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Chapter 2
Dynamic Modeling of Core Processes

The goal of this chapter is to describe basic biological mechanisms in a way that
can be represented by simple dynamical models. We begin the chapter with a dis-
cussion of the basic modeling formalisms that we will utilize to model biomolecu-
lar feedback systems. We then proceed to study a number of core processes within
the cell, providing different model-based descriptions of the dynamics that will
be used in later chapters to analyze and design biomolecular systems. The focus
in this chapter and the next is on deterministic models using ordinary differential
equations; Chapter 4 describes how to model the stochastic nature of biomolecular
systems.

Prerequisites. Readers should have some basic familiarity with cell biology, at the
level of the description in Section 1.2 (see also Appendix A), and a basic under-
standing of ordinary differential equations, at the level of Chapter 2 of AM08.

2.1 Modeling Techniques

In order to develop models for some of the core processes of the cell, we will need
to build up a basic description of the biochemical reactions that take place, includ-
ing production and degradation of proteins, regulation of transcription and transla-
tion, intracellular sensing, action and computation, and intercellular signaling. As
in other disciplines, biomolecular systems can be modeled in a variety of different
ways, at many different levels of resolution, as illustrated in Figure 2.1. The choice
of which model to use depends on the questions that we want to answer, and good
modeling takes practice, experience, and iteration. We must properly capture the
aspects of the system that are important, reason about the appropriate temporal
and spatial scales to be included, and take into account the types of simulation
and analysis tools be be applied. Models that are to be used for analyzing existing
systems should make testable predictions and provide insight into the underlying
dynamics. Design models must additionally capture enough of the important be-
havior to allow decisions to be made regarding how to interconnect subsystems,
choose parameters and design regulatory elements.

In this section we describe some of the basic modeling frameworks that we will
build on throughout the rest of the text. We begin with brief descriptions of the
relevant physics and chemistry of the system, and then quickly move to models
that focus on capturing the behavior using reaction rate equations. In this chapter
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Figure 2.1: Different methods of modeling biomolecular systems.

our emphasis will be on dynamics with time scales measured in seconds to hours
and mean behavior averaged across a large number of molecules. We touch only
briefly on modeling in the case where stochastic behavior dominates and defer a
more detailed treatment until Chapter 4.

Statistical mechanics and chemical kinetics

At the fine end of the modeling scale depicted in Figure 2.1, we can attempt to
model the molecular dynamics of the cell, in which we attempt to model the indi-
vidual proteins and other species and their interactions via molecular-scale forces
and motions. At this scale, the individual interactions between protein domains,
DNA and RNA are resolved, resulting in a highly detailed model of the dynamics
of the cell.

For our purposes in this text, we will not require the use of such a detailed scale.
Instead, we will start with the abstraction of molecules that interact with each other
through stochastic events that are guided by the laws of thermodynamics. We begin
with an equilibrium point of view, commonly referred to as statistical mechanics,
and then briefly describe how to model the (statistical) dynamics of the system
using chemical kinetics. We cover both of these points of view very briefly here,
primarily as a stepping stone to deterministic models, and present a more detailed
description in Chapter 4.

The underlying representation for both statistical mechanics and chemical ki-
netics is to identify the appropriate microstates of the system. A microstate cor-
responds to a given configuration of the components (species) in the system rela-
tive to each other and we must enumerate all possible configurations between the
molecules that are being modeled. As an example, consider the distribution of RNA
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Figure 2.2: Microstates for RNA polymerase. Each microstate of the system corresponds
to the RNA polymerase being located at some position in the cell. If we discretize the
possible locations on the DNA and in the cell, the microstates corresponds to all possi-
ble non-overlapping locations of the RNA polymerases. Figure from Phillips, Kondev and
Theriot [76]; used with permission of Garland Science.

polymerase in the cell. It is known that most RNA polymerases are bound to the
DNA in a cell, either as they produce RNA or as they diffuse along the DNA in
search of a promoter site. Hence we can model the microstates of the RNA poly-
merase system as all possible locations of the RNA polymerase in the cell, with the
vast majority of these corresponding to the RNA polymerase at some location on
the DNA. This is illustrated in Figure 2.2.

In statistical mechanics, we model the configuration of the cell by the probabil-
ity that the system is in a given microstate. This probability can be calculated based
on the energy levels of the different microstates. The laws of statistical mechanics
state that if we have a set of microstates Q, then the steady state probability that
the system is in a particular microstate q is given by

P(q) =
1
Z
e−Eq/(kBT ), (2.1)

where Eq is the energy associated with the microstate q ∈ Q, kB is the Boltzmann
constant, T is the temperature in degrees Kelvin, and Z is a normalizing factor,
known as the partition function,

Z =
∑

q∈Q
e−Eq/(kBT ).

(These formulas are described in more detail in Chapter 4.)
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By keeping track of those microstates that correspond to a given system state
(also called a macrostate), we can compute the overall probability that a given
macrostate is reached. Thus, if we have a set of states S ⊂ Q that correspond to a
given macrostate, then the probability of being in the set S is given by

P(S ) =
1
Z

∑

q∈S
e−Eq/(kBT ) =

∑

q∈S e−Eq/(kBT )

∑

q∈Q e−Eq/(kBT ) . (2.2)

This can be used, for example, to compute the probability that some RNA poly-
merase is bound to a given promoter, averaged over many independent samples,
and from this we can reason about the rate of expression of the corresponding
gene. More details and several examples will be illustrated in Chapter 4.

Statistical mechanics describes the steady state distribution of microstates, but
does not tell us how the microstates evolve in time. To include the dynamics, we
must consider the chemical kinetics of the system and model the probability that
we transition from one microstate to another in a given period of time. Let q rep-
resent the microstate of the system, which we shall take as a vector of integers that
represents the number of molecules of a specific types in given configurations or
locations. Assume we have a set of M reactions Rj, j = 1, . . . ,M, with ξ j represent-
ing the change in state q associated with reaction Rj. We describe the kinetics of
the system by making use of the propensity function a j(q, t) associated with reac-
tion Rj, which captures the instantaneous probability that at time t a system will
transition between state q and state q+ ξ j.

More specifically, the propensity function is defined such that

a j(q, t)dt = Probability that reaction Rj will occur between time t
and time t+dt given that the microstate is q.

We will give more detail in Chapter 4 regarding the validity of this functional form,
but for now we simply assume that such a function can be defined for our system.

Using the propensity function, we can keep track of the probability distribu-
tion for the state by looking at all possible transitions into and out of the current
state. Specifically, given P(q, t), the probability of being in state q at time t, we can
compute the time derivative dP(q, t)/dt as

dP
dt

(q, t) =
M∑

j=1

(

a j(q− ξ j)P(q− ξ j, t)−a j(q)P(q, t)
)

. (2.3)

This equation (and its many variants) is called the chemical master equation (CME).
The first sum on the right hand side represents the transitions into the state q from
some other state q− ξ j and the second sum represents that transitions out of the
state q. The variable ξ j in the sum ranges over all possible reactions.
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Clearly the dynamics of the distribution P(q, t) depend on the form of the propen-
sity functions a j(q). Consider a simple reaction of the form

A+B −−−⇀↽−−− AB ≡
R f : A+B −−→ AB
R r : AB −−→ A+B.

(2.4)

We assume that the reaction takes place in a well-stirred volume Ω and let the
configurations q be represented by the number of each species that is present. The
forward reaction R f is a bimolecular reaction and we will see in Chapter 4 that it
has a propensity function

a f(q) =
k f
Ω
nAnB,

where k f is a parameter that depends on the forward reaction, and nA and nB are
the number of molecules of each species. The reverse reaction R r is a unimolecular
reaction and we will see that it has a propensity function

a r(q) = k r nAB,

where k r is a parameter that depends on the reverse reaction and nAB is the number
of molecules of AB that are present.

If we now let q = (nA,nB,nAB) represent the microstate of the system, then we
can write the chemical master equation as

dP
dt

(nA,nB,nAB) = k rnABP(nA−1,nB−1,nAB+1)− k fnAnBP(nA,nB,nAB).

The first term on the right hand side represents the transitions into the microstate
q = (nA,nB,nAB) and the second term represents the transitions out of that state.

The number of differential equations depends on the number of molecules of
A, B and AB that are present. For example, if we start with 1 molecules of A, 1
molecule of B, and 3 molecules of AB, then the possible states and dynamics are

q0 = (1,0,4) dP0/dt = 3k rP1

q1 = (2,1,3) dP1/dt = 4k rP0−2(k f/Ω)P1

q2 = (3,2,2) dP2/dt = 3k rP1−6(k f/Ω)P2

q3 = (4,3,1) dP3/dt = 2k rP2−12(k f/Ω)P3

q4 = (5,4,0) dP4/dt = 1k rP3−20(k f/Ω)P4,

where Pi = P(qi, t). Note that the states of the chemical master equation are the
probabilities that we are in a specific microstate, and the chemical master equation
is a linear differential equation (we see from equation (2.3) that this is true in
general).

The primary difference between the statistical mechanics description given by equa-
tion (2.1) and the chemical kinetics description in equation (2.3) is that the master
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equation formulation describes how the probability of being in a given microstate
evolves over time. Of course, if the propensity functions and energy levels are mod-
eled properly, the steady state, average probabilities of being in a given microstate
should be the same for both formulations.

Reaction rate equations

Although very general in form, the chemical master equation suffers from being a
very high dimensional representation of the dynamics of the system. We shall see
in Chapter 4 how to implement simulations that obey the master equation, but in
many instances we will not need this level of detail in our modeling. In particular,
there are many situations in which the number of molecules of a given species
is such that we can reason about the behavior of a chemically reacting system
by keeping track of the concentration of each species as a real number. This is
of course an approximation, but if the number of molecules is sufficiently large,
then the approximation will generally be valid and our models can be dramatically
simplified.

To go from the chemical master equation to a simplified form of the dynam-
ics, we begin by making a number of assumptions. First, we assume that we can
represent the state of a given species by its concentration nA/Ω, where nA is the
number of molecules of A in a given volume Ω. We also treat this concentration
as a real number, ignoring the fact that the real concentration is quantized. Finally,
we assume that our reactions take place in a well-stirred volume, so that the rate of
interactions between two species is solely determined by the concentrations of the
species.

Before proceeding, we should recall that in many (and perhaps most) situations
inside of cells, these assumptions are not particularly good ones. Biomolecular
systems often have very small molecular counts and are anything but well mixed.
Hence, we should not expect that models based on these assumptions should per-
form well at all. However, experience indicates that in many cases the basic form
of the equations provides a good model for the underlying dynamics and hence we
often find it convenient to proceed in this manner.

Putting aside our potential concerns, we can now proceed to write the dynamics
of a system consisting of a set of species Si, i = 1, . . . ,n undergoing a set of reac-
tions Rj, j = 1, . . . ,m. We write xi = [Si] = nSi/Ω for the concentration of species i
(viewed as a real number). Because we are interested in the case where the number
of molecules is large, we no longer attempt to keep track of every possible con-
figuration, but rather simply assume that the state of the system at any given time
is given by the concentrations xi. Hence the state space for our system is given by
x ∈ Rn and we seek to write our dynamics in the form of a differential equation

dx
dt
= f (x,θ),
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where f : Rn→ Rn describes the rate of change of the concentrations as a function
of the instantaneous concentrations and θ represents the parameters that govern the
dynamic behavior.

To illustrate the general form of the dynamics, we consider again the case of a
basic bimolecular reaction

A+B −−−⇀↽−−− AB.

Each time the forward reaction occurs, we decrease the number of molecules of
A and B by 1 and increase the number of molecules of AB (a separate species)
by 1. Similarly, each time the reverse reaction occurs, we decrease the number of
molecules of AB by one and increase the number of molecules of A and B.

