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Chapter 3
Analysis of Dynamic Behavior

In this chapter, we describe some of the tools from dynamical systems and feed-
back control theory that will be used in the rest of the text to analyze and design
biological circuits. We focus here on deterministic models and the associated anal-
yses; stochastic methods are given in Chapter 4.

3.1 Analysis Near Equilibria

As in the case of many other classes of dynamical systems, a great deal of insight
into the behavior of a biological system can be obtained by analyzing the dynamics
of the system subject to small perturbations around a known solution. We begin by
considering the dynamics of the system near an equilibrium point, which is one of
the simplest cases and provides a rich set of methods and tools.

In this section we will model the dynamics of our system using the input/output
modeling formalism described in Chapter 1:

dx
dt
= f (x,θ,u), y = h(x,θ), (3.1)

where x ∈Rn is the system state, θ ∈Rp are the system parameters and u ∈Rq is a set
of external inputs (including disturbances and noise). The system state x is a vector
whose components will represent concentration of species, such as transcription
factors, enzymes, substrates and DNA promoter sites. The system parameters θ
are also represented as a vector, whose components will represent biochemical pa-
rameters such as association and dissociation rates, production rates, decay rates
and dissociation constants. The input u is a vector whose components will rep-
resent concentration of a number of possible physical entities, including kinases,
allosteric effectors and some transcription factors. The output y ∈ Rm of the system
represents quantities that can be measured or that are of interest for the specific
problem under study.

Example 3.1 (Transcriptional component). Consider a promoter controlling a gene
g that can be regulated by a transcription factor Z. Let m and G represent the
mRNA and protein expressed by gene g. We can view this as a system in which
u = Z is the concentration of transcription factor regulating the promoter, the state
x = (x1, x2) is such that x1 = m is the concentration of mRNA and x2 = G is the
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concentration of protein, which we can take as the output of interest, that is, y=G =
x2. Assuming that the transcription factor regulating the promoter is a repressor, the
system dynamics can be described by the following system

dx1

dt
=

α

1+ (u/K)n −δx1,
dx2

dt
= κx1−γx2, y = x2 (3.2)

in which θ = (α,K,δ,κ,γ,n) is the vector of system parameters. In this case, we
have that

f (x,θ,u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α

1+ (u/K)n −δx1

κx1−γx2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, h(x,θ) = x2.

∇

Note that we have chosen to explicitly model the system parameters θ, which
can be thought of as an additional set of (mainly constant) inputs to the system.

Equilibrium points and stability 1

We begin by considering the case where the input u and parameters θ in equa-
tion (3.1) are fixed and hence we can write the dynamics of the system as

dx
dt
= f (x). (3.3)

An equilibrium point of the dynamical system represents a stationary condition for
the dynamics. We say that a state xe is an equilibrium point for a dynamical system
if f (xe) = 0. If a dynamical system has an initial condition x(0) = xe, then it will
stay at the equilibrium point: x(t) = xe for all t ≥ 0.

Equilibrium points are one of the most important features of a dynamical sys-
tem since they define the states corresponding to constant operating conditions. A
dynamical system can have zero, one or more equilibrium points.

The stability of an equilibrium point determines whether or not solutions nearby
the equilibrium point remain close, get closer or move further away. An equilibrium
point xe is stable if solutions that start near xe stay close to xe. Formally, we say
that the equilibrium point xe is stable if for all ϵ > 0, there exists a δ > 0 such that

∥x(0)− xe∥ < δ =⇒ ∥x(t)− xe∥ < ϵ for all t > 0,

where x(t) represents the solution to the differential equation (3.3) with initial con-
dition x(0). Note that this definition does not imply that x(t) approaches xe as time
increases but just that it stays nearby. Furthermore, the value of δ may depend on ϵ,
so that if we wish to stay very close to the solution, we may have to start very, very

1The material of this section is adopted from [1]
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Figure 3.1: Phase portrait (trajectories in the state space) on the left and time domain sim-
ulation on the right for a system with a single stable equilibrium point. The equilibrium
point xe at the origin is stable since all trajectories that start near xe stay near xe.

close (δ≪ ϵ). This type of stability is also called stability in the sense of Lyapunov.
If an equilibrium point is stable in this sense and the trajectories do not converge,
we say that the equilibrium point is neutrally stable.

An example of a neutrally stable equilibrium point is shown in Figure 3.1. The
figure shows the set of trajectories starting at different initial conditions. From this
set, called the phase portrait, we see that if we start near the equilibrium point,
then we stay near the equilibrium point. Indeed, for this example, given any ϵ that
defines the range of possible initial conditions, we can simply choose δ = ϵ to
satisfy the definition of stability since the trajectories are perfect circles.

An equilibrium point xe is asymptotically stable if it is stable in the sense of
Lyapunov and also x(t)→ xe as t→∞ for x(0) sufficiently close to xe. This corre-
sponds to the case where all nearby trajectories converge to the stable solution for
large time. Figure 3.2 shows an example of an asymptotically stable equilibrium
point. Note from the phase portraits that not only do all trajectories stay near the
equilibrium point at the origin, but that they also all approach the origin as t gets
large (the directions of the arrows on the phase portrait show the direction in which
the trajectories move).

An equilibrium point xe is unstable if it is not stable. More specifically, we say
that an equilibrium point xe is unstable if given some ϵ > 0, there does not exist a
δ > 0 such that if ∥x(0)− xe∥ < δ, then ∥x(t)− xe∥ < ϵ for all t. An example of an
unstable equilibrium point is shown in Figure 3.3.

The definitions above are given without careful description of their domain of
applicability. More formally, we define an equilibrium point to be locally stable
(or locally asymptotically stable) if it is stable for all initial conditions x ∈ Br(a),
where

Br(a) = {x : ∥x−a∥ < r}

is a ball of radius r around a and r > 0. A system is globally stable if it is stable
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Figure 3.2: Phase portrait and time domain simulation for a system with a single asymp-
totically stable equilibrium point. The equilibrium point xe at the origin is asymptotically
stable since the trajectories converge to this point as t→∞.

for all r > 0. Systems whose equilibrium points are only locally stable can have
interesting behavior away from equilibrium points (see [1], Section 4.4).

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called the region of attraction for the equilibrium point. In general,
computing regions of attraction is difficult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable equilibria
that are attracting. This gives partial information about the behavior of the system.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes an attractor. An unstable equilibrium point can be either a
source, if all trajectories lead away from the equilibrium point, or a saddle, if some
trajectories lead to the equilibrium point and others move away (this is the situ-
ation pictured in Figure 3.3). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as the one in Figure 3.1) is called
a center.

Example 3.2 (Bistable gene circuit). Consider a system composed of two genes
that express transcription factors repressing each other as shown in Figure 3.4a.
Denoting the concentration of protein A by x1 and that of protein B by x2, and
neglecting the mRNA dynamics, the system can be modeled by the following dif-
ferential equations:

dx1

dt
=

β1

1+ (x2/K2)n −γx1,
dx2

dt
=

β2

1+ (x1/K1)n −γx2.

Figure 3.4b shows the phase portrait of the system. This system is bistable be-
cause there are two (asymptotically) stable equilibria. Specifically, the trajectories
converge to either of two possible equilibria: one where x1 is high and x2 is low
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Figure 3.3: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium point xe at the origin is unstable since not all trajectories
that start near xe stay near xe. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

and the other where x1 is low and x2 is high. A trajectory will approach the first
equilibrium point if the initial condition is below the dashed line, called the sep-
aratrix, while it will approach the second one if the initial condition is above the
separatrix. Hence, the region of attraction of the first equilibrium is the region of
the plane below the separatrix and the region of attraction of the second one is the
portion of the plane above the separatrix. ∇

Nullcline Analysis

Nullcline analysis is a simple and intuitive way to determine the stability of an
equilibrium point for systems in R2. Consider the system with x = (x1, x2) ∈ R2

described by the differential equations

dx1

dt
= f1(x1, x2),

dx2

dt
= f2(x1, x2).

The nullclines of this system are given by the two curves in the x1, x2 plane in
which f1(x1, x2) = 0 and f2(x1, x2) = 0. The nullclines intersect at the equilibria of
the system xe. Figure 3.5 shows an example in which there is a unique equilibrium.

The stability of the equilibrium is deduced by inspecting the direction of the
trajectory of the system starting at initial conditions x close to the equilibrium xe.
The direction of the trajectory can be obtained by determining the signs of f1 and
f2 in each of the regions in which the nullclines partition the plane around the
equilibrium xe. If f1 < 0 ( f1 > 0), we have that x1 is going to decrease (increase)
and similarly if f2 < 0 ( f2 > 0), we have that x2 is going to decrease (increase). In
Figure 3.5, we show a case in which f1 < 0 on the right-hand side of the nullcline
f1 = 0 and f1 > 0 on the left-hand side of the same nullcline. Similarly, we have
chosen a case in which f2 < 0 above the nullcline f2 = 0 and f2 > 0 below the same
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Figure 3.4: (a) Diagram of a bistable gene circuit composed of two genes. (b) Phase plot
showing the trajectories converging to either one of the two possible stable equilibria de-
pending on the initial condition. The parameters are α1 = α2 = 1, K1 = K2 = 0.1, and γ = 1.

nullcline. Given these signs, it is clear from the figure that starting from any point
x close to xe the vector field will always point toward the equilibrium xe and hence
the trajectory will tend toward such equilibrium. In this case, it then follows that
the equilibrium xe is asymptotically stable.

Example 3.3 (Negative autoregulation). As an example, consider expression of
a gene with negative feedback. Let x1 represent the mRNA concentration and x2
represent the protein concentration. Then, a simple model (in which for simplicity
we have assumed all parameters to be 1) is given by

dx1

dt
=

1
1+ x2

− x1,
dx2

dt
= x1− x2,

so that f1(x1, x2) = 1/(1+ x2)− x1 and f2(x1, x2) = x1− x2. Figure 3.5a exactly rep-
resents the situation for this example. In fact, we have that

f1(x1, x2) < 0 ⇐⇒ x1 >
1

1+ x2
, f2(x1, x2) < 0 ⇐⇒ x2 > x1,

which provides the direction of the vector field as shown in Figure 3.5a. As a con-
sequence, the equilibrium point is stable. The phase plot of Figure 3.5b confirms
the fact since the trajectories all converge to the unique equilibrium point. ∇

Stability analysis via linearization

For systems with more than two states, the graphical technique of nullcline analysis
cannot be used. Hence, we must resort to other techniques to determine stability.
Consider a linear dynamical system of the form

dx
dt
= Ax, x(0) = x0, (3.4)
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Figure 3.5: (a) Example of nullclines for a system with a single equilibrium point xe. To
understand the stability of the equilibrium point xe, one traces the direction of the vec-
tor field ( f1, f2) in each of the four regions in which the nullclines partition the plane. If
in each region the vector field points toward the equilibrium point, then such a point is
asymptotically stable. (b) Phase plot diagram for the negative autoregulation example.

where A ∈ Rn×n. For a linear system, the stability of the equilibrium at the origin
can be determined from the eigenvalues of the matrix A:

λ(A) = {s ∈ C : det(sI−A) = 0}.
The polynomial det(sI − A) is the characteristic polynomial and the eigenvalues
are its roots. We use the notation λ j for the jth eigenvalue of A and λ(A) for the
set of all eigenvalues of A, so that λ j ∈ λ(A). For each eigenvalue λ j there is a
corresponding eigenvector v j ∈ Cn, which satisfies the equation Av j = λ jv j.

In general λ can be complex-valued, although if A is real-valued, then for any
eigenvalue λ, its complex conjugate λ∗ will also be an eigenvalue. The origin is al-
ways an equilibrium point for a linear system. Since the stability of a linear system
depends only on the matrix A, we find that stability is a property of the system. For
a linear system we can therefore talk about the stability of the system rather than
the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose system matrices
are in diagonal form. In this case, the dynamics have the form

dx
dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 0
λ2
. . .

