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Chapter 3
Analysis of Dynamic Behavior

In this chapter, we describe some of the tools from dynamical systems and feed-
back control theory that will be used in the rest of the text to analyze and design
biological circuits, building on tools already described in AM08. We focus here on
deterministic models and the associated analyses; stochastic methods are given in
Chapter 4.

Prerequisites. Readers should have a understanding of the tools for analyzing sta-
bility of solutions to ordinary differential equations, at the level of Chapter 4 of
AM08. We will also make use of linearized input/output models in state space,
based on the techniques described in Chapter 5 of AM08, and sensitivity function
methods, described in Chapters 11 and 12 of AM08 and building on the frequency
domain techniques described in Chapters 8–10.

3.1 Input/Output Modeling [AM08]

In the previous chapter we constructed a variety of models to capture the dynamic
behavior of a biomolecular subsystem. In this chapter we expand on that treatment
by including external inputs and measured outputs as a part of the description of
the system (or a portion of the system).

The Heritage of Electrical Engineering

The approach to modeling that we take builds on the view of models that emerged
from electrical engineering, where the design of electronic amplifiers led to a focus
on input/output behavior. A system was considered a device that transforms inputs
to outputs, as illustrated in Figure 3.1. Conceptually an input/output model can be
viewed as a giant table of inputs and outputs. Given an input signal u(t) over some
interval of time, the model should produce the resulting output y(t).
The input/output framework is used in many engineering disciplines since it

allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio or
a television and break it down into manageable pieces such as the receiver, demod-
ulator, amplifier and speakers. Each of these pieces has a set of inputs and outputs
and, through proper design, these components can be interconnected to form the
entire system.
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Figure 3.1: Illustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the one on the right is its
representation as a block diagram.

The input/output view is particularly useful for the special class of linear time-
invariant systems. This term will be defined more carefully below, but roughly
speaking a system is linear if the superposition (addition) of two inputs yields an
output that is the sum of the outputs that would correspond to individual inputs be-
ing applied separately. A system is time-invariant if the output response for a given
input does not depend on when that input is applied. While most biomolecular sys-
tems are neither linear nor time-invariant, they can often be approximated by such
models, often by looking at perturbations of the system from its nominal behavior,
in a fixed context.
One of the reasons that linear time-invariant systems are so prevalent in model-

ing of input/output systems is that a large number of tools have been developed to
analyze them. One such tool is the step response, which describes the relationship
between an input that changes from zero to a constant value abruptly (a step input)
and the corresponding output. The step response is very useful in characterizing
the performance of a dynamical system, and it is often used to specify the desired
dynamics. A sample step response is shown in Figure 3.2a.
Another way to describe a linear time-invariant system is to represent it by its

response to sinusoidal input signals. This is called the frequency response, and a
rich, powerful theory with many concepts and strong, useful results has emerged.
The results are based on the theory of complex variables and Laplace transforms.
The basic idea behind frequency response is that we can completely characterize
the behavior of a system by its steady-state response to sinusoidal inputs. Roughly
speaking, this is done by decomposing any arbitrary signal into a linear combi-
nation of sinusoids (e.g., by using the Fourier transform) and then using linearity
to compute the output by combining the response to the individual frequencies. A
sample frequency response is shown in Figure 3.2b.
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Figure 3.2: Input/output response of a linear system. The step response (a) shows the output
of the system due to an input that changes from 0 to 1 at time t = 5 s. The frequency re-
sponse (b) shows the amplitude gain and phase change due to a sinusoidal input at different
frequencies.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.

The Control View

When control theory emerged as a discipline in the 1940s, the approach to dy-
namics was strongly influenced by the electrical engineering (input/output) view.
A second wave of developments in control, starting in the late 1950s, was inspired
by mechanics, where the state space perspective was used. The emergence of space
flight is a typical example, where precise control of the orbit of a spacecraft is es-
sential. These two points of view gradually merged into what is today the state
space representation of input/output systems.
The development of state space models involved modifying the models from

mechanics to include external actuators and sensors and utilizing more general
forms of equations. In control, the model given by equation (??) was replaced by

dx
dt
= f (x,u), y = h(x,u), (3.1)

where x is a vector of state variables, u is a vector of control signals and y is a
vector of measurements. The term dx/dt represents the derivative of x with respect
to time, now considered a vector, and f and h are (possibly nonlinear) mappings of
their arguments to vectors of the appropriate dimension. For mechanical systems,
the state consists of the position and velocity of the system, so that x = (q, q̇) in
the case of a damped spring–mass system. Note that in the control formulation we
model dynamics as first-order differential equations, but we will see that this can
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capture the dynamics of higher-order differential equations by appropriate defini-
tion of the state and the maps f and h.
Adding inputs and outputs has increased the richness of the classical problems

and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice of u (reachability) and if the measurement y
contains enough information to reconstruct the state (observability). These topics
will be addressed in greater detail in Chapters ?? and ??.
A final development in building the control point of view was the emergence of

disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views of input/output repre-
sentations and state space representations are particularly useful when modeling
uncertainty since state models are convenient to describe a nominal model but un-
certainties are easier to describe using input/output models (often via a frequency
response description). Uncertainty will be a constant theme throughout the text and
will be studied in particular detail in Chapter ??.
An interesting observation in the design of control systems is that feedback sys-

tems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system valida-
tion, where one wishes to verify that the detailed response of the system performs
as it was designed. Because of these different uses of models, it is common to use
a hierarchy of models having different complexity and fidelity.

State space systems

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a biochemical system the state
is composed of the variables required to account for the current context of the cell,
including the concentrations of the various species and complexes that are present.
It may also include the spatial locations of the various molecules. A key issue in
modeling is to decide how accurately this information has to be represented. The
state variables are gathered in a vector x ∈ Rn called the state vector. The control
variables are represented by another vector u ∈ Rp, and the measured signal by the
vector y ∈ Rq. A system can then be represented by the differential equation

dx
dt
= f (x,u), y = h(x,u), (3.2)
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where f : Rn ×Rp → Rn and h : Rn ×Rp → Rq are smooth mappings. We call a
model of this form a state space model.
The dimension of the state vector is called the order of the system. The sys-

tem (3.2) is called time-invariant because the functions f and h do not depend
explicitly on time t; there are more general time-varying systems where the func-
tions do depend on time. The model consists of two functions: the function f gives
the rate of change of the state vector as a function of state x and control u, and the
function h gives the measured values as functions of state x and control u.
A system is called a linear state space system if the functions f and h are linear

in x and u. A linear state space system can thus be represented by

dx
dt
= Ax+Bu, y =Cx+Du, (3.3)

where A, B, C and D are constant matrices. Such a system is said to be linear and
time-invariant, or LTI for short. The matrix A is called the dynamics matrix, the
matrix B is called the control matrix, the matrix C is called the sensor matrix and
the matrix D is called the direct term. Frequently systems will not have a direct
term, indicating that the control signal does not influence the output directly.

3.2 Analysis Near Equilibria

As in the case of many other classes of dynamical systems, a great deal of insight
into the behavior of a biological system can be obtained by analyzing the dynamics
of the system subject to small perturbations around a known solution. We begin by
considering the dynamics of the system near an equilibrium point, which is one of
the simplest cases and provides a rich set of methods and tools.
In this section we will model the dynamics of our system using a nonlinear

ordinary differential equation of the form

ẋ = f (x,θ,w), y = h(x,θ) (3.4)

where x ∈ Rn is the system state, θ ∈ RK are the system parameters and w ∈ Rp is a
set of external inputs. The output y of the system represents quantities that can be
measured or that are used to interconnect subsystem models to form larger models.
Note that we have chosen to explicitly model the system parameters θ, which can
be thought of as an additional set of (mainly constant) inputs to the system.

Equilibrium points and stability [AM08]

We begin by considering the case where the input w and parameters θ in equa-
tion (3.4) are fixed and hence we can write the dynamics of the system as

dx
dt
= F(x).
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Figure 3.3: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium point xe at the origin is stable since all trajectories that
start near xe stay near xe.

An equilibrium point of a dynamical system represents a stationary condition for
the dynamics. We say that a state xe is an equilibrium point for a dynamical system
if F(xe) = 0. If a dynamical system has an initial condition x(0) = xe, then it will
stay at the equilibrium point: x(t) = xe for all t ≥ 0, where we have taken t0 = 0.
Equilibrium points are one of the most important features of a dynamical sys-

tem since they define the states corresponding to constant operating conditions. A
dynamical system can have zero, one or more equilibrium points.
The stability of an equilibrium point determines whether or not solutions nearby

the equilibrium point remain close, get closer or move further away. An equilibrium
point xe is stable if solutions that start near xe stay close to xe. Formally, we say
that the equilibrium point xe is stable if for all ε > 0, there exists a δ > 0 such that

‖x(0)− xe‖ < δ =⇒ ‖x(t)− xe‖ < ε for all t > 0,

where x(t) represents the solution the the differential equation (??) with initial con-
dition x(0). Note that this definition does not imply that x(t) approaches xe as time
increases but just that it stays nearby. Furthermore, the value of δmay depend on ε,
so that if we wish to stay very close to the solution, we may have to start very, very
close (δ) ε). This type of stability, which is illustrated in Figure ??, is also called
stability in the sense of Lyapunov. If an equilibrium point is stable in this sense
and the trajectories do not converge, we say that the equilibrium point is neutrally
stable.
An example of a neutrally stable equilibrium point is shown in Figure 3.3. From

the phase portrait, we see that if we start near the equilibrium point, then we stay
near the equilibrium point. Indeed, for this example, given any ε that defines the
range of possible initial conditions, we can simply choose δ = ε to satisfy the defi-
nition of stability since the trajectories are perfect circles.
An equilibrium point xe is asymptotically stable if it is stable in the sense of
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Figure 3.4: Phase portrait and time domain simulation for a system with a single asymp-
totically stable equilibrium point. The equilibrium point xe at the origin is asymptotically
stable since the trajectories converge to this point as t→∞.

Lyapunov and also x(t)→ xe as t→∞ for x(0) sufficiently close to xe. This corre-
sponds to the case where all nearby trajectories converge to the stable solution for
large time. Figure 3.4 shows an example of an asymptotically stable equilibrium
point. Note from the phase portraits that not only do all trajectories stay near the
equilibrium point at the origin, but that they also all approach the origin as t gets
large (the directions of the arrows on the phase portrait show the direction in which
the trajectories move).
An equilibrium point xe is unstable if it is not stable. More specifically, we say

that an equilibrium point xe is unstable if given some ε > 0, there does not exist a
δ > 0 such that if ‖x(0)− xe‖ < δ, then ‖x(t)− xe‖ < ε for all t. An example of an
unstable equilibrium point is shown in Figure 3.5.
The definitions above are given without careful description of their domain of

applicability. More formally, we define an equilibrium point to be locally stable
(or locally asymptotically stable) if it is stable for all initial conditions x ∈ Br(a),
where

Br(a) = {x : ‖x−a‖ < r}

is a ball of radius r around a and r > 0. A system is globally stable if it is stable for
all r > 0. Systems whose equilibrium points are only locally stable can have inter-
esting behavior away from equilibrium points, as we explore in the next section.
To better understand the dynamics of the system, we can examine the set of all

initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called the region of attraction for the equilibrium point. In general,
computing regions of attraction is difficult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable equilibria
that are attracting. This gives partial information about the behavior of the system.
For planar dynamical systems, equilibrium points have been assigned names

based on their stability type. An asymptotically stable equilibrium point is called
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Figure 3.5: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium point xe at the origin is unstable since not all trajectories
that start near xe stay near xe. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

a sink or sometimes an attractor. An unstable equilibrium point can be either a
source, if all trajectories lead away from the equilibrium point, or a saddle, if some
trajectories lead to the equilibrium point and others move away (this is the situ-
ation pictured in Figure 3.5). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as the one in Figure 3.3) is called
a center.

