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Chapter 5
Feedback Examples

In this chapter we present a collection of examples that illustrate some of the mod-
eling and analysis tools covered in the preceding chapters. Each of these examples
represents a more complicated system than we have considered previous and to-
gether they are intended to demonstrate both the role of feedback in biological
systems and how tools from control and dynamical systems can be applied to pro-
vide insight and understanding. Each of the sections below is indepedent of the
others and they can be read in any order (or skipped entirely).

Pagination in this chapter is broken down by section to faciliate author editing. Review
Some extraneous blank pages may be included due to LaTeX processing.
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5.1 The lac Operon

The lac operon is one of the most studied regulatory networks in molecular bi-
ology. Its function is to determine when the cell should produce the proteins and
enzymes necessary to import and metabolize lactose from its external environment.
Since glucose is a more efficient source of carbon, the lactose machinery is not pro-
duced unless lactose is present and glucose is not present. The lac control system
implements this computation.

In this section we construct a model for the lac operon and use that model to
understand how changes of behavior can occur for large changes in parameters
(e.g., lactose/glucose concentrations) and also the sensitivity of the phenotypic re-
sponse to changes in individual parameter values in the model. The basic model
and much of the analysis in this section is drawn from the work of Yildirim and
Mackey [103].

Modeling

In constructing a model for the lac system, we need to decide what questions we
wish to answer. Here we will attempt to develop a model that allows us to under-
stand what levels of lactose are required for the lac system to become active in the
absence of glucose. We will focus on the so-called “bistability” of the lac operon:
there are two steady operating conditions—at low lactose levels the machinery
is off and at high lactose levels the machinery is on. The system has hysteresis,
so once the operon is actived, it remains active even if the lactose concentration
descreases. We will construct a differential equation model of the system, with
various simplifying assumptions along the way.

A schematic diagram of the lac control system is shown in Figure 5.1. Starting
at the bottom of the figure, lactose permease is an integral membrane protein that
helps transport lactose into the cell. Once in the cell, lactose is converted to allolac-
tose, and allolactose is then broken down into glucose and galactose, both with the
assistance of the enzyme β-galactosidase (β-gal for short). From here, the glucose
is processed using the usual glucose metabolic pathway and the galactose.

The control circuitry is implemented via the reactions and transcriptional reg-
ulation shown in the top portion of the diagram. The lac operon, consisting of the
genes lacZ (coding for β-gal), lacY (coding for lactose permease) and lacA (coding
for a transacetylase), has a combinatorial promoter. Normally, lac repressor (lacI)
is present and the operon is off. The activator for the operon is CAP, which has
a positive inducer cAMP. The concentration of cAMP is controlled by glucose:
when glucose is present, there is very little cAMP available in the cell (and hence
CAP is not active).

The bistable switching behavior in the lac control system is implemented with a
feedback circuit involving the lac repressor. Allolactose binds lac repressor and so
when lactose is being metabolized, then the repressor is sequestered by allolactose
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Figure 5.1: Schematic diagram for the lac system [103]. Permission pending.

and the lac operon is no longer repressed.
To model this circuit, we need to write down the dynamics of all of the reactions

and protein production. We will denote the concentration of the β-gal mRNA and
protein as mb and B. We assume that the internal concentration of lactose is given
by L, ignoring the dynamics of lactose permease and transport of lactose into the
cell. Similarly, we assume that the concentration of repressor protein, denoted R, is
constant.

We start by keeping track of the concentration of free allolactose A. The relevant
reactions are given by the transport of lactose into the cell, the conversion of lactose
into allolactose and then into glucose and lactose and finally the sequestration of
repressor R by allolactose:

Transport : Le+P −−−⇀↽−−− LeP −−→ L+P
Conversion : L+B −−−⇀↽−−− LB −−→ A+B
Conversion : A+B −−−⇀↽−−− AB −−→ Glu+Gal+B

Sequestration : A+R −−−⇀↽−−− AR

We see that the dynamics involve a number of enzymatic reactions and hence we
can use Michaelis-Menten kinetics to model the response at a slightly reduced level
of detail.