0 λn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x. (3.5)

It is easy to see that the state trajectories for this system are independent of each
other, so that we can write the solution in terms of n individual systems ẋ j = λ jx j.
Each of these scalar solutions is of the form

x j(t) = eλ jt x j(0).
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We see that the equilibrium point xe = 0 is stable if λ j ≤ 0 and asymptotically stable
if λ j < 0.

Another simple case is when the dynamics are in the block diagonal form

dx
dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1 ω1 0 0
−ω1 σ1 0 0

0 0
. . .

...
...

0 0 σm ωm
0 0 −ωm σm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x.

In this case, the eigenvalues can be shown to be λ j = σ j ± iω j. We once again can
separate the state trajectories into independent solutions for each pair of states, and
the solutions are of the form

x2 j−1(t) = eσ jt(x2 j−1(0)cosω jt+ x2 j(0)sinω jt
)
,

x2 j(t) = eσ jt(−x2 j−1(0)sinω jt+ x2 j(0)cosω jt
)
,

where j = 1,2, . . . ,m. We see that this system is asymptotically stable if and only
if σ j = Reλ j < 0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some systems can
be transformed into these forms via coordinate transformations. One such class of
systems is those for which the A matrix has distinct (non-repeating) eigenvalues.
In this case there is a matrix T ∈ Rn×n such that the matrix T AT−1 is in (block)
diagonal form, with the block diagonal elements corresponding to the eigenvalues
of the original matrix A. If we choose new coordinates z = T x, then

dz
dt
= T ẋ = T Ax = T AT−1z

and the linear system has a (block) diagonal A matrix. Furthermore, the eigenval-
ues of the transformed system are the same as the original system since if v is an
eigenvector of A, then w= Tv can be shown to be an eigenvector of T AT−1. We can
reason about the stability of the original system by noting that x(t) = T−1z(t), and
so if the transformed system is stable (or asymptotically stable), then the original
system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the stabil-
ity of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we make use of the
following theorem, proved in [1]:

Theorem 3.1 (Stability of a linear system). The system

dx
dt
= Ax

is asymptotically stable if and only if all eigenvalues of A all have a strictly negative
real part and is unstable if any eigenvalue of A has a strictly positive real part.
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In the case in which the system state is two-dimensional, that is, x ∈R2, we have
a simple way of determining the eigenvalues of a matrix A. Specifically, denote by
tr(A) the trace of A, that is, the sum of the diagonal terms, and let det(A) be the
determinant of A. Then, we have that the two eigenvalues are given by

λ1,2 =
1
2

(
tr(A)±

√
tr(A)2−4det(A)

)
.

Both eigenvalues have negative real parts when (1) tr(A) < 0 and (2) det(A) > 0.
An important feature of differential equations is that it is often possible to de-

termine the local stability of an equilibrium point by approximating the system by
a linear system. Suppose that we have a nonlinear system

dx
dt
= f (x)

that has an equilibrium point at xe. Computing the Taylor series expansion of the
vector field, we can write

dx
dt
= f (xe)+

∂ f
∂x

∣∣∣∣∣
xe

(x− xe)+higher-order terms in (x− xe).

Since f (xe) = 0, we can approximate the system by choosing a new state variable
z = x− xe and writing

dz
dt
= Az, where A =

∂ f
∂x

∣∣∣∣∣
xe

. (3.6)

We call the system (3.6) the linear approximation of the original nonlinear system
or the linearization at xe. We also refer to matrix A as the Jacobian matrix of the
original nonlinear system.

The fact that a linear model can be used to study the behavior of a nonlinear
system near an equilibrium point is a powerful one. Indeed, we can take this even
further and use a local linear approximation of a nonlinear system to design a feed-
back law that keeps the system near its equilibrium point (design of dynamics).
Thus, feedback can be used to make sure that solutions remain close to the equilib-
rium point, which in turn ensures that the linear approximation used to stabilize it
is valid.

Example 3.4 (Negative autoregulation). Consider again the negatively autoregu-
lated gene modeled by the equations

dx1

dt
=

1
1+ x2

− x1,
dx2

dt
= x1− x2.

In this case,

f (x) =
( 1

1+x2
− x1

x1− x2

)
,
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so that, letting xe = (x1,e, x2,e), the Jacobian matrix is given by

A =
∂ f
∂x

∣∣∣∣∣
xe

=

⎛
⎜⎜⎜⎜⎝
−1 − 1

(1+x2,e)2

1 −1

⎞
⎟⎟⎟⎟⎠ .

It follows that tr(A) = −2 < 0 and that det(A) = 1+ 1/(1+ x2,e)2 > 0. Hence, inde-
pendently of the value of the equilibrium point, the eigenvalues both have negative
real parts, which implies that the equilibrium point xe is asymptotically stable. ∇

Frequency domain analysis

Frequency domain analysis is a way to understand how well a system can respond
to rapidly changing input stimuli. As a general rule, most physical systems display
an increased difficulty in responding to input stimuli as the frequency of variation
increases: when the input stimulus changes faster than the natural time scales of
the system, the system becomes incapable of responding. If instead the input is
changing much more slowly than the natural time scales of the system, the system
will have enough time to respond to the input. That is, the system behaves like
a “low-pass filter”. The cut-off frequency at which the system does not display a
significant response is called the bandwidth and quantifies the dominant time scale.
To identify this dominant time scale, we can perform input/output experiments in
which the system is excited with periodic inputs at various frequencies. Then, we
can plot the amplitude of response of the output as a function of the frequency of
the input stimulation to obtain the “frequency response” of the system.

Example 3.5 (Phosphorylation cycle). To illustrate the basic ideas, we consider
the frequency response of a phosphorylation cycle, in which enzymatic reactions
are modeled each by a one-step reaction. Referring to Figure 3.6a, we have that the
one-step reactions involved are given by

Z+X
k1−→ Z+X∗, Y+X∗

k2−→ Y+X,

with conservation law X + X∗ = Xtot. Let Ytot be the total amount of phosphatase.
We assume that the kinase Z has a time-varying concentration, which we view as
the input to the system, while X∗ is the output of the system.

The differential equation model for the dynamics is given by

dX∗

dt
= k1Z(t)(Xtot−X∗)− k2YtotX∗.

If we assume that the cycle is weakly activated (X∗ ≪ Xtot), the above equation is
well approximated by

dX∗

dt
= βZ(t)−γX∗, (3.7)



3.1. ANALYSIS NEAR EQUILIBRIA 99

X*X

Y

Z
input

output

(a) Reaction daigram

10−5 10−4 10−3 10−2
0

0.2

0.4

0.6

0.8

1

10−5 10−4 10−3 10−2

−80

−60

−40

−20

0

φ
M

Frequency ω [rad/s]

Frequency ω [rad/s]

(b) Frequency response

Figure 3.6: (a) Diagram of a phosphorylation cycle, in which Z is the kinase, X is the
substrate, and Y is the phosphatase. (b) Bode plot showing the magnitude M and phase lag
φ for the frequency response of a one step reaction model of the phosphorylation system
on the left. The parameters are β = γ = 0.01 min−1.

where β = k1Xtot and γ = k2Ytot. To determine the frequency response, we set the
input Z(t) to a periodic function. It is customary to take sinusoidal functions as the
input signal as they lead to an easy way to calculate the frequency response. Let
then Z(t) = A0sin(ωt).

Since equation (3.7) is linear in the state X∗ and input Z, it can be directly
integrated to yield

X∗(t) =
A0β√
ω2+γ2

sin(ωt− tan−1(ω/γ))− A0βω

(ω2+γ2)
e−γt.

The second term dies out for t large enough. Hence, the steady state response
is given by the first term. In particular, the amplitude of response is given by
A0 β/

√
ω2+γ2, in which the gain β/

√
ω2+γ2 depends both on the system param-

eters and on the frequency of the input stimulation. As the frequency of the input
stimulation ω increases, the amplitude of the response decreases and approaches
zero for very high frequencies. Also, the argument of the sine function shows a
negative phase shift of tan−1(ω/γ), which indicates that there is an increased lag
in responding to the input when the frequency increases. Hence, the key quantities
in the frequency response are the magnitude M(ω), also called gain of the system,
and phase lag φ(ω) given by

M(ω) =
β

√
ω2+γ2

, φ(ω) = − tan−1
(
ω

γ

)
.

These are plotted in Figure 3.6b, a type of figure known as a Bode plot.
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The bandwidth of the system, denoted ωB, is the frequency at which the gain
drops below M(0)/

√
2. In this case, the bandwidth is given by ωB = γ = k2Ytot,

which implies that the bandwidth of the system can be made larger by increasing
the amount of phosphatase. However, note that since M(0) = β/γ = k1Xtot/(k2Ytot),
increased phosphatase will also result in decreased amplitude of response. Hence,
if we want to increase the bandwidth of the system while keeping the value of
M(0) (also called the zero frequency gain) unchanged, one should increase the total
amounts of substrate and phosphatase in comparable proportions. Fixing the value
of the zero frequency gain, the bandwidth of the system increases with increased
amounts of phosphatase and substrate. ∇

More generally, the frequency response of a linear system with one input and
one output

ẋ = Ax+Bu, y =Cx+Du

is the response of the system to a sinusoidal input u = asinωt with input amplitude
a and frequency ω. The transfer function for a linear system is given by

Gyu(s) =C(sI−A)−1B+D

and represents the steady state response of a system to an exponential signal of the
form u(t) = est where s ∈ C. In particular, the response to a sinusoid u = asinωt is
given by y = Masin(ωt+φ) where the gain M and phase shift φ can be determined
from the transfer function evaluated at s = iω:

Gyu(iω) = Meiφ,
M(ω) = |Gyu(iω)| =

√
Im(Gyu(iω))2+Re(Gyu(iω))2,

φ(ω) = tan−1
(
Im(Gyu(iω))
Re(Gyu(iω))

)
,

where Re( · ) and Im( · ) represent the real and imaginary parts of a complex number.
For finite dimensional linear (or linearized) systems, the transfer function can

be written as a ratio of polynomials in s:

G(s) =
b(s)
a(s)
.

The values of s at which the numerator vanishes are called the zeros of the transfer
function and the values of s at which the denominator vanishes are called the poles.

The transfer function representation of an input/output linear system is essen-
tially equivalent to the state space description, but we reason about the dynamics
by looking at the transfer function instead of the state space matrices. For example,
it can be shown that the poles of a transfer function correspond to the eigenval-
ues of the matrix A, and hence the poles determine the stability of the system.
In addition, interconnections between subsystems often have simple representa-
tions in terms of transfer functions. For example, two systems G1 and G2 in series
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(with the output of the first connected to the input of the second) have a combined
transfer function Gseries(s) = G1(s)G2(s) and two systems in parallel (a single in-
put goes to both systems and the outputs are summed) has the transfer function
Gparallel(s) =G1(s)+G2(s).

Transfer functions are useful representations of linear systems because the prop-
erties of the transfer function can be related to the properties of the dynamics. In
particular, the shape of the frequency response describes how the system responds
to inputs and disturbances, as well as allows us to reason about the stability of
interconnected systems. The Bode plot of a transfer function gives the magnitude
and phase of the frequency response as a function of frequency and the Nyquist
plot can be used to reason about stability of a closed loop system from the open
loop frequency response ([1], Section 9.2).

Returning to our analysis of biomolecular systems, suppose we have a systems
whose dynamics can be written as

ẋ = f (x,θ,u)

and we wish to understand how the solutions of the system depend on the param-
eters θ and input disturbances u. We focus on the case of an equilibrium solution
x(t; x0,θ0) = xe. Let z = x− xe, ũ = u− u0 and θ̃ = θ− θ0 represent the deviation of
the state, input and parameters from their nominal values. Linearization can be per-
formed in a way similar to the way it was performed for a system with no inputs.
Specifically, we can write the dynamics of the perturbed system using its lineariza-
tion as

dz
dt
=

(
∂ f
∂x

)

(xe,θ0,u0)
·z +

(
∂ f
∂θ

)

(xe,θ0,u0)
· θ̃ +

(
∂ f
∂u

)

(xe,θ0,u0)
· ũ.

