 [50], illustrates the role of control in
the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at sufficient speed, will not only sustain the
weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of sufficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the age
of flying will have arrived, for all other difficulties are of minor impor-
tance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
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Figure 1.18: Aircraft autopilot system. The Sperry autopilot (left) contained a set of four
gyros coupled to a set of air valves that controlled the wing surfaces. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able to maintain level
flight as a mechanic walked on the wing (right) [39].

an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
tried to build stable airplanes. These would have been easier to fly, but because of
their poor maneuverability they could not be brought up into the air. By using their
insight and skillful experiments the Wright brothers made the first successful flight
at Kitty Hawk in 1903.
Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-

tion to find a mechanism that would stabilize an aircraft. Such a device, invented
by Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized
pendulum to provide an indication of the vertical. He then arranged a feedback
mechanism that would pull the stick to make the plane go up if it was pointing
down, and vice versa. The Sperry autopilot was the first use of feedback in aero-
nautical engineering, and Sperry won a prize in a competition for the safest airplane
in Paris in 1914. Figure 1.18 shows the Curtiss seaplane and the Sperry autopilot.
The autopilot is a good example of how feedback can be used to stabilize an unsta-
ble system and hence “design the dynamics” of the aircraft.
One of the other advantages of designing the dynamics of a device is that it

allows for increased modularity in the overall system design. By using feedback to
create a system whose response matches a desired profile, we can hide the com-
plexity and variability that may be present inside a subsystem. This allows us to
create more complex systems by not having to simultaneously tune the responses
of a large number of interacting components. This was one of the advantages of
Black’s use of negative feedback in vacuum tube amplifiers: the resulting device
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had a well-defined linear input/output response that did not depend on the individ-
ual characteristics of the vacuum tubes being used.

Drawbacks of Feedback. While feedback has many advantages, it also has some
drawbacks. Chief among these is the possibility of instability if the system is not
designed properly. We are all familiar with the undesireable effects of feedback
when the amplification on a microphone is turned up too high in a room. This is an
example of feedback instability, something that we obviously want to avoid. This
is tricky because we must design the system not only to be stable under nominal
conditions but also to remain stable under all possible perturbations of the dynam-
ics.
In addition to the potential for instability, feedback inherently couples different

parts of a system. One common problem is that feedback often injects measurement
noise into the system. Measurements must be carefully filtered so that the actuation
and process dynamics do not respond to them, while at the same time ensuring that
the measurement signal from the sensor is properly coupled into the closed loop
dynamics (so that the proper levels of performance are achieved).
Another potential drawback of control is the complexity of embedding a control

system in a product. While the cost of sensing, computation and actuation has de-
creased dramatically in the past few decades, the fact remains that control systems
are often complicated, and hence one must carefully balance the costs and benefits.
An early engineering example of this is the use of microprocessor-based feedback
systems in automobiles.The use of microprocessors in automotive applications be-
gan in the early 1970s and was driven by increasingly strict emissions standards,
which could be met only through electronic controls. Early systems were expensive
and failed more often than desired, leading to frequent customer dissatisfaction. It
was only through aggressive improvements in technology that the performance,
reliability and cost of these systems allowed them to be used in a transparent fash-
ion. Even today, the complexity of these systems is such that it is difficult for an
individual car owner to fix problems.

Feedforward. Feedback is reactive: there must be an error before corrective actions
are taken. However, in some circumstances it is possible to measure a disturbance
before it enters the system, and this information can then be used to take corrective
action before the disturbance has influenced the system. The effect of the distur-
bance is thus reduced by measuring it and generating a control signal that coun-
teracts it. This way of controlling a system is called feedforward. Feedforward is
particularly useful in shaping the response to command signals because command
signals are always available. Since feedforward attempts to match two signals, it
requires good process models; otherwise the corrections may have the wrong size
or may be badly timed.
The ideas of feedback and feedforward are very general and appear in many dif-

ferent fields. In economics, feedback and feedforward are analogous to a market-
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based economy versus a planned economy. In business, a feedforward strategy
corresponds to running a company based on extensive strategic planning, while a
feedback strategy corresponds to a reactive approach. In biology, feedforward has
been suggested as an essential element for motion control in humans that is tuned
during training. Experience indicates that it is often advantageous to combine feed-
back and feedforward, and the correct balance requires insight and understanding
of their respective properties.

