
Biomolecular Feedback Systems

Domitilla Del Vecchio Richard M. Murray
MIT Caltech

DRAFT v0.4a, January 1, 2011
c© California Institute of Technology

All rights reserved.

This manuscript is for review purposes only and may not be reproduced, in whole or in
part, without written consent from the authors.



Chapter 2
Dynamic Modeling of Core Processes

The goal of this chapter is to describe basic biological mechanisms in a way that
can be represented by simple dynamic models. We begin the chapter a discussion
of the basic modeling formalisms that we will utilize to model biomolecular feed-
back systems. We then proceed to study a number of core processes within the cell,
providing different model-based descriptions of the dynamics that will be used in
later chapters to analyze and design biomolecular systems. The focus in this chap-
ter and the next is on deterministic models using ordinary differential equations;
Chapter 4 describes how to model the stochastic nature of biomolecular systems.

Prerequisites. Readers should have some basic familiarity with cell biology, at the
level of the description in Section 1.2 (see also Appendix A), and a basic under-
standing of ordinary differential equations, at the level of Chapter 2 of AM08 (see
also Appendix B).

2.1 Modeling Techniques

In order to develop models for some of the core processes of the cell, we will need
to build up a basic description of the biochemical reactions that take place, includ-
ing production and degradation of proteins, regulation of transcription and trans-
lation, intracellular sensing, action and computation, and intercellular signaling.
As in other disciplines, biomolecular systems can be modeled in a variety of dif-
ferent ways, at many different levels of resolution, as illustrated in Figure 2.1. The
choice of which model to use depends on the questions that we want to answer, and
good modeling takes practice, experience and iteration. We must properly capture
the aspects of the system that are important, reason about the appropriate tempo-
ral and spatial scales to be included, and take into account the types of simulation
and analysis tools be be applied. Models that are to be used for analyzing existing
systems should make testable predictions and provide insight into the underlying
dynamics. Design models must additionally capture enough of the important be-
havior to allow decisions to be made regarding how to interconnect subsystems,
choose parameters and design regulatory elements.
In this section we describe some of the basic modeling frameworks that we will

build on throughout the rest of the text. We begin with brief descriptions of the
relevant physics and chemistry of the system, and then quickly move to models
that focus on capturing the behavior using reaction rate equations. In this chapter
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Figure 2.1: Different methods of modeling biomolecular systems.

our emphasis will be on dynamics with time scales measured in seconds to hours
and mean behavior averaged across a large number of molecules. We touch only
briefly on modeling in the case where stochastic behavior dominates and defer a
more detailed treatment until Chapter 4.

Statistical mechanics and chemical kinetics

At the fine end of the modeling scale depicted in Figure 2.1, we can attempt to
model the molecular dynamics of the cell, in which we attempt to model the indi-
vidual proteins and other species and their interactions via molecular-scale forces
and motions. At this scale, the individual interactions between protein domains,
DNA and RNA are resolved, resulting in a highly detailed model of the dynamics
of the cell.
For our purposes in this text, we will not require the use of such a detailed scale.

Instead, we will start with the abstraction of molecules that interact with each other
through stochastic events that are guided by the laws of thermodynamics. We begin
with an equilibrium point of view, commonly referred to as statistical mechanics,
and then briefly describe how to model the (statistical) dynamics of the system
using chemical kinetics. We cover both of these points of view very briefly here,
primarily as a stepping stone to more deterministic models, and present a more
detailed description in Chapter 4.
The underlying representation for both statistical mechanics and chemical ki-

netics is to identify the appropriate microstates of the system. A microstate cor-
responds to a given configuration of the components (species) in the system rela-
tive to each other and we must enumerate all possible configurations between the
molecules that are being modeled. As an example, consider the distribution of RNA
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Figure 2.2: Microstates for RNA polymerase. Each microstate of the system corresponds
to the RNA polymerase being located at some position in the cell. If we discretize the
possible locations on the DNA and in the cell, the microstates corresponds to all possi-
ble non-overlapping locations of the RNA polymerases. Figure from Phillips, Kondev and
Theriot [56]; used with permission of Garland Science.

polymerase in the cell. It is known that most RNA polymerases are bound to the
DNA in a cell, either as they produce RNA or as they diffuse along the DNA in
search of a promoter site. Hence we can model the microstates of the RNA poly-
merase system as all possible locations of the RNA polymerase in the cell, with the
vast majority of these corresponding to the RNA polymerase at some location on
the DNA. This is illustrated in Figure 2.2.
In statistical mechanics, we model the configuration of the cell by the proba-

bility that system is in a given microstate. This probability can be calculated based
on the energy levels of the different microstates. The laws of statistical mechanics
state that if we have a set of microstates Q, then the steady state probability that
the system is in a particular microstate q is given by

P(q) =
1
Z

e−Eq/(kBT ), (2.1)

where Eq is the energy associated with the microstate q ∈ Q, kB is the Boltzmann
constant, T is the temperature in degrees Kelvin, and Z is a normalizing factor,
known as the partition function,

Z =
∑

q∈Q
e−Eq/(kBT ).

(These formulas are described in more detail in Chapter 4.)
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Table 2.1: Configurations for a combinatorial promoter with an activator and a repres-
sor. Each row corresponds to a specific macrostate of the promoter in which the listed
molecules are bound to the target region. The relative energy of state compared with the
ground state provides a measure of the likelihood of that state occurring, with more nega-
tive numbers corresponding to more energetically favorable configurations.

State OR1 OR2 Prom ∆G Comment

S 1 – – – E0 = 0 No binding (ground state)
S 2 – – RNAP ERNAP = −5 RNA polymerase bound

S 3 the R – – ER = −10 Repressor bound
S 4 – A – EA = −12 Activator bound
S 45 – A RNAP EA:RNAP = −15 Activator and RNA polymerase

By keeping track of those microstates that correspond to a given system state
(also called a macrostate), we can compute the overall probability that a given
macrostate is reached. Thus, if we have a set of states S ⊂ Q that correspond to a
given macrostate, then the probability of being in the set S is given by

P(S ) =
1
Z

∑

q∈S
e−Eq/(kBT ) =

∑

q∈S e−Eq/(kBT )

∑

q∈Q e−Eq/(kBT ) . (2.2)

This can be used, for example, to compute the probability that some RNA poly-
merase is bound to a given promoter, averaged over many independent samples,
and from this we can reason about the rate of expression of the corresponding
gene.

Example 2.1 (Combinatorial promoter). A combinatorial promoter is a region of
DNA in which multiple transcription factors can bind and influence the subsequent
binding of RNA polymerase. Combinatorial promoters appear in a number of nat-
ural and engineered circuits and represent a mechanism for creating switch-like
behavior, for example by having a gene that controls expression of its own tran-
scription factors.
One method to model a combinatorial promoter is to use the binding energies

of the different combinations of proteins to the operator region, and then compute
the probability of being in a given promoter state given the concentration of each of
the transcription factors. Table 2.1 shows the possible states of a notional promoter
that has two operator regions—one that binds a repressor protein R and another
that binds an activator protein A. As indicated in the table, the promoter has three
(possibly overlapping) regions of DNA: OR1 and OR2 are binding sites for the
repressor and activator proteins, and Prom is the location where RNA polymerase
binds. (The individual labels are primarily for bookkeeping purposes and may not
correspond to physically separate regions of DNA.)