Using our discussion of the chemical master equation, we know that the likeli-
hood that the forward reaction occurs in a given interval dt is given by a f(q)dt =
(k f/Ω)nAnBdt and the reverse reaction has likelihood a r(q) = k rnAB. It follows that
the concentration of the complex AB satisfies

[AB](t+dt)− [AB](t) = E(nAB(t+dt)/Ω−nAB(t)/Ω)

=
(

a f(q− ξ f, t)−a r(q)
)

/Ω ·dt

=
(

k fnAnB/Ω
2− k rnAB/Ω

)

dt

=
(

k f[A][B]− k r[AB]
)

dt,

in which E(x) denotes the expected value of x. Taking the limit as dt approaches
zero (but remains large enough that we can still average across multiple reactions,
as described in more detail in Chapter 4), we obtain

d
dt

[AB] = k f[A][B]− k r[AB].

In a similar fashion we can write equations to describe the dynamics of A and
B and the entire system of equations is given by

d
dt

[A] = k r[AB]− k f[A][B]

d
dt

[B] = k r[AB]− k f[A][B]

d
dt

[AB] = k f[A][B]− k r[AB]

or

dA
dt
= k rC− k fA ·B

dB
dt
= k rC− k fA ·B

dC
dt
= k fA ·B− k rC,

where C = [AB], A = [A], and B = [B]. These equations are known as the mass
action kinetics or the reaction rate equations for the system. The parameters k f and
k r are called the rate constants and they match the parameters that were used in the
underlying propensity functions.

Note that the same rate constants appear in each term, since the rate of pro-
duction of AB must match the rate of depletion of A and B and vice versa. We
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adopt the standard notation for chemical reactions with specified rates and write
the individual reactions as

A+B
k f−→ AB, AB

k r−→ A+B,

where k f and k r are the reaction rates. For bidirectional reactions we can also write

A+B
k f−−⇀↽−−
k r

AB.

It is easy to generalize these dynamics to more complex reactions. For example,
if we have a reversible reaction of the form

A+2B
k f−−⇀↽−−
k r

2C+D,

where A, B, C and D are appropriate species and complexes, then the dynamics for
the species concentrations can be written as

d
dt
A = k rC2 ·D− k fA ·B2,

d
dt
C = 2k fA ·B2−2k rC2 ·D,

d
dt
B = 2k rC2 ·D−2k fA ·B2,

d
dt
D = k fA ·B2− k rC2 ·D.

(2.5)

Rearranging this equation, we can write the dynamics as

d
dt





A
B
C
D





=





−1 1
−2 2
2 −2
1 −1









k fA ·B2

k rC2 ·D




. (2.6)

We see that in this decomposition, the first term on the right hand side is a matrix
of integers reflecting the stoichiometry of the reactions and the second term is a
vector of rates of the individual reactions.

More generally, given a chemical reaction consisting of a set of species Si,
i = 1, . . . ,n and a set of reactions Rj, j = 1, . . . ,m, we can write the mass action
kinetics in the form

dx
dt
= Nv(x),

where N ∈ Rn×m is the stoichiometry matrix for the system and v(x) ∈ Rm is the
reaction flux vector. Each row of v(x) corresponds to the rate at which a given
reaction occurs and the corresponding column of the stoichiometry matrix corre-
sponds to the changes in concentration of the relevant species. As we shall see in
the next chapter, the structured form of this equation will allow us to explore some
of the properties of the dynamics of chemically reacting systems.
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Sometimes, the following notation will be used to denote birth and death of
species

∅
k f−→ A, A

k r−→ ∅.

We attach to the first reaction the differential equation
dA
dt
= k f,

and to the second reaction we attach the differential equation
dA
dt
= −k r,A.

From a physical point of view, these reactions simplify the representation of more
complex processes, such as production of proteins or degradation of proteins due
to proteases.

Example 2.1 (Covalent modification of a protein). Consider the set of reactions
involved in the phosphorylation of a protein by a kinase, as shown in Figure 1.17.
Let S represent the substrate, K represent the kinase and S * represent the phospho-
rylated (activated) substrate. The sets of reactions illustrated in Figure 1.17 are

R1 : K+ATP −−→ K:ATP
R2 : K:ATP −−→ K+ATP
R3 : S+K:ATP −−→ S:K:ATP
R4 : S:K:ATP −−→ S+K:ATP

R5 : S:K:ATP −−→ S∗:K:ADP
R6 : S∗:K:ADP −−→ S∗+K:ADP
R7 : K:ADP −−→ K+ADP
R8 : K+ADP −−→ K:ADP.

We now write the kinetics for each reaction:
v1 = k1 [K][ATP],
v2 = k2 [K:ATP],
v3 = k3 [S][K:ATP],
v4 = k4 [S:K:ATP],

v5 = k5 [S:K:ATP],
v6 = k6 [S∗:K:ADP],
v7 = k7 [K:ADP],
v8 = k8 [K][ADP].

We treat [ATP] as a constant (regulated by the cell) and hence do not directly
track its concentration. (If desired, we could similarly ignore the concentration of
ADP since we have chosen not to include the many additional reactions in which
it participates.)

The kinetics for each species are thus given by
d
dt

[K] = −v1+ v2+ v7− v8
d
dt

[K:ATP] = v1− v2− v3+ v4

d
dt

[S] = −v3+ v4
d
dt

[S:K:ATP] = v3− v4− v5

d
dt

[S∗] = v6
d
dt

[S∗:K:ADP] = v5− v6

d
dt

[ADP] = v7− v8
d
dt

[K:ADP] = v6− v7+ v8.
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Collecting these equations together and writing the state as a vector, we obtain

d
dt





[K]
[K:ATP]

[S]
[S:K:ATP]

[S∗]
[S∗:K:ADP]

[ADP]
[K:ADP]





︸!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!︸

x

=





−1 1 0 0 0 0 1 −1
1 −1 1 −1 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 1 −1 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 1 −1 1





︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸

N





v1
v2
v3
v4
v5
v6
v7
v8





,

︸︷︷︸

v(x)

which is in standard stoichiometric form. ∇

Reduced order mechanisms

In this section, we look at the dynamics of some common reactions that occur in
biomolecular systems. Under some assumptions on the relative rates of reactions
and concentrations of species, it is possible to derive reduced order expressions for
the dynamics of the system. We focus here on an informal derivation of the relevant
results, but return to these examples in the next chapter to illustrate that the same
results can be derived using a more formal and rigorous approach.

Simple binding reaction. Consider the reaction in which two species A and B bind
reversibly to form a complex C=AB:

A+B
a
−⇀↽−
d

C, (2.7)

where a is the association rate constant and b is the dissociation rate constant.
Assume that B is a species that is controlled by other reactions in the cell and that
the total concentration of A is conserved, so that A+C = [A]+ [AB] = Atot. If the
dynamics of this reaction are fast compared to other reactions in the cell, then the
amount of A and C present can be computed as a (steady state) function of B.

To compute how A and C depend on the concentration of B at the steady state,
we must solve for the equilibrium concentrations of A and C. The rate equation for
C is given by

dC
dt
= aB · (Atot−C)−dC.

By setting dC/dt = 0 and letting Kd := d/a, we obtain the expressions

C =
(B/Kd)Atot
(B/Kd)+1

, A =
Atot

(B/Kd)+1
.

The constant Kd is called the dissociation constant of the reaction. Its inverse mea-
sures the affinity of A binding to B. The steady state value of C increases with B
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while the steady state value of A decreases with B as more of A is found in the
complex C.

Note that when B ≈ Kd, A and C have roughly equal concentration. Thus the
higher the value of Kd, the more B is required for A to form the complex C. Kd
has the units of concentration and it can be interpreted as the concentration of B at
which half of the total number of molecules of A are associated with B. Therefore
a high Kd represents a weak affinity between A and B, while a low Kd represents a
strong affinity.

Cooperative binding reaction. Assume now that B binds to A only after dimeriza-
tion, that is, only after binding another molecule of B. Then, we have that reac-
tions (2.7) become

B+B
k1−−⇀↽−−
k2

B2, B2+A
a
−⇀↽−
d

C, A+C = Atot,

in which B2 denotes the dimer of B. The corresponding ODE model is given by

dB2
dt
= 2k1B2−2k2B2−aB2 · (Atot−C)+dC,

dC
dt
= aB2 · (Atot−C)−dC.

By setting dB2/dt = 0, dC/dt = 0, and by defining Km := k2/k1, we we obtain that

B2 = B2/Km, C =
(B2/Kd)Atot
(B2/Kd)+1

, A =
Atot

(B2/Kd)+1
,

so that
C =

AtotB2/(KmKd)
B2/(KmKd)+1

, A =
Atot

B2/(KmKd)+1
.

As an exercise, the reader can verify that if B binds to A only as a complex of n
copies of B, that is,

B+B+ · · ·+B
k1−−⇀↽−−
k2

Bn, Bn+A
a
−⇀↽−
d

C, A+C = Atot,

then we have that

C =
AtotBn/(KmKd)
Bn/(KmKd)+1

, A =
Atot

Bn/(KmKd)+1
.

In this case, one says that the binding of B to A is cooperative with cooperativity n.
Figure 2.3 shows the above functions, which are often referred to as Hill functions.

Another type of cooperative binding is when a species R can bind A only after
another species B as bound. In this case, the reactions are given by

B+A
a
−⇀↽−
d

C, R+C
a′
−−⇀↽−−
d′

C′, A+C+C′ = Atot.
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Figure 2.3: Steady state concentrations of the complex C and of A as functions of the
concentration of B.

Proceeding as above by writing the ODE model and equating the time derivatives
to zero to obtain the equilibrium, one obtains

C =
1
Kd

B(Atot−C−C′), C′ =
1

K′dKd
R(Atot−C−C′).

By solving this system of two equations for the unknowns C′ and C, one obtains

C′ =
(RB)/(KdK′d)Atot

(B/Kd)(R/K′d+1)+1
, C =

(B/Kd)Atot
(B/Kd)(R/K′d+1)+1

.

In the case in which B would first bind cooperatively with other copies of B with
cooperativity n, the above expressions would modify to

C′ =
(RBn)/(KdK′dkm)Atot

(Bn/Kdkm)(R/K′d+1)+1
, C =

(Bn/Kdkm)Atot
(Bn/Kdkm)(R/K′d+1)+1

.

Competitive binding reaction. Finally, consider the case in which two species Ba
and Br both bind to A competitively, that is, they cannot be bound to A at the same
time. Let Ca be the complex formed between Ba and A and let Cr be the complex
formed between Br and A. Then, we have the following reactions

Ba+A
a
−⇀↽−
d

Ca, Br+A
a′
−−⇀↽−−
d′

Cr, A+Ca+Cr = Atot,

for which we can write the dynamics as

dCa
dt
= aBa · (Atot−Ca−Cr)−dCa,

dCr
dt
= a′Br · (Atot−Ca−Cr)−d′Cr.

By setting the derivatives to zero, we obtain that

Ca(aBa+d) = aBa(Atot−Cr), Cr(a′Br +d′) = a′Br(Atot−Ca),
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so that

Cr =
Br(Atot−Ca)
Br +K′d

, Ca
(

Ba+Kd−
BaBr
Br +K′d

)

= Ba
( K′d
Br +K′d

)

Atot,

from which we finally obtain that

Ca =
(Ba/Kd)Atot

(Ba/Kd)+ (Br/K′d)+1
, Cr =

(Br/K′d)Atot

(Br/K′d)+ (Ba/Kd)+1
.

In this derivation, we have assumed that both Ba and Br bind A as monomers. If
they were binding as dimers, the reader should verify as an exercise (see Exercises)
that they would appear in the final expressions with a power of two.

