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Chapter 2
Dynamic Modeling of Core Processes

The goal of this chapter is to describe basic biological mechanisms in a way that
can be represented by simple dynamical models. We begin the chapter with a dis-
cussion of the basic modeling formalisms that we will utilize to model biomolecu-
lar feedback systems. We then proceed to study a number of core processes within
the cell, providing different model-based descriptions of the dynamics that will
be used in later chapters to analyze and design biomolecular systems. The focus
in this chapter and the next is on deterministic models using ordinary differential
equations; Chapter 4 describes how to model the stochastic nature of biomolecular
systems.

2.1 Modeling chemical reactions

In order to develop models for some of the core processes of the cell, we will need
to build up a basic description of the biochemical reactions that take place, includ-
ing production and degradation of proteins, regulation of transcription and trans-
lation, and intracellular sensing, action and computation. As in other disciplines,
biomolecular systems can be modeled in a variety of different ways, at many dif-
ferent levels of resolution, as illustrated in Figure 2.1. The choice of which model
to use depends on the questions that we want to answer, and good modeling takes
practice, experience, and iteration. We must properly capture the aspects of the sys-
tem that are important, reason about the appropriate temporal and spatial scales to
be included, and take into account the types of simulation and analysis tools to be
applied. Models used for analyzing existing systems should make testable predic-
tions and provide insight into the underlying dynamics. Design models must addi-
tionally capture enough of the important behavior to allow decisions regarding how
to interconnect subsystems, choose parameters and design regulatory elements.

In this section we describe some of the basic modeling frameworks that we will
build on throughout the rest of the text. We begin with brief descriptions of the
relevant physics and chemistry of the system, and then quickly move to models
that focus on capturing the behavior using reaction rate equations. In this chapter
our emphasis will be on dynamics with time scales measured in seconds to hours
and mean behavior averaged across a large number of molecules. We touch only
briefly on modeling in the case where stochastic behavior dominates and defer a
more detailed treatment until Chapter 4.
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Figure 2.1: Different methods of modeling biomolecular systems.

Reaction kinetics

At the fine end of the modeling scale, we can attempt to model the molecular

dynamics of the cell, in which we attempt to model the individual proteins and other
species and their interactions via molecular-scale forces and motions. At this scale,
the individual interactions between protein domains, DNA and RNA are resolved,
resulting in a highly detailed model of the dynamics of the cell.

For our purposes in this text, we will not require the use of such a detailed
scale and we will consider the main modeling formalisms depicted in Figure 2.1.
We start with the abstraction of molecules that interact with each other through
stochastic events that are guided by the laws of thermodynamics. We begin with
an equilibrium point of view, commonly referred to as statistical mechanics, and
then briefly describe how to model the (statistical) dynamics of the system using
chemical kinetics. We cover both of these points of view very briefly here, primarily
as a stepping stone to deterministic models.

The underlying representation for both statistical mechanics and chemical ki-
netics is to identify the appropriate microstates of the system. A microstate cor-
responds to a given configuration of the components (species) in the system rela-
tive to each other and we must enumerate all possible configurations between the
molecules that are being modeled.

As an example, consider the distribution of RNA polymerase in the cell. It is
known that most RNA polymerases are bound to the DNA in a cell, either as they
produce RNA or as they diffuse along the DNA in search of a promoter site. Hence
we can model the microstates of the RNA polymerase system as all possible lo-
cations of the RNA polymerase in the cell, with the vast majority of these corre-
sponding to the RNA polymerase at some location on the DNA. This is illustrated
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Figure 2.2: Microstates for RNA polymerase. Each microstate of the system corresponds
to the RNA polymerase being located at some position in the cell. If we discretize the
possible locations on the DNA and in the cell, the microstate corresponds to all possible
non-overlapping locations of the RNA polymerases. Figure adapted from Phillips, Kondev
and Theriot [78].

in Figure 2.2. In statistical mechanics, we model the configuration of the cell by
the probability that the system is in a given microstate. This probability can be
calculated based on the energy levels of the different microstates. The laws of sta-
tistical mechanics state that if we have a set of microstates Q, then the steady state
probability that the system is in a particular microstate q is given by

P(q) =
1
Z

e−Eq/(kBT ), (2.1)

where Eq is the energy associated with the microstate q ∈ Q, kB is the Boltzmann
constant, T is the temperature in degrees Kelvin, and Z is a normalizing factor,
known as the partition function,

Z =
∑

q∈Q

e−Eq/(kBT ).

By keeping track of those microstates that correspond to a given system state
(also called a macrostate), we can compute the overall probability that a given
macrostate is reached. Thus, if we have a set of states S ⊂ Q that corresponds to a
given macrostate, then the probability of being in the set S is given by

P(S ) =
1
Z

∑

q∈S

e−Eq/(kBT ) =

∑

q∈S e−Eq/(kBT )

∑

q∈Q e−Eq/(kBT ) . (2.2)
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This can be used, for example, to compute the probability that some RNA poly-
merase is bound to a given promoter, averaged over many independent samples,
and from this we can reason about the rate of expression of the corresponding
gene.

Statistical mechanics describes the steady state distribution of microstates, but
does not tell us how the microstates evolve in time. To include the dynamics, we
must consider the chemical kinetics of the system and model the probability that
we transition from one microstate to another in a given period of time. Let q rep-
resent the microstate of the system, which we shall take as a vector of integers that
represents the number of molecules of a specific type (species) in given configura-
tions or locations. Assume we have a set of m chemical reactions Rj, j = 1, . . . ,M,
in which a chemical reaction is a process that leads to the transformation of one
set of chemical species to another one. We use ξ j to represent the change in state q

associated with reaction Rj. We describe the kinetics of the system by making use
of the propensity function a j(q, t) associated with reaction Rj, which captures the
instantaneous probability that at time t a system will transition between state q and
state q+ ξ j.

More specifically, the propensity function is defined such that

a j(q, t)dt = Probability that reaction Rj will occur between time t

and time t+dt given that the microstate is q.

We will give more detail in Chapter 4 regarding the validity of this functional form,
but for now we simply assume that such a function can be defined for our system.

Using the propensity function, we can keep track of the probability distribu-
tion for the state by looking at all possible transitions into and out of the current
state. Specifically, given P(q, t), the probability of being in state q at time t, we can
compute the time derivative dP(q, t)/dt as

dP

dt
(q, t) =

M∑

j=1

(

a j(q− ξ j, t)P(q− ξ j, t)−a j(q, t)P(q, t)
)

. (2.3)

This equation (and its variants) is called the chemical master equation (CME). The
first sum on the right-hand side represents the transitions into the state q from some
other state q− ξ j and the second sum represents the transitions out of the state q.

The dynamics of the distribution P(q, t) depend on the form of the propensity
functions a j(q, t). Consider a simple reversible reaction of the form

A+B −−−⇀↽−−− AB, (2.4)

in which a molecule of A and a molecule of B come together to form the complex
AB, in which A and B are bound to each other, and this complex can, in turn,
dissociate back into the A and B species. In the sequel, to make notation easier,
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we will sometimes represent the complex AB as A : B. It is often useful to write
reversible reactions by splitting the forward reaction from the backward reaction:

Rf : A+B −−→ AB,

Rr : AB −−→ A+B.
(2.5)

We assume that the reaction takes place in a well-stirred volume Ω and let the
configurations q be represented by the number of each species that is present. The
forward reaction Rf is a bimolecular reaction and we will see in Chapter 4 that it
has a propensity function

a f(q) =
k f

Ω
nAnB,

where k f is a parameter that depends on the forward reaction, and nA and nB are
the number of molecules of each species. The reverse reaction Rr is a unimolecular
reaction and we will see that it has a propensity function

a r(q) = k r nAB,

where k r is a parameter that depends on the reverse reaction and nAB is the number
of molecules of AB that are present.

If we now let q = (nA,nB,nAB) represent the microstate of the system, then we
can write the chemical master equation as

dP

dt
(nA,nB,nAB) =

k r(nAB+1)P(nA−1,nB−1,nAB+1)−
k f

Ω
nAnBP(nA,nB,nAB)

+
k f

Ω
(nA+1)(nB+1)P(nA+1,nB+1,nAB−1)− k rnABP(nA,nB,nAB).

The first and third terms on the right-hand side represent the transitions into the mi-
crostate q = (nA,nB,nAB) and the second and fourth terms represent the transitions
out of that state.

The number of differential equations depends on the number of molecules of
A, B and AB that are present. For example, if we start with one molecule of A, one
molecule of B, and three molecules of AB, then the possible states and dynamics
are

q0 = (1,0,4), dP0/dt = 2(k f/Ω)P1−4k rP0

q1 = (2,1,3), dP1/dt = 4k rP0−2(k f/Ω)P1+6(k f/Ω)P2−3k rP1,

q2 = (3,2,2), dP2/dt = 3k rP1−6(k f/Ω)P2,+12(k f/Ω)P3−2k rP2,

q3 = (4,3,1), dP3/dt = 2k rP2−12(k f/Ω)P3,+20(k f/Ω)P4−1k rP3,

q4 = (5,4,0), dP4/dt = 1k rP3−20(k f/Ω)P4,
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where Pi = P(qi, t). Note that the states of the chemical master equation are the
probabilities that we are in a specific microstate, and the chemical master equation
is a linear differential equation (we see from equation (2.3) that this is true in
general).

The primary difference between the statistical mechanics description given by
equation (2.1) and the chemical kinetics description in equation (2.3) is that the
master equation formulation describes how the probability of being in a given mi-
crostate evolves over time. Of course, if the propensity functions and energy levels
are modeled properly, the steady state, average probabilities of being in a given
microstate, should be the same for both formulations.

Reaction rate equations

Although very general in form, the chemical master equation suffers from being a
very high-dimensional representation of the dynamics of the system. We shall see
in Chapter 4 how to implement simulations that obey the master equation, but in
many instances we will not need this level of detail in our modeling. In particular,
there are many situations in which the number of molecules of a given species
is such that we can reason about the behavior of a chemically reacting system
by keeping track of the concentration of each species as a real number. This is
of course an approximation, but if the number of molecules is sufficiently large,
then the approximation will generally be valid and our models can be dramatically
simplified.

To go from the chemical master equation to a simplified form of the dynam-
ics, we begin by making a number of assumptions. First, we assume that we can
represent the state of a given species by its concentration nA/Ω, where nA is the
number of molecules of A in a given volume Ω. We also treat this concentration
as a real number, ignoring the fact that the real concentration is quantized. Finally,
we assume that our reactions take place in a well-stirred volume, so that the rate of
interactions between two species is solely determined by the concentrations of the
species.

Before proceeding, we should recall that in many (and perhaps most) situations
inside of cells, these assumptions are not particularly good ones. Biomolecular
systems often have very small molecular counts and are anything but well mixed.
Hence, we should not expect that models based on these assumptions should per-
form well at all. However, experience indicates that in many cases the basic form
of the equations provides a good model for the underlying dynamics and hence we
often find it convenient to proceed in this manner.

Putting aside our potential concerns, we can now create a model for the dy-
namics of a system consisting of a set of species Si, i = 1, . . . ,n, undergoing a set
of reactions Rj, j = 1, . . . ,M. We write xi = [Si] = nSi/Ω for the concentration of
species i (viewed as a real number). Because we are interested in the case where
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the number of molecules is large, we no longer attempt to keep track of every pos-
sible configuration, but rather simply assume that the state of the system at any
given time is given by the concentrations xi. Hence the state space for our system
is given by x ∈ Rn and we seek to write our dynamics in the form of an ordinary
differential equation (ODE)

dx

dt
= f (x,θ),

where θ ∈Rp represents the vector of parameters that govern dynamic behavior and
f : Rn ×Rp → Rn describes the rate of change of the concentrations as a function
of the instantaneous concentrations and parameter values.

To illustrate the general form of the dynamics, we consider again the case of a
basic bimolecular reaction

A+B −−−⇀↽−−− AB.

Each time the forward reaction occurs, we decrease the number of molecules of A
and B by one and increase the number of molecules of AB (a separate species) by
one. Similarly, each time the reverse reaction occurs, we decrease the number of
molecules of AB by one and increase the number of molecules of A and B.

Using our discussion of the chemical master equation, we know that the likeli-
hood that the forward reaction occurs in a given interval dt is given by a f(q)dt =

(k f/Ω)nAnBdt and the reverse reaction has likelihood a r(q) = k rnAB. If we assume
that nAB is a real number instead of an integer and ignore some of the formalities
of random variables, we can describe the evolution of nAB using the equation

nAB(t+dt) = nAB(t)+a f (q)dt−ar(q)dt.

Here we let q be the state of the system with the number of molecules of AB equal
to nAB. Roughly speaking, this equation states that the (approximate) number of
molecules of AB at time t+ dt compared with time t increases by the probability
that the forward reaction occurs in time dt and decreases by the probability that the
reverse reaction occurs in that period.

To convert this expression into an equivalent one for the concentration of the
species AB, we write [AB] = nAB/Ω, [A] = nA/Ω, [B] = nB/Ω, and substitute the
expressions for a f (q) and ar(q):

[AB](t+dt)− [AB](t) =
(

a f(q, t)−a r(q)
)

/Ω ·dt

=
(

k fnAnB/Ω
2− k rnAB/Ω

)

dt

=
(

k f[A][B]− k r[AB]
)

dt.

Taking the limit as dt approaches zero, we obtain

d

dt
[AB] = k f[A][B]− k r[AB].
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Our derivation here has skipped many important steps, including a careful deriva-
tion using random variables and some assumptions regarding the way in which dt

approaches zero. These are described in more detail when we derive the chemi-
cal Langevin equation (CLE) in Chapter 4, but the basic form of the equations are
correct under the assumptions that the reactions are well-stirred and the molecular
counts are sufficiently large.

In a similar fashion we can write equations to describe the dynamics of A and
B and the entire system of equations is given by

d[A]
dt
= k r[AB]− k f[A][B],

d[B]
dt
= k r[AB]− k f[A][B],

d[AB]
dt

= k f[A][B]− k r[AB],

or

dA

dt
= k rC− k fA ·B,

dB

dt
= k rC− k fA ·B,

dC

dt
= k fA ·B− k rC,

where C = [AB], A = [A], and B = [B]. These equations are known as the mass

action kinetics or the reaction rate equations for the system. The parameters k f and
k r are called the rate constants and they match the parameters that were used in the
underlying propensity functions.