Stability analysis via linearization

A linear dynamical system has the form

dx
dt
= Ax, x(0) = x0, (3.5)

where A ∈ Rn×n is a square matrix, corresponding to the dynamics matrix of a
linear control system (??). For a linear system, the stability of the equilibrium at
the origin can be determined from the eigenvalues of the matrix A:

λ(A) = {s ∈ C : det(sI−A) = 0}.

The polynomial det(sI − A) is the characteristic polynomial and the eigenvalues
are its roots. We use the notation λ j for the jth eigenvalue of A, so that λ j ∈ λ(A).
In general λ can be complex-valued, although if A is real-valued, then for any
eigenvalue λ, its complex conjugate λ∗ will also be an eigenvalue. The origin is
always an equilibrium for a linear system. Since the stability of a linear system
depends only on the matrix A, we find that stability is a property of the system. For
a linear system we can therefore talk about the stability of the system rather than
the stability of a particular solution or equilibrium point.
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The easiest class of linear systems to analyze are those whose system matrices
are in diagonal form. In this case, the dynamics have the form

dx
dt
=





λ1 0
λ2
. . .

0 λn





x. (3.6)

It is easy to see that the state trajectories for this system are independent of each
other, so that we can write the solution in terms of n individual systems ẋ j = λ jx j.
Each of these scalar solutions is of the form

x j(t) = eλ jt x j(0).

We see that the equilibrium point xe = 0 is stable if λ j ≤ 0 and asymptotically stable
if λ j < 0.
Another simple case is when the dynamics are in the block diagonal form

dx
dt
=





σ1 ω1 0 0
−ω1 σ1 0 0

0 0 . . .
...

...

0 0 σm ωm
0 0 −ωm σm





x.

In this case, the eigenvalues can be shown to be λ j = σ j ± iω j. We once again can
separate the state trajectories into independent solutions for each pair of states, and
the solutions are of the form

x2 j−1(t) = eσ jt
(

x2 j−1(0)cosω jt+ x2 j(0)sinω jt
)

,

x2 j(t) = eσ jt
(

−x2 j−1(0)sinω jt+ x2 j(0)cosω jt
)

,

where j = 1,2, . . . ,m. We see that this system is asymptotically stable if and only
if σ j = Reλ j < 0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.
Very few systems are in one of the diagonal forms above, but some systems can

be transformed into these forms via coordinate transformations. One such class
of systems is those for which the dynamics matrix has distinct (non-repeating)
eigenvalues. In this case there is a matrix T ∈ Rn×n such that the matrix TAT−1 is
in (block) diagonal form, with the block diagonal elements corresponding to the
eigenvalues of the original matrix A (see Exercise ??). If we choose new coordi-
nates z = T x, then

dz
dt
= T ẋ = TAx = TAT−1z

and the linear system has a (block) diagonal dynamics matrix. Furthermore, the
eigenvalues of the transformed system are the same as the original system since
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if v is an eigenvector of A, then w = Tv can be shown to be an eigenvector of
TAT−1. We can reason about the stability of the original system by noting that
x(t) = T−1z(t), and so if the transformed system is stable (or asymptotically stable),
then the original system has the same type of stability.
This analysis shows that for linear systems with distinct eigenvalues, the stabil-

ity of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we make use of the
following theorem, proved in the next chapter:

Theorem 3.1 (Stability of a linear system). The system

dx
dt
= Ax

is asymptotically stable if and only if all eigenvalues of A all have a strictly negative
real part and is unstable if any eigenvalue of A has a strictly positive real part.

An important feature of differential equations is that it is often possible to de-
termine the local stability of an equilibrium point by approximating the system by
a linear system. Suppose that we have a nonlinear system

dx
dt
= F(x)

that has an equilibrium point at xe. Computing the Taylor series expansion of the
vector field, we can write

dx
dt
= F(xe)+

∂F
∂x

∣
∣
∣
∣
∣xe
(x− xe)+higher-order terms in (x− xe).

Since F(xe) = 0, we can approximate the system by choosing a new state variable
z = x− xe and writing

dz
dt
= Az, where A =

∂F
∂x

∣
∣
∣
∣
∣xe
. (3.7)

We call the system (3.7) the linear approximation of the original nonlinear system
or the linearization at xe.
The fact that a linear model can be used to study the behavior of a nonlinear

system near an equilibrium point is a powerful one. Indeed, we can take this even
further and use a local linear approximation of a nonlinear system to design a feed-
back law that keeps the system near its equilibrium point (design of dynamics).
Thus, feedback can be used to make sure that solutions remain close to the equilib-
rium point, which in turn ensures that the linear approximation used to stabilize it
is valid.
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Input/output transfer curves (TBD)

Frequency domain analysis

Another way to look at the sensitivity of the solutions near equilibria to changes
in parameters and inputs is to use frequency domain techniques. Recall that the
frequency response of a linear system

ẋ = Ax+Bu
y =Cx+Du

is the response of the system to a sinusoidal input u = asinωt with input amplitude
a and frequency ω. The transfer function for a linear system is given by

Gyu(s) =C(sI−A)−1B+D

and represents the response of a system to an exponential signal of the form u(t) =
est where s ∈ C. In particular, the response to a sinusoid u = asinωt is given by
y = Masin(ωt+ θ) where the gain M and phase shift θ can be determined from the
transfer function evaluated at s = iω:

Gyu(iω) = Meiθ.

For finite dimensional linear (or linearized) systems, the transfer function be be
written as a ratio of polynomials in s:

G(s) =
b(s)
a(s)
.

The values of s at which the numerator vanishes are called the zeros of the transfer
function and the values of s at which the denominator vanishes are called the poles.
The transfer function representation of an input/output linear system is essen-

tially equivalent to the state space description, but we reason about the dynamics
by looking at the transfer function instead of the state space matrices. For example,
it can be shown that the poles of a transfer function correspond to the eigenvalues
of the matrix A, and hence the poles determine the stability of the system.
Interconnections between subsystems often have simple representations in terms

of transfer functions. Two systems G1 and G2 in series (with the output of the first
connected to the input of the second) have a combined transfer functionGseries(s) =
G1(s)G2(s) and two systems in parallel (a single input goes to both systems and the
outputs are summed) has the transfer function Gparallel(s) =G1(s)+G2(s). A com-
mon interconnection is two put two systems in feedback form for which the transfer
function is given by

Gyr(s) =
G1(s)

G1(s)+G2(s)
=

n1(s)d2(s)
n1(s)d2(s)+d1(s)n2(s)

,
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where ni(s) and di(s) are the numerator and denominator of the individual transfer
function. The ease in which the input/output response for interconnected systems
can be computed with transfer functions is one of the main motivations for their
widespread use in engineering.
Transfer functions are useful representations of linear systems because the prop-

erties of the transfer function can be related to the properties of the dynamics. In
particular, the shape of the frequency response describes how the system response
to inputs and disturbances, as well as allows us to reason about the stability of inter-
connected systems. The Bode plot of a transfer function gives the magnitude and
phase of the frequency response as a function of frequency and the Nyquist plot
can be used to reason about stability of a closed loop system from the open loop
frequency response. The transfer function for a system can be determined from
experiments by measuring the frequency response and fitting a transfer function
to the data. Formally, the transfer function corresponds to the ratio of the Laplace
transforms of the output to the input.
Returning to our analysis of biomolecular systems, suppose we have a systems

whose dynamics can be written as

ẋ = f (x,θ,w)

and we wish to understand how the solutions of the system depend on the pa-
rameters θ and disturbances w. We focus on the case of an equilibrium solution
x(t; x0,θ0) = xe. Let z = x− xe, w̃ = w−w0 and θ̃ = θ− θ0 represent the deviation
of the state, input and parameters from their nominal values. We can write the dy-
namics of the perturbed system using its linearization:

dz
dt
=

(

∂ f
∂x

)

(xe,θ0,w0)
·z +

(

∂ f
∂θ

)

(xe,θ0,w0)
· θ̃ +

(

∂ f
∂w

)

(xe,θ0,w0)
· w̃.

This linear system describes small deviations from xe(θ0,w0) but allows θ̃ and w̃ to
be time-varying instead of the constant case considered earlier.
To analyze the resulting deviations, it is convenient to look at the system in the

frequency domain. Let y = Cx be a set of values of interest. The transfer functions
between θ̃, w̃ and y are given by

Hyθ̃(s) =C(sI−A)−1Bθ, Hyw̃(s) =C(sI−A)−1Bw,

where

A =
∂ f
∂x

∣
∣
∣
∣
∣(xe,θ0,w0)

, Bθ =
∂ f
∂θ

∣
∣
∣
∣
∣(xe,θ0,w0)

, Bw =
∂ f
∂w

∣
∣
∣
∣
∣(xe,θ0,w0)

.

Note that if we let s = 0, we get the response to small, constant changes in
parameters. For example, the change in the outputs y as a function of constant
changes in the parameters is given by

Hyθ̃(0) =CA−1Bθ =CS x,θ,
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Figure 3.6: Noise attenuation in a genetic circuit.

which matches our previous parametric analysis.

Example 3.1 (Transcriptional regulation). Consider again the case of transcrip-
tional regulation described in Example 3.2. Suppose that the mRNA degradation
rate γ can change as a function of time and that we wish to understand the sensitiv-
ity with respect to this (time-varying) parameter. Linearizing the dynamics around
an equilibrium point

A =




−γ F′(pe)
β −δ




, Bγ =





−me
0




.

For the case of no feedback we have F(P) = α0, and the system has an equilibrium
point at me = α0/γ, Pe = βα0/(δγ). The transfer function from γ to p is given by

GolPγ(s) =
−βme

(s+γ)(s+δ)
.

For the case of negative regulation, we have

F(P) =
α

K +Pn
+α0,

and the resulting transfer function is given by

GclPγ(s) =
βme

(s+γ)(s+δ)+βσ
, σ = F′(Pe) =

nαPn−1e
(K +Pne)2

.