2.1. MODELING TECHNIQUES 2-5

To determine the probabilities of being in a given macrostate, we must compute
the individual microstates that occur at a given concentrations of repressor, ac-
tivator and RNA polymerase. Each microstate corresponds to an individual set of
molecules binding in a specific configuration. So if we have nR repressor molecules,
then there is one microstate corresponding to each different repressor molecule that
is bound, resulting in nR individual microstates. In the case of configuration S 5,
where two different molecules are bound, the number of combinations is given by
the product of the numbers of individual molecules, nA ·nRNAP, reflecting the pos-
sible combinations of molecules that can occupy the promoter sites. The overall
partition function is given by summing up the contributions from each microstate:

Z = e−E0/(kBT )+nRNAP e−ERNAP/(kBT )+nR e−ER/(kBT )

+nA e−EA/(kBT )+nAnRNAP e−EA:RNAP/(kBT ). (2.3)

The probability of a given macrostate is determined using equation (2.2). For
example, if we define the promoter to be “active” if RNA polymerase is bound
to the DNA, then the probability of being in this macrostate as a function of the
various molecular counts is given by

Pactive(nR,nA,nRNAP) =
1
Z
(

nRNAP e−ERNAP/(kBT )+nA nRNAPe−EA:RNAP/(kBT )
)

=
kA:RNAP nA+ kRNAP

1+ kRNAP+ kR nR+ (kA+ kA:RNAP)nA
,

where
kX = e−(EX−E0)/(kBT ).

From this expression we see that if nR% nA then Pactive tends to 0 while if nA% nR
then Pactive tends to 1, as expected. ∇

Statistical mechanics describes the steady state distribution of microstates, but
does not tell us how the microstates evolve in time. To include the dynamics, we
must consider the chemical kinetics of the system and model the probability that
we transition from one microstate to another in a given period of time. Let q rep-
resent the microstate of the system, which we shall take as a vector of integers that
represents the number of molecules of a specific types in given configurations or
locations. We describe the kinetics of the system by making use of the propensity
function a(ξ;q, t), which captures the instantaneous probability that at time t a sys-
tem will transition between state q and state q+ ξ, where ξ is the change in the
vector of integers representing the microstate.
More specifically, the propensity function is defined such that

a(ξ;q, t)dt = Probability that the microstate will transition from
state q to state q+ ξ between time t and time t+dt.
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We will give more detail in Chapter 4 regarding the validity of this functional form,
but for now we simply assume that such a function can be defined for our system.
Using the propensity function, we can keep track of the probability distribu-

tion for the state by looking at all possible transitions into and out of the current
state. Specifically, given P(q, t), the probability of being in state q at time t, we can
compute the time derivative Ṗ(q, t) as

d
dt

P(q, t) =
∑

ξ

a(ξ;q− ξ, t)P(q− ξ, t)−
∑

ξ

a(ξ;q, t)P(q, t). (2.4)

This equation (and its many variants) is called the chemical master equation (CME).
The first sum on the right hand side represents the transitions into the state q from
some other state q−ξ and the second sum represents that transitions out of the state
q into some other state q+ξ. The variable ξ in the sum ranges over all possible tran-
sitions between microstates.
Clearly the dynamics of the distribution P(q, t) depends on the form of the

propensity function a(ξ). Consider a simple reaction of the form

A+B −−−⇀↽−−− AB ≡
Rf: A+B −−→ AB
Rr: AB −−→ A+B.

(2.5)

We assume that the reaction takes place in a well-stirred volume Ω and let the
configurations q be represented by the number of each species that is present. The
forward reaction R f is a bimolecular reaction and we will see in Chapter 4 that it
has a propensity function

a(ξ f;q) = (k fξ/Ω)nAnB,

where ξ f represents the forward reaction, nA and nB are the number of molecules
of each species and k fξ is a constant coefficient that depends on the properties of the
specific molecules involved. The reverse reaction Rr is a unimolecular reaction and
we will see that it has a propensity function

a(ξ r,q) = k rξ nAB,

where ξ r represents the reverse reaction, k rξ is a constant coefficient and nAB is the
number of molecules of AB that are present.

Example 2.2 (Repression of gene expression). We consider a simple model of
repression in which we have a promoter that contains binding sites for RNA poly-
merase and a repressor protein R. RNA polymerase only binds when the repressor
is absent, after which it can undergo an isomerization reaction to form an open
complex and initiate transcription. Once the RNA polymerase begins to create
mRNA, we assume the promoter region is uncovered, allowing another repressor
or RNA polymerase to bind.
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The following reactions describe this process:

R1: R+DNA −−−⇀↽−−− R:DNA
R2: RNAP+DNA −−−⇀↽−−− RNAP:DNAc

R3: RNAP:DNAc −−→ RNAP:DNAo

R4: RNAP:DNAo −−→ RNAP+DNA (+mRNA),

where RNAP:DNAc represents the closed complex and RNAP:DNAo represents
the open complex. The states for the system depend on the number of molecules
of each species and complex that are present. If we assume that we start with nR
repressors and nRNAP RNA polymerases, then the possible states for our system are
given by

State DNA R RNAP R:DNA RNAP:DNAc RNAP:DNAo

q1 1 nR nRNAP 0 0 0
q2 0 nR−1 nRNAP 1 0 0
q3 0 nR nRNAP−1 0 1 0
q4 0 nR nRNAP−1 0 0 1

Note that we do not keep of each individual repressor or RNA polymerase molecule
that binds to the DNA, but simply keep track of whether they are bound or not.
We can now rewrite the chemical reactions as a set of transitions between the

possible microstates of the system. Assuming that all reactions take place in a vol-
umeΩ, we use the propensity functions for unimolecular and bimolecular reactions
to obtain:

ξ
f
1 : q1 −−→ q2; a(ξ f

1 ) = (k
f
1/Ω)nR ξr1 : q2 −−→ q1; a(ξr1) = kr

1

ξ
f
2 : q1 −−→ q3; a(ξ f

2 ) = (k
f
2/Ω)nRNAP ξr2 : q3 −−→ q1; a(ξr2) = kr

2
ξ3 : q3 −−→ q4; a(ξ3) = k3 ξ4 : q4 −−→ q1; a(ξr4) = k4

The chemical master equation can now be written down using the propensity func-
tions for each reaction:

d
dt





P(q1, t)
P(q2, t)
P(q3, t)
P(q4, t)





=





−(k f
1/Ω)nR− (k

f
2/Ω)nRNAP kr

1 kr
2 k4

(k f
1/Ω)nR −kr

1 0 0
(k f
2/Ω)nRNAP 0 −kr

2− k3 0
0 0 k3 −k4









P(q1, t)
P(q2, t)
P(q3, t)
P(q4, t)





.

The initial condition for the system can be taken as P(q,0)= (1,0,0,0), correspond-
ing to the state q1. A simulation showing the evolution of the probabilities is shown
in Figure 2.3.
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Figure 2.3: Numerical solution of chemical master equation for simple repression model.

The equilibrium solution for the probabilities can be solved by setting Ṗ = 0,
which yields:

Pe(q1) =
kr
1k4Ω(k

r
2+ k3)

k f
1k4nR(kr

2+ k3)+ kr
1k

f
2nRNAP(k3+ k4)+ kr

1k4Ω(k
r
2+ k3)

Pe(q2) =
k f
1k4nR(kr

2+ k3)

k f
1k4nR(kr

2+ k3)+ kr
1k

f
2nRNAP(k3+ k4)+ kr

1k4Ω(k
r
2+ k3)

Pe(q3) =
kr
1k

f
2k4nRNAP

k f
1k4nR(kr

2+ k3)+ kr
1k

f
2nRNAP(k3+ k4)+ kr

1k4Ω(k
r
2+ k3)

Pe(q4) =
kr
1k

f
2k3nRNAP

k f
1k4nR(kr

2+ k3)+ kr
1k

f
2nRNAP(k3+ k4)+ kr

1k4Ω(k
r
2+ k3)

We see that the functional dependencies are similar to the case of the combinatorial
promoter of Example 2.1, but with the binding energies replaced by kinetic rate
constants. ∇

The primary difference between the statistical mechanics description given by equa-
tion (2.1) and the chemical kinetics description in equation (2.4) is that the master
equation formulation describes how the probability of being in a given microstate
evolves over time. Of course, if the propensity functions and energy levels are mod-
eled properly, the steady state, average probabilities of being in a given microstate
should be the same for both formulations.