Note that the same rate constants appear in each term, since the rate of pro-
duction of AB must match the rate of depletion of A and B and vice versa. We
adopt the standard notation for chemical reactions with specified rates and write
the individual reactions as

A+B
k f−→ AB, AB

k r−→ A+B,

where k f and k r are the reaction rate constants. For bidirectional reactions we can
also write

A+B
k f−−⇀↽−−
k r

AB.

It is easy to generalize these dynamics to more complex reactions. For example,
if we have a reversible reaction of the form

A+2B
k f−−⇀↽−−
k r

2C+D,

where A, B, C and D are appropriate species and complexes, then the dynamics for
the species concentrations can be written as

d

dt
A = k rC

2 ·D− k fA ·B2,
d

dt
C = 2k fA ·B2−2k rC

2 ·D,

d

dt
B = 2k rC

2 ·D−2k fA ·B2,
d

dt
D = k fA ·B2− k rC

2 ·D.
(2.6)
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Rearranging this equation, we can write the dynamics as

d

dt

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

B

C

D

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 1
−2 2
2 −2
1 −1

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧

⎪⎪⎪⎪⎪⎩

k fA ·B2

k rC
2 ·D

⎫

⎪⎪⎪⎪⎪⎭
. (2.7)

We see that in this decomposition, the first term on the right-hand side is a matrix
of integers reflecting the stoichiometry of the reactions and the second term is a
vector of rates of the individual reactions.

More generally, given a chemical reaction consisting of a set of species Si,
i = 1, . . . ,n and a set of reactions Rj, j = 1, . . . ,M, we can write the mass action
kinetics in the form

dx

dt
= Nv(x),

where N ∈ Rn×M is the stoichiometry matrix for the system and v(x) ∈ RM is the
reaction flux vector. Each row of v(x) corresponds to the rate at which a given
reaction occurs and the corresponding column of the stoichiometry matrix corre-
sponds to the changes in concentration of the relevant species. For example, for the
system in equation (2.7) we have

x = (A,B,C,D), N =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 1
−2 2
2 −2
1 −1

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, v(x) =
⎧

⎪⎪⎪⎪⎪⎩

k fA ·B2

k rC
2 ·D

⎫

⎪⎪⎪⎪⎪⎭
.

The conservation of species is at the basis of reaction rate models since species are
usually transformed, but are not created from nothing or destroyed. Even the basic
process of protein degradation transforms a protein of interest A into a product X
that is not used in any other reaction. Specifically, the degradation rate of a protein
is determined by the amounts of proteases present, which bind to recognition sites
(degradation tags) and then degrade the protein. Degradation of a protein A by a
protease P can then be modeled by the following two-step reaction:

A+P
a
−⇀↽−

d
AP

k
−→ P+X.

As a result of the reaction, protein A has “disappeared,” so that this reaction is often
simplified to A −−→ ∅. Similarly, the birth of a molecule is a complicated process
that involves many reactions and species, as we will see later in this chapter. When
the process that creates a species of interest A is not relevant for the problem under
study, we will use the shorter description of a birth reaction given by

∅
k f−→ A



38 CHAPTER 2. DYNAMIC MODELING OF CORE PROCESSES

ATP Binding
+ catalysis

ATP
binding

ADP
release

      Substrate
release

Substrate

Substrate

Kinase

Kinase ADP

Substrate

Kinase

P

P

Figure 2.3: Phosphorylation of a protein via a kinase. In the process of phosphorylation,
a protein called a kinase binds to ATP (adenosine triphosphate) and transfers one of the
phosphate groups (P) from ATP to a substrate, hence producing a phosphorylated substrate
and ADP (adenosine diphosphate). Figure adapted from Madhani [63].

and describe its dynamics using the differential equation

dA

dt
= k f.

Example 2.1 (Covalent modification of a protein). Consider the set of reactions
involved in the phosphorylation of a protein by a kinase, as shown in Figure 2.3.
Let S represent the substrate, K represent the kinase and S* represent the phospho-
rylated (activated) substrate. The sets of reactions illustrated in Figure 2.3 are

R1 : K+ATP −−→ K:ATP,

R2 : K:ATP −−→ K+ATP,

R3 : S+K:ATP −−→ S:K:ATP,

R4 : S:K:ATP −−→ S+K:ATP,

R5 : S:K:ATP −−→ S∗:K:ADP,

R6 : S∗:K:ADP −−→ S∗+K:ADP,

R7 : K:ADP −−→ K+ADP,

R8 : K+ADP −−→ K:ADP.

We now write the kinetics for each reaction:

v1 = k1 [K][ATP],

v2 = k2 [K:ATP],

v3 = k3 [S][K:ATP],

v4 = k4 [S:K:ATP],

v5 = k5 [S:K:ATP],

v6 = k6 [S∗:K:ADP],

v7 = k7 [K:ADP],

v8 = k8 [K][ADP].

We treat [ATP] as a constant (regulated by the cell) and hence do not directly
track its concentration. (If desired, we could similarly ignore the concentration of
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ADP since we have chosen not to include the many additional reactions in which
it participates.)

The kinetics for each species are thus given by

d

dt
[K] = −v1+ v2+ v7− v8,

d

dt
[S∗] = v6,

d

dt
[K:ATP] = v1− v2− v3+ v4,

d

dt
[S∗:K:ADP] = v5− v6,

d

dt
[S] = −v3+ v4,

d

dt
[ADP] = v7− v8,

d

dt
[S:K:ATP] = v3− v4− v5,

d

dt
[K:ADP] = v6− v7+ v8.

Collecting these equations together and writing the state as a vector, we obtain

d

dt

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[K]
[K:ATP]

[S]
[S:K:ATP]

[S∗]
[S∗:K:ADP]

[ADP]
[K:ADP]

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

︸!!!!!!!!!!!!︷︷!!!!!!!!!!!!︸

x

=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 1 0 0 0 0 1 −1
1 −1 −1 1 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 1 −1 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 1 −1 1

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸

N

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1

v2

v3

v4

v5

v6

v7

v8

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

︸︷︷︸

v(x)

which is in standard stoichiometric form. ∇

Reduced-order mechanisms

In this section, we look at the dynamics of some common reactions that occur in
biomolecular systems. Under some assumptions on the relative rates of reactions
and concentrations of species, it is possible to derive reduced-order expressions for
the dynamics of the system. We focus here on an informal derivation of the relevant
results, but return to these examples in the next chapter to illustrate that the same
results can be derived using a more formal and rigorous approach.

Simple binding reaction. Consider the reaction in which two species A and B bind
reversibly to form a complex C = AB:

A+B
a
−⇀↽−
d

C, (2.8)

where a is the association rate constant and d is the dissociation rate constant.
Assume that B is a species that is controlled by other reactions in the cell and that
the total concentration of A is conserved, so that A+C = [A]+ [AB] = Atot. If the
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dynamics of this reaction are fast compared to other reactions in the cell, then the
amount of A and C present can be computed as a (steady state) function of the
amount of B.

To compute how A and C depend on the concentration of B at the steady state,
we must solve for the equilibrium concentrations of A and C. The rate equation for
C is given by

dC

dt
= aB ·A−dC = aB · (Atot−C)−dC.

By setting dC/dt = 0 and letting Kd := d/a, we obtain the expressions

C =
Atot(B/Kd)
1+ (B/Kd)

, A =
Atot

1+ (B/Kd)
.

The constant Kd is called the dissociation constant of the reaction. Its inverse mea-
sures the affinity of A binding to B. The steady state value of C increases with B

while the steady state value of A decreases with B as more of A is found in the
complex C.

Note that when B ≈ Kd, A and C have equal concentration. Thus the higher the
value of Kd, the more B is required for A to form the complex C. Kd has the units
of concentration and it can be interpreted as the concentration of B at which half
of the total number of molecules of A are associated with B. Therefore a high Kd

represents a weak affinity between A and B, while a low Kd represents a strong
affinity.

Cooperative binding reaction. Assume now that B binds to A only after dimeriza-
tion, that is, only after binding another molecule of B. Then, we have that reac-
tions (2.8) become

B+B
k1−−⇀↽−−
k2

B2, B2+A
a
−⇀↽−

d
C, A+C = Atot,

in which B2 =B : B represents the dimer of B, that is, the complex of two molecules
of B bound to each other. The corresponding ODE model is given by

dB2

dt
= k1B2− k2B2−aB2 · (Atot−C)+dC,

dC

dt
= aB2 · (Atot−C)−dC.

By setting dB2/dt = 0, dC/dt = 0, and by defining Km := k2/k1, we obtain that

B2 = B2/Km, C =
Atot(B2/Kd)
1+ (B2/Kd)

, A =
Atot

1+ (B2/Kd)
,

so that

C =
AtotB

2/(KmKd)
1+B2/(KmKd)

, A =
Atot

1+B2/(KmKd)
.
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Figure 2.4: Steady state concentrations of the complex C and of A as functions of the
concentration of B.

As an exercise (Exercise 2.2), the reader can verify that if B binds to A as a complex
of n copies of B, that is,

B+B+ · · ·+B
k1−−⇀↽−−
k2

Bn, Bn+A
a
−⇀↽−

d
C, A+C = Atot,

then we have that the expressions of C and A change to

C =
AtotB

n/(KmKd)
1+Bn/(KmKd)

, A =
Atot

1+Bn/(KmKd)
.

In this case, we say that the binding of B to A is cooperative with cooperativity n.
Figure 2.4 shows the above functions, which are often referred to as Hill functions
and n is called the Hill coefficient.

Another type of cooperative binding is when a species R can bind A only after
another species B has bound A. In this case, the reactions are given by

B+A
a
−⇀↽−

d
C, R+C

a′

−−⇀↽−−
d′

C
′
, A+C+C′ = Atot.

Proceeding as above by writing the ODE model and equating the time derivatives
to zero to obtain the equilibrium, we obtain the equilibrium relations

C =
1

Kd
B(Atot−C−C′), C′ =

1
K′dKd

R(Atot−C−C′).

By solving this system of two equations for the unknowns C′ and C, we obtain

C′ =
Atot(B/Kd)(R/K′d)

1+ (B/Kd)+ (B/Kd)(R/K′d)
, C =

Atot(B/Kd)
1+ (B/Kd)+ (B/Kd)(R/K′d)

.
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In the case in which B would bind cooperatively with other copies of B with coop-
erativity n, the above expressions become

C′ =
Atot(Bn/KmKd)(R/K′d)

1+ (Bn/KmKd)(R/K′d)+ (Bn/KmKd)
,

C =
Atot(Bn/KmKd)

1+ (Bn/KmKd)(R/K′d)+ (Bn/KmKd)
.

Competitive binding reaction. Finally, consider the case in which two species Ba
and Br both bind to A competitively, that is, they cannot be bound to A at the same
time. Let Ca be the complex formed between Ba and A and let Cr be the complex
formed between Br and A. Then, we have the following reactions

Ba+A
a
−⇀↽−

d
Ca, Br+A

a′

−−⇀↽−−
d′

Cr, A+Ca+Cr = Atot,

for which we can write the differential equation model as

dCa

dt
= aBa · (Atot−Ca−Cr)−dCa,

dCr

dt
= a′Br · (Atot−Ca−Cr)−d′Cr.

By setting the time derivatives to zero, we obtain

Ca(aBa+d) = aBa(Atot−Cr), Cr(a′Br +d′) = a′Br(Atot−Ca),

so that

Cr =
Br(Atot−Ca)

Br +K′d
, Ca

(

Ba+Kd−
BaBr

Br +K′d

)

= Ba

(
K′d

Br +K′d

)

Atot,

from which we finally determine that

Ca =
Atot(Ba/Kd)

1+ (Ba/Kd)+ (Br/K
′
d)
, Cr =

Atot(Br/K
′
d)

1+ (Ba/Kd)+ (Br/K
′
d)
.

In this derivation, we have assumed that both Ba and Br bind A as monomers.
If they were binding as dimers, the reader should verify that they would appear in
the final expressions with a power of two (see Exercise 2.3).

Note also that in this derivation we have assumed that the binding is competi-
tive, that is, Ba and Br cannot simultaneously bind to A. If they can bind simultane-
ously to A, we have to include another complex comprising Ba, Br and A. Denoting
this new complex by C

′
, we must add the two additional reactions

Ca+Br
ā
−⇀↽−̄

d
C
′
, Cr+Ba

ā′

−−⇀↽−−
d̄′

C
′
,
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and we should modify the conservation law for A to Atot = A+Ca +Cr +C′. The
reader can verify that in this case a mixed term BrBa appears in the equilibrium
expressions (see Exercise 2.4).

Enzymatic reaction. A general enzymatic reaction can be written as

E+S
a
−⇀↽−

d
C

k
−→ E+P,

in which E is an enzyme, S is the substrate to which the enzyme binds to form
the complex C = ES, and P is the product resulting from the modification of the
substrate S due to the binding with the enzyme E. Here, a and d are the association
and dissociation rate constants as before, and k is the catalytic rate constant. En-
zymatic reactions are very common and include phosphorylation as we have seen
in Example 2.1 and as we will see in more detail in the sequel. The corresponding
ODE model is given by

dS

dt
= −aE ·S +dC,

dC

dt
= aE ·S − (d+ k)C,

dE

dt
= −aE ·S +dC+ kC,

dP

dt
= kC.

The total enzyme concentration is usually constant and denoted by Etot, so that
E+C = Etot. Substituting E = Etot−C in the above equations, we obtain

dS

dt
= −a(Etot−C) ·S +dC,

dC

dt
= a(Etot−C) ·S − (d+ k)C,

dE

dt
= −a(Etot−C) ·S +dC+ kC,

dP

dt
= kC.

This system cannot be solved analytically, therefore, assumptions must be used
in order to reduce it to a simpler form. Michaelis and Menten assumed that the
conversion of E and S to C and vice versa is much faster than the decomposition
of C into E and P. Under this assumption and letting the initial concentration S (0)
be sufficiently large (see Example 3.12), C immediately reaches its steady state
value (while P is still changing). This approximation is called the quasi-steady

state approximation and the mathematical conditions on the parameters that justify
it will be dealt with in Section 3.5.

