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Chapter 3

Analysis of Dynamic Behavior

In this chapter, we describe some of the tools from dynamical systems and feed-
back control theory that will be used in the rest of the text to analyze and design
biological circuits, building on tools already described in AMO08. We focus here on
deterministic models and the associated analyses; stochastic methods are given in
Chapter 4.

Prerequisites. Readers should have a understanding of the tools for analyzing sta-
bility of solutions to ordinary differential equations, at the level of Chapter 4 of
AMO8. We will also make use of linearized input/output models in state space,
based on the techniques described in Chapter 5 of AMO08 and the frequency do-
main techniques described in Chapters 8—10.

3.1 Analysis Near Equilibria

As in the case of many other classes of dynamical systems, a great deal of insight
into the behavior of a biological system can be obtained by analyzing the dynamics
of the system subject to small perturbations around a known solution. We begin by
considering the dynamics of the system near an equilibrium point, which is one of
the simplest cases and provides a rich set of methods and tools.

In this section we will model the dynamics of our system using the input/output
modeling formalism described in Chapter 1:

X = f(x,0,u), y = h(x,0), 3.1

where x € R" is the system state, 0 € R” are the system parameters and u € R is
a set of external inputs (including disturbances and noise). The system state x is a
vector whose components will represent concentration of species, such as proteins,
kinases, DNA promoter sites, inducers, allosteric effectors, etc. The system param-
eters 6 is also a vector, whose components will represent biochemical parameters
such as association and dissociation rates, production rates, decay rates, dissoci-
ation constants, etc. The input u is a vector whose components will represent a
number of possible physical entities, including the concentration of transcription
factors, DNA concentration, kinases concentration, etc. The output y € R™ of the
system represents quantities that can be measured or that are used to interconnect
subsystem models to form larger models.
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Example 3.1 (Transcriptional component). Consider a promoter controlling a gene
g that can be regulated by a transcription factor Z. Let mg and G represent the
mRNA and protein expressed by gene g. This system can be viewed as a system,
in which u = Z is the concentration of transcription factor regulating the promoter,
the state x = (x,x») is such that x| = mg is the concentration of mRNA and x, = G
is the concentration of protein, and y = G = x; is the concentration of protein G.
Assuming that the transcription factor regulating the promoter is a repressor, the
system dynamics can be described by the following system

%=m—wl, %%&61—53@, y =X (3.2)
in which 0 = (o, K,v,5,0,n) is the vector of system parameters. In this case, we
have that

(04
f(x,0,u) = EYCITSTIR . h(x,6) = x,.
Bxi—ox;

\%

Note that we have chosen to explicitly model the system parameters 6, which
can be thought of as an additional set of (mainly constant) inputs to the system.

Equilibrium points and stability [AM08]

We begin by considering the case where the input # and parameters 6 in equa-
tion (3.1) are fixed and hence we can write the dynamics of the system as

dx

7 F(x). (3.3)
An equilibrium point of a dynamical system represents a stationary condition for
the dynamics. We say that a state x, is an equilibrium point for a dynamical system
if F(x,) = 0. If a dynamical system has an initial condition x(0) = x,, then it will
stay at the equilibrium point: x(f) = x, for all £ > 0.

Equilibrium points are one of the most important features of a dynamical sys-
tem since they define the states corresponding to constant operating conditions. A
dynamical system can have zero, one or more equilibrium points.

The stability of an equilibrium point determines whether or not solutions nearby
the equilibrium point remain close, get closer or move further away. An equilibrium
point x, is stable if solutions that start near x, stay close to x.. Formally, we say
that the equilibrium point x, is stable if for all € > 0, there exists a ¢ > 0 such that

X0) =X, <6 = |l —xll<e forallz>O0,

where x(7) represents the solution the the differential equation (3.3) with initial
condition x(0). Note that this definition does not imply that x(¢) approaches x, as
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Figure 3.1: Phase portrait (trajectories in the state space) on the left and time domain sim-
ulation on the right for a system with a single stable equilibrium point. The equilibrium
point x, at the origin is stable since all trajectories that start near x, stay near x,.

time increases but just that it stays nearby. Furthermore, the value of 6 may depend
on €, so that if we wish to stay very close to the solution, we may have to start
very, very close (0 < €). This type of stability, which is illustrated in Figure 3.1,
is also called stability in the sense of Lyapunov. If an equilibrium point is stable in
this sense and the trajectories do not converge, we say that the equilibrium point is
neutrally stable.

An example of a neutrally stable equilibrium point is shown in Figure 3.1. From
the phase portrait, we see that if we start near the equilibrium point, then we stay
near the equilibrium point. Indeed, for this example, given any e that defines the
range of possible initial conditions, we can simply choose § = € to satisfy the defi-
nition of stability since the trajectories are perfect circles.

An equilibrium point x, is asymptotically stable if it is stable in the sense of
Lyapunov and also x() — x, as t — oo for x(0) sufficiently close to x,. This corre-
sponds to the case where all nearby trajectories converge to the stable solution for
large time. Figure 3.2 shows an example of an asymptotically stable equilibrium
point.

Note from the phase portraits that not only do all trajectories stay near the equi-
librium point at the origin, but that they also all approach the origin as ¢ gets large
(the directions of the arrows on the phase portrait show the direction in which the
trajectories move).

An equilibrium point x, is unstable if it is not stable. More specifically, we say
that an equilibrium point x, is unstable if given some € > 0, there does not exist a
0 > 0 such that if ||x(0) — x.|| < d, then [|x(7) — x.|| < € for all ¢. An example of an
unstable equilibrium point is shown in Figure 3.3.

The definitions above are given without careful description of their domain of
applicability. More formally, we define an equilibrium point to be locally stable
(or locally asymptotically stable) if it is stable for all initial conditions x € B,(a),
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Figure 3.2: Phase portrait and time domain simulation for a system with a single asymp-
totically stable equilibrium point. The equilibrium point x, at the origin is asymptotically
stable since the trajectories converge to this point as t — co.

where
By(a) ={x:|lx—al <r}

is a ball of radius r around a and r > 0. A system is globally stable if it is stable for
all r > 0. Systems whose equilibrium points are only locally stable can have inter-
esting behavior away from equilibrium points, as we explore in the next section.

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called the region of attraction for the equilibrium point. In general,
computing regions of attraction is difficult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable equilibria
that are attracting. This gives partial information about the behavior of the system.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes an attractor. An unstable equilibrium point can be either a
source, if all trajectories lead away from the equilibrium point, or a saddle, if some
trajectories lead to the equilibrium point and others move away (this is the situ-
ation pictured in Figure 3.3). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as the one in Figure 3.1) is called
a center.

Example 3.2 (Bistable gene circuit). Consider a system composed of two genes
that express transcription factors that repress each other as shown in Figure 3.4.
Denoting the concentration of protein A by x; and that of protein B by x, and
neglecting the mRNA dynamics, the system can be modeled by the following dif-
ferential equations:

dx; ay dx» s

_ 5x1, - s
o it~ (F/K)+1

o 5xs.
it~ (A/K)+1 2
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Figure 3.3: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium point x, at the origin is unstable since not all trajectories
that start near x, stay near x,. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

Figure 3.4(b) shows the phase portrait of the system. This system is bi-stable be-
cause there are two (asymptotically) stable equilibria. Specifically, the trajectories
converge to either of two possible equilibria: one where x; is high and x; is low
and the other where x; is low and x; is high. A trajectory will approach the first
one if the initial condition is below the dashed line, called the separatrix, while it
will approach the second one if the initial condition is above the separatrix. Hence,
the region of attraction of the first equilibrium is the region of the plane below the
separatrix and the region of attraction of the second one is the portion of the plane
above the separatrix. \Y

Nullcline Analysis

Nullcline analysis is a simple and intuitive way to determine the stability of an
equilibrium point for systems in R?. Consider the system with x = (x1,x,) € R?
described by the differential equations

% = F1(x1,x2), 6%2 = Fa(x1,x2).

The nullclines of this system are given by the two curves in the xj,x, plane in
which F(x1,x2) =0 and F>(x1,x2) = 0. The nullclines intersect at the equilibria of
the system x,. Figure 3.5 shows an example in which there is a unique equilibrium.

The stability of the equilibrium is deduced by inspecting the direction of the
trajectory of the system starting at initial conditions x close to the equilibrium x,.
The direction of the trajectory can be obtained by determining the signs of F; and
F> in each of the regions in which the nullclines partition the plane around the
equilibrium x,. If F; <0 (F; > 0), we have that x; is going to decrease (increase)
and similarly if F <0 (F; > 0), we have that x; is going to decrease (increase). In
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Figure 3.4: (a) Diagram of a bistable gene circuit composed of two genes. (b) Phase plot
showing the trajectories converging to either one of the two possible stable equilibria de-
pending on the initial condition. The parameters are oy =a> =1,K; = K>, =0.1,and 6 = 1.

Figure 3.5, we show a case in which F; < 0 on the right-hand side of the nullcline
F1 =0 and F; > 0 on the left-hand side of the same nullcline. Similarly, we have
chosen a case in which F, < 0 above the nullcline F> = 0 and F, > 0 below the
same nullcline. Given these signs, it is clear (see the figure) that starting from any
point x close to x, the vector field will always point toward the equilibrium x, and
hence the trajectory will tend toward such equilibrium. In this case, it then follows
that the equilibrium x, is asymptotically stable.

Example 3.3 (Negative autoregulation). As an example, consider expression of
a gene with negative feedback. Let x; represent the mRNA concentration and x,
represent the protein concentration. Then, a simple model (in which for simplicity
we have assumed all parameters to be 1) is given by

dx; 1 dx,

= — X1 - = X1 X,
dt  14+x dt

so that Fi(x1,xp) = 1/(1+x2) —x1 and Fp(x1,xp) = x1 — xp. Figure 3.5(a) exactly
represents the situation for this example. In fact, we have that

1
Fl(xl,x2)<0 — X1 > T+ F2(X1,X2)<0 — X2 > X1,
X2

which provides the direction of the vector field as shown in Figure 3.5. As a con-
sequence, the equilibrium point is stable. The phase plot of Figure 3.5(b) confirms
this fact since the trajectories all converge to the unique equilibrium point. \%

Stability analysis via linearization

For systems with more than two states, the graphical technique of nullcline analysis
cannot be used. Hence, we must resort to other techniques to determine stability.
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Figure 3.5: (a) Example of nullclines for a system with a single equilibrium point x,. To
understand the stability of the equilibrium point x,, one traces the direction of the vec-
tor field (fi, f>) in each of the four regions in which the nullcline partition the plane. If
in each region the vector field points toward the equilibrium point, then such a point is
asymptotically stable. (b) Phase plot diagram for the negative autoregulation example.

Consider a linear dynamical system of the form

dx
i Ax, x(0) = xo, (34)

where A € R™". For a linear system, the stability of the equilibrium at the origin
can be determined from the eigenvalues of the matrix A:

A(A) ={s € C: det(s] - A)=0}.

The polynomial det(s! — A) is the characteristic polynomial and the eigenvalues
are its roots. We use the notation A; for the jth eigenvalue of A and A(A) for the
set of all eigenvalues of A, so that A; € A(A). For each eigenvalue A; there is a
corresponding eigenvector v; € R", which satisfies the equation Av; = 4;v;.

In general A can be complex-valued, although if A is real-valued, then for any
eigenvalue A, its complex conjugate A* will also be an eigenvalue. The origin is al-
ways an equilibrium point for a linear system. Since the stability of a linear system
depends only on the matrix A, we find that stability is a property of the system. For
a linear system we can therefore talk about the stability of the system rather than
the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose system matrices
are in diagonal form. In this case, the dynamics have the form

A1 0
dx A2

7 X. (3.5)
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It is easy to see that the state trajectories for this system are independent of each
other, so that we can write the solution in terms of 7 individual systems X; = 4;x;.
Each of these scalar solutions is of the form

x(1) = eY'x(0).

We see that the equilibrium point x, = 0 is stable if 1; <0 and asymptotically stable
if 1; <0.
Another simple case is when the dynamics are in the block diagonal form

ol Wi 0 0
-w, O 0 0
dx : ! ) . .
dr 0 0 - : X
0 0 Om W
0 0 —Wy, Op

In this case, the eigenvalues can be shown to be A; = o +iw;. We once again can
separate the state trajectories into independent solutions for each pair of states, and
the solutions are of the form

X2j-1 (1= ea-jt()CZj_l (0)cos w;t+ ij(O) sin (z)jl‘),

x2j(1) = €7 (=x2j-1(0) sinw;t + x2(0) cos w 1),

where j=1,2,...,m. We see that this system is asymptotically stable if and only
if 0j=Red;<0.Itis also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some systems can
be transformed into these forms via coordinate transformations. One such class
of systems is those for which the dynamics matrix has distinct (non-repeating)
eigenvalues. In this case there is a matrix T € R such that the matrix TAT ! is
in (block) diagonal form, with the block diagonal elements corresponding to the
eigenvalues of the original matrix A. If we choose new coordinates z = T x, then

G %= TAx=TAT™:

dt
and the linear system has a (block) diagonal dynamics matrix. Furthermore, the
eigenvalues of the transformed system are the same as the original system since
if v is an eigenvector of A, then w = T'v can be shown to be an eigenvector of
TAT~'. We can reason about the stability of the original system by noting that
x(t) = T~'z(1), and so if the transformed system is stable (or asymptotically stable),
then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the stabil-
ity of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we make use of the
following theorem, proved in the next chapter:
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Theorem 3.1 (Stability of a linear system). The system
dx
dr

is asymptotically stable if and only if all eigenvalues of A all have a strictly negative

real part and is unstable if any eigenvalue of A has a strictly positive real part.