Figure 3.6 shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbances with low-
frequency content but slightly amplifies disturbances at high frequency (compared
to the open loop system). ∇
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3.3 Robustness

Disturbance rejection

Parametric uncertainty

In addition to studying the input/output transfer curve and the stability of a given
equilibrium points, we can also study how these features change with respect to
changes in the system parameters θ. Let xe(θ0,w0) represent an equilibrium point
for fixed parameters θ0 and external input w0, so that f (xe,θ0,w0) = 0. We assume
that the equilibrium point is stable and focus here on understanding how the loca-
tion of the equilibrium point and the dynamics near the equilibrium point vary as a
function of changes in the parameters θ and external inputs w.
We start by assuming that w = 0 and investigating how xe depends on θ. The

simplest approach is to analytically solve the equation f (xe,θ0)= 0 for xe. However,
this is often difficult to do in closed form and so as an alternative we instead look
at the linearized response given by S xeθ = dxe/dθ, the (infinitesimal) change in the
equilibrium state due to a change in the parameter. To determine S xeθ we begin by
differentiating the relationship f (xe(θ),θ) = 0 with respect to θ:

d f
dθ
=
∂ f
∂x
∂xe
∂θ
+
∂ f
∂θ
= 0 =⇒

∂xe
∂θ
= −
(

∂ f
∂x

)−1
∂ f
∂θ

∣
∣
∣
∣
∣(xe,θ0)

. (3.8)

These quantities can be computed numerically and hence we can evaluate the effect
of small (but constant) changes in the parameters θ on the equilibrium state xe.
A similar analysis can be performed to determine the effects of small (but con-

stant) changes in the external input w. Suppose that xe depends on both θ and w,
with f (xe,θ0,w0) = 0 and θ0 and w0 representing the nominal values. Then

∂xe
∂θ
= −
(

∂ f
∂x

)−1
∂ f
∂θ

∣
∣
∣
∣
∣(xe,θ0,w0)

,
∂xe
∂w
= −
(

∂ f
∂x

)−1
∂ f
∂w

∣
∣
∣
∣
∣(xe,θ0,w0)

.

We see that the vector ∂ f /∂w describes how the specific inputs vary and (∂ f /∂x)−1
indicates how the perturbations are reflected in the equilibrium states. If the system
is close to instability then some eigenvalues of ∂ f /∂x may be near zero and hence
the inverse could be large, resulting in significant changes in the equilibrium point
due to variations in the disturbances (or parameters).

Example 3.2 (Transcriptional regulation). Consider a genetic circuit consisting
of a single gene. We wish to study the response of the protein concentration to
fluctuations in its parameters in two cases: a constitutive promoter (no regulation)
and self-repression (negative feedback), illustrated in Figure 3.7. The dynamics of
the system are given by

dm
dt
= F(P)−γm,

dP
dt
= βm−δP,
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A

RNAP

(a) Open loop

RNAP

A

(b) Negative feedback

Figure 3.7: Parameter sensitivity in a genetic circuit. The open loop system (a) consists
of a constitutive promoter, while the closed loop circuit (b) is self-regulated with negative
feedback (repressor).

where m is the mRNA concentration and P is the protein concentration.
For the case of no feedback we have F(p) = α0, and the system has an equi-

librium point at me = α0/γ, Pe = βα0/(δγ). The parameter vector can be taken as
θ = (α0,γ,β,δ). Since we have a simple expression for the equilibrium concentra-
tions, we can compute the sensitivity to the parameters directly:

∂xe
∂θ
=





1
γ −α0

γ2
0 0

β
δγ −

βα0
δγ2

α0
δγ −

βα0
γδ2




,

where the parameters are evaluated at their nominal values, but we leave off the
subscript 0 on the individual parameters for simplicity. If we choose the parame-
ters as θ0 = (0.00138,0.00578,0.115,0.00116), then the resulting sensitivity matrix
evaluates to

S openxe,θ ≈




170 −41 0 0
17000 −4100 210 −21000




. (3.9)

If we look instead at the scaled sensitivity matrix, then the open loop nature of the
system yields a particularly simple form:

S̄ openxe,θ =





1 −1 0 0
1 −1 1 −1




. (3.10)

In other words, a 10% change in any of the parameters will lead to a comparable
positive or negative change in the equilibrium values.
For the case of negative regulation, we have

F(P) =
α

K +Pn
+α0,

and the equilibrium points satisfy

me =
δ

β
Pe,

α

K +Pne
+α0 = γme =

γδ

β
Pe. (3.11)

In order to make a proper comparison with the previous case, we need to be careful
to choose the parameters so that the equilibrium concentration Pe matches that of
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the open look system. We can do this by modifying the promoter strength α or
the RBS strength β so that the second formula in equation (3.11) is satisfied or,
equivalently, choose the parameters for the open loop case so that they match the
closed loop steady state protein concentration.
Rather than attempt to solve for the equilibrium point in closed form, we in-

stead investigate the sensitivity using the computations in equation (3.8). The state,
dynamics and parameters are given by

x =


m P


 , f (x,θ) =




F(P)−γm
βm−δP




, θ =



α0 γ β δ α n K


 .

Note that the parameters are ordered such that the first four parameters match the
open loop system. The linearizations are given by

∂ f
∂x
=





−γ F′(Pe)
β −δ




,

∂ f
∂θ
=





1 −m 0 0 1
K+Pn

αPn log(P)
(K+Pn)2

α
(K+Pn)2

0 0 m −P 0 0 0




,

where again the parameters are taken to be their nominal values. From this we can
compute the sensitivity matrix as

S x,θ =





−
δ ∂α∂α0
δγ−βF′

δm
δγ−βF′ −

mF′
δγ−βF′

PF′
δγ−βF′ −

δ ∂α∂α1
δγ−βF′ −

δ ∂α∂n
δγ−βF′ −

δ ∂α∂K
δγ−βF′

−
β ∂α∂α0
δγ−βF′

βm
δγ−βF′ −

γm
δγ−βF′

γP
δγ−βF′ −

β ∂α∂α1
δγ−βF′ −

β ∂α∂n
δγ−βF′ −

β ∂α∂K
δγ−βF′





,

where F′ = ∂F/∂P and all other derivatives of F are evaluated at the nominal pa-
rameter values.
We can now evaluate the sensitivity at the same protein concentration as we use

in the open loop case. The equilibrium point is given by

xe =




me
Pe




=





α0
γ
α0β
δγ




=





0.239
23.9





and the sensitivity matrix is

S closedxe,θ ≈




76.1 −18.2 −1.16 116. 0.134 −0.212 −0.000117
7610. −1820. 90.8 −9080. 13.4 −21.2 −0.0117




.

The scaled sensitivity matrix becomes

S̄ closedxe,θ ≈




0.16 −0.44 −0.56 0.56 0.28 −1.78 −3.08×10-7
0.16 −0.44 0.44 −0.44 0.28 −1.78 −3.08×10-7




. (3.12)

Comparing this equation with equation (3.10), we see that there is reduction in the
sensitivity with respect to most parameters. In particular, we become less sensitive
to those parameters that are not part of the feedback (columns 2–4), but there is
higher sensitivity with respect to some of the parameters that are part of the feed-
back mechanisms (particularly n). ∇



3.3. ROBUSTNESS 3-17

More generally, we may wish to evaluate the sensitivity of a (non-constant) so-
lution to parameter changes. This can be done by computing the function dx(t)/dθ,
which describes how the state changes at each instant in time as a function of
(small) changes in the parameters θ. We assume w = 0 for simplicity of exposition.
Let x(t; x0,θ0) be a solution of the dynamics with initial condition x0 and pa-

rameters θ0. To compute dx/dθ, we write down a differential equation for how it
evolves in time:

d
dt

(

dx
dθ

)

=
d
dθ

(

dx
dt

)

=
d
dθ
( f (x,θ,w))

=
∂ f
∂x

dx
dθ
+
∂ f
∂θ
.

This is a differential equation with n×m states S i j = dxi/dθ j and with initial condi-
tion S i j(0) = 0 (since changes to the parameters to not affect the initial conditions).
To solve these equations, we must simultaneously solve for the state x and the

sensitivity S (whose dynamics depend on x). Thus, we must solve the set of n +
nm coupled differential equations

dx
dt
= f (x,θ,w),

dS xθ
dt
=
∂ f
∂x
(x,θ,w)S xθ +

∂ f
∂θ
(x,θ,w). (3.13)

This differential equation generalizes our previous results by allowing us to
evaluate the sensitivity around a (non-constant) trajectory. Note that in the spe-
cial case that we are at an equilibrium point and the dynamics for S x,θ are stable,
the steady state solution of equation (3.13) is identical to that obtained in equa-
tion (3.8). However, equation (3.13) is much more general, allowing us to deter-
mine the change in the state of the system at a fixed time T , for example. This
equation also does not require that our solution stay near an equilibrium point, it
only requires that our perturbations in the parameters are sufficiently small.

Example 3.3 (Repressilator). Consider the example of the repressilator, which was
described in Example 2.4. The dynamics of this system can be written as

dm1
dt
= Frep(P3)−γm1

dP1
dt
= βm1−δP1

dm2
dt
= Frep(P1)−γm2

dP2
dt
= βm2−δP2

dm3
dt
= Frep(P2)−γm2

dP3
dt
= βm3−δP2,

where the repressor is modeled using a Hill function

Frep(p) =
α

K + pn
+α0.

The dynamics of this system lead to a limit cycle in the protein concentrations, as
shown in Figure 3.8a.
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Figure 3.8: Repressilator sensitivity plots

We can analyze the sensitivity of the protein concentrations to changes in the
parameters using the sensitivity differential equation. Since our solution is periodic,
the sensitivity dynamics will satisfy an equation of the form

dS x,θ
dt
= A(t)S x,θ +B(t),

where A(t) and B(t) are both periodic in time. Letting x = (m1,P1,m2,P2,m3,P3)
and θ = (α0,γ,β,δ,α,K), we can compute S x,θ along the limit cycle. If the dynamics
for S x,θ are stable then the resulting solutions will be periodic, showing how the
dynamics around the limit cycle depend on the parameter values. The results are
shown in Figure 3.8b, where we plot the steady state sensitivity of P1 as a function
of time. We see, for example, that the limit cycle depends strongly on the protein
degradation and dilution rate γ, indicating that changes in this value can lead to
(relatively) large variations in the magnitude of the limit cycle.

∇

Several simulation tools include the ability to do sensitivity analysis of this sort,
including COPASI.

Unmodeled dynamics
!

A slightly more general analysis of sensitivity can be accomplished using the con-
trol theoretic notions of sensitivity described in AM08, Chapter 12. Rather than just
considering static changes to parameter values, we can instead consider the case of
unmodeled dynamics, in which we allow bounded input/output uncertainties to en-
ter the system dynamics. This can be used to model parameters whose values are
unknown and also time-varying, as well as capturing uncertain dynamics that are
being ignored or approximated.
To illustrate the basic approach, consider the problem of determining the sensi-

tivity of a set of reactions to a set of additional unmodeled reactions, whose detailed
effects are unknown but assumed to be bounded. We set this problem up using the
general framework shown in Figure 3.9.



3.4. ANALYSIS OF REACTION RATE EQUATIONS 3-19

Figure 3.9: Analysis of dynamic uncertainty in a reaction system.

3.4 Analysis of Reaction Rate Equations

The previous section considered analysis techniques for general dynamical sys-
tems with small perturbations. In this section, we specialize to the case where the
dynamics have the form of a reaction rate equation:

ẋ = Nv(x,θ), (3.14)

where x is the vector of species concentrations, θ is the vector of reaction parame-
ters, N is the stoichiometry matrix and v(x,θ) is the reaction rate (or flux) vector.

Reduced reaction dynamics

When analyzing reaction rate equations, it is often the case that there are conserved
quantities in the dynamics. For example, conservation of mass will imply that if all
compounds containing a given species are captured by the model, the total mass
of that species will be constant. This type of constraint will then give a conserved
quantity of the form ci = Hix where Hi represents that combinations of species in
which the given element appears. Since ci is constant, it follows that ċi = 0 and,
aggregating the set of all conserved species, we have

0 = ċ = Hẋ = HNv(x,θ) for all x.

