
Biomolecular Feedback Systems

Domitilla Del Vecchio Richard M. Murray
U. Michigan/MIT Caltech

DRAFT v0.3, January 10, 2010
c© California Institute of Technology

All rights reserved.

This manuscript is for review purposes only and may not be reproduced, in whole or in part, without
written consent from the authors.



Chapter 2
Core Processes

The goal of this chapter is to describe basic biological mechanisms in a way
that can be represented by simple dynamic models. We begin the chapter with
a overview of the dynamics of protein production and control, focused on the pro-
cesses that determine the properties of genetic networks, followed by a discussion
of the basic modeling formalisms that we will utilize. We then proceed to study
a number of core processes within the cell, providing different model-based de-
scriptions of the dynamics that will be used in later chapters to analyze and design
biomolecular systems. The focus in this chapter is on deterministic models using
ordinary differential equations; Chapter 4 describes how to model the stochastic
nature of biomolecular systems.

Prerequisites. Readers should have a basic understanding of ordinary differential
equations, at the level of Chapter 2 of AM08, and some basic familiarity with cell
biology, at the level of the description in Chapter 1.

2.1 Dynamics and Control in the Cell

The molecular processes inside a cell determine its behavior and are responsible
for metabolizing nutrients, generating motion, enabling procreation and carrying
out the other functions of the organism. In complex, multi-cellular organisms,
different types of cells work together to enable more complex functions. In this
chapter we briefly describe the role of dynamics and control within a cell and
discuss the basic processes that govern its behavior and its interactions with its
environment (including other cells). We build on the description of cell biology
provided in Chapter 1; a much more detailed introduction to the biology of the cell
and some of the processes described here can be found in standard textbooks on
cell biology such as Alberts et al. [2] or Phillips et al. [28].

The central dogma: production of proteins

The genetic material inside a cell, encoded in its DNA, governs the response of a
cell to various conditions. DNA is organized into collections of genes, with each
gene encoding a corresponding protein that performs a set of functions in the cell.
The activation and repression of genes are determined through a series of complex
interactions that give rise to a remarkable set of circuits that perform the functions
required for life, ranging from basic metabolism to locomotion to procreation.



2-2 CHAPTER 2. CORE PROCESSES

(a) Base pairs (b) Double stranded

Figure 2.1: Molecular structure of DNA. (a) Individual bases (nucleotides) that make up DNA:
adenine (A), cytocine (C), guanine (G) and thymine (T). (b) Double stranded DNA formed from
individual nucleotides, with A binding to T and C binding to G. Each strand contains a 5’ and 3’ end,
determined by the locations of the carbons where the next nucleotide binds. Figure from Phillips,
Kondev and Theriot [28]; used with permission of Garland Science.

Genetic circuits that occur in nature are robust to external disturbances and can
function in a variety of conditions. To understand how these processes occur (and
some of the dynamics that govern their behavior), it will be useful to present a
slightly more detailed description of the underlying biochemistry involved in the
production of proteins.
DNA is double stranded molecule with the “direction” of each strand specified

by looking at the geometry of the sugars that make up its backbone (see Figure 2.1).
The complementary strands of DNA are composed of a sequence of nucleotides
that consist of a sugar molecule (deoxyribose) bound to one of 4 bases: adenine
(A), cytocine (C), guanine (G) and thymine (T). The coding strand (by convention
the top row of a DNA sequence when it is written in text form) is specified from
the 5’ end of the DNA to the 3’ end of the DNA. (As described briefly in Chapter 1,
5’ and 3’ refer to carbon locations on the deoxyribose backbone that are involved
in linking together the nucleotides that make up DNA.) The DNA that encodes
proteins consists of a promoter region, regulator regions (described in more detail
below), a coding region and a termination region (see Figure 2.2).
RNA polymerase enzymes are present in the nucleus (for eukaryotes) or cyto-

plasm (for prokaryotes) and must localize and bind to the promoter region of the
DNA template. Once bound, the RNA polymerase “opens” the double stranded
DNA to expose the nucleotides that make up the sequence, as shown in Figure 2.3.
This reversible reaction, called isomerization, is said to transform the RNA poly-
merase and DNA from a closed complex to an open complex. After the open com-
plex is formed, RNA polymerase begins to travel down the DNA strand and con-
structs an mRNA sequence that matches the 5’ to 3’ sequence of the DNA to which
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Figure 2.2: Geometric structure of DNA. The layout of the DNA is shown at the top. RNA poly-
merase binds to the promoter region of the DNA and transcribes the DNA starting at the +1 side and
continuing to the termination site.

it is bound. By convention, we number the first base pair that is transcribed as ‘+1’
and the base pair prior to that (which is not transcribed) is labeled as ‘-1’. The pro-
moter region is often shown with the -10 and -35 regions indicated, since these
regions contain the nucleotide sequences to which the RNA polymerase enzyme
binds (the locations vary in different cell types, but these two numbers are typically
used).
The RNA strand that is produced by RNA polymerase is also a sequence of

nucleotides with a sugar backbone. The sugar for RNA is ribose instead of de-
oxyribose and mRNA typically exists as a single stranded molecule. Another dif-
ference is that the base thymine (T) is replaced by uracil (U) in RNA sequences.
RNA polymerase produces RNA one base pair at a time, as it moves from in the 5’
to 3’ direction along the DNA coding strand. RNA polymerase stops transcribing
DNA when it reaches a termination region (or terminator) on the DNA. This ter-
mination region consists of a sequence that causes the RNA polymerase to unbind
from the DNA. The sequence is not conserved across species and in many cells the
termination sequence is sometimes “leaky”, so that transcription will occasionally
occur across the terminator (we will see examples of this in the λ phage circuitry
described in the next chapter).
Once the mRNA is produced, it must be translated into a protein. This process

is slightly different in prokaryotes and eukaryotes. In prokaryotes, there is a region
of the mRNA in which the ribosome (a molecular complex consisting of of both
proteins and RNA) binds. This region, called the ribosome binding site (RBS), has
some variability between different cell species and between different genes in a
given cell. The Shine-Delgarno sequence, AGGAGG, is the consensus sequence
for the RBS.
In eukaryotes, the RNAmust undergo several additional steps before it is trans-

lated. The RNA sequence that has been created by RNA polymerase consists of
introns that must be spliced out of the RNA (by a molecular complex called the
spliceosome), leaving only the exons. The term “pre-mRNA” is often used to dis-
tinguish between the raw transcript and the spliced mRNA sequence, which is
called “mature RNA”. In addition to splicing, the mRNA is also modified to con-
tain a poly(A) (polyadenine) tail, consisting of a long sequence of adenine (A)
nucleotides on the 3’ end of the mRNA. This processed sequence is then trans-
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Figure 2.3: Production of messenger RNA from DNA. RNA polymerase, along with other accessory
factors, binds to the promoter region of the DNA and then “opens” the DNA to begin transcription
(initiation). As RNA polymerase moves down the DNA, producing an RNA transcript (elongation),
which is later translated into a protein. The process ends when the RNA polymerase reaches the
terminator (termination). Reproduced from Courey [9]; permission pending.

ported out of the nucleus into the cytoplasm, where the ribosomes can bind to it.
Unlike prokaryotes, eukaryotes do not have a well defined ribosome binding

sequence and hence the process of the binding of the ribosome to the mRNA is
more complicated. The Kozak sequence A/GCCACCAUGG is the rough equiv-
alent of the ribosome binding site, where the underlined AUG is the start codon.
However, mRNA lacking the Kozak sequence can also be translated.
Once the ribosome is bound to the mRNA, it begins the process of translation.