Ax

In the case in which the system state is two-dimensional, that is, x € R?, we have
a simple way of determining the eigenvalues of a matrix A. Specifically, denote by
tr(A) the trace of A, that is, the sum of the diagonal terms, and let det(A) be the
determinant of A. Then, we have that the two eigenvalues are given by

A= %(tr(A) + Vir(A)? —4det(A)).

Both eigenvalues have negative real parts when (1) tr(A) <0 and (2) det(A) > 0. By
contrast, if condition (2) is satisfied but tr(A) > 0, the eigenvalues have positive real
parts.

An important feature of differential equations is that it is often possible to de-
termine the local stability of an equilibrium point by approximating the system by
a linear system. Suppose that we have a nonlinear system

dx
Z_F
7 - F®
that has an equilibrium point at x,. Computing the Taylor series expansion of the
vector field, we can write
d oF
g F(x.)+ —| (x—x.)+higher-order terms in (x — x,).
dt 0x |y,
Since F(x,) =0, we can approximate the system by choosing a new state variable
7= X— X, and writing
dz oF

— = Az, where A=

— - 3.6
dt 0x |y, (3.6)

We call the system (3.6) the linear approximation of the original nonlinear system
or the linearization at x,. We also refer to matrix A as the Jacobian matrix of the
original nonlinear system.

The fact that a linear model can be used to study the behavior of a nonlinear
system near an equilibrium point is a powerful one. Indeed, we can take this even
further and use a local linear approximation of a nonlinear system to design a feed-
back law that keeps the system near its equilibrium point (design of dynamics).
Thus, feedback can be used to make sure that solutions remain close to the equilib-
rium point, which in turn ensures that the linear approximation used to stabilize it
is valid.
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Example 3.4 (Negative autoregulation). Consider again the negatively autoregu-
lated gene modeled by the equations
dx; 1 dx,

= — X1, — = X1 — X2.
di  1+x, ! dar T2

In this case,

1
F(x)=( e )

X1 —X2

so that, letting x, = (x1 ., X2,.), the Jacobian matrix is given by

1
B (it R e )
Xe 1 _1

In this case, we have that tr(A) = —2 < 0 and that det(A) = 1+ m > 0. Hence,

independently of the value of the equilibrium point, the eigenvalues have both neg-
ative real parts, which implies that the equilibrium point x, is asymptotically sta-
ble. \%

_OF

A= —
Ox

Frequency domain analysis

Frequency domain analysis is a way to understand how well a system can respond
to rapidly changing input stimuli. As a general rule, most physical systems display
an increased difficulty in responding to input stimuli as the frequency of variation
increases: when the input stimulus changes faster than the natural time scales of the
system, the system becomes incapable of responding. If instead the input stimulus
is changing much slower than the natural time scales of the system, the system
will respond very accurately. That is, the system behaves like a “low-pass filter”.
The cut-off frequency at which the system does not display a significant response
is called the bandwidth and quantifies the dominant time scale. To identify this
dominant time scale, we can perform input/output experiments in which the system
is excited with periodic input at various frequencies.

Example 3.5 (Phosphorylation cycle). To illustrate the basic ideas, we consider
the frequency response of a phosphorylation cycle, in which enzymatic reactions
are modeled by a first order reaction. Referring to Figure 3.6a, we have that the one
step reactions involved are given by

Z+X 74X Y+X 2 Y+X,

with conservation law X + X* = Xi. Let Yy be the total amount of phosphatase.
We assume that the kinase Z has a time-varying concentration, which we view as
the input to the system, while X* is the output of the system.
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Figure 3.6: (a) Diagram of a phosphorylation cycle, in which Z is the kinase, X is the
substrate, and Y is the phosphatase. (b) Bode plot showing the magnitude and phase lag
for the frequency response of a one step reaction model of the phosphorylation system
on the left. The magnitude is plotted in decibels (dB), in which M|;z = 20log,,(M). The
parameters are f =06 = 1.

The differential equation model is given by

*

dt

= ki Z(t)(Xot = X*) = k2 Yior X,

If we assume that the cycle is weakly activated (X* < Xiot), the above equation is
well approximated by

*

Y BZ(t)—0X", (3.7)
where 8 = k1 Xiot and § = k;Yior. To determine the frequency response, we set the
input Z() to a periodic function. It is customary to take sinusoidal functions as the
input signal as they lead to an easy way to calculate the frequency response. Let
then Z(t) = Agpsin(wt).

Since equation (3.7) is linear in the state X* and input Z, it can be directly
integrated to lead to

% sin(w —tan™! (/) - (CUAZO—f‘;)e—&
The second term dies out for ¢ large enough. Hence, the steady state response is
given by the first term. The amplitude of response is thus given by Ao/ Vw? + 62,
in which the gain 8/ Vw? + 6% depends on the system parameters and on the fre-
quency of the input stimulation.

As this frequency increases, the amplitude decreases and approaches zero for
infinite frequencies. Also, the argument of the sine function shows a negative phase
shift of tan~! (w/d), which indicates that there is an increased delay in responding

X(1) =



102 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR

to the input as the frequency increases. Hence, the key quantities in the frequency
response are the magnitude gain M(w) and phase lag ¢(w) given by

B
Vo2 + 62

These are plotted in Figure 3.6b, a type of figure known as a Bode plot.

The bandwidth of the system, denoted wp is the frequency at which the mag-
nitude gain drops below M(0)/ V2. In this case, the bandwidth is given by wp =
0 = kyYiot, which implies that the bandwidth of the system can be made larger
by increasing the amount of phosphatase. However, note that since M(0) =8/6 =
k1 Xtot/ (k2 Y1ot), increased phosphatase will also result in decreased amplitude of re-
sponse. Hence, if one wants to increase the bandwidth of the system while keeping
the value of M(0) (also called the zero frequency gain) unchanged, one should in-
crease the total amounts of substrate and phosphatase in comparable proportions.
Fixing the value of the zero frequency gain, the bandwidth of the system increases
with increased amounts of phosphatase and kinase. \Y

M(w) = #(w) = tan™! (%)

More generally, the frequency response of a linear system with one input and
one output
X =Ax+ Bu, y =Cx+Du

is the response of the system to a sinusoidal input u = asin wt with input amplitude
a and frequency w. The transfer function for a linear system is given by

Gy(s)=C(sI-A)'B+D

and represents the response of a system to an exponential signal of the form u(z) =
e* where s € C. In particular, the response to a sinusoid u = asinwr is given by
y = Masin(wt + ¢) where the gain M and phase shift ¢ can be determined from the
transfer function evaluated at s = iw:

M= (Gu(iw)] = (G (i) +Re(Gyliw))?
Gulie = Me", L (Im(Gulie))
o=t (Re(Gyu(iw)))’

where Re(-) and Im(-) represent the real and imaginary parts of a complex number.
For finite dimensional linear (or linearized) systems, the transfer function be
written as a ratio of polynomials in s:
b(s)
G(s) = —.

() a05)
The values of s at which the numerator vanishes are called the zeros of the transfer
function and the values of s at which the denominator vanishes are called the poles.
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The transfer function representation of an input/output linear system is essen-
tially equivalent to the state space description, but we reason about the dynamics
by looking at the transfer function instead of the state space matrices. For example,
it can be shown that the poles of a transfer function correspond to the eigenval-
ues of the matrix A, and hence the poles determine the stability of the system.
In addition, interconnections between subsystems often have simple representa-
tions in terms of transfer functions. For example, two systems G| and G, in series
(with the output of the first connected to the input of the second) have a combined
transfer function Geeries(s) = G1(5)G2(s) and two systems in parallel (a single in-
put goes to both systems and the outputs are summed) has the transfer function
Gparallel(s) =G1(s) +Ga(s).

Transfer functions are useful representations of linear systems because the prop-
erties of the transfer function can be related to the properties of the dynamics. In
particular, the shape of the frequency response describes how the system response
to inputs and disturbances, as well as allows us to reason about the stability of
interconnected systems. The Bode plot of a transfer function gives the magnitude
and phase of the frequency response as a function of frequency and the Nyquist
plot can be used to reason about stability of a closed loop system from the open
loop frequency response (AMOS, Section 9.2).

Returning to our analysis of biomolecular systems, suppose we have a systems
whose dynamics can be written as

X =f(x,6,u)

and we wish to understand how the solutions of the system depend on the param-
eters 6 and input disturbances u. We focus on the case of an equilibrium solution
x(t;x0,600) = x,. Let z=x—x,, it =u—up and 6 = 6 — 6 represent the deviation of
the state, input and parameters from their nominal values. Linearization can be per-
formed in a way similar to the way it was performed for a system with no inputs.
Specifically, we can write the dynamics of the perturbed system using its lineariza-
tion as

(5 ()0 L)

g .z L 0 + (= 3
dt\0x ), gy, 99 ) v, 0.0) W) e .0)

This linear system describes small deviations from x,(6, wo) but allows & and W to
be time-varying instead of the constant case considered earlier.

To analyze the resulting deviations, it is convenient to look at the system in the
frequency domain. Let y = Cx be a set of values of interest. The transfer functions
between @, # and y are given by

Hy(s)=C(sI-A)"'By,  Hy(s)=C(sI-A)"'B,,
where

_ U

- )
dx (Xe»60,w0)

_of

_9f
a6 (Xe,80,w0) ,

A = .
ow (Xe,80,w0)

BG Bw
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Note that if we let s = 0, we get the response to small, constant changes in
parameters. For example, the change in the outputs y as a function of constant
changes in the parameters is given by

H5(0)=CA™'By=CS .

Example 3.6 (Transcriptional regulation). Consider a genetic circuit consisting of
a single gene. The dynamics of the system are given by

dm dap
— = F(P)—ym, — =fm—6P,
o - FP)-y 7B
where m is the mRNA concentration and P is the protein concentration. Suppose
that the mRNA degradation rate y can change as a function of time and that we
wish to understand the sensitivity with respect to this (time-varying) parameter.
Linearizing the dynamics around an equilibrium point

A= [_7 F’(pe)] i By — [—ng )

For the case of no feedback we have F(P) = g, and the system has an equilib-
rium point at m, = ao/y, P. = Bao/(dy). The transfer function from y to p, after
linearization about the steady state, is given by

ol _ _ﬂme
) = ey

where 7y represents the nominal value of y around which we are linearizing. For
the case of negative regulation, we have

F(P) = o,

e
1+(P/K)"

and the resulting transfer function is given by

Bm,
(s+7y0)(s+0)+po’

naP)! /K"

T

G3,(s) =

Figure 3.7 shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbances with low-
frequency content but slightly amplifies disturbances at high frequency (compared
to the open loop system). \Y

3.2 Robustness

The term “robustness” refers to the general ability of a system to continue to func-
tion in the presence of uncertainty. In the context of this text, we will want to be
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Figure 3.7: Noise attenuation in a genetic circuit.

more precise. We say that a given function (of the circuit) is robust with respect
to a set of specified perturbations if the sensitivity of that function to perturba-
tions is small. Thus, to study robustness, we must specify both the function we are
interested in and the set of perturbations that we wish to consider.

In this section we study the robustness of the system

X = f(x,0,u), y = h(x,6)

to various perturbations in the parameters 6 and disturbance inputs «. The function
we are interested in is modeled by the outputs y and hence we seek to understand
how y changes if the parameters ¢ are changed by a small amount or if external
disturbances u are present. We say that a system is robust with respect to these
perturbations if y undergoes little changes as these perturbations are introduced.

Parametric uncertainty

In addition to studying the input/output transfer curve and the stability of a given
equilibrium point, we can also study how these features change with respect to
changes in the system parameters 6. Let y. (6o, ug) represent the output correspond-
ing to an equilibrium point x, with fixed parameters 6y and external input ug, so
that f(x.,6p,up) = 0. We assume that the equilibrium point is stable and focus here
on understanding how the value of the output, the location of the equilibrium point
and the dynamics near the equilibrium point vary as a function of changes in the
parameters 6 and external inputs w.

We start by assuming that # = 0 and investigating how x, and y, depend on 6.
The simplest approach is to analytically solve the equation f(x,,6p) = 0 for x, and
then set y, = h(x,,0y). However, this is often difficult to do in closed form and so
as an alternative we instead look at the linearized response given by

dx, dye.
S = , S = s
070 g, M 6o lg,
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which is the (infinitesimal) change in the equilibrium state and the output due to
a change in the parameter. To determine S ;g we begin by differentiating the rela-
tionship f(x.(6),6) = 0 with respect to 6:

df _ofds. O
do  Ox do 09

S —(‘3—f)_1 o (3.8)

0 Sz e -
— 2T ox) 00

(xe,6p) '

Similarly, we can compute the change in the output sensitivity as

_dye _ Ohdx, 0h (ah(af)—l of ah)

S
0 Ox

Y740 " oxde 6 |ox 90 " 90

(xe,6p)

These quantities can be computed numerically and hence we can evaluate the effect
of small (but constant) changes in the parameters 6 on the equilibrium state x, and
corresponding output value y,.