If we assume that the vector of fluxes spans Rm (the range of v : Rn ×Rp → Rm),
then this implies that the conserved quantities correspond to the left null space of
the stoichiometry matrix N.
It is often useful to remove the conserved quantities from the description of the

dynamics and write the dynamics for a set of independent species. To do this, we
transform the state of the system into two sets of variables:





xi
xd




=





P
H




x. (3.15)

The vector xi = Px is the set of independent species and is typically chosen as
a subset of the original species of the model (so that the rows P consists of all
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zeros and a single 1 in the column corresponding to the selected species). The
matrix H should span the left null space of N, so that xd represents the set of
dependent concentrations. These dependent species do not necessarily correspond
to individual species, but instead are often combinations of species (for example,
the total concentration of a given element that appears in a number of molecules
that participate in the reaction).
Given the decomposition (3.15), we can rewrite the dynamics of the system in

terms of the independent variables xi. We start by noting that given xi and xd, we
can reconstruct the full set of species x:

x =




P
H





−1


xi
xd




= Lxi+ c0, L =





P
H





−1


I
0




, c0 =





P
H





−1


0
c





where c0 represents the conserved quantities. We now write the dynamics for xi as

ẋi = Pẋ = PNv(Lxi+ c0,θ) = Nrvr(xi,c0,θ), (3.16)

where Nr is the reduced stoichiometry matrix and vr is the rate vector with the
conserved quantities separated out as constant parameters.
The reduced order dynamics in equation (3.16) represent the evolution of the

independent species in the reaction. Given xi, we can “lift” the dynamics from the
independent species to the full set of species by writing x = Lxi+ c0. The vector c0
represents the values of the conserved quantities, which must be specified in order
to compute the values of the full set of species. In addition, since x = Lxi + c0, we
have that

ẋ = Lẋi = LNrvr(xi,c0, p) = LNrv(x,θ),

which implies that
N = LNr.

Thus, L also “lifts” the reduced stoichiometry matrix from the reduced space to the
full space.

Example 3.4 (Enzyme kinetics). Consider an enzymatic reaction

S+E
kon−−−⇀↽−−−
koff

ES
kcat−−→ E+P,

whose full dynamics can be written as

d
dt





S
E
ES
P





=





−1 1 0
−1 1 0
1 −1 −1
0 0 1









konE ·S
koffES
kcatES





.
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The conserved quantities are given by

H =




0 1 1 0
1 −1 0 1




.

The first of these is the total enzyme concentration ET = E+ES , while the second
asserts that the concentration of product P is equal to the free enzyme concentration
E minus the substrate concentration S . If we assume that we start with substrate
concentration S 0, enzyme concentration ET and no product or bound enzyme, then
the conserved quantities are given by

c =




E+ES
S −E+P




=





ET
S 0−ET




.

There are many possible choices for the set of independent species xi = Px, but
since we are interested in the substrate and the product, we choose P as

P =




1 0 0 0
0 0 0 1




.

Once P is chosen then we can compute

L =




P
H





−1


I
0




=





1 0
1 1
−1 −1
0 1





, c0 =




P
H





−1


0
c




=





0
ET −S 0
S 0
0





,

The resulting reduced order dynamics can be computed to be

d
dt





S
P




=





−1 1 0
0 0 1









kon(P+S +ET −S 0)S
koff(−P−S +S 0)
kcat(−P−S +S 0)





=





−kon(P+S +ET −S 0)S − koff(P+S −S 0)
kcat(S 0−S −P)




.

A simulation of the dynamics is shown in Figure 3.10. We see that the dynamics
are very well approximated as being a constant rate of production until we exhaust
the substrate (consistent with the Michaelis-Menten approximation).

∇

Metabolic control analysis

Metabolic control analysis (MCA) focuses on the study of the sensitivity of steady
state concentrations and fluxes to changes in various system parameters. The basic
concepts are equivalent to the sensitivity analysis tools described in Section 3.2,



3-22 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR

0 10 20 30 40 50 60
0

100

200

300

400

500

600

 

 

22 23 24 25 26 27

460

480

500

22 23 24 25 26 27
0

20

40

0 0.2 0.4 0.6 0.8 1

460

480

500

0 0.2 0.4 0.6 0.8 1
0

20

40

S
P

Figure 3.10: Enzyme dynamics. The simulations were carried out kon = koff = 10, kcat = 1,
S 0 = 500 and ET = 5,1020. The top plot shows the concentration of substrate S and product
P, with the fastest case corresponding to ET = 20. The figures on the lower left zoom in
on the substrate and product concentrations at the initial time and the figures on the lower
right at one of the transition times.

specialized to the case of reaction rate equations. In this section we provide a brief
introduction to the key ideas, emphasizing the mapping between the general con-
cepts and MCA terminology (as originally done by Ingalls [41]).
Consider the reduced set of chemical reactions

ẋi = Nrvr(xi,θ) = Nrv(Lxi+ c0,θ).

We wish to compute the sensitivity of the equilibrium concentrations xe and equi-
librium fluxes ve to the parameters θ. We start by linearizing the dynamics around
an equilibrium point xe. Defining z = x− xe, u = θ−θ0 and f (z,u) = Nrv(xe+ z,θ0+
u), we can write the linearized dynamics as

ẋ = Ax+Bu, A =
(

Nr
∂v
∂s
L
)

, B =
(

Nr
∂v
∂p

)

, (3.17)

which has the form of a linear differential equation with state z and input u.
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In metabolic control analysis, the following terms are defined:

ε̄θ =
dv
dθ

∣
∣
∣
∣
∣xe,θo

R̄xθ =
∂xe
∂θ
= C̄xε̄θ

R̄vθ =
∂ve
∂θ
= C̄vε̄θ

ε̄θ = flux control coefficients
R̄xθ =
C̄x = concentration control coefficients
R̄vθ =
C̄v = rate control coefficients

These relationships describe how the equilibrium concentration and equilibrium
rates change as a function of the perturbations in the parameters. The two control
matrices provide a mapping between the variation in the flux vector evaluated at
equilibrium,

(

∂v
∂θ

)

xe,θ0
,

and the corresponding differential changes in the equilibrium point, ∂xe/∂θ and
∂ve/∂θ. Note that

∂ve
∂θ
!

(

∂v
∂θ

)

xe,θ0
.

The left side is the relative change in the equilibrium rates, while the right side is
the change in the rate function v(x,θ) evaluated at an equilibrium point.
To derive the coefficient matrices C̄x and C̄v, we simply take the linear equa-

tion (3.17) and choose outputs corresponding to s and v:

yx = Ix, yv =
∂v
∂x
Lx+

∂v
∂θ
u.

Using these relationships, we can compute the transfer functions

Hx(s) = (sI−A)−1B =
[(

sI−Nr
∂v
∂x
L
)−1Nr

]∂v
∂θ
,

Hv(s) =
∂v
∂s
L(sI−A)−1B+

∂v
∂p
=
[∂v
∂x
L
(

sI−Nr
∂v
∂x
L
)−1Nr + I

]∂v
∂θ
.

Classical metabolic control analysis considers only the equilibrium concentrations,
and so these transfer functions would be evaluated at x= 0 to obtain the equilibrium
equations.
These equations are often normalized by the equilibrium concentrations and

parameter values, so that all quantities are expressed as fractional quantities. If we
define

Dx = diag{xe}, Dv = diag{v(xe,θ0)}, Dθ = diag{θ0},
the the normalized coefficient matrices (without the overbar) are given by

Cx = (Dx)−1C̄xDv, Cv = (Dv)−1C̄vDv,

Rxθ = (D
x)−1R̄xθD

θ, Rvθ = (D
v)−1R̄vθD

θ.

Example 3.5 (Enzyme kinetics). TBA ∇
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Figure 3.11: Flux balance analysis.

Flux balance analysis

Flux balance analysis is a technique for studying the relative rate of different reac-
tions in a complex reaction system. We are most interested in the case where there
may be multiple pathways in a system, so that the number of reactions m is greater
than the number of species n. The dynamics

ẋ = Nv(x,θ)

thus have the property that the matrix N has more columns that rows and hence
there are multiple reactions that can produce a given set of species. Flux balance is
often applied to pathway analysis in metabolic systems to understand the limiting
pathways for a given species and the the effects of changes in the network (e.g.,
through gene deletions) to the production capacity.
To perform a flux balance analysis, we begin by separating the reactions of

the pathway into internal fluxes vi versus exchanges flux ve, as illustrated in Fig-
ure 3.11. The dynamics of the resulting system now be written as

ẋ = Nv(x,θ) = N




vi
ve




= Nvi(x,θ)−be,

where be = −Nve represents the effects of external fluxes on the species dynamics.
Since the matrix N has more columns that rows, it has a right null space and hence
there are many different internal fluxes that can produce a given change in species.
In particular, we are interested studying the steady state properties of the sys-

tem. In this case, we have that ẋ = 0 and we are left with an algebraic system

Nvi = be.
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Power law formalism

Chemical reaction rate equations are nonlinear differential equations whenever two
or more species interact. However, the nonlinearities are very structured: they can
be decomposed into a stoichiometry matrix and flux rates, and the flux rates typ-
ically consist of either polynomial terms or simple ratios of polynomials (e.g.,
Michaelis-Menten kinetics or Hill functions). In this section we consider power law
representations that exploit these properties and attempt to provide simpler tech-
niques for understand the relationships between species concentrations, parameter
values and flux rates. This formalism was developed by Savageau [70] and is also
called biochemical systems theory (BST).
The general power law formalism describes a set of reaction dynamics using a

set of differential equations of the form

dxi
dt
=
∑

r
Er

n+m∏

j=1
x
εrj
j −
∑

s
Es

n+m∏

j=1
x
ε sj
j , i = 1, . . .n. (3.18)

Here, xi is the concentration for species i, with i = 1, . . . ,n representing internal
species and i = n+ 1, . . . ,m representing external species, and the dynamics are
broken into two summations. The first sum is over the set of reactions that produce
the species xi and the second is over the reactions that utilize xi (and so decrease
its concentration). The linear coefficients Er and Es are the activity levels and cor-
respond to the rate constants (for metabolic networks the rate constants are often
proportional to a fixed enzyme level, hence the use of the symbol E). The expo-
nents εrj and ε

s
i are the kinetic orders of the production and utilization reactions.

In this general form, the power law formalism is able to exactly capture mass
action kinetics, but it does not provide any additional structure. If we consider a
general rate equation of the form vi(x1, . . . , xn+m), we can approximate this function
in a number of ways. The first is through its linearization,

vi(x1, . . . , xn+m ≈ vi(x1,e, . . . , xn+m,e)+
∑ ∂v
∂x j
(

x j− x j,e
)

+higher order terms.

We have used exactly this approximation in previous sections.
A different approximation can be obtained by taking a Taylor series expansion

for logvi:

logvi(x1, . . . , xn+m ≈ logvi(x1,e, . . . , xn+m,e)+
∑ ∂ logvi
∂ log x j

(

log xi−log xi,e
)

+higher order terms.

If we define
gi, j =

∂ logvi
∂ log x j

=
x j
vi
·
∂vi
∂x j

and collect terms, we have

logvi(x) ≈ logαi+gi,1 log x1+ · · ·+gi,n+m log xn+m.
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Converting this back from log coordinates, we can thus right

vi(x) ≈ αi
n+m∏

j=1
xgi, jj .

