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Chapter 3
Dynamic Behavior

In this chapter, we describe some of the tools from dynamical systems and feed-
back control theory that will be used in the rest of the text to analyze and design
biological circuits, building on tools already described in AM08. We focus here on
deterministic models and the associated analyses; stochastic methods are given in
Chapter 4.

Prerequisites. Readers should have a understanding of the tools for analyzing sta-
bility of solutions to ordinary differential equations, at the level of Chapter 4 of
AM08. We will also make use of linearized input/output models in state space,
based on the techniques described in Chapter 5 of AM08, and sensitivity function
methods, described in Chapters 11 and 12 of AM08 and building on the frequency
domain techniques described in Chapters 8–10.

3.1 Analysis Near Equilibria

As in the case of many other classes of dynamical systems, a great deal of insight
into the behavior of a biological system can be obtained by analyzing the dynamics
of the system subject to small perturbations around a known solution. We begin by
considering the dynamics of the system near an equilibrium point, which is one of
the simplest cases and provides a rich set of methods and tools.

Parametric uncertainty

Consider a general nonlinear system of the from

ẋ = f (x,θ,w),

where x ∈ Rn is the system state, θ ∈ Rp are the system parameters and w ∈ Rq
is a set of external inputs. Let xe(θ0,w0) represent an equilibrium point for fixed
parameters θ0 and external input w0, so that f (xe,θ0,w0) = 0. The stability of the
system around the equilibrium point can be analyzed using the tools described in
AM08. Here we focus instead on understanding how the location of the equilibrium
point and the dynamics near the equilibrium point vary as a function of changes in
the parameters θ and external inputs w.
We start by assuming that w = 0 and investigating how xe depends on θ. The

simplest approach is to analytically solve the equation f (xe,θ0)= 0 for xe. However,
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Figure 3.1: Parameter sensitivity in a genetic circuit. The open loop system (a) consists
of a constitutive promoter, while the closed loop circuit (b) is self-regulated with negative
feedback (repressor).

this is often difficult to do in closed form and so as an alternative we instead look
at the linearized response given by S xeθ = dxe/dθ, the (infinitesimal) change in the
equilibrium state due to a change in the parameter. To determine S xeθ we begin by
differentiating the relationship f (xe(θ),θ) = 0 with respect to θ:

d f
dθ
=
∂ f
∂x
∂xe
∂θ
+
∂ f
∂θ
= 0 =⇒

∂xe
∂θ
= −
(

∂ f
∂x

)−1
∂ f
∂θ

∣

∣

∣

∣

∣(xe,θ0)
. (3.1)

These quantities can be computed numerically and hence we can evaluate the effect
of small (but constant) changes in the parameters θ on the equilibrium state xe.
A similar analysis can be performed to determine the effects of small (but con-

stant) changes in the external input w. Suppose that xe depends on both θ and w,
with f (xe,θ0,w0) = 0 and θ0 and w0 representing the nominal values. Then

∂xe
∂θ
= −
(

∂ f
∂x

)−1
∂ f
∂θ

∣

∣

∣

∣

∣(xe,θ0,w0)
,

∂xe
∂w
= −
(

∂ f
∂x

)−1
∂ f
∂w

∣

∣

∣

∣

∣(xe,θ0,w0)
.

We see that the vector ∂ f /∂w describes how the specific inputs vary and (∂ f /∂x)−1
indicates how the perturbations are reflected in the equilibrium states. If the system
is close to instability then some eigenvalues of ∂ f /∂x will be near zero and hence
the inverse could be large, resulting in significant changes in the equilibrium point
due to variations in the disturbances (or parameters).

Example 3.1 (Transcriptional regulation). Consider a genetic circuit consisting
of a single gene. We wish to study the response of the protein concentration to
fluctuations in its parameters in two cases: a constitutive promoter (no regulation)
and self-repression (negative feedback), illustrated in Figure 3.1. The dynamics of
the system are given by

dm
dt
= F(P)−γm,

dP
dt
= βm−δP,

where m is the mRNA concentration and P is the protein concentration.
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For the case of no feedback we have F(p) = α0, and the system has an equi-
librium point at me = α0/γ, Pe = βα0/(δγ). The parameter vector can be taken as
θ = (α0,γ,β,δ). Since we have a simple expression for the equilibrium concentra-
tions, we can compute the sensitivity to the parameters directly:

∂xe
∂θ
=

















1
γ −α0

γ2
0 0

β
δγ −

βα0
δγ2

α0
δγ −

βα0
γδ2

















If we choose the parameters as θ = (0.00138,0.00578,0.115,0.00116), then the
resulting sensitivity matrix evaluates to

S openxe,θ ≈














170 −41 0 0
17000 −4100 210 −21000















. (3.2)

If we look instead at the scaled sensitivity matrix, then the open loop nature of the
system yields a particularly simple form:

S̄ openxe,θ =















1 −1 0 0
1 −1 1 −1















. (3.3)

In other words, a 10% change in any of the parameters will lead to a comparable
positive or negative change in the equilibrium values.
For the case of negative regulation, we have

F(P) =
α

K +Pn
+α0,

and the equilibrium points satisfy

me =
δ

β
Pe,

α

K +Pne
+α0 = γme =

γδ

β
Pe.

Rather than attempt to solve for the equilibrium point in closed form, we instead
investigate the sensitivity using the computations in equation (3.1). The state, dy-
namics and parameters are given by

x =


m P


 , f (x,θ) =














F(P)−γm
βm−δP















, θ =


α0 γ β δ α n K


 .

Note that the parameters are ordered such that the first four parameters match the
open loop system. The linearizations are given by

∂ f
∂x
=















−γ F′(Pe)
β −δ















,
∂ f
∂θ
=

















1 −m 0 0 1
K+Pn

αPn log(P)
(K+Pn)2

α
(K+Pn)2

0 0 m −P 0 0 0

















from which we can compute the sensitivity as

S x,θ =



























−
δ ∂α∂α0
δγ−βF′

δm
δγ−βF′ −

mF′
δγ−βF′

PF′
δγ−βF′ −

δ ∂α∂α1
δγ−βF′ −

δ ∂α∂n
δγ−βF′ −

δ ∂α∂K
δγ−βF′

−
β ∂α∂α0
δγ−βF′

βm
δγ−βF′ −

γm
δγ−βF′

γP
δγ−βF′ −

β ∂α∂α1
δγ−βF′ −

β ∂α∂n
δγ−βF′ −

β ∂α∂K
δγ−βF′



























,
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where F′ = ∂F/∂P and all other derivatives of F are evaluated at the nominal pa-
rameter values..
We can now evaluate the sensitivity at the same protein concentration as we use

in the open loop case. The equilibrium point is given by

xe =














me
Pe















=

















α0
γ
α0β
δγ

















=















0.239
23.9















and the sensitivity matrix is

S̄ closedxe,θ ≈














76.1 −18.2 −1.16 116. 0.134 −0.212 −0.000117
7610. −1820. 90.8 −9080. 13.4 −21.2 −0.0117















.