The steady state value of C is given by solving a(Etot −C)S − (d+ k)C = 0 for
C, which gives

C =
EtotS

S +Km
, with Km =

d+ k

a
,

in which the constant Km is called the Michaelis-Menten constant. Letting Vmax =

kEtot, the resulting kinetics

dP

dt
= k

EtotS

S +Km
= Vmax

S

S +Km
(2.9)
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Figure 2.5: Enzymatic reactions. (a) Transfer curve showing the production rate for P as a
function of substrate concentration for Km = 1. (b) Time plots of product P(t) for different
values of the Km. In the plots S tot = 1 and Vmax = 1.

are called Michaelis-Menten kinetics.
The constant Vmax is called the maximal velocity (or maximal flux) of modifi-

cation and it represents the maximal rate that can be obtained when the enzyme is
completely saturated by the substrate. The value of Km corresponds to the value of
S that leads to a half-maximal value of the production rate of P. When the enzyme
complex can be neglected with respect to the total substrate amount S tot, we have
that S tot = S +P+C ≈ S +P, so that the above equation can be also rewritten as

dP

dt
=

Vmax(S tot −P)
(S tot −P)+Km

.

When Km ≪ S tot and the substrate has not yet been all converted to product,
that is, S ≫ Km, we have that the rate of product formation becomes approximately
dP/dt ≈ Vmax, which is the maximal speed of reaction. Since this rate is constant
and does not depend on the reactant concentrations, it is usually referred to as zero-

order kinetics. In this case, the system is said to operate in the zero-order regime. If
instead S ≪ Km, the rate of product formation becomes dP/dt ≈ Vmax/KmS , which
is linear with the substrate concentration S . This production rate is referred to as
first-order kinetics and the system is said to operate in the first-order regime (see
Figure 2.5).

2.2 Transcription and translation

In this section we consider the processes of transcription and translation, using the
modeling techniques described in the previous section to capture the fundamental
dynamic behavior. Models of transcription and translation can be done at a vari-
ety of levels of detail and which model to use depends on the questions that one
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wants to consider. We present several levels of modeling here, starting with a fairly
detailed set of reactions describing transcription and translation and ending with
highly simplified ordinary differential equation models that can be used when we
are only interested in average production rate of mRNA and proteins at relatively
long time scales.

The central dogma: Production of proteins

The genetic material inside a cell, encoded in its DNA, governs the response of a
cell to various conditions. DNA is organized into collections of genes, with each
gene encoding a corresponding protein that performs a set of functions in the cell.
The activation and repression of genes are determined through a series of complex
interactions that give rise to a remarkable set of circuits that perform the functions
required for life, ranging from basic metabolism to locomotion to procreation. Ge-
netic circuits that occur in nature are robust to external disturbances and can func-
tion in a variety of conditions. To understand how these processes occur (and some
of the dynamics that govern their behavior), it will be useful to present a relatively
detailed description of the underlying biochemistry involved in the production of
proteins.

DNA is a double stranded molecule with the “direction” of each strand specified
by looking at the geometry of the sugars that make up its backbone. The comple-
mentary strands of DNA are composed of a sequence of nucleotides that consist of
a sugar molecule (deoxyribose) bound to one of four bases: adenine (A), cytocine
(C), guanine (G) and thymine (T). The coding region (by convention the top row of
a DNA sequence when it is written in text form) is specified from the 5′ end of the
DNA to the 3′ end of the DNA. (The 5′ and 3′ refer to carbon locations on the de-
oxyribose backbone that are involved in linking together the nucleotides that make
up DNA.) The DNA that encodes proteins consists of a promoter region, regulator
regions (described in more detail below), a coding region and a termination region
(see Figure 2.6). We informally refer to this entire sequence of DNA as a gene.

Expression of a gene begins with the transcription of DNA into mRNA by RNA
polymerase, as illustrated in Figure 2.7. RNA polymerase enzymes are present in
the nucleus (for eukaryotes) or cytoplasm (for prokaryotes) and must localize and
bind to the promoter region of the DNA template. Once bound, the RNA poly-
merase “opens” the double stranded DNA to expose the nucleotides that make up
the sequence. This reaction, called isomerization, is said to transform the RNA
polymerase and DNA from a closed complex to an open complex. After the open
complex is formed, RNA polymerase begins to travel down the DNA strand and
constructs an mRNA sequence that matches the 5′ to 3′ sequence of the DNA to
which it is bound. By convention, we number the first base pair that is transcribed
as +1 and the base pair prior to that (which is not transcribed) is labeled as -1. The
promoter region is often shown with the -10 and -35 regions indicated, since these
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ATG TAATATGTTTTACA AGGAGGT
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Figure 2.6: Geometric structure of DNA. The layout of the DNA is shown at the top. RNA
polymerase binds to the promoter region of the DNA and transcribes the DNA starting at
the +1 site and continuing to the termination site. The transcribed mRNA strand has the
ribosome binding site (RBS) where the ribosomes bind, the start codon where translation
starts and the stop codon where translation ends.

regions contain the nucleotide sequences to which the RNA polymerase enzyme
binds (the locations vary in different cell types, but these two numbers are typically
used).

The RNA strand that is produced by RNA polymerase is also a sequence of nu-
cleotides with a sugar backbone. The sugar for RNA is ribose instead of deoxyri-
bose and mRNA typically exists as a single stranded molecule. Another difference
is that the base thymine (T) is replaced by uracil (U) in RNA sequences. RNA
polymerase produces RNA one base pair at a time, as it moves from in the 5′ to 3′

direction along the DNA coding region. RNA polymerase stops transcribing DNA
when it reaches a termination region (or terminator) on the DNA. This termination
region consists of a sequence that causes the RNA polymerase to unbind from the
DNA. The sequence is not conserved across species and in many cells the termi-
nation sequence is sometimes “leaky,” so that transcription will occasionally occur
across the terminator.

Once the mRNA is produced, it must be translated into a protein. This process is
slightly different in prokaryotes and eukaryotes. In prokaryotes, there is a region of
the mRNA in which the ribosome (a molecular complex consisting of both proteins
and RNA) binds. This region, called the ribosome binding site (RBS), has some
variability between different cell species and between different genes in a given
cell. The Shine-Dalgarno sequence, AGGAGG, is the consensus sequence for the
RBS. (A consensus sequence is a pattern of nucleotides that implements a given
function across multiple organisms; it is not exactly conserved, so some variations
in the sequence will be present from one organism to another.)

In eukaryotes, the RNA must undergo several additional steps before it is trans-
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Figure 2.7: Production of messenger RNA from DNA. RNA polymerase, along with other
accessory factors, binds to the promoter region of the DNA and then “opens” the DNA
to begin transcription (initiation). As RNA polymerase moves down the DNA in the tran-
scription elongation complex (TEC), it produces an RNA transcript (elongation), which
is later translated into a protein. The process ends when the RNA polymerase reaches the
terminator (termination). Figure adapted from Courey [20].

lated. The RNA sequence that has been created by RNA polymerase consists of
introns that must be spliced out of the RNA (by a molecular complex called the
spliceosome), leaving only the exons, which contain the coding region for the pro-
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tein. The term pre-mRNA is often used to distinguish between the raw transcript
and the spliced mRNA sequence, which is called mature mRNA. In addition to
splicing, the mRNA is also modified to contain a poly(A) (polyadenine) tail, con-
sisting of a long sequence of adenine (A) nucleotides on the 3′ end of the mRNA.
This processed sequence is then transported out of the nucleus into the cytoplasm,
where the ribosomes can bind to it.

Unlike prokaryotes, eukaryotes do not have a well-defined ribosome binding se-
quence and hence the process of the binding of the ribosome to the mRNA is more
complicated. The Kozak sequence, A/GCCACCAUGG, is the rough equivalent of
the ribosome binding site, where the underlined AUG is the start codon (described
below). However, mRNA lacking the Kozak sequence can also be translated.

Once the ribosome is bound to the mRNA, it begins the process of translation.
Proteins consist of a sequence of amino acids, with each amino acid specified by
a codon that is used by the ribosome in the process of translation. Each codon
consists of three base-pairs and corresponds to one of the twenty amino acids or
a “stop” codon. The ribosome translates each codon into the corresponding amino
acid using transfer RNA (tRNA) to integrate the appropriate amino acid (which
binds to the tRNA) into the polypeptide chain, as shown in Figure 2.8. The start
codon (AUG) specifies the location at which translation begins, as well as coding
for the amino acid methionine (a modified form is used in prokaryotes). All sub-
sequent codons are translated by the ribosome into the corresponding amino acid
until it reaches one of the stop codons (typically UAA, UAG and UGA).

The sequence of amino acids produced by the ribosome is a polypeptide chain
that folds on itself to form a protein. The process of folding is complicated and
involves a variety of chemical interactions that are not completely understood. Ad-
ditional post-translational processing of the protein can also occur at this stage,
until a folded and functional protein is produced. It is this molecule that is able to
bind to other species in the cell and perform the chemical reactions that underlie
the behavior of the organism. The maturation time of a protein is the time required
for the polypeptide chain to fold into a functional protein.

Each of the processes involved in transcription, translation and folding of the
protein takes time and affects the dynamics of the cell. Table 2.1 shows represen-
tative rates of some of the key processes involved in the production of proteins.
In particular, the dissociation constant of RNA polymerase from the DNA pro-
moter has a wide range of values depending on whether the binding is enhanced
by activators (as we will see in the sequel), in which case it can take very low val-
ues. Similarly, the dissociation constant of transcription factors with DNA can be
very low in the case of specific binding and substantially larger for non-specific
binding. It is important to note that each of these steps is highly stochastic, with
molecules binding together based on some propensity that depends on the bind-
ing energy but also the other molecules present in the cell. In addition, although
we have described everything as a sequential process, each of the steps of tran-
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Figure 2.8: Translation is the process of translating the sequence of a messenger RNA
(mRNA) molecule to a sequence of amino acids during protein synthesis. The genetic
code describes the relationship between the sequence of base pairs in a gene and the cor-
responding amino acid sequence that it encodes. In the cell cytoplasm, the ribosome reads
the sequence of the mRNA in groups of three bases to assemble the protein. Figure and
caption courtesy the National Human Genome Research Institute.

Table 2.1: Rates of core processes involved in the creation of proteins from DNA in E. coli.

Process Characteristic rate Source
mRNA transcription rate 24-29 bp/s [13]
Protein translation rate 12–21 aa/s [13]
Maturation time (fluorescent proteins) 6–60 min [13]
mRNA half-life ∼ 100 s [103]
E. coli cell division time 20–40 min [13]
Yeast cell division time 70–140 min [13]
Protein half-life ∼ 5×104 s [103]
Protein diffusion along DNA up to 104 bp/s [78]
RNA polymerase dissociation constant ∼ 0.3–10,000 nM [13]
Open complex formation kinetic rate ∼ 0.02 s−1 [13]
Transcription factor dissociation constant ∼ 0.02–10,000 nM [13]
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scription, translation and folding are happening simultaneously. In fact, there can
be multiple RNA polymerases that are bound to the DNA, each producing a tran-
script. In prokaryotes, as soon as the ribosome binding site has been transcribed,
the ribosome can bind and begin translation. It is also possible to have multiple
ribosomes bound to a single piece of mRNA. Hence the overall process can be
extremely stochastic and asynchronous.

Reaction models

The basic reactions that underlie transcription include the diffusion of RNA poly-
merase from one part of the cell to the promoter region, binding of an RNA poly-
merase to the promoter, isomerization from the closed complex to the open com-
plex, and finally the production of mRNA, one base-pair at a time. To capture this
set of reactions, we keep track of the various forms of RNA polymerase accord-
ing to its location and state: RNAPc represents RNA polymerase in the cytoplasm,
RNAPp represents RNA polymerase in the promoter region, and RNAPd is RNA
polymerase non-specifically bound to DNA. We must similarly keep track of the
state of the DNA, to ensure that multiple RNA polymerases do not bind to the same
section of DNA. Thus we can write DNAp for the promoter region, DNAi for the
ith section of the gene of interest and DNAt for the termination sequence. We write
RNAP : DNA to represent RNA polymerase bound to DNA (assumed closed) and
RNAP : DNAo to indicate the open complex. Finally, we must keep track of the
mRNA that is produced by transcription: we write mRNAi to represent an mRNA
strand of length i and assume that the length of the gene of interest is N.

Using these various states of the RNA polymerase and locations on the DNA,
we can write a set of reactions modeling the basic elements of transcription as

Binding to DNA: RNAPc −−−⇀↽−−− RNAPd,

Diffusion along DNA: RNAPd −−−⇀↽−−− RNAPp,

Binding to promoter: RNAPp+DNAp −−−⇀↽−−− RNAP : DNAp,

Isomerization: RNAP : DNAp −−→ RNAP : DNAo,

Start of transcription: RNAP : DNAo −−→ RNAP : DNA1+DNAp,

mRNA creation: RNAP : DNA1 −−→ RNAP : DNA2 : mRNA1,

Elongation: RNAP : DNAi+1 : mRNAi

−−→ RNAP : DNAi+2 : mRNAi+1,

Binding to terminator: RNAP:DNAN : mRNAN−1

−−→ RNAP : DNAt+mRNAN,

Termination: RNAP : DNAt −−→ RNAPc,

Degradation: mRNAN −−→ ∅.
(2.10)
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Note that at the start of transcription we “release” the promoter region of the DNA,
thus allowing a second RNA polymerase to bind to the promoter while the first
RNA polymerase is still transcribing the gene. This allows the same DNA strand
to be transcribed by multiple RNA polymerase at the same time. The species
RNAP : DNAi+1 : mRNAi represents RNA polymerases bound at the (i+1)th sec-
tion of DNA with an elongating mRNA strand of length i attached to it. Upon bind-
ing to the terminator region, the RNA polymerase releases the full mRNA strand
mRNAN. This mRNA has the ribosome binding site at which ribosomes can bind
to start translation. The main difference between prokaryotes and eukaryotes is that
in eukaryotes the RNA polymerase remains in the nucleus and the mRNAN must
be spliced and transported to the cytoplasm before ribosomes can start translation.
As a consequence, the start of translation can occur only after mRNAN has been
produced. For simplicity of notation, we assume here that the entire mRNA strand
should be produced before ribosomes can start translation. In the procaryotic case,
instead, translation can start even for an mRNA strand that is still elongating (see
Exercise 2.6).