Mass action kinetics

Although very general in form, the chemical master equation suffers from being a
very high dimensional representation of the dynamics of the system. We shall see
in Chapter 4 how to implement simulations that obey the master equation, but in
many instances we will not need this level of detail in our modeling. In particular,
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there are many situations in which the number of molecules of a given species
is such that we can reason about the behavior of a chemically reacting system
by keeping track of the concentration of each species as a real number. This is
of course an approximation, but if the number of molecules is sufficiently large,
then the approximation will generally be valid and our models can be dramatically
simplified.
To go from the chemical master equation to a simplified form of the dynamics,

we begin by making a number of assumptions. First, we assume that we can rep-
resent the state of a given species by its concentration cA = nA/Ω, where nA is the
number of molecules of A in a given volume Ω. We also treat this concentration
as a real number, ignoring the fact that the real concentration is quantized. Finally,
we assume that our reactions take place in a well-stirred volume, so that the rate of
interactions between two species is solely determined by the concentrations of the
species.
Before proceeding, we should recall that in many (and perhaps most) situations

inside of cells, these assumptions are not particularly good ones. Biomolecular
systems often have very small molecular counts and are anything but well mixed.
Hence, we should not expect that models based on these assumptions should per-
form well at all. However, experience indicates that in many cases the basic form
of the equations provides a good model for the underlying dynamics and hence we
often find it convenient to proceed in this manner.
Putting aside our potential concerns, we can now proceed to write the dynam-

ics of a system consisting of a set of species Si, i = 1, . . . ,N undergoing a set of
reactions R j, j = 1, . . . ,M. We write xi = [Si] for the concentration of species i
(viewed as a real number). Because we are interested in the case where the number
of molecules is large, we no longer attempt to keep track of every possible con-
figuration, but rather simply assume that the state of the system at any given time
is given by the concentrations xi. Hence the state space for our system is given by
x ∈ RN and we seek to write our dynamics in the form of a differential equation

ẋ = f (x,θ)

where f :RN→RN describes the rate of change of the concentrations as a function
of the instantaneous concentrations and θ represents the parameters that govern the
dynamic behavior.
To illustrate the general form of the dynamics, we consider again the case of a

basic bimolecular reaction
A+B −−−⇀↽−−− AB.

Each time the forward reaction occurs, we decrease the number of molecules of
A and B by 1 and increase the number of molecules of AB (a separate species)
by 1. Similarly, each time the reverse reaction occurs, we decrease the number of
molecules of AB by one and increase the number of molecules of A and B.
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Using our discussion of the chemical master equation, we know that the likeli-
hood that the forward reaction occurs in a given interval dt is given by a(ξ f; x, t)dt =
(k fξ/Ω)nAnBdt and the reverse reaction has likelihood a(ξ r;q, t) = k rξnAB. It follows
that the concentration of the complex AB satisfies

[AB](t+dt)− [AB](t) = E{nAB(t+dt)/Ω−nAB(t)/Ω}

=
(

a(ξ f;q− ξ f, t)−a(ξ r;q, t)
)

/Ω ·dt

=
(

k fξnAnB/Ω2− k rξnAB/Ω
)

dt

=
(

k fξ[A][B]− k rξ[AB]
)

dt.

Taking the limit as dt approaches zero (but remains large enough that we can still
average across multiple reactions, as described in more detail in Chapter 4), we
obtain

d
dt
[AB] = k fξ[A][B]− k rξ[AB].

In a similar fashion we can write equations to describe the dynamics of A and
B and the entire system of equations is given by

d
dt
[A] = k rξ[AB]− k fξ[A][B]

d
dt
[B] = k rξ[AB]− k fξ[A][B]

d
dt
[AB] = k fξ[A][B]− k rξ[AB]

or

Ȧ = k rξC− k fξA ·B

Ḃ = k rξC− k fξA ·B

Ċ = k fξA ·B− k rξC,

where C = [AB]. These equations are known as the mass action kinetics or the
reaction rate equations for the system. The parameters k fξ and k rξ are called the
rate constants and they match the parameters that were used in the underlying
propensity functions.
Note that the same rate constants appear in each term, since the rate of pro-

duction of AB must match the rate of depletion of A and B and vice versa. We
adopt the standard notation for chemical reactions with specified rates and write
the individual reactions as

A+B
k fξ
−→ AB, AB

k rξ
−→ A+B,

where k fξ and k rξ are the reaction rates. For bidirectional reactions we can also write

A+B
k fξ
−−⇀↽−−

k r
ξ

AB.

It is easy to generalize these dynamics to more complex reactions. For example,
if we have a reversible reaction of the form

A+2B
k f
−−⇀↽−−

k r
2C+D,
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where A, B, C and D are appropriate species and complexes, then the dynamics for
the species concentrations can be written as

d
dt

A = k rC2 ·D− k fA ·B2,
d
dt

C = 2k fA ·B2−2k rC2 ·D,

d
dt

B = 2k rC2 ·D−2k fA ·B2,
d
dt

D = k fA ·B2− k rC2 ·D.
(2.6)

Rearranging this equation, we can write the dynamics as

d
dt





A
B
C
D





=





−1 1
−2 2
2 −2
1 −1









k fA ·B2
k rC2 ·D




. (2.7)

We see that in this decomposition, the first term on the right hand side is a matrix
of integers reflecting the stoichiometry of the reactions and the second term is a
vector of rates of the individual reactions.
More generally, given a chemical reaction consisting of a set of species Si,

i = 1, . . . ,n and a set of reactions R j, j = 1, . . . ,M, we can write the mass action
kinetics in the form

dx
dt
= Nv(x),

where N ∈ Rn×m is the stoichiometry matrix for the system and v(x) ∈ RM is the
reaction flux vector. Each row of v(x) corresponds to the rate at which a given
reaction occurs and the corresponding column of the stoichiometry matrix corre-
sponds to the changes in concentration of the relevant species. As we shall see in
the next chapter, the structured form of this equation will allow us to explore some
of the properties of the dynamics of chemically reacting systems.
Example 2.3 (Covalent modification of a protein). Consider the set of reactions
involved in the phosphorylation of a protein by a kinase, as shown in Figure 1.14.
Let S represent the substrate, K represent the kinase and Sp represent the phospho-
rylated (activated) substrate. The sets of reactions illustrated in Figure 1.14 are

R1: K+ATP −−−⇀↽−−− K:ATP
R2: S+K:ATP −−−⇀↽−−− S:K:ATP
R3: S:K:ATP −−→ Sp:K:ADP
R4: Sp:K:ADP −−→ Sp+K:ADP
R5: K:ADP −−−⇀↽−−− K+ADP

We now write the kinetics for each reaction:
v f1 = k f1 [K][ATP] v r1 = k r1 [K:ATP]
v f2 = k f2 [S][K:ATP] v r2 = k r2 [S:K:ATP]
v3 = k3 [S:K:ATP] v4 = k4 [Sp:K:ADP]
v f5 = k f5 [K:ADP] v r5 = k r5 [K][K:ADP]
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A

B D

CA

B

AB A B
2

A+2B −−−⇀↽−−− C+DA −−−→ BA+B −−−⇀↽−−− AB

Figure 2.4: Diagrams for chemical reactions.

We treat [ATP] as a constant (regulated by the cell) and hence do not directly
track its concentration. (If desired, we could similarly ignore the concentration of
ADP since we have chosen not to include the many additional reactions in which
it participates.)
The kinetics for each species are thus given by

d
dt
[K] = −v f1+ v r1+ v f5− v r5

d
dt
[K:ATP] = v f1− v r1− v f2+ v r2

d
dt
[S] = −v f2+ v r2

d
dt
[S:K:ATP] = v f2− v r2− v3

d
dt
[Sp] = v4

d
dt
[Sp:K:ADP] = v3− v4

d
dt
[ADP] = v f5− v r5

d
dt
[K:ADP] = v4− v f5+ v r5.

