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Preface

This text serves as a supplemenfeedback Systenby Astrom and Murray [1]
(refered to throughout the text as AM08) and is intendeddeearchers interested
in the application of feedback and control to biomolecujstems. The text has
been designed so that it can be used in parallel régdback Systenas part of a
course on biomolecular feedback and control systems, os@ndalone reference
for readers who have had a basic course in feedback and ttheooy. The full
text for AM08, along with additional supplemental matedald a copy of these
notes, is available on a companion web site:

http://www.cds.caltech.edu/ murray/AMwiki/BFS

The text is intended to be useful to three overlapping auésngraduate stu-
dents in biology and bioengineering interested in undeditey the role of feed-
back in natural and engineered biomolecular systems; addanndergraduates
and graduate students in engineering disciplines who teeeisted the use of feed-
back in biological circuit design; and established redsenxin the the biological
sciences who want to explore the potential application miggples and tools from
control theory to biomolecular systems. We have writterntéxé assuming famil-
iarity with the material in AMO08, but have tried to providesights and motivation
so that the material can be learned in parallel. We also assame familiarity
with cell biology, at the level of a freshman course for noajons. The individ-
ual chapters in the text indicate the pre-requisites in na@tail, most of which
are covered either in AMO8 or in the supplemental informatwailable from the
companion web site.

Finish writing the preface. Acknowledgements RMM
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Notation

This is an internal chapter that is intended for use by theaasatin fixing the

notation that is used throughout the text. In the first passhefliook we are
anticipating several conflicts in notation and the notes heag be useful to early
users of the text.

Protein dynamics

We use P to refer to a protein, mP to refer to the mRNA assatyaité that protein
andp to refer to the gene that encodes P. The concentration of P camitben
either asP or [P], with a preference for the former. The concentration & can
be written either asp (preferred) or [mP]. Parameters that are specific to gene
are written with a subscriptegt ayp, dp, etc.

The dynamics of protein production are given by

d P

d—rrtb:“p,o—mep’ gt = PrMp—pP

whereapp is the (constitutive) rate of production, parameterizes the rate of
dilution and degradation of the mRNA mp, is the kinetic rate of protein pro-
duction ands, parameterizes the rate of dilution and degradation of toéepr
P.

When we ignore the mRNA concentration, we write the simplifiectein dy-

namics as dp
a = ﬁp’o - 6pP

Assuming that the mRNA dynamics are fast compared to prgteiduction, then
the constangy o is given by

7p
0=Pp—
Bro=Bo,
For regulated production of proteins using Hill functioms&g modify the con-

stitutive rate of production to b§,(Q) instead ofap o Or Sp0 as appropriate. The
Hill function is written in the form

Q) = o

-
kpq+Q pq

The subscripts can be dropped if there is only one Hill fumctiouse.
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Chemical reactions

We write the symbol for a chemical species A using roman typee number
of molecules of a species A is written ag The concentration of the species is
occasionally written as [A], but we more often use the nota#i, as in the case of
proteins, orx,. For a reaction A B «— C, we use the notation
krfl dC
R1:A+B? C 4= k\ AB-K,C

It will often be the case that two species A and B will form aa@ewnt bond,
in which case we write the resulting species as AB. We willidigiish covalent
bonds from much weaker hydrogen bonding by writing the tatteA:B. Finally,
in some situations we will have labeled section of DNA that@nnected together,
which we write as A-B, where here A represents the first portion of the DNA
strand and B represents the second portion. When desci(&imgle) strands of
DNA, we write A’ to represent the Watson-Crick complement of the strand A.
Thus A-B:B’—A’” would represent a double stranded length of DNA with domains
A and B.

The choice of representing covalent molecules using theesdial chemical
notation AB can lead to some confusion when writing the ieaalynamics using
A andB to represent the concentrations of those species. NarhelgymbolAB
could represent either the concentration of A times the eotnation of B or the
concentration of AB. To remove this ambiguity, when usinig tiotation we will
write [A][B] as A-B.

When working with a system of chemical reactions, we writei S 1,...,n
for the species andRj = 1,...,mfor the reactions. We write; to refer to the
molecular count for speciegsand x; = [S;] to refer to the concentration of the
species. The individual equations for a given species artgenri

Missing. Figure out notation here. BST?
The collection of reactions are written as
X=NuXxu), X =Nijvj(x.up)

wherex; is the concentration of specieg 8l € R™™ is the stochiometry matrix,
vj is the reaction flux vector for reaction andy is the collection of parameters
that the define the reaction rates.
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Chapter 1

Core Processes

The goal of this chapter is to describe basic biological meisnas in a way
that can be represented by simple dynamic models. We begichapter with
a overview of the dynamics of prokaryotic and eukaryotidscécused on the
processes that determine their behavior, followed by audion of the basic
modeling formalisms that we will utilize. We then proceedstady a number
of core processes within the cell, providingfdrent model-based descriptions of
their dynamics that will be used in later chapters to analymdesign biomolec-
ular systems. The focus in this chapter is on deterministidetsousing ordinary
differential equations; Chapter 3 describes how to model tteastic nature of
biomolecular systems.

Prerequisites.Readers should have a basic understanding of ordin&isreintial
equations, at the level of Chapter 2 of AM08, and some bagidifity with cell

biology, at the level of a freshman course for non-majors. RMM: Update to match
wording in preface

1.1 The Cell as a Dynamical System

The cell is the fundamental building block of life. The moleaaybrocesses inside
the cell determine its behavior and are responsible for lnoditang nutrients, gen-
erating motion, procreation and the other functions of tiganism. In complex,
multi-cellular organisms, ¢lierent types of cells work together to enable more
complex functions. In this chapter we briefly describe theashyits within a cell
and discuss the basic processes that govern its behavidsamtgractions with its
environment (including other cells). A much more detailetidduction to the bi-
ology of the cell can be found in standard textbooks on celblgly such as Alberts
et al.[?] or Phillipset al.[?].

This section needs to be rewritten to reflect that context thiar later (there iRMM
a lot of duplication). The philosophy in this section shouddtob give a high level
view of the cell and its dynamics, without diving into too nudetail. Most of the
more detailed material on transcription and translatiooughbe moved to later
sections.

The central dogma: production and regulation of proteins

We begin by reviewing perhaps the most fundamental set afgsses that is
present in all cells: the production of proteins from DNAt#dugh these pro-



RMM
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RNA
polymerase

Transcription
Translation

Figure 1.1: Biological circuitry. (a) Overview of the process by whicbteins in the cell are made.
RNA is transcribed from DNA by an RNA polymerase enzyme. The RNAénttianslated into a
protein by a molecular machine called a ribosome (from@stand Murray [1]).

cesses rely on the machinery of the cell to function, we dafemore detailed
description of the cell itself until a bit later in the sectio

The genetic material inside a cell, encoded in its DNA, gosehe response
to a cell to various conditions. DNA is organized into coliens of genes, with
each gene encoding a corresponding protein that performpsdifis function the
cell. Theactivation(turning on) orepression(turning df) of a gene is determined
through a series of complex interactions that go on withielk These interactions
give rise to remarkable set of circuits that perform the fioms required for life,
ranging from basic metabolism to locomotion to procreatibime genetic circuits
that occur in nature are incredible robust to external distnces and they can
function in a variety of conditions.

The text below has been moved from later in the chapter; it negg mpdating to
fix

Figure 1.1a outlines the basic processes of creating psdteim DNA. Transcriptiorf
is the process by which the enzyme RNA polymerase (RNAP) bamésend of
a gene (called a promoter site) and moves sequentially dogvgéne to read the
sequence of bases and copy it in messenger RNA (mRNAhslationis the pro-
cess by which a ribosome synthesizes proteins from mRNAbAsome moves
along the mRNA chain, attaching transfer RNA (tRNA) to the /R

To understand how these processes occur (and some of thenidgrthat gov-
ern their behavior), it will be useful to present a slightlpma detailed description
of the underlying biochemistry.

DNA is double stranded molecule (see Figure 1.2) with thegtdion” of each
strand specified by looking at the geometry of the sugars tlakemp its back-
bone. The strands of DNA consists of a sequence of nucledtidsonsist of a
sugar molecule (deoxyribose) bound to one of 4 bases: agléf)ncytocine (C),
guanine (G) and thymine (T). The two strands of DNA are compiearg, with
A binding to T and C binding to G. The coding strand (by convamthe top row
of a DNA sequence when it is written in text form) is specifieshfrthe 5’ end of
the DNA to the 3’ end of the DNA (5’ and 3’ refer to carbon locets on the de-
oxyribose backbone that are involved in linking togetherricleotides that make
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Figure 1.2: Molecular structure of DNA. RMM: Expand caption.
RMM: Need better figures
, promoter , that match the text
Egenes
| M |

operator

repressor
RNA polymerase i

I

GENES ON GENES OFF
low repressor concentration high repressor concentration
Figure 1.3: Geometric structure of DNA. RMM: Expand caption.

up DNA). The DNA that encodes proteins consists of a promeigion, regulator
regions (described in more detail below), a coding regiahatermination region
(see Figure 1.3).

Need to add additional pictures here to go along with the text RMM

RNA polymerase enzymes are present in the nucleus (for yoies) or cyto-
plasm (for prokaryotes) and must localize and bind to thenoter region of the
DNA template. Once bound, the RNA polymerase “opens” thebtoatranded
DNA to expose the the nucleotides that make up the seques@hoavn in Fig-
ure 1.4. RNA polymerase then constructs an mRNA sequententitahes the 5’
to 3’ sequence of the DNA to which it is bound. By conventiore mumber the
first base pair that is transcribed asl’ and the base pair prior to that (which is
not transcribed) is labeled as ’-1'. The promoter regionisrmshown with the -10
and -35 regions highlightetsince these regions contain the nucleotide sequemre@s : add to diagram
to which the RNA polymerase enzyme binds (the locations wadifterent cell
types, but these two numbers are typically used).



RMM: Need a better
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RMM: Expand caption.
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Figure 3.8 Physical Biology of the Cell (© Garland Science 2009)

Figure 1.4: Production of proteins from DNA.

The RNA strand that is produced by RNA polymerase is also assempuof nu-
cleotides with a sugar backbone. The sugar for RNA is ribostead of deoxyri-
bose and mRNA typically exists as a single stranded moleéuiether diference
is that the the base thymine (T) is replaced by uracil (U) in Rf¢éfuences. RNA
polymerase produces RNA one base pair at a time, as it movesifr the 5’ to
3’ direction along the DNA coding strand. RNA polymerasepstaranscribing
DNA when it reaches a “termination region” on the DNA. Thiswération region
consists of a sequence that causes the RNA polymerase toduinbin the DNA.
The sequence is not conserved across species and in marthed¢#ismination se-
quence is sometimes “leaky”, so that transcription will@gionally occur across
the terminator (we will see examples of this in th@hage circuitry described in
the next chapter).

Once the mRNA is produced, it must be translated into a pro@iis process
is slightly different in prokaryotes and eukaryotes. In prokaryotes, ieereegion
of the mRNA in which the ribosome (a molecular complex cairgisof of both
proteins and RNA) binds. This region, called the ribosomelibig site (RBS),
has some variability betweenffirent cell species and betweefftelient genes in
a given cell.

In eukaryotes, the RNA must undergo several additionakdtefore it is trans-
lated. The RNA sequence that has been created by RNA polyeeaasists of
certain sequences of RNA that are spliced out of the RNA (byokeoular com-
plex called the spliceosome). The sequences are calledfisitand there can be
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Figure 1.4 Physical Biology of the Cell (© Garland Science 2009)

Figure 1.5: The genetic code. RMM: Expand caption.

as many as 5-10of these in a given transcript (although some transcript® h@avim: check
none). The sequences of RNA that are not spliced out of the fifRlAnare
called “exons”. The term “pre-mRNA" is often used to distimgjubetween the
raw transcript and the spliced mRNA sequence. In additi@plicing, the mRNA
is also modified to contain a “polyadenine tail” that considta long sequence of
adenine (A) nucleotides on the 3’ end of the mRNA. This proegsequence is
then transported out of the nucleus into the cytoplasm, evttex ribosomes can
bind to it.

Unlike prokaryotes, eukaryotes do not have a well definedsdb@ binding
sequence and hence the process of the binding of the ribosnthe mRNA is
more complicated.

Describe in more detail some of the processes involved msdme binding inRMM
eukaryotes.

Once the ribosome is bound to the mRNA, it begins the prockesartslation.
Proteins consist of a sequence of amino acids and each anithbax a set of
base pair sequences, called codons, that are used in thesprofctranslation. A
codon consists of three base pairs and corresponds to ohe @tamino acids
or a “stop” codon. The mapping between codons and amino aldwivn as the
“genetic code”, shown in Figure 1.5. The ribosome translaaes eodon into the
corresponding amino acid using transfer RNA (tRNA) to im#tg the appropriate
amino acid (which binds to the tRNA) into the polypeptideioh# special codon,
AUG, is called the “start” codon and it specifies the locatibmhich translation
begins, as well as coding for the amino acid methionine (aifieoldform is used
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in prokayrotes). All subsequent codons are translated éyiiosome into the
corresponding amino acid until it reaches one of the stopredtypically UAA,
UAG and UGA).

The sequence of amino acids produced by the ribosome is aqlgip chain
that folds on itself to form a protein. The process of foldisgcomplicated and
involves a variety of chemical interactions that are not plately understood. It
is the folded protein that is “functional” and able to bindtber species in the cell
and perform the chemical reactions that underly the behavithe organism.

There are a variety of mechanisms in the cell to regulate tbhdyation of
proteins. These regulatory mechanisms can occur at variouassgn the over-
all process that produces the proteimanscriptional regulatiorrefers to regula-
tory mechanisms that control whether or not a gene is trioestr The simplest
forms of transcriptional regulation are repression anviggtwhich are controlled
throughtranscription factors

In the case of repression, the presence of a transcriptaarféoften a protein
that binds near the promoter) turnf the transcription of the gene and this type
of regulation is often called negative regulation or “dowgulation”. In the case
of activation (or positive regulation), transcription ishenced when an activator
protein binds to the promoter site (facilitating bindingloé RNA polymerase). On
the upper side of the tRNA, amino acids are attached, carnelipg to the three
bases currently attached on the bottom part of the tRNA. Tojpris formed by
chaining the amino acids together. One regulatory mecheoigprotein synthesis
is that translation of the mRNA chain may not be possible pkoader certain
conditions, and thus it should be activated. Similarly, sgraein may bind to
the mRNA preventing the tRNA to finish translation.

Prokaryotes

RMM Outline:

a. Cell architecture

b. Cell metabolism (energy production and biosynthesis)
c. Cellcycle

d. Example: E. coli (size, rate, census)

One of the simplest biological organisms is a bacterium civitionsists of a
single cell that divides into genetically identical dawghtells. Bacteria are ex-
amples ofprokaryotic cellsand have a fairly simple architecture, as shown in Fig-
ure 1.6. The cell consists of a single main compartment, @¢dlie cytoplasm,
surrounded by an exterior cell wall. Some bacteria have flagelpili that can be
used for locomotion. The model prokaryotic systenkiscoli, which is approxi-

RMM: check mate 2um long and Ium in diameter;

RMM Add a more complete description of the basic structure
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Capsule
Cell wall
Plasma membrane

Plasmid
Pili

Bacterial Flagellum
Nucleoid (circular DNA)

Figure 1.6: Architecture of a prokaryotic cell. Figure reproducethfiikipedia.

Figure 1.7: Architecture of a eukaryotic cell. Figure reproduced Wdikipedia

Simple eukaryotes

Outline: RMM
a. Cell architecture
b. Cellular transport (internal and external)

. Cellcycle (?)
d. Example: S. cerivisiae (size, rate, census)

(g}

Multi-cellular organisms

Outline; RMM

a. Determination of cell types (via protein expression)



RMM
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Hermaphrodite Caenorhabditis Elegans

pharynx ovaryl spermatheca 1

ol S
oocytes uterus  Vulva e ooeytes

Figure 1.8: Architecture of a multi-cellular organis@, elegansFigure reproduced from Wikipedia

b. Differentiation and epigenetics
c. Cell-cell signaling
d. Example: C. elegans (size, rate, census)

Biochemical reactions in cells

Outline:

Main chemical components of cells

Enzymes and proteins (including active forms)

DNA and RNA (including Watson-Crick, hybridization)
d. Free energy, thermal equilibrium fidision

o T p

Might make sense to move detailed information about DNA lémaistry from
Section 1.3 to here.

1.2 Modeling Techniques

In order to develop models for some of the core processeseoteh, we will
need to build up a basic description of the biochemical reastthat take place,
including production and degradation of proteins, regoiabf transcription and
translation, intracellular sensing, action and compartgtand intercellular signal-
ing. As in other disciplines, biomolecular systems can beeted in a variety of
different ways, at many fierent levels of resolution. The choice of which model
to use depends on the questions that you want to answer, addgudeling takes
practice, experience and iteration. One must properlyucaghe aspects of the
system that are important, reason about the appropriafgi@irand spatial scales
to be included, and take into account the types of simuladioth analysis tools
be be applied. Models that are to be used for analyzing egistystems should
make testable predictions and provide insight into the dyithg dynamics. De-
sign models must additionally capture enough of the impotv@havior to allow
decisions to be made regarding how to interconnect submgstehoose parame-
ters and design regulatory elements.
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Figure 1.9: Statistical physics description of ligand-receptor binding. CEfl is modeled as a com-
partment withQ sites, one of which contains a receptor protein. Ligand molecules capyeay of
the sites (first column) and we can compute the Gibbs free energyiatssbwith each configuration
(second column). The first row represents all possible microstatekighwhe receptor protein is
not bound, while the second represents all configurations in which ot digands binds to the
receptor. By accounting for the multiplicity of each microstate (third colymwe)can compute the
weight of the given collection of microstates (fourth column). Figurenfi@hillips, Kondev and
Theriot [?].