Using this approximation on the sums in equation (3.18), we can approximate
the resulting dynamics as

dxi
dt
= αi
∏

xgi, jj −βi
∏

xhi, jj ,

where αi and gi, j are the rate constant and kinetic orders for the production terms
and βi and hi, j are the rate constant and kineeetic orders for reactions that utilize
xi. While this is only an approximation, its form is convenientt for performing
equilibrium analyses. In particular, if ẋi = 0 then we can equate the production rate
to the utilization rate adn take the log of this expression to obtain

logαi+
∑

gi, j log x j = logβi+
∑

hi, j log x j.

This is now a linear equation for the logs of the concentrations in terms of the
various parameters that enter the system.

3.5 Oscillatory Behavior

In addition to equilibrium behavior and input/output transfer curves, a variety of
cellular procesess involve oscillatory behavior in which the system state is con-
stantly changing, but in a repeating pattern. Two examples of biological oscillations
are the cell cycle and circadian rhythm. Both of these dynamic behaviors involve
repeating changes in the concentrations of various proteins, complexes and other
molecular species in the cell, though they are very different in their operation. In
this section we discuss some of the underlying ideas for how to model this type of
oscillatory behavior, focusing on those types of oscillations that are most common
in biomolecular systems.

Biomolecular oscillators

Biological systems have a number of natural oscillatory processes that govern the
behavior of subsystems and whole organisms. These range from internal oscilla-
tions within cells to the oscillatory nature of the beating heart to various tremors
and other undesirable oscillations in the neuro-muscular system. At the biomolec-
ular level, two of the most studied classes of oscillations are the cell cycle and
circadian rhythm.
The cell cycle consists of a set “phases” that govern the duplication and division

of cells into two new cells:
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(b) Molecular mechanisms

Figure 3.12: The Caulobacter crescentus cell cycle. (a) Caulobacter cells divide asym-
metrically into a stalked cell, which is attached to a surface, and a swarmmer cell, that is
motile. The swarmer cells can become stalked cells in a new location and begin the cell
cycle anew. The transcriptional regulators CtrA, DnaA and GcrA are the primary factors
that control the various phases of the cell cycle. (b) The genetic circuitry controlling the
cell cycle consists of a large variety of regulatory mechanisms, described in more detail in
the text. Figure obtained from [48] (permission TBD).

• G1 phase - gap phase, terminated by “G1 checkpoint”
• S phase - synthesis phase (DNA replication)
• G2 phase - gap phase, terminated by “G2 checkpoint”
• M - mitosis (cell division)

The cell goes through these stages in a cyclical fashion, with the different enzymes
and pathways active in different phases. The cell cycle is regulated by many dif-
ferent proteins, often divided into two major classes. Cyclinscyclins are a class of
proteins that sense environmental conditions internal and external to the cell and
are also used to implement various logical operations that control transition out of
the G1 and G2 phases. Cyclin dependent kinases (CDKs)are proteins that serve as
“actuators” by turning on various pathways during different cell cycles.
An example of the control circuitry of the cell cycle for the bacteriumCaulobac-

ter crescentus (henceforth Caulobacter) is shown in Figure 3.12 [48]. This or-
ganism uses a variety of different biomolecular mechanisms, including transcrip-
tional activation and represssion, positive autoregulation (CtrA), phosphotransfer
and methlylation of DNA.
The cell cycle is an example of an oscillator that does not have a fixed pe-

riod. Instead, the length of the individual phases and the transitioning of the differ-
ent phases are determined by the environmental conditions. As one example, the
cell division time for E. coli can vary between 20 minutes and 90 minutes due to
changes in nutrient concentrations, temperature or other external factors.
A different type of oscillation is the highly regular pattern encoding in circa-

dian rhythm, which repeat with a period of roughly 24 hours. The observation of
circadian rhythms dates as far back as 400 BCE, when Androsthenes described
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Figure 3.13: Caption omitted pending permission. (Figure and caption from [13])

observations of daily leaf movements of the tamirind tree [52]. There are three
defining characteristics associated with circadian rhythm: (1) the time to complete
one cycle is approximately 24 hours, (2) the rhythm is endogenously generated and
self-sustaning and (3) the period remains relatively constant under changes in am-
bient temperature. Oscillations that have these properties appaer in many different
organisms, including micro-organisms, plants, insects and mammals. Some com-
mon features of the circuitry implementing circadian rhythms in these organisms is
the combination of postive and negative feedback loops, often with the positive ele-
ments activating the expression of clock genes and the negative elements repressing
the positive elements [13]. Figure 3.13 shows some of the different organisms in
which circadian oscillations can be found and the primary genes responsible for
different postive and negative factors.

Clocks, oscillators and limit cycles

To begin our study of oscillators, we consider a nonlinear model of the system
described by the differential equation

dx
dt
= f (x,u,θ), y = h(x,θ)

where x ∈ Rn represents the state of the system (typically concentrations of various
proteins and other species and complexes), u ∈Rq represents the external inputs, y ∈
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Rp represents the (measured) outputs and θ ∈ RK represents the model parameters.
We say that a solution (x(t),u(t)) is oscillatory with period T if y(t+T ) = y(t). For
simplicity, we will often assume that p = q = 1, so that we have a single input
and single output, but most of the results can be generalized to the multi-input,
multi-output case.
There are multiple ways in which a solution can be oscillatory. One of the sim-

plest is that the input u(t) is oscillatory, in which case we say that we have a forced
oscillation. In the case of a linear system, an input of the form u(t) = Asinωt then
we now already the output will be of the form y(t) = M ·Asin(ωt + φ) where M
and φ represent the gain and phase of the system (at frequency ω). In the case of a
nonlinear system, if the output is periodic then we can write it in terms of a set of
harmonics,

y(t) = B0+B1 sin(ωt+φ1)+B2 sin(2ωt+φ2)+ · · ·

The term B0 represents the average value of the output (also called the bias), the
terms Bi are the magnitudes of the ith harmonic and φi are the phases of the har-
monics (relative to the input). The oscillation frequency ω is given by ω = 2π/T
where T is the oscillation period.
A different situation occurs when we have no input (or a constant input) and still

obtain an oscillatory output. In this case we say that the system has a self-sustained
oscillation. This type of behavior is what is required for oscillations such as the
cell cycle and circadian rhythm, where there is either no obvious forcing function
or the forcing function is removed by the oscillation persists. If we assume that the
input is constant, u(t) = A0, then we are particularly interested in how the period T
(or equivalently frequency ω), amplitudes Bi and phases φi depend on the input A0
and system parameters θ.
To simplify our notation slightly, we consider a system of the form

dx
dt
= F(x,θ), y = h(x,θ) (3.19)

where F(x,θ) = f (x,u,θ) reflects the fact that the input is ignored (or taken to be
one of the constant parameters) in the analysis that follows. We have focused on
the oscillatory nature of the output y(t) thus far, but we note that if the states x(t)
are periodic then the output is as well, as this is the most common case. Hence we
will often talk about the system being oscillatory, by which we mean that there is a
solution for the dynamics in which the state satisfies x(t+T ) = x(t).
More formally, we say that a closed curve Γ ∈ Rn is an orbit if trajectories that

start on Γ remain on Γ for all time and if Γ is not an equilibrium point of the system.
As in the case of equilibrium points, we say that the orbit is stable if trajectories
that start near Γ stay near Γ, asymptotically stable if in addition nearby trajectories
approach Γ as t→∞ and unstable if it is not stable. The orbit Γ is periodic with
period T if for any x(t) ∈ Γ, x(t+T ) = x(t).
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Figure 3.14: Examples of harmonic oscillators.
.

There are many different types of periodic orbits that can occur in a system
whose dynamics are modeled as in equation (3.19). A harmonic oscillator refer-
ences to a system that oscillates around an equilibrium point, but does not (usually)
get near the equilibrium point. The classical harmonic oscillator is a linear system
of the form

d
dt





0 ω

−ω 0









x1
x2




,

whose solutions are given by




x1(t)
x2(t)




=





cosωt sinωt
−sinωt cosωt









x1(0)
x2(0)




.

The frequency of this oscillation is fixed, but the amplitude depends on the values
of the initial conditions, as shown in Figure 3.14. Note that this system has a single
equilibrium point at x = (0,0) and the eigenvalues of the equilibrium point have
zero real part, so trajectories neither expand nor contract, but simply oscillate.
An example of a nonlinear harmonic oscillator is given by the equation

dx1
dt
= x2+ x1(1− x21− x

2
2),

dx2
dt

= −x1+ x2(1− x21− x
2
2). (3.20)

This system has an equilibrium point at x = (0,0), but the linearization of this equi-
librium point can be shown to be unstable. The phase portrait in Figure ?? shows
that the solutions in the phase plane converge to a circular trajectory. In the time
domain this corresponds to an oscillatory solution. Mathematically the circle is
called a limit cycle. Note that in this case, the solution for any initial condition ap-
proaches the limit cycle and the amplitude and frequency of oscillation “in steady
state” (once we have reached the limit cycle) are independent of the initial condi-
tion.
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Figure 3.15: Homoclinic and heteroclinic orbits
.

A different type of oscillation can occur in nonlinear systems in which the
equlibrium points are saddle points, having both stable and unstable eigenvalues.
Of particular interest is the case where the stable and unstable orbits of one or more
equilibrium points join together. Two such sitautions are shown in Figure 3.15. The
figure on the left is an example of a homoclinic orbit. In this system, trajectories
that start near the equilibrium point quickly diverge away (in the directions cor-
responding to the unstable eigenvalues) and then slowly return to the equilibrium
point along the stable directions. If the initial conditions are chosen to be precisely
on the homoclinic orbit Γ then the system slowly converges to the equilibrium
point, but in practice there are often disturbances present that will perturb the sys-
tem off of the orbit and trigger a “burst” in which the system rapidly escapes from
the equilibrium point and then slowly converges again.
A somewhat similar type of orbit is a heteroclinic orbit, in which the orbit

connects two different equilibrium points, as shown in Figure 3.15b.
An example of a system with a homoclinic orbit is given by the system

dx1
dt
= x2,

dx2
dt

= x1− x31 (3.21)

The phase portrait and time domain solutions are shown in Figure 3.16. In this
system, there are periodic orbits both inside and outside the two homoclinic cy-
cles (left and right). Note that the trajectory we have chosen to plot in the time
domain has the property that it rapidly moves away from the equilibrium point
and then slowly re-converges to the equilibrium point, before begin carried away
again. This type of oscillation, in which one slowly returns to an equilibrium point
before rapidly diverging is often called a relaxation oscillation. Note that for this
system, there are also oscillations that look more like the harmonic oscillator case
described above, in which we oscillate around the unstable equilibirum points at
x = (±1,0).
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Figure 3.16: Example of a homoclinic orbit.