A similar set of reactions can be written to model the process of translation.
Here we must keep track of the binding of the ribosome to the ribosome binding
site (RBS) of mRNAN, translation of the mRNA sequence into a polypeptide chain,
and folding of the polypeptide chain into a functional protein. Specifically, we
must keep track of the various states of the ribosome bound to different codons
on the mRNA strand. We thus let Ribo : mRNARBS denote the ribosome bound
to the ribosome binding site of mRNAN, Ribo : mRNAAAi the ribosome bound to
the ith codon (corresponding to an amino acid, indicated by the superscript AA),
Ribo : mRNAstart and Ribo : mRNAstop the ribosome bound to the start and stop
codon, respectively. We also let PPCi denote the polypeptide chain consisting of i

amino acids. Here, we assume that the protein of interest has M amino acids. The
reactions describing translation can then be written as

Binding to RBS: Ribo+mRNAN −−−⇀↽−−− Ribo : mRNARBS,

Start of translation: Ribo : mRNARBS −−→ Ribo : mRNAstart+mRNAN,

Polypeptide chain creation: Ribo : mRNAstart −−→ Ribo : mRNAAA2 : PPC1,

Elongation, i = 1, . . . ,M: Ribo : mRNAAA(i+1) : PPCi

−−→ Ribo : mRNAAA(i+2) : PPCi+1,

Stop codon: Ribo : mRNAAAM : PPCM−1

−−→ Ribo : mRNAstop+PPCM,

Release of mRNA: Ribo : mRNAstop −−→ Ribo,

Folding: PPCM −−→ protein,

Degradation: protein −−→ ∅.
(2.11)
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As in the case of transcription, we see that these reactions allow multiple ribosomes
to translate the same piece of mRNA by freeing up mRNAN. After M amino acids
have been chained together, the M-long polypeptide chain PPCM is released, which
then folds into a protein. As complex as these reactions are, they do not directly
capture a number of physical phenomena such as ribosome queuing, wherein ri-
bosomes cannot pass other ribosomes that are ahead of them on the mRNA chain.
Additionally, we have not accounted for the existence and effects of the 5′ and
3′ untranslated regions (UTRs) of a gene and we have also left out various error
correction mechanisms in which ribosomes can step back and release an incorrect
amino acid that has been incorporated into the polypeptide chain. We have also left
out the many chemical species that must be present in order for a variety of the
reactions to happen (NTPs for mRNA production, amino acids for protein produc-
tion, etc.). Incorporation of these effects requires additional reactions that track the
many possible states of the molecular machinery that underlies transcription and
translation. For more detailed models of translation, the reader is referred to [3].

When the details of the isomerization, start of transcription (translation), elon-
gation, and termination are not relevant for the phenomenon to be studied, the tran-
scription and translation reactions are lumped into much simpler reduced reactions.
For transcription, these reduced reactions take the form:

RNAP+DNAp −−−⇀↽−−− RNAP:DNAp,

RNAP:DNAp −−→mRNA+RNAP+DNAp,

mRNA −−→ ∅,
(2.12)

in which the second reaction lumps together isomerization, start of transcription,
elongation, mRNA creation, and termination. Similarly, for the translation process,
the reduced reactions take the form:

Ribo+mRNA −−−⇀↽−−− Ribo:mRNA,

Ribo:mRNA −−→ protein+mRNA+Ribo,

Ribo:mRNA −−→ Ribo,

protein −−→ ∅,

(2.13)

in which the second reaction lumps the start of translation, elongation, folding, and
termination. The third reaction models the fact that mRNA can also be degraded
when bound to ribosomes when the ribosome binding site is left free. The process
of mRNA degradation occurs through RNase enzymes binding to the ribosome
binding site and cleaving the mRNA strand. It is known that the ribosome binding
site cannot be both bound to the ribosome and to the RNase [68]. However, the
species Ribo : mRNA is a lumped species encompassing configurations in which
ribosomes are bound on the mRNA strand but not on the ribosome binding site.
Hence, we also allow this species to be degraded by RNase.
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Reaction rate equations

Given a set of reactions, the various stochastic processes that underlie detailed
models of transcription and translation can be specified using the stochastic mod-
eling framework described briefly in the previous section. In particular, using either
models of binding energy or measured rates, we can construct propensity functions
for each of the many reactions that lead to production of proteins, including the
motion of RNA polymerase and the ribosome along DNA and RNA. For many
problems in which the detailed stochastic nature of the molecular dynamics of the
cell are important, these models are the most relevant and they are covered in some
detail in Chapter 4.

Alternatively, we can move to the reaction rate formalism and model the reac-
tions using differential equations. To do so, we must compute the various reaction
rates, which can be obtained from the propensity functions or measured experimen-
tally. In moving to this formalism, we approximate the concentrations of various
species as real numbers (though this may not be accurate for some species that
exist at low molecular counts in the cell). Despite these approximations, in many
situations the reaction rate equations are sufficient, particularly if we are interested
in the average behavior of a large number of cells.

In some situations, an even simpler model of the transcription, translation and
folding processes can be utilized. Let the “active” mRNA be the mRNA that is
available for translation by the ribosome. We model its concentration through a
simple time delay of length τm that accounts for the transcription of the ribosome
binding site in prokaryotes or splicing and transport from the nucleus in eukary-
otes. If we assume that RNA polymerase binds to DNA at some average rate (which
includes both the binding and isomerization reactions) and that transcription takes
some fixed time (depending on the length of the gene), then the process of tran-
scription can be described using the delay differential equation

dmP

dt
= α−µmP− δ̄mP, m∗P(t) = e−µτ

m

mP(t−τm), (2.14)

where mP is the concentration of mRNA for protein P, m∗P is the concentration of
active mRNA, α is the rate of production of the mRNA for protein P, µ is the growth
rate of the cell (which results in dilution of the concentration) and δ̄ is the rate of
degradation of the mRNA. Since the dilution and degradation terms are of the same
form, we will often combine these terms in the mRNA dynamics and use a single
coefficient δ = µ+ δ̄. The exponential factor in the second expression in equation
(2.14) accounts for dilution due to the change in volume of the cell, where µ is
the cell growth rate. The constants α and δ capture the average rates of production
and decay, which in turn depend on the more detailed biochemical reactions that
underlie transcription.

Once the active mRNA is produced, the process of translation can be described
via a similar ordinary differential equation that describes the production of a func-
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tional protein:
dP

dt
= κm∗P−γP, P f (t) = e−µτ

f

P(t−τ f ). (2.15)

Here P represents the concentration of the polypeptide chain for the protein, and
P f represents the concentration of functional protein (after folding). The parame-
ters that govern the dynamics are κ, the rate of translation of mRNA; γ, the rate of
degradation and dilution of P; and τ f , the time delay associated with folding and
other processes required to make the protein functional. The exponential term again
accounts for dilution due to cell growth. The degradation and dilution term, param-
eterized by γ, captures both the rate at which the polypeptide chain is degraded and
the rate at which the concentration is diluted due to cell growth.

It will often be convenient to write the dynamics for transcription and transla-
tion in terms of the functional mRNA and functional protein. Differentiating the
expression for m∗P, we see that

dm∗P(t)
dt

= e−µτ
m dmP

dt
(t−τm)

= e−µτ
m(

α−δmP(t−τm)
)

= ᾱ−δm∗P(t),
(2.16)

where ᾱ = e−µτ
m
α. A similar expansion for the active protein dynamics yields

dP f (t)
dt

= κ̄m∗P(t−τ f )−γP f (t), (2.17)

where κ̄ = e−µτ
f
κ. We shall typically use equations (2.16) and (2.17) as our (re-

duced) description of protein folding, dropping the superscript f and overbars
when there is no risk of confusion. Also, in the presence of different proteins, we
will attach subscripts to the parameters to denote the protein to which they refer.

In many situations the time delays described in the dynamics of protein pro-
duction are small compared with the time scales at which the protein concentration
changes (depending on the values of the other parameters in the system). In such
cases, we can simplify our model of the dynamics of protein production even fur-
ther and write

dmP

dt
= α−δmP,

dP

dt
= κmP−γP. (2.18)

Note that we here have dropped the superscripts ∗ and f since we are assuming that
all mRNA is active and proteins are functional and dropped the overbar on α and
κ since we are assuming the time delays are negligible. The value of α increases
with the strength of the promoter while the value of κ increases with the strength of
the ribosome binding site. These strengths, in turn, can be affected by changing the
specific base-pair sequences that constitute the promoter RNA polymerase binding
region and the ribosome binding site.

Finally, the simplest model for protein production is one in which we only keep
track of the basal rate of production of the protein, without including the mRNA
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dynamics. This essentially amounts to assuming the mRNA dynamics reach steady
state quickly and replacing the first differential equation in (2.18) with its equilib-
rium value. This is often a good assumption as mRNA degration is usually about
100 times faster than protein degradation (see Table 2.1). Thus we obtain

dP

dt
= β−γP, β := κ

α

δ
.

This model represents a simple first-order, linear differential equation for the rate
of production of a protein. In many cases this will be a sufficiently good approxi-
mate model, although we will see that in some cases it is too simple to capture the
observed behavior of a biological circuit.

2.3 Transcriptional regulation

The operation of a cell is governed in part by the selective expression of genes in
the DNA of the organism, which control the various functions the cell is able to
perform at any given time. Regulation of protein activity is a major component of
the molecular activities in a cell. By turning genes on and off, and modulating their
activity in more fine-grained ways, the cell controls its many metabolic pathways,
responds to external stimuli, differentiates into different cell types as it divides, and
maintains the internal state of the cell required to sustain life.

The regulation of gene expression and protein activity is accomplished through
a variety of molecular mechanisms, as discussed in Section 1.2 and illustrated in
Figure 2.9. At each stage of the processing from a gene to a protein, there are po-
tential mechanisms for regulating the production processes. The remainder of this
section will focus on transcriptional control and the next section on selected mech-
anisms for controlling protein activity. We will focus on prokaryotic mechanisms.

Transcriptional regulation of protein production

The simplest forms of transcriptional regulation are repression and activation, both
controlled through proteins called transcription factors. In the case of repression,
the presence of a transcription factor (often a protein that binds near the promoter)
turns off the transcription of the gene and this type of regulation is often called
negative regulation or “down regulation.” In the case of activation (or positive reg-
ulation), transcription is enhanced when an activator protein binds to the promoter
site (facilitating binding of the RNA polymerase).

Repression. A common mechanism for repression is that a protein binds to a region
of DNA near the promoter and blocks RNA polymerase from binding. The region
of DNA to which the repressor protein binds is called an operator region (see
Figure 2.10a). If the operator region overlaps the promoter, then the presence of
a protein at the promoter can “block” the DNA at that location and transcription
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Figure 2.9: Regulation of proteins. Transcriptional control includes mechanisms to tune
the rate at which mRNA is produced from DNA, while translation control includes mech-
anisms to tune the rate at which the protein polypeptide chain is produced from mRNA.
Protein activity control encompasses many processes, such as phosphorylation, methyla-
tion, and allosteric modification. Figure adapted from Phillips, Kondev and Theriot [78].

cannot initiate. Repressor proteins often bind to DNA as dimers or pairs of dimers
(effectively tetramers). Figure 2.10b shows some examples of repressors bound to
DNA.

A related mechanism for repression is DNA looping. In this setting, two repres-
sor complexes (often dimers) bind in different locations on the DNA and then bind
to each other. This can create a loop in the DNA and block the ability of RNA poly-
merase to bind to the promoter, thus inhibiting transcription. Figure 2.11 shows an
example of this type of repression, in the lac operon. (An operon is a set of genes
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Figure 2.10: Repression of gene expression. A repressor protein binds to operator sites on
the gene promoter and blocks the binding of RNA polymerase to the promoter, so that
the gene is off. Figures adapted from Phillips, Kondev and Theriot [78]. Copyright 2009
from Physical Biology of the Cell by Phillips et al. Reproduced by permission of Garland
Science/Taylor & Francis LLC.

that is under control of a single promoter.)

Activation. The process of activation of a gene requires that an activator protein be
present in order for transcription to occur. In this case, the protein must work to
either recruit or enable RNA polymerase to begin transcription.

The simplest form of activation involves a protein binding to the DNA near
the promoter in such a way that the combination of the activator and the promoter
sequence bind RNA polymerase. Figure 2.12 illustrates the basic concept.

Another mechanism for activation of transcription, specific to prokaryotes, is
the use of sigma factors. Sigma factors are part of a modular set of proteins that
bind to RNA polymerase and form the molecular complex that performs transcrip-
tion. Different sigma factors enable RNA polymerase to bind to different promot-
ers, so the sigma factor acts as a type of activating signal for transcription. Table 2.2
lists some of the common sigma factors in bacteria. One of the uses of sigma fac-
tors is to produce certain proteins only under special conditions, such as when the
cell undergoes heat shock. Another use is to control the timing of the expression of
certain genes, as illustrated in Figure 2.13.
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(a) DNA looping

5 nm

(b) lac repressor

Figure 2.11: Repression via DNA looping. A repressor protein can bind simultaneously to
two DNA sites downstream of the start of transcription, thus creating a loop that prevents
RNA polymerase from transcribing the gene. Figures adapted from Phillips, Kondev and
Theriot [78]. Copyright 2009 from Physical Biology of the Cell by Phillips et al. Repro-
duced by permission of Garland Science/Taylor & Francis LLC.

Inducers. A feature that is present in some types of transcription factors is the ex-
istence of an inducer molecule that combines with the protein to either activate
or inactivate its function. A positive inducer is a molecule that must be present in
order for repression or activation to occur. A negative inducer is one in which the
presence of the inducer molecule blocks repression or activation, either by chang-
ing the shape of the transcription factor protein or by blocking active sites on the
protein that would normally bind to the DNA. Figure 2.14 summarizes the various
possibilities. Common examples of repressor-inducer pairs include lacI and lactose
(or IPTG), and tetR and aTc. Lactose/IPTG and aTc are both negative inducers, so
their presence causes the otherwise repressed gene to be expressed. An example of
a positive inducer is cyclic AMP (cAMP), which acts as a positive inducer for the
CAP activator.

Combinatorial promoters. In addition to promoters that can take either a repressor
or an activator as the sole input transcription factor, there are combinatorial pro-
moters that can take both repressors and activators as input transcription factors.
This allows genes to be switched on and off based on more complex conditions,
represented by the concentrations of two or more activators or repressors.

Table 2.2: Sigma factors in E. coli [2].