A similar analysis can be performed to determine the effects of small (but con-
stant) changes in the external input u. Suppose that x, depends on both 6 and u,
with f(x.,6p,up) =0 and 6y and g representing the nominal values. Then

dx, __(of\" of dx. __(3f\" of
dg  \ox) 90\eoom) du  \dx) Ou

(xe,00,0)

The sensitivity matrix can be normalized by dividing the parameters by their
nominal values and rescaling the outputs (or states) by their equilibrium values. If
we define the scaling matrices

D* = diag{x.}, DY = diagly.}, D’ = diag{6},
Then the scaled sensitivity matrices can be written as
Sxo=(D*) 'S D, Sy5=(D")"S,6D". (3.9)

The entries in this matrix describe how a fractional change in a parameter gives
a fractional change in the output, relative to the nominal values of the parameters
and outputs.

Example 3.7 (Transcriptional regulation). Consider again the case of transcrip-
tional regulation described in Example 3.6. We wish to study the response of
the protein concentration to fluctuations in its parameters in two cases: a consti-
tutive promoter (no regulation) and self-repression (negative feedback), illustrated
in Figure 3.8. For the case of no feedback we have F(p) = ap, and the system
has an equilibrium point at m, = ag/y, P. = Bao/(6y). The parameter vector can
be taken as 6 = (ap,,[,0). Since we have a simple expression for the equilibrium
concentrations, we can compute the sensitivity to the parameters directly:

1 @
0x, y Ty 0 0
50 = | B B a _pao
oy oy: Oy 62
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Figure 3.8: Parameter sensitivity in a genetic circuit. The open loop system (a) consists
of a constitutive promoter, while the closed loop circuit (b) is self-regulated with negative
feedback (repressor).

where the parameters are evaluated at their nominal values, but we leave off the
subscript 0 on the individual parameters for simplicity. If we choose the parame-
ters as 8y = (0.00138,0.00578,0.115,0.00116), then the resulting sensitivity matrix
evaluates to

Sopenz[170 -41 0 0 ] (3.10)

Xef 17000 -4100 210 -21000

If we look instead at the scaled sensitivity matrix, then the open loop nature of the
system yields a particularly simple form:

1 -1 0 0
open _
Sw_[l 1 _1]. (3.11)

In other words, a 10% change in any of the parameters will lead to a comparable
positive or negative change in the equilibrium values.
For the case of negative regulation, we have

a
F(P)= ———— ,
Py =g T
and the equilibrium points satisfy
0 a vo
me:EPg, m+(l0:’}/me: Fpe (312)

In order to make a proper comparison with the previous case, we need to be careful
to choose the parameters so that the equilibrium concentration P, matches that of
the open loop system. We can do this by modifying the promoter strength a or
the RBS strength S so that the second formula in equation (3.12) is satisfied or,
equivalently, choose the parameters for the open loop case so that they match the
closed loop steady state protein concentration (see Example 2.3).

Rather than attempt to solve for the equilibrium point in closed form, we instead
investigate the sensitivity using the computations in equation (3.12). The state,
dynamics and parameters are given by

xz(m P), f(x,@):[lrﬁ(:;)__;;m], 0=(ao y B 6 a n K).
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Note that the parameters are ordered such that the first four parameters match the
open loop system. The linearizations are given by

ox (B -6 ) 088 0 0 m -P 0 0 0

where again the parameters are taken to be their nominal values. From this we can
compute the sensitivity matrix as

OF d il
s om___mF pr_ %% 0% 8%
S oy-pF’  oy-BF’ oy—-pF’  Sy-pF’ oy—pF’ oy-pF’ oy—pF’
x0 = OF
__B pm_ __ym y  _Par % B%
oy-BF’  6y-BF’ oy-BF’  6y-BF’ &y—-BF’ oy-BF’ oy-BF’

where F' = 0F/0P and all other derivatives of F are evaluated at the nominal pa-
rameter values.

We can now evaluate the sensitivity at the same protein concentration as we use
in the open loop case. The equilibrium point is given by

C(me) () (0239
e lp) T | @] T | 239
Y

and the sensitivity matrix is

gelosed 76.1 -182 -1.16 116. 0.134 -0.212 -0.000117
xd 7 17610. —1820. 90.8 —9080. 134 212 -0.0117 |°
The scaled sensitivity matrix becomes

0.16 -0.44 -0.56 0.56 0.28 -1.78 -3.08x 10"’

closed
Sxet [0.16 -0.44 044 -044 028 -1.78 -3.08x 10-7] - G1)
Comparing this equation with equation (3.11), we see that there is reduction in the
sensitivity with respect to most parameters. In particular, we become less sensitive
to those parameters that are not part of the feedback (columns 2—4), but there is
higher sensitivity with respect to some of the parameters that are part of the feed-

back mechanisms (particularly n). \Y

More generally, we may wish to evaluate the sensitivity of a (non-constant) so-
lution to parameter changes. This can be done by computing the function dx(¢)/d6,
which describes how the state changes at each instant in time as a function of
(small) changes in the parameters 6. We assume u = 0 for simplicity of exposition.

Let x(#;x0,60) be a solution of the dynamics with initial condition xy and pa-
rameters 6y. To compute dx/d0, we write down a differential equation for how it

evolves in time: J1d d (d d
X X
a(%) - E(E) = 2660

_ofdx of
COxdo 98’
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This is a differential equation with nxm states S;; = dx;/d6; and with initial condi-
tion §;;(0) = 0 (since changes to the parameters to not affect the initial conditions).

To solve these equations, we must simultaneously solve for the state x and the
sensitivity S (whose dynamics depend on x). Thus, we must solve the set of n +
nm coupled differential equations

ds g _ af 6f
e ax(x,@, u)S o+ %0 (x,0,u). (3.14)

d
d—f = f(x,0,u),

This differential equation generalizes our previous results by allowing us to
evaluate the sensitivity around a (non-constant) trajectory. Note that in the spe-
cial case that we are at an equilibrium point and the dynamics for S , ¢ are stable,
the steady state solution of equation (3.14) is identical to that obtained in equa-
tion (3.8). However, equation (3.14) is much more general, allowing us to deter-
mine the change in the state of the system at a fixed time 7', for example. This
equation also does not require that our solution stay near an equilibrium point, it
only requires that our perturbations in the parameters are sufficiently small.

Example 3.8 (Repressilator). Consider the example of the repressilator, which was
described in Example 2.2. The dynamics of this system can be written as

dm, dPi
T Fron(P3) — L By — 6P
I p(P3) —ymy 7 pm; —6P;
dmy dP
T2 Fron(P1) — =2~ Bmy— 6P
7 p(P1)—ymy 7 Bm; 2
dms dP3
T Fron(P) — 23— By - 6P,
7 p(P2) —ymy 7 Bms 2

where the repressor is modeled using a Hill function

a

Frep(P) = m + .

The dynamics of this system lead to a limit cycle in the protein concentrations, as
shown in Figure 3.9a.

We can analyze the sensitivity of the protein concentrations to changes in the
parameters using the sensitivity differential equation. Since our solution is periodic,
the sensitivity dynamics will satisfy an equation of the form

ds g
dt

=AS 0+ B(),

where A(¢) and B(r) are both periodic in time. Letting x = (my, Py,mp, P>,m3, P3)
and 6 = (ao,,3,0,,K), we can compute S , y along the limit cycle. If the dynamics
for S, are stable then the resulting solutions will be periodic, showing how the
dynamics around the limit cycle depend on the parameter values. The results are
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Figure 3.9: Repressilator sensitivity plots

shown in Figure 3.9b, where we plot the steady state sensitivity of P as a function
of time. We see, for example, that the limit cycle depends strongly on the protein
degradation and dilution rate v, indicating that changes in this value can lead to
(relatively) large variations in the magnitude of the limit cycle.

\%

Several simulation tools include the ability to do sensitivity analysis of this sort,
including COPAST.

Adaptation and disturbance rejection

A system is said to adapt to the input # when the steady state value of its output y
is independent of the actual (constant) value of the input (Figure 3.10). Basically,
after the input changes to a constant value, the output returns to its original value
after a transient perturbation. Adaptation corresponds to the concept of disturbance
rejection in control theory. The full notion of disturbance rejection is more general
and depends on the specific disturbance input and it is studied using the internal
model principle [89].

For example, for adaptation to constant signals, the internal model principle re-
quires integral feedback. The internal model principle is a powerful way to uncover
biochemical structures in natural networks that are known to have the adaptation
property. An example of this is the bacterial chemotaxis described in more detail
in Chapter 5.

We illustrate two main mechanisms to attain adaptation: integral feedback and
incoherent feedforward loops (IFFLs). We next study these two mechanisms from a
mathematical standpoint to illustrate how they achieve adaptation. Possible biomolec-
ular implementations are presented in later chapters.

Integral feedback

In integral feedback systems, a “memory” variable z keeps track of the accumulated
difference between y(¢) and its nominal steady state value yp. A comparison is
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Figure 3.10: Adaptation property. The system is said to have the adaptation property if the
steady state value of the output does not depend on the steady state value of the input.
Hence, after a constant input perturbation, the output returns to its original value.

performed between this memory variable and the current input u, providing an
error term that is used to drive the feedback mechanism that brings the system
output back to the desired value yy (Figure 3.11).

In this system, the output y(¢), after any constant input perturbation u, tends to
yo for + — co independently of the (constant) value of u. The equations representing
the system are given by:

dz
— =Yy, Y1 =Y-)Yo, y=k(u-2z),

dt
so that the equilibrium is obtained by setting z = 0, from which we obtain y = yy.
That is, the steady state of y does not depend on u. The additional question to
answer is whether, after a perturbation u occurs, y;(¢) tends to zero for ¢t — oo.
This is the case if and only if Z — 0 as t — oo, which is satisfied if the equilibrium

Figure 3.11: Basic block diagram representing a system with integral action.
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Figure 3.12: Incoherent feedforward loop. The input « affects the output through two chan-
nels. It indirectly represses it through an intermediate variable x| and it activates it directly.

of the system z = —kz + ku — yg is asymptotically stable. This, in turn, is satisfied
whenever k >0 and u is a constant. Hence, after a constant perturbation u is applied,
the system output y approaches back its original steady state value yg, that is, y is
robust to constant perturbations.

More generally, a system with integral action can take the form

&= fwwk, y=h, T =yow, k=kwo,
in which the steady state value of y, being the solution to y —yg = 0, does not depend
on u. In turn, y tends to this steady state value for # — oo if and only if z — 0 as
t — oo. This, in turn, is the case if z tends to a constant value for t — oo, which is
satisfied if u is a constant and the steady state of the above system is asymptotically
stable.

Integral feedback is recognized as a key mechanism of perfectly adapting bio-
logical systems, both at the physiological level and at the cellular level, such as in
blood calcium homeostasis [25], in the regulation of tryptophan in E. coli [94], in
neuronal control of the prefrontal cortex [67], and in E. coli chemotaxis [102].

Incoherent feedforward loops

Feedforward motifs (Figure 3.12) are common in transcriptional networks and it
has been shown they are over-represented in E. coli gene transcription networks,
compared to other motifs composed of three nodes [3]. These are systems in which
the input u directly helps promote the production of the output x; and also acts as a
delayed inhibitor of the output through an intermediate variable x;. This incoherent
counterbalance between positive and negative effects gives rise, under appropriate
conditions, to adaptation. A large number of incoherent feedforward loops partici-
pate in important biological processes such as the EGF to ERK activation [72], the
glucose to insulin release [75], ATP to intracellular calcium release [64], micro-
RNA regulation [93], and many others.

Several variants of incoherent feedforward loops exist for perfect adaptation.
The “sniffer”, for example, is one in which the intermediate variable promotes
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degradation:

% =au—-9oxy, % =Bu—yxix;. (3.15)

In this system, the steady state value of the output x; is obtained by setting the
time derivatives to zero. Specifically, we have that x; =0 given x; = au/é and X, =
0 gives xp = Bu/(yx1), which combined together result in x, = (86)/(ya), which
is a constant independent of the input u. The linearization of the system at the
equilibrium is given by

-0 0

A= B0/ —yaus))

which has eigenvalues —¢ and —y(au/d). Since these are both negative, the equi-
librium point is asymptotically stable. The sniffer appears in models of neutrophil
motion and Dictyostelium chemotaxis [101].

Another form for a feedforward loop is one in which the intermediate variable
x1 inhibits production of the output x,, such as in the system:

dditl =au-—90xy, % =ﬂxil—yxz. (3.16)

The equilibrium point of this system is given by setting the time derivatives to zero.
From i =0, one obtains x| = au/d and from X, = 0 one obtains that x, = Su/(yx;),
which combined together result in x; = (86)/(ya), which is a constant independent
of the input u.