This linear system describes small deviations from xe(θ0,u0) but allows θ̃ and ũ to
be time-varying instead of the constant case considered earlier.

To analyze the resulting deviations, it is convenient to look at the system in the
frequency domain. Let y = Cx be a set of values of interest. The transfer functions
between θ̃, ũ and y are given by

Gyθ̃(s) =C(sI−A)−1Bθ, Gyũ(s) =C(sI−A)−1Bu,

where

A =
∂ f
∂x

∣∣∣∣∣
(xe,θ0,u0)

, Bθ =
∂ f
∂θ

∣∣∣∣∣
(xe,θ0,u0)

, Bu =
∂ f
∂u

∣∣∣∣∣
(xe,θ0,u0)

.

Note that if we let s = 0, we get the response to small, constant changes in
parameters. For example, the change in the outputs y as a function of constant
changes in the parameters is given by

Gyθ̃(0) = −CA−1Bθ.
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Example 3.6 (Transcriptional regulation). Consider a genetic circuit consisting of
a single gene. The dynamics of the system are given by

dm
dt
= F(P)−δm, dP

dt
= κm−γP,

where m is the mRNA concentration and P is the protein concentration. Suppose
that the mRNA degradation rate δ can change as a function of time and that we
wish to understand the sensitivity with respect to this (time-varying) parameter.
Linearizing the dynamics around the equilibrium point (me,Pe) corresponding to a
nominal value δ0 of the mRNA degradation rate, we obtain

A =
⎧⎪⎪⎪⎪⎪⎩
−δ0 F′(Pe)
κ −γ

⎫⎪⎪⎪⎪⎪⎭ , Bδ =
⎧⎪⎪⎪⎪⎪⎩
−me

0

⎫⎪⎪⎪⎪⎪⎭ . (3.8)

For the case of no feedback we have F(P) = α and F′(P) = 0, and the system has
the equilibrium point at me = α/δ0, Pe = κα/(γδ0). The transfer function from δ to
P, after linearization about the steady state, is given by

Gol
Pδ(s) =

−κme

(s+δ0)(s+γ)
,

where “ol” stands for open loop. For the case of negative regulation, we have

F(P) =
α

1+ (P/K)n +α0,

and the resulting transfer function is given by

Gcl
Pδ(s) =

κme

(s+δ0)(s+γ)+ κσ
, σ = −F′(Pe) =

nαPn−1
e /Kn

(1+Pn
e/Kn)2 ,

where “cl” stands for closed loop.
Figure 3.7 shows the frequency response for the two circuits. To make a mean-

ingful comparison between open loop and closed loop systems, we select the pa-
rameters of the open loop system such that the equilibrium point for both open loop
and closed loop systems are the same. This can be guaranteed if in the open loop
system we choose, for example, α = Peδ0/(κ/γ), in which Pe is the equilibrium
value of P in the closed loop system. We see that the feedback circuit attenuates
the response of the system to perturbations with low-frequency content but slightly
amplifies perturbations at high frequency (compared to the open loop system). ∇

3.2 Robustness

The term “robustness” refers to the general ability of a system to continue to func-
tion in the presence of uncertainty. In the context of this text, we will want to be
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Figure 3.7: Attenuation of perturbations in a genetic circuit with linearization given by
equation (3.8). The parameters of the closed loop system are given by α= 800, α0 = 5 ·10−4,
γ = 0.001, δ0 = 0.005, κ = 0.02, n = 2, and K = 0.025. For the open loop system, we have
set α = Peδ0/(κ/γ) to make the steady state values of open loop and closed loop systems
the same. Units of time are in seconds while units of concentration are arbitrary.

more precise. We say that a given function (of the circuit) is robust with respect
to a set of specified perturbations if the sensitivity of that function to perturba-
tions is small. Thus, to study robustness, we must specify both the function we are
interested in and the set of perturbations that we wish to consider.

In this section we study the robustness of the system

dx
dt
= f (x,θ,u), y = h(x,θ)

to various perturbations in the parameters θ and disturbance inputs u. The function
we are interested in is modeled by the outputs y and hence we seek to understand
how y changes if the parameters θ are changed by a small amount or if external
disturbances u are present. We say that a system is robust with respect to these
perturbations if y undergoes little change as these perturbations are introduced.

Parametric uncertainty

In addition to studying the input/output transfer curve and the stability of a given
equilibrium point, we can also study how these features change with respect to
changes in the system parameters θ. Let ye(θ0,u0) represent the output correspond-
ing to an equilibrium point xe with fixed parameters θ0 and external input u0, so
that f (xe,θ0,u0) = 0. We assume that the equilibrium point is stable and focus here
on understanding how the value of the output, the location of the equilibrium point,
and the dynamics near the equilibrium point vary as a function of changes in the
parameters θ and external inputs u.

We start by assuming that u = 0 and investigate how xe and ye depend on θ; we
will write f (x,θ) instead of f (x,θ,0) to simplify notation. The simplest approach
is to analytically solve the equation f (xe,θ0) = 0 for xe and then set ye = h(xe,θ0).
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However, this is often difficult to do in closed form and so as an alternative we
instead look at the linearized response given by

S x,θ :=
dxe

dθ

∣∣∣∣∣
θ0

, S y,θ :=
dye

dθ

∣∣∣∣∣
θ0

,

which are the (infinitesimal) changes in the equilibrium state and the output due
to a change in the parameter. To determine S x,θ we begin by differentiating the
relationship f (xe(θ),θ) = 0 with respect to θ:

d f
dθ
=
∂ f
∂x

dxe

dθ
+
∂ f
∂θ
= 0 =⇒ S x,θ =

dxe

dθ
= −

(
∂ f
∂x

)−1 ∂ f
∂θ

∣∣∣∣∣
(xe,θ0)

. (3.9)

Similarly, we can compute the output sensitivity as

S y,θ =
dye

dθ
=
∂h
∂x

dxe

dθ
+
∂h
∂θ
= −

⎛
⎜⎜⎜⎜⎜⎝
∂h
∂x

(
∂ f
∂x

)−1 ∂ f
∂θ
− ∂h
∂θ

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣
(xe,θ0)

.

These quantities can be computed numerically and hence we can evaluate the effect
of small (but constant) changes in the parameters θ on the equilibrium state xe and
corresponding output value ye.

A similar analysis can be performed to determine the effects of small (but con-
stant) changes in the external input u. Suppose that xe depends on both θ and u,
with f (xe,θ0,u0) = 0 and θ0 and u0 representing the nominal values. Then

dxe

dθ

∣∣∣∣∣
(θ0,u0)

= −
(
∂ f
∂x

)−1 ∂ f
∂θ

∣∣∣∣∣
(xe,θ0,u0)

,
dxe

du

∣∣∣∣∣
(θ0,u0)

= −
(
∂ f
∂x

)−1 ∂ f
∂u

∣∣∣∣∣
(xe,θ0,u0)

.

The sensitivity matrix can be normalized by dividing the parameters by their
nominal values and rescaling the outputs (or states) by their equilibrium values. If
we define the scaling matrices

Dxe = diag{xe}, Dye = diag{ye}, Dθ = diag{θ},

Then the scaled sensitivity matrices can be written as

S x,θ = (Dxe)−1S x,θDθ, S y,θ = (Dye)−1S y,θDθ. (3.10)

The entries in these matrices describe how a fractional change in a parameter gives
a fractional change in the state or output, relative to the nominal values of the
parameters and state or output.

Example 3.7 (Transcriptional regulation). Consider again the case of transcrip-
tional regulation described in Example 3.6. We wish to study the response of the
protein concentration to fluctuations in its parameters in two cases: a constitutive
promoter (open loop) and self-repression (closed loop).
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For the case of open loop we have F(p) = α, and the system has the equilibrium
point at me = α/δ, Pe = κα/(γδ). The parameter vector can be taken as θ = (α,δ,κ,γ)
and the state as x = (m,P). Since we have a simple expression for the equilibrium
concentrations, we can compute the sensitivity to the parameters directly:

∂xe

∂θ
=

⎧⎪⎪⎪⎪⎪⎪⎩
1
δ − α

δ2 0 0
κ
γδ − κα

γδ2
α
γδ − κα

δγ2

⎫⎪⎪⎪⎪⎪⎪⎭ ,

where the parameters are evaluated at their nominal values, but we leave off the
subscript 0 on the individual parameters for simplicity. If we choose the parame-
ters as θ0 = (0.00138,0.00578,0.115,0.00116), then the resulting sensitivity matrix
evaluates to

S open
xe,θ
≈

⎧⎪⎪⎪⎪⎪⎩
173 −42 0 0

17300 −4200 211 −21100

⎫⎪⎪⎪⎪⎪⎭ . (3.11)

If we look instead at the scaled sensitivity matrix, then the open loop nature of the
system yields a particularly simple form:

S
open
xe,θ =

⎧⎪⎪⎪⎪⎪⎩
1 −1 0 0
1 −1 1 −1

⎫⎪⎪⎪⎪⎪⎭ . (3.12)

In other words, a 10% change in any of the parameters will lead to a comparable
positive or negative change in the equilibrium values.

For the case of negative regulation, we have

F(P) =
α

1+ (P/K)n +α0,

and the equilibrium points satisfy

me =
γ

κ
Pe,

α

1+Pn
e/Kn +α0 = δme =

δγ

κ
Pe. (3.13)

In order to make a proper comparison with the previous case, we need to choose the
parameters so that the equilibrium concentrations me,Pe match those of the open
loop system. We can do this by modifying the promoter strength α and/or the RBS
strength , which is proportional to κ, so that the second formula in equation (3.13)
is satisfied or, equivalently, choose the parameters for the open loop case so that
they match the closed loop steady state protein concentration (see Example 2.2).

Rather than attempt to solve for the equilibrium point in closed form, we instead
investigate the sensitivity using the computations in equation (3.13). The state,
dynamics and parameters are given by

x =
⎧⎩m P

⎫⎭ , f (x,θ) =
⎧⎪⎪⎪⎪⎪⎩

F(P)−δm
κm−γP

⎫⎪⎪⎪⎪⎪⎭ , θ =
⎧⎩α0 δ κ γ α n K

⎫⎭ .
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Note that the parameters are ordered such that the first four parameters match the
open loop system. The linearizations are given by

∂ f
∂x
=

⎧⎪⎪⎪⎪⎪⎩
−δ F′(Pe)
β −γ

⎫⎪⎪⎪⎪⎪⎭ ,
∂ f
∂θ
=

⎧⎪⎪⎪⎪⎪⎩
1 −me 0 0 ∂F/∂α ∂F/∂n ∂F/∂K
0 0 me −Pe 0 0 0

⎫⎪⎪⎪⎪⎪⎭ ,

where again the parameters are taken to be at their nominal values and the deriva-
tives are evaluated at the equilibrium point. From this we can compute the sensi-
tivity matrix as

S x,θ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
− γ
γδ−κF′

γm
γδ−κF′ − mF′

γδ−κF′
PF′

γδ−κF′ −γ∂F/∂α
γδ−κF′ −γ∂F/∂n

γδ−κF′ −
γ∂F/∂K
γδ−κF′

− κ
γδ−κF′

κm
γδ−κF′ − δm

γδ−κF′
δP

γδ−κF′ −
κ∂F/∂α1
γδ−κF′ − κ∂F/∂n

γδ−κF′ −
κ∂F/∂K
γδ−κF′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

where F′ = ∂F/∂P and all other derivatives of F are evaluated at the nominal
parameter values and the corresponding equilibrium point. In particular, we take
nominal parameters as θ = (5 ·10−4,0.005,0.115,0.001,800,2,0.025).