The scaled sensitivity matrix becomes

S̄ closedxe,θ ≈














0.16 −0.44 −0.56 0.56 0.28 −1.78 −3.08×10-7
0.16 −0.44 0.44 −0.44 0.28 −1.78 −3.08×10-7















. (3.4)

Comparing this equation with equation (3.3), we see that there is reduction in the
sensitivity with respect to most parameters. In particular, we become less sensitive
to those parameters that are not part of the feedback (columns 2–4), but there is
higher sensitivity with respect to some of the parameters that are part of the feed-
back mechanisms (particularly n). ∇

More generally, we may wish to evaluate the sensitivity of a (non-constant) so-
lution to parameter changes. This can be done by computing the function dx(t)/dθ,
which describes how the state changes at each instant in time as a function of
(small) changes in the parameters θ. We assume w = 0 for simplicity of exposition.
Let x(t; x0,θ0) be a solution of the dynamics with initial condition x0 and pa-

rameters θ0. To compute dx/dθ, we write down a differential equation for how it
evolves in time:

d
dt

(

dx
dθ

)

=
d
dθ

(

dx
dt

)

=
d
dθ
( f (x,θ,w))

=
∂ f
∂x

dx
dθ
+
∂ f
∂θ
.

This is a differential equation with n×m states S i j = dxi/dθ j and with initial condi-
tion S i j(0) = 0 (since changes to the parameters to not affect the initial conditions).
To solve these equations, we must simultaneously solve for the state x and the

sensitivity S (whose dynamics depend on x). Thus, we must solve the set of n +
nm coupled differential equations

dx
dt
= f (x,θ,w),

dS xθ
dt
=
∂ f
∂x
(x,θ,w)S xθ +

∂ f
∂θ
(x,θ,w). (3.5)
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Figure 3.2: Repressilator sensitivity plots

This differential equation generalizes our previous results by allowing us to
evaluate the sensitivity around a (non-constant) trajectory. Note that in the special
case that we are at an equilibrium point and the dynamics for S x,θ are stable, the
steady state solution of equation (3.5) is identical to that obtained in equation (3.1).
However, equation (3.5) is much more general, allowing us to determine the change
in the state of the system at a fixed time T , for example. This equation also does
not require that our solution stay near an equilibrium point, it only requires that our
perturbations in the parameters are sufficiently small.

Example 3.2 (Repressilator). Consider the example of the repressilator, which was
described in Example 2.1. The dynamics of this system can be written as

dm1
dt
= Frep(P3)−γm1

dP1
dt
= βm1−δP1

dm2
dt
= Frep(P1)−γm2

dP2
dt
= βm2−δP2

dm3
dt
= Frep(P2)−γm2

dP3
dt
= βm3−δP2,

where the repressor is modeled using a Hill function

Frep(p) =
α

K + pn
+α0.

The dynamics of this system lead to a limit cycle in the protein concentrations, as
shown in Figure 3.2a.
We can analyze the sensitivity of the protein concentrations to changes in the

parameters using the sensitivity differential equation. Since our solution is periodic,
the sensitivity dynamics will satisfy an equation of the form

dS x,θ
dt
= A(t)S x,θ +B(t),

where A(t) and B(t) are both periodic in time. Letting x = (m1,P1,m2,P2,m3,P3)
and θ = (α0,γ,β,δ,α,K), we can compute S x,θ along the limit cycle. If the dynamics
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for S x,θ are stable then the resulting solutions will be periodic, showing how the
dynamics around the limit cycle depend on the parameter values. The results are
shown in Figure 3.2b, where we plot the steady state sensitivity of P1 as a function
of time. We see, for example, that the limit cycle depends strongly on the protein
degradation and dilution rate γ, indicating that changes in this value can lead to
(relatively) large variations in the magnitude of the limit cycle.

∇

Several simulation tools include the ability to do sensitivity analysis of this sort,
including COPASI.

Frequency domain analysis

Another way to look at the sensitivity of the solutions near equilibria to changes
in parameters and inputs is to use frequency domain techniques. Recall that the
frequency response of a linear system

ẋ = Ax+Bu
y =Cx+Du

is the response of the system to a sinusoidal input u = asinωt with input amplitude
a and frequency ω. The transfer function for a linear system is given by

Gyu(s) =C(sI−A)−1B+D

and represents the response of a system to an exponential signal of the form u(t) =
est where s ∈ C. In particular, the response to a sinusoid u = asinωt is given by
y = Masin(ωt+ θ) where the gain M and phase shift θ can be determined from the
transfer function evaluated at s = iω:

Gyu(iω) = Meiθ.

For finite dimensional linear (or linearized) systems, the transfer function be be
written as a ratio of polynomials in s:

G(s) =
b(s)
a(s)
.

The values of s at which the numerator vanishes are called the zeros of the transfer
function and the values of s at which the denominator vanishes are called the poles.
The transfer function representation of an input/output linear system is essen-

tially equivalent to the state space description, but we reason about the dynamics
by looking at the transfer function instead of the state space matrices. For example,
it can be shown that the poles of a transfer function correspond to the eigenvalues
of the matrix A, and hence the poles determine the stability of the system.
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Interconnections between subsystems often have simple representations in terms
of transfer functions. Two systems G1 and G2 in series (with the output of the first
connected to the input of the second) have a combined transfer functionGseries(s) =
G1(s)G2(s) and two systems in parallel (a single input goes to both systems and the
outputs are summed) has the transfer function Gparallel(s) =G1(s)+G2(s). A com-
mon interconnection is two put two systems in feedback form for which the transfer
function is given by

Gyr(s) =
G1(s)

G1(s)+G2(s)
=

n1(s)d2(s)
n1(s)d2(s)+d1(s)n2(s)

,

where ni(s) and di(s) are the numerator and denominator of the individual transfer
function. The ease in which the input/output response for interconnected systems
can be computed with transfer functions is one of the main motivations for their
widespread use in engineering.
Transfer functions are useful representations of linear systems because the prop-

erties of the transfer function can be related to the properties of the dynamics. In
particular, the shape of the frequency response describes how the system response
to inputs and disturbances, as well as allows us to reason about the stability of inter-
connected systems. The Bode plot of a transfer function gives the magnitude and
phase of the frequency response as a function of frequency and the Nyquist plot
can be used to reason about stability of a closed loop system from the open loop
frequency response. The transfer function for a system can be determined from
experiments by measuring the frequency response and fitting a transfer function
to the data. Formally, the transfer function corresponds to the ratio of the Laplace
transforms of the output to the input.
Returning to our analysis of biomolecular systems, suppose we have a systems

whose dynamics can be written as

ẋ = f (x,θ,w)

and we wish to understand how the solutions of the system depend on the pa-
rameters θ and disturbances w. We focus on the case of an equilibrium solution
x(t; x0,θ0) = xe. Let z = x− xe, w̃ = w−w0 and θ̃ = θ− θ0 represent the deviation
of the state, input and parameters from their nominal values. We can write the dy-
namics of the perturbed system using its linearization:

dz
dt
=

(

∂ f
∂x

)

(xe,θ0,w0)
·z +

(

∂ f
∂θ

)

(xe,θ0,w0)
· θ̃ +

(

∂ f
∂w

)

(xe,θ0,w0)
· w̃.

This linear system describes small deviations from xe(θ0,w0) but allows θ̃ and w̃ to
be time-varying instead of the constant case considered earlier.
To analyze the resulting deviations, it is convenient to look at the system in the

frequency domain. Let y = Cx be a set of values of interest. The transfer functions
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between θ̃, w̃ and y are given by

Hyθ̃(s) =C(sI−A)−1Bθ, Hyw̃(s) =C(sI−A)−1Bw,

where

A =
∂ f
∂x

∣

∣

∣

∣

∣(xe,θ0,w0)
, Bθ =

∂ f
∂θ

∣

∣

∣

∣

∣(xe,θ0,w0)
, Bw =

∂ f
∂w

∣

∣

∣

∣

∣(xe,θ0,w0)
.