In standard stochiometric form, we write

d
dt





[K]
[K:ATP]
[S]

[S:K:ATP]
[Sp]

[Sp:K:ADP]
[ADP]
[K:ADP]





︸!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!︸

x

=





−1 1 0 0 0 0 1 −1
1 −1 1 −1 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 1 −1 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 1 −1 1





︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸

N





v f1
v r1
v f2
v r2
v3
v4
v f5
v r5





︸︷︷︸

v(x)

∇

We will often find it convenient to represent collections of chemical reactions
using simple diagrams, so that we can see the basic interconnection between vari-
ous chemical species and properties. A set of diagrams for standard chemical reac-
tions is shown in Figure 2.4.
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S+E −−−⇀↽−−− ES −−−→ E+P

E

S P

(a) Enzymatic reaction
X e+P −−−⇀↽−−− X e:P −−−→ X i+P

X iX e

P

(b) Permease-modulated transport

Figure 2.5: Diagrams for enzymatic reactions.

Reduced order mechanisms

In this section, we look at dynamics of some common reactions that occur in
biomolecular systems. Under some assumptions on the relative rates or reactions
and concentrations of species, it is possible to derive reduced order expressions for
the dynamics of the system. We focus here on an informal derivation of the relevant
results, but return to these examples in the next chapter to illustrate that the same
results can derived using a more formal and rigorous approach.

Simple binding reaction. Consider the reaction

A+B
k f
−−⇀↽−−
k r
C, (2.8)

where C is the complex AB. Assume that B is a species that is controlled by other
reactions in the cell and that the total concentration of A is conserved, so that
A+C = [A]+ [AB] = Atot. If the dynamics of this reaction are fast compared to
other reactions in the cell, then the amount of A and C present can be computed as
a (steady state) function of B.
To compute how A and C depend on the concentration of B, we must solve for

the equilibrium concentrations of A and C. The rate equation for C is given by

dC
dt
= k fB · (Atot−C)− k rC.

By setting Ċ = 0 and letting Kd := k r/k f, we obtain the expressions

C =
BAtot

B+Kd
, A =

AtotKd
B+Kd

.

The constant Kd is the inverse of the affinity of A to B. The steady state value of C
increases with B while the steady state value of A decreases with B as more of A is
found in the complex C.
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Cooperative binding reaction. Assume now that B binds to A only after dimeriza-
tion, that is, only after binding another molecule of B. Then, we have that reac-
tions (2.8) become

B+B
k1−−⇀↽−−
k2
Bd, Bd+A

k f
−−⇀↽−−

k r
C, A+C = Atot,

in which Bd denotes the dimer of B. The corresponding ODE model is given by

dBd
dt
= k1B2− k2Bd,

dC
dt
= k fBd · (Atot−C)− k rC.

By setting Ḃd = 0, Ċ = 0, and by defining Km := k1/k2, we we obtain that

Bd = KmB2, C =
BdAtot

Bd +Kd
, A =

AtotKd
Bd +Kd

,

so that
C =

KmAtotB2

KmB2+Kd
, A =

AtotKd

KmB2+Kd
.

As an exercise, the reader can verify that if B binds to A only as a complex of n
copies of B, that is,

B+B+ ...+B
k1−−⇀↽−−
k2
Bn, Bn+A

k f
−−⇀↽−−

k r
C, A+C = Atot,

then we have that

C =
KmAtotBn

KmBn+Kd
, A =

AtotKd
KmBn+Kd

.

In this case, one says that the binding of B to A is cooperative with cooperativity n.
Figure 2.6 shows the above functions, which are often referred to as Hill functions.

Competitive binding reaction. Finally, consider the case in which two species Ba
and Br both bind to A competitively, that is, they cannot be bound to A at the same
time. Let C be the complex formed between Ba and A and let C̄ be the complex
formed between Br and A. Then, we have the following reactions

Ba+A
k f
−−⇀↽−−
k r
C, Br+A

k̄ f
−−⇀↽−−

k̄ r
C̄, A+C+ C̄ = Atot,

for which we can write the ODE system as

dC
dt
= k fBa · (Atot−C− C̄)− k rC,

dC̄
dt
= k̄ fBr · (Atot−C− C̄)− k rC̄.
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Figure 2.6: Steady state concentrations of the complex C and of A as functions of the
concentration of B.

By setting the derivatives to zero, we obtain that

C(k fBa+ k r) = k fBa(Atot− C̄), C̄(k̄ fBr + k̄ r) = k̄ fBr(Atot−C),

and defining K̄d := k̄ r/k̄ f leads to

C̄ =
Br(Atot−C)

Br + K̄d
, C

(

Ba+Kd −
BaBr

Br + K̄d

)

= Ba

(

K̄d

Br + K̄d

)

Atot,

from which we finally obtain that

C =
BaAtotK̄d

K̄dBa+KdBr +KdK̄d
, C̄ =

BrAtotKd

KdBr + K̄dBa+KdK̄d
.

Note that in this derivation, we have assumed that both Ba and Br bind A as
monomers. If they were binding as dimers, the reader should verify that they would
appear in the final expressions with a power of two. Note also that in this deriva-
tion we have assumed that Ba and Br cannot simultaneously bind to A. If they were
binding simultaneously to A, we would have included another complex comprising
Ba and Br and A. Denoting this new complex by C′, we would have added also the
two additional reactions

C+Br
k′ f
−−⇀↽−−

k′ r
C
′
, C̄+Ba

k̄′ f
−−⇀↽−−

k̄′ r
C
′

and we would have modified the conservation law for A to Atot = A+C + C̄ +C′.
The reader can verify that in this case a mixed term BrBa would appear in the
equilibrium expressions.

Enzymatic reaction. A general enzymatic reaction can be written as

E+S
k f
−−⇀↽−−

k r
C

kcat−−→ E+P,
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in which E is an enzyme, S is the substrate to which the enzyme binds to form the
complex C, and P is the product resulting from the modification of the substrate
S due to the binding with the enzyme E. The rate k f is referred to as association
constant, k r as dissociation constant, and kcat as the catalytic rate. Enzymatic re-
actions are very common and we will see specific instances of them in the sequel,
e.g., phosphorylation and dephosphorylation reactions. The corresponding ODE
system is given by

dE
dt
= −k fE ·S + k rC+ kcatC,

dC
dt
= k fE ·S − (k r+ kcat)C,

dS
dt
= −k fE ·S + k rC,

dP
dt
= kcatC.

The total enzyme concentration is usually constant and denoted by Etot, so that
E+C = Etot. Substituting in the above equations E = Etot−C, we obtain

dE
dt
= −k f(Etot−C) ·S + k rC+ kcatC,

dC
dt
= k f(Etot−C) ·S − (k r+ kcat)C,

dS
dt
= −k f(Etot−C) ·S + k rC,

dP
dt
= kcatC.