Note also that in this derivation we have assumed that the binding is competi-
tive, that is, Ba and Br cannot simultaneously bind to A. If they were binding simul-
taneously to A, we would have included another complex comprising Ba, Br and
A. Denoting this new complex by C′, we would have added also the two additional
reactions

Ca+Br
 a
−⇀↽−

 d
C
′
, Cr+Ba

 a′
−−⇀↽−−

 d′
C
′

and we would have modified the conservation law for A to Atot = A+Ca+Cr +C′.
The reader can verify as an exercise (see Exercises) that in this case a mixed term
BrBa would appear in the equilibrium expressions.
Enzymatic reaction. A general enzymatic reaction can be written as

E+S
a
−⇀↽−
d

C k
−→ E+P,

in which E is an enzyme, S is the substrate to which the enzyme binds to form
the complex C, and P is the product resulting from the modification of the sub-
strate S due to the binding with the enzyme E. The parameter a is referred to as
association rate constant, d as dissociation rate constant, and k as the catalytic rate
constant. Enzymatic reactions are very common and we will see specific instances
of them in the sequel, e.g., phosphorylation and dephosphorylation reactions. The
corresponding ODE system is given by

dS
dt
= −aE ·S +dC,

dC
dt
= aE ·S − (d+ k)C,

dE
dt
= −aE ·S +dC+ kC,

dP
dt
= kC.

The total enzyme concentration is usually constant and denoted by Etot, so that
E+C = Etot. Substituting in the above equations E = Etot−C, we obtain

dE
dt
= −a(Etot−C) ·S +dC+ kC,

dC
dt
= a(Etot−C) ·S − (d+ k)C,

dS
dt
= −a(Etot−C) ·S +dC,

dP
dt
= kC.
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This system cannot be solved analytically, therefore assumptions have been used
in order to reduce it to a simpler form. Michaelis and Menten assumed that the
conversion of E and S to C and vice versa is much faster than the decomposition
of C into E and P. This approximation is called the quasi-steady state assumption.
This assumption can be translated into the condition

a,d- k

on the rate constants.
Under this assumption and assuming that S - E (at least at time 0; see Exam-

ple 3.15), C immediately reaches its steady state value (while P is still changing).
The steady state value of C is given by solving a(Etot −C)S − (d+ k)C = 0 for C,
which gives

C =
EtotS
S +Km

, with Km =
d+ k
a
,

in which the constant Km is called the Michaelis-Menten constant. Letting Vmax =

kEtot, the resulting kinetics

dP
dt
= k

EtotS
S +Km

= Vmax
S

S +Km

is called Michaelis-Menten kinetics.
The constant Vmax is called the maximal velocity (or maximal flux) of modifi-

cation and it represents the maximal rate that can be obtained when the enzyme is
completely saturated by the substrate. The value of Km corresponds to the value of
S that leads to a half-maximal value of the P production rate. When the enzyme
complex can be neglected with respect to the total substrate amount S tot, we have
that S tot ≈ S +P, so that the above equation can be also re-written as

dP
dt
=
Vmax(S tot −P)
(S tot −P)+Km

.

When Km . S tot and the substrate has not yet been all converted to product,
that is, S tot−P- Km, we have that the rate of product formation becomes approx-
imately dP/dt ≈ Vmax, which is the maximal speed of reaction. Since this rate is
constant and does not depend on the reactant concentrations, it is usually referred
to zero-order kinetics. When S tot − P- Km, the system is said to operate in the
zero-order regime (see Figure 2.4).

2.2 Transcription and Translation

In this section we consider the processes of transcription and translation, using the
modeling techniques described in the previous section to capture the fundamental
dynamic behavior. Models of transcription and translation can be done at a variety
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(a) Transfer curves (b) Simulations

Figure 2.4: Enzymatic reactions. (a) Transfer curve showing the production rate for P as a
function of substrate concentration. (b) Time plots of product P(t) for different values of
the Km. In the plots S tot = 1 and Vmax = 1. The black plot shows the behavior for a value
of Km much smaller that the total substrate amount S tot. This corresponds to a constant
product formation rate (at least before the substrate is almost all converted to product, that
is, S tot−P ≈ Km), which is referred to zero-order kinetics.

of levels of detail and which model to use depends on the questions that one wants
to consider. We present several levels of modeling here, starting with a fairly de-
tailed set of reactions and ending with highly simplified models that can be used
when we are only interested in average production rate of proteins at relatively long
time scales.

The basic reactions that underly transcription include the diffusion of RNA
polymerase from one part of the cell to the promoter region, binding of an RNA
polymerase to the promoter, isomerization from the closed complex to the open
complex, and finally the production of mRNA, one base pair at a time. To capture
this set of reactions, we keep track of the various forms of RNA polymerase accord-
ing to its location and state: RNAP c represents RNA polymerase in the cytoplasm
and RNAP d is non-specific binding of RNA polymerase to the DNA. We must sim-
ilarly keep track of the state of the DNA, to insure that multiple RNA polymerases
do not bind to the same section of DNA. Thus we can write DNA p for the promoter
region, DNA g,i for the ith section of a gene g (whose length can depend on the de-
sired resolution) and DNA t for the termination sequence. We write RNAP:DNA to
represent RNA polymerase bound to DNA (assumed closed) and RNAP:DNA o to
indicate the open complex. Finally, we must keep track of the mRNA that is pro-
duced by transcription: we write mRNA i to represent an mRNA strand of length i
and assume that the length of the gene of interest is N.

Using these various states of the RNA polymerase and locations on the DNA,
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we can write a set of reactions modeling the basic elements of transcription as

Binding to DNA: RNAPc −−−⇀↽−−− RNAPd

Diffusion along DNA: RNAPd −−−⇀↽−−− RNAPp

Binding to promoter: RNAPp+DNAp −−−⇀↽−−− RNAP:DNAp

Isomerization: RNAP:DNAp −−−⇀↽−−− RNAP:DNAo

Start of transcription: RNAP:DNAo −−→ RNAP:DNAg,1+DNAp

mRNA creation: RNAP:DNAg,1 −−→ RNAP:DNAg,2+mRNA1
k

Elongation: RNAP:DNAg,i+1+mRNAi
k

−−→ RNAP:DNAg,i+2+mRNAi+1
k

Binding to terminator: RNAP:DNAg,N+mRNAN−1
k

−−→ RNAP:DNAt+mRNAN
k

Termination: RNAP:DNAt −−→ RNAPc

Degradation: mRNAN
k −−→ ∅.

(2.8)
This reaction has been written for prokaryotes, but a similar set of reactions could
be written for eukaryotes: the main differences would be that the RNA polymerase
remains in the nucleus and the mRNA must be spliced and transported to the cy-
tosol. Note that at the start of transcription we “release” the promoter region of the
DNA, thus allowing a second RNA polymerase to bind to the promoter while the
first RNA polymerase is still transcribing the gene.

A similar set of reactions can be written to model the process of translation.
Here we must keep track of the binding of the ribosome to the mRNA, translation
of the mRNA sequence into a polypeptide chain, and folding of the polypeptide
chain into a functional protein. Let Ribo:mRNA RBS indicate the ribosome bound
to the ribosome binding site, Ribo:mRNA AAi the ribosome bound to the ith codon,
Ribo:mRNA start and Ribo:mRNA stop for the start and stop codons, and PPC i for a
polypeptide chain consisting of i amino acids. The reactions describing translation
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can then be written as

Binding to RBS: Ribo+mRNARBS
k −−−⇀↽−−− Ribo:mRNARBS

k

Start of translation: Ribo:mRNARBS
k −−→ Ribo:mRNAstart

k +mRNARBS
k

Polypeptide chain creation: Ribo:mRNAstart
k −−→ Ribo:mRNAAA2

k +PPC1

Elongation, i = 1, . . . ,M: Ribo:mRNAAA(i+1)
k +PPCi

−−→ Ribo:mRNAAA(i+2)
k +PPCi+1

Stop codon: Ribo:mRNAM
k +PPCM−1

−−→ Ribo:mRNAstop
k +ppcM

Release of mRNA: Ribo:mRNAstop
k −−→ Ribo

Folding: PPCM −−→ protein
Degradation: protein −−→ ∅.

As in the case of transcription, we see that these reactions allow multiple ribosomes
to translate the same piece of mRNA by freeing up the ribosome binding site (RBS)
when translation begins.

As complex as these reactions are, they are still missing many important ef-
fects. For example, we have not accounted for the existence and effects of the 5’
and 3’ untranslated regions (UTRs) of a gene and we have also left out various error
correction mechanisms in which ribosomes can step back and release an incorrect
amino acid that has been incorporated into the polypeptide chain. We have also left
out the many chemical species that must be present in order for a variety of the
reactions to happen (NTPs for mRNA production, amino acids for protein produc-
tion, etc). Incorporation of these effects requires additional reactions that track the
many possible states of the molecular machinery that underlies transcription and
translation.

Given a set of reactions, the various stochastic processes that underly detailed
models of transcription and translation can be specified using the stochastic model-
ing framework described briefly in the previous section. In particular, using either
models of binding energy or measured rates, we can construct propensity functions
for each of the many reactions that lead to production of proteins, including the
motion of RNA polymerase and the ribosome along DNA and RNA. For many
problems in which the detailed stochastic nature of the molecular dynamics of the
cell are important, these models are the most relevant and they are covered in some
detail in Chapter 4.

Alternatively, we can move to the reaction rate formalism and model the reac-
tions using differential equations. To do so, we must compute the various reaction
rates, which can be obtained from the propensity functions or measured experimen-
tally. In moving to this formalism, we approximate the concentrations of various
species as real numbers, which may not be accurate since some species exist at
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low molecular counts in the cell. Despite all of these approximations, in many sit-
uations the reaction rate equations are perfectly sufficient, particularly if we are
interested in the average behavior of a large number of cells.

In some situations, an even simpler model of the transcription, translation and
folding processes can be utilized. Let the “active” mRNA be the mRNA that is
available for translation by the ribosome. We model its concentration through a
simple time delay of length τm that accounts for the transcription of the ribosome
binding site in prokaryotes or splicing and transport from the nucleus in eukary-
otes. If we assume that RNA polymerase binds to DNA at some average rate (which
includes both the binding and isomerization reactions) and that transcription takes
some fixed time (depending on the length of the gene), then the process of tran-
scription can be described using the delay differential equation

dm
dt
= αp,0−µm−  γm, m∗(t) = e−µτ

m
m(t−τm), (2.9)

where m is the concentration of mRNA for protein P, m∗ is the concentration of
active mRNA, αp,0 is the rate of production of the mRNA for protein P, µ is the
growth rate of the cell (which results in dilution of the concentration) and  γ is the
rate of degradation of the mRNA. Since the dilution and degradation terms are of
the same form, we will often combine these terms in the mRNA dynamics and
use a single coefficient γ. The exponential factor accounts for dilution due to the
change in volume of the cell, where µ is the cell growth rate. The constants αp,0 and
γ capture the average rates of production and degradation, which in turn depend on
the more detailed biochemical reactions that underlie transcription.

Once the active mRNA is produced, the process of translation can be described
via a similar ordinary differential equation that describes the production of a func-
tional protein:

dP
dt
= βp,0m∗ −δP, Pf (t) = e−µτ

f
P(t−τ f ). (2.10)

Here P represents the concentration of the polypeptide chain for the protein, Pf

represents the concentration of functional protein (after folding). The parameters
that govern the dynamics are βp,0, the rate of translation of mRNA; δ, the rate
of degradation and dilution of P; and τ f , the time delay associated with folding
and other processes required to make the protein functional. The exponential term
again accounts for dilution due to cell growth. The degradation and dilution term,
parameterized by δ, captures both rate at which the polypeptide chain is degraded
and the rate at which the concentration is diluted due to cell growth.