We can now evaluate the sensitivity at the same protein concentration as we use
in the open loop case. The equilibrium point is given by

xe =

⎧⎪⎪⎪⎪⎪⎩
me
Pe

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

0.239
23.9

⎫⎪⎪⎪⎪⎪⎭

and the sensitivity matrix is

S closed
xe,θ

≈
⎧⎪⎪⎪⎪⎪⎩

76 −18 −1.15 115 0.00008 −0.45 5.34
7611 −1816 90 −9080. 0.008 −45 534

⎫⎪⎪⎪⎪⎪⎭ .

The scaled sensitivity matrix becomes

S
closed
xe,θ ≈

⎧⎪⎪⎪⎪⎪⎩
0.159 −0.44 −0.56 0.56 0.28 −3.84 0.56
0.159 −0.44 0.44 −0.44 0.28 −3.84 0.56

⎫⎪⎪⎪⎪⎪⎭ . (3.14)

Comparing this equation with equation (3.12), we see that there is reduction in the
sensitivity with respect to most parameters. In particular, we become less sensitive
to those parameters that are not part of the feedback (columns 2–4), but there is
higher sensitivity with respect to some of the parameters that are part of the feed-
back mechanism (particularly n). ∇

More generally, we may wish to evaluate the sensitivity of a (non-constant) so-
lution to parameter changes. This can be done by computing the function dx(t)/dθ,
which describes how the state changes at each instant in time as a function of
(small) changes in the parameters θ. This can be used, for example, to understand
how we can change the parameters to obtain a desired behavior or to determine the
most critical parameters that determine a specific dynamical feature of the system
under study.
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Let x(t,θ0) be a solution of the nominal system

ẋ = f (x,θ0,u), x(0) = x0.

To compute dx/dθ, we write a differential equation for how it evolves in time:

d
dt

(
dx
dθ

)
=

d
dθ

(
dx
dt

)
=

d
dθ

( f (x,θ,u)) =
∂ f
∂x

dx
dθ
+
∂ f
∂θ
.

This is a differential equation with n×m states given by the entries of the ma-
trix S x,θ(t) = dx(t)/dθ and with initial condition S x,θ(0) = 0 (since changes to the
parameters to not affect the initial conditions).

To solve these equations, we must simultaneously solve for the state x and the
sensitivity S x,θ (whose dynamics depend on x). Thus, letting

M(t,θ0) :=
∂ f
∂x

(x,θ,u)
∣∣∣∣∣
x=x(t,θ0),θ=θ0

, N(t,θ0) :=
∂ f
∂θ

(x,θ,u)
∣∣∣∣∣
x=x(t,θ0),θ=θ0

,

we solve the set of n + nm coupled differential equations

dx
dt
= f (x,θ0,u),

dS x,θ

dt
= M(t,θ0)S x,θ +N(t,θ0), (3.15)

with initial condition x(0) = x0 and S x,θ(0) = 0.
This differential equation generalizes our previous results by allowing us to

evaluate the sensitivity around a (non-constant) trajectory. Note that in the spe-
cial case that we are at an equilibrium point and the dynamics for S x,θ are stable,
the steady state solution of equation (3.15) is identical to that obtained in equa-
tion (3.9). However, equation (3.15) is much more general, allowing us to deter-
mine the change in the state of the system at a fixed time T , for example. This
equation also does not require that our solution stay near an equilibrium point, it
only requires that our perturbations in the parameters are sufficiently small. An ex-
ample of how to apply this equation to study the effect of parameter changes on an
oscillator is given in Section 5.4.

Several simulation tools include the ability to do sensitivity analysis of this sort,
including COPASI and the MATLAB SimBiology toolbox.

Adaptation and disturbance rejection

In this section, we study how systems can keep a desired output response even
in the presence of external disturbances. This property is particularly important
‘for biomolecular systems, which are usually subject to a wide range of pertur-
bations. These perturbations or disturbances can represent a number of different
physical entities, including changes in the circuit’s cellular environment, unmod-
eled/undesired interactions with other biological circuits present in the cell, or pa-
rameters whose values are uncertain.
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u y

Adaptation 

No adaptation 

Figure 3.8: Adaptation property. The system is said to have the adaptation property if the
steady state value of the output does not depend on the steady state value of the input.
Hence, after a constant input perturbation, the output returns to its original value.

Here, we represent the disturbance input to the system of interest by u and we
will say that the system adapts to the input u when the steady state value of its
output y is independent of the (constant) non-zero value of the input (Figure 3.8).
That is, the system’s output is robust to the disturbance input. Basically, after the
input changes to a constant non-zero value, the output returns to its original value
after a transient perturbation. Adaptation corresponds to the concept of disturbance
rejection in control theory. The full notion of disturbance rejection is more general,
depends on the specific disturbance input and it is often studied using the internal
model principle [17].

We illustrate two main mechanisms to attain adaptation: integral feedback and
incoherent feedforward loops (IFFLs). Here, we follow a similar treatment as that
of [86]. In particular, we study these two mechanisms from a mathematical stand-
point to illustrate how they achieve adaptation. Possible biomolecular implementa-
tions are presented in later chapters.

Integral feedback

In integral feedback systems, a “memory” variable z accounts for the accumulated
error between the output of interest y(t), which is affected by an external perturba-
tion u, and its nominal (or desired) steady state value y0. This accumulated error is
then used to change the output y itself through a gain k (Figure 3.9). If the input
perturbation u is constant, this feedback loop brings the system output back to the
desired value y0.

To understand why in this system the output y(t), after any constant input per-
turbation u, tends to y0 for t→∞ independently of the (constant) value of u, we
write the equations relating the accumulated error z and the output y as obtained
from the block diagram of Figure 3.9. The equations representing the system are
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∑y0 ∑y0 − y
+ +

+
u

yz = k
∫ t
0 y1(τ)dτ

z

-

Figure 3.9: A basic block diagram representing a system with integral action. In the di-
agram, the circles with

∑
represent summing junctions, such that the output arrow is a

signal given by the sum of the signals associated with the input arrows. The input signals
are annotated with a “+” or a “−”, depending on whether they get added or subtracted. The
desired output y0 is compared to the actual output y and the resulting error is integrated to
yield z. This error is then used to change y. Here, the input u can be viewed as a disturbance
input, which perturbs the value of the output y.

given by:
dz
dt
= y0− y, y = kz+u,

so that the equilibrium is obtained by setting ż = 0, from which we obtain y = y0.
That is, the steady state of y does not depend on u. The additional question to
answer is whether, after a perturbation u occurs, y(t) tends to y0 for t→∞. This is
the case if and only if ż→ 0 as t→∞, which is satisfied if the equilibrium of the
system ż = −kz−u+y0 is asymptotically stable. This, in turn, is satisfied whenever
k > 0 and u is a constant. Hence, after a constant perturbation u is applied, the
system output y approaches its original steady state value y0, that is, y is robust to
constant perturbations.

More generally, a system with integral action can take the form

dx
dt
= f (x,u), u = (u1,u2), y = h(x),

dz
dt
= y− y0, u2 = k(x,z),

in which u1 is a disturbance input and u2 is a control input that takes the feedback
form u2 = k(x,z). The steady state value of y, being the solution to y− y0 = 0, does
not depend on the disturbance u1. In turn, y tends to this steady state value for
t→∞ if and only if ż→ 0 as t→∞. This is the case if z tends to a constant value
for t→∞, which is satisfied if u1 is a constant and the steady state of the above
system is asymptotically stable.

Integral feedback is recognized as a key mechanism of perfect adaptation in
biological systems, both at the physiological level and at the cellular level, such as
in blood calcium homeostasis [24], in the regulation of tryptophan in E. coli [91],
in neuronal control of the prefrontal cortex [68], and in E. coli chemotaxis [99].
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u x1 x2

Figure 3.10: Incoherent feedforward loop. The input u affects the output y = x2 through
two channels. It indirectly represses it through an intermediate variable x1 and it activates
it directly.

Incoherent feedforward loops

Feedforward motifs (Figure 3.10) are common in transcriptional networks and it
has been shown that they are over-represented in E. coli gene transcription net-
works, compared to other motifs composed of three nodes [4]. Incoherent feed-
forward circuits represent systems in which the input u directly helps promote the
production of the output y = x2 and also acts as a delayed inhibitor of the output
through an intermediate variable x1. This incoherent counterbalance between pos-
itive and negative effects gives rise, under appropriate conditions, to adaptation. A
large number of incoherent feedforward loops participate in important biological
processes such as the EGF to ERK activation [72], the glucose to insulin release
[73], ATP to intracellular calcium release [64], micro-RNA regulation [90], and
many others.

Several variants of incoherent feedforward loops exist for perfect adaptation.
Here, we consider two main ones, depending on whether the intermediate variable
promotes degradation of the output or inhibits its production. An example where
the intermediate variable promotes degradation is provided by the “sniffer”, which
appears in models of neutrophil motion and Dictyostelium chemotaxis [98]. In the
sniffer, the intermediate variable promotes degradation according to the following
differential equation model:

dx1

dt
= αu−γx1,

dx2

dt
= βu−δx1x2, y = x2. (3.16)

In this system, the steady state value of the output x2 is obtained by setting the time
derivatives to zero. Specifically, we have that ẋ1 = 0 gives x1 = αu/γ and ẋ2 = 0
gives x2 = βu/(δx1). In the case in which u ! 0, these can be combined to yield
x2 = (βγ)/(δα), which is a constant independent of the input u. The linearization of
the system at the equilibrium is given by

A =
⎧⎪⎪⎪⎪⎪⎩

−γ 0
−δ(βγ)/(δα) −δ(αu/γ)

⎫⎪⎪⎪⎪⎪⎭ ,
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which has eigenvalues −γ and −δ(αu/γ). Since these are both negative, the equi-
librium point is asymptotically stable. Note that in the case in which, for example,
u goes back to zero after a perturbation, as it is in the case of a pulse, the output x2
does not necessarily return to its original steady state. That is, this system “adapts”
only to constant non-zero input stimuli but is not capable of adapting to pulses.
This can be seen from equation (3.16), which admits multiple steady states when
u = 0. For more details on this “memory” effect, the reader is referred to [88].

A different form for an incoherent feedforward loop is one in which the inter-
mediate variable x1 inhibits production of the output x2, such as in the system:

dx1

dt
= αu−γx1,

dx2

dt
= β

u
x1
−δx2, y = x2. (3.17)

The equilibrium point of this system for a constant non-zero input u is given by
setting the time derivatives to zero. From ẋ1 = 0, we obtain x1 =αu/γ and from ẋ2 =

0 we obtain that x2 = βu/(δx1), which combined together result in x2 = (βγ)/(δα),
which is again a constant independent of the input u.

By calculating the linearization at the equilibrium, one obtains

A =
⎧⎪⎪⎪⎪⎪⎩
−γ 0
−u/x2

1 −δ

⎫⎪⎪⎪⎪⎪⎭ ,

whose eigenvalues are given by −γ and −δ. Hence, the equilibrium point is asymp-
totically stable. Further, one can show that the equilibrium point is globally asymp-
totically stable because the x1 subsystem is linear, stable, and x1 approaches a con-
stant value (for constant u) and the x2 subsystem, in which βu/x1 is viewed as an
external input is also linear and asymptotically stable.

High gain feedback

Integral feedback and incoherent feedforward loops provide means to obtain exact
rejection of constant disturbances. Sometimes, exact rejection is not possible, for
example because the physical constraints of the system do not allow to implement
integral feedback or because the disturbance is not constant with time. In these
cases, it may be possible to still attenuate the effect of the disturbance on the output
of interest by the use of negative feedback with high gain. To explain this concept,
consider the diagram of Figure 3.11.

In a high gain feedback configuration, the error between the output y, perturbed
by some exogenous disturbance u, and a desired nominal output y0 is fed back with
a negative sign to produce the output y itself. If y0 > y, this will result in an increase
of y, otherwise it will result in a decrease of y. Mathematically, one obtains from
the block diagram that

y =
u

1+G
+ y0

G
1+G

,
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∑y0
G

∑e = y0 − y+ +

u

y

-

+

Figure 3.11: High gain feedback. A possible mechanism to attain disturbance attenuation
is to feedback the error y0−y between the desired output y0 and the actual output y through
a large gain G.

so that as G increases the (relative) contribution of u on the output of the system
can be arbitrarily reduced.