Note that if we let s = 0, we get the response to small, constant changes in
parameters. For example, the change in the outputs y as a function of constant
changes in the parameters is given by

Hyθ̃(0) =CA−1Bθ =CS x,θ,

which matches our previous parametric analysis.

Example 3.3 (Transcriptional regulation). Consider again the case of transcrip-
tional regulation described in Example 3.1. Suppose that the mRNA degradation
rate γ can change as a function of time and that we wish to understand the sensitiv-
ity with respect to this (time-varying) parameter. Linearizing the dynamics around
an equilibrium point

A =














−γ F′(pe)
β −δ















, Bγ =














−me
0















.

For the case of no feedback we have F(P) = α0, and the system has an equilibrium
point at me = α0/γ, Pe = βα0/(δγ). The transfer function from γ to p is given by

GolPγ(s) =
−βme

(s+γ)(s+δ)
.

For the case of negative regulation, we have

F(P) =
α

K +Pn
+α0,

and the resulting transfer function is given by

GclPγ(s) =
βme

(s+γ)(s+δ)+βσ
, σ = F′(Pe) =

nαPn−1e
(K +Pne)2

.

Figure 3.3 shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbances with low-
frequency content but slightly amplifies disturbances at high frequency (compared
to the open loop system). ∇
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Figure 3.3: Noise attenuation in a genetic circuit.

Robustness analysis
!

A slightly more general analysis of sensitivity can be accomplished using the con-
trol theoretic notions of sensitivity described in AM08, Chapter 12. Rather than just
considering static changes to parameter values, we can instead consider the case of
unmodeled dynamics, in which we allow bounded input/output uncertainties to en-
ter the system dynamics. This can be used to model parameters whose values are
unknown and also time-varying, as well as capturing uncertain dynamics that are
being ignored or approximated.
To illustrate the basic approach, consider the problem of determining the sensi-

tivity of a set of reactions to a set of additional unmodeled reactions, whose detailed
effects are unknown but assumed to be bounded. We set this problem up using the
general framework shown in Figure 3.4.

3.2 Analysis of Reaction Rate Equations

The previous section considered analysis techniques for general dynamical sys-
tems with small perturbations. In this section, we specialize to the case where the

Figure 3.4: Analysis of dynamic uncertainty in a reaction system.
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dynamics have the form of a reaction rate equation:

ṡ = Nv(s, p), (3.6)

where s is the vector of species concentrations, p is the vector of reaction parame-
ters, N is the stoichiometry matrix, v(s, p) is the reaction rate (or flux) vector.

Reduced reaction dynamics

When analyzing reaction rate equations, it is often the case that there are conserved
quantities in the dynamics. For example, conservation of mass will imply that if all
compounds containing a given species are captured by the model, the total mass
of that species will be constant. This type of constraint will then give a conserved
quantity of the form ci = His where Hi represents that combinations of species in
which the given element appears. Since ci is constant, it follows that ċi = 0 and,
aggregating the set of all conserved species, we have

0 = ċ = Hẋ = HNv(s, p) for all s.

If we assume that the vector of fluxes spans Rm (the range of v : Rn ×Rp → Rm),
then this implies that the conserved quantities correspond to the left null space of
the stoichiometry matrix N.
It is often useful to remove the conserved quantities from the description of the

dynamics and write the dynamics for a set of independent species. To do this, we
transform the state of the system into two sets of variables:















si
sd















=















P
H















s. (3.7)

The vector si = Ps is the set of independent species and is typically chosen as
a subset of the original species of the model (so that the rows P consists of all
zeros and a single 1 in the column corresponding to the selected species). The
matrix H should span the left null space of N, so that sd represents the set of
dependent concentrations. These dependent species do not necessarily correspond
to individual species, but instead are often combinations of species (for example,
the total concentration of a given element that appears in a number of molecules
that participate in the reaction).
Given the decomposition (3.7), we can rewrite the dynamics of the system in

terms of the independent variables si. We start by noting that given si and sd, we
can reconstruct the full set of species s:

s =














P
H















−1












si
sd















= Lsi+ c0, L =














P
H















−1












I
0















, c0 =














P
H















−1












0
c
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where c0 represents the conserved quantities. We now write the dynamics for si as

ṡi = Pṡ = PNv(Lsi+ c0, p) = Nrvr(si,c0, p), (3.8)

where Nr is the reduced stoichiometry matrix and vr is the rate vector with the
conserved quantities separated out as constant parameters.
The reduced order dynamics in equation (3.8) represent the evolution of the

independent species in the reaction. Given si, we can “lift” the dynamics from the
independent species to the full set of species by writing s = Lsi+ c0. The vector c0
represents the values of the conserved quantities, which must be specified in order
to compute the values of the full set of species. In addition, since s = Lsi + c0, we
have that

ṡ = Lṡi = LNrvr(si,c0, p) = LNrv(s, p),

which implies that
N = LNr.

Thus, L also “lifts” the reduced stoichiometry matrix from the reduced space to the
full space.

Example 3.4 (Enzyme kinetics). Consider an enzymatic reaction

S+E
kon−−−⇀↽−−−
koff

ES
kcat−−→ E+P,

whose full dynamics can be written as

d
dt



































S
E
ES
P



































=



































−1 1 0
−1 1 0
1 −1 −1
0 0 1

























































konE ·S
koffES
kcatES























.

The conserved quantities are given by

H =














0 1 1 0
1 −1 0 1















.

The first of these is the total enzyme concentration ET = E+ES , while the second
asserts that the concentration of product P is equal to the free enzyme concentration
E minus the substrate concentration S . If we assume that we start with substrate
concentration S 0, enzyme concentration ET and no product or bound enzyme, then
the conserved quantities are given by

c =














E+ES
S −E+P















=















ET
S 0−ET















.
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There are many possible choices for the set of independent species si = Ps, but
since we are interested in the substrate and the product, we choose P as

P =














1 0 0 0
0 0 0 1















.

Once P is chosen then we can compute

L =














P
H















−1












I
0















=



































1 0
1 1
−1 −1
0 1



































, c0 =














P
H















−1












0
c















=



































0
ET −S 0
S 0
0



































,

The resulting reduced order dynamics can be computed to be

d
dt















S
P















=















−1 1 0
0 0 1





































kon(P+S +ET −S 0)S
koff(−P−S +S 0)
kcat(−P−S +S 0)























=















−kon(P+S +ET −S 0)S − koff(P+S −S 0)
kcat(S 0−S −P)















.

A simulation of the dynamics is shown in Figure 3.5. We see that the dynamics are
very well approximated as being a constant rate of production until we exhaust the
substrate (consistent with the Michaelis-Menten approximation).

∇

Metabolic control analysis

Metabolic control analysis (MCA) focuses on the study of the sensitivity of steady
state concentrations and fluxes to changes in various system parameters. The basic
concepts are equivalent to the sensitivity analysis tools described in Section 3.1,
specialized to the case of reaction rate equations. In this section we provide a brief
introduction to the key ideas, emphasizing the mapping between the general con-
cepts and MCA terminology (as originally done by Ingalls [22]).
Consider the reduced set of chemical reactions

ṡi = Nrvr(si, p) = Nrv(Lsi+ c0, p).