It will often be convenient to write the dynamics for transcription and transla-
tion in terms of the functional mRNA and functional protein. Differentiating the
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expression for m∗, we see that

dm∗(t)
dt

= e−µτ
m
ṁ(t−τm)

= e−µτ
m(
αp,0−γm(t−τm)

)

=  αp,0−γm∗(t),
(2.11)

where  αp,0 = e−µτ
m
αp,0. A similar expansion for the active protein dynamics yields

dPf (t)
dt

=  βp,0m∗(t−τ f )−δPf (t), (2.12)

where  βp,0 = e−µτ
f
βp,0. We shall typically use equations (2.11) and (2.12) as our

(reduced) description of protein folding, dropping the superscript f and overbars
when there is no risk of confusion.

In many situations the time delays described in the dynamics of protein pro-
duction are small compared with the time scales at which the protein concentration
changes (depending on the values of the other parameters in the system). In such
cases, we can simplify our model of the dynamics of protein production even fur-
ther and write

dm
dt
= αp,0−γm,

dP
dt

= βp,0m−δP. (2.13)

Note that we here have dropped the superscripts ∗ and f since we are assuming
that all mRNA is active and proteins are functional and dropped the overbar on α
and β since we are assuming the time delays are negligible.

Finally, the simplest model for protein production is one in which we only keep
track of the basal rate of production of the protein, without including the mRNA
dynamics. This essentially amounts to assuming the mRNA dynamics reach steady
state quickly and replacing the first differential equation in equation (2.13) with its
equilibrium value. This is often a good assumption as mRNA degration is usually
about 100–1000 times faster than protein degradation (see Table 1.1). Thus we
obtain

dP
dt
= β−δP, β := βp,0

αp,0

γ
.

This model represents a simple first order, linear differential equation for the rate of
production of a protein. In many cases this will be a sufficiently good approximate
model, although we will see that in many cases it is too simple to capture the
observed behavior of a biological circuit.

2.3 Transcriptional Regulation

The operation of a cell is governed in part by the selective expression of genes in
the DNA of the organism, which control the various functions the cell is able to
perform at any given time. Regulation of protein activity is a major component of
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the molecular activities in a cell. By turning genes on and off, and modulating their
activity in more fine-grained ways, the cell controls the many metabolic pathways,
responds to external stimuli, differentiates into different cell types as it divides, and
maintains the internal state of the cell required to sustain life.

The regulation of gene expression and protein activity is accomplished through
a variety of molecular mechanisms, as discussed in Section 1.2 and illustrated in
Figure 1.9. At each stage of the processing from a gene to a protein, there are po-
tential mechanisms for regulating the production processes. The remainder of this
section will focus on transcriptional control and the next section on selected post-
transcriptional control mechanisms. We will focus on prokaryotic mechanisms.

Transcriptional regulation refers to the selective expression of genes by activat-
ing or repressing the transcription of DNA into mRNA. The simplest such regu-
lation occurs in prokaryotes, where proteins can bind to “operator regions” in the
vicinity of the promoter region of a gene and affect the binding of RNA polymerase
and the subsequent initiation of transcription. A protein is called a repressor if it
blocks the transcription of a given gene, most commonly by binding to the DNA
and blocking the access of RNA polymerase to the promoter. An activator oper-
ates in the opposite fashion: it recruits RNA polymerase to the promoter region and
hence transcription only occurs when the activator (protein) is present.

We can capture this set of molecular interactions by modifying the RNA poly-
merase binding reactions in equation (2.8). For a repressor (Rep), we simply have
to add a reaction that represents the repressor bound to the promoter:

Repressor binding: DNAp+Rep −−−⇀↽−−− DNA:Rep

This reaction acts to “sequester” the DNA promoter site so that it is no longer
available for binding by RNA polymerase (which requires DNA p). The strength
of the repressor is reflected in the reaction rate constants for the repressor binding
reaction. Sometimes, the RNA polymerase can bind to the promoter even when the
repressor is bound, usually with lower forward rate. In this case, the repressor still
allows some transcription even when bound to the promoter and the repressor is
said to be “leaky”.

The modifications for an activator (Act) are a bit more complicated, since we
have to modify the reactions to require the presence of the activator before RNA
polymerase can bind. One possible mechanism is

Activator binding: DNAp+Act −−−⇀↽−−− DNA:Act
Diffusion along DNA: RNAPd −−−⇀↽−−− RNAPp

RNAP binding w/ activator: RNAPp+DNA:Act −−−⇀↽−−− RNAP:DNAo

+DNA:Act
RNAP binding w/out activator: RNAPp+DNAp −−−⇀↽−−− RNAP:DNAp.
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Here we model both the enhanced binding of the RNA polymerase to the promoter
in the presence of the activator, as well as the possibility of binding without an
activator. The relative reaction rates determine how strong the activator is and the
“leakiness” of transcription in the absence of the activator.

A simplified version of the dynamics can be obtained by assuming that tran-
scription factors bind to the DNA rapidly, so that they are in steady state config-
urations. In this case, we can make use of the reduced order models described in
Section 2.1. We can consider the competitive binding case to model that a strong
repressor prevents RNAP to bind to the DNA. In the sequel, we remove the su-
perscripts “p” from the DNA and RNAP for simplifying notation. The steady state
amount of the complex of DNA bound to the repressor will have the expression

[DNA:Rep] =
([Rep]/Kd)[DNA]

1+ [Rep]/Kd+ [RNAP]/K′d

and the steady state amount of free DNA (not bound to the repressor) will be given
by

C = [DNA]− [DNA:Rep] =
([RNAP]/K′d)[DNA]

1+ [RNAP]/K′d+ [Rep]/Kd
,

in which K′d is the dissociation constant of RNAP from the promoter while Kd is
the dissociation constant of Rep from the promoter. The complex C, having RNAP
bound, will allow transcription, while the complex [DNA:Rep] will not allow tran-
scription as it is not bound to RNAP.

The transcription rate will be proportional to C, so that the rate of change of
mRNA is described by

d[mRNA]
dt

= α0
([RNAP]/K′d)[DNA]

1+ [RNAP]/K′d+ [Rep]/Kd
−γ[mRNA],

in which the production rate is given by

f ([Rep]) = α0
([RNAP]/K′d) [DNA]

1+ [RNAP]/K′d+ [Rep]/Kd
.

If the repressor binds to the promoter with cooperativity n, the above expression
becomes (see Section 2.1)

f ([Rep]) = α0
([RNAP]/K′d)[DNA]

1+ [RNAP]/K′d+ [Rep]n/(Kdkm)
,

in which km is the dissociation constant of the reaction of n molecules of Rep
binding together. The function f is usually denoted by the standard Hill function
form

f ([Rep]) =
α

1+ ([Rep]/K)n
,
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in which α and K are implicitly defined. In practice we can assume that [RNAP]/K′d-
1 since there is plenty of RNAP in the cell. As a consequence, we obtain the ex-
pressions α = α0[DNA] and K = (Kdkm[RNAP]/K′d)1/n.

Finally, if the repressor allows RNAP to still bind to the promoter at a small rate
(leaky repressor), the above expression modifies to the new form (see Section 2.1)

f ([Rep]) =
α

1+ ([Rep]/K)n
+  α, (2.14)

in which  α is the basal expression level when the promoter is fully repressed, usu-
ally referred to as “leakiness”.

To model the production rate of mRNA in the case in which an activator Act
binds to the promoter with cooperativity n, we can consider first the case in which
RNAP binds only when the activator is already bound to the promoter. This can
be well modeled by a cooperative binding scenario as illustrated in Section 2.1.
According to this scenario, the concentration of the complex [RNAP:DNA o] is
given by

[RNAP:DNAo] =C′ =
([RNAP][Act]n)/(KdK′dkm)[DNA]
1+ ([Act]n/Kdkm)(1+ [RNAP]/K′d)

,

in which K′d is the dissociation constant of RNAP with the complex of DNA bound
to Act and Kd is the dissociation constant of Act with DNA. Since the production
rate of mRNA is proportional to [RNAP:DNA o], we have that

d [mRNA]
dt

= f ([Act])−γ[mRNA]

with

f ([Act]) = α0
([RNAP][Act]n)/(KdK′dkm)[DNA]
1+ ([Act]n/Kdkm)(1+ [RNAP]/K′d)

=:
α([Act]/K)n

1+ ([Act]/K)n
,

in which α and K are implicitly defined. Since in practice [RNAP]/K′d - 1, we
have that α = α0[DNA] and K = (KdK′dkm/[RNAP])1/n.

The right-hand side expression is in the standard Hill function form. Figure 2.5
shows the shape of these Hill functions both for an activator and a repressor. If we
assume that RNAP can still bind to DNA even when the activator is not bound, we
have an additional basal expression rate  α so that the new form of the production
rate is given by

f ([Act]) =
α([Act]/K)n

1+ ([Act]/K)n
+  α.

Example 2.2 (Repressilator). As an example of how these models can be used, we
consider the model of a “repressilator,” originally due to Elowitz and Leibler [27]
and briefly described in Section 1.5. The repressilator is a synthetic circuit in which
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Figure 2.5: Hill function for an activator (left) and a repressor (right).

three proteins each repress another in a cycle. This is shown schematically in Fig-
ure 2.6a, where the three proteins are TetR, λ cI and LacI.

We can model this system using three copies of the repression function (2.14),
with Rep replaced by the appropriate combination of TetR, cI and LacI. The state
of the system is then given by x = (mTetR, pTetR,mcI, pcI,mLacI, pLacI). The full dy-
namics become

d
dt





mTetR

pTetR

mcI

pcI

mLacI

pLacI





=





αLacI
1+ (pLacI/KLacI)n

+  αTetR−γmTetR

βTetRmTetR−δ pTetR
αTetR

1+ (pTetR/KTetR)n
+  αcI−γmcI

βcImcI−δ pcI
αcI

1+ (pcI/KcI)n
+  αLacI−γmLacI

βLacImLacI−δ pLacI





. (2.15)

Figure 2.6b shows the traces of the three protein concentrations for (symmetric)
parameters n = 2, α = 0.5, K = 6.25×10−4, α0 = 5×10−4, γ = 5.8×10−3, β = 0.12
and δ = 1.2×10−3 with initial conditions x(0) = (1,200,0,0,0,0) (following [27]).

∇

As indicated earlier, many activators and repressors operate in the presence of
inducers. To incorporate these dynamics in our description, we simply have to add
the reactions that correspond to the interaction of the inducer with the relevant
protein. For a negative inducer, we can simply add a reaction in which the inducer
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Figure 2.6: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simple model for the repressilator, show-
ing the oscillation of the individual protein concentrations. (Figure courtesy M. Elowitz.)

binds the regulator protein and effectively sequesters it so that it cannot interact
with the DNA. For example, a negative inducer operating on a repressor could be
modeled by adding the reaction

Rep+ Ind −−−⇀↽−−− Rep:Ind.

Since the above reactions are very fast compared to transcription, they can be as-
sumed at the quasi-steady state. Hence, the free amount of repressor that can still
bind to the promoter can be calculated by writing the ODE model corresponding
to the above reactions and by setting the time derivatives to zero. This yields to

[Rep] =
[Rep]tot

1+ [Ind]/  Kd
,

in which [Rep]tot = [Rep]+ [Rep:Ind] is the total amount of repressor (bound and
not bound to the inducer) and  Kd is the dissociation constant of Ind binding to
Rep. This expression of the repressor concentration needs to be substituted in the
expression of the production rate f ([Rep]).