Proteins consist of a sequence of amino acids, with each amino acid specified
by a codon that is used by the ribosome in the process of translation. Each codon
consists of three base pairs and corresponds to one of the 20 amino acids or a “stop”
codon. The genetic code mapping between codons and amino acids is shown in
Table 1.1. The ribosome translates each codon into the corresponding amino acid
using transfer RNA (tRNA) to integrate the appropriate amino acid (which binds
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Figure 2.4: Translation is the process of translating the sequence of a messenger RNA (mRNA)
molecule to a sequence of amino acids during protein synthesis. The genetic code describes the
relationship between the sequence of base pairs in a gene and the corresponding amino acid sequence
that it encodes. In the cell cytoplasm, the ribosome reads the sequence of the mRNA in groups
of three bases to assemble the protein. Figure and caption courtesy the National Human Genome
Research Institute.

to the tRNA) into the polypeptide chain, as shown in Figure 2.4. The start codon
(AUG) specifies the location at which translation begins, as well as coding for the
amino acid methionine (a modified form is used in prokaryotes). All subsequent
codons are translated by the ribosome into the corresponding amino acid until it
reaches one of the stop codons (typically UAA, UAG and UGA).
The sequence of amino acids produced by the ribosome is a polypeptide chain

that folds on itself to form a protein. The process of folding is complicated and
involves a variety of chemical interactions that are not completely understood.
Additional post-translational processing of the protein can also occur at this stage,
until a folded and functional protein is produced. It is this molecule that is able to
bind to other species in the cell and perform the chemical reactions that underly
the behavior of the organism.
Each of the processes involved in transcription, translation and folding of the

protein takes time and affects the dynamics of the cell. Table 2.1 shows the rates of
some of the key processes involved in the production of proteins. It is important to
note that each of these steps is highly stochastic, with molecules binding together
based on some propensity that depends on the binding energy but also the other
molecules present in the cell. In addition, although we have described everything
as a sequential process, each of the steps of transcription, translation and folding
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Table 2.1: Rates of core processes involved in the creation of proteins from DNA in E. coli.

Process Characteristic rate Source
mRNA production 10–30 bp/sec Vogel and Jensen
Protein production 10–30 aa/sec PKT08
Protein folding ???
mRNA half life ∼ 100 sec YM03
Cell division time ∼ 3000 sec ???
Protein half life ∼ 5×104 sec YM03
Protein diffusion along DNA up to 104 bp/sec

are happening simultaneously. In fact, there can be multiple RNA polymerases
that are bound to the DNA, each producing a transcript. In prokaryotes, as soon as
the ribosome binding site has been transcribed, the ribosome can bind and begin
translation. It is also possible to have multiple ribosomes bound to a single piece of
mRNA. Hence the overall process can be extremely stochastic and asynchronous.

Transcriptional regulation of protein production

There are a variety of mechanisms in the cell to regulate the production of proteins.
These regulatory mechanisms can occur at various points in the overall process that
produces the protein. Transcriptional regulation refers to regulatory mechanisms
that control whether or not a gene is transcribed.
The simplest forms of transcriptional regulation are repression and activation,

which are controlled through transcription factors. In the case of repression, the
presence of a transcription factor (often a protein that binds near the promoter)
turns off the transcription of the gene and this type of regulation is often called
negative regulation or “down regulation”. In the case of activation (or positive reg-
ulation), transcription is enhanced when an activator protein binds to the promoter
site (facilitating binding of the RNA polymerase).

A common mechanism for repression is that a protein binds to a region of DNA
near the promoter and blocks RNA polymerase from binding. The region of DNA
in which the repressor protein binds is called an operator region (see Figure 2.2.
If the operator region overlaps the promoter, then the presence of a protein at the
promoter “blocks” the DNA at that location and transcription cannot initiate, as
illustrated in Figure 2.5a. Repressor proteins often bind to DNA as dimers or pairs
of dimers (effectively tetramers). Figure 2.5b shows some examples of repressors
bound to DNA.
A related mechanism for repression is DNA looping. In this setting, two re-

pressor complexes (often dimers) bind in different locations on the DNA and then
bind to each other. This can create a loop in the DNA and block the ability of
RNA polymerase to bind to the promoter, thus inhibiting transcription. Figure 2.6
shows an example of this type of repression, in the lac operon. (An operon is a set
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(a) Repression of gene expression
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(b) Examples of repressors

Figure 2.5: Repression of gene expression. Figure from Phillips, Kondev and Theriot [28]; used with
permission of Garland Science.

of genes that is under control of a single promoter; this is discussed in more detail
below.)
A feature that is present in some types of repressor proteins is the existence of

an inducer molecule that combines with the protein to either activate or inactivate
its repression function. A positive inducer is a molecule that must be present in or-
der for repression to occur. A negative inducer is one in which the presence of the
inducer molecule blocks repression, either by changing the shape of the repressor
protein or by blocking active sites on the repressor protein that would normally
bind to the DNA. Figure 2.7a summarizes the various possibilities. Common ex-
amples of repressor-inducer pairs include lacI and lactose (or IPTG), tetR and ATc,
and tryptophan repressor and tryptophan. Lactose/IPTG and ATc are both negative

(a) DNA looping

./coreproc/figures/PKT08_08_19.eps

(b) lac repressor

Figure 2.6: Repression via DNA looping. Figure from Phillips, Kondev and Theriot [28]; used with
permission of Garland Science.



2-8 CHAPTER 2. CORE PROCESSES

./coreproc/figures/MBoC09_07_37.eps

Figure 2.7: Effects of inducers. Reproduced from Alberts et al. [2]; permission pending.

inducers, so their presence causes the otherwise repressed gene to be expressed,
while tryptophan is a positive inducer.

The process of activation of a gene requires that an activator protein be present
in order for transcription to occur. In this case, the protein must work to either
recruit for enable RNA polymerase to begin transcription.
The simplest form of activation involves a protein binding to the DNA near

the promoter in such a way that the combination of the activator and the pro-
moter sequence bind RNA polymerase. One of the most well-studied examples is
the catabolite activator protein (CAP)—also sometimes called the cAMP receptor
protein (CRP)—shown in Figure 2.8. Like repressors, many activators have induc-
ers, which can act in either a positive or negative fashion (see Figure 2.7b). For
example, cyclic AMP (cAMP) acts as a positive inducer for CAP.
Another mechanism for activation of transcription, specific to prokaryotes, is

the use of sigma factors. Sigma factors are part of a modular set of proteins that
bind to RNA polymerase and form the molecular complex that performs transcrip-
tion. Different sigma factors enable RNA polymerase to bind to different pro-
moters, so the sigma factor acts as a type of activating signal for transcription.
Table 2.2 lists some of the common sigma factors in bacteria. One of the uses of
sigma factors is to produce certain proteins only under special conditions, such as
when the cell undergoes heat shock (discussed in more detail in Chapter 5). An-
other use is to control the timing of the expression of certain genes, as illustrated
in Figure 2.9.

In addition to repressors and activators, many genetic circuits also make use of
combinatorial promoters that can act as either repressors or activators for genes.
This allows genes to be switched on and off based on more complex conditions,
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(a) Activation mechanism
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(b) Examples of activators

Figure 2.8: Activation of gene expression. Figure from Phillips, Kondev and Theriot [28]; used with
permission of Garland Science.

represented by the concentrations of two or more activators or repressors.
Figure 2.10 shows one of the classic examples, a promoter for the lac system.

In the lac system, the expression of genes for metabolizing lactose are under the
control of a single (combinatorial) promoter. CAP, which is positively induced by
cAMP, acts as an activator and LacI (also called “repressor”), which is negatively
induced by lactose, acts as a repressor. In addition, the inducer cAMP is expressed
only when glucose levels are low. The resulting behavior is that the proteins for
metabolizing lactose are expressed only in conditions where there is no glucose
(so CAP is active) and lactose is present.
More complicated combinatorial promoters can also be used to control tran-

scription in two different directions, a example that is found in some viruses.
A final method of activation in prokaryotes is the use of antitermination. The

basic mechanism involves a protein that binds to DNA and deactivates a site that
would normally serve as a termination site for RNA polymerase. Additional genes
are located downstream from the termination site, but without a promoter region.
Thus, in the presence of the anti-terminator protein, these genes are not expressed
(or expressed with low probability). However, when the antitermination protein

Table 2.2: Sigma factors in E. coli [2].
Sigma factor Promoters recognized
σ70 most genes
σ32 genes associated with heat shock
σ28 genes involved in stationary phase and stress response
σ28 genes involved in motility and chemotaxis
σ24 genes dealing with misfolded proteins in the periplasm
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Figure 2.9: Use of sigma factors to controlling the timing of expression. Reproduced from Alberts
et al. [2]; permission pending.

is present, the RNA polymerase maintains (or regains) its contact with the DNA
and expression of the downstream genes is enhanced. In this way, antitermination
allows downstream genes to be regulated by repressing “premature” termination.
An example of an antitermination protein is the protein N in phase λ, which binds
to a region of DNA labeled Nut (for N utilization) [16], as shown in Figure 2.11.