We wish to compute the sensitivity of the equilibrium concentrations se and equi-
librium fluxes ve to the parameters p. We start by linearizing the dynamics around
an equilibrium point se. Defining x = s− se, u = p− p0 and f (x,u)= Nrv(se+ x, p0+
u), we can write the linearized dynamics as

ẋ = Ax+Bu, A =
(

Nr
∂v
∂s
L
)

, B =
(

Nr
∂v
∂p

)

, (3.9)
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Figure 3.5: Enzyme dynamics. The simulations were carried out kon = koff = 10, kcat = 1,
S 0 = 500 and ET = 5,1020. The top plot shows the concentration of substrate S and product
P, with the fastest case corresponding to ET = 20. The figures on the lower left zoom in
on the substrate and product concentrations at the initial time and the figures on the lower
right at one of the transition times.

which has the form of a linear differential equation with state x and input u.
In metabolic control analysis, the following terms are defined:

ε̄p =
dv
dp

∣

∣

∣

∣

∣

se,po

R̄sp =
∂se
∂p
= C̄sε̄p

R̄vp =
∂ve
∂p
= C̄vε̄p

ε̄p = flux control coefficients
R̄sp =
C̄s = concentration control coefficients
R̄vp =
C̄v = rate control coefficients

These relationships describe how the equilibrium concentration and equilibrium
rates change as a function of the perturbations in the parameters. The two control
matrices provide a mapping between the variation in the flux vector evaluated at
equilibrium,

(

∂v
∂p

)

se,p0
,

and the corresponding differential changes in the equilibrium point, ∂se/∂p and
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∂ve/∂p. Note that
∂ve
∂p
!

(

∂v
∂p

)

se,p0
.

The left side is the relative change in the equilibrium rates, while the right side is
the change in the rate function v(s, p) evaluated at an equilibrium point.
To derive the coefficient matrices C̄s and C̄v, we simply take the linear equa-

tion (3.9) and choose outputs corresponding to s and v:

ys = Ix, yv =
∂v
∂s
Lx+

∂v
∂p
u.

Using these relationships, we can compute the transfer functions

Hs(s) = (sI−A)−1B =
[

(

sI−Nr
∂v
∂s
L
)−1Nr

] ∂v
∂p
,

Hv(s) =
∂v
∂s
L(sI−A)−1B+

∂v
∂p
=
[∂v
∂s
L
(

sI−Nr
∂v
∂s
L
)−1Nr + I

] ∂v
∂p
.

Classical metabolic control analysis considers only the equilibrium concentrations,
and so these transfer functions would be evaluated at s= 0 to obtain the equilibrium
equations.
These equations are often normalized by the equilibrium concentrations and

parameter values, so that all quantities are expressed as fractional quantities. If we
define

Ds = diag{se}, Dv = diag{v(se, p0)}, Dp = diag{p0},

the the normalized coefficient matrices (without the overbar) are given by

Cs = (Ds)−1C̄sDv, Cv = (Dv)−1C̄vDv,

Rsp = (Ds)−1R̄spDp, Rvp = (Dv)−1R̄vpDp.

Example 3.5 (Enzyme kinetics). TBA ∇

Flux balance analysis

Flux balance analysis is a technique for studying the relative rate of different reac-
tions in a complex reaction system. We are most interested in the case where there
may be multiple pathways in a system, so that the number of reactions m is greater
than the number of species n. The dynamics

ṡ = Nv(s, p)

thus have the property that the matrix N has more columns that rows and hence
there are multiple reactions that can produce a given set of species. Flux balance is
often applied to pathway analysis in metabolic systems to understand the limiting
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Figure 3.6: Flux balance analysis.

pathways for a given species and the the effects of changes in the network (e.g.,
through gene deletions) to the production capacity.
To perform a flux balance analysis, we begin by separating the reactions of the

pathway into internal fluxes vi versus exchanges flux ve, as illustrated in Figure 3.6.
The dynamics of the resulting system now be written as

ṡ = Nv(s, p) = N














vi
ve















= Nvi(s, p)−be,

where be = −Nve represents the effects of external fluxes on the species dynamics.
Since the matrix N has more columns that rows, it has a right null space and hence
there are many different internal fluxes that can produce a given change in species.
In particular, we are interested studying the steady state properties of the sys-

tem. In this case, we have that ṡ = 0 and we are left with an algebraic system

Nvi = be.

Power law formalism

Chemical reaction rate equations are nonlinear differential equations whenever two
or more species interact. However, the nonlinearities are very structured: they can
be decomposed into a stoichiometry matrix and flux rates, and the flux rates typ-
ically consist of either polynomial terms or simple ratios of polynomials (e.g.,
Michaelis-Menten kinetics or Hill functions). In this section we consider power law
representations that exploit these properties and attempt to provide simpler tech-
niques for understand the relationships between species concentrations, parameter
values and flux rates. This formalism was developed by Savageau [39] and is also
called biochemical systems theory (BST).



3-16 CHAPTER 3. DYNAMIC BEHAVIOR

The general power law formalism describes a set of reaction dynamics using a
set of differential equations of the form

dxi
dt
=
∑

r
Er

n+m
∏

j=1
x
εrj
j −
∑

s
Es

n+m
∏

j=1
x
ε sj
j , i = 1, . . .n. (3.10)

Here, xi is the concentration for species i, with i = 1, . . . ,n representing internal
species and i = n+ 1, . . . ,m representing external species, and the dynamics are
broken into two summations. The first sum is over the set of reactions that produce
the species xi and the second is over the reactions that utilize xi (and so decrease
its concentration). The linear coefficients Er and Es are the activity levels and cor-
respond to the rate constants (for metabolic networks the rate constants are often
proportional to a fixed enzyme level, hence the use of the symbol E). The expo-
nents εrj and ε

s
i are the kinetic orders of the production and utilization reactions.

In this general form, the power law formalism is able to exactly capture mass
action kinetics, but it does not provide any additional structure. If we consider a
general rate equation of the form vi(x1, . . . , xn+m), we can approximate this function
in a number of ways. The first is through its linearization,

vi(x1, . . . , xn+m ≈ vi(x1,e, . . . , xn+m,e)+
∑ ∂v
∂x j
(

x j− x j,e
)

+higher order terms.

We have used exactly this approximation in previous sections.
A different approximation can be obtained by taking a Taylor series expansion

for logvi:

logvi(x1, . . . , xn+m ≈ logvi(x1,e, . . . , xn+m,e)+
∑ ∂ logvi
∂ log x j

(

log xi−log xi,e
)

+higher order terms.

If we define
gi, j =

∂ logvi
∂ log x j

=
x j
vi
·
∂vi
∂x j

and collect terms, we have

logvi(x) ≈ logαi+gi,1 log x1+ · · ·+gi,n+m log xn+m.

Converting this back from log coordinates, we can thus right

vi(x) ≈ αi
n+m
∏

j=1
xgi, jj .

Using this approximation on the sums in equation (3.10), we can approximate
the resulting dynamics as

dxi
dt
= αi
∏

xgi, jj −βi
∏

xhi, jj ,
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where αi and gi, j are the rate constant and kinetic orders for the production terms
and βi and hi, j are the rate constant and kineeetic orders for reactions that utilize
xi. While this is only an approximation, its form is convenientt for performing
equilibrium analyses. In particular, if ẋi = 0 then we can equate the production rate
to the utilization rate adn take the log of this expression to obtain

logαi+
∑

gi, j log x j = logβi+
∑

hi, j log x j.