In this section we describe the basic modeling framewor&s e will build
on throughout the rest of the text. We begin with descrigitrat are tied to the
detailed physics and chemistry of the system, and then ghgdawild to models
that focus on capturing the behavior using reaction rat@tays. In this chapter
our emphasis will be on dynamics with time scales measursdéonds to hours
and mean behavior averaged across a large number of maedsMéetouch only
briefly on modeling in the case where stochastic behavior dates and defer a
more detailed treatment until Chapter 3. Much of the worknis thapter builds
on the recent textbook by Philligt al.[?].

Modeling using statistical physics

At the core of many of the reactions and multi-molecularriatgons that take
place inside of cells is the chemical physics associatel iitding between two
molecules. One way to capture some of the properties of tiiéseactions is
through the use of statistical mechanics and thermodyrgamic

Summarize key elements of statistical physics here, foligvthe approach frorRMM
PKTO08. Need to defindG plus talk about microstates and other concepts from
statistical physics.

Example 1.1 (Ligand-receptor binding)To illustrate how these ideas can be ap-
plied in a cellular setting, consider the problem of det@ing the probability that
a ligand binds to a receptor protein, as illustrated in Figu@ We model the
system by breaking up the cell infd different locations, each of the size of a lig-



RMM: Try to find a better
way to expres®pound

RMM
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and molecule, and keeping track of the locations ofltHgiand molecules. The
microstates of the system consist of all possible locatigrike ligand molecules,
including those in which one of the ligand molecules is botmdhe receptor
molecule.

To compute the probability that the ligand is bound to theeptar, we must
compute the energy associated with each possible miceastdtthen compute the
weighted sum of the microstates corresponding to the ligp@iny bound, normal-
ized by the partition function. We I&;o represent the free energy associated with
a ligand in free solution anfByoung represent the free energy associated with the
ligand being bound to the receptor. Thus, the energy assdowth microstates
in which the ligand is not bound to the receptor is given by

AGsoI = I—Esol

and the energy associated with microstates in which onadigs bound to the
receptor is given by
AGpound= (L = 1)Esoi+ Epound

Next, we compute the number of possible ways in which eacihede two
situations can occur. For the unbound ligand, we Haweolecules that can be in

any one ofQ locations, and hence the total number of combinations srgiby
N o) D ot
OE\T) T -0 T L

where the final approximation is valid in the case wher< Q. Similarly, the
number of microstates in which the ligand is bound to theptwds

Q Q! ot
|_—1) T (L-D(Q-L+1)! T (L-1)
Using these two counts, the partition function for the sysie given by

Nsol = (

QL _ LES—P' QL—]. _ (L-1)Eso*+Epound
o —hounc
~ kel + .

~ — T

e —1n°
Finally, we can compute the steady state probability thafifaad is bound by
computing the ratio of the weights for the desired state&ldiV by the partition
function ¥

Z =

1 QL_l _ (L=DEso*+Epound
_ T ksT
Pbound= 5 BT

Z =

Plot Ppoung@s diferent parameters in the expression vary.
\Y

While we have carried out this calculation for the speciaecaf a ligand
molecule binding to a receptor protein, in fact this same tyjocomputation can be
used to compute the probability that a transcription fait@ttached to a piece of
DNA or that two freely moving molecules bind to each other. lieatthese cases
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simply comes down to enumerating all possible microstat@sputing the energy
associated with each, and then computing the ratio of thedithre weights for
the desired states to the complete partition function.

The Chemical Master Equation

The statistical physics model we have just considered givessaription of the
steady statgoroperties of the system. In many cases, it is clear that b
reaches this steady state quickly and hence we can reasahtabdehavior of
the system just by modeling the free energy of the system.tHarasituations,
however, we care about the transient behavior of a systetneodynamics of a
system that does not have an equilibrium configuration. Isdhastances, we
must extend our formulation to keep track of how quickly tlgetem transitions
from one microstate to another, known as themical kineticef the system.

To model these dynamics, we return to our enumeration ofcadkible mi-
crostates of the system. LB{q,t) represent the probability that the system is in
microstateq at a given timé. Hereq can be any of the very large number of pos-
sible microstates for the system. Léatepresent a possibleftirence between two
microstates); andgy, so thaté ranges over the set of all possible transitions from
one microstate to another. We describe the kinetics of teesyby making use
of the propensity function &;q,t), which captures the instantaneous probability
that a system will transition between stagtand statey+ £. More specifically, the
propensity function is defined such that

a(é; x,t)dt =Probability that the microstate will transition from
stateq to stateq+ ¢ between time and timet + dt.

We will give more detail in Chapter 3 regarding the validifytlus functional form,
but for now we simply assume that such a function can be deforeolfr system.

Using the propensity function, we can keep track of the podibadistribution
for the state by looking at all possible transitions into antlof the current state.
Specifically, givenP(qg,t), the probability of being in statg at timet, we can
computeP(q,t +dt) as

P(g.t+dt) = P(g.t)+ Y a&q-£&DP(-&dt- Y aEg )P tdt  (1.1)
& 3

This equation (and its many variants) is callede¢hemical master equatiq€ME)
The first sum on the right hand side represents the transitiboghie state from
some other statg— ¢ and the second sum represents that transitions out of the
stateq into some other statg+ £. As before£ in the sum ranges over all possible
transitions between microstates.

Under some additional assumptions described in Ch&®ewe can rewrite
the master equation infiiérential form as

SUCOE Daea-60Pa-60-Yaaoray. (2



RMM: Add diffusional
propensity function
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Table 1.1: Examples of propensity functions for some common ca8gdddre we take, andry, to be
the dfective radii of the moleculesy* = mymy,/(my + my) is the reduced mass of the two molecules,
Q is the volume over which the reaction occurss temperaturekg is Boltzman’s constant ang,

N, are the numbers of molecules AfandB present.

Reaction type Propensity function
. - 172
Reaction occurs if molecules “touch” Q‘l(é'r‘—ﬁl) ! 7(fa+rp)?-Nang
. ) o 1/2
Reaction occurs if molecules collide with enekgy Q*l(ffﬁg) / n(ra+rp)2-e /%7 .nang
Steady state transcription factor Ppound<ocNRNAP

We see that the master equation in@ar differential equation with state(qg,t).
However, it is important to note that the size of the statdorezan be very large:
we must keep track of the probability of every possible nmatae of the system.
For example, in the case of the ligand-receptor problemudised earlier, this
has a exponential number of states based on the number dbleosises in the
model. Hence, even for very simple systems, the masterieguznnot typically
be solved either analytically or in a numericalljieient fashion.

Despite its complexity, the master equation does capturg/wicthe important
details of the chemical physics of the system and we shalit aseour basic repre-
sentation of the underlying dynamics. As we shall see,igtaftom this equation
we can then derive a variety of alternative approximatitias &llow us to answer
specific equations of interest.

The key element of the master equation is the propensity ihmei¢; g, t),
which governs the rate of transition between microstates.prbpensity function
can be computed in a number of specific cases, as shown in Tdblalthough
the detailed value of the propensity function can be quitepex, its functional
form is often relatively simple. In particular, for a uninecular reactio of the
form A — B, the propensity function is proportional to the number oflecales
of A that are present:

a(;q,t) = Cgna. (1.3)

This follows from the fact that each reaction is independeut lzence the likeli-
hood of a reaction happening depends directly on the nunfbeapies of A that
are present.

Similarly, for a bimolecular reaction, we have that the likebd of a reaction
occurring is proportional to the product of the number of esoles of each type
that are present (since this is the number of independectioeaa that can occur).
Hence, for a reactioé of the form A+ B — C we have

a(&;q,t) = cznane. (1.4)

The rigorous verification of this functional form is beyond #eope of this text,
but roughly

describe where this comes from.

A special case of this occurs when=AB, so that our reaction is given by
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2 A — B. In this case we must take into account that a molecule carnot with
itself, and so the propensity function is of the form

a(;q,t) = cgna(na - 1). (1.5)

Although it is tempting to extend this formula to the case afrenthan two
species being involved in a reaction, the more correct gegun is to implement
the combination of biomolecular reactions:

A+B—AB AB+C—D
A+B+C—D = A+C—AC AC+B—D
B+C—sBC BC+A—D

This more detailed description reflects that fact that it isearely unlikely that
three molecules will all come together at precisely the samtant, versus the
much more likely possibility that two molecules will initia react, followed be a
second reaction involving the third molecule.

Add example, including SSA simulation results RMM

Mass action kinetics

Although very general in form, the chemical master equasidfers from being a
very high dimensional representation of the dynamics obtfstem. We shall see
in Chapter 3 how to implement simulations that obey the nnajaation, but in
many instances we will not need this level of detail in our lody. In particular,
there are many situations in which the number of moleculea given species
is such that we can reason about the behavior of a chemiczigting system
by keeping track of theoncentrationof each species as a real number. This is
of course an approximation, but if the number of moleculesuBciently large,
then the approximation will generally be valid and our mgdeln be dramatically
simplified.

To go from the chemical master equation to a simplified formhefdynamics,
we begin by making a number of assumptions. First, we assuaientd can
represent the state of a given species by its concentrgtiema/Q, whereny is
the number of molecules @fin a given volume. We also treat this concentration
as a real number, ignoring the fact that the real conceatraiquantized. Finally,
we assume that our reactions take place in a well-stirreanve) so that the rate
of interactions between two species is determined by theeamrations of the
species.

Before proceeding, we should recall that in many (and perhagst) situations
inside of cells, these assumptions ai& particularly good ones. Biomolecular
systems often have very small molecular counts and are iagytlut well mixed.
Hence, we should not expect that models based on these assusrghould per-
form well at all. However, experience indicates that in maages the basic form
of the equations provides a good model for the underlyingdyins and hence we
often find it convenient to proceed in this manner.
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Putting aside our potential concerns, we can now proceedite thie dynam-
ics of a system consisting of a set of specgsi = 1,...,N undergoing a set of
reactionsR;, j =1,...,M. We write x; = [Sj] for the concentration of specigs
(viewed as a real number). Because we are interested in seenzere the num-
ber of molecules is large, we no longer attempt to keep trdckvery possible
configuration, but rather simply assume that the state ofybm at any given
time is given by concentrations. Hence the state space for our system is given
by x e RN and we seek to write our dynamics in the form of figfiential equation

x=T(xu)

wheref : RN — RN describes the rate of change of the concentrations as adanct
of the instantaneous concentrations amdpresents the parameters that govern the
dynamic behavior.

To illustrate the general form of the dynamics, it is coneenito consider a
simple example. Consider a reaction of the form

A+B— C.

Each time this reaction occurs, we decrease the number otnieteofA andB by

1 and increase the number of molecule€dsy 1. Using the discussion from the
chemical master equation, we know that the likelihood thatreaction occursin a
given intervaldt is given bya(¢; x,t)dt = cgsnangdt wherec; is a constant. Another
way of viewing this equation is that the rate at which reawioccur is given by
a(é; x,t). Look first at the species C, we can thus write

2101 = cenane = (Q2IAI[B] = kIAT[E]

where we have used the fact that [Aha/Q and similarly for B. The constarkg
is therate constantor the reaction. In a similar fashion we can write equatitins
describe the dynamics of A and B and the entire system of munsais given by

d
GilAl = ~KdAIE] P

dﬂt[B] = —k:[A][B] or 3: —k:A-B
C=k:A-B
2 1C1 = k[ATB] «

These equations are known as thass action kineticsr thereaction rate equa-
tionsfor the system.

Note that the same rate constant appears in each term, bimcate of pro-
duction of C must match the rate of depletion of A and B. We adop standard
notation for chemical reactions and write the reaction as

A+B|—(f'—>C

wherek; is the reaction rate.
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It is easy to generalize this equation to more general @agtiFor example, if
we have a reversible reaction of the form RMM: Update to match
notation standard

kg
A+2B=2C+D

ko

then the dynamics for the species concentrations can biewes RMM: Update to match
notation standard

1Al = ICPD] - IAIB] %

OI%[B] = 2k,[C]?[D] - 2k [A][B] 2,

d (1.6)
5t[C1 = 2Ka[A][B] * - 2ke[C] (D]
d
(D] = kalAI[B] - ke[CI*[D],
Rearranging this equation, we can write the dynamics as RMM: Update to match
[A] 1 1 notation standard
d|Bl|_|-2 2| (klAlB]? an
dt|[C]| |2 -2||kJ[C]AD])" :
[D] 1 -1

We see that in this composition, the first term on the right hsidd is a matrix
of integers reflecting the stoichiometry of the reactions #redsecond term is a

vector of rates of the individual reactions. RMM: Expand a bit
More generally, given a chemical reaction consisting of taofespeciesS;,
i=1,...,nand a set of reactiong;, j = 1,...,m, we can write the mass action
kinetics in the form dx
— = NV(X
at V(X)

whereN e R™™ js the stoichiometry matrixXor the system and(x) € RM is the
reaction flux vectar Each row ofv(x) corresponds to the rate at which a given
reaction occurs and the corresponding column of the stmickiry matrix corre-
sponds to the changes in concentration of the relevantespess we shall see in
the next chapter, the structure form of this equation withalus to explore some
of the properties of the dynamics of chemically reactingeayss.

Add an example here. Should related to the example in thequedubsection, ifRMM
possible. Plan: covalent modification of an allostefteetor.

We will often find it convenient to represent collections oéntical reactions
using simple diagrams, so that we can see the basic intezctian between var-
ious chemical species and properties. A standard chengeation diagram is
shown in Figure 1.10.

Add a few paragraphs here on graphical representationseavhichl reactions.RMM
Show the standard chemical reaction, but also the notatetnatd will use in the
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RMM
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(a) Chemical notation (b) Controls notation

Figure 1.10: Notation for chemical reactions

book.

Reduced order mechanisms

In this section, we look at the dynamics associated with evaically controlled
reactions, which occur frequently in biomolecular systelhsder some assump-
tions on the relative rates or reactions and concentratibepecies, it is possible
to derive reduced order expressions for the dynamics ofytbteis. We focus here
on a informal derivation of the relevant results, but retiarthese examples in the
next chapter to illustrate that same the results can detsed) a more formal and
rigorous approach.

Insert the standard Michaelis-Menten enzyme kinetics here

I’'m not sure if the material below belongs at this point in thet. It really should
come after we have introduced analytical models for trapgson. Work on the
outline first and then move around this text as needed.

Monomer case.Let p denote the promoter upstream a gene with total concen-
tration pyot. Let X be a transcription factor that binds to promoter p. Weks®
determine at the steady state the amount of promoter bouXditwl the amount
free. The chemical reactions involved are given by

X+p$ C, andp+C = piot,
Kotf
for which we can write the associated ODE model as
C = konX(Ptot — C) — kot tC.
By settingC = 0 and denotind<p := ko1 t/Kon, We oObtain the expressions:

_ X Prot _ ProtKp
X+KD X+KD.

The constanKp is the inverse of theffinity of X to p.

,andp
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Dimer case..Assume now that X binds to p only after a dimerization. Then, we
have that the reactions involved are given by

X+X = Xd, Xd+p\—C andp+C = pyot,

koff

in which X4 denotes the dimer of X. The corresponding ODE model is given by

Xg = kiX%2—koXg, C = konXd(Ptot — C) — Kot C.
By settingXy = 0, C = 0, and by denotingy = ki/ko, we we obtain that

Xdptot ptotKD
=kuX? C= dp=
Xd = kmX2, Xd+KD’anp Xq+ Ko’
so that " 2 K
o M Prot _andp= PtotkD .
KMX2+KD P K|V|X2+KD

As an exercise, the reader can verify that if X binds to p oslyaaomplex of n
copies of X, that is,

X+X+. . +X= Xn,X +p‘_C andp+C = piot,

ff
then we have that

ProtKp
KM XN+ KD '

Km PotX"

C=——"——
KMXn+KD’

andp =

Activator and repressor caseConsider finally the case in which two proteing X
(an activator, for example) and Xa repressor, for example) both bind to promoter
sites p. Let C be the complex formed betweepaxd p and leC be the complex
formed between Xand p. Then, we have the following reaction system

Xﬁpg C, Xr+p_k'\£n5andp+C+C_: Prot,
Kot f Kot
for which, we can write the ODE system as
C = KonXa(Prot ~ C =~ C) = ko C. C = kon (Ptot ~ C ~ C) ~ ko 1C.
By setting the derivatives to zero, we obtain that
C(KonXa + Kof 1) = KonXa(Prot = C), ClkonXr + Kof 1) = konX (Prot —C),
which, lettingKp := Ko 1 /Kon, leads to

= Xi(ptot—C) ( XaXr ) ( Kp )
C=— and C{X;+Kp - = s
X +Kp dC{Xa+Ko X; + Kp X""xr+KD Prot
from which we finally obtain that
XaptotKD andc = X ProtKp

- K_DXa+ KDXr+KDK_D’ KDXr+K_DXa+ KDK_D'
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Note that in this derivation, we have assumed that both ttieador and the re-
pressors bind as monomers. If they were binding as dimeesrehder should
verify that they would appear in the final expressions withwgrawo. Note also
that in this derivation we have assumed that the activatotiaa repressor cannot
simultaneously bind to the promoter. If they were bindingudianeously to the
promoter, we would have included another complex includh activator, the
repressor, and the promoter. Denoting this new complehywe would have
added also the two additional reactions

k(,)n ’ - Eé)n ’
C+X,==C,andC+X,==C
Kot Kott

and we would have modified the conservation law for the prontot@: = p+
C+C+C’. The reader can verify that in this case a mixed &, would appear
in the equilibrium expressions.

Here, we need to decide how much more detail to add. In pimcgne could
consider all possible combinations of monomer, dimerataér, etc. and actova-
tor, repressor, AND, diierent occupation states for the promoter, i.e., to consider
exclusive binding or competitive binding.

Chemical reaction networks

Review basic ideas in chemical reaction networks, inclgdifting the dynamics
to a larger state space. This may belong in the next chapteafdigs).

1.3 Transcription and Translation

In this section we consider the processes of transcriptimhti@nslation in more
detail, using the stochastic and deterministic modelisgn&ues described in the
previous section to capture the fundamental dynamic behavi

Modeling transcription and translation

Models of transcription and translation can be done at @&wadf levels of detall
and which model to use depends on the questions that one twaanialyze.