Post-transcriptional regulation of protein production

Post-translation regulation of protein activity

One of the most common types of post-transcriptional regulation is through the
phosphorylation of proteins. Phosphorylation is an enzymatic process in which a
phosphate group is added to a protein and the resulting conformation of the protein
changes, usually from an inactive configuration to an active one. The enzyme
that adds the phosphate group is called a phosphotransferase or a kinase and it
operates by transferring a phosphate group from a bound ATP molecule to the
protein, leaving behind ADP and the phosphorylated protein. Dephosphorylation
is a complementary enzymatic process that can remove a phosphate group from
a protein. The enzyme that performs dephosphorylation is called a phosphotase.
Figure 2.12 shows the process of phosphorylation in more detail.
Phosphorylation is often used as a regulatory mechanism with the phosphory-

lated version of the protein being the active conformation. Since phosphorylation
and dephosphorylation can occur much more quickly than protein production and
degradation, it is used in my biological circuits in which a rapid response is re-
quired. One common motif is that a signaling protein will bind to a ligand and the
resulting allosteric change allows the signaling protein to serve as a kinase. The
newly active kinase then phosphorylates a second protein, which modulates other
functions in the cell. Phosphorylation cascades can also be used to amplify the
effect of the original signal; we will describe this in more detail in Section 2.6.
Kinases in cells are usually very specific to a given protein, allowing detailed

signaling networks to be constructed. Phosphotases, on the other hand, are much
less specific, and a given phosphotase species may desphosphorylate many differ-
ent types of proteins. The combined action of kinases and phosphotases is im-
portant in signaling since the only way to deactivate a phosphorylated protein is
by removing the phosphate group. Thus phosphotases are constantly “turning off”
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Figure 2.10: Combinatorial logic for the lac operator. Figure from Phillips, Kondev and Theriot [28];
used with permission of Garland Science.

proteins, and the protein is activated only when sufficient kinase activity is present.
Phosphorylation of a protein occurs by the addition of a charged phosphate

(PO4) group to the serine (Ser), threonine (Thr) or tyrosine (Tyr) amino acids. Sim-
ilar covalent modifications can occur by the attachment of other chemical groups
to select amino acids. Methylation occurs when a methyl group (CH3) is added
to lysine (Lys) and is used for modulation of receptor activity and in modifying
histones that are used in chromatin structures. Acetylation occurs when an acetyl
group (COCH3) is added to lysine and is also used to modify histones. Ubiquiti-
nation refers to the addition of a small protein, ubiquitin, to lysine; the addition of
a polyubiquitin chain to a protein targets it for degradation.

./coreproc/figures/GNM93-antitermination.eps

Figure 2.11: Antitermination. Reproduced from [?]; permission pending.
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Figure 2.12: Phosphorylation of a protein via a kinase. Reproduced from Madhani [22]; permission
pending.

2.2 Modeling Techniques

In order to develop models for some of the core processes of the cell, we will need
to build up a basic description of the biochemical reactions that take place, includ-
ing production and degradation of proteins, regulation of transcription and transla-
tion, intracellular sensing, action and computation, and intercellular signaling. As
in other disciplines, biomolecular systems can be modeled in a variety of differ-
ent ways, at many different levels of resolution, as illustrated in Figure 2.13. The
choice of which model to use depends on the questions that you want to answer,
and good modeling takes practice, experience and iteration. One must properly
capture the aspects of the system that are important, reason about the appropri-
ate temporal and spatial scales to be included, and take into account the types of
simulation and analysis tools be be applied. Models that are to be used for ana-
lyzing existing systems should make testable predictions and provide insight into
the underlying dynamics. Design models must additionally capture enough of the
important behavior to allow decisions to be made regarding how to interconnect
subsystems, choose parameters and design regulatory elements.
In this section we describe some of the basic modeling frameworks that we

will build on throughout the rest of the text. We begin with brief descriptions of
the relevant physics and chemistry of the system, and then quickly move to models
that focus on capturing the behavior using reaction rate equations. In this chapter
our emphasis will be on dynamics with time scales measured in seconds to hours
and mean behavior averaged across a large number of molecules. We touch only
briefly on modeling in the case where stochastic behavior dominates and defer a
more detailed treatment until Chapter 4.
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Figure 2.13: Different methods of modeling biomolecular systems.

Statistical mechanics and chemical kinetics

At the fine end of the modeling scale depicted in Figure 2.13, we can attempt to
model the molecular dynamics of the cell, in which we attempt to model the indi-
vidual proteins and other species and their interactions via molecular-scale forces
and motions. At this scale, the individual interactions between protein domains,
DNA and RNA are resolved, resulting in a highly detailed model of the dynamics
of the cell.
For our purposes in this text, we will not require the use of such a detailed scale.

Instead, we will start with the abstraction of molecules that interact with each other
through stochastic events that are guided by the laws of thermodynamics. We begin
with an equilibrium point of view, commonly referred to as statistical mechanics
and then briefly describe how to model the (statistical) dynamics of the system
using chemical kinetics. We cover both of these points of view very briefly here,
primarily as a stepping stone to more deterministic models, and present a more
detailed description in Chapter 4.
The underlying representation for both statistical mechanics and chemical ki-

netics is to identify the appropriate microstates of the system. A microstate cor-
responds to a given configuration of the components (species) in the system rela-
tive to each other and we must enumerate all possible configurations between the
molecules that are being modeled. As an example, consider the distribution of
RNA polymerase in the cell. It is known that most RNA polymerases are bound to
the DNA in a cell, either as they produce RNA or as they diffuse along the DNA in
search of a promoter site. Hence we can model the microstates of the RNA poly-
merase system as all possible locations of the RNA polymerase in the cell, with
the vast majority of these corresponding to the RNA polymerase at some location
on the DNA. This is illustrated in Figure 2.14.
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Figure 2.14: Microstates for RNA polymerase. Each microstate of the system corresponds to the
RNA polymerase being located at some position in the cell. If we discretize the possible locations on
the DNA and in the cell, the microstates corresponds to all possible non-overlapping locations of the
RNA polymerases. Figure from Phillips, Kondev and Theriot [28]; used with permission of Garland
Science.

In statistical mechanics, we model the configuration of the cell by the proba-
bility that system is in a given microstate. This probability can be calculated based
on the energy levels of the different microstates. The laws of statistical mechanics
state if we have a set of microstates Q, then the steady state probability that the
system is in a particular microstate q is given by

P(q) =
1
Z

e−Eq/(kBT ), (2.1)

where Eq is the energy associated with the microstate q ∈ Q and Z is a normalizing
factor, known as the partition function,

Z =
∑

q∈Q
e−Eq/(kBT ).

By keeping track of those microstates that correspond to a given system state
(also called a macrostate), we can compute the overall probability that a given
macrostate is reached. This can be used, for example, to compute the probability
that some RNA polymerase is bound to a given promoter, averaged over many
independent samples, and from this we can reason about the rate of expression of
the corresponding gene.
Statistical mechanics averages about the steady state distribution of microstates,

but does not tell us how the microstates evolve in time. To include the dynamics,
we must consider the chemical kinetics of the system and model the probability
that we transition from one microstate to another in a given period of time. We de-
scribe the kinetics of the system by making use of the propensity function a(ξ;q, t),
which captures the instantaneous probability that a system will transition between
state q and state q+ ξ. More specifically, the propensity function is defined such
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that
a(ξ; x, t)dt = Probability that the microstate will transition from

state q to state q+ ξ between time t and time t+dt.

Wewill give more detail in Chapter 4 regarding the validity of this functional form,
but for now we simply assume that such a function can be defined for our system.
Using the propensity function, we can keep track of the probability distribution

for the state by looking at all possible transitions into and out of the current state.
Specifically, given P(q, t), the probability of being in state q at time t, we can
compute the time derivative Ṗ(q, t) as

d
dt

P(q, t) =
∑

ξ

a(ξ;q− ξ, t)P(q− ξ, t)−
∑

ξ

a(ξ;q, t)P(q, t). (2.2)

This equation (and its many variants) is called the chemical master equation (CME).
The first sum on the right hand side represents the transitions into the state q from
some other state q−ξ and the second sum represents that transitions out of the state
q into some other state q+ ξ. The variable ξ in the sum ranges over all possible
transitions between microstates.
Clearly the dynamics of the distribution P(q, t) depends on the form of the

propensity function a(ξ). Consider a simple reaction of the form

A+B −−−⇀↽−−− AB ≡
R f : A+B −−→ AB
Rr : AB −−→ A+B.