High gain feedback can take a much more general form. Consider a system
with x ∈ Rn in the form ẋ = f (x). We say that this system is contracting if any
two trajectories starting from different initial conditions tend to each other as time
increases to infinity. A sufficient condition for the system to be contracting is that
in some set of coordinates, with matrix transformation denoted Θ, the symmetric
part of the linearization matrix (Jacobian)

1
2

(
∂ f
∂x
+
∂ f
∂x

T )
,

is negative definite. We denote the largest eigenvalue of this matrix by −λ for λ > 0
and call it the contraction rate of the system.

Now, consider the nominal system ẋ=G f (x) for G > 0 and its perturbed version
ẋp = G f (xp)+ u(t). Assume that the input u(t) is bounded everywhere in norm by
a constant C > 0. If the system is contracting, we have the following robustness
result:

∥x(t)− xp(t)∥ ≤ χ∥x(0)− xp(0)∥e−Gλt +
χC
λG
,

in which χ is an upper bound on the condition number of the transformation matrix
Θ (ratio between the largest and the smallest eigenvalue of ΘTΘ) [60]. Hence, if
the perturbed and the nominal systems start from the same initial conditions, the
difference between their states can be made arbitrarily small by increasing the gain
G. Therefore, the contribution of the disturbance u on the system state can be made
arbitrarily small.

A comprehensive treatment of concepts of stability and robustness can be found
in standard references [53, 87].
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Figure 3.12: Fold-change detection. The output response does not depend on the absolute
magnitude of the input but only on the fold change of the input.

Scale invariance and fold-change detection

Scale invariance is the property by which the output y(t) of the system does not
depend on the absolute amplitude of the input u(t) (Figure 3.12). Specifically, con-
sider an adapting system and assume that it pre-adapted to a constant background
value a, then apply input a+ b and let y(t) be the resulting output. Now consider
a new background value pa for the input and let the system pre-adapt to it. Then
apply the input p(a+ b) and let y(t) be the resulting output. The system has the
scale invariance property if y(t) = y(t). This also means that the output responds in
the same way to inputs changed by the same multiplicative factor (fold), hence this
property is also called fold-change detection. Looking at Figure 3.12, the output
would present different pulses for different fold changes b/a.

Some incoherent feedforward loops can implement the fold-change detection
property [35]. As an example, consider the feedforward motif represented by equa-
tions (3.17), in which the output is given by y = x2, and consider two inputs:
u1(t) = a for t < t0 and u1(t) = a + b1 for t ≥ t0, and u2(t) = pa for t < t0 and
u2(t) = pa+ pb1 for t ≥ t0. Assume also that at time t0 the system is at the steady
state, that is, it is pre-adapted. Hence, we have that the two steady states from
which the system starts at t = t0 are given by x1,1 = aα/γ and x1,2 = paα/γ for the
x1 variable and by x2,1 = x2,2 = (βγ)/(δα) for the x2 variable. Integrating system
(3.17) starting from these initial conditions, we obtain for t ≥ t0

x1,1(t) = a
α

γ
e−γ(t−t0)+ (a+b)(1− e−γ(t−t0)),

x1,2(t) = pa
α

γ
e−γ(t−t0)+ p(a+b)(1− e−γ(t−t0)).

Using these in the expression of ẋ2 in equation (3.17) gives the differential
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equations that x2,1(t) and x2,2(t) obey for t ≥ t0 as

dx2,1

dt
=

β(a+b)
aαγ e−γ(t−t0)+ (a+b)(1− e−γ(t−t0))

−δx2,1, x2,1(t0) = (βγ)/(δα)

and
dx2,2

dt
=

pβ(a+b)
paαγ e−γ(t−t0)+ p(a+b)(1− e−γ(t−t0))

−δx2,2, x2,2(t0) = (βγ)/(δα),

which gives x2,1(t) = x2,2(t) for all t ≥ t0. Hence, the system responds exactly the
same way after changes in the input of the same fold. The output response is not
dependent on the scale of the input but only on its shape.

3.3 Oscillatory Behavior

In addition to equilibrium behavior, a variety of cellular procesess involve oscilla-
tory behavior in which the system state is constantly changing, but in a repeating
pattern. Two examples of biological oscillations are the cell cycle and circadian
rhythm. Both of these dynamic behaviors involve repeating changes in the con-
centrations of various proteins, complexes and other molecular species in the cell,
though they are very different in their operation. In this section we discuss some of
the underlying ideas for how to model this type of oscillatory behavior, focusing
on those types of oscillations that are most common in biomolecular systems.

Biomolecular oscillators

Biological systems have a number of natural oscillatory processes that govern the
behavior of subsystems and whole organisms. These range from internal oscilla-
tions within cells to the oscillatory nature of the beating heart to various tremors
and other undesirable oscillations in the neuro-muscular system. At the biomolec-
ular level, two of the most studied classes of oscillations are the cell cycle and
circadian rhythm.

The cell cycle consists of a set of “phases” that govern the duplication and
division of cells into two new cells:

• G1 phase - gap phase, terminated by “G1 checkpoint”

• S phase - synthesis phase (DNA replication)

• G2 phase - gap phase, terminated by “G2 checkpoint”

• M - mitosis (cell division)

The cell goes through these stages in a cyclical fashion, with the different enzymes
and pathways active in different phases. The cell cycle is regulated by many differ-
ent proteins, often divided into two major classes. Cyclins are a class of proteins
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Figure 3.13: The Caulobacter crescentus cell cycle. (a) Caulobacter cells divide asym-
metrically into a stalked cell, which is attached to a surface, and a swarmmer cell, that is
motile. The swarmer cells can become stalked cells in a new location and begin the cell
cycle anew. The transcriptional regulators CtrA, DnaA and GcrA are the primary factors
that control the various phases of the cell cycle. (b) The genetic circuitry controlling the
cell cycle consists of a large variety of regulatory mechanisms, including transcriptional
regulation and post-translational regulation. Figure obtained from [57].

that sense environmental conditions internal and external to the cell and are also
used to implement various logical operations that control transition out of the G1
and G2 phases. Cyclin dependent kinases (CDKs) are proteins that serve as “actu-
ators” by turning on various pathways during different cell cycles.

An example of the control circuitry of the cell cycle for the bacterium Caulobac-
ter crescentus (henceforth Caulobacter) is shown in Figure 3.13 [57]. This or-
ganism uses a variety of different biomolecular mechanisms, including transcrip-
tional activation and represssion, positive autoregulation (CtrA), phosphotransfer
and methlylation of DNA.

The cell cycle is an example of an oscillator that does not have a fixed pe-
riod. Instead, the length of the individual phases and the transitioning of the differ-
ent phases are determined by the environmental conditions. As one example, the
cell division time for E. coli can vary between 20 minutes and 90 minutes due to
changes in nutrient concentrations, temperature or other external factors.

A different type of oscillation is the highly regular pattern encoding in circa-
dian rhythm, which repeats with a period of roughly 24 hours. The observation
of circadian rhythms dates as far back as 400 BCE, when Androsthenes described
observations of daily leaf movements of the tamarind tree [66]. There are three
defining characteristics associated with circadian rhythm: (1) the time to complete
one cycle is approximately 24 hours, (2) the rhythm is endogenously generated and
self-sustaining and (3) the period remains relatively constant under changes in am-
bient temperature. Oscillations that have these properties appear in many different
organisms, including micro-organisms, plants, insects and mammals. Some com-
mon features of the circuitry implementing circadian rhythms in these organisms is
the combination of positive and negative feedback loops, often with the positive el-
ements activating the expression of clock genes and the negative elements repress-
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Figure 3.14: Caption omitted pending permission. (Figure and caption from [11])

ing the positive elements [11]. Figure 3.14 shows some of the different organisms
in which circadian oscillations can be found and the primary genes responsible for
different positive and negative factors.

Clocks, oscillators and limit cycles

To begin our study of oscillators, we consider a nonlinear model of the system
described by the differential equation

dx
dt
= f (x,θ,u), y = h(x,θ),

where x ∈ Rn represents the state of the system, u ∈ Rq represents the external
inputs, y ∈ Rm represents the (measured) outputs and θ ∈ Rp represents the model
parameters. We say that a solution (x(t),u(t)) is oscillatory with period T if y(t+
T ) = y(t). For simplicity, we will often assume that p = q = 1, so that we have a
single input and single output, but most of the results can be generalized to the
multi-input, multi-output case.

There are multiple ways in which a solution can be oscillatory. One of the sim-
plest is that the input u(t) is oscillatory, in which case we say that we have a forced
oscillation. In the case of a stable linear system with one input and one output, an
input of the form u(t)= Asinωt will lead, after the transient due to initial conditions
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has died out, to an output of the form y(t) = M ·Asin(ωt+φ) where M and φ repre-
sent the gain and phase of the system (at frequency ω). In the case of a nonlinear
system, if the output is periodic then we can write it in terms of a set of harmonics,

y(t) = B0+B1 sin(ωt+φ1)+B2 sin(2ωt+φ2)+ · · ·
The term B0 represents the average value of the output (also called the bias), the
terms Bi are the magnitudes of the ith harmonic and φi are the phases of the har-
monics (relative to the input). The oscillation frequency ω is given by ω = 2π/T
where T is the oscillation period.

A different situation occurs when we have no input (or a constant input) and still
obtain an oscillatory output. In this case we say that the system has a self-sustained
oscillation. This type of behavior is what is required for oscillations such as the
cell cycle and circadian rhythm, where there is either no obvious forcing function
or the forcing function is removed but the oscillation persists. If we assume that the
input is constant, u(t) = A0, then we are particularly interested in how the period T
(or equivalently frequency ω), amplitudes Bi and phases φi depend on the input A0
and system parameters θ.

To simplify our notation slightly, we consider a system of the form
dx
dt
= f (x,θ), y = h(x,θ), (3.18)

where the input is ignored (or taken to be one of the constant parameters) in the
analysis that follows. We have focused on the oscillatory nature of the output y(t)
thus far, but we note that if the states x(t) are periodic then the output is as well,
and this is the most common case. Hence we will often talk about the system being
oscillatory, by which we mean that there is a solution for the dynamics in which
the state satisfies x(t+T ) = x(t).

More formally, we say that a closed curve Γ ∈ Rn is an orbit if trajectories that
start on Γ remain on Γ for all time and if Γ is not an equilibrium point of the system.
As in the case of equilibrium points, we say that the orbit is stable if trajectories
that start near Γ stay near Γ, asymptotically stable if in addition nearby trajectories
approach Γ as t→∞ and unstable if it is not stable. The orbit Γ is periodic with
period T if for any x(t) ∈ Γ, x(t+T ) = x(t).

There are many different types of periodic orbits that can occur in a system
whose dynamics are modeled as in equation (3.18). A harmonic oscillator refer-
ences to a system that oscillates around an equilibrium point, but does not (usually)
get near the equilibrium point. The classical harmonic oscillator is a linear system
of the form

d
dt

⎧⎪⎪⎪⎪⎪⎩
0 ω
−ω 0

⎫⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎩
x1
x2

⎫⎪⎪⎪⎪⎪⎭ ,

whose solutions are given by
⎧⎪⎪⎪⎪⎪⎩

x1(t)
x2(t)

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

cosωt sinωt
−sinωt cosωt

⎫⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎩
x1(0)
x2(0)

⎫⎪⎪⎪⎪⎪⎭ .
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Figure 3.15: Examples of harmonic oscillators.
.

The frequency of this oscillation is fixed, but the amplitude depends on the values
of the initial conditions, as shown in Figure 3.15. Note that this system has a single
equilibrium point at x = (0,0) and the eigenvalues of the equilibrium point have
zero real part, so trajectories neither expand nor contract, but simply oscillate.