Given these reactions, we can write the reaction rate equations to describe the
time evolution of the various species concentrations. Let αX and KX represent the



5.1. THE lAC OPERON 183

parameters of the Michaelis-Menten functions and δX represent the dilution and
degradation rate for a given species X. The differential equation for the internal
lactose concentration L becomes

dL
dt
= αLLeP

Le

KLe +Le −αALB
L

KAL+L
−δLL, (5.1)

where the first term arises from the transport of lactose into the cell, the second
term is the conversion of lactose to allolactose, and the final term is due to degra-
dation and dilution. Similarly, the dynamics for the allolactose concentration can
be modeled as

dA
dt
= αALB

L
KAL+L

−αABB
A

KA+A
+ k r

AR[AR]− k f
AR[A][R]−δAA.

The dynamics of the production of β-gal and lactose permease are given by
the transcription and translational dynamics of protein production. These genes
are both part of the same operon (along with lacA) and hence the use a single
mRNA strand for translation. To determine the production rate of mRNA, we need
to determine the amount of repression that is present as a function of the amount of
repressor, which in turn depends on the amount of allolactose that is present. We
make the simplifying assumption that the sequestration reaction is fast, so that it is
in equilibrium and hence

[AR] = kAR[A][R], kAR = k f
AR/k

r
AR.

We also assume that the total repressor concentration is constant (production matches
degradation and dilution). Letting Rtot = [R]+ [AR] represent the total repressor
concentration, we can write

[R] = Rtot− kAR[A][R] =⇒ [R] =
Rtot

1+ kAR[A]
. (5.2)

The simplification that the sequestration reaction is in equilibrium also simplifies
the reaction dynamics for allolactose, which becomes

dA
dt
= αALB

L
KAL+L

−αAB
A

KA+A
−δAA. (5.3)

We next need to compute the effect of the repressor on the production of β-gal
and lactose permease. It will be useful to express the promoter state in terms of
the allolactose concentration A rather than R, using equation (5.2). We model this
using a Hill function of the form

FBA(A) =
αR

KR+Rn
=

αR(1+KARA)n

KR(1+KARA)n+Rntot
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Table 5.1: Parameter values for lac dynamics (from [103]).
Parameter Value Description

 µ 3.03×10−2 min−1 dilution rate
αM 997 nMmin−1 production rate of β-gal mRNA
βB 1.66×10−2 min−1 production rate of β-galactosidase
βP ??? min−1 production rate of lactose permease
αA 1.76×104 min−1 production rate of allolactose
 γM 0.411 min−1 degradation and dilution of β-gal mRNA
 δB 8.33×10−4 min−1 degradation and dilution of β-gal
 δP ?? min−1 degradation and dilution of lactose permease
 δA 1.35×10−2 min−1 degradation and dilution of allolactose
n 2 Hill coefficient for repressor
K 7200
k1 2.52×10−2 (µM)−2

KL 0.97 µM
KA 1.95 µM
βA 2.15×104 min−1

τM 0.10 min
τB 2.00 min
τP ??? min

Letting M represent the concentration of the (common) mRNA, the resulting form
of the protein production dynamics becomes

dM
dt
= e−µτMFBA(A(t−τm))−  γMM,

dB
dt
= βBe−µτBM(t−τB)−  δBB,

dP
dt
= βPe−µ(τM+τP)M(t−τM −τP)−  δPP.

(5.4)

This model includes the degradation and dilution of mRNA ( γM), the transcrip-
tional delays β-gal mRNA (τM), the degradation and dilution of the proteins ( δB,
 δP) and the delays in the translation and folding of the final proteins (τB, τP).

To study the dynamics of the circuit, we consider a slightly simplified situa-
tion in which we study the response to the internal lactose concentration L. In this
case, we can take L(t) as a constant and ignore the dynamics of the permease P.
Figure 5.2a shows the time response of the system for an internal lactose concen-
tration of 100 µM. As a test of the effect of time delays, we consider in Figure 5.2b
the case when we set the delays τM and τB to both be zero. We see that the re-
sponse has very little difference, consistent with our intuition that the delays are
short compared to the dynamics of the underlying processes.
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Figure 5.2: Time response of the Lac system.

Bifurcation analysis

To further explore the different types of dynamics that can be exhibited by the
Lac system, we make use of bifurcation analysis. If we vary the amount of lactose
present in the environent, we expect that the lac circuitry will turn on at some point.
Figure 5.3a shows the concentration of allolactose A as a function of the internal
lactose concentration L. We see that the behavior of the lac system depends on
the amount of lactose that is present in the cell. At low concentrations of lactose,
the lac operon is turned off and the proteins required to metabolize lactose are not
expressed. At high concentrations of lactose, the lac operon is turned on and the
metabolic machinery is activated. In our model, these two operating conditions are
measured by the concentration of β-galactosidase B and allolactose A. At interme-
diate concentrations of lactose, the system has multiple equilibrium points, with
two stable equilibrium points corresponding to high and low concentrations of A
(and B, as can be verified separately).