The various stochastic processes that underly detailed Imadidranscrip-
tion and translation can be specified using the stochasticelimgdframework
described in the previous section. In particular, usingegitmodels of binding
energy or measured rates, we can construct propensityidasdor each of the
many reactions that lead to production of proteins, inclgdhe motion of RNA
polymerase and the ribosome along DNA and RNA. For many prolin which
the detailed stochastic nature of the molecular dynamitiseo€ell are important,
these models are the most relevant.
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Add an example here based on Arkin's early work showing stetib processefRMM
in a cell. Can either use simulac or some other detailed oallilator (Ecell?).
Should be consistent afot complement with simpler model used in previous sec-
tion.

In many situations, a much simpler model of the transcnpttcanslation and
folding processes can be utilized. If we assume that RNAmehase binds to
DNA at some average rate and that transcription takes sontktfire (depending
on the length of the gene), then the process of transcriptiorbe described using
the diferential equation

dmp .

wheremy, is the concentration of mRNA for proteiR, my, is the concentration

of “active” mRNA, ap is the rate of production of the mRNA for protefhand

¥p is the rate of degredation of the mRNA. The active mRNA is theNARhat

is avaiable for translation by the ribosome. We model itscentration through a

simple time delay of lengthny, p that accounts for the transcription of the ribosome

binding site in prokaryotes or splicing and transport fréva hucleus in eukary-

otes. The constants, o andy, capture the average rates of production, which in

turn depend on the more detailed biochemical reactionsitidgrlie transcription.
Once the active mRNA is produced, the process of translatdorbe described

via a similar ordinary dterential equation the describes the production of a func-

tional protein: RMM: Need to discuss this

notation

Here P represents the concentration of the polypeptide chainhemprotein,P*
represents the concentration of functional protein (dtileling). The parameters
that govern the dynamics agg o, the rate of translation of MRNAS, andd};, the
rate of degradation and dilution BfandP* respectivielygy, the rate at which un-
folded protein is folded; ands , the time delay associated with folding and other
processes required to make the protein functional. Notehleaate of production
of the polypeptide chaiR depends on the active mRNA concentration and the rate
of production of the functional proteiR depends on how much unfolded protein
is available. We model this amount by looking at the polyEptoncentration at
atimers p seconds ag®(t— 7+ p), minus the amount of already functional protein
, P(t). The degradation and dilution term, parameterized®wands*P*, captures
both the rates at which the polypeptide chain and the prateimegraded and the
rates at which these species are diluted due to cell growth.

Add an example here, showing who to compute the various antssinvolved andrMM
then simulating the rates of production of a protein. It vabloé nice to compare
this with data from E.coli and yeast showing a circuit with astitutive promoter

in front of a fluourescent reporter.
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Table 1.2: Rates of core processes involved in the creation of protemsdNA in E. coli.

Process Characteristic rate Source

MRNA production 10-30 bypsec Vogel and Jensen
Protein production 10-30 agsec PKTO08

Protein folding ?2??

MRNA half life ~ 100 sec YMO03

Cell division time ~ 3000 sec ??7?

Protein half life ~5x10* sec YMO03

Protein dffusion along DNA| up to 1¢ bp/sec

In many situations the time delays described in the dynawfiggotein pro-
duction are small compared with the time scales at which tb&jm concentration
changes (depending on the values of the other parametdrs gystem). In such
cases, we can simplify the our model of the dynamics of pngbeoduction and

write
dm, dpP
Tdp ST gy
Note that we have dropped the superscripince we are assuming that all mMRNA

is active and proteins are functional.

= Bp.oMp—pP. (1.10)

RMM Add another example in which the time delays are small andameégnore them.
Something that relates to the lac operon might be good hetbasave can build
on it later.

RMM Is there something else we want to put into this section? Perbame more de-
tailed models of transcriptigmmanslation? Otherfiects that one can take into ac-
count if needed? Circuit diagrams for protein productiammkalby not)? Perhaps
put the transcriptioanl regulation system here (as a stibgg¢e?

Rates

Table 1.2 shows the rates of some of the key processes imvimiibe production
of proteins. Itis important to note that each of these stepgihly stochastic, with
molecules binding together based on some propensity tipaindis on the binding
energy but also the other molecules present in the cell. ditiad, although we
have described everything as a sequential process, eabh sfdps of transcrip-
tion, translation and folding are happening simultanepubi fact, there can be
multiple RNA polymerases that are bound to the DNA, each ycod) a tran-
script. In prokaryotes, as soon as the ribosome bindinchaisebeen transcribed,
the ribosome can bind and begin translation. It is also ptesso have multiple
ribosomes bound to a single piece of mMRNA. Hence the overaligss can be
extremely stochastic and asynchronous.
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Figure 6.7 (part 1) Physical Biology of the Cell (© Garland Science 2009) Figure 6.7 (part 2) Physical Biology of the Cell (© Garland Science 2009)
Figure 1.11: Regulation of proteins. RMM: Expand caption.

1.4 Transcriptional Regulation

The operation of a cell is governed by the selective exprasgigenes in the DNA
of the organism, which control which functions the cell ideatw perform at any
given time. The regulation of these genes is accomplishexugfir a variety of
mechanisms, some of the more common of which we explore énséition and
the next.

Transcriptional regulation refers to the selective exgites of genes by ac-
tivating or repressing the transcription of DNA into mRNA. éflkimplest such
regulation occurs in prokaryotes, where proteins can hintbperator regions”
in the vicinity of the promoter region of a gene anfileat the binding of RNA
polymerase and the subsequent initiation of transcriptidmprotein is called an
repressoitif it blocks the transcription of a given gene, most commdnhbinding
to the DNA and blocking the access of RNA polymerase to thenpter. Anacti-
vatoroperates in the opposite fashion: it recruits RNA polymetagshe promoter
region and hence transcription only occurs when the actigtotein) is present.

Describe the detailed binding process and its representatiterms of individualRMM
rate equations for the filerent configurations, including an example of this for the
Lac operon.

A simplified version of the dynamics can be obtained by assgrthiat tran-
scription factors bind to the DNA rapidly, so that they aresieady state config-
urations. In this case, we can make use of the steady stétisth mechanics
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Figure 1.12: Hill function for an activator (left) and for a repressah().

techniques described in Section 1.2 and relate the express§ithe gene to the
probability that the activator or repressor is bound to thNA Ppoung-

Work on the transition between the previous paragraph amdntiterial that fol-
lows. Need to integrate this with the material that Donatgkent (currently in the
previous section, but probably belongs here. Also needdatgmotation to match
book standard.

A simple model of the transcriptional regulation procesthisugh the use of
a Hill function [9, 20]. Consider the regulation of a protéiwith a concentration
given by A and a corresponding mRNA concentratiog. Let B be a second
protein with concentratiof that represses the production of protein A through
transcriptional regulation. The resulting dynamicAandm, can be written as

dmy  aap
dt  Kkgp+ BMab
where agp + ago IS the unregulated transcription ratg, represents the rate of
degradation of MRNAgap, Kap and ng, are parameters that describe how B re-
presses A3, represents the rate of production of the protein from itsesgonding
MRNA andd, represents the rate of degradation of the protein A. The peteam
g0 describes the “leakiness” of the promoter, agglis called the Hill coéicient
and relates to the cooperativity of the promoter.
A similar model can be used when a protein activates the ptamuof another
protein rather than repressing it. In this case, the equatiave the form

dmy  @apkapBab
dt Kap + BNab
where the variables are the same as described previouslg.thit in the case of
the activator, ifB is zero, then the production rateagy (versusaap+ aa for the
repressor). ASB gets large, the first term in the expression figy approaches 1
and the transcription rate becomesg, + a0 (Versusagg for the repressor). Thus
we see that the activator and repressor act in oppositeofa§ttim each other.

dA
+ Qa0 —Yalla, ot = faMa — 0aA, (1.11)

dA
+a@a0 —Yaha, at = falMa — 0aA, (1.12)

Old text from circuits chapter is commented out here. Showd ithrough and
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make sure we covered everything above

We just described how the Hill function can model the redoiabf a gene by
a single transcription factor. However, several genes earegulated by multiple
transcription factors, some of which may be activators amdesmay be repressors.
The input function can thus take several forms depending emdles (activators
versus repressors) of the various transcription factafs [i8 general, the input
function of a transcriptional module that takes as inputgcaiption factors Xfor
i €{1,...,N} will be denotedf (X4, ..., Xn).

Consider a transcriptional module with input functio{Xy, ..., X,)). The inter-
nal dynamics of the transcriptional module usually moddRNA and protein dy-
namics through the processes of transcription and tramslaProtein production
is balanced by decay, which can occur throdglradationor dilution. Degrada-
tion occurs when the protein is destroyed by specializeteprs in the cell that,
for example, recognize a specific part of the protein and dg#trDilution is due
to the reduction in concentration of the protein due to tluedase of cell volume
during growth. In a similar way, mRNA production is also badad by dilution
and degradation processes. Thus, the dynamics of a tramsealmodule is often
well captured by the following ordinary filerential equations:

dr
d_': = f(X1,.... Xn) —1ry
Y

in whichry denotes the concentrationmRN Atranslated by geng, the constants
a;’s incorporate the dilution and degradation processes,yaisda constant that
establishes the rate at which the mRNA is translated.

Example 1.2 (Represillator) As an example of how these models can be used, we
consider the model of a “repressilator,” originally due to\tz and Leibler [11].
The repressilator is a synthetic circuit in which three pret@ach repress another
in a cycle. This is shown schematically in Figure 1.13a, whieecthree proteins
are TetR cl and Lacl.

The basic idea of the repressilator is that if TetR is pregéet it represses
the production oficl. If Acl is absent, then Lacl is produced (at the unregulated
transcription rate), which in turn represses TetR. OncR Tetepressed, thenhcl
is no longer repressed, and so on. If the dynamics of the itiace designed
properly, the resulting protein concentrations will olsté.

We can model this system using three copies of equation ) lwith A and
B replaced by the appropriate combination of TetR, cl and L&leé state of the
system is then given by= (Mretr, PTetr, Mel» Pels MLacl, PLact)- Figure 1.13b shows
the traces of the three protein concentrations for parasete 2, @ = 0.5, k=
6.25x 1074 ap=5x10"% y=58x10"3, 8 =0.12 ands = 1.2 x 10~3 with initial
conditionsx(0) = (1,0,0,200,0,0) (following [11]). v

Second example: combinatorial promotor with oscillatomepke. RMM
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P, lacO1
500
cl
T 4000- - — - lacl
o - - tetR
[
sclol S 3000, 1
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P, tetO1 Timet [min]
(a) Repressilator plasmid (b) Repressilator simulation

Figure 1.13: The repressilator genetic regulatory network. (a) Arsatie diagram of the repres-
silator, showing the layout of the genes in the plasmid that holds the circwiekss the circuit
diagram (center). (b) A simulation of a simple model for the repressijlghaming the oscillation of
the individual protein concentrations. (Figure courtesy M. Elowitz.)
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Figure 1.14: Circuit diagram for transcriptional regulation of a gene.

Several other methods of transcriptional regulation cast éxicells.

Add material on sigma factors and inducers here. Follow Algrpendix 2

Talk abouto factors in prokaryotes

Transcriptional regulation in eukaryotes is more compl@atin prokaryotes.
In many situations the transcription of a given geneffeaed by many dier-
ent transcription factors, with multiple molecules beieguired to initiate an@r
suppress transcription.

Talk about co-factors in eukaryotes

We will often find it convenient to represent the process ollaipn in a
graphical fashion that hides the specific details of the mtfum we choose to
use. Figure 1.14 shows the notation that we will use in thistexepresent the
process of transcription, translation and regulation.

Add a figure showing the diagram notation that we will use, @laith a descrip-
tion of what the various symbols mean.
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Figure 1.15: Circuit diagram for the yeast GAL switch.

Describe the GAL system in yeast as an example of transmn@tiregulation RMM
mechanisms. Need to sort out how much of the sequestratiomaneto describe
here (probably all of it)

1.5 Post-Transcriptional Regulation

In addition to regulation of expression through modificasiai the process of
transcription, cells can also regulate the activity of pho$ via a collection of
other post-transcriptional modifications. These includenmes of modulating the
translation of proteins, as well afiecting the activity of a protein via changes in
shape, calledllosteric regulation

Allosteric modifications
Covalent modifications

One of the most common types of post-transcriptional régulas through the
phosphorylatiorof proteins. Phosphorylation is an enzymatic process in hwvic
phosphate group is added to a protein and the resulting moatmn of the protein
changes, usually from an inactive configuration to an active. oThe enzyme
that adds the phosphate group is calleghasphotransferaser a kinaseand it
operates by transferring a phosphate group from a bound ATBcule to the
protein, leaving behind ADP and the phosphorylated proteephosphorylation
is a complementary enzymatic process that can remove a Ipfit@sgroup from
a protein. The enzyme that performs dephosphorylation Iedcalphosphotase
This process is illustrated in the circuit diagram in Figurkal.

The dynamics associated with phosphorylation corresporad 4equence of
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E:ATP:X ( : E:ADP:Xp e
|
FiXP V.
T e

‘ .

F
(a) Full reaction (b) Reduced reaction

Figure 1.16: Circuit diagram for phosphorylation and dephoshorylati@ proteinX via a kinasee
and phosphotade.

chemical reactions:

Phosphorylation Dephosphorylation
k

E+ATP = E* Xp+F — X,iF
k1

E"+X — E":X X*F— X+F

E*:X — E:ADP:X*
E:ADP:X* = E:ADP+ X
E:ADP— E+ADP

These can be modeled using standard mass action kinetics:

dEX
dt
dEX"
dt
dx*
dt
We ignore the kinetics of ATP and ADP under the assumptionttiette species
are plentiful.
We can simplify these equations by assuming that the enzynus lojuickly
to the protein (so that the EX is in steady state) and simptié/resulting model.
Solving for the steady state value of EX yields

EX=.

Xtot:x+ EX+XpX{0t :X+EX+Xp

=K EX—-koEX+ksX*F

Similarly, we can replace the dynamics of F¥ith its steady state value,



coreproc.tex, v0.00 200@6/12 07:03:00 (murray)

1.6. CELLULAR SUBSYSTEMS 29

Substituting these steady state values into the kineticX fowe obtain
dXp X 5 X*
dt = Kt X TKpe X

Talk about other related types of protein modification, siecpresphotransfer angéMm
methylation.

Phosphotransfer

RNA-based regulation

Describe RNA-based regulation schemes, including ribesyamd RNA.. RMM

1.6 Cellular subsystems

RMM
1. MAPK cascades

(a) Note: to do this completely, we probably need singulatypkations.
So, likely we will leave the equations unreduced and showetaaed
order model after the next chapter

(b) Using Klipp formulation for now

2. Integral feedback
3. Logical operations (incl Lac operon, lambda phage)

Intercellular Signalling

RMM

1. Transport across the membrane
2. Membrane receptors, ligand binding, G-proteins
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Chapter 2

Dynamic Behavior

In this chapter, we describe some of the tools from dynansgsiems and feed-
back control theory that will be used in the rest of the texamalyze and design
biological circuits, building on tools already describedAM08. We focus here
on deterministic models and the associated analyses;asticimethods are given
in Chapter 3.

Prerequisites. Readers should have a understanding of the tools for anglyzi
stability of solutions to ordinary étierential equations, at the level of Chapter 4 of
AMO08. We will also make use of linearized inpotitput models in state space,
based on the techniques described in Chapter 5 of AM08, arsitiséy function
methods, described in Chapters 11 and 12 of AM08 and builoimiipe frequency
domain techniques described in Chapters 8-10.

2.1 Analysis near equilibria

We begin by considering the dynamics of the system near atitggun point.

Parametric uncertainty

Consider a general nonlinear system of the from
X = (X u,w),

wherex € R" is the system statg, € RP are the system parameters amd R
is a set of external inputs. Leg(uo, Wo) represent an equilibrium point for fixed
parametergo and external inputvo, so thatf (Xe, uo, Wo) = 0.

The stability of the system around the equilibrium point carabalyzed using
the tools described in AM08. Here we focus instead on undedatg how the
equilibrium point varies as a function of changes in the peatersu and external
inputsw.

We start by assuming that = 0 and investigating howe depends om. The
simplest approach is to analytically solve the equatfi@, i) = O for Xe. How-
ever, this is often diicult to do in closed form and so as an alternative we instead
look at the linearized response given8y,, = dx/dy, the (infinitesimal) change
in the equilibrium state due to a change in the parameter. eterohineSy,, we
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Table 2.1: Parameter values for Lac operon example.

k::.a,mem Value Yildirim, Santillan, Horike and Mackey:
= e 4 - dilution rate, based on 20 minute cell division time
”;_i’“ :;g: ig_ a :IJ; o e ¢, - production rate, based on steady state values
ay 997 nM-min "~ ® v. - decay rate, based on half life experiments
ay 166107 % min ! ® 7, - time delay to produce RBS, based on RNA
@, 1.76% 10" min " elongation rates
Tt 0411 min " ® ;- time delay to translate protein, based on protein
Y8 8.33%107* min ™! length and translation speed
2 X 1
Ya ;-35” 107 snin * 1~ Hill coefficient (no justification!)
g * K - based on basal rate of production (Yagil & Yagil
K 7200 p g g
K, 252%10 HuM) 2 ® K - based on dissociation constant (Yagil & Yagil)
K; 0.97 mM * K. - measured by Wong, Gladney and Keasling (97)
K, 1.95 mM_‘ L ® /i, - loss of allolactase, through conversion to glucose
Ba 2.I5% 10" min~ and galactose. Measured by Hubert et al (75)
Tu 0.10 min
Ty 2.00 min o .
Note: repressor binding model is pretty ad hoc...
I

begin by diferentiating the relationship(xe(u), ) = 0 with respect tqu:

. (2.1)
(xeuo)
These quantities can be computed numerically and hence vevahrate theféect
of small changes in the parametarsn the equilibrium statee. It is straightfor-
ward to perform a similar analysis to determine tiffees of small changes in the

RMM: Add exercise external inputw.
showing the result

df  9f oxe of e af\ L of
_— = — - —_— == — —_
du Oxou du ou ox) du

Example 2.1 (Sensitivity analysis of the Lac operononsider the model of the
Lac operon introduced in Secti@?. For the genéacZ (which encodes the protein
B-galactosidase), we I&represent the protein concentration amglrepresent the
MRNA concentration. We also consider the concentratiomefinternal lactose
L, which we will treat as an external input, and the conceiutnaif allolactoseA.