Positive Feedback. In most of control theory, the emphasis is on the role of negative
feedback, in which we attempt to regulate the system by reacting to disturbances in
a way that decreases the effect of those disturbances. In some systems, particularly
biological systems, positive feedback can play an important role. In a system with
positive feedback, the increase in some variable or signal leads to a situation in
which that quantity is further increased through its dynamics. This has a destabi-
lizing effect and is usually accompanied by a saturation that limits the growth of
the quantity. Although often considered undesirable, this behavior is used in bio-
logical (and engineering) systems to obtain a very fast response to a condition or
signal.
One example of the use of positive feedback is to create switching behavior,

in which a system maintains a given state until some input crosses a threshold.
Hysteresis is often present so that noisy inputs near the threshold do not cause the
system to jitter. This type of behavior is called bistability and is often associated
with memory devices.

Simple forms of feedback

The idea of feedback to make corrective actions based on the difference between
the desired and the actual values of a quantity can be implemented in many different
ways. The benefits of feedback can be obtained by very simple feedback laws such
as on-off control, proportional control and proportional-integral-derivative control.
In this section we provide a brief preview of some of these topics to provide a basis
of understanding for their use in the chapters that follows.

On-Off Control. A simple feedback mechanism can be described as follows:

u =






umax if e > 0
umin if e < 0,

(1.2)

where the control error e = r− y is the difference between the reference signal (or
command signal) r and the output of the system y and u is the actuation command.
Figure 1.19a shows the relation between error and control. This control law implies
that maximum corrective action is always used.
The feedback in equation (1.2) is called on-off control. One of its chief advan-

tages is that it is simple and there are no parameters to choose. On-off control often
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Figure 1.19: Input/output characteristics of on-off controllers. Each plot shows the input on
the horizontal axis and the corresponding output on the vertical axis. Ideal on-off control is
shown in (a), with modifications for a dead zone (b) or hysteresis (c). Note that for on-off
control with hysteresis, the output depends on the value of past inputs.

succeeds in keeping the process variable close to the reference, such as the use of
a simple thermostat to maintain the temperature of a room. It typically results in
a system where the controlled variables oscillate, which is often acceptable if the
oscillation is sufficiently small.
Notice that in equation (1.2) the control variable is not defined when the error

is zero. It is common to make modifications by introducing either a dead zone or
hysteresis (see Figure 1.19b and 1.19c).
PID Control. The reason why on-off control often gives rise to oscillations is that
the system overreacts since a small change in the error makes the actuated variable
change over the full range. This effect is avoided in proportional control, where the
characteristic of the controller is proportional to the control error for small errors.
This can be achieved with the control law

u =







umax if e ≥ emax
kpe if emin < e < emax
umin if e ≤ emin,

(1.3)

where kp is the controller gain, emin = umin/kp and emax = umax/kp. The interval
(emin,emax) is called the proportional band because the behavior of the controller
is linear when the error is in this interval:

u = kp(r− y) = kpe if emin ≤ e ≤ emax. (1.4)

While a vast improvement over on-off control, proportional control has the
drawback that the process variable often deviates from its reference value. In partic-
ular, if some level of control signal is required for the system to maintain a desired
value, then we must have e ! 0 in order to generate the requisite input.
This can be avoided by making the control action proportional to the integral of

the error:
u(t) = ki

∫ t

0
e(τ)dτ. (1.5)
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Figure 1.20: Action of a PID controller. At time t, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedback is based on the integral
of the error up to time t (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of change of the error. Td
represents the approximate amount of time in which the error is projected forward (see
text).