Limit cycles in the plane

Before studying periodic behavior of systems in Rn, we study the behavior of sys-
tems in R2 as several high dimensional systems can be often well approximated by
systems in two dimensions by, for example, employing quasi-steady state approxi-
mations. For systems in R2, we will see that there are only two types of solutions:
those converging (diverging) from steady states and periodic solutions. That is,
chaos can be ruled out in two-dimensional systems.
Consider the system ẋ = F(x), in which F(x) is often referred to as vector field,

and let x(t, x0) denote its solution starting at x0 at time t = 0, that is, ẋ(t, x0) =
F(x(t, x0)) and x(0, x0) = x0. We say that x(t, x0) is a periodic solution if there is
T > 0 such that x(t, x0) = x(t + T, x0) for all t ∈ R. Here, we seek to answer two
questions: (a) when does a system ẋ = F(x) admit periodic solutions? (b) When are
these periodic solutions stable or asymptotically stable?
We first tackle these questions for the case x ∈ R2. The first result that we next

give provides a simple check to rule out periodic solutions for system in R2. Specif-
ically, let x ∈ R2 and consider

ẋ1 = F1(x1, x2) ẋ2 = F2(x1, x2), (3.22)

in which the functions F : R2→ R2 is smooth. Then, we have the following result:

Theorem 3.2 (Bendixson’s Criterion). If on a simply connected region D⊂R2 (i.e.,
there are no holes in it) the expression

∂F1
∂x1
+
∂G2
∂x2

is not identically zero and does not change sign, then system (3.22) has no closed
orbits that lie entirely in D.
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Example 3.6. Consider the system

ẋ1 = −x32+δx
3
1, ẋ2 = x31,

with δ ≥ 0. We can compute ∂F1∂x1 +
∂F2
∂x2 = 3δx

2
1, which is positive in all R

2 if δ ! 0. If
δ ! 0, we can thus conclude from Bendixson’s criterion that there are no periodic
solutions. Investigate as an exercise what happens when δ = 0. ∇

In order to provide the main result to state the existence of a stable periodic
solution, we need the concept of omega-limit set of a point p, denoted ω(p). Basi-
cally, the omega-limit set ω(p) denotes the set of all points to which the trajectory
of the system starting from p tends as time approaches infinity. This is formally
defined in the following definition.

Definition 3.1. A point x̄ ∈ Rn is called an omega-limit point of p ∈ Rn if there is a
sequence of times {ti} with ti→∞ for i→∞ such that x(ti, p)→ x̄ as i→∞. The
omega limit set of p, denoted ω(p), is the set of all omega-limit points of p.

The omega-limit set of a system has several relevant properties, among which
the fact that it cannot be empty and that it must be a connected set.
The following theorem, completely characterizes the omega limit set of any

point for a system in R2.

Theorem 3.3 (Poincarè-Bendixson). Let M be a positively invariant region for the
system ẋ = F(x) with x ∈ R2 (i.e., any trajectory that starts in M stays in M for all
t ≥ 0). Let p ∈ M, then one of the following possibilities holds for ω(p):

(i) ω(p) is a steady state;

(ii) ω(p) is a closed orbit;

(iii) ω(p) consists of a finite number of steady states and orbits, each starting (for
t = 0) and ending (for t→∞) at one of the fixed points.

This theorem has two important consequences:

1. If the system does not have steady states in M, since ω(p) is not empty, it
must be a periodic solution;

2. If there is only one steady state in M and it is unstable and not a saddle (i.e.,
the eigenvalues of the linearization at the steady state are both positive), then
ω(p) is a periodic solution.

Example 3.7. Consider the following system in R2:

ẋ1 = x1− x2− (x21+ x
2
2)x1, ẋ2 = x1+ x2− (x21+ x

2
2)x2.



3-34 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR

Verify as an exercise that this system admits one equilibrium point only (the ori-
gin), which is unstable. Also, show that its trajectories are globally bounded (for
example, take a set x21 + x

2
2 = c for c large enough and demonstrate that the vec-

tor field of the system always points inside the circle x21 + x
2
2 = c). Therefore, by

Poincarè-Bendixson Theorem, we can conclude that the omega-limit set of any
point in R2 different from the origin is a non-zero periodic orbit. ∇

Limit cycles in Rn

The results above holds only for systems in two dimensions. However, there have
been recent extensions of this theorem to systems with special structure in Rn. In
particular, we have the following result due to Hastings et al. (1977).

Theorem 3.4 (Hastings et al. 1977). Consider a system ẋ = F(x), which is of the
form

ẋ1 = F1(xn, x1)
ẋ j = F j(x j−1, x j), 2 ≤ j ≤ n

on the set M defined by xi ≥ 0 for all i with the following inequalities holding in
M:

(i) ∂Fi∂xi < 0 and
∂Fi
∂xi−1 > 0, for 2 ≤ i ≤ n, and

∂F1
∂xn < 0;

(ii) Fi(0,0) ≥ 0 and F1(xn,0) > 0 for all xn ≥ 0;

(iii) The system has a unique steady state x∗ = (x∗1, ..., x
∗
n) in M such that F1(xn, x1)<

0 if xn > x∗n and x1 > x∗1, while F1(xn, x1) > 0 if xn < x
∗
n and x1 < x∗1;

(iv) ∂F1∂x1 is bounded above in M.

Then, if the Jacobian of f at x∗ has no repeated eigenvalues and has any eigenvalue
with positive real part, then the system has a non-constant periodic solution in M.

This theorem states that for a system with cyclic structure in which the cy-
cle “has negative gain”, the instability of the steady state (under some technical
assumption) is equivalent to the existence of a periodic solution. This‘theorem,
however, does not provide information about whether the orbit is attractive or not,
that is, of whether it is an omega-limit set of any point in M. This stability result is
implied by a more recent theorem due to Mallet-Paret and Smith (1990), for which
we provide a simplified statement as follows.

Theorem 3.5 (Mallet-Paret and Smith, 1990). Consider the system ẋ = F(x) with
the following cyclic feedback structure

ẋ1 = F1(xn, x1)
ẋ j = F j(x j−1, x j), 2 ≤ j ≤ n
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on a set M defined by xi ≥ 0 for all i with all trajectories starting in M bounded
for t ≥ 0. Then, the omega-limit set ω(p) of any point p ∈ M can be one of the
following:

(a) A steady state;

(b) A non-constant periodic orbit;

(c) A set of steady states connected by homoclinic or heteroclinic orbits.

A heteroclinic orbit is an orbit that starts (for t= 0) at a steady state and ends (for
t→∞) into a different steady state. A homoclinic orbit is an orbit that starts and
ends at the same steady state. It is thus clear that a steady state whose linearization
has eigenvalues with all positive or all negative real parts cannot have a homoclinic
orbit. As a consequence of the theorem, then we have that for a system with cyclic
feedback structure that admits one steady state only and at which the linearization
has all eigenvalues with positive real part, the omega limit set must be a periodic
orbit.
Let for some δi ∈ {1,−1} be δi ∂Fi(x,xi−1)∂xi−1 > 0 for all 0 ≤ i ≤ n and define ∆ :=

δ1 · ... ·δn . One can show that the sign of ∆ is related to whether the system has one
or multiple steady states.
Therefore, a system with a cyclic feedback structure and a unique equilibrium

point at which the linearization has all eigenvalues with positive real part admits a
stable periodic orbit.

3.6 Analysis Using Describing Functions

Unlike the case of linear systems, where it is possible to full characterize the solu-
tions of a model and there are a wide variety of analysis techniques available, the
behavior of nonlinear systems is harder to analyze, especially away from equilib-
rium points (where the linearization gives a good approximation). One of the more
useful techniques for studying the behavior of nonlinear systems is the method of
harmonic balance, of which a special case is the method of describing functions.
This section explores the use of harmonic balance and describing functions for an-
alyzing nonlinear systems, including the detection and analysis of limit cycles and
the propagation of noise through nonlinear systems.

Describing functions (AM08)

For special nonlinear systems like the one shown in Figure 3.17a, which consists
of a feedback connection between a linear system and a static nonlinearity, it is
possible to obtain a generalization of Nyquist’s stability criterion based on the idea
of describing functions. Following the approach of the Nyquist stability condition,
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−N( · )
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(a) Block diagram
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−1/N(a)
G(iω)
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Figure 3.17: Describing function analysis. A feedback connection between a static nonlin-
earity and a linear system is shown in (a). The linear system is characterized by its transfer
function L(s), which depends on frequency, and the nonlinearity by its describing function
N(a), which depends on the amplitude a of its input. The Nyquist plot of L(iω) and the plot
of the −1/N(a) are shown in (b). The intersection of the curves represents a possible limit
cycle.

we will investigate the conditions for maintaining an oscillation in the system. If
the linear subsystem has low-pass character, its output is approximately sinusoidal
even if its input is highly irregular. The condition for oscillation can then be found
by exploring the propagation of a sinusoid that corresponds to the first harmonic.
To carry out this analysis, we have to analyze how a sinusoidal signal propa-

gates through a static nonlinear system. In particular we investigate how the first
harmonic of the output of the nonlinearity is related to its (sinusoidal) input. Letting
F represent the nonlinear function, we expand F(eiωt) in terms of its harmonics:

F(aeiωt) =
∞∑

n=0
Mn(a)ei(nωt+φn(a)),

where Mn(a) and φn(a) represent the gain and phase of the nth harmonic, which
depend on the input amplitude since the function F is nonlinear. We define the
describing function to be the complex gain of the first harmonic:

N(a) = M1(a)eiφn(a). (3.23)

The function can also be computed by assuming that the input is a sinusoid and
using the first term in the Fourier series of the resulting output.
Arguing as we did when deriving Nyquist’s stability criterion, we find that an

oscillation can be maintained if

L(iω)N(a) = −1. (3.24)

This equation means that if we inject a sinusoid at A in Figure 3.17, the same
signal will appear at B and an oscillation can be maintained by connecting the
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(a) (b)

Figure 3.18: Heuristic stability of limit cycles using describing functions. (a) To check if a
perturbation from amplitude a0 to amplitude a0 + δa is stabilizing, we check to see if the
Nyquist criterion is satisfied for the original frequency response and the perturbed critical
point P1 = 1/N(a0 + δa). (b) An example of a nonlinear system with multiple limit cycles.
Stable limit cycles are labeled ’s’ and unstable limit cycles are labeled ’u’.

points. Equation (3.24) gives two conditions for finding the frequency ω of the
oscillation and its amplitude a: the phase must be 180◦, and the magnitude must be
unity. A convenient way to solve the equation is to plot L(iω) and −1/N(a) on the
same diagram as shown in Figure 3.17b. The diagram is similar to the Nyquist plot
where the critical point −1 is replaced by the curve −1/N(a) and a ranges from 0
to∞.
It is possible to define describing functions for types of inputs other than si-

nusoids. Describing function analysis is a simple method, but it is approximate
because it assumes that higher harmonics can be neglected. Excellent treatments
of describing function techniques can be found in the texts by Atherton [6] and
Graham and McRuer [32].

Example 3.8 (Repressilator). ∇

Stability of limit cycles using describing functions

In order to check the stability of a limit cycle, we must reason about how solutions
that have initial conditions near the limit cycle evolve in time and whether they
move closer to the limit cycle (asymptotic stability) or diverge from the limit cycle
(instability).
We begin by arguing heuristically, using the Nyquist plot in Figure 3.17b. Sup-

pose that we were to consider a perturbed limit cycle with amplitude a0+δa, where
a0 is the amplitude of the limit cycle predicted by the describing function method.
If we did so, then the point of intersection of the describing function and the fre-
quency response would move from P0 =−1/N(a0) to P1 =−1/N(a0+δa), as shown
in Figure 3.18a. Now evaluate the Nyquist criterion for the frequency response with



3-38 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR

critical point P1. If the criterion indicates that the perturbed system is stable (i.e.,
no net encirclements of P1 for a stable process), then intuitively the amplitude of
the perturbed solution would decrease and we would return to our original ampli-
tude limit cycle. Conversely, if the Nyquist criterion with critical point P1 indicates
instability, then the oscillation would grow and hence we can infer that the limit cy-
cle is unstable. Figure 3.18b shows a situation with multiple limit cycles with some
stable and some unstable.
While this heuristic method is intuitively appealing, it does not always give the

correct answer. Indeed, even the prediction of the existence of a limit cycle using
describing functions can be incorrect unless the system satisfies some additional
conditions. We present here one such set of conditions, due to Mees [?].
Suppose that (ω0,a0) satisfies the describing function balance equation P(iω0)=

−1/N(a0) and that the the frequency response curve and the describing function lo-
cus are transverse (not tangent) at their intersection. Define

ρ(ω)2 =
∑

k=3,5,9,...
|P(ikω0)|2, “gain of harmonics”

p(a)2 = ‖n(asin t)‖22− |aN(a)|
2, “first harmonic error”

q(a,ε) = ‖m(asin t,ε)‖2, “slope bound”
m(x,ε) =max{|N(x+ ε)−N(x)|, |N(x− ε)−N(x)|}.