This system cannot be solved analytically, therefore assumptions have been used
in order to reduce it to a simpler form. Michaelis and Menten assumed that the
conversion of E and S to C and vice versa is much faster than the decomposition of
C into E and P. This approximation is called the quasi-equilibrium approximation
between the enzyme and the complex. This assumption can be translated into the
condition

k f,k r% kcat

on the rate constants. Under this assumption and assuming that S % E (at least at
time 0), C immediately reaches its steady state value (while P is still changing).
The steady state value of C is given by solving k f(Etot −C)S − (k r + kcat)C = 0 for
C, which gives

C =
EtotS

S +Km
, with Km =

k r+ kcat
k f

,

in which the constant Km is called the Michaelis constant. Letting Vmax = kcatEtot,
the resulting kinetics

dP
dt
=

VmaxS
S +Km

is called Michaelis-Menten kinetics. The constant Vmax is called the maximal ve-
locity (or maximal flux) and it represents the maximal rate that can be obtained
when the enzyme is completely saturated by the substrate.
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Chemical reaction networks (TBD)

2.2 Transcription and Translation

In this section we consider the processes of transcription and translation, using the
modeling techniques described in the previous section to capture the fundamental
dynamic behavior. Models of transcription and translation can be done at a variety
of levels of detail and which model to use depends on the questions that one wants
to consider. We present several levels of modeling here, starting with a fairly de-
tailed set of reactions and ending with highly simplified models that can be used
when we are only interested in average production rate of proteins at relatively long
time scales.
The basic reactions that underly transcription include the diffusion of RNA

polymerase from one part of the cell to the promoter region, binding of an RNA
polymerase to the promoter, isomerization from the closed complex to the open
complex and finally the production of mRNA, one base pair at a time. To capture
this set of reactions, we keep track of the various forms of RNA polymerase accord-
ing to its location and state: RNAPc represents RNA polymerase in the cytoplasm
and RNAPd is non-specific binding of RNA polymerase to the DNA.We must sim-
ilarly keep track of the state of the DNA, to insure that multiple RNA polymerases
do not bind to the same section of DNA. Thus we can write DNAp for the promoter
region, DNAg,i for the ith section of a gene g (whose length can depend on the de-
sired resolution) and DNAt for the termination sequence. We write RNAP:DNA to
represent RNA polymerase bound to DNA (assumed closed) and RNAP:DNAo to
indicate the open complex. Finally, we must keep track of the mRNA that is pro-
duced by transcription: we write mRNAi to represent an mRNA strand of length i
and assume that the length of the gene of interest is N.
Using these various states of the RNA polymerase and locations on the DNA,

we can write a set of reactions modeling the basic elements of transcription as

Binding to DNA: RNAPc −−−⇀↽−−− RNAPd

Diffusion along DNA: RNAPd −−−⇀↽−−− RNAPp

Binding to promoter : RNAPp+DNAp −−−⇀↽−−− RNAP:DNAp

Isomerization : RNAP:DNAp −−−⇀↽−−− RNAP:DNAo

Start of transcription : RNAP:DNAo −−→ RNAP:DNAg,1+DNAp

mRNA creation (index k): : RNAP:DNAg,1 −−→ RNAP:DNAg,2+mRNA1k
Elongation, i = 1, . . . ,N : RNAP:DNAg,i+1+mRNAik −−→ RNAP:DNAg,i+2+mRNAi+1k
Binding to terminator : RNAP:DNAg,N+mRNAN−1k −−→ RNAP:DNAt+mRNANk

Termination : RNAP:DNAt −−→ RNAPc

Degradation : mRNANk −−→ ∅
(2.9)
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This reaction has been written for prokaryotes, but a similar set of reactions could
be written for eukaryotes: the main differences would be that the RNA polymerase
remains in the nucleus and the mRNA must be spliced and transported to the cy-
tosol. Note that at the start of transcription we “release” the promoter region of the
DNA, thus allowing a second RNA polymerase to bind to the promoter while the
first RNA polymerase is still transcribing the gene.
A similar set of reactions can be written to model the process of translation.

Here we must keep track of the binding of the ribosome to the mRNA, translation
of the mRNA sequence into a polypeptide chain and folding of the polypeptide
chain into a functional protein. Let Ribo:mRNARBS indicate the ribosome bound
to the ribosome binding site, Ribo:mRNAAAi the ribosome bound to the ith codon,
Ribo:mRNAstart and Ribo:mRNAstop for the start and stop codons, and PPC i for a
polypeptide chain consisting of i amino acids. The reactions describing translation
can then be written as

Binding to RBS: Ribo+mRNARBSk −−−⇀↽−−− Ribo:mRNARBSk

Start of translation : Ribo:mRNARBSk −−→ Ribo:mRNAstartk +mRNARBSk

Polypeptide chain creation : Ribo:mRNAstartk −−→ Ribo:mRNAAA2k +PPC1

Elongation, i = 1, . . . ,M : Ribo:mRNAAA(i+1)k +PPCi −−→ Ribo:mRNAAA(i+2)k +PPCi+1

Stop codon: Ribo:mRNAMk +PPC
M−1 −−→ Ribo:mRNAstopk +ppcM

Release of mRNA: Ribo:mRNAstopk −−→ Ribo
Folding: PPCM −−→ protein

Degradation : protein −−→ ∅

As in the case of transcription, we see that these reactions allow multiple ribosomes
to translate the same piece of mRNA by freeing up the ribosome binding site (RBS)
when translation begins.
As complex as these reactions are, they are still missing many important ef-

fects. For example, we have not accounted for the existence and effects of the 5’
and 3’ untranslated regions (UTRs) of a gene and we have also left out various error
correction mechanisms in which ribosomes can step back and release an incorrect
amino acid that has been incorporated into the polypeptide chain. We have also left
out the many chemical species that must be present in order for a variety of the
reactions to happen (NTPs for mRNA production, amino acids for protein produc-
tion, etc). Incorporation of these effects requires additional reactions that track the
many possible states of the molecular machinery that underlies transcription and
translation.
Given a set of reactions, the various stochastic processes that underly detailed

models of transcription and translation can be specified using the stochastic model-
ing framework described briefly in the previous section. In particular, using either
models of binding energy or measured rates, we can construct propensity functions
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for each of the many reactions that lead to production of proteins, including the
motion of RNA polymerase and the ribosome along DNA and RNA. For many
problems in which the detailed stochastic nature of the molecular dynamics of the
cell are important, these models are the most relevant and they are covered in some
detail in Chapter 4.
Alternatively, we can move to the reaction rate formalism and model the reac-

tions using differential equations. To do so, we must compute the various reaction
rates, which can be obtained from the propensity functions or measured experimen-
tally. In moving to this formalism, we approximate the concentrations of various
species as real numbers, which may not be accurate since some species exist at
low molecular counts in the cell. Despite all of these approximations, in many sit-
uations the reaction rate equations are perfectly sufficient, particularly if we are
interested in the average behavior of a large number of cells.
In some situations, an even simpler model of the transcription, translation and

folding processes can be utilized. If we assume that RNA polymerase binds to
DNA at some average rate (which includes both the binding and isomerization
reactions) and that transcription takes some fixed time (depending on the length
of the gene), then the process of transcription can be described using the delay
differential equation

dmp

dt
= αp,0−µmp−γpmp, m∗p(t) = e−µτ

m
p mp(t−τmp ), (2.10)

where mp is the concentration of mRNA for protein P, m∗p is the concentration of
“active” mRNA, αp,0 is the rate of production of the mRNA for protein P, µ is the
growth rate of the cell (which results in dilution of the concentration) and γp is the
rate of degradation of the mRNA. Since the dilution and degradation terms are of
the same form, we will often combine these terms in the mRNA dynamics and use
a single coefficient γ̄p.
The active mRNA is the mRNA that is available for translation by the ribo-

some. We model its concentration through a simple time delay of length τmp that
accounts for the transcription of the ribosome binding site in prokaryotes or splic-
ing and transport from the nucleus in eukaryotes. The exponential factor accounts
for dilution due to the change in volume of the cell, where µ is the cell growth rate.
The constants αp,0 and γ̄p capture the average rates of production and degradation,
which in turn depend on the more detailed biochemical reactions that underlie tran-
scription.
Once the active mRNA is produced, the process of translation can be described

via a similar ordinary differential equation the describes the production of a func-
tional protein:

dP
dt
= βp,0m∗p− δ̄pP, P f (t) = e−µτ

f
p P(t−τ f

p). (2.11)
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Here P represents the concentration of the polypeptide chain for the protein, P f

represents the concentration of functional protein (after folding). The parameters
that govern the dynamics are βp,0, the rate of translation of mRNA; δ̄p the rate
of degradation and dilution of P; and τ f

p, the time delay associated with folding
and other processes required to make the protein functional. The exponential term
again accounts for dilution due to cell growth. The degradation and dilution term,
parameterized by δ̄p, captures both rate at which the polypeptide chain is degraded
and the rate at which the concentration is diluted due to cell growth.
It will often be convenient to write the dynamics for transcription and transla-

tion in terms of the functional mRNA and functional protein. Differentiating the
expression for m∗p, we see that

dm∗p(t)
dt

= e−µτ
m
p ṁp(t−τmp )