Assuming that the time delays considered previously cagiered, the dynamics

RMM: Need to convert thein terms of these variables &re
Hill functions to the

standard form used in BFS dm, 1+ kA"
2t - f RN
el ba(A 1) = YoM, ba(A, 1) KA
dB L
ot = fpMp — 0pB, fa(L,p) = m, (2.2)
dA A

d_dt = aaBfa(L, 1) — BaB faa(A 1) — vaA, faa(Au) = m

Here the state i = (my, B, A) € R3, the input isw = L € R and the parameters are
u = (ap,Bb, ¥a, Ybs Op, Ya, N, K, K1, K, Ka, Ba) € R12, The values for the parameters is
listed in Table 2.1.
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The behavior of the Lac system depends on the amount of lattatsis present
in the cell. At low concentrations of lactose, the lac opemturned d¢f and the
proteins required to metabolize lactose are not expregsigiigh concentrations
of lactose, the lac operon is turned on and the metabolic imehis activated.
In our model, these two operating conditions are measurettidogoncentration
of B-galactosidas® and allolactosé\. At intermediate concentrations of lactose,
the system has multiple equilibrium points, with two stabtgiilibrium points
corresponding to high and low concentrations of batndB.

We investigate the dynamics around one of the equilibriumtpaorrespond-
ing to an intermediate input df = 42uM. There are three equilibrium points at
this value of the input:

X1e = (), Xoe = (), X3e = ().

We choose the third equilibrium point, corresponding tol#fmtose metabolic ma-

chinery being activitated and study the sensitivity of tteady state concentrations

of allolactose &) andg-galactosidaseR) to changes in the parameter values.
The dynamics of the system can be represented in thexerm(x, u, L) with

f(Xu,L) = () .

To compute the sensitivity with respect to the parameteescempute the deriva-
tives of f with respect to the state

0 afba

of ~7b [y

x| Pp O 06f
O (07 fa| —ﬁBa—Za
and the parametes

of Ofps  Ofpa  Of

g~ (ba 00 -my 0 0 e Fe G000
Carrying out the relevant computations and evaluating &selting expression
numerically, we obtain

0% _ ()
o o)
We can also normalize the sensitivity computation: RMM: These has not yet
_ 1 1 been described in the text.
Sxeu = D77 (Xe)SxeuD " (10) = ... Wait until MCA to present
it?
Add computation of sensitivity with respect to(or leave as exercise?) RMM

\%

More generally, we may wish to evaluate the sensitivity ai@n(constant) so-
lution to parameter changes. This can be done by computirfgricgond x(t) /dy,
which describes how the state changes at each instant inasm@efunction of
(small) changes in the parametars
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Add something on biological relevance

Let x(t; o, o) be a solution of the dynamics with initial conditiog and pa-
rametergug. To computedx/du, we write down a dterential equation for how it

evolves in time: E(d_x):ﬂ(%):ﬂ(f(xﬂw))
dt\du) dul\dt) du ”
_ofdx of
= &@ + %
This is a diferential equation withx mstatesS;j = dx /duj and with initial condi-
tion Sj;(0) = O (since changes to the parameters to fi@cathe initial conditions).
To solve these equations, we must simultaneously solvééstiatex and the
sensitivity S (whose dynamics depend ot Thus, we must solve the set of+
nmcoupled dfferential equations
dx ds,, B

— = f(x,u,w), at

of
dt - an(Xalu’W)SX/I_'_%(X’IJ’W)

Talk about how this can also be used to compute S(T) insteadrmud tiee algebra.

Example 2.2 (Lac operon during a step changelin Need to work out this ex-
ample in MATLAB and figure out how to best show the results

\%

Frequency domain analysis

Insert some introductory material to remind the reader eftindamental ideas of
frequency domain analysis from AMO08. Think of Nimfa as thetptgpical reader
for this portion of the material.

Another way to look at the sensitivity of the solutions neguigbria to changes
in parameters and inputs is to use frequency domain tecasidte focus on the
case of an equilibrium solutior(t; Xg, o) = Xe. Letz= X— Xe, W =wW—wp and
= p—up represent the deviation of the state, input and parametens their
nominal values. We can write the dynamics of the perturbedesy using its
linearization:

; ((')f) Z+(8f) ~+(af) -
= —_— . —_— .ll [E— . R
X (Xe-10,Wo) O (Xe-10,Wo) aw (Xe-10,Wo)

This linear system describes small deviations o, wo) but allowsy andw
to be time-varying instead of the constant case considendigie

To analyze the resulting deviations, it is convenient tklabthe system in the
frequency domain. Let = Cxbe a set of values of interest. The transfer functions
between.; W andy are given by

Hyz(s) = C(sl-A)'B,, Hyw(9) = C(sl - A) By,
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RMM: This figure is not in
the right place. Need to

ﬁ figure out where to
cAMP introduce it. Probably the
BEDE

CAP ——

previous chapter, if Lac is a

|

|

|

|

|
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:

| ‘ Y ‘ A ‘ running example there.
|

: R repressor T B |P
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— AR

allolactose
glucose

Le D\, L @ A %’ -
lactose \/D i i
galactose
T - - beta-gal

permease

Figure 2.1: Schematic diagram for the Lac operon system

where
) af‘ o _of
X (xe o) P o (Xest10,Wo) ’ OW (e 0. 00)

Note that if we lets = 0, we get the respond to small, constant changes in
parameters. For example, the change in the outpats a function of constant
changes in the parameters is given by

Hy:(0) = CA™B, = CSy,,

which matches our previous parametric analysis.

Example 2.3 (Lac operon) Write up Lac operon example RMM

\%

A slightly more general analysis of sensitivity can be acplished using the con@
trol theoretic notions of sensitivity described in AMOS, afiter 12. Rather tha
just considering static changes to parameter values, wénséead consider the
case ofunmodeled dynamicé which we allow bounded inpfttutput uncertain-
ties to enter the system dynamics. This can be used to modahpters whose
values are unknown and also time-varying, as well as caygunncertain dynam-
ics that are being ignored or approximated.

To illustrate the basic approach, consider the problem td#rdening the sen-
sitivity of a set of reactions to a set of additional unmodeteactions, whose
detailed &ects are unknown but assumed to be bounded. We set this proiple
using the general framework shown in Figure 2.2.
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&)
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W L2

L’“L:F T

Figure 2.2: Analysis of dynamic uncertainty in a reaction system.

RMM Work through the sensitivity analysis, showing

dHZW_ N dHZW_ @
dSz S dew_ dSZ

Should also show the relationship between this type of coatjoutand the MCA
sensitivity analysis in the next section (if there is any).

RMM Need a good example of this sort of analysis here. Perhapf#ut @f time-delays
in the Lac operon?

2.2 Analysis of Reaction Rate Equations

The previous section considered analysis techniques fargbmonlinear systems.
In this section, we specialize to the case where the dynanaies the form of a
RMM: Change in notation:reaction rate equation:

u— pandx — s. Decide S=NVs,p), (2.3)
which to use. . . L .
wheresis the vector of species concentratiopss the vector of reaction parame-

ters,N is the stoichiometry matrix(s, p) is the reaction rate (or flux) vector.

) Reduced reaction dynamics
RMM: Need to find out the

usual name for this  \When analyzing reaction rate equations, it is often the tzeethere are con-
served quantities in the dynamics. For example, conservati mass will imply
that if all compounds containing a given species are cagthyethe model, the
total mass of that species will be constant. This type of camgtwill then give a
conserved quantity of the forg) = Hijs whereH; represents that combinations of
species in which the given element appears. Styég constant, it followed that
¢ = 0 and, aggregating the set of all conserved species, we have

O0=Cc=Hx=HNVs,p) foralls

If we assume that the vector of fluxes sp&i5(the range of/ : R"x RP — R™M),
then this implies that the conserved quantities correspoiige left null space of
the stoichiometry matriX.
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It is often useful to remove the conserved quantities froendiscription of the
dynamics and write the dynamics for a set of independeniapeto do this, we
transform the state of the system into two sets of variables:

£)-(2)-

The vectors = Psis the set of independent species and is typically chosen as
a subset of the original species of the model (so that the Pwsnsists of all
zeros and a single 1 in the column corresponding to the selesgecies). The
matrix H should span the left null space bf, so thatsy represents the set of
dependent concentrations. These dependent species darsesagly correspond

to individual species, but instead are often combinatidrspecies (for example,

the total concentration of a given element that appears wmnaber of molecules

that participate in the reaction). RMM: Is this wording

. . . clear? Correct? Rethink
Take a look at the Klipp book for examples of how this deconitjosis done. R&Mvorking through some

There are also lots of examples there. of the examples.

Given the decomposition (2.4), we can rewrite the dynamidhe system in
terms of the independent variablgs We start by noting that giveg and sy, we
can reconstruct the full set of species

L_(P 1
P -1 S “|H 0
() ) e
= PY™ (0
=[5 o
wherecy represents the conserved quantitiedle now write the dynamics fag RMM: This is what we
as need eventually, but this

§=Ps= PN\;(l_g4 + Co, p) = NrVr(S,CO, p), (2_5) notation is a bit
i o ) ] ) cumbersome. Rethink
whereN; is the reduced stoichiometry matrix amdis the rate vector with the:= Hs,

conserved quantities separated out as constant parameters

The reduced order dynamics in equation (2.5) represent thietean of the
independent species in the reaction. Giggnwve can “lift” the dynamics from the
independent species to the full set of species by wrisiad_s + co. The vectorcy
represents the values of the conserved quantities, whish Ineuspecified in order
to compute the values of the full set of species. In additimes= Ls + ¢, we
have that )

's=L§ = LNV (s,Co,p) = LN:V(S, p),
which implies that
N =LN;.

Thus, L also “lifts” the reduced stoichiometry matrix from the regd space to
the full space.

Example: phosphorylation, without ATP, ADP RMM
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Metabolic control analysis

Metabolic control analysis (MCA) focuses on the study ofghasitivity of steady
state concentrations and fluxes to changes in various systempters. The basic
concepts are equivalent to the sensitivity analysis toetcdbed in Section 2.1,
specialized to the case of reaction rate equations. In #uso we provide a
brief introduction to the key ideas, emphasizing the mappietween the general
concepts and MCA terminology (as originally done by IngEs.

Consider the reduced set of chemical reactions

S = Nrve (s, p) = Nrv(Ls +Co, ).

We wish to compute the sensitivity of the equilibrium coricationss, and equi-
librium fluxesve to the parameterg. We start by linearizing the dynamics around
an equilibrium pointe. Definingx = s— S, U= p— po andf(x,u) = N, V(Se+ X, po+

u), we can write the linearized dynamics as

. ov ov
X = Ax+BuU, (ras), (rap), (2.6)
which has the form of a linear filerential equation with stateand inputu.
In metabolic control analysis, the following terms are define

— _dv .
€p= flux control codficients
d Pls, Po
— 0 ~— = . ,
Ry = a—ze =C%p,  C°®=concentration control cdicients
v Ve ~y— = ,
R) = a—; =C'  C'=rate control cofficients

These relationships describe how the equilibrium conceairand equilibrium
rates change as a function of the perturbations in the paeasnd he two control
matrices provide a mapping between the variation in the flwtoreevaluated at

((?V)
I Se,po,

and the correspondingfiirential changes in the equilibrium poidtse/dp and

0Ve/0p. Note that
OVe ([N)
— #| = .
ap op .o

The left side is the relative change in the equilibrium ratgs|e the right side is
RMM: Add an exercisethe change in the rate functias, p) evaluated at an equilibrium poit.
showing why these are  To derive the cofficient matrice<C® andCV, we simply take the linear equa-
different. tion (2.6) and choose outputs corresponding émdv:
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Using these relationships, we can compute the transfetitunsc

H(9) = (s1-A) "B = [(sI- Nr—L) 1Nr]6v

1 ov, .1 ov
Hv(s)_—L(sI A) B+ [ JL(sI=N = L) Nr+|]%

Classical metabolic control anaIyS|s considers only thélisgium concentrations,
and so these transfer functions would be evaluatseg-&tto obtain the equilibrium
equations.

These equations are often normalized by the equilibrium eatnations and
parameter values, so that all quantities are expresseddm®fral quantities. If we
define

=diags),  DY=diagv(se,po)},  DP =diag po},
the the normalized cdigcient matrices (without the overbar) are given by

cs=(D%'cpY, cv= (D" 'c'DY,

RS = (D% 'R3DP, RY = (DY) 'RYDP.
Add exercises on MCA theorems RMM
Make sure to cite Ingalls and Honeyr appropriately RMM
Add examples. Can we tie to running? RMM

Flux balance analysis

Flux balance analysis is a technique for studying the redatte of diferent reac-
tions in a complex reaction system. We are most interestétkinase where there
may be multiple pathways in a system, so that the number oficzesmis greater
than the number of species The dynamics

S=NVs,p)

thus have the property that the mathikxhas more columns that rows and hence
there are multiple reactions that can produce a given sgteaiss. Flux balance is
often applied to pathway analysis in metabolic systems tterstand the limiting
pathways for a given species and the tifie@s of changes in the network (e.g.,
through gene deletions) to the production capacity.

To perform a flux balance analysis, we begin by separatingsthetions of the
pathway into internal fluxeg versus exchanges fluy, as illustrated in Figure 2.3.
The dynamics of the resulting system now be written as

5= NY(s.p) =N [X;] = NVi(s.p) — be.
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Figure 2.3: Flux balance analysis.

RMM: Make sure signswherebe = —NVeT represents thefiects of external fluxes on the species dynamics.
and notation matchSince the matriXN has more columns that rows, it hasght null space and hence
conventional notationthere are many dierent internal fluxes that can produce a given change in specie
In particular, we are interested studying the steady stapepties of the sys-
tem. In this case, we have that 0 and we are left with an algebraic system

NVi = be.

RMM Work through the various types of questions that one can @anaath this model.
Main points to touch on should come from Schilling paper arehi&telling chap-
ter.

¢ Prediction of optimal distribution based on a performandegon:

maxJ=c'v subjectto NV =be, Vi >0

e Determine bounds on ranges of fluxes (extreme pathways)
e Effects of gene knockouts, environmental stresses, etc

Include examples from Schilling and Klg8telling, ideally tied to running exam-
ples.

Power law formalism

Chemical reaction rate equations are nonlinefieckntial equations whenever two
or more species interact. However, the nonlinearities ang structured: they can
be decomposed into a stoichiometry matrix and flux rates, laadlix rates typ-
ically consist of either polynomial terms or simple ratidspmlynomials (e.g.,
Michaelis-Menten kinetics or Hill functions). In this sext we consider power
law representations that exploit these properties ananattéo provide simpler
techniques for understand the relationships between epeoncentrations, pa-
rameter values and flux rates. This formalism was developed\mg8au P] and

is also called biochemical systems theory (BST).
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The general power law formalism describes a set of reactioamyjcs using a
set of diferential equations of the form

n+m n+m

ZErnx ZESHXJ, i=1..n. (2.7)

Here, x; is the concentration for specmgswﬂh i =1,...,n representing internal
species and = n+1,...,m representing external species, and the dynamics are
broken into two summations. The first sum is over the set of i@athat pro-
duce the species; and the second is over the reactions that utibz€and so
decrease its concentration). The linearfio&EntsE; andEs are the activity lev-
els and correspond to the rate constants (for metabolicank$ihe rate constants
are often proportional to a fixed enzyme level, hence the uskeofymbolE).
The exponentsﬁr ande’® are thekinetic ordersof the production and utilization
reactions.

In this general form, the power law formalism is able to elyacapture mass
action kinetics, but it does not provide any additional siwee. If we consider a
general rate equation of the fomgxy, ..., Xn+m), We can approximate this function
in a number of ways. The first is through its linearization,

ov .
Vi(X1, .- Xnem & Vi(X1e, - - - » Xneme) + E 8—X(Xj — Xj,e) + higher order terms
j

We have used exactly this approximation in previous sestion
A different approximation can be obtained by taking a Taylor sex@ansion
for logv;:

logVi(X1,..., Xn+m ~ 10gVi(X1e, - - - » Xn+me) + Zalogv. (logx — Iogxi,e)+higherorderterml

If we define dlogvi X o
%07 Glogx; " i ax;
and collect terms, we have

logVvi(X) ~ logai + gi110gX1 + - - - + Gi.n+m |09 Xn+m.
Converting this back from log coordinates, we can thus right

n+m

Vi(X) ® @i 1_[ ngi’j.
j=1

Using this approximation on the sums in equation (2.7), weaaproximate
the resulting dynamics as

c;): =qj l—l x9i- —Bi l_[ Xh'

wherea; andg; j are the rate constant and kinetic orders for the producéong
andg; andh; j are the rate constant and kineeetic orders for reactionsitiiae



RMM
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xi. While this is only an approximation, its form is conventefar performing
equilibrium analyses. In particular,xf = 0 then we can equate the production rate
to the utilization rate adn take the log of this expressioolitain

loga; + Z 0i,jlogxj = logpg; + Z hi jlogXx;.

This is now a linear equation for the logs of the concentrationterms of the
various parameters that enter the system.

Work through the analysis from here following BST and prowdene examples.
Then work through the relationship between BST, MCA and FBA ezsdbed by
Savageau.

2.3 Analysis of Limit Cycles using Harmonic Balance

Unlike the case of linear systems, where it is possible tachdracterize the solu-
tions of a model and there are a wide variety of analysis tgci®s available, the
behavior of nonlinear systems is harder to analyze, edpeaisay from equilib-
rium points (where the linearization gives a good approxiomd. One of the more
useful techniques for studying the behavior of nonlineatays is the method of
harmonic balancgof which a special case is the methoddefscribing functions
This section explores the use of harmonic balance and desgfilnctions for an-
alyzing nonlinear systems, including the detection andyaisof limit cycles and
the propogation of noise through nonlinear systems.