Positive inducers can be handled similarly, except now we have to modify the
binding reactions to only work in the presence of a regulatory protein bound to an
inducer. For example, a positive inducer on an activator would have the modified
reactions

Inducer binding: Act+ Ind −−−⇀↽−−− Act:Ind
Activator binding: DNAp+Act:Ind −−−⇀↽−−− DNA:Act:Ind

Diffusion along DNA: RNAPd −−−⇀↽−−− RNAPp

RNAP binding w/ activator: RNAPp+DNA:Act:Ind
−−−⇀↽−−− RNAP:DNAo+DNA:Act:Ind.
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Figure 2.7: Autoregulation of gene expression. The three circuits control the expression of
gene regulation using (a) unregulated, (b) negative autoregulation and (c) positive autoreg-
ulation.

Hence, in the expression of the production rate f ([Act]), we should substitute in
place of [Act] the concentration [Act:Ind]. This concentration, in turn, can be sim-
ply computed at the quasi-steady state by writing the ODE model for the inducer
binding reaction and equating the time derivatives to zero. This yields

[Act:Ind] =
[Act]tot[Ind]/  Kd

1+ [Ind]/  Kd
,

in which [Act]tot = [Act]+ [Act:Ind] and  Kd is the dissociation constant of the bind-
ing of Ind with Act.

Example 2.3 (Autoregulation of gene expression). Consider the three circuits shown
in Figure 2.7, representing a unregulated gene, a negatively autoregulated gene and
a positively autoregulated gene. We want to model the dynamics of the protein A
starting from zero initial conditions for the three different cases to understand how
the three different circuit topologies affect dynamics.

The dynamics of the three circuits can be written in a common form,

dmA

dt
= f (A)−γmA,

dA
dt

= βmA−δA, (2.16)

where f (A) has the form

funreg(A)=αB, frepress(A)=
αB

1+ (A/K)n
+α0, factivate(A)=

αA(A/K)n

1+ (A/K)n
+αB

We choose the parameters to be

αA = 1/3, αB = 1/2, α0 = 5×10−4,

β = 20log(2)/120, γ = log(2)/120, δ = log(2)/600,
K = 104, n = 2,
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(a) (b)

Figure 2.8: Simulations for autoregulated gene expression. (a) Non-normalized expression
levels. (b) Normalized expression.

corresponding to biologically plausible values. Note that the parameters are chosen
so that f (0) ≈ αB for each circuit.

Figure 2.8a shows the results of the simulation. We see that initial increase
in protein concentration is identical for each circuit, consistent with our choice
of Hill functions and parameters. As the expression level increases, the effects of
positive and negative are seen, leading to different steady state expression levels.
In particular, the negative feedback circuit reaches a lower steady state expression
level while the positive feedback circuit settles to a higher value.

In some situations, it makes sense to ask whether different circuit topologies
have different properties that might lead us to choose one over another. In the case
where the circuit is going to be used as part of a more complex pathway, it may
make the most sense to compare circuits that produce the same steady state concen-
tration of the protein A. To do this, we must modify the parameters of the individual
circuits, which can be done in a number of different ways: we can modify the pro-
moter strengths, degradation rates, or other molecular mechanisms reflected in the
parameters.

The steady state expression level for the negative autoregulation case can be
adjusted by using a stronger promoter (modeled by αB) or ribosome binding site
(modeled by β). The equilibrium point for the negative autoregulation case is given
by the solution of the equations

mA,e =
αKn

γ(Kn+Ane)
, Ae =

β

δ
mA,e.

These coupled equations can be solved for mA,e and Ae, but in this case we simply
need to find values α′B and β′ that give the same values as the unregulated case. For
example, if we equate the mRNA levels of the unregulated system with that of the
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negatively autoregulated system, we have

αB

γ
=

1
γ

(

α′BK
n

Kn+Ane
+α0

)

=⇒ α′B = (αB−α0)
Kn+Ane
Kn , Ae =

αBβ

γδ
,

where Ae is the desired equilibrium value (which we choose using the unregulated
case as a guide).

A similar calculation can be done for the case of positive autoregulation, in
this case decreasing the promoter parameters αA and αB so that the steady state
values match. A simple way to do this is to leave αA unchanged and decrease αB
to account for the positive feedback. Solving for α′B to give the same mRNA levels
as the unregulated case yields

α′B = αB−αA
Ane

Kn+Ane
.

Figure 2.8b shows simulations of the expression levels over time for the modi-
fied circuits. We see now that the expression levels all reach the same steady state
value. The negative autoregulated circuit has the property that it reaches the steady
state more quickly, due to the increased rate of protein expression when A is small
(α′B > αB). Conversely, the positive autoregulated circuit has a slower rate of ex-
pression than the constitutive case, since we have lowered the rate of protein ex-
pression when A is small. The initial higher and lower expression rates are com-
pensated for via the autoregulation, resulting in the same expression level in steady
state. ∇

We have described how the Hill function can model the regulation of a gene
by a single transcription factor. However, genes can also be regulated by multiple
transcription factors, some of which may be activators and some may be repres-
sors. In this case, the promoter controlling the expression of the gene is called a
combinatorial promoter. The mRNA production rate can thus take several forms
depending on the roles (activators versus repressors) of the various transcription
factors [3]. In general, the production rate resulting from a promoter that takes as
input transcription factors pi for i ∈ {1, ...,N} will be denoted f (p1, ..., pn).

Thus, the dynamics of a transcriptional module is often well captured by the
ordinary differential equations

dmy

dt
= f (p1, ..., pn)−γymy,

dpy
dt

= βymy−δypy, (2.17)

where my denotes the concentration of mRNA translated by gene y, the constants
γy and δy incorporate the dilution and degradation processes, and βy is a constant
that establishes the rate at which the mRNA is translated.

For a combinatorial promoter with two input proteins, an activator pa and a
repressor pr, in which the activator cannot bind if the repressor is bound to the
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promoter, the function f (pa, pr) can be obtained by employing the competitive
binding in the reduced order models of Section 2.1. In this case, assuming the
activator has cooperativity n and the repressor has cooperativity m, we obtain the
expression

f (pa, pr) = α
(pa/Ka)n

1+ (pa/Ka)n+ (pr/Kr)m
.

Here, we have that Ka = (Km,aKd,a)(1/n), Kr = (Km,rKd,r)(1/m), in which Kd,a and
Kd,r are the dissociation constants of the activator and repressor, respectively, from
the DNA promoter site, while Km,a and Km,r are the dissociation constants for the
cooperative binding reactions for the activator and repressor, respectively. In the
case in which the activator is “leaky”, that is, some transcription still occurs even
when there is no activator, the above expression will be modified to

f (pa, pr) = α
(pa/Ka)n

1+ (pa/Ka)n+ (pr/Kr)m
+  α,

in which  α is the basal transcription rate when no activator is present. If such a
basal rate can still be repressed by the repressor, the above expression modifies to
the form

f (pa, pr) =
α(pa/Ka)n+  α

1+ (pa/Ka)n+ (pr/Kr)m
.

Example 2.4 (Activator-repressor clock). As an example of where combinatorial
promoters are used, we illustrate in this example an activator-repressor clock that
was fabricated in E. coli and is shown in Figure 2.9(a) [5].

The activator A is self activated and is also repressed by the repressor R. Hence,
the promoter controlling the expression of A is a combinatorial promoter. The
model describing this system, assuming the mRNA dynamics have reached its
quasi-steady state, is given by

dA
dt
=

αA(A/Ka)n+  αA
(A/Ka)n+ (R/Kr)m+1

−δAA,
dR
dt

=
αR(A/Ka)n+  αR

(A/Ka)n+1
−δRR.

Figure 2.9 (b) shows the behavior of the activator and the repressor concentrations.
We will come back to this design in Chapter 6, in which we will use the tools
introduced in Chapter 3 to establish parameter conditions under which the system
admits a periodic solution. ∇

Finally, a simple regulation mechanism is based on altering the half life of a pro-
tein. Specifically, the degradation rate of a protein is determined by the amounts of
proteases present, which bind to recognition sites (degradation tags) and then de-
grade the protein. Degradation of a protein X by a protease Y can then be modeled
by the following two-step reaction

X+Y
a
−⇀↽−
d

C k
−→ Y,
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Figure 2.9: The activator-repressor clock network. (a) A schematic diagram of the circuit.
(b) A simulation of a simple model for the clock, showing the oscillation of the individual
protein concentrations. In the simulation, we have chosen Ka = Kr = 1, αA = αR = 100,
 αA = 0.4,  αR = 0.004, δA = 1, δR = 0.5, n = 2, and m = 4.

in which C is the complex of the protease bound to the protein. By the end of the
reaction, protein X has been degraded to nothing, so that sometimes this reaction
is simplified to X −−→ ∅.

2.4 Post-Transcriptional Regulation

In addition to regulation of expression through modifications of the process of tran-
scription, cells can also regulate the production and activity of proteins via a col-
lection of other post-transcriptional modifications. These include methods of mod-
ulating the translation of proteins, as well as affecting the activity of a protein via
changes in its conformation, as shown in Figure 1.9.

Allosteric modifications to proteins

In allosteric regulation, a regulatory molecule, called allosteric effector, binds to a
site separate from the catalytic site (active site) of an enzyme. This binding causes
a change in the three dimension conformation of the protein, turning off (or turning
on) the catalytic site (Figure 2.10).

An allosteric effector can either be an activator or an inhibitor, just like inducers
work for activation or inhibition of transcription factors. Inhibition can either be
competitive or not competitive. In the case of competitive inhibition, the inhibitor
competes with the substrate for binding the enzyme; that is, the substrate can bind
to the enzyme only if the inhibitor is not bound. In the case of non-competitive
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./coreproc/figures/Allosteric-diagram.eps

Figure 2.10: In allosteric regulation, a regulatory molecule binds to a site separate from the
catalytic site (active site) of an enzyme. This binding causes a change in the three dimen-
sion conformation of the protein, turning off (or turning on) the catalytic site. Permission
pending.

inhibition, the substrate can be bound to the enzyme even if the latter is bound to
the inhibitor. In this case, however, the product may not be able to form or may
form at a lower rate, in which case, we have partial inhibition.

Activation can be absolute or not. Specifically, an activator is absolute when the
enzyme can bind to the substrate only when bound to the activator. Otherwise, the
activator is not absolute. In this section, we derive the expressions for the produc-
tion rate of the active protein in an enzymatic reaction in the two most common
cases: when we have a (non-competitive) inhibitor I or an (absolute) activator A of
the enzyme.

Allosteric inhibition

Consider the standard enzymatic reaction

E+S
a
−⇀↽−
d

C k
−→ S∗+E

in which enzyme E activates protein S and transforms it to the active form S∗. Let
I be a (non-competitive) inhibitor of enzyme E so that when E is bound to I, the
complex EI can still bind to inactive protein S, however, the complex EIS is non-
productive, that is, it does not produce the active protein S∗. Then, we have the
following additional reactions:

E+ I
k+−−⇀↽−−
k−

EI C+ I
k+−−⇀↽−−
k−

EIS EI+S
a
−⇀↽−
d

EIS,

with the conservation laws (assuming S tot is in much greater amounts than Etot)

Etot = E+C+EI +EIS , S tot = S +S ∗+C+EIS ≈ S +S ∗.
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Hence, the production rate of S ∗ is given by dS ∗/dt = kC. Since we have that
k+,k−,a,b- k, we can assume all the complexes to be at the quasi steady state.
This gives

EIS =
a
d
EI ·S , EI =

k+
k−
E · I, C =

1
Km

S ·E,

in which Km = (d+k)/a is the Michaelis-Menten constant. Using these expressions,
the conservation law for the enzyme, and the fact that a/d ≈ 1/Km, we obtain

E =
Etot

(I/Kd+1)(1+S/Km)
, with Kd = k−/k+,

so that
C =

S
S +Km

Etot
1+ I/Kd

and, as a consequence,

dS ∗

dt
= k1Etot

(

1
1+ I/Kd

)(

S
S +Km

)

.