Sigma factor Promoters recognized
σ70 most genes
σ32 genes associated with heat shock
σ38 genes involved in stationary phase and stress response
σ28 genes involved in motility and chemotaxis
σ24 genes dealing with misfolded proteins in the periplasm



2.3. TRANSCRIPTIONAL REGULATION 59

RNA
polymeraseActivator

Adhesive
interaction

(a) Activation mechanism (b) Examples of activators

Figure 2.12: Activation of gene expression. (a) Conceptual operation of an activator. The
activator binds to DNA upstream of the gene and attracts RNA polymerase to the DNA
strand. (b) Examples of activators: catabolite activator protein (CAP), p53 tumor suppres-
sor, zinc finger DNA binding domain and leucine zipper DAN binding domain. Figures
adapted from Phillips, Kondev and Theriot [78]. Copyright 2009 from Physical Biology of

the Cell by Phillips et al. Reproduced by permission of Garland Science/Taylor & Francis
LLC.
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Figure 2.13: Use of sigma factors to control the timing of gene expression in a bacterial
virus. Early genes are transcribed by RNA polymerase bound to bacterial sigma factors.
One of the early genes, called 28, encodes a sigma-like factor that binds to RNA poly-
merase and allow it to transcribe middle genes, which in turn produce another sigma-like
factor that allows RNA polymerase to transcribe late genes. These late genes produce pro-
teins that form a coat for the viral DNA and lyse the cell. Figure adapted from Alberts et
al. [2].
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Figure 2.14: Effects of inducers. (a) In the case of repressors, a negative inducer binds to
the repressor making it unbind DNA, thus enabling transcription. A positive inducer, by
contrast, activates the repressor allowing it to bind DNA. (b) In the case of activators, a
negative inducer binds to the activator making it unbind DNA, thus preventing transcrip-
tion. A positive inducer instead enables the activator to bind DNA, allowing transcription.
Figures adapted from Alberts et al. [2].

Figure 2.15 shows one of the classic examples, a promoter for the lac system.
In the lac system, the expression of genes for metabolizing lactose are under the
control of a single (combinatorial) promoter. CAP, which is positively induced by
cAMP, acts as an activator and LacI (also called “Lac repressor”), which is neg-
atively induced by lactose, acts as a repressor. In addition, the inducer cAMP is
expressed only when glucose levels are low. The resulting behavior is that the pro-
teins for metabolizing lactose are expressed only in conditions where there is no
glucose (so CAP is active) and lactose is present.

More complicated combinatorial promoters can also be used to control tran-
scription in two different directions, an example that is found in some viruses.

Antitermination. A final method of activation in prokaryotes is the use of antiter-

mination. The basic mechanism involves a protein that binds to DNA and deacti-
vates a site that would normally serve as a termination site for RNA polymerase.
Additional genes are located downstream from the termination site, but without a
promoter region. Thus, in the absence of the antiterminator protein, these genes are
not expressed (or expressed with low probability). However, when the antitermina-
tion protein is present, the RNA polymerase maintains (or regains) its contact with
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Figure 2.15: Combinatorial logic for the lac operator. The CAP-binding site and the oper-
ator in the promoter can be both bound by CAP (activator) and by LacI (Lac repressor),
respectively. The only configuration in which RNA polymerase can bind the promoter and
start transcription is where CAP is bound but LacI is not bound. Figure adapted from
Phillips, Kondev and Theriot [78].

the DNA and expression of the downstream genes is enhanced. In this way, an-
titermination allows downstream genes to be regulated by repressing “premature”
termination. An example of an antitermination protein is the protein N in phage
λ, which binds to a region of DNA labeled nut (for N utilization), as shown in
Figure 2.16 [37].

Reaction models

We can capture the molecular interactions responsible for transcriptional regulation
by modifying the RNA polymerase binding reactions in equation (2.10) to include
the binding of the repressor or activator to the promoter. For a repressor (Rep), we
have to add a reaction that represents the repressor bound to the promoter DNAp:

Repressor binding: DNAp+Rep −−−⇀↽−−− DNA:Rep.



62 CHAPTER 2. DYNAMIC MODELING OF CORE PROCESSES

nutL

λ

pL pR

– N

+ N

nutR

Figure 2.16: Antitermination. Protein N binds to DNA regions labeled nut, enabling tran-
scription of longer DNA sequences. Figure adapted from [37].

This reaction acts to “sequester” the DNA promoter site so that it is no longer avail-
able for binding by RNA polymerase. The strength of the repressor is reflected
in the reaction rate constants for the repressor binding reaction. Sometimes, the
RNA polymerase can bind to the promoter even when the repressor is bound, usu-
ally with lower association rate constant. In this case, the repressor still allows
some transcription even when bound to the promoter and the repressor is said to be
“leaky.”

The modifications for an activator (Act) are a bit more complicated, since we
have to modify the reactions to require the presence of the activator before RNA
polymerase can bind the promoter. One possible mechanism, known as the recruit-

ment model, is given by

Activator binding: DNAp+Act −−−⇀↽−−− DNAp:Act,

RNAP binding w/ activator: RNAPp+DNAp:Act −−−⇀↽−−− RNAP:DNAp:Act,

Isomerization: RNAP:DNAp:Act −−→ RNAP:DNAo:Act,

Start of transcription: RNAP:DNAo:Act −−→ RNAP:DNA1+DNAp:Act.
(2.19)

In this model, RNA polymerase cannot bind to the promoter unless the activator
is already bound to it. More generally, one can model both the enhanced binding
of the RNA polymerase to the promoter in the presence of the activator, as well as
the possibility of binding without an activator. This translates into the additional
reaction RNAPp+DNAp −−−⇀↽−−− RNAP:DNAp. The relative reaction rates determine
how strong the activator is and the “leakiness” of transcription in the absence of
the activator. A different model of activation, called allosteric activation, is one in
which the RNA polymerase binding rate to DNA is not enhanced by the presence
of the activator bound to the promoter, but the open complex (and hence start of
transcription) formation can occur only (is enhanced) in the presence of the activa-
tor.

A simplified ordinary differential equation model of transcription in the pres-
ence of activators or repressors can be obtained by accounting for the fact that
transcription factors and RNAP bind to the DNA rapidly when compared to other
reactions, such as isomerization and elongation. As a consequence, we can make
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use of the reduced-order models that describe the quasi-steady state concentrations
of proteins bound to DNA as described in Section 2.1. We can consider the com-
petitive binding case to model a strong repressor that prevents RNA polymerase
from binding to the DNA. In the sequel, we remove the superscripts “p” and “d”
from RNA polymerase to simplify notation. The quasi-steady state concentration
of the complex of DNA promoter bound to the repressor will have the expression

[DNAp:Rep] =
[DNA]tot([Rep]/Kd)

1+ [Rep]/Kd+ [RNAP]/K′d

and the steady state amount of DNA promoter bound to the RNA polymerase will
be given by

[RNAP:DNAp] =
[DNA]tot([RNAP]/K′d)

1+ [RNAP]/K′d+ [Rep]/Kd
,

in which K′d is the dissociation constant of RNA polymerase from the promoter,
while Kd is the dissociation constant of Rep from the promoter, and [DNA]tot rep-
resents the total concentration of DNA. The free DNA promoter with RNA poly-
merase bound will allow transcription, while the complex DNAp : Rep will not
allow transcription as it is not bound to RNA polymerase. Using the lumped reac-
tions (2.12) with reaction rate constant k f, this can be modeled as

d[mRNA]
dt

= F([Rep])−δ[mRNA],

in which the production rate is given by

F([Rep]) = k f
[DNA]tot ([RNAP]/K′d)

1+ [RNAP]/K′d+ [Rep]/Kd
.

If the repressor binds to the promoter with cooperativity n, the above expression
becomes (see Section 2.1)

F([Rep]) = k f
[DNA]tot ([RNAP]/K′d)

1+ [RNAP]/K′d+ [Rep]n/(KmKd)
,

in which Km is the dissociation constant of the reaction of n molecules of Rep
binding together. The function F is usually represented in the standard Hill function
form

F([Rep]) =
α

1+ ([Rep]/K)n
,

in which α and K are given by

α =
k f[DNA]tot([RNAP]/K′d)

1+ ([RNAP]/K′d)
, K =

(

KmKd(1+ ([RNAP]/K′d)
)1/n
.



64 CHAPTER 2. DYNAMIC MODELING OF CORE PROCESSES

Finally, if the repressor allows RNA polymerase to still bind to the promoter at a
small rate (leaky repressor), the above expression can be modified to take the form

F([Rep]) =
α

1+ ([Rep]/K)n
+α0, (2.20)

in which α0 is the basal expression rate when the promoter is fully repressed, usu-
ally referred to as leakiness (see Exercise 2.8).

To model the production rate of mRNA in the case in which an activator Act
is required for transcription, we can consider the case in which RNA polymerase
binds only when the activator is already bound to the promoter (recruitment model).
To simplify the mathematical derivation, we rewrite the reactions (2.19) involving
the activator with the lumped transcription reaction (2.12) into the following:

DNAp+Act −−−⇀↽−−− DNAp:Act,

RNAP+DNAp:Act −−−⇀↽−−− RNAP:DNAp:Act,

RNAP:DNAp:Act
k f−→mRNA+RNAP+DNAp:Act,

(2.21)

in which the third reaction lumps together isomerization, start of transcription,
elongation and termination. The first and second reactions fit the structure of the
cooperative binding model illustrated in Section 2.1. Also, since the third reaction
is much slower than the first two, the complex RNAP : DNAp : Act concentration
can be well approximated at its quasi-steady state value. The expression of the
quasi-steady state concentration was given in Section 2.1 in correspondence to the
cooperative binding model and takes the form

[RNAP:DNAp:Act] =
[DNA]tot([RNAP]/K′d)([Act])/Kd)

1+ ([Act]/Kd)(1+ [RNAP]/K′d)
,

in which K′d is the dissociation constant of RNA polymerase with the complex of
DNA bound to Act and Kd is the dissociation constant of Act with DNA. When
the activator Act binds to the promoter with cooperativity n, the above expression
becomes

[RNAP:DNAp:Act] =
[DNA]tot([RNAP][Act]n)/(KdK′dKm)

1+ ([Act]n/KdKm)(1+ [RNAP]/K′d)
,

in which Km is the dissociation constant of the reaction of n molecules of Act
binding together.

In order to write the differential equation for the mRNA concentration, we con-
sider the third reaction in (2.21) along with the above quasi-steady state expressions
of [RNAP : DNAp : Act] to obtain

d [mRNA]
dt

= F([Act])−δ[mRNA],
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in which

F([Act]) = k f
[DNA]tot([RNAP][Act]n)/(KdK′dKm)

1+ ([Act]n/KdKm)(1+ [RNAP]/K′d)
=:
α([Act]/K)n

1+ ([Act]/K)n
,

where α and K are implicitly defined. The right-hand side of this expression is in
standard Hill function form.

If we assume that RNA polymerase can still bind to DNA even when the acti-
vator is not bound, we have an additional basal expression rate α0 so that the new
form of the production rate is given by (see Exercise 2.9)

F([Act]) =
α([Act]/K)n

1+ ([Act]/K)n
+α0. (2.22)

As indicated earlier, many activators and repressors operate in the presence of
inducers. To incorporate these dynamics in our description, we simply have to add
the reactions that correspond to the interaction of the inducer with the relevant
protein. For a negative inducer, we can add a reaction in which the inducer binds
the regulator protein and effectively sequesters it so that it cannot interact with the
DNA. For example, a negative inducer operating on a repressor could be modeled
by adding the reaction

Rep+ Ind −−−⇀↽−−− Rep:Ind.

Since the above reactions are very fast compared to transcription, they can be as-
sumed at the quasi-steady state. Hence, the free amount of repressor that can still
bind to the promoter can be calculated by writing the ODE model corresponding
to the above reactions and by setting the time derivatives to zero. This yields

[Rep] =
[Rep]tot

1+ [Ind]/K̄d
,

in which [Rep]tot = [Rep]+ [Rep:Ind] is the total amount of repressor (bound and
unbound to the inducer) and K̄d is the dissociation constant of Ind binding to Rep.
This expression of the repressor concentration needs to be substituted in the ex-
pression of the production rate F([Rep]).

Positive inducers can be handled similarly, except now we have to modify the
binding reactions to only work in the presence of a regulatory protein bound to an
inducer. For example, a positive inducer on an activator would have the modified
reactions

Inducer binding: Act+ Ind −−−⇀↽−−− Act:Ind,

Activator binding: DNAp+Act:Ind −−−⇀↽−−− DNAp:Act:Ind,

RNAP binding w/ activator: RNAP+DNAp:Act:Ind −−−⇀↽−−− RNAP:DNAp:Act:Ind,

Isomerization: RNAP:DNAp:Act:Ind −−→ RNAP:DNAo:Act:Ind,

Start of transcription: RNAP:DNAo:Act:Ind −−→ RNAP:DNA1

+DNAp:Act:Ind.
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Figure 2.17: Autoregulation of gene expression. In (a) the circuit is unregulated, while (b)
shows negative autoregulation and (c) shows positive autoregulation.

Hence, in the expression of the production rate F([Act]), we should substitute the
concentration [Act:Ind] in place of [Act]. This concentration, in turn, is well ap-
proximated by its quasi-steady state value since binding reactions are much faster
than isomerization and transcription, and can be obtained as in the negative inducer
case.

Example 2.2 (Autoregulation of gene expression). Consider the circuits shown in
Figure 2.17, representing an unregulated gene, a negatively autoregulated gene and
a positively autoregulated gene. We want to model the dynamics of the protein A
starting from zero initial conditions for the three different cases to understand how
the three different circuit topologies affect dynamics.

The dynamics of the three circuits can be written in a common form,

dmA

dt
= F(A)−δmA,

dA

dt
= κmA−γA, (2.23)

where F(A) is in one of the following forms:

Funreg(A) = αB, Frepress(A) =
αB

1+ (A/K)n
+α0, Fact(A) =

αA(A/K)n

1+ (A/K)n
+αB.

We choose the parameters to be

αA = 0.375 nM/s, αB = 0.5 nM/s, α0 = 5×10−4 nM/s,

κ = 0.116 s−1, δ = 5.78×10−3 s−1, γ = 1.16×10−3 s−1,

K = 104 nM, n = 2,

corresponding to biologically plausible values. Note that the parameters are chosen
so that F(0) ≈ αB for each circuit.