(2.3)

We assume that the reaction takes place in a well-stirred volume and let the con-
figurations q be represented by the number of each species that is present. The
forward reaction R f is a bimolecular reaction and we will see in Chapter 4 that it
has a propensity function

a(ξf;q) = cξfnAnB,

where ξf represents the forward reaction, nA and nB are the number of molecules
of each species and cξf is a constant coefficient that depends on the properties of
the specific molecules involved. The reverse reaction Rr is a unimolecular reaction
and we will see that it has a propensity function

a(ξr,q) = cξrnAB,

where ξr represents the reverse reaction, cξr is a constant coefficient and nAB is the
number of molecules of AB that are present.

The primary difference between the statistical mechanics description in equation (2.1)
and the chemical kinetics description in equation (2.2) is that the master equation
formulation describes how the probability of being in a given microstate evolves
over time. Of course, if the propensity functions and energy levels are modeled
properly, the steady state, average probabilities of being in a given microstate
should be the same for both formulations.
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Mass action kinetics

Although very general in form, the chemical master equation suffers from being a
very high dimensional representation of the dynamics of the system. We shall see
in Chapter 4 how to implement simulations that obey the master equation, but in
many instances we will not need this level of detail in our modeling. In particular,
there are many situations in which the number of molecules of a given species
is such that we can reason about the behavior of a chemically reacting system
by keeping track of the concentration of each species as a real number. This is
of course an approximation, but if the number of molecules is sufficiently large,
then the approximation will generally be valid and our models can be dramatically
simplified.
To go from the chemical master equation to a simplified form of the dynamics,

we begin by making a number of assumptions. First, we assume that we can
represent the state of a given species by its concentration cA = nA/Ω, where nA is
the number of molecules of A in a given volumeΩ. We also treat this concentration
as a real number, ignoring the fact that the real concentration is quantized. Finally,
we assume that our reactions take place in a well-stirred volume, so that the rate
of interactions between two species is determined by the concentrations of the
species.
Before proceeding, we should recall that in many (and perhaps most) situations

inside of cells, these assumptions are not particularly good ones. Biomolecular
systems often have very small molecular counts and are anything but well mixed.
Hence, we should not expect that models based on these assumptions should per-
form well at all. However, experience indicates that in many cases the basic form
of the equations provides a good model for the underlying dynamics and hence we
often find it convenient to proceed in this manner.
Putting aside our potential concerns, we can now proceed to write the dynam-

ics of a system consisting of a set of species Si, i = 1, . . . ,N undergoing a set of
reactions R j, j = 1, . . . ,M. We write xi = [Si] for the concentration of species i
(viewed as a real number). Because we are interested in the case where the num-
ber of molecules is large, we no longer attempt to keep track of every possible
configuration, but rather simply assume that the state of the system at any given
time is given by concentrations xi. Hence the state space for our system is given
by x ∈ RN and we seek to write our dynamics in the form of a differential equation

ẋ = f (x,µ)

where f :RN→RN describes the rate of change of the concentrations as a function
of the instantaneous concentrations and µ represents the parameters that govern the
dynamic behavior.
To illustrate the general form of the dynamics, we consider again the case of a

basic bimolecular reaction
A+B −−−⇀↽−−− AB.

Each time the forward reaction occurs, we decrease the number of molecules of
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A and B by 1 and increase the number of molecules of AB (a separate species)
by 1. Similarly, each time the reverse reaction occurs, we decrease the number of
molecules of AB by one and increase the number of molecules of A and B.
Using the discussion from the chemical master equation, we know that the

likelihood that the reaction occurs in a given interval dt is given by a(ξf; x, t)dt =
cξfnAnBdt where cξf is a constant. Another way of viewing this equation is that the
rate at which reactions occur is given by a(ξ; x, t). Looking first at the species AB,
we can thus write

d
dt
[AB] = cξfnAnB− cξrnAB

= (cξfΩ
2)[A][B]− (cξrΩ)[AB] =: kξf [A][B]− kξr [AB],

where we have used the fact that [A] = nA/Ω and similarly for B and AB. The
constants kξf and kξr are the rate constants for the reaction and can be computed
from the coefficients of the propensity functions:

kξf = cξfΩ
2 bimolecular reaction

kξr = cξrΩ unimolecular reaction
(2.4)

In a similar fashion we can write equations to describe the dynamics of A and B
and the entire system of equations is given by

d
dt
[A] = kξr [AB]− kξf [A][B]

d
dt
[B] = kξr [AB]− kξf [A][B]

d
dt
[AB] = kξf [A][B]− kξr [AB]

or
Ȧ = kξrC− kξfA ·B
Ḃ = kξrC− kξfA ·B
Ċ = kξfA ·B− kξrC,

where C = [AB]. These equations are known as the mass action kinetics or the
reaction rate equations for the system.
Note that the same rate constants appear in each term, since the rate of produc-

tion of AB must match the rate of depletion of A and B and vice versa. We adopt
the standard notation for chemical reactions and write the individual reactions as

A+B
k
ξf
−−→ AB, AB

kξr
−−→ A+B,

where kξf and kξr are the reaction rates. For bidirectional reactions we can also
write

A+B
k
ξf
−−⇀↽−−

kξr
AB.

It is easy to generalize this equation to more general reactions. For example, if
we have a reversible reaction of the form

A+2B
k1−−⇀↽−−
k2
2C+D,
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A+2B −−−⇀↽−−− C+DA −−−→ BA+B −−−⇀↽−−− AB

Figure 2.15: Diagrams for chemical reactions.

where A, B, C and D are appropriate species, then the dynamics for the species
concentrations can be written as

d
dt

A = k2C2 ·D− k1A ·B2,

d
dt

B = 2k2C2 ·D−2k1A ·B2,

d
dt

C = 2k1A ·B2−2k2C2 ·D,

d
dt

D = k1A ·B2− k2C2 ·D.

(2.5)

Rearranging this equation, we can write the dynamics as

d
dt
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. (2.6)

We see that in this composition, the first term on the right hand side is a matrix
of integers reflecting the stoichiometry of the reactions and the second term is a
vector of rates of the individual reactions.
More generally, given a chemical reaction consisting of a set of species Si,

i = 1, . . . ,n and a set of reactions R j, j = 1, . . . ,M, we can write the mass action
kinetics in the form

dx
dt
= Nv(x),

where N ∈ Rn×m is the stoichiometry matrix for the system and v(x) ∈ RM is the
reaction flux vector. Each row of v(x) corresponds to the rate at which a given
reaction occurs and the corresponding column of the stoichiometry matrix corre-
sponds to the changes in concentration of the relevant species. As we shall see in
the next chapter, the structured form of this equation will allow us to explore some
of the properties of the dynamics of chemically reacting systems.
We will often find it convenient to represent collections of chemical reactions

using simple diagrams, so that we can see the basic interconnection between var-
ious chemical species and properties. A standard chemical reaction diagram is
shown in Figure 2.15.
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S+E −−−⇀↽−−− ES −−−→ E+P

E

S F

(a) Enzymatic reaction
X e+P −−−⇀↽−−− X e:P −−−→ X i+P

X iX e

P

(b) Permease-modulated transport

Figure 2.16: Diagrams for enzymatic reactions.

Reduced order mechanisms

In this section, we look at the dynamics associated with enzymatically controlled
reactions, which occur frequently in biomolecular systems. Under some assump-
tions on the relative rates or reactions and concentrations of species, it is possible
to derive reduced order expressions for the dynamics of the system. We focus here
on an informal derivation of the relevant results, but return to these examples in
the next chapter to illustrate that the same results can derived using a more formal
and rigorous approach.

Simple binding reaction. Consider again the reaction

A+B
k f
−−⇀↽−−

kr
C, (2.7)

in which we now assume that the total amount of A is conserved and we denote its
total concentration by Atot, so that A+C = Atot. The corresponding rate equation
for C is given by

dC
dt
= k f B · (Atot −C)− krC.

We are interested in determining the steady state value of the complex C concen-
tration C and of the concentration of the free species A, i.e., A as a function of
the concentration B. By setting Ċ = 0 and denoting KD := kr/k f , we obtain the
expressions:

C =
BAtot

B+KD
, and A =

AtotKD
B+KD

.

The constant KD is the inverse of the affinity of A to B. The steady state value of
C increases with B while the steady state value of A decreases with B as more of
A is found in the complex C.