Using the conservation law for S , this is also equivalent to

dS ∗

dt
= k1Etot

(

1
1+ I/Kd

)(

(S tot−S ∗)
(S tot−S ∗)+Km

)

.

In our earlier derivations of the Michaelis-Menten kinetics Vmax = k1Etot was called
the maximal speed of modification, which occurs when the enzyme is completely
saturated by the substrate (Section 2.1). Hence, the effect of a non-competitive
inhibitor is to decrease the maximal speed of modification by a factor 1/(1+ I/Kd).

Another type of inhibition occurs when the inhibitor is competitive, that is, when I
is bound to E, the complex EI cannot bind to protein S. Since E can either bind to
I or S (not both), I competes against S for binding to E. See Exercise 2.11.

Allosteric activation

In this case, the enzyme E can transform S to its active form only when it is bound
to A. Also, we assume that E cannot bind S unless E is bound to A (from here, the
name absolute activator). The reactions are therefore modified to be

E+A
k+−−⇀↽−−
k−

EA

and
EA+S

a
−⇀↽−
d

EAS k
−→ S∗+EA,
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with conservation laws

Etot = E+EA+EAS , S tot ≈ S +S ∗.

The production rate of S∗ is given by dS ∗/dt = kEAS . Assuming as above that the
complexes are at the quasi-steady state, we have that

EA =
E ·A
Kd
, EAS =

S ·EA
Km
,

which, using the conservation law for E, leads to

E =
Etot

(1+S/Km)(1+A/Kd)
and EAS =

(

A
A+Kd

)(

S
S +Km

)

Etot.

Hence, we have that

dS ∗

dt
= kEtot

(

A
A+Kd

)(

S
S +Km

)

.

Using the conservation law for S, this is also equivalent to

dS ∗

dt
= kEtot

(

A
A+Kd

)(

(S tot−S ∗)
(S tot−S ∗)+Km

)

.

The effect of an absolute activator is to modulate the maximal speed of modification
by a factor A/(A+Kd).

Figure 2.11 shows the behavior of the enzyme activity as a function of the
allosteric effector. As the dissociation constant decreases, that is, the affinity of the
effector increases, a very small amount of effector will cause the enzyme activity
to be completely “on” in the case of the activator and completely “off” in the case
of the inhibitor.

Another type of activation occurs when the activator is not absolute, that is, when
E can bind to S directly, but cannot activate S unless the complex ES first binds A
(see Exercise 2.12).

Covalent modifications to proteins

Covalent modification is a post-translational protein modification that affects the
activity of the protein. It plays an important role both in the control of metabolism
and in signal transduction. Here, we focus on reversible cycles of modification, in
which a protein is interconverted between two forms that differ in activity either
because of effects on the kinetics relative to substrates or for altered sensitivity to
effectors.

At a high level, a covalent modification cycle involves a target protein X, an
enzyme Z for modifying it, and a second enzyme Y for reversing the modifica-
tion (see Figure 2.12). We call X∗ the activated protein. There are often allosteric
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Figure 2.11: Enzyme activity in the presence of allosteric effectors (activators or in-
hibitors). The red plots show the enzyme activity in the presence of an inhibitor as a
function of the inhibitor concentration. The green plots show the enzyme activity in the
presence of an activator as a function of the activator concentration. The different plots
show the effect of the dissociation constant.

effectors or further covalent modification systems that regulate the activity of the
modifying enzymes, but we do not consider this added level of complexity here.
There are several types of covalent modification, depending on the type of acti-
vation of the protein. Phosphorylation is a covalent modification that takes place
mainly in eukaryotes and involves activation of the inactive protein X by addition
of a phosphate group, PO4. In this case, the enzyme Z is called a kinase while the
enzyme Y is called phosphatase. Another type of covalent modification, which is
very common in both procaryotes and eukaryotes, ismethylation. Here, the inactive
protein is activated by the addition of a methyl group, CH3.

The reactions describing this system are given by the following two enzymatic
reactions, also called a two step reaction model,

Z+X
a1−−⇀↽−−
d1

C1
k1−→ X∗+Z, Y+X∗

a2−−⇀↽−−
d2

C2
k2−→ X+Y.

The corresponding ODE model is given by
dZ
dt
= −a1Z ·X+ (k1+d1)C1,

dX∗

dt
= k1C1−a2Y ·X∗+d2C2,

dX
dt
= −a1Z ·X+d1C1+ k2C2,

dC2
dt
= a2Y ·X∗ − (d2+ k2)C2,

dC1
dt
= a1Z ·X− (d1+ k1)C1,

dY
dt
= −a2Y ·X∗+ (d2+ k2)C2.

Furthermore, we have that the total amounts of enzymes Z and Y are conserved.
Denote the total concentrations of Z and Y by Ztot, Ytot, respectively. Then, we



76 CHAPTER 2. DYNAMIC MODELING OF CORE PROCESSES

(a)

X X p 

Z ATP Z ADP 

Y Y p + 

kinase 

substrate 

phosphatase 

C1 

C2 

(b)

Figure 2.12: (Left) General diagram representing a covalent modification cycle. (Right)
Detailed view of a phoshorylation cycle including ATP, ADP, and the exchange og the
phosphate group “p”.

have also the conservation laws Z+C1 = Ztot and Y +C2 = Ytot. We can thus reduce
the above system of ODE to the following one, in which we have substituted Z =
Ztot−C1 and Y = Ytot−C2:

dC1
dt
= a1(Ztot−C1) ·X− (d1+ k1)C1,

dX∗

dt
= k1C1−a2(Ytot−C2) ·X∗+d2C2,

dC2
dt
= a2(Ytot−C2) ·X∗ − (d2+ k2)C2.

As for the case of the enzymatic reaction, this system cannot be analytically
integrated. To simplify it, we can perform a similar approximation as done for the
enzymatic reaction. In particular, the complexes C1 and C2 are often assumed to
reach their steady state values very quickly because a1,d1,a2,d2 - k1,k2. There-
fore, we can approximate the above system by substituting for C1 and C2 their
steady state values, given by the solutions to

a1(Ztot−C1) ·X− (d1+ k1)C1 = 0

and
a2(Ytot−C2) ·X∗ − (d2+ k2)C2 = 0.

By solving these equations, we obtain that

C2 =
YtotX∗

X∗+Km,2
, with Km,2 =

d2+ k2
a2

and
C1 =

ZtotX
X+Km,1

, with Km,1 =
d1+ k1
a1
.
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As a consequence, the ODE model of the phosphorylation system can be well
approximated by

dX∗

dt
= k1

ZtotX
X+Km,1

−a2
YtotKm,2
X∗+Km,2

·X∗+d2
YtotX∗

X∗+Km,2
,

which, considering that a2Km,2−d2 = k2, leads finally to

dX∗

dt
= k1

ZtotX
X+Km,1

− k2
YtotX∗

X∗+Km,2
. (2.18)

We will come back to the modeling of this system after we have introduced sin-
gular perturbation theory, through which we will be able to perform a formal anal-
ysis and mathematically characterize the assumptions needed for approximating
the original system by the first order ODE model (2.18). In the model of equation
(2.18), we have that X = Xtot −X∗ −C1 −C2 by the conservation laws. A standard
assumption is that the amounts of enzymes are small compared to the amount of
substrate, so that X ≈ Xtot−X∗ [37].

Ultrasensitivity

One relevant aspect of the response of the covalent modification cycle to its input is
the sensitivity of the steady state characteristic curve. Specifically, what parameters
affect the shape of the steady state response is a crucial question. To determine the
steady state characteristics, which shows how the steady state of X∗ changes when
the input stimulus Ztot is changed, we set dX∗/dt = 0 in equation (2.18). Using the
approximation X ≈ Xtot − X∗, denoting V1 := k1Ztot, V2 := k2Ytot,  K1 := Km,1/Xtot,
and  K2 := Km,2/Xtot, we obtain

y :=
V1
V2
=
X∗/Xtot

(

 K1+ (1−X∗/Xtot)
)

(  K2+X∗/Xtot) (1−X∗/Xtot)
. (2.19)

We are interested in the shape of the steady state curve of X∗ as function of y.
This shape is usually characterized by two key parameters: the response coefficient,
denoted R, and the point of half maximal induction, denoted y50. Let yα denote the
value of y corresponding to having X∗ equal α% of the maximum value of X∗
obtained for y =∞, which is equal to Xtot. Then, the response coefficient is defined
as

R :=
y90
y10
,

and measures how switch-like the response is (Figure 2.13). When R→ 1 the re-
sponse becomes switch-like. In the case in which the steady state characteristic is
a Hill function, we have that X∗ = yn/(K + yn), so that yα = (α/(100−α))(1/n) and
as a consequence

R = (81)(1/n), or equivalently n =
log(81)
log(R)

.
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Figure 2.13: Steady state characteristic curve showing the relevance of the response coef-
ficient for ultrasensitivity. As R→ 1, the points y10 and y90 tend to each other.

Hence, when n = 1, that is, the characteristic is of the Michaelis-Menten type, we
have that R = 81, while when n increases, R decreases. Usually, when n > 1 the
response is referred to as ultrasensitive. The formula n = log(81)/log(R) is often
employed to estimate the apparent Hill coefficient of a dose response curve (the in-
put/output steady state characteristic curve obtained from experimental data) since
R can be calculated for any response curve directly from the data points.

In the case of the current system, from equation (2.19), we have that

y90 =
(  K1+0.1) 0.9
(  K2+0.9) 0.1

and y10 =
(  K1+0.9) 0.1
(  K2+0.1) 0.9

,

so that

R = 81
(  K1+0.1)(  K2+0.1)
(  K2+0.9)(  K1+0.9)

.

As a consequence, when  K1,  K2- 1, we have that R→ 81, which gives a Michaelis-
Menten type of response. If instead  K1,  K2 . 0.1, we have that R→ 1, which cor-
responds to a theoretic Hill coefficient n- 1, that is, a switch-like response (Figure
2.14). In particular, if we have, for example,  K1 =  K2 = 10−2, we obtain an appar-
ent Hill coefficient grater than 13. This type of ultrasensitivity is usually referred
to as zero-order ultrasensitivity. The reason of this name is due to the fact that
when Km,1 is much smaller than the amount of protein substrate X, we have that
ZtotX/(Km,1+X) ≈ Ztot. Hence, the forward modification rate is “zero order” in the
substrate concentration (no free enzyme is left, all is bound to the substrate).

One can study the behavior also of the point of half maximal induction

y50 =
 K1+0.5
 K2+0.5

,

to find that as  K2 increases, it decreases and that as  K1 increases, it increases.
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Figure 2.14: Steady state characteristics of a covalent modification cycle as a function of
the Michaelis-Menten constants K1 and K2.

Phosphotransfer systems

Phosphotransfer systems are also a common motif in cellular signal transduction.
These structures are composed of proteins that can phosphorylate each other. In
contrast to kinase-mediated phosphorylation, where the phosphate donor is usually
ATP, in phosphotransfer the phosphate group comes from the donor protein itself
(Figure 2.15). Each protein carrying a phosphate group can donate it to the next
protein in the system through a reversible reaction. In this section, we describe a
module extracted from the phosphotransferase system [91].

Let X be a transcription factor in its inactive form and let X∗ be the same tran-
scription factor once it has been activated by the addition of a phosphate group.
Let Z∗ be a phosphate donor, that is, a protein that can transfer its phosphate group
to the acceptor X. The standard phosphotransfer reactions [82] can be modeled
according to the two-step reaction model

Z∗+X
k1−−⇀↽−−
k2

C1
k3−−⇀↽−−
k4

X∗+Z,

in which C1 is the complex of Z bound to X bound to the phosphate group. Ad-
ditionally, protein Z can be phosphorylated and protein X∗ dephosphorylated by
other phosphotransfer interactions. These reactions are modeled as one step reac-
tions depending only on the concentrations of Z and X∗, that is,

Z
π1−−→ Z∗, X∗

π2−−→ X.