The parametric stability plot in Figure 5.3b shows the different types of behav-
ior that can result based on the dilution rate µ and the lactose concentration L. We
see that we get bistability only in a certain range of these parameters. Otherwise,
we get that the circuitry is either uninduced or induced.

Sensitivity analysis

We now explore how the equilibrium conditions vary if the parameters in our model
are changed.

For the gene lacZ (which encodes the protein β-galactosidase), we let B repre-
sent the protein concentration and M represent the mRNA concentration. We also
consider the concentration of the lactose L inside the cell, which we will treat as an
external input, and the concentration of allolactose, A. Assuming that the time de-
lays considered previously can be ignored, the dynamics in terms of these variables
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(a) Bifurcation diagram
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(b) Stability diagram

Figure 5.3: Bifurcation and stability diagram for the lac system. Figures from [104].

are

dM
dt
= FBA(A,θ)−γbM, FBA(A,θ) = αAB

1+ k1An

K + k1An
,

dB
dt
= βBM−δBB, FAL(L,θ) = αA

L
kL+L

,

dA
ddt
= BFAL(L,θ)−BFAA(A,θ)−γAA, FAA(A,θ) = βA

A
kA+A

.

(5.5)

Here the state is x = (M,B,A) ∈ R3, the input is w = L ∈ R and the parameters are
θ= (αB,βB,αA,γB,δB,γA,n,k,k1,kL,kA,βA) ∈R12. The values for the parameters are
listed in Table 5.1.

We investigate the dynamics around one of the equilibrium points, correspond-
ing to an intermediate input of L = 40 µM. There are three equilibrium points at
this value of the input:

x1,e = (0.000393,0.000210,3.17), x2,e = (0.00328,0.00174,19.4), x3,e = (0.0142,0.00758,42.1).

We choose the third equilibrium point, corresponding to the lactose metabolic ma-
chinery being activitated and study the sensitivity of the steady state concentrations
of allolactose (A) and β-galactosidase (B) to changes in the parameter values.

The dynamics of the system can be represented in the form dx/dt = f (x,θ,L)
with

f (x,θ,L) =





FBA(A,θ)−γBM−µM
βBM−δBB−µB

FAL(L,θ)B−FAA(A,θ)B−δAA−µA





.

To compute the sensitivity with respect to the parameters, we compute the deriva-
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tives of f with respect to the state x,

∂ f
∂x
=





−γB−µ 0 ∂FBA
∂A

βB −δB−µ 0
0 FAL−FAA −B∂FAA∂A





and the parameters θ,

∂ f
∂θ
=



FBA 0 0 −M 0 0 ∂FBA
∂n

∂FBA
∂k

∂FBA
∂k1

0 0 0


 .

Carrying out the relevant computations and evaluating the resulting expression nu-
merically, we obtain

∂

∂θ





Be
Ae



 =





−1.21 0.0243 −3.35×10-6 0.935 1.46 . . . 0.00115
−2720. 47.7 −0.00656 1830. 2860. . . . 3.27



 .

We can also normalize the sensitivity computation, as described in equation (3.9):

 S xeθ =
∂xe/xe
∂θ/θ0

= (Dx)−1S xeθD
θ,

where Dx = diag{xe} and Dθ = diag{θ0}, which yields

 S yeθ =




−4.85 3.2 −3.18 3.11 3.2 6.3 −6.05 −4.1 4.02 6.05
−1.96 1.13 −1.12 1.1 1.13 3.24 −3.11 −2.11 2.07 3.11





where
θ =



µ αM K K1 βB αA KL βA KA L


 .

We see from this computation that increasing the growth rate decreases the equilib-
rium concentation of B and A, while increasing the lactose concentration by 2-fold
increases the equilibrium β-gal concentration 12-fold (6X) and the allolactose con-
centration by 6-fold (3X).