= e−µτ
m
p
(

αp,0− γ̄pmp(t−τmp )
)

= ᾱp,0− γ̄pm∗p(t),
(2.12)

where ᾱp,0 = e−µτ
m
pαp,0. A similar expansion for the active protein dynamics yields

dP f (t)
dt

= β̄p,0m∗p(t−τ
f
p)− δ̄P f (t), (2.13)

where β̄p,0 = e−µτ
f
pβp,0. We shall typically use equations (2.12) and (2.13) as our

(reduced) description of protein folding, dropping the superscript f and overbars
when there is no risk of confusion.
In many situations the time delays described in the dynamics of protein pro-

duction are small compared with the time scales at which the protein concentration
changes (depending on the values of the other parameters in the system). In such
cases, we can simplify our model of the dynamics of protein production and write

dmp

dt
= αp,0− γ̄pmp,

dP
dt

= βp,0mp− δ̄pP. (2.14)

Note that we here have dropped the superscripts ∗ and f since we are assuming
that all mRNA is active and proteins are functional and dropped the overbar on α
and β since we are assuming the time delays are negligible. We retain the overbars
on γ and δ since dilution due to cell growth is still a potentially important factor.
Finally, the simplest model for protein production is one in which we only keep

track of the basal rate of production of the protein, without including the mRNA
dynamics. This essentially amounts to assuming the mRNA dynamics reach steady
state quickly and replacing the first differential equation in equation (2.14) with its
equilibrium value. Thus we obtain

dP
dt
= βp,0me

p−δpP = βp,0
αp,0

γp
−δpP =: βp−δpP.
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Figure 2.7: Simplified diagrams for protein production. The diagram on the left shows a
section of DNA with RNA polymerase as an input, protein concentration as an output and
degradation of mRNA and protein. The figure on the right is a simplified view in which
only the protein output is indicated.

This model represents a simple first order, linear differential equation for the rate of
production of a protein. In many cases this will be a sufficiently good approximate
model, although we will see that in many cases it is too simple to capture the
observed behavior of a biological circuit.
We will often find it convenient to represent protein production using a simple

diagram that hides the details of the particular model that we decide to use. Fig-
ure 2.7 shows the symbol that we will use through the text. The diagram is intended
to resemble a section of double stranded DNA, with a promoter and terminator at
the ends, and then a list of the gene and protein in the middle. The boxes labeled by
the gene and protein schematically represent the mRNA and protein concentration,
with the line at the left of the DNA represent the input of RNA polymerase and
the line on the top representing the the (folded) protein. The symbols at the bottom
represent the degradation and dilution of mRNA and protein.

2.3 Transcriptional Regulation

The operation of a cell is governed by the selective expression of genes in the DNA
of the organism, which control the various functions the cell is able to perform at
any given time. Regulation of protein activity is a major component of the molecu-
lar activities in a cell. By turning genes on and off, and modulating their activity in
more fine-grained ways, the cell controls the many metabolic pathways in the cell,
responds to external stimuli, differentiates into different cell types as it divides, and
maintains the internal state of the cell required to sustain life.
The regulation of gene expression and protein activity is accomplished through

a variety of molecular mechanisms, as illustrated in Figure 2.8. We see that at each
stage of the processing from a gene to a protein, there are potential mechanisms
for regulating the production processes. The remainder of this section will focus
on transcriptional control, the next section on control between transcription and
translation, and the third section on post-translational control mechanisms. We be-
gin with a description of regulation mechanisms in prokaryotes (bacterial) and then



2-22 CHAPTER 2. DYNAMIC MODELING OF CORE PROCESSES

Figure 2.8: Regulation of proteins. Figure from Phillips, Kondev and Theriot [56]; used
with permission of Garland Science.

describe the additional mechanisms that are specific to eukaryotes.

Prokaryotic mechanisms

Transcriptional regulation refers to the selective expression of genes by activating
or repressing the transcription of DNA into mRNA. The simplest such regulation
occurs in prokaryotes, where proteins can bind to “operator regions” in the vicinity
of the promoter region of a gene and affect the binding of RNA polymerase and
the subsequent initiation of transcription. A protein is called a repressor if it blocks
the transcription of a given gene, most commonly by binding to the DNA and
blocking the access of RNA polymerase to the promoter. An activator operates in
the opposite fashion: it recruits RNA polymerase to the promoter region and hence
transcription only occurs when the activator (protein) is present.
We can capture this set of molecular interactions by modifying the RNA poly-

merase binding reactions in equation (2.9). For a repressor (Rep), we simply have
to add a reaction that represents the repressor bound to the promoter:

Repressor binding: DNAp+Rep −−−⇀↽−−− DNA:Rep

This reaction acts to “sequester” the DNA promoter site so that it is no longer
available for binding by RNA polymerase (which requires DNAp). The strength
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of the repressor is reflected in the reaction rate constants for the repressor binding
reaction and the equilibrium concentrations of DNAp versus DNA:Rep model the
“leakiness” of the repressor.
The modifications for an activator (Act) are a bit more complicated, since we

have to modify the reactions to require the presence of the activator before RNA
polymerase can bind. One possible mechanism is

Activator binding: DNAp+Act −−−⇀↽−−− DNA:Act
Diffusion along DNA: RNAPd −−−⇀↽−−− RNAPp

Binding to promoter w/ activator : RNAPp+DNA:Act −−−⇀↽−−− RNAP:DNAo+DNA:Act
Binding to promoter w/out activator : RNAPp+DNAp −−−⇀↽−−− RNAP:DNAp

Here we model both the enhanced binding of the RNA polymerase to the promoter
in the presence of the activator, as well as the possibility of binding without an
activator. The relative reaction rates determine how strong the activator is and the
“leakiness” of transcription in the absence of the activator.
As indicated earlier, many activators and repressors operate in the presence of

inducers. To incorporate these dynamics in our description, we simply have to add
the reactions that correspond to the interaction of the inducer with the relevant
protein. For a negative inducer, we can simply add a reaction in which the inducer
binds the regulator protein and effectively sequesters it so that it cannot interact
with the DNA. For example, a negative inducer operating on a repressor could be
modeled by adding the reaction

Rep+ Ind −−−⇀↽−−− Rep:Ind.

Positive inducers can be handled similarly, except now we have to modify the bind-
ing reactions to only work in the presence of a regulatory protein bound to an in-
ducer. For example, a positive inducer on an activator would have the modified
reactions

Inducer binding: Act+ Ind −−−⇀↽−−− Act:Ind
Activator binding: DNAp+Act:Ind −−−⇀↽−−− DNA:Act:Ind

Diffusion along DNA: RNAPd −−−⇀↽−−− RNAPp

Binding to promoter w/ activator : RNAPp+DNA:Act:Ind −−−⇀↽−−− RNAP:DNAo+DNA:Act:Ind

A simplified version of the dynamics can be obtained by assuming that tran-
scription factors bind to the DNA rapidly, so that they are in steady state config-
urations. In this case, we can make use of the steady state statistical mechanics
techniques described in Section 2.1 and relate the expression of the gene to the
probability that the activator or repressor is bound to the DNA (Pbound). This can
be done at the level of the reaction rate equation by replacing the differential equa-
tions for activator or repressor binding with their steady state values. Here instead
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we demonstrate how to account for this rapid binding in the simplified differential
equation models presented at the end of Section 2.2.
Recall that given the relative energies of the different microstates of the system,

we can compute the probability of a given configuration using equation (2.1):

P(q) =
1
Z

e−Eq/(kBT ).