Describing functions

For special nonlinear systems like the one shown in Figura, 2vhich consists
of a feedback connection between a linear system and a statimearity, it is
possible to obtain a generalization of Nyquist's stabititiferion based on the idea
of describing functionsFollowing the approach of the Nyquist stability condition
we will investigate the conditions for maintaining an oktibn in the system. If
the linear subsystem has low-pass character, its outpppi®aimately sinusoidal
even ifits input is highly irregular. The condition for odation can then be found
by exploring the propagation of a sinusoid that correspandse first harmonic.

To carry out this analysis, we have to analyze how a sinuksidaal prop-
agates through a static nonlinear system. In particularnwvestigate how the
first harmonic of the output of the nonlinearity is relatedtgo(sinusoidal) input.
Letting F represent the nonlinear function, we expdr@<!) in terms of its har-
monics:

F(agt) = 3" Mn(a)d™trén(@),
n=0

whereMn(a) and¢n(a) represent the gain and phase of thle harmonic, which
depend on the input amplitude since the functioms nonlinear. We define the
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Im
B A
—= — L(9 Re
—1/N(a)
—N() |~ G(iw)
(a) Block diagram (b) Nyquist plot

Figure 2.4: Describing function analysis. A feedback connection legtaestatic nonlinearity and a
linear system is shown in (a). The linear system is characterized by itéerdmsctionL(s), which
depends on frequency, and the nonlinearity by its describing fundt{@ which depends on the
amplitudea of its input. The Nyquist plot ok (iw) and the plot of the-1/N(a) are shown in (b). The
intersection of the curves represents a possible limit cycle.

describing function to be the complex gain of the first harrapni
N(a) = M1 (a)en®. (2.8)

The function can also be computed by assuming that the inpusisusoid and
using the first term in the Fourier series of the resulting outp

Arguing as we did when deriving Nyquist’s stability criteni, we find that an
oscillation can be maintained if

L(iw)N(a) = 1. (2.9)

This equation means that if we inject a sinusoid at A in Figude the same signal
will appear at B and an oscillation can be maintained by coting the points.
Equation (2.9) gives two conditions for finding the frequencygf the oscillation
and its amplitudea: the phase must be 180and the magnitude must be unity.
A convenient way to solve the equation is to pldiw) and—1/N(a) on the same
diagram as shown in Figure 2.4b. The diagram is similar to thguidy plot where
the critical point-1 is replaced by the curvel/N(a) andaranges from 0O teo.

It is possible to define describing functions for types of itspother than si-
nusoids. Describing function analysis is a simple methad,itois approximate
because it assumes that higher harmonics can be neglecteellex treatments
of describing function techniques can be found in the teyt&\therton [?] and

Graham and McRuef?]. ¥ RMM: Move this once this
) ) section is written
Add biological example here RMM

Stability of limit cycles using describing functions

In order to check the stability of a limit cycle, we must reastout how solutions
that have initial conditions near the limit cycle evolve im¢ and whether they
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\ m~
(A 5) _
: ™
.{ f - -.","’ - =] /—\‘_ < )
yv 1.7 NSNS G0 4 /
: - St " /
T ONA)
@ (b)

Figure 2.5: Heuristic stability of limit cycles using describing functionsT(agheck if a perturbation
from amplitudeAq to amplitudeAg + A is stabilizing, we check to see if the Nyquist criterion is
satisfied for the original frequency response and the perturbed tptoa P; = 1/N(Ag + 6A). (b)
An example of a nonlinear system with multiple limit cycles. Stable limit cyclededreled 's’ and
unstable limit cycles are labeled 'u’.

move closer to the limit cycle (asymptotic stability) or eiige from the limit cycle
(instability).

RMM In the text below, need to changeto a to match AMOS8.

We begin by arguing heuristically, using the Nyquist ploFigure 2.4b. Sup-
pose that we were to consider a perturbed limit cycle with laoge Ag + A,
whereA is the amplitude of the limit cycle predicted by the desergpfunction
method. If we did so, then the point of intersection of thecti®ig function and
the frequency response would move fréj= 1/N(Ag) to P1 = 1/N(Ag + 5A), as
shown in Figure 2.5a. Now evaluate the Nyquist criterion fa frequency re-
sponse with critical poinP;. If the criterion indicates that the perturbed system
is stable (i.e., no net encirclementsRf for a stable process), then intuitively the
amplitude of the perturbed solution would decrease and wadu@turn to our
original amplitude limit cycle. Conversely, if the Nyquistiterion with critical
point P; indicates instability, then the oscillation would grow amehce we can
infer that the limit cycle is unstable.

While this heuristic method is intuitively appealing, itetonot always give the
correct answer. Indeed, even the prediction of the existaha limit cycle using
describing fucntions can be incorrect unless the systeisfisatsome additional
conditions. We present here one such set of conditions,aiieés [?].

Suppose thatdp, Ag) satisfies the describing function balance equafigmo) =ji
—1/N(Ap) and that the the frequency response curve and the degrfilmation
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locus are transverse (not tangent) at their intersectiefin®

p(w)? = Z |P(ikwo)l?, “gain of harmonics”
k=3,5,9....
p(a)? = [In(asint)|2 - [aN(a)P?, “first harmonic error”
d(a €) = Im(asint, €)ll2, “slope bound”

m(X, €) = max{|N(x+ €) — N(X)|,IN(x—€) — N(X)|}.
Now find ane such that for all ¢, a) near (v, ap),

pw)(p(@) +a(ae) <e
and letQ € R? be the set ofd),a) such that
IN(a) +1/G(iw)| < d(a.€)/a.

Theorem 2.1. Suppose&? is bounded and there exists a unigle ag) € Q sat-
isfying the balance equation. Then there exists a periodigtism of the form
y(t) = asin(wt) + y*(t) with remnan|y*||. < e.

Sketch of proofReduced to the contraction mapping theorem, which gerspate
p andg. O

The basic idea behind this theorem is that if the harmonicthiénldop ex-
pression die fi suficiently fast, then we can insure that there is truly a pedodi
solution and bound the error of the higher harmonics. Thegdsis a graphical
version of the stability theorem that checks for “completieisections” between
the describing function locus and the Nyquist cur?e [

Add example RMM

Look for some simple versions of stability theorems that we icalude as well. RMM
Handwritten notes say there is a describing function varsicthe Hopf theorem
that also might be nice to include.

Mathematically, the stability of a limit cycle can be anadgzby taking the Iin—@
earization of the system around the (non-equilibrium) Botu To see how this is
done, consider a nonlinear system of the form

= f(x)

that has a solutiory(t) that is periodic with period. To compute the linearization
of the dynamics around the equilibrium point, we computedipeamics of the
errore = X— Xq:

e= f(x) - f(xa) = F(e xq(t)) ~ At)e

whereA(t) is the time-varying linearization given by

oF
Alt) = —(e, .
®) 8e( Xd) oot
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A . = |
4 — "_;-r B > ity —_ =
= A~
= e | )
- - —=t I} e =
A1l d

Figure 2.6: Random input describing function analysis.

The dynamics matriX(t) is also periodic and so the dynamics of the linearization
are a given by a periodic, linear ordinaryfdrential equation.

The dynamics of periodic linear systems can be studied \Himguettheory,
which we briefly review here. Lab(t,0) be the T-periodic) fundamental matrix
for €= A(t)e, so that the solution is given bx(t) = ®(t,0)x(0). It can be show
thatd(t,0) has the formp(t,0) = P(t)e™ whereP(t) = P(t+ T) e R™" is a periodic
matrix andF € R™" is a constant matrix. We can now check stability by examining
the eigenvalues of the matrék T, which corresponds to the “first return” map for
the system.

Random input describing functions

In addition to allowing prediction and analysis of limit dgs, describing functions
can also be used to analyze the propogation of noise throoigimear feedback
systems. This approach is known as taedom input describing functiomethod.

As in the single input describing function method, we begithva system in
the form of a a linear system with a nonlinear feedback, awsho Figure 2.3.
To analyze this system, we construct an input that contaitis & sinusoid and a
random input (t):

y =b+asin(wt+¢) +r(t),
whereb is the bias terma is the amplitude of the sinusoidal tergnjs a uniform
random variable and(t) is a stationary Gaussian random process with variance

o2 and correlatiorp(r). We approximate the response of the system through the
nonlinearity by

N(y(t)) ~ Npb+ Naasin(wt + ¢) + Npr (t),

whereNy is called thebias gain N; is the sinusoidal gain and, is the stochastic
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gain. These functions are given by RMM: Need to check these
equations
1 1 21 00 r2
= — = i __(Tz
Nb(b,a, o) bE{f(y)} (27r)3/20'bfo ﬁm f(b+asing+r(t))e 202 drdo
2 2 2n 00 2
_2 N . P
Na(b,a,0) = aE{f(y)st} = —(27r)3/20-af0 Im f(b+asing +r(t))sinde 202 drd
1 1 2 00 r2
— — i " og2
N (b,a,0) = ;E{f(y)r}_ Wfo j:oo f(b+asing+r(t))re 22 drdo

(2.10)
The random input describing function method has a numberefiapcases.
If we take o = 0, then it can be shown that we recover the standard desgribin
function method. If we instead take= 0, we can study how noise propogates
through the system. Recall that in the linear case, wherdethgback term is
given by a constant gaiN that spectral density of the outpyts given by

Sy(w) = Hyd(—1w)Sq(w)Hyd(iw), oy = %j: Sy(w) dw.

In the nonlinear case, we replalewith N (o) so that

P(s)

el T PNy

ayzé I : Hya(—iw)Sa(w)Hygliw).  (2.11)

Note that this equation gives an algebraic relationshipofpthat can be solved
and then used to compulté (o) andSy(w). RMM: Note that ifHyq(s)

Consider next the case of both a limit cycle and random noise, is an unstable transfer
function, oy — co.

y(t) = asin(wt + ¢) +r(t).
We now look for solutions of the coupled equations
P(s)
H =
v = T BN (o)
Na(@, oy)P(iwo) = -1.

If we can finda, oy andwg that satisfy all of the equations, then we get a descrip-
tion of y(t).

1 i i
oy = gfm Hyd(-iw)Sd(w)Hyd(iw), (2.12)

Add example RMM

Need to turn the text below into something substantial, pluexample. May notRMM
be useful to include here.

It is interesting to note that it can sometimes happen 8yéi) can cause
an unstable (noiseless) system to be stable. Similarly, wegeta system with
N (0,0y) that destabilizes and otherwise stable system.
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2.4 Bifurcations

2.5 Model Reduction Techniques
Singular Perturbation

Let (x,y) € D := Dxx DyR"xR™ and consider the vector field

x=f(xy). ey=9(xy). (x(0).y(0)) = (x0.Yo)

in which € > 0 is a small parameter, that is,« 1. Sincee < 1, the absolute
value of the time derivative of can be much larger than the one of the derivative
of x, resulting in ay dynamics that is much faster than thelynamics. That is,
this system has a slow time scale avolution (the on&)aind a fast time-scale
evolution (the one of). If one is interested only on the slower time-scale, then
the above system can be approximated (under suitable aomgiby thereduced
system _

x=f(xy), 0=g(xy), x(0) = Xo

which, lettingy = y(x) (called the slow manifold) the locally unique solution of
g(x,y) =0, leads to B _
x= f(x¥(X), X(0) = Xo.

We seek to determine under what conditions the solutighis “close” to the
solutionx(t) of the reduced system. This problem can be addressed byzargly
the fast dynamics. Let then= t/e be the fast time scale, we have that

d

D= etixy). 2= gxy). (0)(0) = (0.50).

so that wherr < 1, x(r) does not appreciably change. Therefore, the above system
in thet time scale can be approximated by

d
+ =900y, YO =Yo.
-

in which xis “frozen” at the initial condition. This system is usualBferred to as
theboundary layesystem. If for allxg, we have thay(r) converges ta/(xp), then
for t > 0 we will have that the solutior(t) is well approximated by the solution
X(t) to the reduced system. This qualitative explanation is rpoeeisely captured
by the following theorem (originally due to Tikonov).

Theorem 2.2. Assume thatgyg(x,y)|y " < O uniformly for xe Dy. Let the solu-
=Y

tion of the reduced system be uniquely defined€d0tt¢]. Then, for all € (0,t¢]
there ise* > 0 and setQ € D such that

X(t) — X(t) = O(e) uniformly for te [0, ]
y(t) — y(x(t)) = O(e) uniformly for te [tp,tf]

providede < €* and(Xo, Yo) € Q.
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Maybe include an academic exaple (linear?) with a diagsenulation showingbbv
the convergence to the slow manifold

Things to include RMM

Poincaé-Bendixson Theorem and its extensions
P-B (from Wiggins)

Hastings (from his paper)

Mallet-Paret and Smith (from their paper)

Hopf Bifurcation - From Wiggins book

Monotone systems - rule out periodic behavior (from Smith Sodtag pa-
pers)

multistability and hysteresis (from sontag paper and takpr
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Chapter 3

Stochastic Behavior

In this chapter we explore stochastic behavior in biomdbaaystems, building on
our preliminary discussion of stochastic modeling in Sectid®. We begin by re-
viewing the various methods for modeling stochastic preegsising the chemical
master equation (CME), the chemical Langevin equation (CLE)taad-okker-
Planck equation (FPE). Given a stochastic description, we am dhalyze the
behavior of the system using a variety of stochastic sirmarand analysis tools.
In many cases, we must simplify the dynamics of the systenrdercto obtain
a tractable model, and we describe several methods for doingcluding finite
state projection, linearization and Markov chain représtions. We also investi-
gate how to use data to identify some the structure and paessnef stochastic
models.

PrerequisitesThis chapter makes use of a variety of topics in stochasticgases
that are not covered in AM08. Readers should have a good mgHktowledge of
basic probability and some exposure to simple stochasitgsses (e.g., Brownian
motion).

3.1 Stochastic systems

We begin by briefly introducing the general notions of stothaystems in con-
tinuous time and with continuous states. Some of the materitlis section is
drawn from the AMO8 supplement on Optimization-Based Gur8ystems P].

Review of random variables

A (real-valued) random variable ¥ a variable that can take on any value accord-
ing to aprobability distribution P

P(x < X < x,) = probability thatx takes on a value in the rangg xy.

More generally, we writd®(A) as the probability that an eveAtwill occur (e.g.,
A={x < X< xy}). It follows from the definition that iX is a random variable in
the range [[,U] thenP(L < X < U) = 1. Similarly, if Y € [L,U] thenP(L < X <
Y)=1-P(Y < X<U).

We characterize a random variable in terms ofpii@bability density function
(pdlf) p(x): .

P(x < X<x)= f p(x)dx. (3.1)
X
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A p(x) p(x)
o
\
L U u
RMM: Fix vertical (a) Uniform distribution (b) Gaussian distribution
alignment

Figure 3.1: Probability density function (pdf) for uniform and Gaussistributions.

This can be taken as the definition of the pdf, but it is also jptessd compute

RMM: Not sure if this is p(X) given the distributiorP as long as the distribution is suitably smooth:
the best way to write this.

Use cdf instead? OP(X < X< %)
p(x) = T ax. | fixed
XU 1
Xu =X,

X> X.

We will sometimes writepx(X) when we wish to make explicit that the pdf is
associated with the random varialde Note that we use capital letters to refer to
a random variable and lower case letters to refer to a speaifiey

Probability distributions provide a general way to descstmehastic phenom-
ena. Some standard probability distributions includmi#orm distribution

P = o1 32)

and aGaussian distributiorfalso called anormal distributior),

NI

e (X?Ty) . (3.3)

PO = —=
V2ro?

In the Gaussian distribution, the parameteés called themeanof the distribution
ando is called thestandard deviatiomf the distribution. Figure 3.1 gives a graph-
ical representation of uniform and Gaussian pdfs. There ro#mr distributions
that arise in applications, but for the purpose of theseshate focus on uniform
distributions and Gaussian distributions.

If two random variables are related, we can talk about tjoémt probability:
Pxv(A,B) is the probability that both evert occurs forX and B occurs forY.
This is sometimes written &(AnN B). For continuous random variables, these can

RMM: Note that here webe characterized in terms of@nt probability density function
useX, Y instead ofx, y, as
we did previous. Decide

Yu Xu
which is best. P < X<xu W <Y<y)= f f P(X,y) dxdy. (3.4)
Vi X|

The joint pdf thus describes the relationship betw&eandY, and for stficiently
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smooth distributions we have RMM: Rewrite in terms of
joint cdf?
PP < X< XY <Y <Y X> X,
p(x.y) = x.yi fixed
OXuOYy 1Yl , y>V.
XU = Xs yLI = y’

We say thatX andY areindependenif p(x,y) = p(X)p(y), which implies that
Px.v(A, B) = Px(A)Py(B) for eventsA associated wittkX andB associated witfy.
Equivalently,P(An B) = P(A)P(B) if AandB are independent.

The conditional probabilityfor an eventA given that an ever has occurred,
written asP(A|B), is given by

P(AN B)
P(B)
If the eventsA andB are independent, thé?®(A|B) = P(A). Note that the individual,

joint and conditional probability distributions are alff@irent, so we should really
write ny(Aﬂ B), Px|y(A| B) and Py(B).

P(AIB) =

(3.5)

In the current text we never make use of Bayes’ theorem. Walghwobably RMM
either omit the material that follows or (preferably) shoamhto derive some of
the results that we use in a Bayesian framework (perhapseasisss?).

If X is dependent olY thenY is also dependent od. Bayes’ theoremelates
the conditional and individual probabilities:

P(BIA)P(A)
P(B)

Bayes’ theorem gives the conditional probability of evArdn eventB given the
inverse relationshipg given A). It can be used in situations in which we wish to
evaluate a hypothesld given dataD when we have some model for how likely
the data is given the hypothesis, along with the unconditioprobabilities for
both the hypothesis and the data. As we shat} sBayes’ theorem can be used ®vIM: Verify or delete
construct estimates of a system’s state given measureauathis model.
The analog of the probability density function for condigbprobability is the

P(AIB) = P(B) # 0. (3.6)

conditional probability density function(gly) RMM: Check to see if this
(xy) is the right way to handle
pLx.y p(y) =0
0< < o0
p(xly) =1 P(y) PO) (3.7)
0 otherwise.