By calculating the linearization at the equilibrium, one obtains

A -0 0
—_1% |

whose eigenvalues are given by —¢ and —y. Hence, the equilibrium point is asymp-
totically stable. Further, one can show that the equilibrium point is globally asymp-
totically stable because the x; subsystem is linear, stable, and x; approaches a con-
stant value (for constant u#) and the x, subsystem, in which Su/x; is viewed as an
external input is also linear and exponentially stable.

Scale Invariance and fold-change detection

Scale invariance is the property by which the output x,(¢) of the system does not
depend on the amplitude of the input u(?) (Figure 3.13). Specifically, consider an
adapting system and assume that it pre-adapted to a constant background value a,
then apply input a + b and let x,(¢) be the resulting output. Now consider a new
background value p a for the input and let the system pre-adapt to it. Then apply
the input p(a + b) and let x,(¢) be the resulting output. The system has the scale
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Figure 3.13: Fold-change detection. The output response does not depend on the absolute
magnitude of the input but only on the fold change of the input.

invariance property if x,(¢) = x»(#). This also means that the output responds in the
same way to inputs changing by the same multiplicative factor (fold), hence this
property is also called fold-change detection. Looking at Figure 3.13, the output
would present different pulses for different fold changes b/a.

Incoherent feedforward loops can implement the fold-change detection prop-
erty [36]. As an example, consider the feedforward motif represented by the sniffer
and consider two inputs: u () = a+ b (t — tp) and uy(t) = pa + pbi(t — tp). Assume
also, as said above, that at time #( the system is at the steady state, that is, it pre-
adapted. Hence, we have that the two steady states from which the system starts
at t = 1o are given by x1; = aa/d and x;, = paa/d for the x; variable and by
X2,1 = x22 = (B6)/(ya) for the x; variable. Integrating system (3.16) starting from
these initial conditions, we obtain for ¢ > £

x1,1(0) = a%e_‘s(’_’()) +(a+b)(1—€™ ™) and
x12(t) = pa%e‘é("’(’) + pla+b)(1—e 0070,

Using these in the expression of X, in equation (3.16) gives the differential
equations to which x; 1 (¢) and x22(¢) obey for ¢ > #g as
de’ 1 ,B(a + b)
di — a%e 0= +(a+b)(1—eo0-1)

—YX2.1, x2,1(f0) = (BO)/ (ya)

and

dxlz _ p,B(a + b)
dt  pa§e =) + p(a+b)(1 e o0=10))

—YX22, x22(t0) = (BO)/(ya),

which give xp 1 (f) = x22(?) for all ¢ > #y. Hence, the system responds exactly the
same way after changes in the input of the same fold. The output response is not
dependent on the scale of the input but only on its shape.
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Figure 3.14: (a) Disturbance attenuation. A system is said to have the disturbance attenua-
tion property if there is an internal system parameter G such that the system output response
becomes arbitrarily close to a nominal output (independent of the input ) by increasing the
value of G. (b) High gain feedback. A possible mechanism to attain disturbance attenuation
is to feedback the error between the nominal output yy and the actual output y through a
large gain G.

Disturbance attenuation

A system has the property of disturbance attenuation if there is a system parameter
G such that the output response y(#) to the input u(#) can be made arbitrarily small as
G is increased (Figure 3.14a). A possible mechanism for disturbance attenuation is
high gain feedback (Figure 3.14b). In a high gain feedback configuration, the error
between the output y, perturbed by some exogenous disturbance u, and a desired
nominal output yj is fed back with a negative sign to produce the output y itself. If
Yo >y, this will result in an increase of y, otherwise it will result in a decrease of y.
Mathematically, one obtains from the block diagram that

u
“1+¢ 1o

y

so that as G increases the (relative) contribution of « on the output of the system
can be arbitrarily reduced.

High gain feedback can take a much more general form. Consider a system
with x € R” in the form & = F(x,f). We say that this system is contracting if any
two trajectories starting from different initial conditions tend to each other as time
increase to infinity. A sufficient condition for the system to be contracting is that in
some set of coordinates, with matrix transformation denoted ®, the symmetric part
of the linearization matrix (Jacobian) is negative definite. That is, that the largest
eigenvalue of

2

_+_

1({oF OFT
ox ox |

is negative. We denote this eigenvalue by —A for 4 > 0 and call it the contraction
rate of the system.
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Now, consider the nominal system & = G f(x, ) for G > 0 and its perturbed ver-
sion X, = G f(x,,1) +u(t). Assume that the input u(7) is bounded everywhere in norm
by a constant C > 0. If the system is contracting, we have the following robustness
result:
xC
Ea
in which y is an upper bound on the condition number (ratio between the largest
and the smallest eigenvalue of ®T ) of the transformation matrix ® [60]. Hence,
if the perturbed and the nominal systems start from the same initial conditions, the
difference between their states can be made arbitrarily small by increasing the gain
G. Hence, the system has the disturbance attenuation property.

[1x(2) = x, DIl < x11x(0) — x,(0)]]e” Y +

3.3 Analysis of Reaction Rate Equations

The previous section considered analysis techniques for general dynamical sys-
tems with small perturbations. In this section, we specialize to the case where the
dynamics have the form of a reaction rate equation:

d
d_j = Nv(x,0), (3.17)

where x is the vector of species concentrations, € is the vector of reaction parame-
ters, NV is the stoichiometry matrix and v(x,6) is the reaction rate (or flux) vector.

Reduced reaction dynamics

When analyzing reaction rate equations, it is often the case that there are conserved
quantities in the dynamics. For example, conservation of mass will imply that if all
compounds containing a given species are captured by the model, the total mass
of that species will be constant. This type of constraint will then give a conserved
quantity of the form ¢; = H;x where H; represents that combinations of species in
which the given element appears. Since ¢; is constant, it follows that dc;/dt = 0
and, aggregating the set of all conserved species, we have

dc ds
=—=H—=H for all x.
0 7 7 Nv(x,0) forall x

If we assume that the vector of fluxes spans R” (the range of v : R” XR? — R™),
then this implies that the conserved quantities correspond to the left null space of
the stoichiometry matrix N.

It is often useful to remove the conserved quantities from the description of the
dynamics and write the dynamics for a set of independent species. To do this, we
transform the state of the system into two sets of variables:

Xi _ P
[xd] = [HJ X. (3.18)
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The vector x; = Px is the set of independent species and is typically chosen as
a subset of the original species of the model (so that the rows P consists of all
zeros and a single 1 in the column corresponding to the selected species). The
matrix H should span the left null space of N, so that x; represents the set of
dependent concentrations. These dependent species do not necessarily correspond
to individual species, but instead are often combinations of species (for example,
the total concentration of a given element that appears in a number of molecules
that participate in the reaction).

Given the decomposition (3.18), we can rewrite the dynamics of the system in
terms of the independent variables x;. We start by noting that given x; and x,, we
can reconstruct the full set of species x:

where c( represents the conserved quantities. We now write the dynamics for x; as

dx. d
% - Pd—); = PNW(Lx; + ¢o.6) = Nyv,(x1.¢0.6), (3.19)

where N, is the reduced stoichiometry matrix and v, is the rate vector with the
conserved quantities separated out as constant parameters.

The reduced order dynamics in equation (3.19) represent the evolution of the
independent species in the reaction. Given x;, we can reconstruct the full set of
species from the dynamics of the independent species by writing x = Lx; +co. The
vector cg represents the values of the conserved quantities, which must be specified
in order to compute the values of the full set of species. In addition, since x =
Lx; + cg, we have that

dx dx;
o = LE = LN,v,(x;,co,p) = LN,v(x,0),
which implies that
N = LN,.
Thus, L also reconstruct the reduced stoichiometry matrix from the reduced space
to the full space.

Example 3.9 (Enzyme kinetics). Consider an enzymatic reaction

a _k
E+S=C—->E+P,
d

whose full dynamics can be written as

sy (-1 1
dlE| -1 1 1 “56',5
72 (ol I R S e

P/ lo o 1
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The conserved quantities are given by

0 1 10
n=( o)

The first of these is the total enzyme concentration E = E + C, while the second
asserts that the concentration of product P is equal to the free enzyme concentration
E minus the substrate concentration S . If we assume that we start with substrate
concentration S o, enzyme concentration E and no product or bound enzyme, then
the conserved quantities are given by

c= E+C | _ Etor
T|S—-E+P| So—For]

There are many possible choices for the set of independent species x; = Px, but
since we are interested in the substrate and the product, we choose P as

100 0
P‘[0001]'

Once P is chosen then we can compute

0 0
S I S B W e
T \H ol ~|-1 -1|° Tl cl 7l so I’
0 1 0

The resulting reduced order dynamics can be computed to be

d [S] [_1 1 O] a(P+S +Et0t_S())S

= d(-P-5 +S0)
ar(P)=Lo 0 1| T s
_(~a(P+S + E—S0)S —d(P+S -S)
- KSo—S —P) '

A simulation of the dynamics is shown in Figure 3.15. We see that the dynamics
are very well approximated as being a constant rate of production until we exhaust
the substrate (consistent with the Michaelis-Menten approximation).

\%

Metabolic control analysis

Metabolic control analysis (MCA) focuses on the study of the sensitivity of steady
state concentrations and fluxes to changes in various system parameters. The basic
concepts are equivalent to the sensitivity analysis tools described in Section 3.1,
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Figure 3.15: Enzyme dynamics. The simulations were carried outa =d =10,k=1,Sg =
500 and Eiy = 5,1020. The top plot shows the concentration of substrate S and product
P, with the fastest case corresponding to Ey = 20. The figures on the lower left zoom in
on the substrate and product concentrations at the initial time and the figures on the lower
right at one of the transition times.

specialized to the case of reaction rate equations. In this section we provide a brief
introduction to the key ideas, emphasizing the mapping between the general con-
cepts and MCA terminology (as originally done by [47]).
Consider the reduced set of chemical reactions

dx;

d_tl = N,vy(x;,0) = N v(Lx; + co, 0).
We wish to compute the sensitivity of the equilibrium concentrations x, and equi-
librium fluxes v, to the parameters 6. We start by linearizing the dynamics around
an equilibrium point x,. Defining z = x—x,, u = 0— 6y and f(z,u) = N,v(x, + 2,00 +
u), we can write the linearized dynamics as

dx ov ov
= — Ax+B A=|N,—L|, B=(N,—|, 3.20
7 X+ Bu, (N s ) (N ap) ( )

which has the form of a linear differential equation with state z and input u.
In metabolic control analysis, the following terms are defined:

dv .
€= — €y = flux control coefficients
dOly, g,
»
Rx — % — fog R9 -
o 60 C* = concentration control coeflicients
Vo _
RV — % — Cvfg RQ -
7 00 C" = rate control coeflicients

These relationships describe how the equilibrium concentration and equilibrium
rates change as a function of the perturbations in the parameters. The two control
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matrices provide a mapping between the variation in the flux vector evaluated at

]] . ,
8 Xe,00

and the corresponding differential changes in the equilibrium point, dx./00 and

0v,/00. Note that
ﬁve ov
80 00 . 90

The left side is the relative change in the equilibrium rates, while the right side is
the change in the rate function v(x, 6) evaluated at an equilibrium point.

To derive the coefficient matrices C* and C”, we simply take the linear equa-
tion (3.20) and choose outputs corresponding to s and v:

vy =1Ix, yy=—Lx+—u.
Using these relationships, we can compute the transfer functions
Hy(s)=(sI-A)"'B= [(sl—N,@L)‘lNr]Z—V,
H,(s) = —L(sI A 'B+ 6; = [ L(sI—N, —L) 'N, + 1]

Classical metabolic control analysis considers only the equilibrium concentrations,
and so these transfer functions would be evaluated at x = 0 to obtain the equilibrium
equations.

These equations are often normalized by the equilibrium concentrations and
parameter values, so that all quantities are expressed as fractional quantities. If we
define

=diaglx,}, D" =diagv(x..60)}, D" = diag{éo),

then the normalized coefficient matrices (without the overbar) are given by
Cx — (Dx)_lchv, CV — (DV)_ICVDV,
Ry = (DY 'RyD’, R =(D")'RyD".

Flux balance analysis

Flux balance analysis is a technique for studying the relative rate of different reac-
tions in a complex reaction system. We are most interested in the case where there
may be multiple pathways in a system, so that the number of reactions m is greater
than the number of species n. The dynamics

d—): = Nv(x,0)
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Figure 3.16: Flux balance analysis.

thus have the property that the matrix N has more columns that rows and hence
there are multiple reactions that can produce a given set of species. Flux balance is
often applied to pathway analysis in metabolic systems to understand the limiting
pathways for a given species and the the effects of changes in the network (e.g.,
through gene deletions) to the production capacity.