5.2 Bacterial Chemotaxis

Chemotaxis refers to the process by which micro-organisms move in response to
chemical stimuli. Examples of chemotaxis include the ability of organisms to move
in the direction of nutrients or move away from toxins in the environment. Chemo-
taxis is called positive chemotaxis if the motion is in the direction of the stimulus
and negative chemotaxis if the motion is away from the stimulant, as shown in Fig-
ure 5.4. Many chemotaxis mechanisms are stochastic in nature, with biased random
motions causing the average behavior to be either positive, negative or neutral (in
the absence of stimuli).

In this section we look in some detail at bacterial chemotaxis, which E. coli use
to move in the direction of increasing nutrients. The material in this section is based
primarily on the work of Barkai and Leibler [8] and Rao, Kirby and Arkin [81].
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Figure 5.4: Examples of chemotaxis. Figure from Phillips, Kondev and Theriot [76]; used
with permission of Garland Science.

Control system overview

The chemotaxis system in E. coli consists of a sensing system that detects the
presence of nutrients, and actuation system that propels the organism in its envi-
ronment, and control circuitry that determines how the cell should move in the
presence of chemicals that stimulate the sensing system.

The actuation system in the E. coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown
in Figure 5.5a. When the flagella all spin in the counter clockwise direction, the
individual flagella form a bundle and cause the organism to move roughly in a
straight line. This behavior is called a “run” motion. Alternatively, if the flagella
spin in the clockwise direction, the individual flagella do not form a bundle and the
organism “tumbles”, causing it to rotate (Figure 5.5b). The selection of the motor
direction is controlled by the protein CheY: if phosphorylated CheY binds to the
motor complex, the motor spins clockwise (tumble), otherwise it spins counter-
clockwise (run).

Because of the size of the organism, it is not possible for a bacterium to sense
gradients across its length. Hence, a more sophisticated strategy is used, in which
the organism undergoes a combination of run and tumble motions. The basic idea
is illustrated in Figure 5.5c: when high concentration of ligand (nutrient) is present,
the CheY protein is left unphosphorylated and does not bind to the actuation com-
plex, resulting in a counter-clockwise rotation of the flagellar motor (run). Con-
versely, if the ligand is not present then the molecular machinery of the cell causes
CheY to be phosphorylated and this modifies the flagellar motor dynamics so that a
clockwise rotation occurs (tumble). The net effect of this combination of behaviors
is that when the organism is traveling through regions of higher nutrient concen-
tration, it continues to move in a straight line for a longer period before tumbling,
causing it to move in directions of increasing nutrient concentration.

A simple model for the molecular control system that regulates chemotaxis is
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(a) (b) (c)

Figure 5.5: Bacterial chemotaxis. Figures from Phillips, Kondev and Theriot [76]; used
with permission of Garland Science.

shown in Figure 5.6. We start with the basic sensing and and actuation mechanisms.
A membrane bound protein MCP (methyl-accepting chemotaxis protein) that is
capable of binding to the external ligand serves as a signal transducing element
from the cell exterior to the cytoplasm. Two other proteins, CheW and CheA, form
a complex with MCP. This complex can either be in an active or inactive state. In
the active state, CheA is autophosphorylated and serves as a phosphotransferase
for two additional proteins, CheB and CheY. The phosphorylated form of CheY
then binds to the motor complex, causing clockwise rotation of the motor.

The activity of the receptor complex is governed by two primary factors: the
binding of a ligand molecule to the MCP protein and the presence or absence of up
to 4 methyl groups on the MCP protein. The specific dependence on each of these
factors is somewhat complicated. Roughly speaking, when the ligand L is bound
to the receptor then the complex is less likely to be active. Furthermore, as more
methyl groups are present, the ligand binding probability increases, allowing the
gain of the sensor to be adjusted through methylation. Finally, even in the absence
of ligand the receptor complex can be active, with the probability of it being active
increasing with increased methylation. Figure 5.7 summarizes the possible states,
their free energies and the probability of activity.

Several other elements are contained in the chemotaxis control circuit. The most
important of these are implemented by the proteins CheR and CheB, both of which
affect the receptor complex. CheR, which is constitutively produced in the cell,
methylates the receptor complex at one of the four different methylation sites. Con-
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Figure 5.6: Control system for chemotaxis. Figure from Rao et al. [81] (Figure 1A).

versely, the phosphorylated form of CheB demethylates the receptor complex. As
described above, the methylation patterns of the receptor complex affect its activ-
ity, which affects the phosphorylation of CheA and, in turn, phosphorylation of
CheY and CheB. The combination of CheA, CheB and the methylation of the re-
ceptor complex forms a negative feedback loop: if the receptor is active, then CheA
phosphorylates CheB, which in turn demethylates the receptor complex, making it
less active. As we shall see when we investigate the detailed dynamics below, this
feedback loop corresponds to a type of integral feedback law. This integral action
allows the cell to adjust to different levels of ligand concentration, so that the be-
havior of the system is invariant to the absolute nutrient levels.