It follows that
p(x.y) = p(xly) p(y) (3.8)

and
P(x < X< xuly) :i=P(x < X< x|Y =Y)

oy PN fxl p(x,y)dx (3.9)
y oty )
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If X andY are independent thap(x]y) = p(x) and p(y|x) = p(y). Note thatp(x,y)
and p(xly) are diferent density functions, though they are related througlaeq
tion (3.8). If X andY are related with joint probability density functig{x,y) and
conditional probability density functiop(xly) then

P09 = [ plxy)dy= [ pexypo)dy
Example 3.1 (Conditional probability for sum)Consider three random variables
X, Y andZ related by the expression
Z=X+Y.

In other words, the value of the random variaBlés given by choosing values
from two random variableX andY and adding them. We assume thaiand
Y are independent Gaussian random variables with meamdu, and standard
deviationo = 1 (the same for both variables).

Clearly the random variabl2 is not independent oX (or Y) since if we know
the values ofX then it provides information about the likely value of To see
this, we compute the joint probability betweZrand X. Let

A={X <X< X}, B={z<z<z.
The joint probability of both event& andB occurring is given by

Pxz(ANB) =P < X< Xy, 2 < X+Y<1Z)
=P(X < X< Xy, 2 —X<y<z,—X).

We can compute this probability by using the probability glgnfunctions forX
andY:

Xu Zy—X
Pang) = [ Py

IXu 2 2 X
=f f IOY(Z—X)px(X)dde=:f f pz.x(z X)dxdz
X 4 Z X
Using Gaussians foX andY we have

1 o 3@—x—py)? 1 - F(x—px)?
ZX)=—e 2 —e 2

_ 1 3@ x= )P+ (x—px)?)
21
A similar expression holds fqozy. \Y

Given a random variablX, we can define various standard measures of the
distribution. Theexpectatioror meanof a random variable is defined as

E(X) = (X) = f X p(x) dx
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and themean squaref a random variable is

E{X?} = (X?) = f X2 p(x) dx
If we let u represent the expectation (or mean)Xahen we define thearianceof
X as

E((X =) = (X = (X))?) = f " (k- P dx

We will often write the variance as?. As the notation indicates, if we have a
Gaussian random variable with meaand (stationary) standard deviationthen
the expectation and variance as computed above rgtanalo2.

Add something about the fact that for a Gaussian the secomdemioabout theRMM
mean is sfficient? Eg, 3rd moment is zero, etc
) o RMM: Fix the style of this
Several useful properties follow from the definitions. proposition: properties
don't all grammatically

Proposition 3.1 (Properties of random variables) agree

RMM: Think about a better
1. The expected value preserves linearityo K +£Y} = o E{X} + BE{Y} way to word this

2. If X is a Gaussian random variable with meamand variancer?, thenaX
is Gaussian with meamX and variancer?02.

3. If X and Y are Gaussian random variables with meaas:y and variances

2 2
Ox: Oy,

e (%)2, ply) = 1 e_%(f_f_ﬂYY)z,
27r0'§( 2ﬂ0‘$

Nl

p(x) =

then X+Y is a Gaussian random variable with meap = ux + uy and

i 2 _ 2 2
varianceo; = oy + oy,

Proof. The first item follows directly from the definition of expectatiorhe sec-



stochastic.tex, v0.00 208512 07:03:00 (murray)

56 CHAPTER 3. STOCHASTIC BEHAVIOR

ond statement is proved using the definitions:

X X
P(x <aX < x) =P < X<
a (0%

Xu

o X—p\2
A 2no?

[ 1 -3 (Yeu

= — ¢
x aV2no?

(M ety = [y
x  V2rnalo? X

The third item is left as an exercise. O

Introduction to random processes

A continuous-time random proceissa stochastic system characterized by the evo-

lution of a random variablX(t), t € [0, T]. We are interested in understanding how
the (random) state of the system is related at separate.tithegrocess is defined
in terms of the “correlation” oX(t;) with X(t2).

We call X(t) € R" the stateof the random process. For the case 1, we have
a vector of random processes:

X1(t)
X(t)=1] :
Xn(t)
We can characterize the state in terms of a (vector-valimeé)varying pdf,

P(x < Xi(t) < x) = f "o (6 H)dx
X

Note that the state of a random process is not enough to datethre next state
(otherwise it would be a deterministic process). We tyyoainit indexing of the
individual states unless the meaning is not clear from ctnte

We can characterize the dynamics of a random process buyiiststal charac-
teristics, written in terms gbint probability density functions:

P(xy < Xi(t) < X, X2 < Xj(t2) < Xou)

Xou X1u
= f f Px..v; (X1, X2; t1,t2) dx d %o
X2l X1l

The functionp(x;, xj;t1,t2) is called ajoint probability density functiorand de-
pends both on the individual states that are being comparedhe time instants
over which they are compared. Note that # |, thenpy, x, describes howX; at
timety is related toX; at timets.

In general, the distributions used to describe a randomessodepend on the
specific time or times that we evaluate the random variablesveder, in some
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cases the relationship only depends on théedénce in time and not the ab-
solute times (similar to the notion of time invariance inetetinistic systems,
as described in AM08). A process sgationaryif p(x,t+7) = p(xt) for all r,
p(Xi, Xj;t1 + 7,12+ 1) = p(X;, Xj; t1,12), etc. In this case we can writgXx;, x;; ) for
the joint probability distribution. Stationary distribatis roughly correspond to
the steady state properties of a random process and we teitl oéstrict our atten-
tion to this case.

In looking at biomolecular systems, we are going to be irstizek in random
processes in which the changes in the state occur when amaedent occurs
(such as a molecular reaction or binding event). In this,gaisenatural to describe
the state of the system in terms of a set of timest; <ty < --- < t, andX(t;) is
the random variable that corresponds to the possible siathe system at timg.
Note that time time instants do not have to be uniformly sgacal most often (for
biomolecular systems) they will not be. All of the definiticaisove carry through,
and the process can now be described by a probability disiitbof the form

P(X() € [X, % +dx%],i = 1,...,n) = p(Xn, Xn—1, - - -» X0} ths th=1, . . . , 10) A X A X1 A Xy,

wheredx are taken as infinitesimal quantitigs. RMM : check
An important class of stochastic systems is those for wiiemext state of the

system depends only on the current state of the system aritienbtstory of the

process. Suppose that

P(X(tn) € [Xn, Xn+dXa]IX(ti) € [Xi, i +dx]I,i =1,...,n=1) = P(X(tn) € [Xn, Xn+dX] I X(th-1) € [Xn-1, Xn-1+ dX-1])
(3.10)
That s, the probability of being in a given state at titpdepend®nly on the state
that we were in at the previous time instént; and not the entire history of states
prior tot,_1. A stochastic process that satisfies this property is callbthikov
process
In practice we do not usually specify random processes @gadint probabil-
ity distribution p(x;, Xj; t1,t2) but instead describe them in terms op@pogater
function Let X(t) be a Markov process and define the Markov propogator as

Z(dt; x,t) = X(t+ dt) — X(t), given X(t) = x.

The propogator function describes how the random variabtarett is related
to the random variable at time+ dt. Since bothX(t + dt) and X(t) are random
variables Z(dt; x,t) is also a random variable and hence it can be described by its

density function, which we denote Bgé, x; dt, t): RMM : Pretty sure this
equation is not right; need
to figure out how to better

X+&
Px< X(t+dt) < x+&= f II(dx x;dt, t)dx map to Gillespie formalism
X

The previous definitions for mean, variance and correlatiorbeaextended to
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RMM: Think about the continuous time, vector-valued case by indexing thiiitdal states:

whether to writeR(s,t)
instead ofR(t, )

E{X1(®)}
E{X()} = : =1 u(t)
E{Xn(®)}
E{X1()X1(8)} ... E{Xy()Xn(s)}
EX®)XT(9)) = : = R(t,9)
E{Xn()Xn()}

Note that the random variables and their statistical ptogmare all indexed by
the timet (ands). The matrixR(t, s) is called thecorrelation matrixfor X(t) €

R". If t = sthenR(t,t) describes how the elements xfare correlated at time
(with each other) and is called tlwevariance matrix Note that the elements on
the diagonal oR(t,t) are the variances of the corresponding scalar variables. A
random process is uncorrelatedrit, s) = 0 for allt # s. This implies tha¥(t) and

X(s) are independent random events and is equivalepk tgx,y) = px(X) pv(y).

If arandom process is stationary, then it can be showrRftatr, s+ 1) = R(t, )
and it follows that the correlation matrix depends onlyters. In this case we will
often write R(t, s) = R(s—t) or simpleR(r) wherer is the correlation time. The
correlation matrix in this case is simpR(0).

In the case wher&X is also scalar random process, the correlation matrix is
also a scalar and we will writg(r), which we refer to as the (scalar) correla-
tion function. Furthermore, for stationary scalar randomcpsses, the correla-
tion function depends only on the absolute value of the taioa function, so
p(tau) = p(-7) = p(l7]). This property also holds for the diagonal entries of the
correlation matrix sinc&;(s,t) = R;i (t, s) from the definition.

RMM: Check to make sureExample 3.2 (Ornstein-Uhlenbeck process)Consider a scalar random process
the way we desribe thisdefined by a Gaussian pdf with= 0,

links with the classical

definition of D(x.t) = & £
ORnstein-Uhlenbeck Y
properly. ] ) ) 2no
and a correlation function given by
~wolta—ta]

RMM

o(t1,t2) = 229
wo

The correlation function is illustrated in Figure 3.2. Thisgess is also known
as anOrnstein-Uhlenbeck procesa term that is commonly used in the scientific
literature. This is a stationary process. \%

Don’'t know whether we need to keep this here. The nomencléyeetty con-
sistent in the chemical physics literature

The terminology and notation for covariance and correlatianes between
disciplines. In some communities (e.qg., statistics), #rent“cross-covariance” is
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p(t1—1t2)

! T=1-1

Figure 3.2: Correlation function for a first-order Markov process.

used to refer to the covariance between two random veetard, to distin-

guish this from the covariance of the elementsXofith each other. The term
“cross-correlation” is sometimes also us®dTLAB has a number of functions to

implement covariance and correlation, which mostly malehtérminology here: RMM: Too informal

e cov(X) - this returns the variance of the vectothat represents samples
of a given random variable or the covariance of the columre wfatrix X
where the rows represent observations.

e cov(X, Y) -equivalentocov([X(:), Y(:)]). Computes the covariance
between the columns of andY, where the row are observations.

e xcorr(X, Y) -the “cross-correlation” between two random sequences. If
these sequences came from a random process, this is batfiealbrrelation
function.

e xcov(X, Y) -this returns the “cross-covariance”, whighTLAB defines as
the “mean-removed cross-correlation”.

The MATLAB help pages give the exact formulas used for each, so the roaih p
here is to be careful to make sure you know what you really want

Should probably rewrite this and instead include some of theerstandard ranRMM
dom processes such as Weiner and Ornstein-Uhlenbeck. Theabiut white
noise process in that contenxt (ala Gillespie)

We will also make use of a special type of random processregfdo as “white
noise”. A white noise process (§ satisfiesE{X(t)} = 0 andR(t,s) = Ws(s—1),
whered(7) is the impulse function and/ is called thenoise intensityWhite noise
is an idealized process, similar to the impulse function eaviside (step) function
in deterministic systems. In particular, we note thé) = E{X?(t)} = oo, so the
covariance is infinite and we never see this signal in practit@vever, like the
step function, it is very useful for characterizing the i@sgs of a linear system,
as described in the following proposition.

3.2 Stochastic Modeling of Biochemical Systems

Chemical reactions in the cell can be modeled as a collecfistochastic events
corresponding to chemical reactions between speciesidimg binding and un-
binding of molecules (such as RNA polymerase and DNA), csiga of one set
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Time Scale
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Order
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Figure 3.3: Diferent methods of modeling biomolecular systems

of species into another, and enzymatically controlled lmtamodifications such
as phosphorylation. We can model these reactions at ayafistales and using
a variety of representations, as depicted in Figure 3.3,r#pg on the question
we want to answer with the model. In this section we will brieflyvey some of
the different representations that can be used for stochastic smodelochemical

systems, following the approach described in the textbgo&iiespie ??.

Chemical master equation

In this subsection we will go from the general discussionmo this to the specific
case of chemical reactions. Only the main equations are djigee for now.
P(x,1|Xo,t0) = Probability thatX(t) = x given thatX(tp) = Xo.

The propensity function defines the probability that a giveactien occurs in
a suficiently small time steplt:

aj(x t)dt = Probability that reaction jRNi” occur between time and
timet + dt given thatX(t) = x.

The linear dependence att relies on the fact thadt is chosen sfficiently small.
We will typically assume thaa; does not depend on the timend writea;(x)dt
for the probability that reactiopoccurs in state.

Using the propensity function, we can compute the distidlouof states at time
t+ dt given the distribution at time

M M
P(x t+dixo, to) = P(X.tixo, to) (1~ > aj(dt) + > P(x—&jlxo, to)aj(x— &j)dt
=1 =1

M
= POutXo,to) + ) (8j(X—£))P(X— £}, t1X0, to) = 3 () P(X, 1}, o) )dlt.
j=1

(3.11)
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Sincedt is small, we can take the limit adt — 0 and we obtain thehemical
master equatiofCME):

M
Z—T(x,nx(),to) = ;(aj(X—fj)P(X—fj,UXO,tO) —aj()P(xthxo.to))  (3.12)

Chemical Langevin equation

We now go to the limit of continuous variables and derive therical LangevinRMM
equations. Again, only the key equations are included far.no

dX) < N 1 $
ST iji aj(X(v) + iji aj/ (XE)r) = A(X() + Z Bij (X())T'j(t)
=1 j=1 j=1
(3.13)

Fokker-Planck equations

Derivation of the Fokker-Planck equations goes here. Jadottmulas for now. RMM

Consider first the case of a random process in one dimensiomsgane that
the random process is in the same form as the previous section

% = A(X(t)) + DY2(X (D) (). (3.14)

The functionA(X) is called the drift term an®(X) is the difusion ternt. It can be RMM: Check these names
shown that the probability distributioR(x, t|xo,tp) satisfies the partial fferential
equation

8_P(X t| t)——ﬁ(A(x t)P(x. t| t))+}a—2(D(x t)P(x, t|Xo,t0))  (3.15)
at ’X070_ aX e aXO’O 28X2 e aXO’O .

In the multivariate case, a bit more care is required. Usieghemical Langevih
equation (3.13), we define

M M
Di(xt) = > B30, Cij(xt) = > bik(xhbi(x),i<j=1,...,M.
j=1 k=1
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The Fokker-Planck equation now becomes
oP U8
5 (xtho.to) = - .; I AR DPOX 0. 10))

Mg 92
Zl 5 52 DI OPX 1, 1) 516)

M
- aaa (Cij (% H)P(x. 0. 1o))-

Rate reaction equations

As we already saw in Chapter 1, the reaction rate equationbeased to describe
the dynamics of a chemical system in the case where therelargeanumber of
molecules whose state can be approximated using just theentrations of the
molecules. We rederive the results from Section 1.2 hereghmiore careful to
point out what approximations are being made.

We start with the chemical Langevin equations (3.13), frontivive can write
the dynamics for the average quantity of the each speciexhtmoint in time:

d(X| (t)>

Z§J.<aj(><(t))>

where the second order term drops out under the assumptbthei;’s are in-

dependent processes. We see that the reaction rate eguatiom by defining

X = (X)/€Q and assumingthat (aj(X(t))) = aj((X(t)}). This relationship is true
whena; is linear (e.g., in the case of a unimolecular reaction),i®ain approxi-

mation otherwise.

RMM Say more here about the approximations in terms of thingsdilend also give
some examples showing when the approximation is a good aosasva bad one.

3.3 Analysis of Stochastic Systems

3.4 Linearized Modeling and Analysis

In this section we consider the special case of linear sgithaystems that are
driven by random processes.
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Linear input/output response

We now consider the problem of how to compute the responsdinéar system
to a random process. We assume we have a linear system @elsicriftate space
as

X=AX+FW Y =CX (3.17)

Given an “input”W, which is itself a random process with meaft), variance
a?(t) and correlatiop(t, t + 7),7 what is the description of the random proc¥&s RMM: Do we actually
Let W be a white noise process, with zero mean and noise inte@sity handle this level of

generality?
p(7) = Qo(7).
We can write the output of the system in terms of the convoituitntegral
t
Y(t) = f h(t—7)W(r) dr,

0

whereh(t — 1) is the impulse response for the system

h(t-7) = CEIB+Ds(t-1).

We now compute the statistics of the output, starting withrttean:
t
V() = EL [ h(t=n)Wer)

t
- [ he-nEWIdr =0
Note here that we have relied on the linearity of the convaituintegral to pull the
expectation inside the integral.

We can compute the covariance of the output by computingdhelationo(r)
and settingr? = p(0). The correlation function foy is RMM: ty,t,?tp > 1?2

t S
pv(t.9) = EIYOY(9) = El fo h(t— m)W() - fo h(s—&W(£) de)

t S
_ fo fo h(t — m)W(r)W(E)h(s— &) ddé)

Once again linearity allows us to exchange expectation mediatiory RMM: This derivation only
works if W is white noise,
which is not yet defined.

t S
(L9 = fo fo h(t — ) E(W()W(E))h(s— £) dnde h
t S
_ f f h(t— 1) Q6(n — £)h(s— &) ddg
0 JO

t
- fo h(t— m)Qh(s—n) di
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Now letr = s—t and write

t
pv(r) = py(t.t47) = fo h(t— m)QN(t + 7 — ) dn

t
= j(; h(€)Qh¢+1)dé  (settingé =t—n)

Finally, we lett — co (steady state)

Iim (et 1) = () = [ Qe + 1) (3.18)

If this integral exists, then we can compute the second atdéistics for the output
Y.