Protein X is assumed to be conserved in the system, that is, Xtot = X+C1+X∗.
We assume that protein Z is produced with time-varying production rate k(t) and
decays with rate δ. The ODE model corresponding to this system is thus given by
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Figure 2.15: (a) Diagram of a phosphotransfer system. (b) Proteins X and Z are transferring
the phosphate group p to each other.

the equations

dZ
dt
= k(t)−δZ+ k3C1− k4X∗Z−π1Z

dC1
dt
= k1Xtot

(

1−
X∗

Xtot
−
C1
Xtot

)

Z∗ − k3C1− k2C1+ k4X∗Z

dZ∗

dt
= π1Z+ k2C1− k1Xtot

(

1−
X∗

Xtot
−
C1
Xtot

)

Z∗

dX∗

dt
= k3C1− k4X∗Z−π2X∗.

(2.20)

Sample simulation results when the input is a time-varying (periodic) stimulus are
shown in Figure 2.16. The output X∗ well “tracks” the input stimulus by virtue of
the fast phosphotransfer reactions.

This model will be considered again in Chapter 7 when the phosphotransfer sys-
tem is proposed as a possible realization of an insulation device to buffer systems
from retroactivity effects.

2.5 Cellular subsystems

In the previous section we have studied how to model a variety of core processes
that occure in cells. In this section we consider a few common “subsystems” in
which these processes are combined for specific purposes.

Intercellular signaling: MAPK cascades

The Mitogen Activated Protein Kinase (MAPK) cascade is a recurrent structural
motif in several signal transduction pathways (Figure 2.17). The cascade consists
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Figure 2.16: Output response of the phosphotransfer system with a step signal k(t) = 1+
0.5sin(ωt). The parameters are given by δ = 0.01, Xtot = 5000, k1 = k2 = k3 = k4 = π1 = π2 =
0.01.

of a MAPK kinase kinase (MAPKKK), denoted X0, a MAPK kinase (MAPKK),
denoted X1, and a MAPK, denoted X2. MAPKKKs activate MAPKKs by phospho-
rylation at two conserved sites and MAPKKs activate MAPKs by also phosphory-
lation at conserved sites. The cascade relays signals from the plasma membrane
to targets in the cytoplasm and nucleus. It has been extensively studied and mod-
eled. Here, we provide two different models. First, we build a modular model by
viewing the system as the composition of single phosphorylation cycle modules
(whose ODE model was derived earlier) and double phosphorylation cycle mod-
ules, whose ODE model we derive here. Then, we provide the full list of reactions
describing the cascade and construct a mechanistic ODE model from scratch. We
will then highlight the difference between the two derived models.

Double phosphorylation model. Consider the double phosphorylation motif in Fig-
ure 2.18. The reactions describing the system are given by

E1+X
a1−−⇀↽−−
d1

C1
k1−→ X∗+E1, E2+X

a2−−⇀↽−−
d2

C2
k2−→ X∗+E2,

X∗+E1

a∗1−−⇀↽−−
d∗1

C3
k∗1−→ X∗∗+E1, E2+X∗∗

a∗2−−⇀↽−−
d∗2

C4
k∗2−→ X∗+E2

With conservation laws

E1+C1+C3 = E1,tot, E2+C2+C4 = E2,tot,

Xtot = X+X∗+X∗∗+C1+C2+C3+C4 ≈ X+X∗+X∗∗,

in which we have assumed the the total amounts of enzymes are small compared
to the total amount of substrate as we have explained earlier. Since ai,di - ki and
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X1* X1**

Output

X1

P1

X0*X0

E1 Input

P0

X2*X2

P2

X2**

Figure 2.17: Schematic representing the MAPK cascade. It has three levels: the first one
has a single phosphorylation, while the second and the third ones have a double phospho-
rylation.

a∗i ,d
∗
i - k∗i , we can assume that the complexes are at the quasi-steady state (i.e.,

Ċi ≈ 0), which gives the Michaelis-Menten form for the amount of formed com-
plexes:

C1 = E1,tot
K∗1 X

K∗1X+K1X∗+K1K∗1
, C3 = E1,tot

K1 X∗

K∗1X+K1X∗+K1K∗1
,

C2 = E2,tot
K∗2 X

∗

K∗2X∗+K2X∗∗+K2K∗2
, C4 = E2,tot

K2 X∗∗

K∗2X∗+K2X∗∗+K2K∗2
,

in which Ki = (di+ki)/ai and K∗i = (d∗i +k
∗
i )/a

∗
i are the Michaelis-Menten constants

for the enzymatic reactions. Since the complexes are at the quasi steady state, it
follows that

d
dt
X∗ = k1C1− k2C2− k∗1C3+ k∗2C4,

d
dt
X∗∗ = k∗1C3− k∗2C4,
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X* X**

Output

X

E2

E1 Input

Figure 2.18: Schematic representing a double phosphorylation cycle. E1 is the input and
X∗∗ is the output.

from which, substituting the expressions of the complexes, we obtain that

d
dt
X∗ = E1,tot

k1XK∗1 − k
∗
1X
∗K1

K∗1X+K1X∗+K∗1K1
+E2,tot

k∗2X
∗∗K2− k2X∗K∗2

K∗2X∗+K2X∗∗+K2K∗2
d
dt
X∗∗ = k∗1E1,tot

K1X∗

K∗1X+K1X∗+K1K∗1
− k∗2E2,tot

K2 X∗∗

K∗2X∗+K2X∗∗+K2K∗2
,

in which X = Xtot−X∗ −X∗∗.

Modular model of MAPK cascades

In this section, to simplify notation, we denote “MAPK” by X2. In a modular com-
position framework, the output of one stage becomes an input to the next stage
downstream of it. Hence, X *

0 becomes the input enzyme that activates the phos-
phorylation of X1, and X **

1 becomes the input enzyme that activates the phospho-
rylation of X2. Let (a1,i,d1,i,k1,i) and (a2,i,d2,i,k2,i) be the association, dissociation,
and catalytic rates for the forward and backward enzymatic reactions, respectively,
for the first cycle at stage i ∈ {0,1,2}. Similarly, let (a∗1,i,d

∗
1,i,k

∗
1,i) and (a∗2,i,d

∗
2,i,k

∗
2,i)

be the association, dissociation, and catalytic rates for the forward and backward
enzymatic reactions, respectively, for the second cycle at stage i ∈ {1,2}. Also, de-
note by K1,i and K2,i for i ∈ {0,1,2} the Michaelis-Menten constants of the forward
and backward enzymatic reactions, respectively, of the first cycle at stage i. Sim-
ilarly, denote K∗1,i and K∗2,i for i ∈ {1,2} be the Michaelis-Menten constants of the
forward and backward enzymatic reactions, respectively, of the second cycle at
stage i. Let P1,tot and P2,tot be the total amounts of the X1 and X2 phosphatases,
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respectively. Then, the modular ODE model of the MAPK cascade is given by

d
dt
X∗0 = k1,0E1,tot

X0
X0+K1,0

− k2,0P0,tot
X∗0

X∗0+K2,0

d
dt
X∗1 = X

∗
0
k1,1 X0 K∗1,1−k

∗
1,1 X

∗
1 K1,1

K∗1,1 X1+K1,1 X∗1+K1,1K∗1,1
+P1,tot

k∗2,1 K2,1 X∗∗1 −k2,1 X∗1 K∗2,1
K∗2,1 X

∗
1+K2,1 X∗∗1 +K2,1K∗2,1

d
dt
X∗∗1 = k

∗
1,1 X

∗
0

X∗1 K1,1
K∗1,1 X1+K1,1 X∗1+K1,1K∗1,1

− k∗2,1 P1,tot
X∗∗1 K2,1

K∗2,1 X
∗
1+K2,1 X∗∗1 +K2,1K∗2,1

d
dt
X∗2 = X

∗∗
1

k1,2X2 K∗1,2−k
∗
1,2 X

∗
2 K1,2

K∗1,2 X2+K1,2 X∗2+K
∗
1,2 K1,2

+P2,tot
k∗2,2 K2,2 X∗∗2 −k2,2 X∗2 K∗2,2
K∗2,2 X

∗
2+K2,2 X∗∗2 +K2,2 K∗2,2

d
dt
X∗∗2 = k

∗
1,2 X

∗∗
1

X∗2 K1,2
K∗1,2 X2+K1,2 X∗2+K

∗
1,2 K1,2

− k∗2,2 P2,tot
X∗∗2 K2,2

K∗2,2 X
∗
2+K2,2 X∗∗2 +K2,2 K∗2,2

(2.21)

in which, letting X0,tot,X1,tot and X2,tot represent the total amounts of each stage
protein, we have X0 = X0,tot−X∗0, X1 = X1,tot−X∗1 −X

∗∗
1 and X2 = X2,tot−X∗2 −X

∗∗
2 .

Mechanistic model of the MAPK cascade

We now give the entire set of reactions for the MAPK cascade of Figure 2.17 as
they are found in standard references (Huang-Ferrell model [45]):

E1+X0
a1,0
−−−⇀↽−−−
d1,0

C1
k1,0
−−→ X∗0E1 P0+X∗0

a2,0
−−−⇀↽−−−
d2,0

C2
k2,0
−−→ X∗0 +P0

X∗0 +X1
a1,1
−−−⇀↽−−−
d1,1

C3
k1,1
−−→ X∗1 +X∗0 X∗1 +P1

a2,1
−−−⇀↽−−−
d2,1

C4
k2,1
−−→ X1+P1

X∗0 +X∗1
a∗1,1
−−−⇀↽−−−
d∗1,1

C5
k∗1,1
−−→ X∗∗1 +X∗0 X∗1 +P1

a∗2,1
−−−⇀↽−−−
d∗2,1

C6
k∗2,1
−−→ X∗1 +P1

X∗∗1 +X2
a1,2
−−−⇀↽−−−
d1,2

C7
k1,2
−−→ X∗2 +X∗∗1 X∗2 +P2

a2,2
−−−⇀↽−−−
d2,2

C8
k2,2
−−→ X2+P2

X∗∗1 +X∗2
a∗1,2
−−−⇀↽−−−
d∗1,2

C9
k∗1,2
−−→ X∗∗2 +X∗1 X∗∗2 +P2

a∗2,2
−−−⇀↽−−−
d∗2,2

C10
k∗2,2
−−→ X∗2 +P2,

with conservation laws

X0,tot = X0+X∗0 +C1+C2+C3+C5

X1,tot = X1+X∗1 +C3+X∗∗1 +C4+C5+C6+C7+C9

X2,tot = X2+X∗2 +X
∗∗
2 +C7+C8+C9+C10

E1,tot = E1+C1, P0,tot = P0+C2

P1,tot = P1+C4+C6

P2,tot = P2+C8+C10.
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The corresponding ODE model is given by

d
dt
C1 = a1,0E1 X0− (d1,0+ k1,0) C1

d
dt
X∗0 = k1,0 C1+d2,0 C2−a2,0 P0 X∗0 + (d1,1+ k1,1) C3−a1,1 X1 X∗0

+ (d∗1,1+ k
∗
1,1) C5−a∗1,1 X

∗
0 X
∗
1

d
dt
C2 = a2,0 P0 X∗0 − (d2,0+ k2,0) C2

d
dt
C3 = a1,1 X1 X∗0 − (d1,1+ k1,1) C3

d
dt
X∗1 = k1,1 C3+d2,1 C4−a2,1 X∗1 P1+d∗1,1C5−a∗1,1 X

∗
1 X
∗
0 + k

∗
2,1 C6

d
dt
C4 = a2,1 X∗1 P1− (d2,1+ k2,1) C4

d
dt
C5 = a∗1,1 X

∗
0 X
∗
1 − (d∗1,1+ k

∗
1,1) C5

d
dt
X∗∗1 = k

∗
1,1 C5−a∗2,1 X

∗
1 P1+d∗2,1 C6−a1,2 X∗∗1 X2

+ (d1,2+ k1,2) C7−a∗1,2 X
∗∗
1 X∗2 + (d∗1,2+ k

∗
1,2) C9

d
dt
C6 = a∗2,1 X

∗∗
1 P1− (d∗2,1+ k

∗
2,1) C6

d
dt
C7 = a∗1,2 X

∗
1 X2− (d∗1,2+ k

∗
1,2) C7

d
dt
X∗2 = −a2,2 X∗2 P2+d2,2 C8−a∗1,2 X

∗
2 X
∗∗
2 +d

∗
1,2 C9+C10 K10

d
dt
C8 = a∗2,2 X

∗
2 P2− (d2,2+ k2,2) C8

d
dt
X∗∗2 = k

∗
1,2 C9−a∗2,2 X

∗∗
2 P2+d∗2,2 C10

d
dt
C9 = a∗1,2 X

∗∗
1 X∗2 − (d∗1,2+ k

∗
1,2) C9

d
dt
C10 = a∗2,2 X

∗∗
2 P2− (d∗2,2+ k

∗
2,2) C10.