Cooperative binding reaction. Assume now that B binds to A only after a dimer-
ization, that is, only after binding another molecule of B. Then, we have that reac-
tions (2.7) become

B+B
k1−−⇀↽−−
k2
Bd, Bd+A

k f
−−⇀↽−−

kr
C, and A+C = Atot,



2-20 CHAPTER 2. CORE PROCESSES

0  0.5 1  2  
0  

Bn kM/KD

C

n=1

n=2

n=4

Atot/2

Atot

0 0.5 1 1.5 2
0

 Bn kM/KD

A

n=1
n=2

n=4

Atot

Atot/2

Figure 2.17: Steady state concentrations of the complex C and of A as functions of the concentration
of B.

in which Bd denotes the dimer of B. The corresponding ODE model is given by
dBd
dt
= k1B2− k2Bd,

dC
dt
= k f Bd · (Atot −C)− krC.

By setting Ḃd = 0, Ċ = 0, and by denoting kM = k1/k2, we we obtain that

Bd = kM B2, C =
BdAtot

Bd +KD
, and A =

AtotKD
Bd +KD

,

so that
C =

kMAtotB2

kM B2+KD
, and A =

AtotKD

kM B2+KD
.

As an exercise, the reader can verify that if B binds to A only as a complex of n
copies of B, that is,

B+B+ ...+B
k1−−⇀↽−−
k2
Bn, Bn+A

k f
−−⇀↽−−

kr
C, and A+C = Atot,

then we have that

C =
kMAtotBn

kM Bn+KD
, and A =

AtotKD
kM Bn+KD

.

In this case, one says that the binding of B to A is cooperative with cooperativity
n. Figure 2.17 shows the above functions, which are often referred to as Hill
functions.

Competitive binding reaction. Consider finally the case in which two species Ba
and Br both bind to A competitively, that is, they cannot be bound to A at the same
time. Let C be the complex formed between Ba and A and let C̄ be the complex
formed between Br and A. Then, we have the following reactions

Ba+A
k f
−−⇀↽−−

kr
C, Br+A

k̄ f
−−⇀↽−−

k̄r
C̄ and A+C+ C̄ = Atot,
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for which, we can write the ODE system as

dC
dt
= k f Ba · (Atot −C− C̄)− krC,

dC̄
dt
= k̄ f Br · (Atot −C− C̄)− krC̄.

By setting the derivatives to zero, we obtain that

C(k f Ba+ kr) = k f Ba(Atot − C̄), C̄(k̄ f Br + k̄r) = k̄ f Br(Atot −C),

which, letting K̄D := k̄r/k̄ f , leads to

C̄ =
Br(Atot −C)

Br + K̄D
, and, C

(

Ba+KD−
BaBr

Br + K̄D

)

= Ba

(

K̄D

Br + K̄D

)

Atot,

from which we finally obtain that

C =
BaAtotK̄D

K̄DBa+KDBr +KDK̄D
, and C̄ =

BrAtotKD

KDBr + K̄DBa+KDK̄D
.

Note that in this derivation, we have assumed that both Ba and Br bind A as
monomers. If they were binding as dimers, the reader should verify that they
would appear in the final expressions with a power of two. Note also that in this
derivation we have assumed that Ba and Br cannot simultaneously bind to A. If
they were binding simultaneously to A, we would have included another complex
comprising Ba and Br and A. Denoting this new complex by C′, we would have
added also the two additional reactions

C+Br
k′f
−−⇀↽−−

k′r
C
′
, and C̄+Ba

k̄′f
−−⇀↽−−

k̄′r
C
′

and we would have modified the conservation law for A to Atot = A+C + C̄ +C′.
The reader can verify that in this case a mixed term BrBa would appear in the
equilibrium expressions.
add. In principle, one could consider all possible combinations of monomer,

dimer, tetramer, etc. and activator, repressor, AND, different occupation states
for the promoter, i.e., to consider exclusive binding or competitive binding. This
should be done in a

Enzymatic reaction. A general enzymatic reaction can be written as

E+S
k f
−−⇀↽−−

kr
C

kcat−−−→ E+P,

in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the substrate S
due to the binding with the enzyme E. The rate k f is referred to as association
constant, kr as dissociation constant, and kcat as the catalytic rate. Enzymatic
reactions are very common and we will see specific instances of them in the sequel,
that is, phosphorylation and dephosphorylation reactions. The corresponding ODE
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system is given by

dE
dt
=−k f E ·S + krC+ kcatC

dS
dt
=−k f E ·S + krC

dC
dt
= k f E ·S − (kr + kcat)C

dP
dt
= kcatC.

The total enzyme concentration is usually constant and denoted by Etot, so that
E+C = Etot. Substituting in the above equations E = Etot −C, we obtain

dE
dt
=−k f (Etot −C) ·S + krC+ kcatC

dS
dt
=−k f (Etot −C) ·S + krC

dC
dt
= k f (Etot −C) ·S − (kr + kcat)C

dP
dt
= kcatC.

This system cannot be solved analytically, therefore assumptions have been used
in order to reduce it to a simpler form. Michaelis and Menten assumed that the
conversion of E and S to C and vice versa is much faster than the decomposition of
C into E and P. This approximation is called the quasi-equilibrium approximation
between the enzyme and the complex. This assumption can be translated in the
condition

k f ,kr ) kcat

on the rate constants. Under this assumption and assuming that S ) E (at least at
time 0), C immediately reaches its steady state value (while P is still changing).
The steady state value of C is given by solving k f (Etot −C)S − (kr + kcat)C = 0 for
C, which gives

C =
EtotS

S +Km
, with Km =

kr + kcat
k f

,

in which the constant Km is called the Michaelis constant. Letting Vmax = kcatEtot,
the resulting kinetics

dP
dt
=

VmaxS
S +Km

is called Michaelis-Menten kinetics. The constant Vmax is called the maximal ve-
locity and it represents the maximal rate that can be obtained when the enzyme is
completely saturated by the substrate.
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Chemical reaction networks

2.3 Modeling Transcription and Translation

In this section we consider the processes of transcription and translation in more
detail, using the modeling techniques described in the previous section to capture
the fundamental dynamic behavior. Models of transcription and translation can
be done at a variety of levels of detail and which model to use depends on the
questions that one wants to analyze. We present several levels of modeling here,
starting with a relatively detailed set of reactions and ending with highly simplified
models that can be used when we are only interested in average production rate of
proteins at relatively long time scales.
The basic reactions that underly transcription include the diffusion of RNA

polymerase from one part of the cell to the promoter region, binding of an RNA
polymerase to the promoter, isomerization from the closed complex to the open
complex and finally the production of mRNA, one base pair at a time. To cap-
ture this set of reactions, we keep track of the various forms of RNA polymerase
according to its location and state: RNAPc represents RNA polymerase in the cy-
toplasm and RNAPd is non-specific binding of RNA polymerase to the DNA. We
must similarly keep track of the state of the DNA, to insure that multiple RNA
polymerases do not bind to the same section of DNA. Thus we can write DNAp
for the promoter region, DNAg,i for the ith section of a gene g (whose length can
depend on the desired resolution) and DNAt for the termination sequence. We
write RNAP:DNA to represent RNA polymerase bound to DNA (assumed closed)
and RNAP:DNAo to indicate the open complex. Finally, we must keep track of the
mRNA that is produced by transcription: we write mRNAi to represent an mRNA
strand of length i and assume that the length of the gene of interest is N.
Using these various states of the RNA polymerase and locations on the DNA,

we can write a set of reactions modeling the basic elements of transcription as

RNAPc −−−⇀↽−−− RNAPd binding to DNA;
RNAPd −−−⇀↽−−− RNAPp diffusion along DNA;

RNAPp+DNAp −−−⇀↽−−− RNAP:DNAp binding to promoter;
RNAP:DNAp −−−⇀↽−−− RNAP:DNAo isomerization;

RNAP:DNAo −−→ RNAP:DNAg,1+DNAp start of transcription;
RNAP:DNAg,1 −−→ RNAP:DNAg,2+mRNA1 creation of mRNA;

RNAP:DNAg,i+1+mRNAi −−→ RNAP:DNAg,i+2+mRNAi+1 elongation, i = 1, . . . ,N;
RNAP:DNAg,N+mRNAN−1 −−→ RNAP:DNAt+mRNAN binding to terminator;

RNAP:DNAt −−→ RNAPc termination;
mRNAN −−→ ∅ degradation.

(2.8)
This reaction has been written for prokaryotes, but a similar set of reactions could
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be written for eukaryotes: the main differences would be that the RNA polymerase
remains in the nucleus and the mRNA must be spliced and transported to the cy-
tosol. Note that at the start of transcription we “release” the promoter region of the
DNA, thus allowing a second RNA polymerase to bind to the promoter while the
first RNA polymerase is still transcribing the gene.
A similar set of reactions can be written to model the process of translation.