We can provide a more explicit formula for the correlationdtionp in terms
of the matrice®\, F andC by expanding equation (3.18). We will consider the gen-
eral case wher@/ € RP andY € RY and use the correlation matiit, s) instead of
the correlation functiop(t, ). Define thestate transition matrixb(t, to) = et-%)
so that the solution of system (3.17) is given by

X(t) = (t, to)X(to) + f t O(t, )FW()dA

fo
Proposition 3.2 (Stochastic response to white noisept E{X(tg) X" (to)} = P(to)
and W be white noise with {B/(1)WT (&)} = Rws(1—&). Then the correlation

matrix for X is given by .
Rx(t,s) = P()®" (s 1)

where Kt) satisfies the linear matrix gierential equation

P(t) = AP+ PAT + FRyWF,  P(0) =Py.
Proof. Using the definition of the correlation matrix, we have

E(XX®)XT (9} = E{®(t, 0)X(0)X" ()@ (t,0) + cross terms
t S
+ f (t,&)FW(£) d¢ f WHA)FTd(s, 1) d/l}
0 0
= O(t,0)E(X(0)X" (0))(s, 0)

t s
T T
+j(; j(; O(t, ) FE{W(EW' (A)}F " d(s, ) déda

= d(t,0)P(0)p' (s,0)+ fo t O(t, )FRw(A)F T d(s, ) dA.

Now use the fact thab(s,0) = ®(s,t)@(t,0) (and similar relations) to obtain
Rx(t,s) = P)®T(s,1)

where

.
P(t) = d(t,0)P(0)d (t,0) + f O(t, H)FRWFT (D)@ (t, 2)dA
0
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Finally, differentiate to obtain
P(t) = AP+PAT +FRyF,  P(0) =Py
(see Friedland for detalils). [0 RMM: Work out

The correlation matrix for the outpt can be computing using the fact that
Y = CX and henceRy = CTRxC. We will often be interested in the steady state
properties of the output, which given by the following prsjion.

Proposition 3.3 (Steady state response to white naid&)r a time-invariant linear
system driven by white noise, the correlation matrices I $tate and output
converge in steady state to

Rx(r) = Rx(t.t+7) = P* ", Ry(r) = CR(r)C"
where P satisfies the algebraic equation
AP+PAT+FRyF'=0 P>0. (3.19)

Add proof, especially the fact th&approaches a constant. RMM

Equation (3.19) is called tHeyapunov equatioand can be solved in MATLAB
using the functioiyap.

Example 3.3 (First-order system)Consider a scalar linear process
X=-aX+W  Y=cX

whereW is a white, Gaussian random process with noise intensityUsing the
results of Proposition 3.2, the correlation function Xois given by
Rx(t,t+7) = p(t)e™™
wherep(t) > 0 satisfies
p(t) = —2ap+ o=
We can solve explicitly fop(t) since it is a (hon-homogeneous) lineafteliential
equation:

2
_ o-2at _ 2at 9
() = &2 p(0)+ (1~ €2

Finally, making use of the fact that= cX we have

2
_ —2a _2ah 9\ ar
p(t,t+7) = (e p(0)+ (1- e ) )e™.

In steady state, the correlation function for the outpubiees

2.2
Co” ar
=——e .
p(0) = —
Note correlation function has the same form as the Ornsthienbeck process in

Example 3.2 (withQ = c?c?). \Y
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RMM Add response to Gaussian process (exercise?)

Random Processes in the Frequency Domain

As in the case of deterministic linear systems, we can apadygtochastic linear
system either in the state space or the frequency domain. régaehcy domain
approach provides a very rich set of tools for modeling aralyeis of intercon-
nected systems, relying on the frequency response anddrduasctions to repre-
sent the flow of signals around the system.

Given a random proceg§t), we can look at the frequency content of the prop-
erties of the response. In particular, if we g€t) be the correlation function for a
(scalar) random process, then we definegbeer spectral density functias the
Fourier transform op:

S(w) = f p(r)e ¥ dr, p(r) = > f S(w)e“" dr.
The power spectral density provides an indication of how lduithe values of
a random process can change through the frequency conitémere is high fre-
guency content in the power spectral density, the valudseafandom variable can
change quickly in time.

Example 3.4 (First-order Markov process)o illustrate the use of these measures,
consider a first-order Markov process as defined in Example 3.2 .cdtrelation
function is

p(T) = ie““O(T)'
2wo
The power spectral density becomes

S@) = [ prevreirgr

0 00
_ [ L geriorg f Q rwjwprgy - @
0 26()0

oo 2w0 2

w? + W
We see that the power spectral density is similar to a trarfefection and we
can plotS(w) as a function ofv in a manner similar to a Bode plot, as shown in
Figure 3.4. Note that althoudgB(w) has a form similar to a transfer function, it is
a real-valued function and is not defined for compdex \%

Using the power spectral density, we can more formally defivieite noise”:

awhite noise process a zero-mean, random process with power spectral density
S(w) = W = constant for alkw. If X(t) € R" (a random vector), thew € R™".
We see that a random process is white if all frequencies arallggepresented in
its power spectral density; this spectral property is tlzsoa for the terminology
“white”. The following proposition verifies that this formakfinition agrees with
our previous (time domain) definition.
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A logS(w)
|

wo logw

Figure 3.4: Spectral power density for a first-order Markov preces

Proposition 3.4. For a white noise process,

p(7) = % I ) S(w)e'“T dr = We(x),
wheres(r) is the unit impulse function.

Proof. If T # 0 then

p(r) = % j:oo W(cosr) + jsinfwrt)dr =0

If 7 =0 thenp(r) = 0. Can show that

p(0) = lim f _:(---)dwdT:W(S(O)

Given a linear system
X=AX+FW,  Y=CX

with W given by white noise, we can compute the spectral densitgtiom cor-
responding to the outpt. We start by computing the Fourier transform of the
steady state correlation function (3.18):

sve)= [ [ [ ) h(f)Qh(§+T)d§] &1 dr

_ fo ) h(.gf)Q[ I : he +7)e 7 df} dé
_ f The)Q [ f " h(e Tet-o d/l] dé
0 0

- fo h(€)e“ dé - QH(jw) = H(- jw)QuH(jw)

This is then the (steady state) response of a linear systerhite moise.
As with transfer functions, one of the advantages of contfmuta in the fre-
guency domain is that the composition of two linear systearslme represented
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_2% N
= = " 2R
P \/me ’ V—| H |—>Y P(y) 2Ry e
Sviw)=Ry Sv(®) = H(-jw)RvH(jw)
X =AX+FV ov(7) = Ry(z) = CPeATICT

7) = Ryo(r
pvir)=Rvo() Y=CX AP+PAT + FR/FT =0

Figure 3.5: Summary of steady state stochastic response.

by multiplication. In the case of the power spectral denditye pass white noise
through a system with transfer functieéh (s) followed by transfer functiomd,(s),
the resulting power spectral density of the output is given b

Sy(w) = Hi(=jw)Ha(-jw)QuH2(jw)H1(jw).

As stated earlier, white noise is an idealized signal thabisseen in practice.
One of the ways to produced more realistic models of noisedistdrbances it
to apply a filter to white noise that matches a measured powestrep density
function. Thus, we wish to find a covarianééand filterH(s) such that we match
the statisticS(w) of a measured noise or disturbance signal. In other wordsng
S(w), find W > 0 andH(s) such thatS(w) = H(-jw)WH(jw). This problem is
know as thespectral factorization problem

RMM Add example

Figure 3.5 summarizes the relationship between the time @gpiéncy do-
mains.

Application to Biomolecular Systems
3.5 Markov chain modeling and analysis

3.6 System identification techniques
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Chapter 4

Feedback Examples

Write up examples from ASCC workshepothers RMM

4.1 The Lac Operon
4.2 Heat Shock Response in Bacteria

4.3 Bacteriophage A

Bacteriophage (also calledl phage or phagg) is a virus that infect&. coliand
propogates itself by integrating its DNA into the genomehaf infected cell. The
virus includes a decision “switch” that determines whetther virus should pro-
pogate itself by DNA integration (tHgsogenighase) or whether it should destroy
the host cell and spread to other nearby bacteridytleephase). In this section we
describe what is known about the modeling of the Igs®geny decision-making
circuitry and explore some of the properties of its dynamics

The material in this section is based on the work of PtasBpé\fkin et al. [?]
and St. Pierre et al?]. The models used to create the plots in this section are

available on the companion web site for the text. RMM: Put copies of the
models there, with
appropriate permissions as

Phage 4 lifecycle needed.

A detailed model for A
Reduced order models for A
Dynamic analysis

Open issues

4.4 Yeast mating response



70

fbkexamps.tex, v0.00 200@5/12 07:03:00 (murray)

CHAPTER 4. FEEDBACK EXAMPLES

A Genstic Switch, 3rd edition, 2004
© Cold Spring Harbor Laboratory Press
Chapter 1, Figure 2

Figure 4.1: Growth cycle of phage From Ptashne.
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Figure 4.2: A detailed circuit diagram for thedecision-making circuit. From Arkin, Ross and
McAdams (1998).
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Figure 4.3: Simulation results using the detailed model.
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Possible “interlude” here to talk about computer modelirgddhat are availableRMM
This could also go before feedback examples chapter.
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PART 2
Design and Synthesis
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Chapter 5

Biological Circuit Components

Add intro paragraph prerequisites DDV

5.1 Biology Circuit Design

Add intro material here making the transition from the poesd chapters into deRMM
sign oriented chapters. Shorten the next paragraph to rdflegrtor discussion
of that material in the earlier chapters.

One of the fundamental building blocks employed in synthkiblogy is the
process of transcriptional regulation, which is found itumal transcriptional net-
works. A transcriptional network is composed of a numberaias that express
proteins that then act as transcription factors for oth@ege The rate at which
a gene is transcribed is controlled by th@moter a regulatory region of DNA
that precedes the gene. RNA polymerase binds a defined sped#dis DNA se-
guence) on the promoter. The quality of this site specifiesrtrestription rate of
the gene (the sequence of the site determines the cherfiicetlyaof RNA poly-
merase to the site). RNA polymerase acts on all of the genesvetr, each
transcription factor modulates the transcription rate séof target genes. Tran-
scription factors fiect the transcription rate by binding specific sites on the pro
moter region of the regulated genes. When bound, they chtaegeobability per
unit time that RNA polymerase binds the promoter region.n$caiption factors
thus dfect the rate at which RNA polymerase initiates transcriptié transcrip-
tion factor can act as repressorwhen it prevents RNA polymerase from binding
to the promoter site. A transcription factor acts asativatorif it facilitates the
binding of RNA polymerase to the promoter. Such interacticans be generally
represented as nodes connected by directed edges. Sybthetiolecular circuits
are fabricated typically in bacterta coli, by cutting and pasting together accord-
ing to a desired sequence genes and promoter sites (natdrahgineered). Since
the expression of a gene is under the control of the upstreamaqier region,
one can this way create a desired circuit of activation apdession interactions
among genes. Early examples of such circuits include anadotivepressor sys-
tem that can display toggle switch or clock behavior [5], @p@scillator called
the repressilator obtained by connecting three inverters iing topology [11],
a toggle switch obtained connecting two inverters in a riaghfon [13], and an
autorepressed circuit [7] (Figure 5.1). Several scientific teatinological devel-
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a) Self repression b) Toggle switch
A C

c) Activator-repressor clock d) Repressilator

Figure 5.1: Early transcriptional circuits that have been fabricated atekia E. coli: the self-
repression circuit [7], the toggle switch [13], the activator-represkick [5], and the repressilator
[11]. Each node represents a gene and each arrow from node ZeoXhndicates that the tran-
scription factor encoded in z, denoted Z, regulates gene x [3]. Ifressps the expression of x, the
interaction is represented byX. If z activates the expression of X, the interaction is represented by
Z—X[3].

opments accumulating over the past four decades have sstatefor the design
and fabrication of early synthetic bio-molecular circfggure 5.2).

An early milestone in the history of synthetic biology cantfzeed back to the
discovery of mathematical logic in gene regulation. Initi&i61 paper, Jacob and
Monod introduced for the first time the idea of gene expressagnlation through
transcriptional feedback [17]. Only a few years later (1969ecial enzymes that
can cut double-stranded DNA at specific recognition sitesyknas restriction
sites) were discovered by Arber and co-workers [4]. Thesgrans, called re-
striction enzymes, were major enabler of recombinant DN¢helogy. One of
the most celebrated products of such a technology is the lsezgle production
of insulin by employingE. coli bacteria as a cell factory [29]. The development
of recombinant DNA technology along with the demonstratiot©970 that genes
can be artificially synthesized, provided the ability to cudl paste natural or syn-
thetic promoters and genes in almost any fashion on size-waspatible plas-
mids. This “cut and paste” procedure is callddning[2]. Cloning of any DNA

RMM: and ??? fragment involves four step$ragmentation, ligation, transfection The DNA of
interest is first isolated. Then, a ligation procedure is eggadn which the am-
plified fragment is inserted into a vector. The vector (whicfreégjuently circular)
is linearized by means of restriction enzymes that cleae iarget sites called
restriction sites. It is then incubated with the fragmenintérest with an enzyme
calledDNA ligase Polymerase chain reaction (PCR), devised in the 1980s, &llow
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Birth of Genetic Birth of Synthetic
Engineering

recombinant DNA

1961 1968 1970 1978 1980s 1983 2000

W Arber discovers First repadter gena
resiriciion enzymes was isolaled: grean ¥ Mullis: Polymerase
(Nabel Prize winner) fiuorescent protein (GFF) Chain Reaclion (PCR) o e in £ coli: Gardner
(exponential amplification et al. foggle swifch, Elowitz
Jacoh and Monod infroduce of DNA) and Leibler repressilator
for the first lime the concepi Insulin became first
of operon regulation DNA synihesis was first recambinant DNA drug
dermonsirated by Har
Gobind Khorana

FEarly “working” synfhelic

Figure 5.2: Milestones in the history of synthetic biology. DDV: Need better quality
picture

then to exponentially amplify a small amount of DNA in amaularge enough to
be used for transfection and transformation in living cglls Today, commercial
synthesis of DNA sequences and genes has become cheapastandaiith a price

often below $ 1 per base pair [6]. RMM: Should probably

. . . _ his; will f
Expand the paragraph below to be a full subsection on regorneiuding proteln[ﬁ%jl;ﬂ?vEt sy willbe outo

fusion versus promoter fusion

Another key enabling technology has been the developmeéntdfo measure-
ment techniques that allow to measure the amount of proteiiuced by a target
gene x. For instance, green fluorescent protein (GFP) is a pwitki the property
that it fluoresces in green when exposed to UV light. It is poadlby the jellyfish
Aequoria victorig and its gene has been isolated so that it can be used as &erepor
gene. The GFP gene is inserted (cloned) into the chromosofaeeatito or very
close to the location of gene x, so both are controlled by déineespromoter region.
Thus, gene x and GFP are transcribed simultaneously and thesidted, so by
measuring the intensity of the GFP light emitted one can egéimow much of x
is being expressed. Other fluorescent proteins, such aswliorescent protein
(YFP) and red fluorescent protein (RFP) are genetic variatiorseoGtP.

Replace the paragraph below with more material on indugestiding both neg-rRMM
ative and postive inducers.

Just as fluorescent proteins can be used as a read out of &, dincuicers
function as external inputs that can be used to probe thersyshducers function
by disabling repressor proteins. Repressor proteins luirtdd DNA strand and
prevent RNA polymerase from being able to attach to the DNA synthesize
MRNA. Inducers bind to repressor proteins, causing themhemge shape and
making them unable to bind to DNA. Therefore, they allow traipdion to take
place.

Take material on electronics and hydraulics and put thermsett” environments,RMM
so that we can format themftirently at a later time. Simple example shown
below.
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Inset (Electronic circuits) One of the current directions of the field is to cre-
ate circuitry with more complex functionalities by asseim@plsimpler circuits,
such as those in Figure 5.1. This tendency is consistent witt hws been ob-
served in the history of electronics: after the bipolar jiort transistor (BJT)
was invented in 1947 by William Shockley and co-workers, tlangistor era
started. A major breakthrough in the transistor era ocduimel964 with the
invention of the first operational amplifier (op amp), which teé way to stan-
dardized modular and integrated circuit design. By conspaw;i synthetic biol-
ogy may be directing toward a similar development, in whiabdoiar and inte-
grated circuit design becomes a reality. This is witnesseddwgral recent ef-
forts toward formally characterizing interconnection m&agisms between mod-
ules, impedance-likefiacts, and op amp-like devices to counteract impedance
problems [14, 24, 23, 10, 22, 26, 25]. o
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Chapter 6

Interconnecting Components

6.1 Input/Output Modeling and the Modularity Assumption

Each node y of a transcriptional circuitry is usually modedesdan inpybutput

module taking as input the concentrations of transcripfamiors that regulate

gene y and giving as output the concentration of proteinesqed by gene y, de-

noted Y. This is not the only possible choice for delimiting aduale: one could in

fact let the messenger RNA (mMRNA) or the RNA polymerase flomaline DNA

(as suggested by [12]) play the role of input and output $gyriEhe transcription

factor enters as input of the transcriptional module thioting binding and unbind-

ing dynamics of the transcription factors with the DNA prdsrosites upstream

of gene y. The internal dynamics of the transcriptional congo is determined

by the transcription and translation dynamitg.he processes of transcription armbV: Here, we should refer
translation are much slower than the binding dynamics ofrtirescription factor toto specific expressions in
the promoter sites on the DNA [3]. Thus, the binding of the $raiption factor to the core processes chapter
the DNA promoter site reaches the equilibrium in seconddgvttanscription and

translation of the target gene takes minutes to hours. Timis ficale separation,

a key feature of transcriptional circuits, leads to thedwihg central modeling

simplification.

M odularity assumption. The dynamics of transcription facfeMNAJ
binding are considered at the equilibrium and each trapiseni factor
concentration enters the inpotitput transcriptional module through
staticinput functions that drive the transcriptjranslation dynamics
(Figure 6.1).

Transcriptional 1/O module

Input Functio Translation |+ »

\

Transcription

£(X)

Figure 6.1: A transcriptional module is modeled as an ifquiput component with input function
given by the transcription regulation functidifX) and with internal dynamics established by the
transcription and translation processes.
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Figure 6.2: The clock behavior can be destroyed by a load. As the ewofilownstream binding
sites for A, proT, is increased in the load, the activator and repressor dynamics loassytiehro-
nization and ultimately the oscillations disappear.