Consider the regulation of a gene a with a protein concentration given by pa and
a corresponding mRNA concentration ma. Let b be a second gene with protein
concentration pb that represses the production of protein A through transcriptional
regulation. If we let qbound represent the microstate corresponding to the appropri-
ate activator or repressor bound to the DNA, then we can compute P(qbound) as a
function of the concentration pb, which we write as Pbound(pb). For a repressor, the
resulting mRNA dynamics can be written as

dma
dt
=
(

1−Pbound(pb)
)

αa0−γama. (2.15)

We see that the effect of the repression is modeled by a modification of the rate of
transcription depending on the probability that the repressor is bound to the DNA.
In the case of an activator, we proceed similarly. The modified mRNA dynamics

are given by
dma
dt
= Pbound(pb)αa0−γama, (2.16)

where now we see that B must be bound to the DNA in order for transcription to
occur.
As we shall see in Chapter 4 (see also Exercise 2.1, the functional form of

Pbound can be nicely approximated by a monotonic rational function, called a Hill
function [17, 52]. For a repressor, the Hill function is given by

f r
a (pb) = 1−Pbound(pb) =

αab

kab+ pnab
b
+αa,

where the subscripts correspond to a protein B repressing production of a protein
A, and the parameters αab, kab and nab describe how B represses A. The maximum
transcription rate occurs when pb = 0 and is given by αab/kab + αa0. The mini-
mum rate of transcription occurs when pb →∞, giving αa0, which describes the
“leakiness” of the promoter. The parameter nab is called the Hill coefficient and
determines how close the Hill function is to a step function. The Hill coefficient
is often called the degree of cooperativity of the reaction, as it often arises from
molecular reactions that involve multiple (“cooperating”) copies of the protein X.

Example 2.4 (Repressilator). As an example of how these models can be used, we
consider the model of a “repressilator,” originally due to Elowitz and Leibler [23].
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Figure 2.9: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simple model for the repressilator, show-
ing the oscillation of the individual protein concentrations. (Figure courtesy M. Elowitz.)

The repressilator is a synthetic circuit in which three proteins each repress another
in a cycle. This is shown schematically in Figure 2.9a, where the three proteins are
TetR, λ cI and LacI.
The basic idea of the repressilator is that if TetR is present, then it represses the

production of λ cI. If λ cI is absent, then LacI is produced (at the unregulated tran-
scription rate), which in turn represses TetR. Once TetR is repressed, then λ cI is
no longer repressed, and so on. If the dynamics of the circuit are designed properly,
the resulting protein concentrations will oscillate.
We can model this system using three copies of equation (2.15), with A and

B replaced by the appropriate combination of TetR, cI and LacI. The state of the
system is then given by x = (mTetR, pTetR,mcI, pcI,mLacI, pLacI). Figure 2.9b shows
the traces of the three protein concentrations for parameters n = 2, α = 0.5, k =
6.25×10−4, α0 = 5×10−4, γ = 5.8×10−3, β = 0.12 and δ = 1.2×10−3 with initial
conditions x(0) = (1,0,0,200,0,0) (following [23]). ∇

For an activator the Hill function is given by

f a
a (pb) = Pbound(pb) =

αabkab pnab
b

kab+ pnab
b
+αa0,

where the variables are the same as described previously. Note that in the case of
the activator, if pb is zero, then the production rate is αa0 (versus αab +αa0 for the
repressor). As pb gets large, the first term in the Hill function approaches αab and
the transcription rate becomes αab+αa0 (versus αa0 for the repressor). Thus we see
that the activator and repressor act in opposite fashion from each other. Figure 2.10
shows the standard Hill functions for activation and repression.
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Figure 2.10: Hill function for an activator (left) and for a repressor (right).

In the case where there are inducers present, we can modify our model by
adding the appropriate additional reactions. For example, if we have a repressor
B with a negative inducer (such as LacI and IPTG), we can add a reaction

B+ I
k f
−−⇀↽−−
k r
B:I.

If we assume that this reaction is fast relative to the other dynamics in the sys-
tem, we can solve for the equilibrium concentration of the inducer bound to the
repressor,

[B:I] =
k f

k r
[B][I],

where k f and k r are the forward and reverse reaction rates. We can now attempt to
solve for Pbound(I) by computing the amount of repressor that is still free to bind to
the DNA.
A simplified case occurs when we assume that most of the repressor is either

bound to the inducer or free, so that the amount of B bound to the DNA is small.
In this case we can solve for pb in terms of I and then combine the expression for
Pbound with the modified value of pb. If we let BT represent the total amount of B
present and assume this is constant, we can write

BT = [B:I]+ [B]

(ignoring any contributions from B:DNA) and solve for pb as

pb = [B] =
AT

1+ (k f/k r)I
.

The resulting expression for Pbound(I) is complicated, but easily computed.
We will often find it convenient to represent the process of regulation in a graph-

ical fashion that hides the specific details of the model that we choose to use. Fig-
ure 2.11 shows the notation that we will use in this text to represent the process of
transcription, translation and regulation.
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genXGenXgenX GenXgenX GenX

Figure 2.11: Circuit diagrams for transcriptional regulation of a gene. The first two figures
represent repression and activation. If desired, additional mechanisms can also be indi-
cated, as shown in the diagram on the right.

We have described how the Hill function can model the regulation of a gene
by a single transcription factor. However, genes can also be regulated by multiple
transcription factors, some of which may be activators and some may be repres-
sors. The input function can thus take several forms depending on the roles (activa-
tors versus repressors) of the various transcription factors [3]. In general, the input
function of a transcriptional module that takes as input transcription factors pi for
i ∈ {1, ...,N} will be denoted f (p1, ..., pn).
Consider a transcriptional module with input function f (p1, ..., pn). The inter-

nal dynamics of the transcriptional module usually models mRNA and protein dy-
namics through the processes of transcription and translation. Protein production
is balanced by decay, which can occur through degradation or dilution. Thus, the
dynamics of a transcriptional module is often well captured by the ordinary differ-
ential equations

dmy

dt
= f (p1, ..., pn)−γymy,

dpy

dt
= βymy−δypy, (2.17)

where my denotes the concentration of mRNA translated by gene y, the constants
γy and δy incorporate the dilution and degradation processes, and βy is a constant
that establishes the rate at which the mRNA is translated.
Several other methods of transcriptional regulation can exist in cells.

Antitermination. Antitermination can also be used as a transcriptional regulatory
mechanism. To model its effects, assume that we have a coding region labeled h
that occurs after an antitermination site. We modify the termination reactions from
equation (2.9):

Termination (unchanged) : RNAP:DNAt −−→ RNAPc

Binding to utilization site : DNANut+N −−−⇀↽−−− DNANut:N
Antitermination : RNAP:DNAt+DNANut

Termination (unchanged) : RNAP:DNAt −−→ RNAP:DNAh,1
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Figure 2.12: Diagram representing a covalent modification cycle.

Regulation in eukaryotes

Transcriptional regulation in eukaryotes is more complex than in prokaryotes. In
many situations the transcription of a given gene is affected by many different tran-
scription factors, with multiple molecules being required to initiate and/or suppress
transcription.

2.4 Post-Transcriptional Regulation

In addition to regulation of expression through modifications of the process of tran-
scription, cells can also regulate the production and activity of proteins via a col-
lection of other post-transcriptional modifications. These include methods of mod-
ulating the translation of proteins, as well as affecting the activity of a protein via
changes in its conformation, as shown in Figure 2.8.