Now find an ε such that for all (ω,a) near (ω,a0),

ρ(ω)(p(a)+q(a,ε)) ≤ ε

and let Ω ∈ R2+ be the set of (ω,a) such that

|N(a)+1/G(iω)| ≤ q(a,ε)/a.

Theorem 3.6. Suppose Ω is bounded and there exists a unique (ω,a0) ∈ Ω sat-
isfying the balance equation. Then there exists a periodic solution of the form
y(t) = asin(ωt)+ y∗(t) with remnant ‖y∗‖∞ ≤ ε.

Sketch of proof. Reduced to the contraction mapping theorem, which generates ρ,
p and q.

The basic idea behind this theorem is that if the harmonics around the loop de-
cay sufficiently quickly (determined by the frequency response), then we can insure
that there is truly a periodic solution and bound the error of the higher harmonics.
There is also a graphical version of the stability theorem that checks for “complete
intersections” between the describing function locus and the Nyquist curve [?].

Mathematically, the stability of a limit cycle can be analyzed by taking the lin-!
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(a)

Figure 3.19: Random input describing function analysis.

earization of the system around the (non-equilibrium) solution. To see how this is
done, consider a nonlinear system of the form

ẋ = f (x)

that has a solution xd(t) that is periodic with period T . To compute the linearization
of the dynamics around the equilibrium point, we compute the dynamics of the
error e = x− xd:

ė = f (x)− f (xd) = F(e, xd(t)) ≈ A(t)e

where A(t) is the time-varying linearization given by

A(t) =
∂F
∂e
(e, xd)

∣
∣
∣
∣
∣e=0,xd(t)

.

The dynamics matrix A(t) is periodic and so the dynamics of the linearization are
a given by a periodic, linear ordinary differential equation.
The dynamics of periodic linear systems can be studied using Floquet theory,

which we briefly review here. Let Φ(t,0) be the (T -periodic) fundamental matrix
for ė = A(t)e, so that the solution is given by x(t) = Φ(t,0)x(0). It can be show
that Φ(t,0) has the form φ(t,0) = P(t)eFt where P(t) = P(t+T ) ∈ Rn×n is a periodic
matrix and F ∈Rn×n is a constant matrix. We can now check stability by examining
the eigenvalues of the matrix eFT , which corresponds to the “first return” map for
the system.

Random input describing functions

In addition to allowing prediction and analysis of limit cycles, describing functions
can also be used to analyze the propagation of noise through nonlinear feedback
systems. This approach is known as the random input describing function method.
As in the single input describing function method, we begin with a system in

the form of a linear system with a nonlinear feedback, as shown in Figure 3.19a.
To analyze this system, we construct an input that contains both a sinusoid and a
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random input r(t):
y = b+asin(ωt+φ)+ r(t),

where b is the bias term, a is the amplitude of the sinusoidal term, φ is a uniform
random variable and r(t) is a stationary Gaussian random process with variance
σ2 and correlation ρ(τ).1 We approximate the response of the system through the
nonlinearity by

N(y(t)) ≈ Nbb+Naasin(ωt+φ)+Nrr(t),

where Nb is called the bias gain, Na is the sinusoidal gain and Nr is the stochastic
gain. These functions are given by

Nb(b,a,σ) =
1
b
E{ f (y)} =

1
(2π)3/2σb

∫ 2π

0

∫ ∞

−∞
f (b+asinθ+ r(t))e−

r2
2σ2 drdθ

Na(b,a,σ) =
2
a
E{ f (y) sinθ} =

2
(2π)3/2σa

∫ 2π

0

∫ ∞

−∞
f (b+asinθ+ r(t)) sinθe−

r2
2σ2 drdθ

Nr(b,a,σ) =
1
σ2

E{ f (y)r} =
1

(2π)3/2σ3

∫ 2π

0

∫ ∞

−∞
f (b+asinθ+ r(t))re−

r2
2σ2 drdθ

(3.25)
The random input describing function method has a number of special cases.

If we take σ = 0, then it can be shown that we recover the standard describing
function method. If we instead take a = 0, we can study how noise propagates
through the system. Recall that in the linear case, where the feedback term is given
by a constant gain N, the spectral density of the output y is given by

S y(ω) = Hyd(−iω)S d(ω)Hyd(iω), σy =
1
2π

∫ ∞

−∞
S y(ω)dω.

In the nonlinear case, we replace the feedback gain N with Nr(σy) so that

H̃yd(s) =
P(s)

1+P(s)Nr(σy)
, σy =

1
2π

∫ ∞

−∞
H̃yd(−iω)S d(ω)H̃yd(iω). (3.26)

Note that this equation gives an algebraic relationship for σy that can be solved and
then used to compute Nr(σ) and S y(ω).
Consider next the case of both a limit cycle and random noise,

y(t) = asin(ωt+φ)+ r(t).

We now look for solutions of the coupled equations

H̃yd(s) =
P(s)

1+P(s)Nr(σy)
, σy =

1
2π

∫ ∞

−∞
H̃yd(−iω)S d(ω)H̃yd(iω),

Na(a,σy)P(iω0) = −1.
(3.27)

1These are described in more detail in Chapter 4.
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If we can find a,σy andω0 that satisfy all of the equations, then we get a description
of y(t).
It is interesting to note that it can sometimes happen that S d(ω) can cause an un-

stable (noiseless) system to be stable. Similarly, we can get a system with Nr(0,σy)
that destabilizes and otherwise stable system.

3.7 Bifurcations

Hopf bifurcation is a technique that is often used to understand whether a system
admits a periodic orbit when some parameter is varied. Usually, such an orbit is a
small amplitude periodic orbit that is present in the close vicinity of an unstable
steady state.
Consider the system dependent on a parameter α:

ẋ = g(x,α), x ∈ Rn, α ∈ R,

and assume that at the steady state x̄ corresponding to α = ᾱ (i.e., g(x̄, ᾱ) = 0),
the linearization ∂g∂x (x̄, ᾱ) has a pair of (non zero) imaginary eigenvalues with the
remaining eigenvalues having negative real parts. Define the new parameter µ :=
α− ᾱ and re-define the system as

ẋ = f (x,µ) := g(x,µ+ ᾱ),

so that the linearization ∂ f∂x (x̄,0) has a pair of (non zero) imaginary eigenvalues with
the remaining eigenvalues having negative real parts. Denote by λ(µ)= β(µ)+ iω(µ)
the eigenvalue such that β(0) = 0. Then, if ∂β∂µ (µ = 0) ! 0 the system admits a small
amplitude almost sinusoidal periodic orbit for µ small enough and the system is
said to go through a Hopf bifurcation at µ = 0. If the small amplitude periodic orbit
is stable, the Hopf bifurcation is said supercritical, while if it is unstable it is said
subcritical. Figure 3.20 shows diagrams corresponding to these bifurcations.
In order to determine whether a Hopf bifurcation is supercritical or subcritical,

it is necessary to calculate a “curvature” coefficient, for which there are formu-
las (Marsden and McCrocken, 1976) and available bifurcation software, such as
AUTO. In practice, it is often enough to calculate the value ᾱ of the parameter at
which Hopf bifurcation occurs and simulate the system for values of the parameter
α close to ᾱ. If a small amplitude limit cycle appears, then the bifurcation must be
supercritical.
The Hopf bifurcation result is based on the center manifold theory for nonlinear

dynamical systems. For a rigorous treatment of Hopf bifurcation is thus necessary
to study center manifold theory first, which is outside the scope of this text. For
details, the reader is referred to Wiggins book on dynamical systems and chaos.
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Figure 3.20: Hopf Bifurcation.

3.8 Model Reduction Techniques

The techniques that we have developed in this chapter can be applied to a wide
variety of dynamical systems. However, many of the methods require significant
computation and hence we would like to reduce the complexity of the models as
much as possible before applying them. In this section we review methods for do-
ing such a reduction in the complexity of the models. Most of the techniques are
based on the common idea that if we are interested in the slower time scale dynam-
ics of a system, the fast time scale dynamics can be approximated by their equi-
librium solutions. This idea was introduced in Chapter 2 in the context of reduced
order mechanisms; we present a more mathematical analysis of such systems here.

Singular perturbation analysis

Let (x,y) ∈ D := Dx×Dy ⊂ Rn×Rm and consider the vector field

ẋ = f (x,y), εẏ = g(x,y), (x(0),y(0)) = (x0,y0)

in which 0 < ε ) 1 is a small parameter. Since ε ) 1, the absolute value of the
time derivative of y can be much larger than the time derivative of x, resulting in y
dynamics that are much faster than the x dynamics. That is, this system has a slow
time scale evolution (in x) and a fast time-scale evolution (in y). If we are interested
only in the slower time scale, then the above system can be approximated (under
suitable conditions) by the reduced system

˙̄x = f (x̄, ȳ), 0 = g(x̄, ȳ), x̄(0) = x0.
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Letting y= γ(x) (called the slow manifold) be the locally unique solution of g(x,y)=
0, we can approximate the dynamics in x as

˙̄x = f (x̄,γ(x̄)), x(0) = x0.

We seek to determine under what conditions the solution x(t) is “close” to the
solution x̄(t) of the reduced system. This problem can be addressed by analyzing
the fast dynamics. Letting τ = t/ε be the fast time scale, we have that

dx
dτ
= ε f (x,y),

dy
dτ
= g(x,y), (x(0),y(0)) = (x0,y0),

so that when ε) 1, x(τ) does not appreciably change. Therefore, the above system
in the τ time scale can be approximated by

dy
dτ
= g(x0,y), y(0) = y0,

in which x is “frozen” at the initial condition. This system is usually referred to as
the boundary layer system. If for all x0, we have that y(τ) converges to γ(x0), then
for t > 0 we will have that the solution x(t) is well approximated by the solution
x̄(t) to the reduced system. This qualitative explanation is more precisely captured
by the following theorem (originally due to Tikonov).

Theorem 3.7. Assume that

∂

∂y
g(x,y)

∣
∣
∣
∣
∣
y=γ(x)

< 0

uniformly for x ∈ Dx. Let the solution of the reduced system be uniquely defined for
t ∈ [0, t f ]. Then, for all tb ∈ (0, t f ] there is a constant ε∗ > 0 and set Ω ⊆ D such that

x(t)− x̄(t) = O(ε) uniformly for t ∈ [0, t f ],
y(t)−γ(x̄(t)) = O(ε) uniformly for t ∈ [tb, t f ],

provided ε < ε∗ and (x0,y0) ∈Ω.