To perform a flux balance analysis, we begin by separating the reactions of
the pathway into internal fluxes v; versus exchanges flux v,, as illustrated in Fig-
ure 3.16. The dynamics of the resulting system now be written as

dx Vi
o Nv(x,0) =N [v

e

] = Nvi(x,0)—b,,

where b, = —Nv, represents the effects of external fluxes on the species dynamics.
Since the matrix N has more columns that rows, it has a right null space and hence
there are many different internal fluxes that can produce a given change in species.
In particular, we are interested studying the steady state properties of the sys-
tem. In this case, we have that dx/dt = 0 and we are left with an algebraic system

NVI' = be.

Material to be completed.

3.4 Oscillatory Behavior

In addition to equilibrium behavior, a variety of cellular procesess involve oscilla-
tory behavior in which the system state is constantly changing, but in a repeating
pattern. Two examples of biological oscillations are the cell cycle and circadian
rhythm. Both of these dynamic behaviors involve repeating changes in the con-
centrations of various proteins, complexes and other molecular species in the cell,
though they are very different in their operation. In this section we discuss some of

Review



122 CHAPTER 3. ANALYSIS OF DYNAMIC BEHAVIOR

the underlying ideas for how to model this type of oscillatory behavior, focusing
on those types of oscillations that are most common in biomolecular systems.

Biomolecular oscillators

Biological systems have a number of natural oscillatory processes that govern the
behavior of subsystems and whole organisms. These range from internal oscilla-
tions within cells to the oscillatory nature of the beating heart to various tremors
and other undesirable oscillations in the neuro-muscular system. At the biomolec-
ular level, two of the most studied classes of oscillations are the cell cycle and
circadian rhythm.

The cell cycle consists of a set “phases” that govern the duplication and division
of cells into two new cells:

G1 phase - gap phase, terminated by “G1 checkpoint”

S phase - synthesis phase (DNA replication)

G2 phase - gap phase, terminated by “G2 checkpoint”

M - mitosis (cell division)

The cell goes through these stages in a cyclical fashion, with the different enzymes
and pathways active in different phases. The cell cycle is regulated by many dif-
ferent proteins, often divided into two major classes. Cyclinscyclins are a class of
proteins that sense environmental conditions internal and external to the cell and
are also used to implement various logical operations that control transition out of
the G1 and G2 phases. Cyclin dependent kinases (CDKs)are proteins that serve as
“actuators” by turning on various pathways during different cell cycles.

An example of the control circuitry of the cell cycle for the bacterium Caulobac-
ter crescentus (henceforth Caulobacter) is shown in Figure 3.17 [57]. This or-
ganism uses a variety of different biomolecular mechanisms, including transcrip-
tional activation and represssion, positive autoregulation (CtrA), phosphotransfer
and methlylation of DNA.

The cell cycle is an example of an oscillator that does not have a fixed pe-
riod. Instead, the length of the individual phases and the transitioning of the differ-
ent phases are determined by the environmental conditions. As one example, the
cell division time for E. coli can vary between 20 minutes and 90 minutes due to
changes in nutrient concentrations, temperature or other external factors.

A different type of oscillation is the highly regular pattern encoding in circa-
dian rhythm, which repeats with a period of roughly 24 hours. The observation
of circadian rhythms dates as far back as 400 BCE, when Androsthenes described
observations of daily leaf movements of the tamirind tree [65]. There are three
defining characteristics associated with circadian rhythm: (1) the time to complete
one cycle is approximately 24 hours, (2) the rhythm is endogenously generated and
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(a) Overview of cell cycle (b) Molecular mechanisms

Figure 3.17: The Caulobacter crescentus cell cycle. (a) Caulobacter cells divide asym-
metrically into a stalked cell, which is attached to a surface, and a swarmmer cell, that is
motile. The swarmer cells can become stalked cells in a new location and begin the cell
cycle anew. The transcriptional regulators CtrA, DnaA and GcerA are the primary factors
that control the various phases of the cell cycle. (b) The genetic circuitry controlling the
cell cycle consists of a large variety of regulatory mechanisms, described in more detail in
the text. Figure obtained from [57] (permission TBD).

self-sustaning and (3) the period remains relatively constant under changes in am-
bient temperature. Oscillations that have these properties appaer in many different
organisms, including micro-organisms, plants, insects and mammals. Some com-
mon features of the circuitry implementing circadian rhythms in these organisms is
the combination of postive and negative feedback loops, often with the positive ele-
ments activating the expression of clock genes and the negative elements repressing
the positive elements [11]. Figure 3.18 shows some of the different organisms in
which circadian oscillations can be found and the primary genes responsible for
different postive and negative factors.

Clocks, oscillators and limit cycles

To begin our study of oscillators, we consider a nonlinear model of the system
described by the differential equation

d_x = f(x,u,0), y = h(x,0)

dt
where x € R" represents the state of the system (typically concentrations of various
proteins and other species and complexes), u € R? represents the external inputs, y €
R represents the (measured) outputs and 6 € RX represents the model parameters.
We say that a solution (x(¢), u(t)) is oscillatory with period T if y(t+T) = y(t). For
simplicity, we will often assume that p = ¢ = 1, so that we have a single input
and single output, but most of the results can be generalized to the multi-input,
multi-output case.

There are multiple ways in which a solution can be oscillatory. One of the sim-

plest is that the input u(¢) is oscillatory, in which case we say that we have a forced
oscillation. In the case of a linear system, an input of the form u(¢) = Asinwt then
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Figure 3.18: Caption omitted pending permission. (Figure and caption from [11])

we now already the output will be of the form y(#) = M- Asin(wt + ¢) where M
and ¢ represent the gain and phase of the system (at frequency w). In the case of a
nonlinear system, if the output is periodic then we can write it in terms of a set of
harmonics,

y(t) = B+ B; sin(wt + $1)+ B sin(2wt + @)+

The term By represents the average value of the output (also called the bias), the
terms B; are the magnitudes of the ith harmonic and ¢; are the phases of the har-
monics (relative to the input). The oscillation frequency w is given by w = 2r/T
where 7T is the oscillation period.

A different situation occurs when we have no input (or a constant input) and still
obtain an oscillatory output. In this case we say that the system has a self-sustained
oscillation. This type of behavior is what is required for oscillations such as the
cell cycle and circadian rthythm, where there is either no obvious forcing function
or the forcing function is removed by the oscillation persists. If we assume that the
input is constant, u(¢) = Ag, then we are particularly interested in how the period T
(or equivalently frequency w), amplitudes B; and phases ¢; depend on the input Ag
and system parameters 6.

To simplify our notation slightly, we consider a system of the form

dx
7 = F(x,0), y = h(x,0) (3.21)
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Figure 3.19: Examples of harmonic oscillators.

where F(x,0) = f(x,u,0) reflects the fact that the input is ignored (or taken to be
one of the constant parameters) in the analysis that follows. We have focused on
the oscillatory nature of the output y(¢) thus far, but we note that if the states x(z)
are periodic then the output is as well, as this is the most common case. Hence we
will often talk about the system being oscillatory, by which we mean that there is a
solution for the dynamics in which the state satisfies x(z + 7)) = x(t).

More formally, we say that a closed curve I € R" is an orbit if trajectories that
start on I" remain on I" for all time and if I is not an equilibrium point of the system.
As in the case of equilibrium points, we say that the orbit is stable if trajectories
that start near I stay near I', asymptotically stable if in addition nearby trajectories
approach I' as t — oo and unstable if it is not stable. The orbit I" is periodic with
period T if for any x(¢) e I', x(t + T') = x(¢).

There are many different types of periodic orbits that can occur in a system
whose dynamics are modeled as in equation (3.21). A harmonic oscillator refer-
ences to a system that oscillates around an equilibrium point, but does not (usually)
get near the equilibrium point. The classical harmonic oscillator is a linear system

of the form
d (0 w]fx
dt |—o 0} {x2)’
whose solutions are given by

xi(0)] [ coswt sinwt| [x1(0)

x(f)] ~ |=sinwt coswt] (x2(0)]"
The frequency of this oscillation is fixed, but the amplitude depends on the values
of the initial conditions, as shown in Figure 3.19. Note that this system has a single

equilibrium point at x = (0,0) and the eigenvalues of the equilibrium point have
zero real part, so trajectories neither expand nor contract, but simply oscillate.
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(a) Homoclinic orbit (b) Heteroclinic orbit

Figure 3.20: Homoclinic and heteroclinic orbits.

An example of a nonlinear harmonic oscillator is given by the equation

%=x2+x1(l—x%—x§), %
This system has an equilibrium point at x = (0,0), but the linearization of this equi-
librium point is unstable. The phase portrait in Figure 3.19b shows that the solu-
tions in the phase plane converge to a circular trajectory. In the time domain this
corresponds to an oscillatory solution. Mathematically the circle is called a limit
cycle. Note that in this case, the solution for any initial condition approaches the
limit cycle and the amplitude and frequency of oscillation “in steady state” (once
we have reached the limit cycle) are independent of the initial condition.

A different type of oscillation can occur in nonlinear systems in which the
equlibrium points are saddle points, having both stable and unstable eigenvalues.
Of particular interest is the case where the stable and unstable orbits of one or more
equilibrium points join together. Two such sitautions are shown in Figure 3.20. The
figure on the left is an example of a homoclinic orbit. In this system, trajectories
that start near the equilibrium point quickly diverge away (in the directions cor-
responding to the unstable eigenvalues) and then slowly return to the equilibrium
point along the stable directions. If the initial conditions are chosen to be precisely
on the homoclinic orbit I" then the system slowly converges to the equilibrium
point, but in practice there are often disturbances present that will perturb the sys-
tem off of the orbit and trigger a “burst” in which the system rapidly escapes from
the equilibrium point and then slowly converges again.

A somewhat similar type of orbit is a heteroclinic orbit, in which the orbit
connects two different equilibrium points, as shown in Figure 3.20b.

An example of a system with a homoclinic orbit is given by the system

= —x1 +x(1 = x7 - x3). (3.22)

dX] dX2 3
W = X2, E = X1 —Xy. (323)
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Figure 3.21: Example of a homoclinic orbit.

The phase portrait and time domain solutions are shown in Figure 3.21. In this
system, there are periodic orbits both inside and outside the two homoclinic cy-
cles (left and right). Note that the trajectory we have chosen to plot in the time
domain has the property that it rapidly moves away from the equilibrium point
and then slowly re-converges to the equilibrium point, before begin carried away
again. This type of oscillation, in which one slowly returns to an equilibrium point
before rapidly diverging is often called a relaxation oscillation. Note that for this
system, there are also oscillations that look more like the harmonic oscillator case
described above, in which we oscillate around the unstable equilibirum points at
x =(x1,0).

Example 3.10 (Glycolytic oscillations). Glycolysis is one of the principal metabolic
networks involved in energy production. It is a sequence of enzyme-catalyzed reac-
tions that coverts sugar into pyruvate, which is then further degraded to alcohol (in
yeast fermentation) and lactic acid (in muscles) in anaerobic conditions, and ATP
(the cell’s major energy supply) is produced as a result. Both damped and sustained
oscillations have been observed. Damped oscillations were first reported by [24]
while sustained oscillations in yeast cell free extracts were observed when glucose-
6-phosphate (G6P), fructose-6-phosphate (FOP) [43] or trehalose [79] were used as
substrates.

Here, we introduce the fundamental motif which is known to be at the core of
these oscillatory phenomenon. This is depicted in Figure 3.22 (a). A simple model
for the system is given by the two differential equations

das dP
— =vy—V1, — =v;—Va,
ar 0~ V1 ar 1=
in which
aP?

vi=Sf(P), f(P)= v2 =kaP,

K+P?
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Figure 3.22: (a) The Glycolisis pathway. “S” is a substrate, which is converted into product
“P”. This, in turn, is activating its own production by enhancing the rate v,. (b) Oscillations
in the glycolisis pathway. Parameters are vo = 1, k; = 1, and k» = 1.00001.

where f(P) is the Hill function. Under the assumption that K > P2, we have f(P)~
k P?,in which we have defined k| := @/K. This second order system admits a stable
limit cycle under suitable parameter conditions (Figure 3.22(b)). \Y%

The example above illustrates some of the types of questions we would like to
answer for oscillatory systems. For example, Under what parameter conditions do
oscillations occur in the glycolitic system? How much can the parameter change
before the limit cycle disappears? To analyze these sorts of questions, we need
to introduce tools that allow to infer the existence and robustness of limit cycle
behavior from a differential equation model. The objective of this section is to
address these questions.

Consider the system X = F(x) and let x(#, xo) denote its solution starting at xg
at time 7 = 0, that is, X(¢, xo) = F(x(t, xp)) and x(0, xo) = xp. We say that x(¢, xp) is a
periodic solution if there is T > 0 such that x(z, x9) = x(t+ T, xo) for all t € R. Here,
we seek to answer two questions: (a) when does a system X = F(x) admit periodic
solutions? (b) When are these periodic solutions stable or asymptotically stable?

In order to provide the main result to state the existence of a stable periodic
solution, we need the concept of omega-limit set of a point p, denoted w(p). Basi-
cally, the omega-limit set w(p) denotes the set of all points to which the trajectory
of the system starting from p tends as time approaches infinity. This is formally
defined in the following definition.