This is now a linear equation for the logs of the concentrations in terms of the
various parameters that enter the system.

3.3 Limit Cycle Behavior

Before studying periodic behavior of systems in Rn, we study the behavior of sys-
tems in R2 as several high dimensional systems can be often well approximated by
systems in two dimensions by, for example, employing quasi-steady state approxi-
mations. For systems in R2, we will see that there are only two types of solutions:
those converging (diverging) from steady states and periodic solutions. That is,
chaos can be ruled out in two-dimensional systems.
Consider the system ẋ = f (x), in which f (x) is often referred to as vector field,

and let x(t, x0) denote its solution starting at x0 at time t = 0, that is, ẋ(t, x0) =
f (x(t, x0)) and x(0, x0) = x0. We say that x(t, x0) is a periodic solution if there is
T > 0 such that x(t, x0) = x(t + T, x0) for all t ∈ R. Here, we seek to answer two
questions: (a) when does a system ẋ = f (x) admit periodic solutions? (b) When are
these periodic solutions stable or asymptotically stable?
We first tackle these questions for the case x ∈ R2. The first result that we next

give provides a simple check to rule out periodic solutions for system in R2. Specif-
ically, let (x,y) ∈ R2 and consider

ẋ = f (x,y)
ẏ = g(x,y), (3.11)

in which the functions g, f are smooth. Then, we have the following result:

Theorem 3.1 (Bendixson’s Criterion). If on a simply connected region D⊂R2 (i.e.,
there are no holes in it) the expression

∂ f
∂x
+
∂g
∂y

is not identically zero and does not change sign, then system (3.11) has no closed
orbits that lie entirely in D.
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Example 3.6. Consider the system

ẋ = −y3+δx3

ẏ = x3,

with δ ≥ 0. We can compute ∂ f∂x +
∂g
∂y = 3δx

2, which is positive in all R2 if δ ! 0. If
δ ! 0, we can thus conclude from Bendixson’s criterion that there are no periodic
solutions. Investigate as an exercise what happens when δ = 0. ∇

In order to provide the main result to state the existence of a stable periodic
solution, we need the concept of omega-limit set of a point p, denoted ω(p). Basi-
cally, the omega-limit set ω(p) denotes the set of all points to which the trajectory
of the system starting from p tends as time approaches infinity. This is formally
defined in the following definition

Definition 3.1. A point x̄ ∈ Rn is called an omega-limit point of p ∈ Rn if there is a
sequence of times {ti} with ti→∞ for i→∞ such that x(ti, p)→ x̄ as i→∞. The
omega limit set of p, denoted ω(p), is the set of all omega-limit points of p.

The omega-limit set of a system has several relevant properties, among which
the fact that it cannot be empty and that it must be a connected set.
The following theorem, completely characterizes the omega limit set of any

point for a system in R2.

Theorem 3.2 (Poincarè-Bendixson). Let M be a positively invariant region for the
system ẋ = f (x) with x ∈ R2 (i.e., any trajectory that starts in M stays in M for all
t ≥ 0). Let p ∈ M, then one of the following possibilities holds for ω(p):

(i) ω(p) is a steady state;

(ii) ω(p) is a closed orbit;

(iii) ω(p) consists of a finite number of steady states and orbits, each starting (for
t = 0) and ending (for t→∞) at one of the fixed points.

This theorem has two important consequences:

1. If the system does not have steady states in M, since ω(p) is not empty, it
must be a periodic solution;

2. If there is only one steady state in M and it is unstable and not a saddle (i.e.,
the eigenvalues of the linearization at the steady state are both positive), then
ω(p) is a periodic solution.

Example 3.7. Consider the following system in R2:

ẋ = x− y− (x2+ y2)x
ẏ = x+ y− (x2+ y2)y.
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Verify as an exercise that this system admits one equilibrium point only (the ori-
gin), which is unstable. Also, show that its trajectories are globally bounded (for
example, take a set x2 + y2 = c for c large enough and demonstrate that the vec-
tor field of the system always points inside the circle x2 + y2 = c). Therefore, by
Poincarè-Bendixson Theorem, we can conclude that the omega-limit set of any
point in R2 different from the origin is a non-zero periodic orbit. ∇

This result holds only for systems in two dimensions. However, there have been
recent extensions of this theorem to systems with special structure in Rn. In partic-
ular, we have the following result due to Hastings et al. (1977).

Theorem 3.3 (Hastings et al. 1977). Consider a system ẋ = f (x), which is of the
form

ẋ1 = f1(xn, x1)
ẋ j = f j(x j−1, x j), 2 ≤ j ≤ n

on the set M defined by xi ≥ 0 for all i with the following inequalities holding in
M:

(i) ∂ fi∂xi < 0 and
∂ fi
∂xi−1 > 0, for 2 ≤ i ≤ n, and

∂ f1
∂xn < 0;

(ii) fi(0,0) ≥ 0 and f1(xn,0) > 0 for all xn ≥ 0;

(iii) The system has a unique steady state x∗ = (x∗1, ..., x
∗
n) in M such that f1(xn, x1)<

0 if xn > x∗n and x1 > x∗1, while f1(xn, x1) > 0 if xn < x
∗
n and x1 < x∗1;

(iv) ∂ f1∂x1 is bounded above in M.

Then, if the Jacobian of f at x∗ has no repeated eigenvalues and has any eigenvalue
with positive real part, then the system has a non-constant periodic solution in M.

This theorem states that for a system with cyclic structure in which the cy-
cle “has negative gain”, the instability of the steady state (under some technical
assumption) is equivalent to the existence of a periodic solution. This‘theorem,
however, does not provide information about whether the orbit is attractive or not,
that is, of whether it is an omega-limit set of any point in M. This stability result is
implied by a more recent theorem due to Mallet-Paret and Smith (1990), for which
we provide a simplified statement as follows.

Theorem 3.4 (Mallet-Paret and Smith, 1990). Consider the system ẋ = f (x) with
the following cyclic feedback structure

ẋ1 = f1(xn, x1)
ẋ j = f j(x j−1, x j), 2 ≤ j ≤ n

on a set M defined by xi ≥ 0 for all i with all trajectories starting in M bounded
for t ≥ 0. Then, the omega-limit set ω(p) of any point p ∈ M can be one of the
following:
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(a) A steady state;

(b) A non-constant periodic orbit;

(c) A set of steady states connected by homoclinic or heteroclinic orbits.

A heteroclinic orbit is an orbit that starts (for t= 0) at a steady state and ends (for
t→∞) into a different steady state. A homoclinic orbit is an orbit that starts and
ends at the same steady state. It is thus clear that a steady state whose linearization
admits all positive or all negative eigenvalues cannot have a homoclinic orbit. As a
consequence of the theorem, then we have that for a system with cyclic feedback
structure that admits one steady state only and at which the linearization has all
eigenvalues with positive real part, the omega limit set must be a periodic orbit.
Let for some δi ∈ {1,−1} be δi ∂ fi(x,xi−1)∂xi−1 > 0 for all 0 ≤ i ≤ n and define ∆ :=

δ1 · ... ·δn . One can show that the sign of ∆ is related to whether the system has one
or multiple steady states.
Therefore, a system with a cyclic feedback structure and a unique equilibrium

point at which the linearization has all eigenvalues with positive real part admits a
stable periodic orbit.