Example 3.9 (Linear system). Consider the following linear system

ẋ1 = −x1

ẋ2 = −
1
ε
x2+

1
ε
x1, ε > 0, (3.28)

in which ε is very small. This system has two eigenvalues equal to −1 and −1/ε
with corresponding eigenvectors (1− ε,1) and (0,1), respectively. The slow man-
ifold, obtained by multiplying both sides of the second equation in system (3.28)
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Figure 3.21: Simulation results for the system in equations (3.28). Trajectories in the x1, x2
plane.

by ε and setting ε = 0, is given by x2 = x1 and the boundary layer system is expo-
nentially stable. The reduced system is just given by

˙̄x1 = −x̄1, and x̄2(t) = x̄1(t).

The trajectories of the system along with the slow manifold are represented in Fig-
ure 3.21. The initial conditions that are not on the slow manifold quickly converge
to the slow manifold and then they converge to the origin. ∇

Example 3.10 (Enzymatic reaction). Let’s go back to the enzymatic reaction

E+S
k f
−−⇀↽−−
kr
C

kcat−−→ E+P,

in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the substrate S
due to the binding with the enzyme E. The rate k f is referred to as association con-
stant, kr as dissociation constant, and kcat as the catalytic rate. The corresponding
ODE system is given by

dE
dt

= −k f E ·S + krC+ kcatC

dS
dt

= −k f E ·S + krC

dC
dt

= k f E ·S − (kr + kcat)C

dP
dt

= kcatC.
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By assuming that kr,k f 3 kcat, we obtained that approximatively dC
dt = 0 and thus

that C = EtotS
S+Km , with Km =

kr+kcat
k f and dP

dt =
VmaxS
S+Km with Vmax = kcatEtot. From this, it

also follows that
dE
dt
≈ 0 and

dS
dt
≈ −

dP
dt
. (3.29)

How good is this approximation? By applying the singular perturbation method,
we will obtain a clear answer to this question. Specifically, define a := k f /kr and
take the system to standard singular perturbation form by defining the small pa-
rameter as ε := kcat

kr , so that k f =
kcat
ε a, kr =

kcat
ε , and the system becomes

ε
dE
dt

= −akcatE ·S + kcatC+ εkcatC

ε
dS
dt

= −akcatE ·S + kcatC

ε
dC
dt

= akcatE ·S − kcatC− εkcatC

dP
dt

= kcatC.

One cannot directly apply singular perturbation theory on this system because one
can verify from the linearization of the first three equations that the boundary layer
dynamics are not locally exponentially stable as there are two zero eigenvalues.
This is because the three variables E,S ,C are not independent. Specifically, E =
Etot −C and S +C +P = S (0) = S tot, assuming that initially we have S in amount
S (0) and no amount of P and C in the system. Given these conservation laws, the
system can be re-written as

ε
dC
dt

= akcat(Etot −C) · (S tot −C−P)− kcatC− εkcatC

dP
dt

= kcatC.

Under the assumption made in the analysis of the enzymatic reaction that S tot 3
Etot, we have that C) S tot so that the equations finally become

ε
dC
dt

= akcat(Etot −C) · (S tot −P)− kcatC− εkcatC

dP
dt

= kcatC.

One can verify (show as an exercise) that in this system, the boundary layer dynam-
ics is locally exponentially stable, so that setting ε = 0 one obtains C̄ = Etot(S tot−P̄)

(S tot−P̄)+Km
=:

g(P̄) and thus that the slow dynamics of the system are given by

dP̄
dt
= Vmax

(S tot − P̄)
(S tot − P̄)+Km

.
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From the conservation law S̄ + C̄+ P̄ = S (0) = S tot, we obtain that dS̄dt = −
dP̄
dt −

dC̄
dt ,

in which now dC̄
dt =

∂g
∂P (P̄) ·

dP
dt . Therefore

dS̄
dt
= −

dP̄
dt
(1+
∂g
∂P
(P̄)), S̄ (0) = S tot −g(P̄(0))− P̄(0) (3.30)

and
dĒ
dt
= −

dC̄
dt
= −
∂g
∂P
(P̄)

dP̄
dt
, E(0) = Etot −g(P̄(0)), (3.31)

which are different from expressions (3.29). Specifically, these expressions are
close to those in (3.29) only when ∂g∂P (P̄) is small enough. In the plots of Fig-
ure 3.22, we show the time trajectories of the original system, of the Michaelis-
Menten quasi-steady state approximation, and of the singular perturbation approx-
imation. The trajectories of E(t) and of S (t) for the quasi-steady state approxima-
tion have been obtained from the conservation laws once P(t) and C(t) are deter-
mined. The trajectories of these variables for the singular perturbation approxima-
tion have been obtained directly integrating equations (3.30) and (3.31). Notice that
the quasi-steady state approximations dC

dt ≈ 0 and
dE
dt ≈ 0 are well representing the

dynamics of the C and E variables only while S (t) is large enough. By contrast,
equations (3.30-3.31) well represent the system even when the substrate goes to
zero. In Figure 3.23, we show the curveC = g(P) (in red) and the trajectories of the
full system in black. All of the trajectories of the system immediately collapse into
an ε-neighbor of the curve C = g(P). ∇

Balanced truncation

Principle component analysis (PCA)

Exercises

3.1 (Frequency response of a phosphorylation cycle) Consider the model of a co-
valent modification cycle as illustrated in Chapter 2 in which the kinase Z is not
constant, but it is produced and decays according to the reaction Z

δ
−−−⇀↽−−−
u(t)

. Let u(t)

be the input stimulus of the cycle and let X∗ be the output. Determine the fre-
quency response of X∗ to u, determine its bandwidth, and make plots of it. What
parameters can be used to tune the bandwidth?

3.2 (Two gene oscillator) Consider the feedback system composed of two genes
expressing proteins A (activator) and R (repressor), in which we denote by A, R,
mA, and mR, the concentrations of the activator protein, the repressor protein, the
mRNA for the activator protein, and the mRNA for the repressor protein, respec-
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Figure 3.22: Simulation results for the enzymatic reaction comparing the approximations
from singular perturbation and from the quasi-steady state approximation. Here, we have
S tot = 100, Etot = 1, kr = k f = 10, and kcat = 0.1.

tively. The ODE model corresponding to this system is given by

dmA
dt
=
α0

K1+Rn
−γmA

dA
dt
= βmA−δA

dmR
dt
=
αAm

K2+Am
−γmR

dR
dt
= βmR−δR.

Determine parameter conditions under which this system admits a stable limit cy-
cle. Validate your finding through simulation.

3.3 (Goodwin oscillator) Consider the simple set of reactions

X1
k
−→ X2

k
−→ X3....

k
−→ Xn.
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Figure 3.23: The slow manifold of the system C = g(P) is shown in red. In black, we show
the trajectories of the the full system. These trajectories collapse into an ε-neighbor of the
slow manifold. Here, we have S tot = 100, Etot = 1, kr = k f = 10, and kcat = 0.1.

Assume further that Xn is a transcription factor that represses the production of pro-
tein X1 through transcriptional regulation (assume simple binding of X1 to DNA).
Neglecting the mRNA dynamics of X1, write down the ODE model of this sys-
tem and determine conditions on the length n of the cascade for which the system
admits a stable limit cycle. Validate your finding through simulation.

3.4 (Activator-repressor clock) A well known oscillating motif is given by the
activator-repressor clock by Atkinson et al. [?] in which an activator protein A
activates its own production and the one of a repressor protein R, which in turn
acts as a repressor for A. The ODE model corresponding to this clock is given by

dmA
dt
=
αAm+α0

K1+Rn+Am
−γmA

dA
dt
= µ(βmA−δA)

dmR
dt
=
αAm

K2+Am
−γmR

dR
dt
= βmR−δR,

in which µ > 0 models the difference of speeds between the dynamics of the activa-
tor and that of the repressor. Indeed a key requirement for this system to oscillate
is that the dynamics of the activator are sufficiently faster than that of the repressor.
Demonstrate that this system goes through a Hopf Bifurcation with bifurcation pa-
rameter µ. Validate your findings with simulation by showing the small amplitude
periodic orbit.

3.5 (Model reduction via singular perturbation) Consider again the model of a co-
valent modification cycle as illustrated in Chapter 2 in which the kinase Z is not
constant, but it is produced and decays according to the reaction Z

δ
−−−⇀↽−−−
u(t)
∅. Consider
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that k f ,kr3 kcat,δ,u(t) and employ singular perturbation with small parameter, for
example, ε = δ/kr to obtain the approximated dynamics of Z(t) and X∗(t). How is
this different from the result obtained in Exercise 2.6? Explain.



3-50 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR


	Contents
	Preface
	Notation
	1 Introductory Concepts
	1.1 Systems Biology: Modeling, Analysis and the Role of Feedback
	1.2 Dynamics and Control in the Cell
	1.3 Control and Dynamical Systems Tools [AM08]
	1.4 From Systems to Synthetic Biology
	1.5 Further Reading

	I Modeling and Analysis
	2 Dynamic Modeling of Core Processes
	2.1 Modeling Techniques
	2.2 Transcription and Translation
	2.3 Transcriptional Regulation
	2.4 Post-Transcriptional Regulation
	2.5 Cellular subsystems (TBD)
	 Exercises

	3 Analysis of Dynamic Behavior
	3.1 Input/Output Modeling [AM08]
	3.2 Analysis Near Equilibria
	3.3 Robustness
	3.4 Analysis of Reaction Rate Equations
	3.5 Oscillatory Behavior
	3.6 Analysis Using Describing Functions
	3.7 Bifurcations
	3.8 Model Reduction Techniques
	 Exercises

	4 Stochastic Modeling and Analysis
	4.1 Stochastic Modeling of Biochemical Systems
	4.2 Simulation of Stochastic sections
	4.3 Analysis of Stochastic Systems
	4.4 Linearized Modeling and Analysis
	4.5 Markov chain modeling and analysis
	4.6 System identification techniques
	4.7 Model Reduction
	 Exercises

	5 Feedback Examples
	5.1 The lac Operon
	5.2 Heat Shock Response in Bacteria
	5.3 Bacteriophage 
	5.4 Bacterial Chemotaxis
	5.5 Yeast mating response


	II Design and Synthesis
	6 Biological Circuit Components
	6.1 Biological Circuit Design
	6.2 Self-repressed gene
	6.3 The Toggle Switch
	6.4 The repressilator
	6.5 Activator-repressor clock
	 Exercises

	7 Interconnecting Components
	7.1 Input/Output Modeling and the Modularity Assumption
	7.2 Beyond the Modularity Assumption: Retroactivity
	7.3 Insulation Devices to Enforce Modularity
	7.4 Design of genetic circuits under the modularity assumption
	7.5 Biological realizations of an insulation component

	8 Design Tradeoffs
	9 Design Examples

	III Appendices
	A Cell Biology Primer
	A.1 What is a Cell
	A.2 What is a Genome
	A.3 Molecular Genetics: Piecing It Together

	B A Primer on Control Theory
	B.1 System Modeling
	B.2 Dynamic Behavior
	B.3 Linear Systems
	B.4 Reachability and observability
	B.5 Transfer Functions
	B.6 Frequency Domain Analysis
	B.7 PID Control
	B.8 Limits of Performance
	B.9 Robust Performance

	C Random Procesess
	C.1 Random Variables
	C.2 Continuous-State Random Processes
	C.3 Discrete-State Random Processes
	C.4 Input/Output Linear Stochastic Systems

	Bibliography
	Index