Definition 3.1. A point x € R” is called an omega-limit point of p € R" if there is a
sequence of times {t;} with t; — co for i — oo such that x(#;, p) — x as i — co. The
omega limit set of p, denoted w(p), is the set of all omega-limit points of p.

The omega-limit set of a system has several relevant properties, among which
the fact that it cannot be empty and that it must be a connected set.
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Limit cycles in the plane

Before studying periodic behavior of systems in R", we study the behavior of sys-
tems in R? as several high dimensional systems can be often well approximated by
systems in two dimensions by, for example, employing quasi-steady state approxi-
mations. For systems in R?, we will see that there are easy-to-check conditions that
guarantee the existence of a limit cycle.

The first result that we next give provides a simple check to rule out periodic
solutions for system in R?. Specifically, let x € R? and consider

X =Fi(x,x) X =Fa(x,x), (3.24)
in which the functions F : R? — R? is smooth. Then, we have the following result:

Theorem 3.2 (Bendixson’s criterion). If on a simply connected region D C R (i.e.,
there are no holes in it) the expression

0F N 0F;

ox;  Ox

is not identically zero and does not change sign, then system (3.24) has no closed
orbits that lie entirely in D.

Example 3.11. Consider the system
X1 :—x3+6)€?, X2 :X?,

with 6 > 0. We can compute ‘;% + ‘?9% = 36x%, which is positive in all R? if § # 0. If
0 # 0, we can thus conclude from Bendixson’s criterion that there are no periodic

solutions. Investigate as an exercise what happens when 6 = 0. \Y

The following theorem, completely characterizes the omega limit set of any
point for a system in R?.

Theorem 3.3 (Poincare-Bendixson). Let M be a bounded and closed positively
invariant region for the system x = F(x) with x € (i.e., any trajectory that starts in
M stays in M for all t > 0). Let p € M, then one of the following possibilities holds

for w(p):
(i) w(p) is a steady state;
(ii) w(p) is a closed orbit;

(iii) w(p) consists of a finite number of steady states and orbits, each starting (for
t =0) and ending (for t — o) at one of the fixed points.

This theorem has two important consequences:
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(a) Nullclines (b) Stability diagram

Figure 3.23: (a) The nullclines and the equilibrium of the system. (b) Parameter space
leading to oscillatory behavior.

1. If the system does not have steady states in M, since w(p) is not empty, it
must be a periodic solution;

2. If there is only one steady state in M and it is unstable and not a saddle (i.e.,
the eigenvalues of the linearization at the steady state are both positive), then
w(p) is a periodic solution.

Example 3.12 (Glycolytic oscillations). Consider again the glycolysis example.
Let x; =S and x, = P and rewrite the system (3.10) as

dx; 2 dxy 2
— =vo—kix1x; =: Fi(x1,x2), — =kix1x5 —koxp =: Fo(x1,x2).
dt dt
As a first step, we need to determine the number of steady states. From x =0, we
obtain
Vo

- kiy?’

while from y = 0, we obtain
ka

x=—.
kiy

The intersection between these two curves (the nullclines) in the (x1, x2) plane gives
rise to one steady state only (Figure 3.23a). The reader can determine a positively
invariant region that is compact. Then, it is enough to verify that the steady state
(x1.,X2,) 1s unstable and not a saddle to guarantee the existence of a stable limit

cycle. Thus,
oF or
J= [ ox1 0xp ]

Oy OF
19x1 axz

2
3 _klxz,e —2k1Xx1 X2,
- 2
k] Xz’e —kz + 2k1 X1,eX2.e

(xl,e5x2,e)
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in which x; , = kg /(k1vo) and x3 . = vo/k;. The eigenvalues are such that

_ tr(J) = /tr(J)? -4 det(J)

A2 > ,

in which

2 2
tr(J) = ky —ky [ 22 and  det(J) =k | 2] .
ko ka

Since det(J) > 0, in order to have an unstable equilibrium that is not a saddle, it is
necessary and sufficient to have tr(J) > 0, which leads to

ki <k /v,

This region is depicted in Figure 3.23b. Hence, if k is large enough (i.e., the outflux
is large enough compared to the strength of the self activation) a stable limit cycle
arises. \Y

Limit cycles in R”

The results above holds only for systems in two dimensions. However, there have
been recent extensions of this theorem to systems with special structure in R”. In
particular, we have the following result due to Hastings et al. (1977).

Theorem 3.4 (Hastings et al. 1977). Consider a system x = F(x), which is of the
form

X1 = Fi(xp,x1)

)'Cj =Fj(xj_1,xj), 2Sj§n
on the set M defined by x; > 0 for all i with the following inequalities holding in
M:

(i) G <0and 5= >0, for2<i<n, and %L <0;
(ii) Fi(0,0) >0 and F(x,,0) >0 for all x,, > 0;
(iii) The system has a unique steady state x* = (x, ..., X)) in M such that F(x,, x1) <
0 if x, > x;, and x1 > x7, while F1(xy,x1) >0 if x, < x;, and x1 < x{;

(iv) g% is bounded above in M.

Then, if the Jacobian of f at x* has no repeated eigenvalues and has any eigenvalue
with positive real part, then the system has a non-constant periodic solution in M.

This theorem states that for a system with cyclic structure in which the cy-
cle “has negative gain”, the instability of the steady state (under some technical
assumption) is equivalent to the existence of a periodic solution. This theorem,
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however, does not provide information about whether the orbit is attractive or not,
that is, of whether it is an omega-limit set of any point in M. This stability result is
implied by a more recent theorem due to Mallet-Paret and Smith (1990), for which
we provide a simplified statement as follows.

Theorem 3.5 (Mallet-Paret and Smith, 1990). Consider the system x = F(x) with
the following cyclic feedback structure

X1 =F1(xp,x1)

XjZFj(Xj_l,Xj), 2<j<n

on a set M defined by x; > 0 for all i with all trajectories starting in M bounded for
t > 0. Then, the w-limit set w(p) of any point p € M can be one of the following:

(a) A steady state;
(b) A non-constant periodic orbit;
(c) A set of steady states connected by homoclinic or heteroclinic orbits.

As a consequence of the theorem, we have that for a system with cyclic feed-
back structure that admits one steady state only and at which the linearization has
all eigenvalues with positive real part, the omega limit set must be a periodic orbit.

Let for some ¢; € {1,—1} be ¢; M >0 for all 0 <i < n and define A :=
01+ ...-0, . One can show that the sign of A is related to whether the system has one
or multlple steady states.

In Chapter 6, we will apply these results to determine the parameter space that
makes the repressilator (see Example 2.2) oscillate.

3.5 Bifurcations

Another important property of nonlinear systems is how their behavior changes as
the parameters governing the dynamics change. We can study this in the context of
models by exploring how the location of equilibrium points, their stability, their re-
gions of attraction and other dynamic phenomena, such as limit cycles, vary based
on the values of the parameters in the model.

Parametric stability

Consider a differential equation of the form

d
7); = F(x,0), xeR" 0eRk, (3.25)
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Figure 3.24: Phase portraits for a simple bifurcation.

where x is the state and € is a set of parameters that describe the family of equations.
The equilibrium solutions satisfy

F(x,0)=0

and as 6 is varied, the corresponding solutions x.(6) can also vary. We say that
the system (3.25) has a bifurcation at § = 6" if the behavior of the system changes
qualitatively at 6*. This can occur either because of a change in stability type or a
change in the number of solutions at a given value of 6.
As an example of a bifurcation, consider the linear system

dx; dx,

W = X2, E = —kx1 —uxz,
where k > 0 is fixed and 6 is our bifurcation parameter. Figure 3.24 shows the
phase portraits for different values of . We see that at 8 = 0 the system transitions
from a single stable equilibrium point at the original to having an unstable equilib-
rium. Hence, as 6 goes from negative to positive values, the behavior of the system
changes in a significant way, indicating a bifurcation.

A common way to visualize a bifurcation is through the use of a bifurcation
diagram. To create a bifurcation diagram, we choose a function y = A(x) such that
the value of y at an equilibrium point has some useful meaning for the question
we are studying. We then plot the value of y, = h(x.(6)) as a function of 6 for all
equilibria that exist for a given parameter value 6. By convention, we use dashed
lines if the corresponding equilibrium point is unstable and solid lines otherwise.
Figure 3.25 shows examples of some common bifurcation diagrams. Note that for
some types of bifucations, such as the pitchfork bifurcation, there exist values of
6 where there is more than one equilibrium point. A system that exhibits this type
of behavior is said to be multistable. A common case is that there are two stable
equilibria, in which case the system is said to be bistable.

Another type of diagram that is useful in understanding parametric dependence
is a parametric stability diagram, an example of which was shown in Figure 3.23.
In this type of diagram, we pick one or two (or sometimes three) parameters in the
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Figure 3.25: Bifurcation diagrams for some common bifurcations

system and then analyze the stability type for the system over all possible combina-
tions of those parameters. The resulting diagram shows those regions in parameter
space where the system exhibits qualitatively different behaviors; an example is
shown in Figure 3.26a.

A particular form of bifurcation that is very common when controlling linear
systems is that the equilibrium remains fixed but the stability of the equilibrium
changes as the parameters are varied. In such a case it is revealing to plot the eigen-
values of the system as a function of the parameters. Such plots are called root locus
diagrams because they give the locus of the eigenvalues when parameters change.
An example is shown in Figure 3.26b. Bifurcations occur when parameter values
are such that there are eigenvalues with zero real part. Computing environments
such LabVIEW, MATLAB and Mathematica have tools for plotting root loci.

Parametric stability diagrams and bifurcation diagrams can provide valuable
insights into the dynamics of a nonlinear system. It is usually necessary to carefully
choose the parameters that one plots, including combining the natural parameters
of the system to eliminate extra parameters when possible. Computer programs
such as AUTO, LOCBIF and XPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.
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Figure 3.26: Stability plots a nonlinear system. The plot in (a) shows the real part of the
system eigenvalues as a function of the parameter 6. The system is stable when all eigenval-
ues have negative real part (shaded region). The plot in (b) shows the locus of eigenvalues
on the complex plane as the parameter 6 is varied and gives a different view of the stability
of the system. This type of plot is called a root locus diagram.

Hopf bifurcation

The bifurcations discussed above involved bifurcation of equilibrium points. An-
other type of bifurcation that can occur is that a system with an equilibrium point
admits a limit cycle as a parameter is changed through a critical value. The Hopf
bifurcation theorem provides a technique that is often used to understand whether
a system admits a periodic orbit when some parameter is varied. Usually, such an
orbit is a small amplitude periodic orbit that is present in the close vicinity of an
unstable steady state.
Consider the system dependent on a parameter a:

ﬂ =g(x,a),xeR", v €R,

dt
and assume that at the steady state x corresponding to @ = @ (i.e., g(x,a) = 0),
the linearization dg/dx(x,a) has a pair of (non zero) imaginary eigenvalues with
the remaining eigenvalues having negative real parts. Define the new parameter
0 := a — a and re-define the system as

dx_

7 = f(x,0) =: g(x,0+ ),

so that the linearization df/dx(x,0) has a pair of (non zero) imaginary eigenvalues
with the remaining eigenvalues having negative real parts. Denote by A(6) = 8(6) +
iw(6) the eigenvalue such that 8(0) = 0. Then, if 67'860(0) # 0 the system admits a
small amplitude almost sinusoidal periodic orbit for & small enough and the system
is said to go through a Hopf bifurcation at 8 = 0. If the small amplitude periodic
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Figure 3.27: Hopf Bifurcation. On the left hand, as 6 increases a stable limit cycle appears.
On the right hand side, as 6 increases a limit cycle appears but it is unstable.

orbit is stable, the Hopf bifurcation is said supercritical, while if it is unstable it is
said subcritical. Figure 3.27 shows diagrams corresponding to these bifurcations.

In order to determine whether a Hopf bifurcation is supercritical or subcritical,
it is necessary to calculate a “curvature” coefficient, for which there are formu-
las (Marsden and McCrocken, 1976) and available bifurcation software, such as
AUTO. In practice, it is often enough to calculate the value « of the parameter at
which Hopf bifurcation occurs and simulate the system for values of the parameter
a close to . If a small amplitude limit cycle appears, then the bifurcation must be
supercritical.

Example 3.13 (Glycolytic oscillations). Recalling the model (3.10) for the gly-
colytic oscillator, we ask whether such an oscillator goes through a Hopf bifur-
cation. In order to answer this question, we consider again the expression of the
eigenvalues

_ () £ tr(J)? —4det(J))

A1 > ,

in which

2 2
tr(J) = ky — ki (V—O) and  det(J) = k; (V—O) .
k> k>
The eigenvalues are imaginary if tr(J) = 0, that is, if k; = kg/ v%. Furthermore, the
frequency of oscillations is given by w = VAdet(J) = 4k (vo/k2)*. When k| =~ kg / v(z),
an approximately sinusoidal oscillation appears. When k; is large, the Hopf bifur-
cation theorem does not imply the existence of a periodic solution. This is because
the Hopf theorem provides only local results. For obtaining global results, one has
to apply other tools, such as the Poincar¢-Bendixson theorem. \Y

The Hopf bifurcation theorem is based on center manifold theory for nonlinear
dynamical systems. For a rigorous treatment of Hopf bifurcation is thus necessary
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to study center manifold theory first, which is outside the scope of this text. For
details, the reader is referred to standard text in dynamical systems [100, 41].