Figure 2.18a shows the results of simulations comparing the response of the
three circuits. We see that initial increase in protein concentration is identical for
each circuit, consistent with our choice of Hill functions and parameters. As the
expression level increases, the effects of positive and negative regulation are seen,



2.3. TRANSCRIPTIONAL REGULATION 67

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

12000

14000

Time (min)

C
on

ce
nt

ra
tio

n,
A

(n
M

)

(a) Default promoters

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

12000

14000

Time (min)

 

 

unregulated
negative
positive

C
on

ce
nt

ra
tio

n,
A

(n
M

)

(b) Modified promoters

Figure 2.18: Simulations for autoregulated gene expression. (a) Non-adjusted expression
levels. (b) Equalized expression levels.

leading to different steady state expression levels. In particular, the negative feed-
back circuit reaches a lower steady state expression level while the positive feed-
back circuit settles to a higher value.

In some situations, it makes sense to ask whether different circuit topologies
have different properties that might lead us to choose one over another. In the case
where the circuit is going to be used as part of a more complex pathway, it may
make the most sense to compare circuits that produce the same steady state concen-
tration of the protein A. To do this, we must modify the parameters of the individual
circuits, which can be done in a number of different ways: we can modify the pro-
moter strengths, degradation rates, or other molecular mechanisms reflected in the
parameters.

The steady state expression level for the negative autoregulation case can be
adjusted by using a stronger promoter (modeled by αB) or ribosome binding site
(modeled by κ). The equilibrium point for the negative autoregulation case is given
by the solution of the equations

mA,e =
αKn

δ(Kn+An
e)
, Ae =

κ

γ
mA,e.

These coupled equations can be solved for mA,e and Ae, but in this case we simply
need to find values α′B and κ′ that give the same values as the unregulated case. For
example, if we equate the mRNA levels of the unregulated system with that of the
negatively autoregulated system, we have

αB

δ
=

1
δ

(

α′BKn

Kn+An
e

+α0

)

=⇒ α′B = (αB−α0)
Kn+An

e

Kn
, Ae =

αBκ

δγ
,

where Ae is the desired equilibrium value (which we choose using the unregulated
case as a guide).
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A similar calculation can be done for the case of positive autoregulation, in
this case decreasing the promoter parameters αA and αB so that the steady state
values match. A simple way to do this is to leave αA unchanged and decrease αB

to account for the positive feedback. Solving for α′B to give the same mRNA levels
as the unregulated case yields

α′B = αB−αA
An

e

Kn+An
e

.

Figure 2.18b shows simulations of the expression levels over time for the mod-
ified circuits. We see now that the expression levels all reach the same steady state
value. The negative autoregulated circuit has the property that it reaches the steady
state more quickly, due to the increased rate of protein expression when A is small
(α′B > αB). Conversely, the positive autoregulated circuit has a slower rate of ex-
pression than the constitutive case, since we have lowered the rate of protein ex-
pression when A is small. The initial higher and lower expression rates are com-
pensated for via the autoregulation, resulting in the same expression level in steady
state. ∇

We have described how a Hill function can model the regulation of a gene
by a single transcription factor. However, genes can also be regulated by multiple
transcription factors, some of which may be activators and some may be repressors,
as in the case of combinatorial promoters. The mRNA production rate can thus take
several forms depending on the roles (activators versus repressors) of the various
transcription factors. In general, the production rate resulting from a promoter that
takes as input transcription factors Pi for i ∈ {1, ...,N} will be denoted F(P1, ...,PN).

The dynamics of a transcriptional module are often well captured by the ordi-
nary differential equations

dmPi

dt
= F(P1, ...,PN)−δPimPi

,
dPi

dt
= κPimPi

−γPi
Pi. (2.24)

For a combinatorial promoter with two input proteins, an activator Pa and a repres-
sor Pr, in which, for example, the activator cannot bind if the repressor is bound
to the promoter, the function F(Pa,Pr) can be obtained by employing the competi-
tive binding in the reduced-order models of Section 2.1. In this case, assuming the
activator has cooperativity n and the repressor has cooperativity m, we obtain the
expression

F(Pa,Pr) = α
(Pa/Ka)n

1+ (Pa/Ka)n+ (Pr/Kr)m
, (2.25)

where Ka = (Km,aKd,a)(1/n), Kr = (Km,rKd,r)(1/m), in which Kd,a and Kd,r are the dis-
sociation constants of the activator and repressor, respectively, from the DNA pro-
moter site, while Km,a and Km,r are the dissociation constants for the cooperative
binding reactions for the activator and repressor, respectively. In these expressions,
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Figure 2.19: The incoherent feedforward loop (type I). (a) A schematic diagram of the
circuit. (b) A simulation of the model in equation (2.28) with βA = 0.01 µM/min, γ = 0.01
min−1, βB = 1 µM/min, βC = 100 µM/min, KB = 0.001 µM , and KA = 1 µM.

RNA polymerase does not explicitly appear as it affects the values of the disso-
ciation constants and of α. In the case in which the activator is “leaky,” that is,
some transcription still occurs even when there is no activator, the above expres-
sion should be modified to

F(Pa,Pr) = α
(Pa/Ka)n

1+ (Pa/Ka)n+ (Pr/Kr)m
+α0, (2.26)

where α0 is the basal transcription rate when no activator is present. If the basal rate
can still be repressed by the repressor, the above expression should be modified to
(see Exercise 2.10)

F(Pa,Pr) =
α(Pa/Ka)n+α0

1+ (Pa/Ka)n+ (Pr/Kr)m
. (2.27)

Example 2.3 (Incoherent feedforward loops). Combinatorial promoters with two
inputs are often used in systems where a logical “and” is required. As an example,
we illustrate here an incoherent feedforward loop (type I) [4]. Such a circuit is
composed of three transcription factors A, B, and C, in which A directly activates C
and B while B represses C. This is illustrated in Figure 2.19a. This is different from
a coherent feedforward loop in which both A and B activate C. In the incoherent
feedforward loop, if we would like C to be high only when A is high and B is low
(“and” gate), we can consider a combinatorial promoter in which the activator A
and the repressor B competitively bind to the promoter of C. The resulting Hill
function is given by the expression in equation (2.25). Depending on the values
of the constants, the expression of C is low unless A is high and B is low. The
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resulting ODE model, neglecting the mRNA dynamics, is given by the system

dA

dt
= βA−γA,

dB

dt
= βB

A/KA

1+ (A/KA)
−γB,

dC

dt
= βC

A/KA

1+ (A/KA)+ (B/KB)
−γC,

(2.28)

in which we have assumed no cooperativity of binding for both the activator and
the repressor. If we view βA as an input to the system and C as an output, we can
investigate how this output responds to a sudden increase of βA. Upon a sudden
increase of βA, protein A builds up and binds to the promoter of C initiating tran-
scription, so that protein C starts getting produced. At the same time, protein B
is produced and accumulates until it reaches a large enough value to repress C.
Hence, we can expect a pulse of C production for suitable parameter values. This
is shown in Figure 2.19b. Note that if the production rate constant βC is very large,
a little amount of A will cause C to immediately tend to a very high concentration.
This explains the large initial slope of the C signal in Figure 2.19b. ∇

2.4 Post-transcriptional regulation

In addition to regulation of expression through modifications of the process of tran-
scription, cells can also regulate the production and activity of proteins via a col-
lection of other post-transcriptional modifications. These include methods of mod-
ulating the translation of proteins, as well as affecting the activity of a protein via
changes in its conformation.

Allosteric modifications to proteins

In allosteric regulation, a regulatory molecule, called allosteric effector, binds to a
site separate from the catalytic site (active site) of an enzyme. This binding causes
a change in the conformation of the protein, turning off (or turning on) the catalytic
site (Figure 2.20).

An allosteric effector can either be an activator or an inhibitor, just like inducers
work for activation or inhibition of transcription factors. Inhibition can either be
competitive or not competitive. In the case of competitive inhibition, the inhibitor
competes with the substrate for binding the enzyme, that is, the substrate can bind
to the enzyme only if the inhibitor is not bound. In the case of non-competitive
inhibition, the substrate can be bound to the enzyme even if the latter is bound to
the inhibitor. In this case, however, the product may not be able to form or may
form at a lower rate, in which case, we have partial inhibition.



2.4. POST-TRANSCRIPTIONAL REGULATION 71

Conformational
change

Substrate

Regulatory
molecule

Protein

ProteinAllosteric
site

Catalytic
site

Figure 2.20: In allosteric regulation, a regulatory molecule binds to a site separate from
the catalytic site (active site) of an enzyme. This binding causes a change in the three-
dimensional conformation of the protein, turning off (or turning on) the catalytic site. Fig-
ure adapted from http://courses.washington.edu/conj/protein/proregulate.htm

Activation can be absolute or not. Specifically, an allosteric effector is an abso-

lute activator when the enzyme can bind to the substrate only when the enzyme is
bound to the allosteric effector. Otherwise, the allosteric effector is a non-absolute
activator. In this section, we derive the expressions for the production rate of the
active protein in an enzymatic reaction in the two most common cases: when we
have a (non-competitive) inhibitor I or an (absolute) activator A of the enzyme.

Allosteric inhibition

Consider the standard enzymatic reaction

E+S
a
−⇀↽−

d
ES

k
−→ E+P,

in which enzyme E binds to substrate S and transforms it into the product P. Let I be
a (non-competitive) inhibitor of enzyme E so that when E is bound to I, the complex
EI can still bind to substrate S, however, the complex EIS is non-productive, that
is, it does not produce P. Then, we have the following additional reactions:

E+ I
k+−−⇀↽−−
k−

EI, ES+ I
k+−−⇀↽−−
k−

EIS, EI+S
a
−⇀↽−

d
EIS,

in which, for simplicity of notation, we have assumed that the dissociation constant
between E and I does not depend on whether E is bound to the substrate S. Simi-
larly, we have assumed that the dissociation constant of E from S does not depend



72 CHAPTER 2. DYNAMIC MODELING OF CORE PROCESSES

on whether the inhibitor I is bound to E. Additionally, we have the conservation
laws:

Etot = E+ [ES]+ [EI]+ [EIS], S tot = S +P+ [ES]+ [EIS].

The production rate of P is given by dP/dt = k[ES]. Since binding reactions are
very fast, we can assume that all the complexes’ concentrations are at the quasi-
steady state. This gives

[EIS] =
a

d
[EI] ·S , [EI] =

k+

k−
E · I, [ES] =

S ·E
Km
,

where Km = (d+ k)/a is the Michaelis-Menten constant. Using these expressions,
the conservation law for the enzyme, and the fact that a/d ≈ 1/Km, we obtain

E =
Etot

(I/Kd+1)(1+S/Km)
, with Kd = k−/k+,

so that
[ES] =

S

S +Km

Etot

1+ I/Kd

and, as a consequence,

dP

dt
= kEtot

(

1
1+ I/Kd

)(

S

S +Km

)

.

In our earlier derivations of the Michaelis-Menten kinetics Vmax = kEtot was called
the maximal velocity, which occurs when the enzyme is completely saturated by
the substrate (Section 2.1, equation (2.9)). Hence, the effect of a non-competitive
inhibitor is to decrease the maximal velocity Vmax to Vmax/(1+ I/Kd).

Another type of inhibition occurs when the inhibitor is competitive, that is,
when I is bound to E, the complex EI cannot bind to protein S. Since E can either
bind to I or S (not both), I competes against S for binding to E (see Exercise 2.13).

Allosteric activation

In this case, the enzyme E can transform S to its active form only when it is bound
to A. Also, we assume that E cannot bind S unless E is bound to A (from here, the
name absolute activator). The reactions should be modified to

E+A
k+−−⇀↽−−
k−

EA, EA+S
a
−⇀↽−
d

EAS
k
−→ P+EA,

with conservation laws

Etot = E+ [EA]+ [EAS], S tot = S +P+ [EAS].
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(b) Allosteric activator

Figure 2.21: Maximal velocity in the presence of allosteric effectors (inhibitors or acti-
vators). The plots in (a) show the maximal velocity Vmax/(1+ I/Kd) as a function of the
inhibitor concentration I. The plots in (b) show the maximal velocity VmaxA/(A+Kd) as a
function of the activator concentration A. The different plots show the effect of the disso-
ciation constant for Vmax = 1.

The production rate of P is given by dP/dt = k [EAS]. Assuming as above that the
complexes are at the quasi-steady state, we have that

[EA] =
E ·A
Kd
, [EAS] =

S · [EA]
Km

,

which, using the conservation law for E, leads to

E =
Etot

(1+S/Km)(1+A/Kd)
and [EAS] =

(

A

A+Kd

)(

S

S +Km

)

Etot.

Hence, we have that
dP

dt
= kEtot

(

A

A+Kd

)(

S

S +Km

)

.

The effect of an absolute activator is to modulate the maximal speed of modification
by a factor A/(A+Kd).

Figure 2.21 shows the behavior of the maximal velocity as a function of the
allosteric effector concentration. As the dissociation constant decreases, that is, the
affinity of the effector increases, a very small amount of effector will cause the
maximal velocity to reach Vmax in the case of the activator and 0 in the case of the
inhibitor.

Another type of activation occurs when the activator is not absolute, that is,
when E can bind to S directly, but cannot activate S unless the complex ES first
binds A (see Exercise 2.14).
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Covalent modifications to proteins

In addition to regulation that controls transcription of DNA into mRNA, a variety
of mechanisms are available for controlling expression after mRNA is produced.
These include control of splicing and transport from the nucleus (in eukaryotes),
the use of various secondary structure patterns in mRNA that can interfere with
ribosomal binding or cleave the mRNA into multiple pieces, and targeted degrada-
tion of mRNA. Once the polypeptide chain is formed, additional mechanisms are
available that regulate the folding of the protein as well as its shape and activity
level.

One of the most common types of post-transcriptional regulation is through the
covalent modification of proteins, such as through the process of phosphorylation.
Phosphorylation is an enzymatic process in which a phosphate group is added to
a protein and the resulting conformation of the protein changes, usually from an
inactive configuration to an active one. The enzyme that adds the phosphate group
is called a kinase and it operates by transferring a phosphate group from a bound
ATP molecule to the protein, leaving behind ADP and the phosphorylated protein.
Dephosphorylation is a complementary enzymatic process that can remove a phos-
phate group from a protein. The enzyme that performs dephosphorylation is called
a phosphatase. Figure 2.3 shows the process of phosphorylation in more detail.