3.4 Analysis Using Describing Functions

Unlike the case of linear systems, where it is possible to full characterize the solu-
tions of a model and there are a wide variety of analysis techniques available, the
behavior of nonlinear systems is harder to analyze, especially away from equilib-
rium points (where the linearization gives a good approximation). One of the more
useful techniques for studying the behavior of nonlinear systems is the method of
harmonic balance, of which a special case is the method of describing functions.
This section explores the use of harmonic balance and describing functions for an-
alyzing nonlinear systems, including the detection and analysis of limit cycles and
the propagation of noise through nonlinear systems.

Describing functions (AM08)

For special nonlinear systems like the one shown in Figure 3.7a, which consists
of a feedback connection between a linear system and a static nonlinearity, it is
possible to obtain a generalization of Nyquist’s stability criterion based on the idea
of describing functions. Following the approach of the Nyquist stability condition,
we will investigate the conditions for maintaining an oscillation in the system. If
the linear subsystem has low-pass character, its output is approximately sinusoidal
even if its input is highly irregular. The condition for oscillation can then be found
by exploring the propagation of a sinusoid that corresponds to the first harmonic.
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L(s)

−N( · )

AB

(a) Block diagram

Re

Im

−1/N(a)
G(iω)

(b) Nyquist plot

Figure 3.7: Describing function analysis. A feedback connection between a static nonlin-
earity and a linear system is shown in (a). The linear system is characterized by its transfer
function L(s), which depends on frequency, and the nonlinearity by its describing function
N(a), which depends on the amplitude a of its input. The Nyquist plot of L(iω) and the plot
of the −1/N(a) are shown in (b). The intersection of the curves represents a possible limit
cycle.

To carry out this analysis, we have to analyze how a sinusoidal signal propa-
gates through a static nonlinear system. In particular we investigate how the first
harmonic of the output of the nonlinearity is related to its (sinusoidal) input. Letting
F represent the nonlinear function, we expand F(eiωt) in terms of its harmonics:

F(aeiωt) =
∞
∑

n=0
Mn(a)ei(nωt+φn(a)),

where Mn(a) and φn(a) represent the gain and phase of the nth harmonic, which
depend on the input amplitude since the function F is nonlinear. We define the
describing function to be the complex gain of the first harmonic:

N(a) = M1(a)eiφn(a). (3.12)

The function can also be computed by assuming that the input is a sinusoid and
using the first term in the Fourier series of the resulting output.
Arguing as we did when deriving Nyquist’s stability criterion, we find that an

oscillation can be maintained if

L(iω)N(a) = −1. (3.13)

This equation means that if we inject a sinusoid at A in Figure 3.7, the same signal
will appear at B and an oscillation can be maintained by connecting the points.
Equation (3.13) gives two conditions for finding the frequency ω of the oscillation
and its amplitude a: the phase must be 180◦, and the magnitude must be unity. A
convenient way to solve the equation is to plot L(iω) and −1/N(a) on the same
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(a) (b)

Figure 3.8: Heuristic stability of limit cycles using describing functions. (a) To check if a
perturbation from amplitude a0 to amplitude a0 + δa is stabilizing, we check to see if the
Nyquist criterion is satisfied for the original frequency response and the perturbed critical
point P1 = 1/N(a0 + δa). (b) An example of a nonlinear system with multiple limit cycles.
Stable limit cycles are labeled ’s’ and unstable limit cycles are labeled ’u’.

diagram as shown in Figure 3.7b. The diagram is similar to the Nyquist plot where
the critical point −1 is replaced by the curve −1/N(a) and a ranges from 0 to∞.
It is possible to define describing functions for types of inputs other than si-

nusoids. Describing function analysis is a simple method, but it is approximate
because it assumes that higher harmonics can be neglected. Excellent treatments
of describing function techniques can be found in the texts by Atherton [5] and
Graham and McRuer [17].

Example 3.8 (Repressilator). ∇

Stability of limit cycles using describing functions

In order to check the stability of a limit cycle, we must reason about how solutions
that have initial conditions near the limit cycle evolve in time and whether they
move closer to the limit cycle (asymptotic stability) or diverge from the limit cycle
(instability).
We begin by arguing heuristically, using the Nyquist plot in Figure 3.7b. Sup-

pose that we were to consider a perturbed limit cycle with amplitude a0+δa, where
a0 is the amplitude of the limit cycle predicted by the describing function method.
If we did so, then the point of intersection of the describing function and the fre-
quency response would move from P0 =−1/N(a0) to P1 =−1/N(a0+δa), as shown
in Figure 3.8a. Now evaluate the Nyquist criterion for the frequency response with
critical point P1. If the criterion indicates that the perturbed system is stable (i.e.,
no net encirclements of P1 for a stable process), then intuitively the amplitude of
the perturbed solution would decrease and we would return to our original ampli-
tude limit cycle. Conversely, if the Nyquist criterion with critical point P1 indicates
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instability, then the oscillation would grow and hence we can infer that the limit cy-
cle is unstable. Figure 3.8b shows a situation with multiple limit cycles with some
stable and some unstable.
While this heuristic method is intuitively appealing, it does not always give the

correct answer. Indeed, even the prediction of the existence of a limit cycle using
describing functions can be incorrect unless the system satisfies some additional
conditions. We present here one such set of conditions, due to Mees [?].
Suppose that (ω0,a0) satisfies the describing function balance equation P(iω0)=

−1/N(a0) and that the the frequency response curve and the describing function lo-
cus are transverse (not tangent) at their intersection. Define

ρ(ω)2 =
∑

k=3,5,9,...
|P(ikω0)|2, “gain of harmonics”

p(a)2 = ‖n(asin t)‖22− |aN(a)|
2, “first harmonic error”

q(a,ε) = ‖m(asin t,ε)‖2, “slope bound”
m(x,ε) =max{|N(x+ ε)−N(x)|, |N(x− ε)−N(x)|}.

Now find an ε such that for all (ω,a) near (ω,a0),

ρ(ω)(p(a)+q(a,ε)) ≤ ε

and let Ω ∈ R2+ be the set of (ω,a) such that

|N(a)+1/G(iω)| ≤ q(a,ε)/a.

Theorem 3.5. Suppose Ω is bounded and there exists a unique (ω,a0) ∈ Ω sat-
isfying the balance equation. Then there exists a periodic solution of the form
y(t) = asin(ωt)+ y∗(t) with remnant ‖y∗‖∞ ≤ ε.

Sketch of proof. Reduced to the contraction mapping theorem, which generates ρ,
p and q.

The basic idea behind this theorem is that if the harmonics around the loop die
off sufficiently fast, then we can insure that there is truly a periodic solution and
bound the error of the higher harmonics. There is also a graphical version of the
stability theorem that checks for “complete intersections” between the describing
function locus and the Nyquist curve [?].

Mathematically, the stability of a limit cycle can be analyzed by taking the lin- !
earization of the system around the (non-equilibrium) solution. To see how this is
done, consider a nonlinear system of the form

ẋ = f (x)
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(a)

Figure 3.9: Random input describing function analysis.

that has a solution xd(t) that is periodic with period T . To compute the linearization
of the dynamics around the equilibrium point, we compute the dynamics of the
error e = x− xd:

ė = f (x)− f (xd) = F(e, xd(t)) ≈ A(t)e

where A(t) is the time-varying linearization given by

A(t) =
∂F
∂e
(e, xd)

∣

∣

∣

∣

∣e=0,xd(t)
.