This control form is called integral control, and ki is the integral gain. It can be
shown through simple arguments that a controller with integral action has zero
steady-state error. The catch is that there may not always be a steady state because
the system may be oscillating.
An additional refinement is to provide the controller with an anticipative abil-

ity by using a prediction of the error. A simple prediction is given by the linear
extrapolation

e(t+Td) ≈ e(t)+Td
de(t)
dt
,

which predicts the error Td time units ahead. Combining proportional, integral and
derivative control, we obtain a controller that can be expressed mathematically as

u(t) = kpe(t)+ ki
∫ t

0
e(τ)dτ+ kd

de(t)
dt
. (1.6)

The control action is thus a sum of three terms: the past as represented by the
integral of the error, the present as represented by the proportional term and the
future as represented by a linear extrapolation of the error (the derivative term).
This form of feedback is called a proportional-integral-derivative (PID) controller
and its action is illustrated in Figure 1.20.
A PID controller is very useful and is capable of solving a wide range of con-

trol problems. More than 95% of all industrial control problems are solved by PID
control, although many of these controllers are actually proportional-integral (PI)
controllers because derivative action is often not included [21]. There are also more
advanced controllers, which differ from PID controllers by using more sophisti-
cated methods for prediction.
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Figure 1.21: Milestones in the history of synthetic biology.

1.4 From Systems to Synthetic Biology

The rapidly growing field of synthetic biology seeks to use biological principles
and processes to build useful engineering devices and systems. Applications of
synthetic biology range from materials production (drugs, biofuels) to biological
sensing and diagnostics (chemical detection, medical diagnostics) to biological ma-
chines (bioremediation, nanoscale robotics). Like many other fields at the time of
their infancy (electronics, software, networks), it is not yet clear where synthetic
biology will have its greatest impact. However, recent advances such as the abil-
ity to “boot up” a chemically synthesized genome [27] demonstrate the ability to
synthesize systems that offer the possibility of creating devices with substantial
functionality. At the same time, the tools and processes available to design systems
of this complexity are much more primitive, and de novo synthetic circuits typi-
cally use a tiny fraction of the number of genetic elements of even the smallest
microorganisms.
Several scientific and technological developments over the past four decades

have set the stage for the design and fabrication of early synthetic biomolecular
circuits (see Figure 1.21). An early milestone in the history of synthetic biology
can be traced back to the discovery of mathematical logic in gene regulation. In
their 1961 paper, Jacob and Monod introduced for the first time the idea of gene
expression regulation through transcriptional feedback [42]. Only a few years later
(1969), restriction enzymes that cut double-stranded DNA at specific recognition
sites were discovered by Arber and co-workers [4]. These enzymes were a major
enabler of recombinant DNA technology, in which genes from one organism are
extracted and spliced into the chromosome of another. One of the most celebrated
products of this technology was the large scale production of insulin by employing
E. coli bacteria as a cell factory [72].
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Another key innovation was the development of the polymerase chain reac-
tion (PCR), devised in the 1980s, which allows exponential amplification of small
amounts of DNA and can be used to obtain sufficient quantities for use in a variety
of molecular biology laboratory protocols where higher concentrations of DNA are
required. Using PCR, it is possible to “copy” genes and other DNA sequences out
of their host organisms.
The developments of recombinant DNA technology, PCR and artificial synthe-

sis of DNA provided the ability to “cut and paste” natural or synthetic promoters
and genes in almost any fashion. This cut and paste procedure is called cloning and
consists of four primary steps: fragmentation, ligation, transfection and screening.
The DNA of interest is first isolated using restriction enzymes and/or PCR amplifi-
cation. Then, a ligation procedure is employed in which the amplified fragment is
inserted into a vector. The vector is often a piece of circular DNA, called a plasmid,
that has been linearized by means of restriction enzymes that cleave it at appropri-
ate restriction sites. The vector is then incubated with the fragment of interest with
an enzyme called DNA ligase, producing a single piece of DNA with the target
DNA inserted. The next step is to transfect (or transform) the DNA into living
cells, where the natural replication mechanisms of the cell will duplicate the DNA
when the cell divides. This process does not transfect all cells, and so a selection
procedure if required to isolate those cells that have the desired DNA inserted in
them. This is typically done by using a plasmid that gives the cell resistance to a
specific antibiotic; cells grown in the presence of that antibiotic will only live if
they contain the plasmid. Further selection can be done to insure that the inserted
DNA is also present.
Once a circuit has been constructed, its performance must be verified and, if