Since phosphorylation and dephosphorylation can occur much more quickly
than protein production and degradation, it is used in biological circuits in which
a rapid response is required. One common pattern is that a signaling protein will
bind to a ligand and the resulting allosteric change allows the signaling protein to
serve as a kinase. The newly active kinase then phosphorylates a second protein,
which modulates other functions in the cell. Phosphorylation cascades can also be
used to amplify the effect of the original signal; we will describe this in more detail
in Section 2.5.

Kinases in cells are usually very specific to a given protein, allowing detailed
signaling networks to be constructed. Phosphatases, on the other hand, are much
less specific, and a given phosphatase species may dephosphorylate many different
types of proteins. The combined action of kinases and phosphatases is important in
signaling since the only way to deactivate a phosphorylated protein is by removing
the phosphate group. Thus phosphatases are constantly “turning off” proteins, and
the protein is activated only when sufficient kinase activity is present.

Phosphorylation of a protein occurs by the addition of a charged phosphate
(PO4) group to the serine (Ser), threonine (Thr) or tyrosine (Tyr) amino acids. Sim-
ilar covalent modifications can occur by the attachment of other chemical groups
to select amino acids. Methylation occurs when a methyl group (CH3) is added
to lysine (Lys) and is used for modulation of receptor activity and in modifying
histones that are used in chromatin structures. Acetylation occurs when an acetyl
group (COCH3) is added to lysine and is also used to modify histones. Ubiquitina-
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Figure 2.22: (a) General diagram representing a covalent modification cycle. (b) Detailed
view of a phosphorylation cycle including ATP, ADP, and the exchange of the phosphate
group “p.”

tion refers to the addition of a small protein, ubiquitin, to lysine; the addition of a
polyubiquitin chain to a protein targets it for degradation.

Here, we focus on reversible cycles of modification, in which a protein is in-
terconverted between two forms that differ in activity. At a high level, a covalent
modification cycle involves a target protein X, an enzyme Z for modifying it, and
a second enzyme Y for reversing the modification (see Figure 2.22). We call X∗

the activated protein. There are often allosteric effectors or further covalent modi-
fication systems that regulate the activity of the modifying enzymes, but we do not
consider this added level of complexity here. The reactions describing this system
are given by the following two enzymatic reactions, also called a two-step reaction

model:
Z+X

a1−−⇀↽−−
d1

C1
k1−→ X∗+Z, Y+X∗

a2−−⇀↽−−
d2

C2
k2−→ X+Y,

in which we have let C1 be the kinase/protein complex and C2 be the active pro-
tein/phosphatase complex. The corresponding differential equation model is given
by

dZ

dt
= −a1Z ·X+ (k1+d1)C1,

dX∗

dt
= k1C1−a2Y ·X∗+d2C2,

dX

dt
= −a1Z ·X+d1C1+ k2C2,

dC2

dt
= a2Y ·X∗ − (d2+ k2)C2,

dC1

dt
= a1Z ·X− (d1+ k1)C1,

dY

dt
= −a2Y ·X∗+ (d2+ k2)C2.

Furthermore, we have that the total amounts of enzymes Z and Y are conserved.
Denote the total concentrations of Z, Y, and X by Ztot, Ytot, and Xtot, respectively.
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Then, we have also the conservation laws

Z+C1 = Ztot, Y +C2 = Ytot, X+X∗+C1+C2 = Xtot.

Using the first two conservation laws, we can reduce the above system of differen-
tial equations to the following one:

dC1

dt
= a1(Ztot−C1) ·X− (d1+ k1)C1,

dX∗

dt
= k1C1−a2(Ytot−C2) ·X∗+d2C2,

dC2

dt
= a2(Ytot−C2) ·X∗ − (d2+ k2)C2.

As in the case of the enzymatic reaction, this system cannot be analytically
integrated. To simplify it, we can perform a similar approximation as done for the
enzymatic reaction. In particular, the complexes’ concentrations C1 and C2 reach
their steady state values very quickly under the assumption a1Ztot, a2Ytot, d1, d2≫
k1, k2. Therefore, we can approximate the above system by substituting for C1 and
C2 their steady state values, given by the solutions to

a1(Ztot−C1) ·X− (d1+ k1)C1 = 0

and
a2(Ytot−C2) ·X∗ − (d2+ k2)C2 = 0.

By solving these equations, we obtain that

C2 =
YtotX

∗

X∗+Km,2
, with Km,2 =

d2+ k2

a2
,

and
C1 =

ZtotX

X+Km,1
, with Km,1 =

d1+ k1

a1
.

As a consequence, the model of the phosphorylation system can be well approxi-
mated by

dX∗

dt
= k1

ZtotX

X+Km,1
−a2

YtotKm,2

X∗+Km,2
·X∗+d2

YtotX
∗

X∗+Km,2
,

which, considering that a2Km,2−d2 = k2, leads finally to

dX∗

dt
= k1

ZtotX

X+Km,1
− k2

YtotX
∗

X∗+Km,2
. (2.29)

We will come back to the modeling of this system after we have introduced sin-
gular perturbation theory, through which we will be able to perform a formal analy-
sis and mathematically characterize the assumptions needed for approximating the
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original system by the first-order model (2.29). Also, note that X should be replaced
by using the conservation law by X = Xtot−X∗ −C1−C2, which can be solved for X

using the expressions of C1 and C2. Under the common assumption that the amount
of enzyme is much smaller than the amount of substrate (Ztot,Ytot≪ Xtot) [36], we
have that X ≈ Xtot − X∗ [36], leading to a form of the differential equation (2.29)
that is simple enough to be analyzed mathematically.

Simpler models of phosphorylation cycles can be considered, which oftentimes
are instructive as a first step to study a specific question of interest. In particular,
the one-step reaction model neglects the complex formation in the two enzymatic
reactions and simply models them as a single irreversible reaction (see Exercise
2.12).

It is important to note that the speed of enzymatic reactions, such as phospho-
rylation and dephosphorylation, is usually much faster than the speed of protein
production and protein decay. In particular, the values of the catalytic rate con-
stants k1 and k2, even if changing greatly from organism to organism, are typically
several orders of magnitude larger than protein decay and can be on the order of
103 min−1 in bacteria where typical rates of protein decay are about 0.01 min−1

(http://bionumbers.hms.harvard.edu/).

Ultrasensitivity

One relevant aspect of the response of the covalent modification cycle to its input
is the sensitivity of the steady state characteristic curve, that is, the map that deter-
mines the equilibrium value of the output X∗ corresponding to a value of the input
Ztot. Specifically, which parameters affect the shape of the steady state characteris-
tic is a crucial question. To study this, we set dX∗/dt = 0 in equation (2.29). Using
the approximation X ≈ Xtot−X∗, defining K̄1 := Km,1/Xtot and K̄2 := Km,2/Xtot, we
obtain

y :=
k1Ztot

k2Ytot
=

X∗/Xtot
(

K̄1+ (1−X∗/Xtot)
)

(K̄2+X∗/Xtot) (1−X∗/Xtot)
. (2.30)

Since y is proportional to the input Ztot, we study the equilibrium value of X∗ as
a function of y. This function is usually characterized by two key parameters: the
response coefficient, denoted R, and the point of half maximal induction, denoted
y50. Let yα denote the value of y corresponding to having X∗ equal α% of the
maximum value of X∗ obtained for y=∞, which is equal to Xtot. Then, the response
coefficient is defined as

R :=
y90

y10
,

and measures how switch-like the response of X∗ is to changes in y (Figure 2.23).
When R→ 1 the response becomes switch-like. In the case in which the steady
state characteristic is a Hill function, we have that X∗ = (y/K)n/(1+ (y/K)n), so
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Figure 2.23: Steady state characteristic curve showing the relevance of the response coef-
ficient for ultrasensitivity. As R→ 1, the points y10 and y90 tend to each other.

that yα = (α/(100−α))(1/n) and as a consequence

R = (81)(1/n), or equivalently n =
log(81)
log(R)

.

Hence, when n = 1, that is, the characteristic is of the Michaelis-Menten type, we
have that R = 81, while when n increases, R decreases. Usually, when n > 1 the
response is referred to as ultrasensitive and the formula n = log(81)/log(R) is often
employed to estimate the apparent Hill coefficient of an experimentally obtained
steady state characteristic since R can be calculated directly from the data points.

In the case of the current system, from equation (2.30), we have that

y90 =
(K̄1+0.1) 0.9
(K̄2+0.9) 0.1

and y10 =
(K̄1+0.9) 0.1
(K̄2+0.1) 0.9

,

so that

R = 81
(K̄1+0.1)(K̄2+0.1)
(K̄2+0.9)(K̄1+0.9)

. (2.31)

As a consequence, when K̄1, K̄2≫ 1, we have that R→ 81, which gives a Michaelis-
Menten type of response. If instead K̄1, K̄2≪ 0.1, we have that R→ 1, which corre-
sponds to a theoretical Hill coefficient n≫ 1, that is, a switch-like response (Figure
2.24). In particular, if we have, for example, K̄1 = K̄2 = 10−2, we obtain an apparent
Hill coefficient greater than 13. This type of ultrasensitivity is usually referred to
as zero-order ultrasensitivity. The reason for this name is due to the fact that when
Km,1 is much smaller than the total amount of protein substrate Xtot, we have that
ZtotX/(Km,1+X) ≈ Ztot. Hence, the forward modification rate is “zero order” in the
substrate concentration (no free enzyme is left, all is bound to the substrate).

One can study the behavior also of the point of half maximal induction

y50 =
K̄1+0.5
K̄2+0.5

,
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Figure 2.24: Steady state characteristic curve of a covalent modification cycle as a function
of the Michaelis-Menten constants Km,1 and Km,2.

to find that as K̄2 increases, y50 decreases and that as K̄1 increases, y50 increases.

Phosphotransfer systems

Phosphotransfer systems are also a common motif in cellular signal transduction.
These structures are composed of proteins that can phosphorylate each other. In
contrast to kinase-mediated phosphorylation, where the phosphate donor is usually
ATP, in phosphotransfer the phosphate group comes from the donor protein itself
(Figure 2.25). Each protein carrying a phosphate group can donate it to the next
protein in the system through a reversible reaction.

Let X be a protein in its inactive form and let X∗ be the same protein once it
has been activated by the addition of a phosphate group. Let Z∗ be a phosphate
donor, that is, a protein that can transfer its phosphate group to the acceptor X.
The standard phosphotransfer reactions can be modeled according to the two-step
reaction model

Z∗+X
k1−−⇀↽−−
k2

C1

k3−−⇀↽−−
k4

X∗+Z,

in which C1 is the complex of Z bound to X bound to the phosphate group. Addi-
tionally, we assume that protein Z can be phosphorylated and protein X∗ dephos-
phorylated by other phosphorylation reactions by which the phosphate group is
taken to and removed from the system. These reactions are modeled as one-step
reactions depending only on the concentrations of Z and X∗, that is:

Z
π1−−→ Z∗, X∗

π2−−→ X.

Proteins X and Z are conserved in the system, that is, Xtot = X +C1 + X∗ and
Ztot = Z +C1 +Z∗. We view the total amount of Z, Ztot, as the input to our system
and the amount of phosphorylated form of X, X∗, as the output. We are interested
in the steady state characteristic curve describing how the steady state value of X∗

depends on the value of Ztot.
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Figure 2.25: (a) Diagram of a phosphotransfer system. (b) Proteins X and Z are transferring
the phosphate group p to each other.

The differential equation model corresponding to this system is given by the
equations

dC1

dt
= k1

(

Xtot−X∗ −C1
)

·Z∗ − k3C1− k2C1+ k4X∗ · (Ztot−C1−Z∗),

dZ∗

dt
= π1(Ztot−C1−Z∗)+ k2C1− k1

(

Xtot−X∗ −C1
)

·Z∗,

dX∗

dt
= k3C1− k4X∗ · (Ztot−C1−Z∗)−π2X∗.

(2.32)

The steady state transfer curve is shown in Figure 2.26 and it is obtained by sim-
ulating system (2.32) and recording the equilibrium values of X∗ corresponding
to different values of Ztot. The transfer curve is linear for a large range of values
of Ztot and can be rendered fairly close to a linear relationship for values of Ztot

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

 

 

X
∗

Ztot

k1 = 0.01
k1 = 0.1
k1 = 10

Figure 2.26: Steady state characteristic curve of the phosphotransfer system. Here, we have
set k2 = k3 = 0.1 s−1, k4 = 0.1 nM−1 s−1 , π1 = π2 = 3.1 s−1, and Xtot = 100 nM.
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smaller than Xtot by increasing k1. The slope of this linear relationship can be fur-
ther tuned by changing the values of k3 and k4 (see Exercise 2.15). Hence, this
system can function as an approximately linear anplifier. Its use in the realization
of insulation devices that attenuate the effects of loading from interconnections will
be illustrated in Chapter 6.

2.5 Cellular subsystems

In the previous section we have studied how to model a variety of core processes
that occur in cells. In this section we consider a few common “subsystems” in
which these processes are combined for specific purposes.

Intercellular signaling: MAPK cascades

The mitogen activated protein kinase (MAPK) cascade is a recurrent structural mo-
tif in several signal transduction pathways (Figure 2.27). The cascade consists of
a MAPK kinase (MAPKKK), denoted X0, a MAPK kinase (MAPKK), denoted
X1, and a MAPK, denoted X2. MAPKKKs activate MAPKKs by phosphorylation
at two conserved sites and MAPKKs activate MAPKs by phosphorylation at con-
served sites. The cascade relays signals from the cell membrane to targets in the
cytoplasm and nucleus. It has been extensively studied and modeled. Here, we pro-
vide a model for double phosphorylation, which is one of the main building blocks
of the MAPK cascade. Then, we construct a detailed model of the MAPK cascade,
including the reactions describing each stage and the corresponding rate equations.

Double phosphorylation model. Consider the double phosphorylation motif in Fig-
ure 2.28. The reactions describing the system are given by

E1+X
a1−−⇀↽−−
d1

C1
k1−→ X∗+E1, E2+X∗

a2−−⇀↽−−
d2

C2
k2−→ X+E2,

X∗+E1

a∗1−−⇀↽−−
d∗1

C3

k∗1−→ X∗∗+E1, E2+X∗∗
a∗2−−⇀↽−−
d∗2

C4

k∗2−→ X∗+E2,

in which C1 is the complex of E1 with X, C2 is the complex of E2 with X*, C3 is the
complex of E1 with X*, and C4 is the complex of E2 with X**. The conservation
laws are given by

E1+C1+C3 = E1,tot, E2+C2+C4 = E2,tot,

Xtot = X+X∗+X∗∗+C1+C2+C3+C4.