The dynamics matrix A(t) is periodic and so the dynamics of the linearization are
a given by a periodic, linear ordinary differential equation.
The dynamics of periodic linear systems can be studied using Floquet theory,

which we briefly review here. Let Φ(t,0) be the (T -periodic) fundamental matrix
for ė = A(t)e, so that the solution is given by x(t) = Φ(t,0)x(0). It can be show
that Φ(t,0) has the form φ(t,0) = P(t)eFt where P(t) = P(t+T ) ∈ Rn×n is a periodic
matrix and F ∈Rn×n is a constant matrix. We can now check stability by examining
the eigenvalues of the matrix eFT , which corresponds to the “first return” map for
the system.

Random input describing functions

In addition to allowing prediction and analysis of limit cycles, describing functions
can also be used to analyze the propagation of noise through nonlinear feedback
systems. This approach is known as the random input describing function method.
As in the single input describing function method, we begin with a system in

the form of a a linear system with a nonlinear feedback, as shown in Figure 3.9a.
To analyze this system, we construct an input that contains both a sinusoid and a
random input r(t):

y = b+asin(ωt+φ)+ r(t),

where b is the bias term, a is the amplitude of the sinusoidal term, φ is a uniform
random variable and r(t) is a stationary Gaussian random process with variance
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σ2 and correlation ρ(τ).1 We approximate the response of the system through the
nonlinearity by

N(y(t)) ≈ Nbb+Naasin(ωt+φ)+Nrr(t),

where Nb is called the bias gain, Na is the sinusoidal gain and Nr is the stochastic
gain. These functions are given by

Nb(b,a,σ) =
1
b
E{ f (y)} =

1
(2π)3/2σb

∫ 2π

0

∫ ∞

−∞
f (b+asinθ+ r(t))e−

r2
2σ2 drdθ

Na(b,a,σ) =
2
a
E{ f (y) sinθ} =

2
(2π)3/2σa

∫ 2π

0

∫ ∞

−∞
f (b+asinθ+ r(t)) sinθe−

r2
2σ2 drdθ

Nr(b,a,σ) =
1
σ2

E{ f (y)r} =
1

(2π)3/2σ3

∫ 2π

0

∫ ∞

−∞
f (b+asinθ+ r(t))re−

r2
2σ2 drdθ

(3.14)
The random input describing function method has a number of special cases.

If we take σ = 0, then it can be shown that we recover the standard describing
function method. If we instead take a = 0, we can study how noise propagates
through the system. Recall that in the linear case, where the feedback term is given
by a constant gain N, the spectral density of the output y is given by

S y(ω) = Hyd(−iω)S d(ω)Hyd(iω), σy =
1
2π

∫ ∞

−∞
S y(ω)dω.

In the nonlinear case, we replace the feedback gain N with Nr(σy) so that

H̃yd(s) =
P(s)

1+P(s)Nr(σy)
, σy =

1
2π

∫ ∞

−∞
H̃yd(−iω)S d(ω)H̃yd(iω). (3.15)

Note that this equation gives an algebraic relationship for σy that can be solved and
then used to compute Nr(σ) and S y(ω).
Consider next the case of both a limit cycle and random noise,

y(t) = asin(ωt+φ)+ r(t).

We now look for solutions of the coupled equations

H̃yd(s) =
P(s)

1+P(s)Nr(σy)
, σy =

1
2π

∫ ∞

−∞
H̃yd(−iω)S d(ω)H̃yd(iω),

Na(a,σy)P(iω0) = −1.
(3.16)

If we can find a,σy andω0 that satisfy all of the equations, then we get a description
of y(t).
It is interesting to note that it can sometimes happen that S d(ω) can cause an un-

stable (noiseless) system to be stable. Similarly, we can get a system with Nr(0,σy)
that destabilizes and otherwise stable system.

1These are described in more detail in Chapter 4.
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Figure 3.10: Hopf Bifurcation.

3.5 Bifurcations

Hopf bifurcation is a technique that is often used to understand whether a system
admits a periodic orbit when some parameter is varied. Usually, such an orbit is a
small amplitude periodic orbit that is present in the close vicinity of an unstable
steady state.
Consider the system dependent on a parameter α:

ẋ = g(x,α), x ∈ Rn, α ∈ R,

and assume that at the steady state x̄ corresponding to α = ᾱ (i.e., g(x̄, ᾱ) = 0),
the linearization ∂g∂x (x̄, ᾱ) has a pair of (non zero) imaginary eigenvalues with the
remaining Rn−2 eigenvalues having negative real parts. Define the new parameter
µ := α− ᾱ and re-define the system as

ẋ = f (x,µ) := g(x,µ+ ᾱ),

so that the linearization ∂ f∂x (x̄,0) has a pair of (non zero) imaginary eigenvalues
with the remaining Rn−2 eigenvalues having negative real parts. Denote by λ(µ) =
β(µ)+ iω(µ) the eigenvalue such that β(0) = 0. Then, if ∂β∂µ (µ = 0) ! 0 the system
admits a small amplitude almost sinusoidal periodic orbit for µ small enough and
the system is said to go through a Hopf bifurcation at µ = 0. If the small amplitude
periodic orbit is stable, the Hopf bifurcation is said supercritical, while if it is
unstable it is said subcritical. Figure 3.10 shows diagrams corresponding to these
bifurcations.
In order to determine whether a Hopf bifurcation is supercrictical or subcriti-

cal, it is necessary to calculate a “curvature” coefficient, for which there are for-
mulas (Marsden and McCrocken, 1976) and available bifurcation sofwtare, such as
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AUTO. In practice, it is often enough to calculate the value ᾱ of the parameter at
which Hopf bifurcation occurs and simulate the system for values of the parameter
α close to ᾱ. If a small amplitude limit cycle appears, then the bifurcation must be
supercritical.
The Hopf bifurcation result is based on the center manifold theory for nonlinear

dynamical systems. For a rigorous treatment of Hopf bifurcation is thus necessary
to study center manifold theory first, which is outside the scope of this text. For
details, the reader is referred to Wiggins book on dynamical systems and chaos.

3.6 Model Reduction Techniques

The techniques that we have developed in this chapter can be applied to a wide
variety of dynamical systems. However, many of the methods require significant
computation and hence we would like to reduce the complexity of the models as
much as possible before applying them. In this section we review methods for do-
ing such a reduction in the complexity of the models. Most of the techniques are
based on the common idea that if we are interested in the slower time scale dynam-
ics of a system, the fast time scale dynamics can be approximated by their equi-
librium solutions. This idea was introduced in Chapter 2 in the context of reduced
order mechanisms; we present a more mathematical analysis of such systems here.

Singular Perturbation

Let (x,y) ∈ D := Dx×Dy ⊂ Rn×Rm and consider the vector field

ẋ = f (x,y), εẏ = g(x,y), (x(0),y(0)) = (x0,y0)

in which 0 < ε 1 1 is a small parameter. Since ε 1 1, the absolute value of the
time derivative of y can be much larger than the time derivative of x, resulting in y
dynamics that are much faster than the x dynamics. That is, this system has a slow
time scale evolution (in x) and a fast time-scale evolution (in y). If we are interested
only in the slower time scale, then the above system can be approximated (under
suitable conditions) by the reduced system

˙̄x = f (x̄, ȳ), 0 = g(x̄, ȳ), x̄(0) = x0.