Modeling

The detailed reactions that implement chemotaxis are illustrated in Figure 5.8.
Letting T represent the receptor complex and T A represent an active form, the
basic reactions can be written as

TA+A −−−⇀↽−−− TA:A −−→ Ap+TA

Ap+B −−−⇀↽−−− Ap:B −−→ A+Bp Bp+P −−−⇀↽−−− Bp:P −−→ B+P
Ap+Y −−−⇀↽−−− Ap:Y −−→ A+Yp Yp+Z −−−⇀↽−−− Yp:Z −−→ Y+Z

(5.6)

where CheA, CheB, CheY and CheZ are written simply as A, B, Y and Z for
simplicity and P is a non-specific phosphatase. We see that these are basically
three linked sets of phosphorylation and dephosphorylation reactions, with CheA
serving as a phosphotransferase and P and CheZ serving as phosphatases.

The description of the methylation of the receptor complex is a bit more com-
plicated. Each receptor complex can have multiple methyl groups attached and the
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Figure 5.7: Receptor complex states. The probability of a given state being in an active
configuration is given by p. Figure obtained from [68].

activity of the receptor complex depends on both the amount of methylation and
whether a ligand is attached to the receptor site. Furthermore, the binding proba-
bilities for the receptor also depend on the methylation pattern. To capture this, we
use the set of reactions that are illustrated in Figures 5.6 and 5.8. In this diagram,
T s

i represents a receptor that has i methylation sites filled and ligand state s (which
can be either u if unoccupied or o if occupied). We let M represent the maximum
number of methylation sites (M = 4 for E. coli).

Using this notation, the transitions between the states correspond to the reac-
tions shown in Figure 5.9:

Tx
i +Bp −−−⇀↽−−− Tx

i :Bp −−→ Tx
i−1+Bp i > 0, x ∈ {u,0}

Tx
i +R −−−⇀↽−−− Tx

i :R −−→ Tx
i+1+R i < M, x ∈ {u,0}

Tu
i +L −−−⇀↽−−− To

i

We now must write reactions for each of the receptor complexes with CheA. Each
form of the receptor complex has a different activity level and so the most complete
description is to write a separate reaction for each T o

i and T u
i species:

Tx
i +A

k f ,oi−−−⇀↽−−−
kr,oi

Tx
i :A

kc,oi−−→ Ap+Tx
i ,

where x ∈ {o,u} and i = 0, . . . ,M. This set of reactions replaces the placeholder
reaction T A+A −−−⇀↽−−− T A:A −−→ A p+T A used earlier.

Approximate model

The detailed model described above is sufficiently complicated that it can be dif-
ficult to analyze. In this section we develop a slightly simpler model that can be
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Figure 5.8: Circuit diagram for chemotaxis.

used to explore the adaptation properties of the circuit, which happen on a slower
time-scale.

We begin by simplifying the representation of the receptor complex and its
methylation pattern. Let L(t) represent the ligand concentration and Ti represent
the concentration of the receptor complex with i sides methylated. If we assume
that the binding reaction of the ligand L to the complex is fast, we can write the
probability that a receptor complex with i sites methylated is in its active state as a
static function αi(L), which we take to be of the form

αi(L) =
αoi L
KL+L

+
αiKL
KL+L

.

The coefficients αoi and αi capture the effect of presence or absence of the ligand on
the activity level of the complex. Note that αi has the form of a Michaelis-Menten
function, reflecting our assumption that ligand binding is fast compared to the rest

./fbkexamps/figures/chemotaxis-methylation.eps

Figure 5.9: Methylation model for chemotaxis. Figure from Barkai and Leibler [8] (Box
1). Note: the figure uses the notation E s

i for the receptor complex instead of T s
i .
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of the dynamics in the model. Following [81], we take the coefficients to be

a0 = 0, a1 = 0.1, a2 = 0.5, a3 = 0.75, a4 = 1,
ao0 = 0, ao1 = 0, ao2 = 0.1, ao3 = 0.5, ao4 = 1.

and choose KL = 10 µM. Figure 5.10 shows how each αi varies with L.
The total concentration of active receptors can now be written in terms of the

receptor complex concentrations Ti and the activity probabilities αi(L). We write
the concentration of activated complex T A and inactivated complex T I as

TA =
4∑

i=0
αi(L)Ti, T I =

4∑

i=0
(1−αi(L))Ti.