3.6 Model Reduction Techniques

The techniques that we have developed in this chapter can be applied to a wide
variety of dynamical systems. However, many of the methods require significant
computation and hence we would like to reduce the complexity of the models as
much as possible before applying them. In this section, we review methods for
doing such a reduction in the complexity of the models. Most of the techniques
are based on the common idea that if we are interested in the slower time scale
dynamics of a system, the fast time scale dynamics can be approximated by their
equilibrium solutions. This idea was introduced in Chapter 2 in the context of re-
duced order mechanisms; we present a more mathematical analysis of such systems
here.

Singular perturbation analysis

Singular perturbation techniques apply to systems that have processes that evolve
on both fast and slow time scales and that can be written in a standard form, which
we now introduce. Let (x,y) € D := D, X Dy C R" XR™ and consider the vector field

dx
E =f(x,y,6), X(O):xo
d

Ed_)l} :g(x’y76)7 )’(0)2)’0

in which 0 < € <« 1 is a small parameter and both f(x,y,0) and g(x,y,0) are well
defined. Since € < 1, the absolute value of the time derivative of y can be much
larger than the time derivative of x, resulting in y dynamics that are much faster
than the x dynamics. That is, this system has a slow time scale evolution (in x) and
a fast time-scale evolution (in y).

If we are interested only in the slower time scale, then the above system can be
approximated (under suitable conditions) by the reduced system

dx
E = f(x,y,O), X(O) = X0,
0= g(x,y,0).

Let y = y(x) denote slow manifold given by the locally unique solution of g(x,y,0) =
0. The implicit function theorem [63] shows that this solution exists whenever
0g/0dy is non singular. Furthermore, the theorem also shows that

dy _ 0g™'og

dx  dy ox
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We can now approximate the dynamics in x (i.e., on the slow manifold) as

dx
I JF(x,y(x),0), x(0) = xo.
t
We seek to determine under what conditions the solution x(7) is “close” to the
solution x(z) of the reduced system. This problem can be addressed by analyzing

the fast dynamics. Letting 7 = #/€ be the fast time scale, we have that

dx d

Csef(eyo, =gy, (x0),y0) = (x0.50),

dr dr

so that when € < 1, x(7) does not appreciably change. Therefore, the above system
in the 7 time scale can be approximated by

d
250000, O =)o,
=
in which x is “frozen” at the initial condition. This system is usually referred to as
the boundary layer system. If for all xy, we have that y(7) converges to y(xp), then
for t > 0 we will have that the solution x(¢) is well approximated by the solution
x(#) to the reduced system. This qualitative explanation is more precisely captured
by the following theorem [54].
)) <0
y=y(x)

uniformly for x € D,. Let the solution of the reduced system be uniquely defined for
t€[0,t¢]. Then, for all t, € (0,17] there is a constant € > 0 and set Q C D such that

Theorem 3.6. Assume that

Real (/l (ﬁg(x,y)
Ay

x(t) — x(t) = O(€) uniformly for t € [0,1],
(1) = y(x(1)) = O(€) uniformly for t € [t,17],

provided € < € and (xg, o) € Q.

Example 3.14 (Hill function). In Section 2.1, we obtained the expression of the
Hill function by making a quasi-steady state approximation on the dynamics of
binding. Here, we illustrate how Hill function expressions can be derived by a for-
mal application of singular perturbation. Specifically, consider the simple binding
scenario of a transcription factor X with DNA promoter sites p. Assume that such
a transcription factor is acting as an activator of the promoter and let Y be the pro-
tein expressed under promoter p. Assume further that X dimerizes before binding
to promoter p. The reaction equations describing this system are given by

k
X+X=X,  X+p=C, CS5my+C
ko d
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o
inmY‘FY, mYLQ, Y_)m, p+C:pt0t'

The corresponding differential equation model is given by

ax
d_t2 = k1X2 — ko Xy —aXo(pior —C) +dC
/(O]
E = aXZ(ptot -C)- dC
d
% =aC —ymy
dy
— = —0Y.
a ~Pmy

Since all the binding reactions are much faster than mRNA and protein production
and decay, we have that k1,k>,a,d > a,,v,0. Letky :=ko /k1,Kq :=d/a,c:=ky/d,
and € := ¢/d. Then, we can re-write the above system by using the substitutions

0 1) 1) 1)
d:—’ :—’k:—’k:—’
€ “ Kqe 2 Ce ! Ckme
so that we obtain
dx 1)
€—2 = c— X2~ ¢6X> — — Xo(pror — C) +6C
dt km d
dac ¢
—=—X -C)-6C
edt Ky 2(Prot )
dmy
= _aC-
dt ot —ymy
dy 5 5
— = Bmy —0Y.
dt Y

This system is in the standard singular perturbation form (3.6). As an exercise,
the reader can verify that the slow manifold is locally asympotically stable (see
Exercises). The slow manifold is obtained by setting € = 0 and determines X, and
C as functions of X. These functions are given by

X, = )ﬁ C= ptotXZ/(kad)
>k’ 1+ X2/ (kmKa)
As a consequence, the reduced system becomes

dmy _ ptotxz/(kad)
= —
dt 1+ X2/(kmKq)

ymy

— =Bmy —9Y,

o7~ Pmy
which is the familiar expression for the dynamics of gene expression with an acti-
vator as derived in Section 2.1. \Y
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Example 3.15 (Enzymatic reaction). Let’s go back to the enzymatic reaction

a _k
E+S ? C—E+P,
in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the substrate
S due to the binding with the enzyme E. The corresponding system of differential
equations is given by

E

_‘;t =—aE-S +dC +kC, C;—f=aE-S—(d+k)C, (3.26)
ds dpP

= — _4E- d — =kC. 3.27
- =a S +dC, I C (3.27)

By assuming that a,d > k, we obtained before that approximately dC/dt = 0 and
thus that C = ES /(S + Kjy), with kyy = (d + k)/a and dP/dt = V,4:S /(S + k) with
Vinax = kEot. From this, it also follows that

dE ds dP
—~0and — = ——.
ar A T
How good is this approximation? By applying the singular perturbation method,
we will obtain a clear answer to this question. Specifically, define K4 := d/a and

take the system to standard singular perturbation form by defining the small pa-
rameter € :=k/d, so thatd = k/e, a = k/(Kq€), and the system becomes

dE k dc k

(3.28)

e— =——E-S +kC +€kC, €e— =—EFE-§ —kC—¢kC,
dt Ky dt Kq

K ps ke P _ e
dt Ky dt

One cannot directly apply singular perturbation theory on this system because
one can verify from the linearization of the first three equations that the boundary
layer dynamics are not locally exponentially stable since there are two zero eigen-
values. This is because the three variables E,S,C are not independent. Specifically,
E=FEy—Cand S +C+P=S5(0)=>St,assuming that initially we have S in amount
S (0) and no amount of P and C in the system. Given these conservation laws, the
system can be re-written as

dc

dpP
e— —
dt

k
= E(Etot—C)-(Smt—C—P)—kc—ekc, - = kC.

Under the assumption made in the analysis of the enzymatic reaction that S >
Eo, we have that C <« S so that the equations finally become

dc  k dpP
_F(Etot_C)‘(Stot—P)—kC—GkC, =
d

— =kC.
dt

GE—
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One can verify (see Exercises) that in this system, the boundary layer dynamics
is locally exponentially stable, so that setting € = 0 one obtains

_ Etot(Stot_P) .

= =:y(P)
(Stot = P) + km
and thus that the reduced system is given by
dp (S0t —P)

At " S—P) ke

This system is the same as that obtained in Chapter 2. However, dC(¢)/dt and
dE(t)/dt are not close to zero as obtained earlier. In fact, from the conservation law
S+C+P=5(0)=S ., we obtain that % = —‘Z—f—%,in which now % = %(P)- dd—f.
Therefore

ds _ dp oy B
==L+ SL(P), 5(0) = 51~ Y(PO) - PO) (3.29)
and dE dc 0 dpP
=0 et —FE.. —
P (9P(P) I E(0) = Ewor —y(P(0)), (3.30)

which are different from expressions (3.28).

These expressions are close to those in equation (3.28) only when dy/dP(P) is
small enough. In the plots of Figure 3.28, we show the time trajectories of the orig-
inal system, of the Michaelis-Menten quasi-steady state approximation (QSSA),
and of the singular perturbation approximation. In the full model (solid line in Fig-
ure 3.28), E(¢) starts from a unit concentration and immediately collapses to zero
as the enzyme is all consumed to form the complex C by the substrate, which is
in excess. Similarly, C(¢) starts from zero and immediately reaches the maximum
possible value of one.

In the QSSA, both E(¢) and C(f) are assumed to stabilize immediately to their
(quasi) steady state and then stay constant. This is depicted by the dotted plots in
Figure 3.28, in which E(¢) stays at zero for the whole time and C(#) stays at one
for the whole time. This approximation is fairly good as long as there is an excess
of substrate. When the substrate concentration goes to zero as it is all converted
to product, also the complex concentration C goes to zero (see solid line of Fig-
ure 3.28). At this time, the concentrations of complex and enzyme substantially
change with time and the QSSA is unsatisfactory. By contrast, the reduced dynam-
ics obtained from the singular perturbation approach well represent the dynamics
of the full system even during this transient behavior. Hence, while the QSSA is a
good approximation only as long as there is excess of substrate in the system, the
reduced dynamics obtained by singular perturbation is a good approximation even
when the substrate concentration goes to zero.

In Figure 3.29, we show the curve C = y(P) (in red) and the trajectories of the
full system in black. All of the trajectories of the system immediately collapse into
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Figure 3.28: Simulation results for the enzymatic reaction comparing the approximations
from singular perturbation and from the quasi-steady state approximation (QSSA). Here,
we have Sy = 100, Eyot = 1, a =d =10, and k = 0.1. The full model is the one in equa-
tions (3.27).

an e-neighbor of the curve C = y(P). From this plot, it is clear that dy/dP is small
as long as the product concentration P is small enough, which corresponds to a
substrate concentration S large enough. This confirms that the QSSA is good only
as long as there is excess of substrate S . \%

Exercises

3.1 (Frequency response of a phosphorylation cycle) Consider the model of a co-

valent modification cycle as illustrated in Chapter 2 in which the kinase Z is not
s

constant, but it is produced and decays according to the reaction Z = . Let u(¢)

u(t)
be the input stimulus of the cycle and let X* be the output. Determine the fre-

quency response of X* to u, determine its bandwidth, and make plots of it. What
parameters can be used to tune the bandwidth?

3.2 (Design for robustness) Consider a one-step reaction model for a phosphoryla-
tion cycle as seen in Homework 1, in which the input stimulus is the time-varying
concentration of kinase Z(¢). When found in the cellular environment, this cycle is
subject to possible interactions with other cellular components, such as the non-
specific or specific binding of X* to target sites, to noise due to stochasticity of
the cellular environment, and to other cross-talk phenomena. We will come back to
these “disturbances” later during the course. For now, we can think of these distur-
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Figure 3.29: The slow manifold of the system C = y(P) is shown in red. In black, we show
the trajectories of the the full system. These trajectories collapse into an e-neighbor of the
slow manifold. Here, we have S, = 100, E\os = 1, a=d =10,and k =0.1.

bances as acting like an aggregate rate of change on the output protein X*, which
we call d(t). Hence, we can model the “perturbed” cycle by

*

. X
X" = Z(Ok1 Xior (1 - X_) — kYo X" +d(1),

tot

which is the same as you found in Homework 1, except for the presence of the
disturbance d(f). Assume that you can tune all the parameters in this system (we
will see later that this is actually possible to large extent by suitably fabricating
genetic circuits). Can you tune these parameters so that the response of X*(¢) to
d(t) is arbitrarily attenuated while the response of X*(¢) to Z(¢) remains arbitrarily
large? If yes, explain how these parameters should be tuned to reach this design
objective and justify your answer through a careful mathematical reasoning using
the tools introduced in class.

3.3 (Adaptation) Show that the equation of the sniffer 3.15 can be taken into the
standard integral feedback form through a suitable change of coordinates.

3.4 (Design limitations) This problem is meant to have you think about possible
trade-offs and limitations that are involved in any realistic design question (we will
come back to this when we start design). Here, we examine this through the open
loop and negative feedback transcriptional component seen in class (see Figure 3-8
in the Lecture Notes). Specifically, we want to compare the robustness of these two
topologies to cellular noise, crosstalk, and other cellular interactions. As performed
in Problem 1, we model these phenomena as a time-varying disturbance affecting
the production rate of mRNA m and protein P. To slightly simplify the problem,
we focus only on disturbances affecting the production of protein. The open loop
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model becomes

m=ay—ym P =pm—06P+d(1)

and the negative feedback system becomes

m=aqo+ —ym P =pm-56P+d(1).

K+ pPr

Answer the following questions:

(a)

(b)

(©)

(d)

(e

After performing linearization about the equilibrium point, determine ana-
lytically the frequency response of P to d for both systems.