Here we must keep track of the binding of the ribosome to the mRNA, translation
of the mRNA sequence into a polypeptide chain and folding of the polypeptide
chain into a functional protein. Let Ribo:mRNARBS indicate the ribosome bound
to the ribosome binding site, Ribo:mRNA i the ribosome bound to the ith codon,
Ribo:mRNAs for the stop codon, and PPC i for a polypeptide chain consisting of i
amino acids. The reactions describing translation can then be written as

Riboc −−−⇀↽−−− Riborna binding to RNA;
Riborna+mRNARBS −−−⇀↽−−− Ribo:mRNARBS binding to RBS;

Ribo:mRNARBS −−→ Ribo:mRNA1+mRNARBS start of translation;
Ribo:mRNA1 −−→ Ribo:mRNA2+ppc1 creation of polypeptide chain;

Ribo:mRNAi+1+ppci −−→ Ribo:mRNAi+2+ppci+1 elongation, i = 1, . . . ,M;
Ribo:mRNAM+ppcM−1 −−→ Ribo:mRNAs+ppcM stop codon;

Ribo:mRNAstop −−→ Riboc release of mRNA;
ppcM −−→ protein folding;

protein −−→ ∅ degradation.

As in the case of transcription, we see that these reactions allowmultiple ribosomes
to translate the same piece of mRNA by freeing up the ribosome binding site (RBS)
when translation begins.
As complex as these equation are, they are still missing many important ef-

fects. For example, we have not accounted for the possibility of multiple RNA
polymerases or ribosomes interacting with each other, so it is possible in these re-
actions to have two or more RNAP:DNAg,i complexes, which would correspond
to multiple RNA polymerases bound to the same spot on a single piece of DNA.
We have also left out various error correction mechanisms in which ribosomes can
step back and release an incorrect amino acid that has been incorporated into the
polypeptide chain. And we have left out the many chemical species that must be
present in order for many of the reactions to happen (NTPs for mRNA production,
amino acids for protein production, etc). Incorporation of these effects requires ad-
ditional reactions that track the many possible states of the molecular machinery
that underlies transcription and translation.
Given a set of reactions, the various stochastic processes that underly detailed

models of transcription and translation can be specified using the stochastic model-
ing framework described briefly in the previous section. In particular, using either
models of binding energy or measured rates, we can construct propensity func-
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tions for each of the many reactions that lead to production of proteins, including
the motion of RNA polymerase and the ribosome along DNA and RNA. For many
problems in which the detailed stochastic nature of the molecular dynamics of the
cell are important, these models are the most relevant and they are covered in some
detail in Chapter 4.
Alternatively, we can move to the reaction rate formalism and model the reac-

tions using differential equations. To do so, we must compute the various reaction
rates, which can be obtained from the propensity functions using equation (2.4) or
measured experimentally. In moving to this formalism, we approximate the con-
centrations of various species as real numbers, which may not be accurate since
some species (such as DNA) exist as a single molecule in the cell. Despite all
of these approximations, in many situations the reaction rate equations are per-
fectly sufficient, particularly if we are interested in the average behavior of a large
number of cells.
In some situations, a even simpler model of the transcription, translation and

folding processes can be utilized. If we assume that RNA polymerase binds to
DNA at some average rate (which includes both the binding and isomerization
reactions) and that transcription takes some fixed time (depending on the length
of the gene), then the process of transcription can be described using the delay
differential equation

dmp

dt
= αp,0−γpmp, m∗p(t) = eδcτm,pmp(t−τm,p), (2.9)

where mp is the concentration of mRNA for protein P, m∗p is the concentration
of “active” mRNA, αp,0 is the rate of production of the mRNA for protein P and
γp is the rate of degradation of the mRNA. The active mRNA is the mRNA that
is available for translation by the ribosome. We model its concentration through a
simple time delay of length τm,P that accounts for the transcription of the ribosome
binding site in prokaryotes or splicing and transport from the nucleus in eukary-
otes. The exponential factor accounts for dilution due to the change in volume of
the cell, where δc is the cell growth rate. The constants αp,0 and γp capture the av-
erage rates of production, which in turn depend on the more detailed biochemical
reactions that underlie transcription.
Once the active mRNA is produced, the process of translation can be described

via a similar ordinary differential equation the describes the production of a func-
tional protein:

dP
dt
= βp,0m∗p−δpP,

dP∗

dt
= β∗p
(

e−δcτ f ,p P(t−τ f ,p)−P∗
)

−δ∗pP∗ (2.10)

Here P represents the concentration of the polypeptide chain for the protein, P∗
represents the concentration of functional protein (after folding). The parameters
that govern the dynamics are βp,0, the rate of translation of mRNA; δp and δ∗p, the
rate of degradation and dilution of P and P* respectively; β∗p, the rate at which un-
folded protein is folded; and τ f ,p, the time delay associated with folding and other
processes required to make the protein functional. Note that the rate of production
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Figure 2.18: Simplified diagrams for protein production. The diagram on the left shows a section
of DNA with RNA polymerase as an input, protein concentration as an output and degradation of
mRNA and protein. The figure on the right is a simplified view in which only the protein output is
indicated.

of the polypeptide chain P depends on the active mRNA concentration and the rate
of production of the functional protein P depends on how much unfolded protein is
available. We model this amount by looking at the polypeptide concentration at a
time τ f ,p seconds ago, P(t− τ f ,p), minus the amount of already functional protein
P(t). The exponential term again accounts for dilution due to cell growth. The
degradation and dilution term, parameterized by δp and δ∗p, captures both the rates
at which the polypeptide chain and the protein are degraded and the rates at which
these species are diluted due to cell growth.
In many situations the time delays described in the dynamics of protein pro-

duction are small compared with the time scales at which the protein concentration
changes (depending on the values of the other parameters in the system). In such
cases, we can simplify the our model of the dynamics of protein production and
write dmp

dt
= αp,0−γpmp,

dP
dt

= βp,0mp−δpP. (2.11)

Note that we have dropped the superscript ∗ since we are assuming that all mRNA
is active and proteins are functional.
Finally, the simplest model for protein production is one in which we only keep

track of the basal rate of production of the protein, without including the mRNA
dynamics. This essentially amounts to assuming the mRNA dynamics reach steady
state quickly and replacing the first differential equation in equation (2.11) with its
equilibrium value. Thus we obtain

dP
dt
= βp,0me

p−δpP = βp,0
αp,0

γp
−δpP =: βp−δpP.

This model represents a simple first order, linear differential equation for the rate of
production of a protein. In many cases this will be a sufficiently good approximate
model, although we will see that in many cases it is too simple to capture the
observed behavior of a biological circuit.
We will often find it convenient to represent protein production using a sim-

ple diagram that hides the details of the particular model that we decide to use.
Figure 2.18 shows the symbol that we will use through the text. The diagram is
intended to resemble a section of double stranded DNA, with a promoter and ter-
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Figure 2.19: Regulation of proteins. Figure from Phillips, Kondev and Theriot [28]; used with
permission of Garland Science.

minator at the ends, and then a list of the gene and protein in the middle. The
boxes labeled by the gene and protein schematically represent the mRNA and pro-
tein concentration, with the line at the left of the DNA represent the input of RNA
polymerase and the line on the top representing the the (folded) protein. The sym-
bols at the bottom represent the degradation and dilution of mRNA and protein.

2.4 Transcriptional Regulation

The operation of a cell is governed by the selective expression of genes in the DNA
of the organism, which control the various functions the cell is able to perform
at any given time. Regulation of protein activity is a major component of the
molecular activities in a cell. By turning genes on and off, and modulating their
activity in more fine-grained ways, the cell controls the many metabolic pathways
in the cell, responds to external stimuli, differentiates into different cell types as it
divides, and maintains the internal state of the cell required to sustain life.
The regulation of gene expression and protein activity is accomplished through

a variety of molecular mechanisms, as illustrated in Figure 2.19. We see that at
each stage of the processing from a gene to a protein, there are potential mecha-
nisms for regulating the production processes. The remainder of this section will
focus on transcriptional control, the next section on control between transcription
and translation, and the third section on post-translational control mechanisms. We
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begin with a description of regulation mechanisms in prokaryotes (bacterial) and
then describe the additional mechanisms that are specific to eukaryotes.