necessary, debugged. This is often done with the help of fluorescent reporters. The
most famous of these is GFP, which was isolated from the jellyfish Aequorea vic-
toria in 1978 by Shimomura [?]. Further work by Chalfie, Tsujii and others in the
1990s enabled the use of GFP in E. coli as a fluorescent reporter by inserting it into
an appropriate point in an artificial circuit. By using spectrofluorometry, fluorescent
microscopy or flow cytometry, it is possible to measure the amount of fluorescence
in individual cells or collections of cells and characterize the performance of a
circuit in the presence of inducers or other factors.
Two early examples of the application of these technologies were the repressi-

lator [23] and a synthetic genetic switch [].
The repressilator is a synthetic circuit in which three proteins each repress an-

other in a cycle. This is shown schematically in Figure 1.22a, where the three pro-
teins are TetR, λ cI and LacI. The basic idea of the repressilator is that if TetR is
present, then it represses the production of λ cI. If λ cI is absent, then LacI is pro-
duced (at the unregulated transcription rate), which in turn represses TetR. Once
TetR is repressed, then λ cI is no longer repressed, and so on. If the dynamics of
the circuit are designed properly, the resulting protein concentrations will oscillate,
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Figure 1.22: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simple model for the repressilator, show-
ing the oscillation of the individual protein concentrations. (Figure courtesy M. Elowitz.)

as shown in Figure 1.22b.
The genetic switch consists of two repressors connected together in a cycle, as

shown in Figure 1.23a. The intuition behind this circuit is that if the gene A is being
expressed, it will repress production of B and maintain its expression level (since
the protein corresponding to B will not be present to repress A). Similarly, if B
is being expressed, it will repress the production of A and maintain its expression
level. This circuit thus implements a type of bistability that can be used as a simple
form of memory. Figure 1.23b shows the time traces for a system, illustrating the
bistable nature of the circuit. When the initial condition starts with a concentration
of protein B greater than that of A, the solution converges to the equilibrium point
where B is on and A is off. If A is greater than B, then the opposite situation results.
These seemingly simple circuits took years to get to work, but showed that it

was possible to synthesize a biological circuit that performed a desired function
that was not originally present in a natural system. Today, commercial synthesis
of DNA sequences and genes has become cheaper and faster, with a price often
below $0.30 per base pair.1 The combination of inexpensive synthesis technolo-
gies, new advances in cloning techniques, and improved devices for imaging and
measurement has vastly simplified the process of producing a sequence of DNA
that encodes a given set of genes, operator sites, promoters and other functions,
and these techniques are a routine part of undergraduate courses in molecular and
synthetic biology.
As illustrated by the examples above, current techniques in synthetic biology

have demonstrated the ability to program biological function by designing DNA
sequences that implement simple circuits. Most current devices make use of tran-

1As of this writing; divide by a factor of two for every two years after the publication date.
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Figure 1.23: Stability of a genetic switch. The circuit diagram in (a) represents two proteins
that are each repressing the production of the other. The inputs u1 and u2 interfere with this
repression, allowing the circuit dynamics to be modified. The simulation in (b) shows the
time response of the system starting from two different initial conditions. The initial portion
of the curve corresponds to protein B having higher concentration than A, and converges to
an equilibrium where A is off and B is on. At time t = 10, the concentrations are perturbed,
moving the concentrations into a region of the state space where solutions converge to the
equilibrium point with the A on and B off.