An example of a nonlinear harmonic oscillator is given by the equation

dx1

dt
= x2+ x1(1− x2

1− x2
2),

dx2

dt
= −x1+ x2(1− x2

1− x2
2). (3.19)

This system has an equilibrium point at x = (0,0), but the linearization of this equi-
librium point is unstable. The phase portrait in Figure 3.15b shows that the solu-
tions in the phase plane converge to a circular trajectory. In the time domain this
corresponds to an oscillatory solution. Mathematically the circle is called a limit
cycle. Note that in this case, the solution for any initial condition approaches the
limit cycle and the amplitude and frequency of oscillation “in steady state” (once
we have reached the limit cycle) are independent of the initial condition.

A different type of oscillation can occur in nonlinear systems in which the equi-
librium points are saddle points, having both stable and unstable eigenvalues. Of
particular interest is the case where the stable and unstable orbits of one or more
equilibrium points join together. Two such situations are shown in Figure 3.16. The
figure on the left is an example of a homoclinic orbit. In this system, trajectories
that start near the equilibrium point quickly diverge away (in the directions cor-
responding to the unstable eigenvalues) and then slowly return to the equilibrium
point along the stable directions. If the initial conditions are chosen to be precisely
on the homoclinic orbit Γ then the system slowly converges to the equilibrium
point, but in practice there are often disturbances present that will perturb the sys-
tem off of the orbit and trigger a “burst” in which the system rapidly escapes from
the equilibrium point and then slowly converges again.

A somewhat similar type of orbit is a heteroclinic orbit, in which the orbit
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Figure 3.16: Homoclinic and heteroclinic orbits.

connects two different equilibrium points, as shown in Figure 3.16b.
An example of a system with a homoclinic orbit is given by the system

dx1

dt
= x2,

dx2

dt
= x1− x3

1. (3.20)

The phase portrait and time domain solutions are shown in Figure 3.17. In this
system, there are periodic orbits both inside and outside the two homoclinic cy-
cles (left and right). Note that the trajectory we have chosen to plot in the time
domain has the property that it rapidly moves away from the equilibrium point
and then slowly re-converges to the equilibrium point, before begin carried away
again. This type of oscillation, in which one slowly returns to an equilibrium point
before rapidly diverging is often called a relaxation oscillation. Note that for this
system, there are also oscillations that look more like the harmonic oscillator case

.
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Figure 3.17: Example of a homoclinic orbit.
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Figure 3.18: Oscillations in the glycolysis system. Parameters are v0 = 1, k1 = 1, and k2 =
1.00001.

described above, in which we oscillate around the unstable equilibrium points at
x = (±1,0).

Example 3.8 (Glycolytic oscillations). Glycolysis is one of the principal metabolic
networks involved in energy production. It is a sequence of enzyme-catalyzed reac-
tions that coverts sugar into pyruvate, which is then further degraded to alcohol (in
yeast fermentation) and lactic acid (in muscles) in anaerobic conditions, and ATP
(the cell’s major energy supply) is produced as a result. Both damped and sustained
oscillations have been observed. Damped oscillations were first reported by [23]
while sustained oscillations in yeast cell free extracts were observed in [42, 78].

Here we introduce the basic motif that is known to be at the core of this oscil-
latory phenomenon. Specifically, a substrate S is converted to a product P, which,
in turn, acts as an enzyme catalyzing the conversion of S to P. This is an example
of autocatalysis, in which a product is required for its own production. A simple
differential equation model of this system can be written as

dS
dt
= v0− v1,

dP
dt
= v1− v2,

in which

v1 = S F(P), F(P) =
α(P/K)2

1+ (P/K)2 , v2 = k2P,

where F(P) is the standard Hill function. Under the assumption that K ≫ P, we
have F(P) ≈ k1P2, in which we have defined k1 := α/K2. This second order system
admits a stable limit cycle under suitable parameter conditions (Figure 3.18). ∇

One central question when analyzing the dynamical model of a given system
is to establish whether the model constructed admits sustained oscillations. This
way we can validate or disprove models of biomolecular systems that are known to
exhibit sustained oscillations. At the same time, we can provide design guidelines
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for engineering biological circuits that function as clocks, as we will see in Chapter
5. With this respect, it is particularly important to determine parameter conditions
that are required and/or sufficient to obtain periodic behavior. To analyze these
sorts of questions, we need to introduce tools that allow us to infer the existence
and robustness of a limit cycle from a differential equation model.

In order to proceed, we first introduce the concept of ω-limit set of a point
p, denoted ω(p). Basically, the ω-limit set ω(p) represents the set of all points to
which the trajectory of the system starting from p tends as time approaches infinity.
This is formally defined in the following definition.

Definition 3.1. A point x̄ ∈ Rn is called an ω-limit point of p ∈ Rn if there is a
sequence of times {ti} with ti→∞ for i→∞ such that x(ti, p)→ x̄ as i→∞. The
ω-limit set of p, denoted ω(p), is the set of all ω-limit points of p.

The ω-limit set of a system has several relevant properties, among which are
the facts that it cannot be empty and that it must be a connected set.

Limit cycles in the plane

Before studying periodic behavior of systems in Rn, we study the behavior of sys-
tems in R2. Several high dimensional systems can be often well approximated by
systems in two dimensions by, for example, employing quasi-steady state approxi-
mations. For systems in R2, we will see that there are easy-to-check conditions that
guarantee the existence of a limit cycle.

The first result provides a simple check to rule out periodic solutions for system
in R2. Specifically, let x ∈ R2 and consider

dx1

dt
= f1(x1, x2),

dx2

dt
= f2(x1, x2), (3.21)

in which the functions fi : R2 → R2 for i = 1,2 are smooth. Then, we have the
following:

Theorem 3.2 (Bendixson’s criterion). Let D be a simply connected region in R2

(i.e., there are no holes in D). If the expression

∂ f1
∂x1
+
∂ f2
∂x2

is not identically zero and does not change sign in D, then system (3.21) has no
closed orbits that lie entirely in D.

Example 3.9. Consider the system

dx1

dt
= −x3

2+δx3
1,

dx2

dt
= x3

1,
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with δ ≥ 0. We can compute

∂ f1
∂x1
+
∂ f2
∂x2
= 3δx2

1,

which is positive over all of R2 if δ ! 0. If δ ! 0, we can thus conclude from
Bendixson’s criterion that there are no periodic solutions. We leave it as an exercise
to investigate what happens when δ = 0 (Exercise 3.5). ∇

The following theorem completely characterizes the ω-limit set of any point for
a system in R2.

Theorem 3.3 (Poincarè-Bendixson). Let M be a bounded and closed positively
invariant region for the system ẋ = f (x) with x ∈ M (i.e., any trajectory that starts
in M stays in M for all t ≥ 0). Assume that there are finitely many equilibrium
points in M. Let p ∈ M, then one of the following possibilities holds for ω(p):

(i) ω(p) is an equilibrium point;

(ii) ω(p) is a closed orbit;

(iii) ω(p) consists of a finite number of equilibrium points and orbits, each start-
ing (for t = 0) and ending (for t→∞) at one of the fixed points.

This theorem has two important consequences:

1. If the system does not have equilibrium points in M, since ω(p) is not empty,
it must be a periodic solution;

2. If there is only one equilibrium point in M and it is unstable and not a saddle
(i.e., the eigenvalues of the linearization at the equilibrium point are both
positive), then ω(p) is a periodic solution.

We will employ this result in Chapter 5 to determine parameter conditions under
which activator-repressor circuits admit sustained oscillations.

Limit cycles in Rn

The results above hold only for systems in two dimensions. However, there have
been extensions of this theorem to systems with special structure in Rn. In particu-
lar, we have the following result, which can be stated as follows under some mild
technical assumptions, which we omit here.

Theorem 3.4 ([40]). Consider a system ẋ = f (x), which is of the form

ẋ1 = f1(xn, x1)
ẋ j = f j(x j−1, x j), 2 ≤ j ≤ n

on the set M defined by xi ≥ 0 for all i with the following inequalities holding in
M:
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(i) ∂ fi
∂xi
< 0 and ∂ fi

∂xi−1
> 0, for 2 ≤ i ≤ n, and ∂ f1

∂xn
< 0;

(ii) fi(0,0) ≥ 0 and f1(xn,0) > 0 for all xn ≥ 0;

(iii) The system has a unique equilibrium point x∗ = (x∗1, ..., x
∗
n) in M such that

f1(xn, x1)< 0 if xn > x∗n and x1 > x∗1, while f1(xn, x1)> 0 if xn < x∗n and x1 < x∗1;

(iv) ∂ f1
∂x1

is bounded above in M.

Then, if the Jacobian of f at x∗ has no repeated eigenvalues and has any eigenvalue
with positive real part, then the system has a non-constant periodic solution in M.

This theorem states that for a system with cyclic structure in which the cy-
cle “has negative loop gain”, the instability of the equilibrium point (under some
technical assumption) is equivalent to the existence of a periodic solution. This the-
orem, however, does not provide information about whether the orbit is attractive
or not, that is, of whether it is an ω-limit set of any point in M. This stability result
is implied by a general theorem, which can be stated as follows under some mild
technical assumptions, which we omit here.

Theorem 3.5 ([62]). Consider the system ẋ = f (x) with the following cyclic feed-
back structure

ẋ1 = f1(xn, x1)
ẋ j = f j(x j−1, x j), 2 ≤ j ≤ n

on a set M defined by xi ≥ 0 for all i with all trajectories starting in M bounded for
t ≥ 0. Then, the ω-limit set ω(p) of any point p ∈ M can be one of the following:

(a) An equilibrium point;

(b) A non-constant periodic orbit;

(c) A set of equilibrium points connected by homoclinic or heteroclinic orbits.

As a consequence of the theorem, we have that for a system with cyclic feed-
back structure that admits one equilibrium point only and at which the linearization
has all eigenvalues with positive real part, the ω-limit set must be a periodic orbit.

In Chapter 5, we will apply these results to determine parameter conditions that
make loop circuits with state in Rn admit a limit cycle.

3.4 Bifurcations

Another important property of nonlinear systems is how their behavior changes as
the parameters governing the dynamics change. We can study this in the context of
models by exploring how the location of equilibrium points, their stability, their re-
gions of attraction and other dynamic phenomena, such as limit cycles, vary based
on the values of the parameters in the model.
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Figure 3.19: Phase portraits for a linear system as parameter θ changes. When θ is nega-
tive and large in absolute value, the eigenvalues are negative, real and the response is not
oscillatory (overdamped). When θ is negative but not too large in absolute value, the eigen-
values are complex with negative real part and damped oscillations arise (underdamped).
When θ = 0, the system displays stable limit cycles, while when θ > 0, the equilibrium
point becomes unstable and trajectories diverge.

Parametric stability

Consider a differential equation of the form

dx
dt
= f (x,θ), x ∈ Rn, θ ∈ Rp, (3.22)

where x is the state and θ is a set of parameters that describe the family of equations.
The equilibrium solutions satisfy

f (x,θ) = 0,

and as θ is varied, the corresponding solutions xe(θ) can also vary. We say that
the system (3.22) has a bifurcation at θ = θ∗ if the behavior of the system changes
qualitatively at θ∗. This can occur either because of a change in stability type or
because of a change in the number of solutions at a given value of θ.

As an example of a bifurcation, consider the linear system

dx1

dt
= x2,

dx2

dt
= −kx1− θx2,

where k > 0 is fixed and θ is our bifurcation parameter. Figure 3.19 shows the
phase portraits for different values of θ. We see that at θ = 0 the system transitions
from a single stable equilibrium point at the origin to having an unstable equilib-
rium. Hence, as θ goes from negative to positive values, the behavior of the system
changes in a significant way, indicating a bifurcation.