As performed earlier, we assume that the complexes are at the quasi-steady state
since binding reactions are very fast compared to the catalytic reactions. This gives
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Figure 2.27: Schematic representation of the MAPK cascade. It has three levels: the first
one has a single phosphorylation, while the second and the third ones have a double phos-
phorylation.

the Michaelis-Menten form for the amount of formed complexes:

C1 = E1,tot
K∗1 X

K∗1X+K1X∗+K1K∗1
, C3 = E1,tot

K1 X∗

K∗1X+K1X∗+K1K∗1
,

C2 = E2,tot
K∗2 X∗

K∗2X∗+K2X∗∗+K2K∗2
, C4 = E2,tot

K2 X∗∗

K∗2X∗+K2X∗∗+K2K∗2
,

in which Ki = (di+ki)/ai and K∗i = (d∗i +k∗i )/a∗i are the Michaelis-Menten constants
for the enzymatic reactions. Since the complexes are at the quasi-steady state, it

X* X**

Output

Input

X

E2

E1

Figure 2.28: Schematic representation of a double phosphorylation cycle. E1 is the input
and X∗∗ is the output.
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follows that

d

dt
X∗ = k1C1− k2C2− k∗1C3+ k∗2C4,

d

dt
X∗∗ = k∗1C3− k∗2C4,

from which, substituting the expressions of the complexes, we obtain that

d

dt
X∗ = E1,tot

k1XK∗1 − k∗1X∗K1

K∗1X+K1X∗+K∗1K1
+E2,tot

k∗2X∗∗K2− k2X∗K∗2
K∗2X∗+K2X∗∗+K2K∗2

,

d

dt
X∗∗ = k∗1E1,tot

K1X∗

K∗1X+K1X∗+K1K∗1
− k∗2E2,tot

K2 X∗∗

K∗2X∗+K2X∗∗+K2K∗2
.

Detailed model of the MAPK cascade. We now give the entire set of reactions for
the MAPK cascade of Figure 2.27 as they are found in standard references (Huang-
Ferrell model [44]):

E1+X0

a1,0
−−−⇀↽−−−

d1,0

C1
k1,0
−−→ X∗0+E1, P0+X∗0

a2,0
−−−⇀↽−−−

d2,0

C2
k2,0
−−→ X0+P0,

X∗0+X1

a1,1
−−−⇀↽−−−

d1,1

C3
k1,1
−−→ X∗1+X∗0, X∗1+P1

a2,1
−−−⇀↽−−−

d2,1

C4
k2,1
−−→ X1+P1,

X∗0+X∗1
a∗1,1
−−−⇀↽−−−

d∗1,1

C5

k∗1,1
−−→ X∗∗1 +X∗0, X∗∗1 +P1

a∗2,1
−−−⇀↽−−−

d∗2,1

C6

k∗2,1
−−→ X∗1+P1,

X∗∗1 +X2

a1,2
−−−⇀↽−−−

d1,2

C7
k1,2
−−→ X∗2+X∗∗1 , X∗2+P2

a2,2
−−−⇀↽−−−

d2,2

C8
k2,2
−−→ X2+P2,

X∗∗1 +X∗2
a∗1,2
−−−⇀↽−−−

d∗1,2

C9

k∗1,2
−−→ X∗∗2 +X∗∗1 , X∗∗2 +P2

a∗2,2
−−−⇀↽−−−

d∗2,2

C10

k∗2,2
−−→ X∗2+P2,

with conservation laws

X0,tot = X0+X∗0 +C1+C2+C3+C5,

X1,tot = X1+X∗1 +C3+X∗∗1 +C4+C5+C6+C7+C9,

X2,tot = X2+X∗2 +X∗∗2 +C7+C8+C9+C10,

E1,tot = E1+C1, P0,tot = P0+C2,

P1,tot = P1+C4+C6,

P2,tot = P2+C8+C10.
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The corresponding ODE model is given by

dC1

dt
= a1,0E1 X0− (d1,0+ k1,0) C1,

dX∗0
dt
= k1,0 C1+d2,0 C2−a2,0 P0 X∗0 + (d1,1+ k1,1) C3−a1,1 X1 X∗0

+ (d∗1,1+ k∗1,1) C5−a∗1,1 X∗0 X∗1,

dC2

dt
= a2,0 P0 X∗0 − (d2,0+ k2,0) C2,

dC3

dt
= a1,1 X1 X∗0 − (d1,1+ k1,1) C3,

dX∗1
dt
= k1,1 C3+d2,1 C4−a2,1 X∗1 P1+d∗1,1C5−a∗1,1 X∗1 X∗0 + k∗2,1 C6,

dC4

dt
= a2,1 X∗1 P1− (d2,1+ k2,1) C4,

dC5

dt
= a∗1,1 X∗0 X∗1 − (d∗1,1+ k∗1,1) C5,

dX∗∗1
dt
= k∗1,1 C5−a∗2,1 X∗1 P1+d∗2,1 C6−a1,2 X∗∗1 X2

+ (d1,2+ k1,2) C7−a∗1,2 X∗∗1 X∗2 + (d∗1,2+ k∗1,2) C9,

dC6

dt
= a∗2,1 X∗∗1 P1− (d∗2,1+ k∗2,1) C6,

dC7

dt
= a∗1,2 X∗1 X2− (d∗1,2+ k∗1,2) C7,

dX∗2
dt
= −a2,2 X∗2 P2+d2,2 C8−a∗1,2 X∗2 X∗∗2 +d∗1,2 C9+ k∗2,2 C10,

dC8

dt
= a∗2,2 X∗2 P2− (d2,2+ k2,2) C8,

dX∗∗2
dt
= k∗1,2 C9−a∗2,2 X∗∗2 P2+d∗2,2 C10,

dC9

dt
= a∗1,2 X∗∗1 X∗2 − (d∗1,2+ k∗1,2) C9,

dC10

dt
= a∗2,2 X∗∗2 P2− (d∗2,2+ k∗2,2) C10.

The steady state characteristic curve obtained with the mechanistic model pre-
dicts that the response of the MAPKKK to the stimulus E1,tot is of the Michaelis-
Menten type. By contrast, the stimulus-response curve obtained for the MAPKK
and MAPK are sigmoidal and show high Hill coefficients, which increase from
the MAPKK response to the MAPK response. That is, an increased ultrasensitivity
is observed moving down in the cascade (Figure 2.29). These model observations
persist when key parameters, such as the Michaelis-Menten constants are changed
[44]. Furthermore, zero-order ultrasensitivity effects can be observed. Specifically,
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Figure 2.29: Steady state characteristic curve of the MAPK cascade for every stage. The
x-axis shows concentration of E1,tot between 10−15 and 105 as indicated. Simulations from
the model of [82].

if the amounts of MAPKK were increased, one would observe a higher apparent
Hill coefficient for the response of MAPK. Similarly, if the values of the Km for the
reactions in which the MAPKK takes place were decreased, one would also observe
a higher apparent Hill coefficient for the response of MAPK. Double phosphory-
lation is also key to obtain a high apparent Hill coefficient. In fact, a cascade in
which the double phosphorylation was assumed to occur through a one-step model
(similar to single phosphorylation) predicted substantially lower apparent Hill co-
efficients.

Notice that while phosphorylation cascades, such as the MAPK cascade, are
usually viewed as unidirectional signal transmission systems, they actually allow
information to travel backward (from downstream to upstream). This can be qual-
itatively seen as follows. Assuming as before that the total amounts of enzymes
are much smaller than the total amounts of substrates (E1,tot,P0,tot,P1,tot,P2,tot ≪
X0,tot,X1,tot,X2,tot), we can approximate the conservation laws as

X0,tot ≈ X0+X∗0 +C3+C5,

X1,tot ≈ X1+X∗1 +C3+X∗∗1 +C5+C7+C9,

X2,tot ≈ X2+X∗2 +X∗∗2 +C7+C9.

Using these and assuming that the complexes are at the quasi-steady state, we ob-
tain the following functional dependencies:

C1 = f1(X∗0,X
∗
1,X

∗∗
1 ,X

∗
2,X

∗∗
2 ), C2 = f2(X∗0),

C3 = f3(X∗0,X
∗
1,X

∗∗
1 ,X

∗
2,X

∗∗
2 ), C5 = f5(X∗0,X

∗
1),

C7 = f7(X∗1,X
∗∗
1 ,X

∗
2,X

∗∗
2 ), C9 = f9(X∗∗1 ,X

∗
2).

The fact that C7 depends on X∗2 and X∗∗2 illustrates the counterintuitive fact that
the dynamics of the second stage are influenced by those of the third stage. Sim-
ilarly, the fact that C3 depends on X∗1,X

∗∗
1 ,X

∗
2,X

∗∗
2 indicates that the dynamics of
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the first stage are influenced by those of the second stage and by that of the third
stage. The phenomenon by which the behavior of a “module” is influenced by that
of its downstream clients is called retroactivity, which is a phenomenon similar to
loading in electrical and mechanical systems, studied at length in Chapter 6. This
phenomenon in signaling cascades can allow perturbations to travel from down-
stream to upstream [77] and can lead to interesting dynamic behaviors such as
sustained oscillations in the MAPK cascade [82].

Exercises

2.1 Consider a cascade of three activators X→Y→ Z. Protein X is initially present
in the cell in its inactive form. The input signal of X, S x, appears at time t = 0.
As a result, X rapidly becomes active and binds the promoter of gene Y, so that
protein Y starts to be produced at rate β. When Y levels exceed a threshold K,
gene Z begins to be transcribed and translated at rate β. All proteins have the same
degradation/dilution rate γ.

(i) What are the concentrations of proteins Y and Z as a function of time?

(ii) What is the minimum duration of the pulse S x such that Z will be produced?

(iii) What is the response time of protein Z with respect to the time of addition of
S x?

2.2 (Switch-like behavior in cooperative binding) Derive the expressions of C and
A as a function of B at the steady state when you have the cooperative binding
reactions

B+B+ ...+B
k1−−⇀↽−−
k2

Bn, Bn+A
a
−⇀↽−
d

C, and A+C = Atot.

Make MATLAB plots of the expressions that you obtain and verify that as n in-
creases the functions become more switch-like.

2.3 Consider the case of a competitive binding of an activator A and a repressor R
with D and assume that before they can bind to D they have to cooperatively bind
according to the following reactions:

A+A+ ...+A
k1−−⇀↽−−
k2

An, R+R+ ...+R
k̄1−−⇀↽−−
k̄2

Rm,

in which the complex An contains n molecules of A and the complex Rm contains
m molecules of R. The competitive binding reactions with A are given by

An+D
a
−⇀↽−

d
C, Rm+D

a′

−−⇀↽−−
d′

C
′
,
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and Dtot = D+C +C′.What are the steady state expressions for C and D as func-
tions of A and R?

2.4 Consider the following modification of the competitive binding reactions:

Ba+A
a
−⇀↽−

d
C, Br+A

ā
−⇀↽−̄

d
C̄, C+Br

a′

−−⇀↽−−
d′

C
′
,

with Atot = A+C + C̄ +C′. What are the steady state expressions for A and C?
What information do you deduce from these expressions if A is a promoter, Ba
is an activator protein, and C is the activator/DNA complex that makes the gene
transcriptionally active?

2.5 Assume that we have an activator Ba and a repressor protein Br. We want to
obtain an input function such that when a large quantity of Ba is present, the gene
is transcriptionally active only if there is no Br, and when low amounts of Ba are
present, the gene is transcriptionally inactive (with or without Br). Write down the
reactions among Ba, Br, and the complexes formed with DNA (D) that lead to such
an input function. Demonstrate that indeed the set of reactions you picked leads to
the desired input function.

2.6 Consider the transcription and translation reactions incorporating the elonga-
tion process as considered in this chapter in equations (2.10)–(2.11). Modify them
to the case in which an mRNA molecule can be translated to a polypeptide chain
even while it is still elongating.

2.7 (Transcriptional regulation with delay) Consider a repressor or activator B mod-
eled by a Hill function F(B). Show that in the presence of transcriptional delay τm,
the dynamics of the active mRNA can be written as

dm∗(t)
dt

= e−τ
m

F(B(t−τm))− δ̄m∗.

2.8 Derive the expression of the parameters α, α0 and K for the Hill function given
in equation (2.20), which is the form obtained for transcriptional repression with a
leaky repressor.

2.9 Consider the form of the Hill function in the presence of an activator with
some basal level of expression given in equation (2.22). Derive the expressions of
α, K and α0,

2.10 Derive the form of the Hill functions for combinatorial promoters with leak-
iness given in expressions (2.26)–(2.27).
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2.11 Consider the phosphorylation reactions described in Section 2.4, but suppose
that the kinase concentration Z is not constant, but is instead produced and decays

according to the reaction Z
γ
−−−⇀↽−−−

k(t)
∅. How should the system in equation (2.29) be

modified? Use a MATLAB simulation to apply a periodic input stimulus k(t) using
parameter values: k1 = k2 = 1 min−1, a1 = a2 = 10 nM−1 min−1, d1 = d2 = 10 min−1,
γ= 0.01 min−1. Is the cycle capable of “tracking” the input stimulus? If yes, to what
extent when the frequency of k(t) is increased? What are the tracking properties
depending on?

2.12 Another model for the phosphorylation reactions, referred to as one-step re-

action model, is given by Z+X −−→ X∗+Z and Y+X∗ −−→ X+Y, in which the
complex formations are neglected. Write down the differential equation model and
compare the differential equation of X∗ to that of equation (2.29). List the assump-
tions under which the one-step reaction model is a good approximation of the two-
step reaction model.

2.13 (Competitive inhibition) Derive the expression of the production rate of X∗ in
a phosphorylation cycle in the presence of a competitive inhibitor I for Z.

2.14 (Non-absolute activator) Derive the expression of the production rate of X∗ in
a phosphorylation cycle in the presence of a non-absolute activator A for Z.

2.15 Consider the model of phosphotransfer systems of equation (2.32) and deter-
mine how the steady state transfer curve changes when the values of k3 and k4 are
changed.
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