Prokaryotic mechanisms

Transcriptional regulation refers to the selective expression of genes by activating
or repressing the transcription of DNA into mRNA. The simplest such regulation
occurs in prokaryotes, where proteins can bind to “operator regions” in the vicinity
of the promoter region of a gene and affect the binding of RNA polymerase and the
subsequent initiation of transcription. A protein is called a repressor if it blocks
the transcription of a given gene, most commonly by binding to the DNA and
blocking the access of RNA polymerase to the promoter. An activator operates in
the opposite fashion: it recruits RNA polymerase to the promoter region and hence
transcription only occurs when the activator (protein) is present.
We can capture this set of molecular interactions by modifying the RNA poly-

merase binding reactions in equation (2.8). For a repressor (Rep), we simply have
to add a reaction that represents the repressor bound to the promoter:

DNAp+Rep −−−⇀↽−−− DNA:Rep Repressor binding

This reaction acts to “sequester” the DNA promoter site so that it is no longer
available for binding by RNA polymerase (which requires DNAp). The strength
of the repressor is reflected in the reaction rate constants for the repressor binding
reaction and the equilibrium concentrations of DNAp versus DNA:Rep model the
“leakiness” of the repressor.
The modifications for an activator (Act) are a bit more complicated, since we

have to modify the reactions to require the presence of the activator before RNA
polymerase can bind. One possible mechanism is

DNAp+Act −−−⇀↽−−− DNA:Act activator binding;
RNAPd −−−⇀↽−−− RNAPp diffusion along DNA;

RNAPp+DNA:Act −−−⇀↽−−− RNAP:DNAo+DNA:Act binding to promoter w/ activator;
RNAPp+DNAp −−−⇀↽−−− RNAP:DNAp binding to promoter w/out activator.

Here we model both the enhanced binding of the RNA polymerase to the promoter
in the presence of the activator, as well as the possibility of binding without an
activator. The relative reaction rates determine how strong the activator is and the
“leakiness” of transcription in the absence of the activator.
As indicated earlier, many activators and repressors operate in the presence of

inducers. To incorporate these dynamics in our description, we simply have to
add the reactions that correspond to the interaction of the inducer with the relevant
protein. For a negative inducer, we can simply add a reaction in which the inducer
binds the regulator protein and effectively sequesters it so that it cannot interact
with the DNA. For example, a negative inducer operating on a repressor could be
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modeled by adding the reaction

Rep+ Ind −−−⇀↽−−− Rep:Ind.

Positive inducers can be handled similarly, except now we have to modify the
binding reactions to only work in the presence of a regulatory protein bound to an
inducer. For example, a positive inducer on an activator would have the modified
reactions

Act+ Ind −−−⇀↽−−− Act:Ind inducer binding;
DNAp+Act:Ind −−−⇀↽−−− DNA:Act:Ind activator binding;

RNAPd −−−⇀↽−−− RNAPp diffusion along DNA;
RNAPp+DNA:Act:Ind −−−⇀↽−−− RNAP:DNAo+DNA:Act:Ind binding to promoter w/ activator.

A simplified version of the dynamics can be obtained by assuming that tran-
scription factors bind to the DNA rapidly, so that they are in steady state config-
urations. In this case, we can make use of the steady state statistical mechanics
techniques described in Section 2.2 and relate the expression of the gene to the
probability that the activator or repressor is bound to the DNA (Pbound). This could
be done at the level of the reaction rate equation by replacing the differential equa-
tions for activator or repressor binding with their steady state values. Here instead
we demonstrate how to account for this rapid binding in the simplified differential
equation models presented at the end of Section 2.3.
Recall that given the relative energies of the different microstates of the system,

we can compute the probability of a given configuration using equation (2.1):

P(q) =
1
Z

e−Eq/(kBT ).

Consider the regulation of a gene a with a protein concentration given by pa and
a corresponding mRNA concentration ma. Let b be a second gene with protein
concentration pb that represses the production of protein A through transcriptional
regulation. If we let qbound represent the microstate corresponding to the appropri-
ate activator or repressor bound to the DNA, then we can compute P(qbound) as a
function of the concentration pb, which we write as Pbound(pb). For a repressor,
the resulting mRNA dynamics can be written as

dma
dt
=
(

1−Pbound(pb)
)

αa0−γama. (2.12)

We see that the effect of the repression is modeled by a modification of the rate of
transcription depending on the probability that the repressor is bound to the DNA.
In the case of an activator, we proceed similarly. The modified mRNA dynam-

ics are given by
dma
dt
= Pbound(pb)αa0−γama, (2.13)

where now we see that B must be bound to the DNA in order for transcription to
occur.
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Figure 2.20: The repressilator genetic regulatory network. (a) A schematic diagram of the repres-
silator, showing the layout of the genes in the plasmid that holds the circuit as well as the circuit
diagram (center). (b) A simulation of a simple model for the repressilator, showing the oscillation of
the individual protein concentrations. (Figure courtesy M. Elowitz.)

As we shall see in Chapter 4 (see also Exercise 2.1, the functional form of
Pbound can be nicely approximated by a monotonic rational function, called a Hill
function [10, 24]. For a repressor, the Hill function is given by

f r
a (pb) =

αab

kab+ pnab
b
+αa,

where the subscripts correspond to a protein B repressing production of a protein
A, and the parameters αab, kab and nab describe how B represses A. The maximum
transcription rate occurs when pb = 0 and is given by αab/kab +αa0. The mini-
mum rate of transcription occurs when pb →∞, giving αa0, which describes the
“leakiness” of the promoter. The parameter nab is called the Hill coefficient and
determines how close the Hill function is to a step function. The Hill coefficient
is often called the degree of cooperativity of the reaction, as it often arises from
molecular reactions that involve multiple (“cooperating”) copies of the protein X.

Example 2.1 (Repressilator). As an example of how these models can be used, we
consider the model of a “repressilator,” originally due to Elowitz and Leibler [12].
The repressilator is a synthetic circuit in which three proteins each repress another
in a cycle. This is shown schematically in Figure 2.20a, where the three proteins
are TetR, λ cI and LacI.
The basic idea of the repressilator is that if TetR is present, then it represses

the production of λ cI. If λ cI is absent, then LacI is produced (at the unregulated
transcription rate), which in turn represses TetR. Once TetR is repressed, then λ cI
is no longer repressed, and so on. If the dynamics of the circuit are designed
properly, the resulting protein concentrations will oscillate.
We can model this system using three copies of equation (2.12), with A and

B replaced by the appropriate combination of TetR, cI and LacI. The state of the
system is then given by x = (mTetR, pTetR,mcI, pcI,mLacI, pLacI). Figure 2.20b shows
the traces of the three protein concentrations for parameters n = 2, α = 0.5, k =
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Figure 2.21: Hill function for an activator (left) and for a repressor (right).

6.25×10−4, α0 = 5×10−4, γ = 5.8×10−3, β = 0.12 and δ = 1.2×10−3 with initial
conditions x(0) = (1,0,0,200,0,0) (following [12]). ∇

For an activator the Hill function is given by

f a
a (pb) =

αabkab pnab
b

kab+ pnab
b
+αa0,

where the variables are the same as described previously. Note that in the case
of the activator, if pb is zero, then the production rate is αa0 (versus αab +αa0 for
the repressor). As pb gets large, the first term in the Hill function approaches αab
and the transcription rate becomes αab +αa0 (versus αa0 for the repressor). Thus
we see that the activator and repressor act in opposite fashion from each other.
Figure 2.21 shows the standard Hill functions for activation and repression.
In the case where there are inducers present, we can modify our model by

adding the appropriate additional reactions. For example, if we have a repressor
with a negative inducer (such as LacI and IPTG), we can add a reaction

B+ I
kf
−−⇀↽−−

kr
B:I.

If we assume that this reaction is fast relative to the other dynamics in the sys-
tem, we can solve for the equilibrium concentration of the inducer bound to the
repressor,

[B:I] =
kf

kr
[B][I],

where kf and kr are the forward and reverse reaction rates. We can now attempt to
solve for Pbound(I) by computing the amount of repressor that is still free to bind
to the DNA.
A simplified case occurs when we assume that most of the repressor is either

bound to the inducer or free, so that the amount of B bound to the DNA is small.
In this case we can solve for pb in terms of I and then combine the expression for
Pbound with the modified value of pb. If we let BT represent the total amount of B
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Figure 2.22: Circuit diagrams for transcriptional regulation of a gene. The first two figures represent
repression and activation. If desired, additional mechanisms can also be indicated, as shown in the
diagram on the right.

present and assume this is constant, we can write

BT = [B:I]+ [B]

(ignoring any contributions from B:DNA) and solve for pb as

pb = [B] =
AT

1+ (kf/kr)I
.