A common way to visualize a bifurcation is through the use of a bifurcation
diagram. To create a bifurcation diagram, we choose a function y = h(x) such that
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Figure 3.20: Bifurcation diagrams for some common bifurcations. In a saddle node bifur-
cation, as θ decreases a stable and an unstable equilibrium point approach each other and
then ”collide” for θ = 0 and annihilate each other. In a transcritical bifurcation, as θ is
increased, a stable and an unstable equilibrum approach each other, and then collide for
θ = 0 swapping their stability. In a pitchfork bifurcation, as the parameter θ is increased,
a unique stable equilibrium point gives rise for θ = 0 to three equilibria, two of which are
stable and one is unstable.

the value of y at an equilibrium point has some useful meaning for the question
we are studying. We then plot the value of ye = h(xe(θ)) as a function of θ for all
equilibria that exist for a given parameter value θ. By convention, we use dashed
lines if the corresponding equilibrium point is unstable and solid lines otherwise.
Figure 3.20 shows examples of some common bifurcation diagrams. Note that for
some types of bifurcations, such as the pitchfork bifurcation, there exist values of
θ where there is more than one equilibrium point. A system that exhibits this type
of behavior is said to be multistable. A common case is when there are two stable
equilibria, in which case the system is said to be bistable. We will see an example
of this in Chapter 5.
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./dynamics/figures/hopf-bifurcation.eps

Figure 3.21: Hopf Bifurcation. On the left hand, as θ increases a stable limit cycle appears.
On the right hand side, as θ increases a limit cycle appears but it is unstable. Figure taken
from [97].

Hopf bifurcation

The bifurcations discussed above involved bifurcation of equilibrium points. An-
other type of bifurcation that can occur is that a system with an equilibrium point
admits a limit cycle as a parameter is changed through a critical value. The Hopf
bifurcation theorem provides a technique that is often used to understand whether
a system admits a periodic orbit when some parameter is varied. Usually, such an
orbit is a small amplitude periodic orbit that is present in the close vicinity of an
unstable equilibrium point.

Consider the system dependent on a parameter α:

dx
dt
= g(x,α), x ∈ Rn, α ∈ R,

and assume that at the equilibrium point xe corresponding to α=α0 (i.e., g(xe,α0)=
0), the linearization ∂g/∂x(x̄, ᾱ) has a pair of (non zero) imaginary eigenvalues with
the remaining eigenvalues having negative real parts. Define the new parameter
θ := α−α0 and re-define the system as

dx
dt
= f (x,θ) =: g(x,θ+α0),

so that the linearization ∂ f /∂x(xe,0) has a pair of (non zero) imaginary eigenvalues
with the remaining eigenvalues having negative real parts. Denote by λ(θ) = β(θ)+
iω(θ) the eigenvalue such that β = 0. Then, if ∂β/∂θ|θ = 0 ! 0 the system admits a
small amplitude almost sinusoidal periodic orbit for θ small enough and the system
is said to go through a Hopf bifurcation at θ = 0. If the small amplitude periodic
orbit is stable, the Hopf bifurcation is said supercritical, while if it is unstable it is
said subcritical. Figure 3.21 shows diagrams corresponding to these bifurcations.
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In order to determine whether a Hopf bifurcation is supercritical or subcritical,
it is necessary to calculate a “curvature” coefficient, for which there are formulas
(Marsden and McCrocken, 1976) and available bifurcation software, such as AUTO.
In practice, it is often enough to calculate the value ᾱ of the parameter at which
Hopf bifurcation occurs and simulate the system for values of the parameter α
close to ᾱ. If a small amplitude limit cycle appears, then the bifurcation is most
likely supercritical.

Example 3.10 (Glycolytic oscillations). Recalling the model (3.8) for the gly-
colytic oscillator, we ask whether such an oscillator goes through a Hopf bifur-
cation. In order to answer this question, we consider again the expression of the
eigenvalues

λ1,2 =
tr(J)±

√
tr(J)2−4det(J)

2
,

in which

tr(J) = k2− k1

(
v0

k2

)2

and det(J) = k1

(
v0

k2

)2

.

The eigenvalues are imaginary if tr(J) = 0, that is, if k1 = k3
2/v

2
0. Furthermore, the

frequency of oscillations is given by ω=
√

4det(J)= 4k1(v0/k2)2. When k1 ≈ k3
2/v

2
0,

an approximately sinusoidal oscillation appears. When k1 is large, the Hopf bifur-
cation theorem does not imply the existence of a periodic solution. This is because
the Hopf theorem provides only local results. ∇

The Hopf bifurcation theorem is based on center manifold theory for nonlinear
dynamical systems. For a rigorous treatment of Hopf bifurcation is thus necessary
to study center manifold theory first, which is outside the scope of this text. For
details, the reader is referred to standard text in dynamical systems [97, 39].

In Chapter 5, we will illustrate how to employ Hopf bifurcation to understand
one of the key design principles of clocks based on two interacting species, an
activator and a repressor.

3.5 Model Reduction Techniques

The techniques that we have developed in this chapter can be applied to a wide
variety of dynamical systems. However, many of the methods require significant
computation and hence we would like to reduce the complexity of the models as
much as possible before applying them. In this section, we review methods for do-
ing such a reduction in the complexity of models. Most of the techniques are based
on the common idea that if we are interested in the slower time scale dynamics of
a system, the fast time scale dynamics can be approximated by their equilibrium
solutions. This idea was introduced in Chapter 2 in the context of reduced order
mechanisms; we present a more mathematical analysis of such systems here.
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The mathematical analysis of systems with multiple time scales and the con-
sequent model order reduction is called singular perturbation theory. In particular,
we are concerned with systems that have processes evolving on both fast and slow
time scales and that can be written in a standard form, which we now introduce.
Let (x,y) ∈ D := Dx×Dy ⊂ Rn×Rm and consider the vector field

dx
dt
= f (x,y,ϵ), x(0) = x0,

ϵ
dy
dt
= g(x,y,ϵ), y(0) = y0,

(3.23)

in which 0 < ϵ ≪ 1 is a small parameter and both f (x,y,0) and g(x,y,0) are well
defined. Since ϵ ≪ 1, the rate of change of y can be much larger than the rate of
change of x, resulting in y dynamics that are much faster than the x dynamics. That
is, this system has a slow time scale evolution (in x) and a fast time-scale evolution
(in y), so that x is called the slow variable and y is called the fast variable.

If we are interested only in the slower time scale then the above system can be
approximated (under suitable conditions) by the reduced system

dx
dt
= f (x,y,0), x(0) = x0,

0 = g(x,y,0),

in which we have set ϵ = 0. Let y = h(x) denote the locally unique solution of
g(x,y,0)= 0. The manifold of (x,y) pairs where y= h(x) is called the slow manifold.
The implicit function theorem [63] shows that this solution exists whenever ∂g/∂y
is, at least locally, nonsingular. In fact, in such a case we have

dh
dx
= −∂g

∂y

−1 ∂g
∂x
.

We can rewrite the dynamics of x in the reduced system as

dx
dt
= f (x,h(x),0), x(0) = x0.

We seek to determine under what conditions the solution x(t) is “close” to the
solution x(t) of the reduced system. This problem can be addressed by analyzing
the fast dynamics, that is, the dynamics of the system in the fast time scale τ = t/ϵ.
In this case, we have that

dx
dτ
= ϵ f (x,y,ϵ),

dy
dτ
= g(x,y,ϵ), (x(0),y(0)) = (x0,y0),

so that when ϵ≪ 1, x(τ) does not appreciably change. Therefore, the above system
in the τ time scale can be well approximated by the system

dy
dτ
= g(x0,y,0), y(0) = y0,
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in which x is “frozen” at the initial condition x0. This system is usually referred
to as the boundary layer system. For this system, the point y = h(x0) is an equi-
librium point. Such an equilibrium point is asymptotically stable if y(τ) converges
to h(x0) as τ→∞. In this case, the solution (x(t),y(t)) of the original system ap-
proaches (x(t),h(x(t))). This qualitative explanation is more precisely captured by
the following singular perturbation theorem under some mild technical assump-
tions, which we omit here [53].

Theorem 3.6. Assume that

Real
⎛
⎜⎜⎜⎜⎝λ

(
∂

∂y
g(x,y)

∣∣∣∣∣
y=h(x)

⎞
⎟⎟⎟⎟⎠
⎞
⎟⎟⎟⎟⎠ < 0

uniformly for x ∈ Dx. Let the solution of the reduced system be uniquely defined for
t ∈ [0, t f ]. Then, for all tb ∈ (0, t f ] there are constants ϵ∗ > 0 and M > 0, and a set
Ω ⊆ D such that

∥x(t)− x(t)∥ ≤ Mϵ for t ∈ [0, t f ],
∥y(t)−h(x(t))∥ ≤ Mϵ for t ∈ [tb, t f ],

provided ϵ < ϵ∗ and (x0,y0) ∈Ω.

Example 3.11 (Hill function). In Section 2.1, we obtained the expression of the
Hill function by making a quasi-steady state approximation on the dynamics of re-
versible binding reactions. Here, we illustrate how Hill function expressions can be
derived by a formal application of singular perturbation theory. Specifically, con-
sider the simple binding scenario of a transcription factor X with DNA promoter
sites p. Assume that such a transcription factor is acting as an activator of the pro-
moter and let Y be the protein expressed under promoter p. Assume further that
X dimerizes before binding to promoter p. The reaction equations describing this
system are given by

X+X
k1−−⇀↽−−
k2

X2, X2+p
a−⇀↽−
d

C, C
k f−→mY+C,

mY
κ−→mY+Y, mY

δ−→ ∅, Y
γ−→ ∅, p+C = ptot.

The corresponding differential equation model is given by

dX2

dt
= k1X2− k2X2−aX2(ptot−C)+dC,

dmY

dt
= k fC−δmY ,

dC
dt
= aX2(ptot−C)−dC,

dY
dt
= κmY −γY,

in which we view X(t) as an input to the system. We will see later in Chapter 6
that the dynamics of the input X(t) will be “perturbed” by the physical process of
reversible binding that makes it possible for the system to take X as an input.
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Since all the binding reactions are much faster than mRNA and protein produc-
tion and decay, we have that k2,d≫ k f,κ,δ,γ. Let Km := k2/k1, Kd := d/a, c := k2/d,
and ϵ := γ/d. Then, we can rewrite the above system by using the substitutions

d =
γ

ϵ
, a =

γ

Kdϵ
, k1 = c

γ

Kmϵ
, k2 = c

γ

ϵ
,

so that we obtain

ϵ
dX2

dt
= c

γ

Km
X2− cγX2−

γ

Kd
X2(ptot−C)+γC,

dmY

dt
= k fC−δmY ,

ϵ
dC
dt
=

γ

Kd
X2(ptot−C)−γC,

dY
dt
= κmY −γY.

This system is in the standard singular perturbation form (3.23). As an exercise,
the reader can verify that the slow manifold is locally asymptotically stable (see
Exercise 3.10). The slow manifold is obtained by setting ϵ = 0 and determines X2
and C as functions of X. These functions are given by

X2 =
X2

Km
, C =

ptotX2/(KmKd)
1+X2/(KmKd)

.

As a consequence, the reduced system becomes

dmY

dt
= k f

ptotX2/(KmKd)
1+X2/(KmKd)

−δmY

dY
dt
= κmY −γY,

which is the familiar expression for the dynamics of gene expression with an acti-
vator as derived in Section 2.1. Specifically, letting α = k f ptot and K =

√
KmKd, we

have that

F(X) = α
(X/K)2

1+ (X/K)2

is the standard Hill function expression.
. ∇

Example 3.12 (Enzymatic reaction). Recall the enzymatic reaction

E+S
a−⇀↽−
d

C
k−→ E+P,

in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the substrate
S due to the binding with the enzyme E. The corresponding system of differential
equations is given by

dE
dt
= −aE ·S +dC+ kC,

dC
dt
= aE ·S − (d+ k)C,

dS
dt
= −aE ·S +dC,

dP
dt
= kC.