Sketch the magnitude plot of this response by hand for both systems, com-
pare them, and determine what happens as § and « increase (note: if your
calculations are correct, you should find that what really matters for the neg-
ative feedback system is the product a3, which we can view as the feedback
gain). So, is increasing the feedback gain to arbitrarily large values the best
strategy to decrease the sensitivity of the system to the disturbance? Com-
ment.

Pick parameter values and use Matlab to draw Bode plots as the feedback
gain increases and validate your predictions of (b). (Suggested parameters:
y=1,0=1,K=1,n=1, a6 ={1,10,100,1000,...}). Note: in Matlab, once
you have determined the matrices A, B, C, and D for the linearization, you
can just do: SYS=ss(A,B,C,D); bode(SYS) and the Bode plot will pop

up.

Investigate the answer to (c) when you have y = 20, that is, the timescale of
the mRNA dynamics becomes faster than that of the protein dynamics. What
does change with respect to what you found in (c)? Note: when 7y increases
you are reducing the (phase) lag within the negative feedback loop...

When v is at least 10 times larger than ¢, you can approximate the m dy-
namics to the quasi-steady state. So, the two above systems can be reduced
to one differential equation each for the protein concentration P. For these
two reduced systems, determine analytically the frequency response to d and
use it to find out whether arbitrarily increasing the feedback gain is a good
strategy to decrease the sensitivity of response to the disturbance.

3.5 (Bendixson criterion) Consider the possible circuit topologies of Figure 3.30, in
which A and B are transcriptional components. Model each transcriptional compo-
nent by a first order system, in which you have approximated the mRNA dynamics
at the quasi-steady state. Hence, each topology will be represented by a dynamical
system in the plane R?. Use Bendixson criterion to rule out topologies that cannot
give rise to closed orbits.
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Figure 3.30: Circuit topologies with two components (proteins): A and B.

3.6 (Two gene oscillator) Consider the feedback system composed of two genes
expressing proteins A (activator) and R (repressor), in which we denote by A, R,
mg4, and mpg, the concentrations of the activator protein, the repressor protein, the
mRNA for the activator protein, and the mRNA for the repressor protein, respec-
tively. The ODE model corresponding to this system is given by

dmy o7 dmpg aA™
dr _Ki+R M dr  Kp+am VTR
dA dR
EIﬁMA—(SA E:ﬁmR—éR.

Determine parameter conditions under which this system admits a stable limit cy-
cle. Validate your finding through simulation.

3.7 (Goodwin oscillator) Consider the simple set of reactions
k k k
X, = X—- X3... - X

Assume further that X, is a transcription factor that represses the production of pro-
tein X through transcriptional regulation (assume simple binding of X; to DNA).
Neglecting the mRNA dynamics of X, write down the ODE model of this sys-
tem and determine conditions on the length n of the cascade for which the system
admits a stable limit cycle. Validate your finding through simulation.
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3.8 (Activator-repressor clock) A well known oscillating motif is given by the
activator-repressor clock by Atkinson et al. [S] in which an activator protein A
activates its own production and the one of a repressor protein R, which in turn
acts as a repressor for A. The ODE model corresponding to this clock is given by

dmy aA™ + g dmpg aA™
= —vm _—= —ym
di K +Riram VM i Kp+am TR
dA dR
== — A == = Bmg — R,
7 Hu(Bma ) 7 Bmg

in which ¢ > 0 models the difference of speeds between the dynamics of the activa-
tor and that of the repressor. Indeed a key requirement for this system to oscillate
is that the dynamics of the activator are sufficiently faster than that of the repressor.
Demonstrate that this system goes through a Hopf Bifurcation with bifurcation pa-
rameter u. Validate your findings with simulation by showing the small amplitude
periodic orbit.

3.9 (Phosphorylation via singular perturbation) Consider again the model of a co-
valent modification cycle as illustrated in Chapter 2 in which the kinase Z is not
6
constant, but it is produced and decays according to the reaction Z — 0.
u(t)

(a) Consider that k¢,k, > kcag, 6, u(t) and employ singular perturbation with small
parameter, for example, € = ¢/k, to obtain the approximated dynamics of Z(¢) and
X*(t). How is this different from the result obtained in Exercise 2.9? Explain.

(b) Simulate these approximated dynamics when u(?) is a periodic signal with fre-
quency w and compare the responses of Z of this approximated dynamics to those
obtained in Exercise 2.9 as you change w. What do you observe? Explain.

3.10 (Hill function via singular perturbation) Show that the slow manifold of the
following system is asymptotically stable:

X, 6 5 dm
ed—: = CEX2 = €0Xa = 1= Xa(pror = )+ 6C, d—IY = aC —ymy,
ac 5 dy
= = L X (p— C) - 6C, = =Bmy—-5Y.
“a K 2(Prot —C) 7 Bmy

3.11 (Enzyme dynamics via singular perturbation) Show that the slow manifold of
the following system is asymptotically stable:

dC

k dP
EE = E(Etot—C)-(Stot—P)—kC—ekC, o kC.



EXERCISES 147

3.12 (BE 150, Winter 2011; Based on Alon 4.6 — Shaping the pulse) Consider a sit-
uation where X in an I1-FFL begins to be produced at time t=0, so that the level of
protein X gradually increases. The input signal S, and S, are present throughout.

(a) How does the pulse shape generated by the I1-FFL depend on the thresholds
K., Ky, and Ky, and on 3, the production rate of protein X? (i.e. How does in-
creasing or decreasing these parameters change the height or position of the pulse
peak, the slope of the rise of the pulse, etc?)

(b) Analyze a set of genes Z;,2,...,Z,, all regulated by the same X and Y in I1-
FFLs. Design thresholds such that the genes are turned ON in the rising phase of
the pulse in a certain temporal order and turned OFF in the declining phase of the
pulse with the same order.

(c) Design thresholds such that the turn-OFF order is opposite the turn-ON order.
Plot the resulting dynamics.

3.13 (BE 150, Winter 2011; Based on Alon 5.6—Bi-fan dynamics) Consider a bi-
fan in which activators X; and X, regulate genes Z; and Z,. The input signal of
X1,S x2, appears at time t=0 and vanishes at time t=D. The input signal of X»,S x2,
appears at time t=D/2 and vanishes at t=2D. Plot the dynamics of the promoter
activity of Z; and Z, given that the input functions of Z; and Z, are AND and OR
logic, respectively.

3.14 (BE 150, Winter 2011; Based on Alon 6.1 —Memory in the regulated-feed-
back network motif) Transcription factor X activates transcription factor ¥; and Y>.
Y; and Y, mutually activate each other. The input function at the Y; and Y, pro-
moters is an OR gate (Y> is activated when either X or Y| binds the promoter). At
time t=0, X begins to be produced from an initial concentration of X=0. Initially
Y1 =Y, =0. All production rates are 5 = 1 and degradation rates are @ = 1. All of
the activation thresholds are K=0.5. At time t=3, production of X stops.

|

Y1 Y2

(a) Plotthe dynamics of X, Y1, Y>. What happens to Y} and Y after X decays away?

(b) Consider the same problem, but now Y| and Y, repress each other and X ac-
tivates Y and represses Y. At time t=0, X begins to be produced and the initial
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levels are X =0,Y; =0,Y, = 1. At time t=3, X production stops. Plot the dynamics
of the system. What happens after X decays away?

3.15 (BE 150, Winter 2011; Repressilator) Simulate the following simplified ver-
sion of the repressilator:

d k 4
o i)z — Kindegmi . Kiransm1 = Kpdeg P1
dt 1+ (m)n dt
dm2 kp dp2
dt 1+ (Ly = Kndegmz = fransa = Kydeg 2
dm3 kp dp3
it~ T+(2y ~ Kidegms .~ faransts = Kpdesps

(a) Simulate the system using the following parameters: k, = 0.5,n = 2,K) =
40, kingeg = 0.0058, kpgeg = 0.0012, k1pgns = 0.116.

(b) Suppose the protein half-life suddenly decreases by half. Which parameter(s)
will change and how? Simulate what happens. What if the protein half-life is dou-
bled? How do these two changes affect the oscillatory behavior?

(c) Now assume that there is leakiness in the transcription process. How does the
system’s ODE change? Simulate the system with a small leakiness (say, 5e-3) and
comment on how it affects the oscillatory behavior.

3.16 (BE 150, Winter 2011; Glycolytic oscillations) In almost all living cells, glu-
cose is broken down into the cell’s energy currency, ATP, via the glycolysis path-
way. Glycolysis is autocatalytic in the sense that ATP must first be consumed in the
early steps before being produced later and oscillations in glycolytic metabolites

have been observed experimentally. We will look at a minimal model of glycolysis:
a

dX 2Vy*
dr  1+yh

dy 2Vy
—k = = (g+ Dkx— =
* dt g+ Dkx q1+yh

Note that this system has been normalized such that Y = 1.

(a) While a system may have the potential to oscillate, the behavior still depends
on the parameter values. The glycolysis system undergoes multiple bifurcations
as the parameters are varied. Using linear stability analysis, find the parameter
conditions where the system is stable vs. unstable. Next, find the conditions where
the system has eigenvalues with nonzero imaginary parts.

(b) Let g=k=V=1.Find the relationship between 4 and @ where the system is stable
or not. Draw the stability diagram and mark the regions where the system is stable
vs. unstable. In the same plot, mark the regions where the system has eigenvalues
with nonzero imaginary parts.
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(c) Let g=k=V=1.Choose h and a such that the eigenvalues are unstable and have
nonzero imaginary parts. Use these parameter values and simulate the nonlinear
system in MATLAB. Sketch the time response of the system starting with initial
condition X(0) =1.2,Y(0) = 0.5 (you may use MATLAB or sketch by hand). Com-
ment on what you see compared to what linear stability analysis told you about the
system.

3.17 (BE 150, Winter 2011) Finding limit cycles for nonlinear systems and under-
standing how changes in parameters affect the amplitude and period of the oscil-
lation is difficult to do in analytical form. A graphical technique that gives some
insight into this problem is the use of describing functions, which is described in
Feedback Systems, Section 9.5. In this problem we will use describing functions for
a simple feedback system to approximate the amplitude and frequency of a limit
cycle in analytical form.

Consider the system with the block diagram shown below. The block R is a relay

Yy
r s 8 u ¥ | &
—= R(-) = P(s5) =

with hysteresis whose input/output response is shown on the right and the process
transfer function is P(s) = e *"/s. Use describing function analysis to determine
frequency and amplitude of possible limit cycles. Simulate the system and compare
with the results of the describing function analysis.

3.18 (BE 150, Winter 2011) In this problem we will compare the model with single
methylation site vs. double methylation sites. The model with a single methylation
site is given by:

d(X +Xx)  VeR— VeBX*

dt R K+ Xx*

where the activity is given by A = X*. The model with two methylation sites is
given by

d(X2 +X2*) . RVg X

= —BVpX
dt X1+ Xo A2
d(X] +X1*) RVRXO RVRX1
———— =BVpXp x+ — - BVpX
dt BA2* X1+Xo X1+Xo BRI
dX RVRX
0 - TR0 | BVX,

dt T Xo+ X
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and the activity is given by A = X = +Xp*. Let K = 10, VgR = 1,VpB = 2. Derive

the parameter sensitivities of the activities (5—3) for both the single and double
methylation models. Comment on which parameter each model is most robust and

most sensitive to.
3.19 (BE 150, Winter 2011) Consider a toy model of protein production:

dm dp

— =f(p)—ym

= _—
7 o7 g(p)—odp

(a) Assume that there is transcriptional self-regulation (f(p) = #p”). We now
know that the mRNA transcription process and thus we want to understand the
sensitivity with respect to the mRNA transcription rate p. Compute the trans-
fer function from @ to p. Plot this transfer function for @ = 0.002,59 = 0.1,y =
0.005,6 = 0.001,K = 0.002. Compare it with the transfer function from ag to p
without regulation (f(p) = a@p = 0.001). (Note: As a reminder on how to compute
these transfer functions, see BFS chapter 3 page 3-11).

(b) Now assume that there is no transcriptional regulation (f(p) = ag) but there is

translational self-regulation such that g(p) = K[if;,l. Computer the transfer function

from a¢ to p when § = 0.2. Compare again with the case with no regulation.

3.20 (BE 150, Winter 2011) Consider a simple model of chemotaxis:

dX
d—t’" = kgR + k' (L)X, — K X,
dx:, X:
= —kpBl —"—— — k(D)X + KX,
dt B e+ Xy ()Xo + KXo

where X, is the concentration of methylated receptor complex, and X, is the con-
centration of activated, methylated receptor complex. Ligand concentration enters
into the equation through the rate k/(L). In this model, CheR (R) and CheB” (B")
concentrations are constant. (BFS, Section 5)

(a) Pick parameter values such that kgB” > kgR and plot the dynamics, doubling
the ligand concentration at time t=20. Compare to figure 5.12 in BFS.

(b) Now assume that CheR no longer acts in saturation. Rederive the dynamics
and plot. Comment on how this assumption affects adaptation.
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