Assuming as before that the total amounts of enzymes are much smaller than
the total amounts of substrates (E1,tot,P0,tot,P1,tot,P2,tot . X0,tot,X1,tot,X2,tot), we
can approximate the conservation laws as

X0,tot ≈ X0+X∗0 +C3+C5,

X1,tot ≈ X1+X∗1 +C3+X∗∗1 +C5+C7+C9,

X2,tot ≈ X2+X∗2 +X
∗∗
2 +C7+C9.
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Using these and assuming that the complexes are at the quasi-steady state, we ob-
tain the following functional dependencies:

C1 = f1(X∗0,X
∗
1,X

∗∗
1 ,X

∗
2,X

∗∗
2 ), C2 = f2(X∗0),

C3 = f3(X∗0,X
∗
1,X

∗∗
1 ,X

∗
2,X

∗∗
2 ), C5 = f5(X∗0,X

∗
1),

C7 = f7(X∗1,X
∗∗
1 ,X

∗
2,X

∗∗
2 ), C9 = f9(X∗∗1 ,X

∗
2).

The fact that C7 depends on X∗2 and X∗∗2 illustrates that the dynamics of the second
stage are influenced by those of the third stage. Similarly, the fact that C3 depends
on X∗1,X

∗∗
1 ,X

∗
2,X

∗∗
2 indicates that the dynamics of the first stage are influenced by

those of the second stage and by that of the third stage. The phenomenon by which
the behavior of a “module” is influenced by that of its downstream clients is called
retroactivity, which is a phenomenon similar to impedance in electrical systems
and to back-effect in mechanical systems. It will be studied at length in Chapter 7.

This fact is in clear contrast with the ODE model obtained by modular compo-
sition, in which each stage dynamics depended upon the variables of the upstream
stages and not upon those of the downstream stages. That is, from equations (2.21),
it is apparent that the dynamics of X∗0 (first stage) do not depend on the variables of
the second stage (X1,X∗1,X

∗∗
1 ). In turn, the dynamics of X∗1 and X∗∗1 (second stage)

do not depend on the variables of the third stage (X∗2 and X∗∗2 ). Indeed modular com-
position does not consider the fact that the proteins of each stage are “used-up” in
the process of transmitting information to the downstream stages. This backward
effect has been theoretically shown to lead to sustained oscillations in the MAPK
cascade [80]. By contrast, the modular ODE model of MAPK cascades does not
give rise to sustained oscillations.

Properties of the MAPK Cascade

The stimulus-response curve obtained with the mechanistic model predicts that the
response of the MAPKKK to the stimulus E1,tot is of the Michaelis-Menten type.
By contrast, the stimulus-response curve obtained for the MAPKK and MAPK
are sigmoidal and show high Hill coefficients, which increases from the MAPKK
response to the MAPK response. That is, an increase ultrasensitivity is observed
moving down in the cascade (Figure 2.19). These model observations persist when
key parameters, such as the Michaelis-Menten constants are changed [45]. Fur-
thermore, zero-order ultrasensitivity effects can be observed. Specifically, if the
amounts of MAPKK were increased, one would observe a higher apparent Hill
coefficient for the response of MAPK. Similarly, if the values of the Km for the re-
actions in which the MAPKK takes place were decreased, one would also observe
a higher apparent Hill coefficient for the response of MAPK. Double phosphory-
lation is also key to obtain a high apparent Hill coefficient. In fact, a cascade in
which the double phosphorylation was assumed to occur through a one-step model



EXERCISES 87

−15 −10 −5 0 5
0

0.2

0.4

0.6

0.8

1

E1,tot

X2
**

X0
*X1

**

Figure 2.19: Dose response of the MAPK cascade for every stage. Simulations from the
model of [80].

(similar to single phosphorylation) predicted substantially lower apparent Hill co-
efficients.

Additional topics to be added later: Review

1. Transport across the membrane

2. Membrane receptors, ligand binding, G-proteins

Exercises

2.1 (BE 150, Winter 2011) Consider a cascade of three activators X→Y→ Z. Pro-
tein X is initially present in the cell in its inactive form. The input signal of X, S x,
appears at time t=0. As a result, X rapidly becomes active and binds the promoter
of gene Y, so that protein Y starts to be produced at rate β. When Y levels exceed
a threshold K, gene Z begins to be transcribed and translated at rate γ. All proteins
have the same degradation/dilution rate α.

(a) What are the concentrations of proteins Y and Z as a function of time?

(b) What is the minimum duration of the pulse S x such that Z will be produced?

(c) What is response time of protein Z with respect to the time of addition of S x?
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2.2 (Hill function for a cooperative repressor) Consider a repressor that binds to an
operator site as a dimer:

R1: R+R −−−⇀↽−−− R2

R2: R2+DNAp −−−⇀↽−−− R2:DNA
R3: RNAP+DNAp −−−⇀↽−−− RNAP:DNAp

Assume that the reactions are at equilibrium and that the RNA polymerase con-
centration is large (so that [RNAP] is roughly constant). Show that the ratio of the
concentration of RNA:DNA p to the total amount of DNA, Dtot, can be written as a
Hill function

f (R) =
[RNAP:DNA]

Dtot
=

α

K +R2

and give expressions for α and K.

2.3 (Switch-like behavior in cooperative binding) For a cooperative binding reac-
tion

B+B
k1−−⇀↽−−
k2

Bd, Bd+A
k f
−−⇀↽−−
kr

C, and A+C = Atot,

the steady state values of C and A are

C =
kMAtotB2

kMB2+Kd
, and A =

AtotKd

kMB2+Kd
.

Derive the expressions of C and A at the steady state when you modify these reac-
tions to

B+B+ ...+B
k1−−⇀↽−−
k2

Bn, Bn+A
k f
−−⇀↽−−
kr

C, and A+C = Atot.

Make MATLAB plots of the expressions that you obtain and verify that as n in-
creases the functions become more switch-like.

2.4 Consider the following modification of the competitive binding reactions:

Ba+A
k f
−−⇀↽−−
kr

C, Br+A
 k f
−−⇀↽−−

 kr
 C,

and

C+Br

k′f
−−⇀↽−−
k′r

C
′
, and  C+Ba

 k′f
−−⇀↽−−

 k′r
C
′

with Atot = A+C +  C +C′. What are the steady state expressions for A and C?
What information do you deduce from these expressions if A is a promoter, Ba
is an activator protein, and C is the activator/DNA complex that makes the gene
transcriptionally active?
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2.5 Consider the case of a competitive binding of an activator A and a repressor
R with D and assume that before they can bind D they have to cooperatively bind
according to the following reactions:

A+A+ ...+A
k1−−⇀↽−−
k2

An, R+R+ ...+R
 k1−−⇀↽−−
 k2

Rm,

in which the complex An contains n molecules of A and the complex Rm contains
m molecules of R. The competitive binding reactions with A are given by

An+D
a
−⇀↽−
d

C, Rm+D
a′
−−⇀↽−−
d′

C′,

and Dtot = D+C+C′.What are the steady state expressions for C and D?

2.6 Assume that we have an activator Ba and a repressor protein Br. We want to
obtain an input function such that when a lot of Ba is present, the gene is tran-
scriptionally active only if there is no Br, when low amounts of Ba are present, the
gene is transcriptionally inactive (with or without Br). Write down the reactions
among Ba, Br, and complexes with the DNA (A) that lead to such an input func-
tion. Demonstrate that indeed the set of reactions you picked leads to the desired
input function.

2.7 (BE 150, Winter 2011) Consider a positive transcriptional feedback loop com-
posed of two negative interactions X 1 Y and Y 1 X.

(a) Write the ODEs for the system above. Assume that the two transcrption/repression
mechanisms have the same dynamics and both genes are degraded at the same rate
0.2. Let the basal transcription rate be 1, K = 2, n = 2.
(b) To solve for the steady states, plot the nullclines by solving dX

dt = 0 and dY
dt = 0

(i.e. solve for Y = g1(X) where dX
dt = 0 and Y = g2(X) where dY

dt = 0 and plot both
solutions). The steady states are given by the intersections of the two nullclines.
(c) Plot the time response of X and Y using the following two initial conditions:

(X(0),Y(0)) = (1,4) and (4,1).

Next, plot the phase plane of the system using pplane in MATLAB. How do the
responses change with initial conditions? Describe a situation where this type of
interaction would be useful.

2.8 Consider the phosphorylation reactions described in Section 2.4, but suppose
that the kinase concentration Z is not constant, but is produced and decays accord-
ing to the reaction Z

δ
−−−⇀↽−−−
k(t)
∅. How should the system in equation (2.18) be modified?
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Use a MATLAB simulation to apply a periodic input stimulus k(t) using parame-
ter values: kcat = k′cat = 1, k f = k′f = kr = k

′
r = 10, δ = 0.01. Is the cycle capable of

“tracking” the input stimulus? If yes, to what extent? What are the tracking prop-
erties depending on?

2.9 Another model for the phosphorylation reactions, referred to as one step re-
action model, is given by Z+X −−−⇀↽−−− X∗+Z and Y+X∗ −−−⇀↽−−− X+Y, in which the
complex formations are neglected. Write down the ODE model and comparing the
differential equation of X∗ to that of equation (2.18), list the assumptions under
which the one step reaction model is a good approximation of the two step reaction
model.

2.10 (Transcriptional regulation with delay) Consider a repressor or activator B∗
modeled by a Hill function F(B). Show that in the presence of transcriptional delay
τm, the dynamics of the active mRNA can be written as

dm∗(t)
dt

= e−τ
m
F(B(t−τm))−  γm∗.

2.11 (Competitive Inhibition) Derive the expression of the production rate of W∗
in the presence of a competitive inhibitor I.

2.12 (Non-absolute activator) Derive the expression of the production rate of W∗
in the presence of a non-absolute activator A.

2.13 (BE 150, Winter 2011) Consider the following network X→ Y and X→ X.

(a) Write the ODEs for the system above. Use basal expression βX = βY = 2 and
activation coefficients KX = 1, KY = 2, n1 = n2 = 2. The degradation coefficients for
X and Y are both 0.5.
(b) Plot the vector field using pplane. How many steady states do you observe?
(c) Solve for the steady states of the system using the derived ODEs, linearize the
system and do a stability analysis.
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