The resulting expression for Pbound(I) is complicated, but easily computed.
We will often find it convenient to represent the process of regulation in a

graphical fashion that hides the specific details of the model that we choose to
use. Figure 2.22 shows the notation that we will use in this text to represent the
process of transcription, translation and regulation.
We have described how the Hill function can model the regulation of a gene

by a single transcription factor. However, genes can also be regulated by multiple
transcription factors, some of which may be activators and somemay be repressors.
The input function can thus take several forms depending on the roles (activators
versus repressors) of the various transcription factors [3]. In general, the input
function of a transcriptional module that takes as input transcription factors pi for
i ∈ {1, ...,N} will be denoted f (p1, ..., pn).
Consider a transcriptional module with input function f (p1, ..., pn). The in-

ternal dynamics of the transcriptional module usually models mRNA and protein
dynamics through the processes of transcription and translation. Protein produc-
tion is balanced by decay, which can occur through degradation or dilution. Thus,
the dynamics of a transcriptional module is often well captured by the ordinary
differential equations

dmy

dt
= f (p1, ..., pn)−γymy,

dpy

dt
= βymy−δypy, (2.14)

where my denotes the concentration of mRNA translated by gene y, the constants
γy and δy incorporate the dilution and degradation processes, and βy is a constant
that establishes the rate at which the mRNA is translated.
Several other methods of transcriptional regulation can exist in cells.

Antitermination. Antitermination can also be used as a transcriptional regulatory
mechanism. To model its effects, assume that we have a coding region labeled h
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that occurs after an antitermination site. We modify the termination reactions from
equation (2.8):

RNAP:DNAt −−→ RNAPc Termination (unchanged)
DNANut+N −−−⇀↽−−− DNANut:N Binding to utilization site

RNAP:DNAt+DNANut:N −−→ RNAP:DNAh,1 Antitermination
RNAP:DNAt −−→ RNAP:DNAh,1 Termination (unchanged)

Regulation in eukaryotes

Transcriptional regulation in eukaryotes is more complex than in prokaryotes. In
many situations the transcription of a given gene is affected by many different tran-
scription factors, with multiple molecules being required to initiate and/or suppress
transcription.

2.5 Post-Transcriptional and Post-Translational Regulation

In addition to regulation of expression through modifications of the process of
transcription, cells can also regulate the production and activity of proteins via a
collection of other post-transcriptional modifications. These include methods of
modulating the translation of proteins, as well as affecting the activity of a protein
via changes in its conformation.

RNA-based regulation

Allosteric modifications to proteins

Covalent modifications to proteins

Covalent modification is a post-translational protein modification that affects the
activity of the protein. It plays a great role both in the control of metabolism and in
signal transduction. Here, we focus on reversible cycles of modification, in which
a protein is interconverted between two forms that differ in activity either because
of effects on the kinetics relative to substrates or for altered sensitivity to effectors.
At high level, any covalent modification cycle involves a target protein, say X,

an enzyme for modifying it, say Z, and one for reversing the modification, say
Y (see Figure 2.23). We call X∗ the activated protein. There are often allosteric
effectors or further covalent modification systems that regulate the activity of the
modifying enzymes, but we do not consider here this added level of complexity.
There are several types of covalent modification, depending on the type of acti-
vation of the protein. Phosphorylation is a covalent modification that takes place
mainly in eukaryotes and involves activation of the inactive protein X by addition
of a phosphate group. In this case, the enzyme Z is called a kinase while the en-
zyme Y is called phosphatase. Another type of covalent modification, which is
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Figure 2.23: Diagram representing a covalent modification cycle.

very common in both procaryotes and eukaryotes, is methylation. Here, the inac-
tive protein is activated by the addition of a methyl group.
The reactions describing this system are given by the following two enzymatic

reactions, also called two step reaction model,

Z+X
k f
−−⇀↽−−

kr
C

kcat−−−→ X∗+Z

Y+X∗
k′f
−−⇀↽−−

k′r
C
′ k′cat−−−→ X+Y.

The corresponding ODE model is given by

dZ
dt
=−k f Z ·X+ (kcat + kr)C

dX
dt
=−k f Z ·X+ krC+ k′catC′

dC
dt
= k f Z ·X− (kr + kcat)C

dX∗

dt
= kcatC− k′f Y ·X∗+ k′rC′

dC′

dt
= k′f Y ·X∗ − (k′r + k′cat)C′

dY
dt
=−k′f Y ·X∗+ (k′r + k′cat)C′.

Furthermore, we have that the total amounts of enzymes Z and Y are conserved.
Denote the total concentrations of Z and Y by Ztot, Ytot, respectively. Then, we
have also the conservation laws Z+C = Ztot and Y +C′ = Ytot. We can thus reduce
the above system of ODE to the following one, in which we have substituted Z =
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Ztot −C and Y = Ytot −C′.
dC
dt
= k f (Ztot −C) ·X− (kr + kcat)C

dX∗

dt
= kcatC− k′f (Ytot −C′) ·X∗+ k′rC′

dC′

dt
= k′f (Ytot −C′) ·X∗ − (k′r + k′cat)C′.

As for the case of the enzymatic reaction, this system cannot be analytically inte-
grated. To simplify it, we can perform a similar approximation as done for the en-
zymatic reaction. In particular, the complexes C and C’ are often assumed to reach
their steady state values very fast because k f ,kr,k′f ,k

′
r ) kcat,k′cat. Therefore, we

can approximate the above system by substituting for C and C′ their steady state
values given by the solutions to

k f (Ztot −C) ·X− (kr + kcat)C = 0

and
k′f (Ytot −C′) ·X∗ − (k′r + k′cat)C′ = 0.

By solving these equations, we obtain that

C′ =
YtotX∗

X∗+K′m
, with K′m =

k′r + k′cat
k′f

and that
C =

ZtotX
X+Km

, with Km =
kr + kcat

k f
.

As a consequence, the ODE model of the phosphorylation system can be well
approximated by

dX∗

dt
= kcat

ZtotX
X+Km

− k′f
YtotK′m

X∗+K′m
·X∗+ k′r

YtotX∗

X∗+K′m
,

which, considering that k′f K′m− k′r = k′cat, leads finally to

dX∗

dt
= kcat

ZtotX
X+Km

− k′cat
YtotX∗

X∗+K′m
. (2.15)

We will come back to the modeling of this system after we have introduced singu-
lar perturbation theory, through which we will be able to perform a formal anal-
ysis of this system and mathematically characterize the assumptions needed for
approximating the original system by the first order ODE model (2.15).
Exercise. As an exercise, the reader can consider the case in which the kinase

Z is not constant, but it is produced and decays according to the reaction 0
k(t)
−−−⇀↽−−−
δ
Z.

How should the system in equation (2.15) be modified?
Exercise. There is another model for the phosphorylation reactions, referred

to as one step reaction model, given by Z+X −−−⇀↽−−− X∗+Z and Y+X∗ −−−⇀↽−−− X+Y,
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Figure 2.24: Circuit diagram for phosphorylation and dephoshorylation of a protein X via a kinase E
and phosphotase F. The diagram on the left shows the full set of reactions. A simplified diagram is
shown on the right.

in which the complex formations are neglected. Write down the ODE model and
comparing the differential equation of X∗ to that of equation (2.15), list the as-
sumptions under which the one step reaction model is a good approximation of the
two step reaction model.
The phosphorylation/dephosophorylation process is illustrated in circuit dia-

gram form in Figure 2.24.

Phosphotransfer systems

2.6 Cellular subsystems

Intercellular Signalling

Adaptation

Logical operations

Exercises

2.1 Consider a repressor that binds to an operator site as a dimer:

R1: R+R −−−⇀↽−−− R2
R2: R2+DNA

p −−−⇀↽−−− R2:DNA
R3: RNAP+DNAp −−−⇀↽−−− RNAP:DNAp

Assume that the reactions are at equilibrium and that the RNA polymerase con-
centration is large (so that [RNAP] is roughly constant). Show that the ratio of the
concentration of RNA:DNAp to the total amount of DNA, DT , can be written as a
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Hill function
f (R) =

[RNAP:DNA]
DT

=
α

K +R2

and give expressions for α and K.