These formulas can now be used in our dynamics as an effective concentration of
active or inactive receptors, justifying the notation that we used in equation (5.6).

We next model the transition between the methylation patterns on the receptor.
We assume that the rate of methylation depends on the activity of the receptor
complex, with active receptors less likely to be demethylated and inactive receptors
less likely to be methylated [81, 68]. Let

rB = kB
Bp

KB+TA
, rR = kR

R
KR+T I

,

represent rates of the methylation and demethylation reactions. We choose the co-
efficients as

kB = 0.5, KB = 5.5, kR = 0.255, KR = 0.251,

We can now write the methylation dynamics as

d
dt
Ti = rR

(

1−αi+1(L)
)

Ti−1 + rBαi+1(L)Ti+1 − rR
(

1−αi(L)
)

Ti − rBαi(L)Ti,
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Figure 5.11: Simulation and analysis of reduced-order chemotaxis model.

where the first and second terms represent transitions into this state via methyla-
tion or demethylation of neighboring states (see Figure 5.9) and the last two terms
represent transitions out of the current state by methylation and demethylation, re-
spectively. Note that the equations for T0 and T4 are slightly different since the
demethylation and methylation reactions are not present, respectively.

Finally, we write the dynamics of the phosphorylation and dephosphorylation
reactions, and the binding of CheY p to the motor complex. Under the assumption
that the concentrations of the phosphorylated proteins are small relative to the total
protein concentrations, we can approximate the reaction dynamics as

d
dt
Ap = 50TAA−100ApY −30ApB,

d
dt
Y p = 100ApY −0.1Yp−5[M]Yp+19[M:Yp]−30Yp,

d
dt
Bp = 30ApB−Bp,

d
dt

[M:Yp] = 5[M]Yp−19[M:Yp].

The total concentrations of the species are given by

A+Ap = 5 nM, B+Bp = 2 nM, Y +Yp+ [M:Yp] = 17.9 nM,
[M]+ [M:Yp] = 5.8 nM, R = 0.2 nM,

∑4
i=0Ti = 5 nM.

The reaction coefficients and concentrations are taken from Rao et al. [81].
Figure 5.11a shows a the concentration of the phosphorylated proteins based on

a simulation of the model. Initially, all species are started in their unphosphorylated
and demethylated states. At time T = 500 s the ligand concentration is increased to
L= 10 µM and at time T = 1000 it is returned to zero. We see that immediately after
the ligand is added, the CheY p concentration drops, allowing longer runs between
tumble motions. After a short period, however, the CheY p concentration adapts to
the higher concentration and the nominal run versus tumble behavior is restored.



5.2. BACTERIAL CHEMOTAXIS 195

./fbkexamps/figures/chemotaxis-reduced.eps

Figure 5.12: Reduced order model of receptor activity. Obtained from [3], Figure 7.9.

Similarly, after the ligand concentration is decreased the concentration of CheY p

increases, causing a larger fraction of tumbles (and subsequent changes in direc-
tion). Again, adaptation over a longer time scale returns that CheY concentration
to its nominal value.

Figure 5.11b helps explain the adaptation response. We see that the average
amount of methylation of the receptor proteins increases when the ligand concen-
tration is high, which decreases the activity of CheA (and hence decreases the
phosphorylation of CheY).

Integral action

The perfect adaptation mechanism in the chemotaxis control circuitry has the same
function as the use of integral action in control system design: by including a feed-
back on the integral of the error, it is possible to provide exact cancellation to
constant disturbances. In this section we demonstrate that a simplified version of
the dynamics can indeed be regarded as integral action of an appropriate signal.
This interpretation was first pointed out by Yi et al [102].

We begin by formulating an even simpler model for the system dynamics that
captures the basic features required to understand the integral action. Let X repre-
sent the receptor complex and assume that it is either methylated or not. We let Xm
represent the methylated state and we further assume that this methylated state can
be activated, which we write as X *

m. This simplified description replaces the multi-
ple states Ti and probabilities αi(L). We also ignore the additional phosphorylation
dynamics of CheY and simply take the activated receptor concentration X∗m as our
measure of overall activity.