Letting y= γ(x) (called the slow manifold) be the locally unique solution of g(x,y)=
0, we can approximate the dynamics in x as

˙̄x = f (x̄,γ(x̄)), x(0) = x0.

We seek to determine under what conditions the solution x(t) is “close” to the
solution x̄(t) of the reduced system. This problem can be addressed by analyzing
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the fast dynamics. Letting τ = t/ε be the fast time scale, we have that

dx
dτ
= ε f (x,y),

dy
dτ
= g(x,y), (x(0),y(0)) = (x0,y0),

so that when ε1 1, x(τ) does not appreciably change. Therefore, the above system
in the τ time scale can be approximated by

dy
dτ
= g(x0,y), y(0) = y0,

in which x is “frozen” at the initial condition. This system is usually referred to as
the boundary layer system. If for all x0, we have that y(τ) converges to γ(x0), then
for t > 0 we will have that the solution x(t) is well approximated by the solution
x̄(t) to the reduced system. This qualitative explanation is more precisely captured
by the following theorem (originally due to Tikonov).

Theorem 3.6. Assume that

∂

∂y
g(x,y)

∣

∣

∣

∣

∣

y=γ(x)
< 0

uniformly for x ∈ Dx. Let the solution of the reduced system be uniquely defined for
t ∈ [0, t f ]. Then, for all tb ∈ (0, t f ] there is a constant ε∗ > 0 and set Ω ⊆ D such that

x(t)− x̄(t) = O(ε) uniformly for t ∈ [0, t f ],
y(t)−γ(x̄(t)) = O(ε) uniformly for t ∈ [tb, t f ],

provided ε < ε∗ and (x0,y0) ∈Ω.

Example 3.9 (Linear system). Consider the following linear system

ẋ1 = −x1

ẋ2 = −
1
ε
x2+

1
ε
x1, ε > 0, (3.17)

in which ε is very small. This system has two eigenvalues equal to −1 and −1/ε
with corresponding eigenvectors (1− ε,1) and (0,1), respectively. The slow man-
ifold, obtained by multiplying both sides of the second equation in system (3.17)
by ε and setting ε = 0, is given by x2 = x1 and the boundary layer system is expo-
nentially stable. The reduced system is just given by

˙̄x1 = −x̄1, and x̄2(t) = x̄1(t).

The trajectories of the system along with the slow manifold are represented in Fig-
ure 3.11. The initial conditions that are not on the slow manifold quickly converge
to the slow manifold and then they converge to the origin. ∇
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Figure 3.11: Simulation results for the system in equations (3.17). Trajectories in the x1, x2
plane.

Example 3.10 (Enzymatic reaction). Let’s go back to the enzymatic reaction

E+S
k f
−−⇀↽−−
kr
C

kcat−−→ E+P,

in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the substrate S
due to the binding with the enzyme E. The rate k f is referred to as association con-
stant, kr as dissociation constant, and kcat as the catalytic rate. The corresponding
ODE system is given by

dE
dt

= −k f E ·S + krC+ kcatC

dS
dt

= −k f E ·S + krC

dC
dt

= k f E ·S − (kr + kcat)C

dP
dt

= kcatC.

By assuming that kr,k f 3 kcat, we obtained that approximatively dC
dt = 0 and thus

that C = EtotS
S+Km , with Km =

kr+kcat
k f and dP

dt =
VmaxS
S+Km with Vmax = kcatEtot. From this, it

also follows that
dE
dt
≈ 0 and

dS
dt
≈ −

dP
dt
. (3.18)

How good is this approximation? By applying the singular perturbation method,
we will obtain a clear answer to this question. Specifically, define a := k f /kr and



3-30 CHAPTER 3. DYNAMIC BEHAVIOR

take the system to standard singular perturbation form by defining the small pa-
rameter as ε := kcat

kr , so that k f =
kcat
ε a, kr =

kcat
ε , and the system becomes

ε
dE
dt

= −akcatE ·S + kcatC+ εkcatC

ε
dS
dt

= −akcatE ·S + kcatC

ε
dC
dt

= akcatE ·S − kcatC− εkcatC

dP
dt

= kcatC.

One cannot directly apply singular perturbation theory on this system because one
can verify from the linearization of the first three equations that the boundary layer
dynamics is not locally exponentially stable as there are two zero eigenvalues. This
is because the three variables E,S ,C are not independent. Specifically, E = Etot−C
and S +C+P = S (0) = S tot, assuming that initially we have S in amount S (0) and
no amount of P and C in the system. Given these conservation laws, the system can
be re-written as

ε
dC
dt

= akcat(Etot −C) · (S tot −C−P)− kcatC− εkcatC

dP
dt

= kcatC.

Under the assumption made in the analysis of the enzymatic reaction that S tot 3
Etot, we have that C1 S tot so that the equations finally become

ε
dC
dt

= akcat(Etot −C) · (S tot −P)− kcatC− εkcatC

dP
dt

= kcatC.

One can verify (show as an exercise) that in this system, the boundary layer dynam-
ics is locally exponentially stable, so that setting ε = 0 one obtains C̄ = Etot(S tot−P̄)

(S tot−P̄)+Km
=:

g(P̄) and thus that the slow dynamics of the system are given by

dP̄
dt
= Vmax

(S tot − P̄)
(S tot − P̄)+Km

.

From the conservation law S̄ + C̄+ P̄ = S (0) = S tot, we obtain that dS̄dt = −
dP̄
dt −

dC̄
dt ,

in which now dC̄
dt =

∂g
∂P (P̄) ·

dP
dt . Therefore

dS̄
dt
= −

dP̄
dt
(1+
∂g
∂P
(P̄)), S̄ (0) = S tot −g(P̄(0))− P̄(0) (3.19)
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Figure 3.12: Simulation results for the enzymatic reaction comparing the approximations
from singular perturbation and from the quasi-steady state approximation. Here, we have
S tot = 100, Etot = 1, kr = k f = 10, and kcat = 0.1.

and
dĒ
dt
= −

dC̄
dt
= −
∂g
∂P
(P̄)

dP̄
dt
, E(0) = Etot −g(P̄(0)), (3.20)

which are different from expressions (3.18). Specifically, these expressions are
close to those in (3.18) only when ∂g∂P (P̄) is small enough. In the plots of Fig-
ure 3.12, we show the time trajectories of the original system, of the Michaelis-
Menten quasi-steady state approximation, and of the singular perturbation approx-
imation. The trajectories of E(t) and of S (t) for the quasi-steady state approxima-
tion have been obtained from the conservation laws once P(t) and C(t) are deter-
mined. The trajectories of these variables for the singular perturbation approxima-
tion have been obtained directly integrating equations (3.19) and (3.20). Notice that
the quasi-steady state approximations dC

dt ≈ 0 and
dE
dt ≈ 0 are well representing the
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Figure 3.13: The slow manifold of the system C = g(P) is shown in red. In black, we show
the trajectories of the the full system. These trajectories collapse into an ε-neighbor of the
slow manifold. Here, we have S tot = 100, Etot = 1, kr = k f = 10, and kcat = 0.1.

dynamics of the C and E variables only while S (t) is large enough. By contrast,
equations (3.19-3.20) well represent the system even when the substrate goes to
zero. In Figure 3.13, we show the curveC = g(P) (in red) and the trajectories of the
full system in black. All of the trajectories of the system immediately collapse into
an ε-neighbor of the curve C = g(P). ∇

Balanced truncation

Principle component analysis (PCA)
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