RNA-based regulation (TBD)

Allosteric modifications to proteins (TBD)

Covalent modifications to proteins

Covalent modification is a post-translational protein modification that affects the
activity of the protein. It plays an important role both in the control of metabolism
and in signal transduction. Here, we focus on reversible cycles of modification, in
which a protein is interconverted between two forms that differ in activity either
because of effects on the kinetics relative to substrates or for altered sensitivity to
effectors.
At high level, any covalent modification cycle involves a target protein, say X,

an enzyme for modifying it, say Z, and one for reversing the modification, say
Y (see Figure 2.12). We call X* the activated protein. There are often allosteric
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effectors or further covalent modification systems that regulate the activity of the
modifying enzymes, but we do not consider here this added level of complexity.
There are several types of covalent modification, depending on the type of acti-
vation of the protein. Phosphorylation is a covalent modification that takes place
mainly in eukaryotes and involves activation of the inactive protein X by addition
of a phosphate group. In this case, the enzyme Z is called a kinasewhile the enzyme
Y is called phosphatase. Another type of covalent modification that is very com-
mon in both prokaryotes and eukaryotes is methylation. Here, the inactive protein
is activated by the addition of a methyl group.
The reactions describing this system are given by the following two enzymatic

reactions, also called a two step reaction model,

Z+X
k f
−−⇀↽−−

kr
C

kcat−−→ X∗+Z, Y+X∗
k′f
−−⇀↽−−

k′r
C
′ k′cat−−→ X+Y.

The corresponding ODE model is given by

dZ
dt
= −k f Z ·X+ (kcat + kr)C,

dY
dt
= −k′f Y ·X

∗+ (k′r + k′cat)C′,

dX
dt
= −k f Z ·X+ krC+ k′catC′,

dX∗

dt
= kcatC− k′f Y ·X

∗+ k′rC′,

dC
dt
= k f Z ·X− (kr + kcat)C,

dC′

dt
= k′f Y ·X

∗ − (k′r + k′cat)C′.

Furthermore, we have that the total amounts of enzymes Z and Y are conserved.
Denote the total concentrations of Z and Y by Ztot, Ytot, respectively. Then, we
also have the conservation laws Z +C = Ztot and Y +C′ = Ytot. We can thus reduce
the above system of ODEs to the following one, in which we have substituted
Z = Ztot −C and Y = Ytot −C′:

dC
dt
= k f (Ztot −C) ·X− (kr + kcat)C

dX∗

dt
= kcatC− k′f (Ytot −C′) ·X∗+ k′rC′

dC′

dt
= k′f (Ytot −C′) ·X∗ − (k′r + k′cat)C′.

As for the case of the enzymatic reaction, this system cannot be analytically in-
tegrated. To simplify it, we can perform a similar approximation as done for the
enzymatic reaction. In particular, the complexes C and C’ are often assumed to
reach their steady state values very quickly because k f ,kr,k′f ,k

′
r% kcat,k′cat. There-

fore, we can approximate the above system by substituting forC andC′ their steady
state values given by the solutions to

k f (Ztot −C) ·X− (kr + kcat)C = 0
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and
k′f (Ytot −C′) ·X∗ − (k′r + k′cat)C′ = 0.

By solving these equations, we obtain that

C′ =
YtotX∗

X∗+K′m
, with K′m =

k′r + k′cat
k′f

and that
C =

ZtotX
X+Km

, with Km =
kr + kcat

k f
.

As a consequence, the ODE model of the phosphorylation system can be well
approximated by

dX∗

dt
= kcat

ZtotX
X+Km

− k′f
YtotK′m

X∗+K′m
·X∗+ k′r

YtotX∗

X∗+K′m
,

which, considering that k′f K′m− k′r = k′cat, leads finally to

dX∗

dt
= kcat

ZtotX
X+Km

− k′cat
YtotX∗

X∗+K′m
. (2.18)

We will come back to the modeling of this system after we have introduced singu-
lar perturbation theory, through which we will be able to perform a formal analysis
of this system and mathematically characterize the assumptions needed for approx-
imating the original system by the first order ODE model (2.18).
The full process for phosphorylation and dephosphorylation is actually a bit

more complicated than we have shown here and is illustrated in circuit diagram
form in Figure 2.13.

Phosphotransfer systems (TBD)

2.5 Cellular subsystems (TBD)

Intercellular Signaling

Adaptation

Logical operations

Exercises

2.1 (Hill function for a cooperative repressor) Consider a repressor that binds to an
operator site as a dimer:

R1: R+R −−−⇀↽−−− R2
R2: R2+DNA

p −−−⇀↽−−− R2:DNA
R3: RNAP+DNAp −−−⇀↽−−− RNAP:DNAp
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X

E

F:XP

F

Xp

E:ADP:XpE:ATP:X

E:ATP E:ADP

ADPATP

(a) Full reaction

X X *

E

F
(b) Reduced reaction

Figure 2.13: Circuit diagram for phosphorylation and dephoshorylation of a protein X via
a kinase E and phosphatase F. The diagram on the left shows the full set of reactions. A
simplified diagram is shown on the right.

Assume that the reactions are at equilibrium and that the RNA polymerase con-
centration is large (so that [RNAP] is roughly constant). Show that the ratio of the
concentration of RNA:DNAp to the total amount of DNA, DT , can be written as a
Hill function

f (R) =
[RNAP:DNA]

DT
=

α

K +R2

and give expressions for α and K.

2.2 (Switch-like behavior in cooperative binding) For a cooperative binding reac-
tion

B+B
k1−−⇀↽−−
k2
Bd, Bd+A

k f
−−⇀↽−−

kr
C, and A+C = Atot,

the steady state values of C and A are

C =
kMAtotB2

kM B2+KD
, and A =

AtotKD

kM B2+KD
.

Derive the expressions of C and A at the steady state when you modify these reac-
tions to

B+B+ ...+B
k1−−⇀↽−−
k2
Bn, Bn+A

k f
−−⇀↽−−

kr
C, and A+C = Atot.

Make MATLAB plots of the expressions that you obtain and verify that as n in-
creases the functions become more switch-like.
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2.3 Consider the following modification of the competitive binding reactions:

Ba+A
k f
−−⇀↽−−

kr
C, Br+A

k̄ f
−−⇀↽−−

k̄r

C̄,

and

C+Br
k′f
−−⇀↽−−

k′r
C
′
, and C̄+Ba

k̄′f
−−⇀↽−−

k̄′r
C
′

with Atot = A+C + C̄ +C′. What are the steady state expressions for A and C?
What information do you deduce from these expressions if A is a promoter, Ba
is an activator protein, and C is the activator/DNA complex that makes the gene
transcriptionally active?

2.4 Assume that we have an activator Ba and a repressor protein Br. We want to
obtain an input function such that when a lot of Ba is present, the gene is tran-
scriptionally active only if there is no Br, when low amounts of Ba are present, the
gene is transcriptionally inactive (with or without Br). Write down the reactions
among Ba, Br, and complexes with the DNA (A) that lead to such an input func-
tion. Demonstrate that indeed the set of reactions you picked leads to the desired
input function.

2.5 Consider the phosphorylation reactions described in Section 2.4, but suppose
that the kinase concentration Z is not constant, but is produced and decays accord-
ing to the reaction Z

δ
−−−⇀↽−−−
k(t)
∅. How should the system in equation (2.18) be modified?

Use a MATLAB simulation to apply a periodic input stimulus k(t) using parame-
ter values: kcat = k′cat = 10, k f = k′f = kr = k′r = 1, δ = 0.01. Is the cycle capable of
“tracking” the input stimulus? If yes, to what extent? What are the tracking prop-
erties depending on?

2.6 Another model for the phosphorylation reactions, referred to as one step re-
action model, is given by Z+X −−−⇀↽−−− X∗+Z and Y+X∗ −−−⇀↽−−− X+Y, in which the
complex formations are neglected. Write down the ODE model and comparing the
differential equation of X∗ to that of equation (2.18), list the assumptions under
which the one step reaction model is a good approximation of the two step reaction
model.

2.7 (Transcriptional regulation with delay) Consider a repressor or activator B∗
modeled by a Hill function F(B). Show that in the presence of transcriptional delay
τm, the dynamics of the active mRNA can be written as

dm∗(t)
dt

= e−τ
m

F(B(t−τm))− γ̄m∗.
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