scriptional or post-transcriptional processing, resulting in very slow timescales (re-
sponse times typically measured in tens of minutes to hours). This restricts their
use in systems where faster response to environmental signals is needed, such as
rapid detection of a chemical signal or fast response to changes in the internal envi-
ronment of the cell. In addition, existing methods for biological circuit design have
limited modularity (reuse of circuit elements requires substantial redesign or tun-
ing) and typically operate in very narrow operating regimes (e.g., a single species
grown in a single type of media under carefully controlled conditions).
As an illustration of the dynamics of typical synthetic devices in use today, Fig-

ure 1.24 shows a typical response of a genetic element to an inducer molecule [14].
In this circuit, an external signal of homoserine lactone (HSL) is applied at time
zero and the system reaches 10% of the steady state value in approximately 15 min-
utes. This response is limited in part by the time required to synthesize the output
protein (GFP), including delays due to transcription, translation and folding. Since
this is the response time for the underlying “actuator”, circuits that are composed of
feedback interconnections of such genetic elements will typically operate at 5–10
times slower speeds. While these speeds are appropriate in many applications (e.g.,
regulation of steady state enzyme levels for materials production), in the context
of biochemical sensors or systems that must maintain a steady operating point in
more rapidly changing thermal or chemical environments, this response time is too
slow to be used as an effective engineering approach.
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Figure 1.24: Expression of a protein using an inducible promoter [14]. (a) The circuit
diagram indicates the DNA sequences that are used to construct the part (chosen from the
BioBrick library). (b) The measured response of the system to a step change in the inducer
level (HSL).

By comparison, the frequency response for the signaling component in E. coli
chemotaxis is shown in Figure 1.25 [?]. Here the response of the kinase CheA
is plotted in response to an exponential ramp in the ligand concentration. The re-
sponse is extremely rapid, with the timescale measured in seconds. This rapid re-
sponse is implemented by conformational changes in the proteins involved in the
circuit, rather than regulation of transcription or other slower processes.
The field of synthetic biology has the opportunity to provide new approaches

to solving engineering and scientific problems. Sample engineering applications
include the development of synthetic circuits for producing biofuels, ultrasensitive
chemical sensors, or production of materials with specific properties that are tuned
to commercial needs. In addition to the potential impact on new biologically engi-
neered devices, there is also the potential for impact in improved understanding of
biological processes. For example, many diseases such as cancer and Parkinson’s
disease are closely tied to kinase dysfunction. Our analysis of robust systems of
kinases and the ability to synthesize systems that support or invalidate biological
hypotheses may lead to a better systems understanding of failure modes that lead
to such diseases.

1.5 Further Reading

There are numerous survey articles and textbooks that provide more detailed intro-
ductions to the topics introduced in this chapter. In the are of systems biology, the
textbook by Alon [3] provides a broad view of some of the key elements of mod-
ern systems biology. A more comprehensive set of topics is covered in the recent
textbook by Klipp [?], while a more engineering-oriented treatment of modeling
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Figure 1.25: Responses of E. coli signaling network to exponential ramps in ligand con-
centration. (a) A simplified circuit diagram for chemotaxis, showing the biomolecular pro-
cesses involved in regulating flagellar motion. (b) Time responses of the “sensing” subsys-
tem (from Shimizu, Tu and Berg; Molecular Systems Biology, 2010), showing the response
to exponential inputs.

of biological circuits can be found in the text by Myers [?]. Two other books that
are particularly noteworthy are Ptashne’s book on the phage λ [58] and Madhani’s
book on yeast [48], both of which use well-studied model systems to describe a
general set of mechanisms and principles that are present in many different types
of organisms.
The topics in dynamical systems and control theory that are briefly introduced

here are covered in more detail in AM08 [1], to which this text is a supplement.
Other books that introduce tools for modeling and analysis of dynamical systems
with applications in biology include the two-volume text by J. D. Murray [52] and
the recent text by and Ellner and Guckenheimer [22].
Synthetic biology is a rapidly evolving field that includes many different sub-

areas of research, but few textbooks are currently available. In the specific area of
biological circuit design that we focus on here, there are a number of good survey
and review articles. The article by Baker et al [9] provides a high level description
of the basic approach and opportunities. Recent survey and review papers include
Voigt [?] and Khalil and Collins [?].
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