Figure 5.12 shows the transitions between the various forms X. As before, CheR
methylates the receptor and CheB p demethylates it. We simplify the picture by only
allowing CheB p to act on the active state X *

m and CheR to act on the inactive state.
We take the ligand into account by assuming that the transition between the active
form X *

m and the inactive form Xm depends on the ligand concentration: higher
ligand concentration will increase the rate of transition to the inactive state.

This model is a considerable simplification from the ligand binding model that
is illustrated in Figures 5.7 and 5.9. In the previous models, there is some prob-
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ability of activity with or without methylation and with or without ligand. In this
simplified model, we assume that only three states are of interest: demethylated,
methylated/inactive and methylated/active. We also modify the way that that lig-
and binding is captured and instead of keeping track of all of the possibilities in
Figure 5.7, we assume that the ligand transitions us from an active state X *

m to an
inactive Xm. These states and transitions are roughly consistent with the different
energy levels and probabilities in Figure 5.7, but it is clearly a much coarser model.

Accepting these approximations, the model illustrated in Figure 5.12 results in
a set of chemical reactions of the form

R1 : X+R −−−⇀↽−−− X:R −−→ Xm+R methylation
R2 : X∗m+Bp −−−⇀↽−−− X∗m:Bp −−→ X+Bp demethylation

R3 : X∗m
k f (L)
−−−−⇀↽−−−−
kr

Xm activation/deactivation

For simplicity we take both R and B p to have constant concentration.
We can approximate the first and second reactions by their Michaelis-Menten

forms, which yield net methylation and demethylation rates (for those reactions)

v+ = kRR
X

KX +X
, v− = kBBp

X∗m
KX∗m +X∗m

.

If we further assume that X ( KX > 1, then the methylation rate can be further
simplified:

v+ = kRR
X

KX +X
≈ KRR.

Using these approximations, we can write the resulting dynamics for the overall
system as

d
dt
Xm = kRR+ k f (L)X∗m− krXm

d
dt
X∗m = −kBB

p X∗m
KX∗m +X∗m

− k f (L)X∗m+ krXm.

We wish to use this model to understand how the steady state activity level X∗m
depends on the ligand concentration L (which enters through the deactivation rate
k f (L)).

It will be useful to rewrite the dynamics in terms of the activated complex con-
centration X∗m and the total methylated complex concentration Xtm = Xm + X∗m. A
simple set of algebraic manipulations yields

dX∗m
dt
= kr(Xtm−X∗m)− kBBp

X∗m
KX∗m +X∗m

− k f (L)X∗m,

dXtm
dt
= kRR− kBBp

X∗m
KX∗m +X∗m

.
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From the second equation, we see that the the concentration of methylated complex
X t

m is a balance between the action of the methylation reaction (R1, characterized
by v+) and the demethylation reaction (R2, at rate v−). Since the action of a ligand
binding to the receptor complex increases the rate of deactivation of the complex
(R3), in the presence of a ligand we will increase the amount of methylated com-
plex (and, via reaction R1) eventually restore the amount of the activated complex.
This represents the adaptation mechanism in this simplified model.

To further explore the effect of adaptation, we compute the equilibrium points
for the system. Setting the time derivatives to zero, we obtain

X∗m,e =
KX∗mkRR

kBBp− kRR

Xtm,e =
1
kr

(

krX∗m+ kBB
p X∗m
KX∗m +X∗m

+ k f (L)X∗m
)

.

Note that the solution for the active complex X∗m,e in the first equation does not
depend on k f (L) (or kr) and hence the steady state solution is independent of the
ligand concentration. Thus, in steady state, the concentration of activated complex
adapts to the steady state value of the ligand that is present, making it insensitive
to the steady state value of this input.

The dynamics for Xtm can be viewed as an integral action: when the concen-
tration of X∗m matches its reference value (with no ligand present), the quantity of
methylated complex Xtm remains constant. But if Xtm does not match this reference
value, then Xtm increases at a rate proportional to the methylation “error” (measured
here by difference in the nominal reaction rates v+ and v−). It can be shown that
this type of integral action is necessary to achieve perfect adaptation in a robust
manner [102].
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