(3.24)
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By considering that binding and unbinding reactions are much faster than the cat-
alytic rates, mathematically expressed by d ≫ k, we showed before that by ap-
proximating dC/dt = 0, we obtain C = EtotS /(S +Km), with Km = (d+ k)/a and
dP/dt = VmaxS /(S +Km) with Vmax = kEtot. From this, it also follows that

dE
dt
≈ 0 and

dS
dt
≈ −dP

dt
. (3.25)

How good is this approximation? By applying the singular perturbation method,
we will obtain a clear answer to this question. Specifically, define Kd := d/a and
convert the system to standard singular perturbation form by defining the small
parameter ϵ := k/d, so that d = k/ϵ, a = k/(Kdϵ), and the system becomes

ϵ
dE
dt
= − k

Kd
E ·S + kC+ ϵkC, ϵ

dC
dt
=

k
Kd

E ·S − kC− ϵkC,

ϵ
dS
dt
= − k

Kd
E ·S + kC,

dP
dt
= kC.

We cannot directly apply singular perturbation theory on this system because
from the linearization of the first three equations, we see that the boundary layer
dynamics are not locally asymptotically stable since there are two zero eigenvalues.
This is because the three variables E,S ,C are not independent. Specifically, E =
Etot −C and S +C +P = S (0) = S tot, assuming that initially we have S in amount
S (0) and no P and C in the system. Given these conservation laws, the system can
be re-written as

ϵ
dC
dt
=

k
Kd

(Etot−C) · (S tot−C−P)− kC− ϵkC,
dP
dt
= kC.

Under the assumption made in the analysis of the enzymatic reaction that S tot ≫
Etot, we have that C≪ S tot so that the equations finally become

ϵ
dC
dt
=

k
Kd

(Etot−C) · (S tot−P)− kC− ϵkC,
dP
dt
= kC.

We can verify (see Exercise 3.11) that in this system, the boundary layer dy-
namics is locally asymptotically stable, so that setting ϵ = 0 one obtains

C =
Etot(S tot−P)

(S tot−P)+Km
=: h(P)

and thus that the reduced system is given by

dP
dt
= Vmax

(S tot−P)
(S tot−P)+Km

.

This system is the same as that obtained in Chapter 2. However, dC(t)/dt and
dE(t)/dt are not close to zero as obtained earlier. In fact, from the conservation
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Figure 3.22: Simulation results for the enzymatic reaction comparing the approximations
from singular perturbation and from the quasi-steady state approximation (QSSA). Here,
we have S tot = 100, Etot = 1, a = d = 10, and k = 0.1. The full model is the one in equa-
tions (3.24). Units of time are in minutes and concentrations are in arbitrary units.

law S +C+P = S (0) = S tot, we obtain that dS /dt = −dP/dt−dC/dt, in which now
dC/dt = ∂h/∂P(P) ·dP/dt. Therefore we have that

dS
dt
= −dP

dt
(1+

∂h
∂P

(P)), S (0) = S tot−h(P(0))−P(0) (3.26)

and
dE
dt
= −dC

dt
= − ∂h

∂P
(P)

dP
dt
, E(0) = Etot−h(P(0)), (3.27)

which are different from expressions (3.25).
These expressions are close to those in equation (3.25) only when ∂h/∂P is

small enough. In the plots of Figure 3.22, we show the time trajectories of the orig-
inal system, of the Michaelis-Menten quasi-steady state approximation (QSSA),
and of the singular perturbation approximation. In the original model (solid line
in Figure 3.22), E(t) starts from a unit concentration and immediately collapses to
zero as the enzyme is all consumed to form the complex C by the substrate, which
is in excess. Similarly, C(t) starts from zero and immediately reaches the maximum
possible value of one.

In the quasi-steady state approximation, both E(t) and C(t) are assumed to sta-
bilize immediately to their (quasi) steady state and then stay constant. This is de-
picted by the dotted plots in Figure 3.22, in which E(t) stays at zero for the whole
time and C(t) stays at one for the whole time. This approximation is fairly good
as long as there is an excess of substrate. When the substrate concentration goes
to zero as it is all converted to product, also the complex concentration C goes to
zero (see solid line of Figure 3.22). At this time, the concentrations of complex and
enzyme substantially change with time and the quasi-steady state approximation is
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Figure 3.23: The slow manifold of the system C = h(P) is shown by the solid line. The
dashed lines show the trajectories of the the full system. These trajectories collapse into
an ϵ-neighbor of the slow manifold. Here, we have S tot = 100, Etot = 1, a = d = 10, and
k = 0.1.

unsatisfactory. By contrast, the reduced dynamics obtained from the singular per-
turbation approach represent the dynamics of the full system well even during this
transient behavior. Hence, while the quasi-steady state approximation is good only
as long as there is excess of substrate in the system, the reduced dynamics obtained
by the singular perturbation approach are a good approximation even when the
substrate concentration goes to zero.

In Figure 3.23, we show the curve C = h(P) (in red) and the trajectories of the
full system in black. All of the trajectories of the system immediately collapse into
an ϵ-neighbor of the curve C = h(P). From this plot, it is clear that ∂h/∂P is small
as long as the product concentration P is small enough, which corresponds to a
substrate concentration S large enough. This confirms that the quasi-steady state
approximation is good only as long as there is excess of substrate S . ∇

Exercises

3.1 (Frequency response of a phosphorylation cycle) Consider the model of a co-
valent modification cycle as illustrated in Chapter 2 in which the kinase Z is not
conserved, but it is produced and decays according to the reaction Z

γ−−−⇀↽−−−
u(t)
∅. Let

u(t) be the input stimulus of the cycle and let X∗ be the output. Determine the fre-
quency response of X∗ to u, determine its bandwidth, and make plots of it. What
parameters can be used to tune the bandwidth?

3.2 (Design for robustness) Consider a one-step reaction model for a phosphory-
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lation cycle as seen Section 2.4, in which the input stimulus is the time-varying
concentration of kinase Z(t). When found in the cellular environment, this cycle is
subject to possible interactions with other cellular components, such as the non-
specific or specific binding of X* to target sites, to noise due to stochasticity of the
cellular environment, and to other cross-talk phenomena. For now, we can think of
these disturbances as acting like an aggregate rate of change on the output protein
X*, which we call d(t). Hence, we can model the “perturbed” cycle by

X∗

dt
= Z(t)k1Xtot

(
1− X∗

Xtot

)
− k2YtotX∗+d(t).

Assume that you can tune all the parameters in this system. Can you tune these
parameters so that the response of X∗(t) to d(t) is arbitrarily attenuated while the
response of X∗(t) to Z(t) remains arbitrarily large? If yes, explain how these param-
eters should be tuned to reach this design objective.

3.3 (Design limitations) This problem illustrates possible limitations that are in-
volved in any realistic design question. Here, we examine this through the open
loop and negative feedback transcriptional component. Specifically, we want to
compare the robustness of these two topologies to perturbations. We model these
perturbations as a time-varying disturbance affecting the production rate of mRNA
m and protein P. To slightly simplify the problem, we focus only on disturbances
affecting the production of protein. The open loop model becomes

dmP

dt
= α0−δmP

dP
dt
= κmP−γP+d(t)

and the negative feedback system becomes

dmP

dt
= α0+

α

1+ (P/K)n −δmP
dP
dt
= βmP−γP+d(t).

Answer the following questions:

(a) After performing linearization about the equilibrium point, determine ana-
lytically the frequency response of P to d for both systems.

(b) Sketch the magnitude plot of this response for both systems, compare them,
and determine what happens as κ and α increase (note: if your calculations
are correct, you should find that what really matters for the negative feed-
back system is the product ακ, which we can view as the feedback gain). Is
increasing the feedback gain the best strategy to decrease the sensitivity of
the system to the disturbance?

(c) Pick parameter values and use MATLAB to draw plots of the frequency
response magnitude and phase as the feedback gain increases and validate
your predictions in (b). (Suggested parameters: δ = 1, γ = 1, K = 1, n = 1,
ακ = {1,10,100,1000, ...}).
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(d) Investigate the answer to (c) when you have δ = 20, that is, the timescale of
the mRNA dynamics becomes faster than that of the protein dynamics. What
does change with respect to what you found in (c)?

(e) When δ is at least 10 times larger than γ, you can approximate the m dynam-
ics to the quasi-steady state. So, the two above systems can be reduced to
one differential equation. For these two reduced systems, determine analyti-
cally the frequency response to d and use it to determine whether arbitrarily
increasing the feedback gain is a good strategy to decrease the sensitivity of
response to the disturbance.

3.4 (Adaptation) Show that the dynamics of the “sniffer” in equation (3.16) can
be taken into the standard integral feedback form through a suitable change of
coordinates.

3.5 (Bendixson criterion) Consider the system

dx1

dt
= −x3

2+δx3
1,

dx2

dt
= x3

1.

When δ > 0, Bendixon’s criterion rules out the existence of a periodic solution in
R2. Assume now δ = 0, determine whether the system admits a limit cycle in R2.
(Hint: consider the function V = x2

1 + x2
2 and determine the behavior of V(t) when

x1(t) and x2(t) are solutions to the above system).

3.6 (Bendixson criterion) Consider the possible circuit topologies of Figure 3.24,
in which A and B are proteins and activation (→) and repression (⊣) interactions
represent transcriptional activation or repression. Approximate the mRNA dynam-
ics at the quasi-steady state. Use Bendixson’s criterion to rule out topologies that
cannot give rise to closed orbits.

3.7 (Two gene oscillator) Consider the feedback system composed of two genes
expressing proteins A (activator) and R (repressor), in which we denote by A, R,
mA, and mR, the concentrations of the activator protein, the repressor protein, the
mRNA for the activator protein, and the mRNA for the repressor protein, respec-
tively. The differential equation model corresponding to this system is given by

dmA

dt
=

α

1+ (R/K1)n −δmA,

dA
dt
= κmA−γA,

dmR

dt
=

α(A/K2)m

1+ (A/K2)m −δmR,

dR
dt
= κmR−γR.

Determine parameter conditions under which this system admits a stable limit cy-
cle. Validate your findings through simulation.
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Figure 3.24: Circuit topologies with two proteins: A and B.

3.8 (Goodwin oscillator) Consider the simple set of reactions

X1
k−→ X2

k−→ X3 · · · ·
k−→ Xn.

Assume further that Xn is a transcription factor that represses the production of pro-
tein X1 through transcriptional regulation (assume simple binding of X1 to DNA).
Neglecting the mRNA dynamics of X1, write the differential equation model of
this system and determine conditions on the length n of the cascade for which the
system admits a stable limit cycle. Validate your findings through simulation.

3.9 (Phosphorylation via singular perturbation) Consider again the model of a co-
valent modification cycle as illustrated in Section 2.4 in which the kinase Z is not
constant, but it is produced and decays according to the reaction

Z
γ−−−⇀↽−−−

u(t)
∅.

(a) Consider that d ≫ k,γ,u(t) and employ singular perturbation with small pa-
rameter ϵ = γ/d to obtain the approximated dynamics of Z(t) and X∗(t). How is this
different from the result obtained in Exercise 2.12?
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(b) Simulate these approximated dynamics when u(t) is a periodic signal with fre-
quency ω and compare the responses of Z of these approximated dynamics to those
obtained in Exercise 2.12 as you change ω. What do you observe? Explain.

3.10 (Hill function via singular perturbation) Show that the slow manifold of the
following system is asymptotically stable:

ϵ
dX2

dt
= c

γ

Km
X2− cγX2−

γ

Kd
X2(ptot−C)+γC,

dmY

dt
= αC−δmY ,

ϵ
dC
dt
=

γ

Kd
X2(ptot−C)−γC,

dY
dt
= βmY −γY.

3.11 (Enzyme dynamics via singular perturbation) Show that the slow manifold of
the following system is asymptotically stable:

ϵ
dC
dt
=

k
Kd

(Etot−C) · (S tot−P)− kC− ϵkC,
dP
dt
= kC.
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