For engineering a system with prescribed behavior, onedtas able to change
the physical features so as to change the values of the peanoé the model.
This is often possible. For example, the bindirtfraty (1/K in the Hill function
model) of a transcription factor to its site on the promotar be &ected by single
or multiple base pairs substitutions. The protein decay(@gstaniv, in equa-
tion (1.13)) can be increased by adding degradation tagsea¢nd of the gene
expressing proteilY (httpy/parts.mit.edtiegistryindex.phgHelp:Tag. (Degrada-
tion) Tags are genetic additions to the end of a sequencédwnialify expressed
proteins in diferent ways such as marking the protein for faster degradafim-
moters that can accept multiple input transcription faci@alled combinatorial
promoters) to implement regulation functions that taketipl@ inputs can be re-

DDV: Check here thealized by combining the operator sites of several simplenmters P].1 For ex-
terminology and the variousample, the operatoBr; — Ore from the promoter of thel bacteriophage can be
ltalics ysed as binding sites for thietranscription factor [21]. Then, the padk, — Ort

from the 434 promoter from the 434 bacteriophage [8] can hequl at the end of
the Or1 — Ore sequence from thé promoter. Depending on the relative positions
of these sites and on their distance from the RNA polymerasdiriy site, the
434 transcription factor may act as a repressor as whenhigip is bound to its
Or2 — Or1 sites it prevents the polymerase to bind, while Aiteanscription factor
may act as an activator.

6.2 Beyond the Modularity Assumption: Retroactivity

In the previous sections, we have outlined a circuit desigicgss, often used
in synthetic biology, that relies on the interconnectionnal characterized in-
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putoutput transcriptional modules through suitable statirfunctions. Exam-
ples of designs performed through this process can be faurichapter 8. It
deeply relies on the modularity assumption, by virtue ofchhthe behavior of
the obtained circuit topology can be directly predicted bg properties of the
composing units. For example, the monotonicity of the infoumictions of the
transcriptional modules composing the repressilator Heen a key feature to
formally show the existence of periodic solutions. The foifrthe input functions
in the activator-repressor clock design have been key ersatd easily predict the
location and number of equilibria as the parameters areggwhnThe modularity
assumption implies that when two modules are connectedhegeheir behavior
does not change because of the interconnection. Howewardafental systems-
engineering issue that arises when interconnecting stdragss how the process
of transmitting a signal to a “downstream” componefieets the dynamic state
of the sending component. Indeed, after designing, testimg characterizing the
inpuoutput behavior of an individual component in isolationisitcertainly de-
sirable if its characteristics do not change substantiahgn another component
is connected to its output channel. This issue, tliece of “loads” on the out-
put of a system, is well-understood in many fields of engimggrior example in
electrical circuit design. It has often been pointed out Hiailar issues arise for
biological systems. Alon states that “modules in engimggrand presumably also
in biology, have special features that make them easily dadxkin almost any
system. For example, output nodes should have ‘low impedase that adding
on additional downstream clients should not drain the dittpaxisting clients (up
to some limit).” An extensive review on problems of loads amodularity in sig-
naling networks can be found in [27, 25, 26], where the astippopose concrete
analogies with similar problems arising in electrical uits.

These questions are even more delicatgyimhetidiology. For example, sup-
pose that we have built a timing device, a clock made up ofwaritof activation
andor repression interactions among certain genes and psot&ilch as the one
of diagram c) of Figure 5.1. Next, we want to employ this clogggtream sys-
tem) in order to drive one or more components (downstrearnesys, by using
as itsoutputsignal the oscillating concentratid(t) of the activator. From a sys-
temgsignals point of viewA(t) becomes ainput to the second system (Figure
6.2). The terms “upstream” and “downstream” reflect the dioacin which we
think of signals as travelingrom the clockto the systems being synchronized.
However, this is only an idealization, because the bindimd) @nbinding of A to
promoter sites in a downstream system competes with thédioical interactions
that constitute the upstream block (retroactivity) and itieyefore disrupt the op-
eration of the clock itself (Figure 6.2). One possible appho® avoid disrupting
the behavior of the clock, motivated by the approach usel sejporters such as
GFP, is to introduce a gene coding for a new protein X, placetbuthe control
of the same promoter as the gene for A, and using the contientt X, which
presumably mirrors that of A, to drive the downstream systérhis approach,
however, has still the problem that the behavior of the X eomr@tion in time



designexamps.tex, v0.00 2008/12 07:03:00 (murray)

84 CHAPTER 6. INTERCONNECTING COMPONENTS

=

- - = =

p P1

Figure 6.3: On the left, we represent a tank system that takes as inmartsint flowfp and gives
as output the pressupeat the output pipe. On the right, we show a downstream tank.

may be altered and even disrupted by the addition of dowanstreystems that
drain X. The net result is still that the downstream systerasat properly timed.

Modeling retroactivity

RMM: This section is T We broadly call retroactivity the phenomenon by which thadséor of an up-
considering some standardtream system is changed upon interconnection to a downstsystem. As a
examples from engineeringjmp|e example, which may be more familiar to an engineegimjence, consider

tor:gjitr:g\t; i:gheoﬁotﬂ?fﬂh;%he one-tank system shown on the left of Figure 6.3. We considenstant input

Zre not usefu{ flow fo as input to the tank system and the pressued the output pipe is con-

sidered the output of the tank system. The correspondingibtigu is given by
k+/p, in whichk is a positive constant depending on the geometry of the syste
The pressure is given by (neglecting the atmospheric pressure for siitp)i
p = ph, in which h is the height of the water level in the tank gnés water den-
sity. LetA be the cross section of the tank, then the tank system campiesented
by the equation

d
Ad—f = pfo—pk P, 6.1)

Let us now connect the output pipe of the same tank to the iripetqf a down-
stream tank shown on the right of Figure 6.3. lpet= ph; be the pressure gener-
ated by the downstream tank at its input and output pipes. , Theflow at the out-
put of the upstream tank will change and will now be giveryty, p1) = k+/Ip— pal

if p> p1 and byg(p, p1) = —k+/Ip— p1l if p< p1. As a consequence, the time be-
havior of the pressur@ generated at the output pipe of the upstream tank will
change to

dp
Aa =pfo—-pg(p. p1)

d
Augt = pa(p. P2) =k VP 6.2)

in which A; is the cross section of the downstream tank land a positive param-
eter depending on the geometry of the downstream tank. Thesnputoutput
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Figure 6.4: A systen® input and output signals. The red signals denote signals originating by
retroactivity upon interconnection.

response of the tank measured in isolation (equation (8de3 not stay the same
when the tank is connected through its output pipe to anadimé&r(equation (6.2)).
We will model this phenomenon by a signal that travels frorwimstream to up-
stream, which we calketroactivity. The amount of such a retroactivity will change
depending on the features of the interconnection and of denstream system.
For example, if the aperture of the pipe connecting the twidds very small
compared to the aperture of an output pipe of the downstreak) the pressure
p at the output of the upstream tank will not change much wherddwnstream
tank is connected.

We thus model a system by adding an additional input, calléd the system
to model any change in its dynamics that may occur upon ioterection with a
downstream system. Similarly, we add to a system a sig@aal another output
to model the fact that when such a system is connected daamstof another
system, it will send upstream a signal that will alter theaiyics of the upstream
system. More generally, we define a systBrto have internal statg, two types
of inputs (1), and two types of outputs (O): an inpwt (l), an output ‘y” (O), a
retroactivity to the input'r” (O), and aretroactivity to the outputs’ (1) (Figure
6.4). We will thus represent a syste3rby the equations

x=f(x,u,9), y=Y(xu,s), r=R(Xu,s), (6.3)

in which f,Y,R are arbitrary functions and the signalsl, s,r,y may be scalars
or vectors. In such a formalism, we define the iriputput model of the isolated
system as the one in equations (6.3) withoint which we have also set= 0. Let
Si be a system with inputs; ands and with outputs; andr;. LetS; andS; be
two systems with disjoint sets of internal states. We defiearterconnection of
an upstream systei®; with a downstream systei®, by simply settingy; = u,
ands; = ro. For interconnecting two systems, we require that the tvetesys do
not have internal states in common.

Retroactivity in gene transcriptional circuits

In the previous section, we have defined retroactivity as @@gérconcept mod-

eling the fact that when an upstream system is ifquiput connected to a down-
stream one, its dynamic behavior can change. In this seatierfocus on tran-

scriptional circuits and show what form the retroactiviyes.

Some of the material below is repeated. Rewrite at some point. DDV
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We denote by X the protein, by (italics) the average protein concentration,
and by x (lower case) the gene expressing protein X. A trgmtgmnal component
that takes as input protein Z and gives as output protein Xasva in Figure 6.5
in the dashed box. The activity of the promoter controllingg& depends on the

Transcriptional component

Q : X Downstream transcriptional com
S ol e
VA N 7 - Nl
\ , ( : '
. / R N
Y/ ' o x
v
......... o X ]

Figure 6.5: The transcriptional component takes as inpptotein concentratioZ and gives as
outputy protein concentratioiX. The transcription factor Z binds to operator sites on the promoter.
The red part belongs to a downstream transcriptional block that tak&sprconcentratioiX as its
input.

amount of Z bound to the promoter.4f= Z(t), such an activity changes with time.
We denote it byk(t). By neglecting the mRNA dynamics, which are not relevant
for the current discussion, we can write the dynamicX e

dX

It = KO -0%, (6.4)

in which¢ is the decay rate of the protein. We refer to equation (6.fhassolated
system dynamics. For the current study, the mRNA dynamiosbeaneglected
because we focus on how the dynamics<oéhanges when we add downstream
systems to which X binds. As a consequence, also the spedifit dd k(t) is
not relevant. Now, assume that X drives a downstream trgotseral module by
binding to a promoter p with concentratign(the red part of Figure 6.5). The
reversible binding reaction of X with p is given by

X+p%‘f C,

in which C is the complex protein-promoter akgh andkyy are the binding and
dissociation rates of the protein X to the promoter site p.c&ithe promoter is
not subject to decay, its total concentratiproT is conserved so that we can write

DDV: Try using braces p+ C = prort. Therefore, the new dynamics ¥fis governed by the equations
instead of box.

O — K~ oX +[koyCKon(Pror—C)X| 5= keyC—kan(Pror~C)X

dC

J¢ = ~4orC +kan(ProT - C)X. (6.5)

in which the terms in the box represent the sigrdhat is, the retroactivity to the
output, while the second of equations (6.5) describes tmamlcs of the input
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stage of the downstream system drivenXayThen, we can interpretas being a
mass flow between the upstream and the downstream system. 3A#terhe first

of equations (6.5) reduces to the dynamics of the isolatstBygiven in equation
(6.4). Here, we have assumed that X binds directly to the ptenp. The case
in which a signal molecule is needed to transform X to thevadorm that then
binds to p, can be treated in a similar way by considering tltgtianal reversible
reaction of X binding to the signal molecule. The end resudtdifing this reaction
is the one of having similar terms in the box of equation (&8plving also the

signaling molecule concentration.

Add examples after the text below showing concrete calidiolas DDV

How large is the gect of the retroactivity s on the dynamics of X and what are
the biological parameters thajjct it? We focus on the retroactivity to the output
s. We can analyze theffect of the retroactivity to the input on the upstream
system by simply analyzing the dynamicsain the presence of its binding sites
po in Figure 6.5 in a way similar to how we analyze the dynamicxah the
presence of the downstream binding sites p. Titiece of the retroactivitys on
the behavior oiX can be very large (Figure?). This is undesirable in a number
of situations in which we would like an upstream system tavilra downstream
one as is the case, for example, when a biological oscillsrto time a num-
ber of downstream processes. If, due to the retroactivigy,autput signal of the
upstream process becomes too low/andut of phase with the output signal of
the isolated system (as in Figure 6.6), the coordination éetwhe oscillator and
the downstream processes will be lost. We next propose @guoe to obtain an
operative quantification of theffect of the retroactivity on the dynamics of the
upstream system.

Quantification of the retroactivity to the output

1 In this section, we propose a general approach for providingperative quanRMM: Please, let me know

tification of the retroactivity to the output on the dynami€sh®e upstream syste mbwmrss feigiree iwou
This approach can be generally applied whenever there isaaatEm of time- R{P&&ida these sections.

scales between the dynamics of the output of the upstrearlmadd the dynam-rF;;uTtZV‘grLﬁE;ghﬁlgas'c

ics of the input stage of the downstream module. This separafitime-scales iSyerivations

always encountered in transcriptional circuits. In falsg tlynamics of the input

stage of a downstream system is governed by the reversiidélgireaction of the

transcription factor with the operator sites. These reastare often on the time

scales of a second and thus are fast compared to the time stdkanscription

and translation (often of several minutes) [3]. These datexnin turn, the dynam-

ics of the output of a transcriptional module. Such a separaif time-scales is

encountered even when we extend a transcriptional netwanickude as intercon-

nection mechanisms between transcriptional modulesiprptetein interactions

(often with a subsecond timescale [28]), as encounterediraktransduction net-

works.
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Figure 6.6: The dramaticfiect of interconnection. Simulation results for the system in equations
(6.5). The green plot (solid line) represe@) originating by equations (6.4), while the blue plot
(dashed line) representgt) obtained by equatior?®). Both transient and permanent behaviors are
different. Herek(t) = 0.01(1+ sin(wt)) with w = 0.005 in the left side plots and = 0 in the right
side plotskon = 10, kg = 10,6 = 0.01, prot = 100, X(0) = 5. The choice of protein decay rate (in
min~1) corresponds to a half life of about one hour. The frequency dflasons is chosen to have

a period of about 12 times the protein half life in accordance to what isiexgetally observed in

the synthetic clock of [5].

We quantify the diference between the dynamicsXin the isolated system
(equation (6.4)) and the dynamics X¥fin the connected system (equations (6.5))
by establishing conditions on the biological parameteas ithake the two dynam-
ics close to each other. This is achieved by exploiting tiffedince of time scales
between the protein production and decay processes anishdisdp and unbind-
ing process to the promoter p. By virtue of this separatiotinoé scales, we can
approximate system (6.5) by a one dimensional system tésgithe evolution of
X on the slow manifold [18]. This reduced system takes the form:

dx - _
e K(t) —6X+s,
whereX is an approximation oK andsis an approximation o§, which can be
written ass= —R(X)(k(t) —6X). If R(X) is zero, then alse= 0 and the dynamics of
X becomes the same as the one of the isolated system (6.4).)Sapproximates
X, the dynamics oK in the full system (6.5) is also close to the dynamics of the
isolated system (6.4) whenew(X) = 0. The factorR(X) provides then a measure
of the retroactivity on the dynamics of. It is also computable as a function
of measurable biochemical parameters and of the si¥niaveling across the
interconnection, as we next illustrate.

Consider again the full system in equations (6.5), in whioh binding and
unbinding dynamics is much faster than protein productiod decay, that is,
Kor > K(t), Kog > 0 [3], andkon = kog/ kg With kg = O(1). Even if the second equa-
tion goes to equilibrium very fast compared to the first one dihove system is not
in “standard singular perturbation form” [18]. To expllgimodel the dfference in
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time scales between the two equations of system (6.5), nadimte a parameter
which we define as = §/Kqys. Sincekoy > 6, we also have that< 1. Substituting
Kogr = 0/€, Kon = 6/(ekq), and lettingy = X+ C (thetotal protein concentration), we
obtain the system in singular perturbation form

— =k(®) —6(y—C)

dC

“dt
This means, as some authors propoﬁdt[‘naty (total concentration of protein)
is the slow variable of the system (6.5) as opposed t@oncentration of free
protein). We can then obtain an approximation of the dynamfcX in the limit

in which € is very small, by setting = 0. This leads to (see [10] for details) the
approximatedX dynamics

dX QYY)
dy

=—0C+ .~ (IOTOT—C)(Y—C)- (6.6)

s = k(t) — X — (k(t) — 6X (6.7)
The smaller, the better is the approximation. Sinkevell approximates for e
small, conditions for which the dynamics of equation (6s@lbse to the dynamics
of the isolated system (6.4) also guarantee that the dysamhiX given in system
(6.5) is close to the dynamics of the isolated system.

The diference between the dynamics in equation (6.7) (the corthegttem
after a fast transient) and the dynamics in equation (6b# igolated system) is
zero when the terrﬂ@ in equation (6.7) is also zero. We thus consider the factor

dy@ as a quantification of the retroactiviafter a fast transient in the approxima-

t|on in whiche ~ 0. We can also interpret the factgﬁ(— as a percentage variation
of the dynamics of the connected system with respect to thardics of the iso-
lated system at the quasi steady state. We next determinghtisgcal meaning
of such a factor by calculating a more useful expressionighatfunction of key
biochemical parameters. By using the implicit functionditean, one can compute
the following expression foﬁj%w:

dy(y) 1 v

V) _ = R(X), (6.8)
d (1+X/kg)?

y 1+ “prot/ka

in which one can verify thaR(X) < 1 (see [10] for details). The expressifiX)
quantifies the retroactivity to the output on the dynamicX after a fast transient,
when we approximatX with X in the limit in which e ~ 0. The retroactivity
measure is thus low if theflénity of the binding sites p is smalk{ large) or if
the signalX(t) is large enough compared |rot. Thus, the expression &(X)
provides an operative quantification of the retroactivitycls an expression can
in fact be evaluated once the association and dissociatiostants of X to p are
known, the concentration of the binding sitegot is known, and the range of
operation of the signaX(t) that travels across the interconnection is also known.
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Therefore, the modularity assumption introduced in Sec#@rolds if the
value of R(X) is low enough. As a consequence, the design of a simpleitircu
motif such as the ones of Figure 5.1 can assume modularitg ifikrconnections
among the composing modules can be designed so that theofe®(X) as given
in expression (6.8) is low.

6.3 Insulation Devices to Enforce Modularity

Of course, it is not always possible to design an intercotimesuch that the
retroactivity is low. This is, for example, the case of an Ibstr that has to time
a downstream load: the load cannot be in general designethamscillator must
perform well in the face of unknown and possibly variabledlgaoperties (Figure
6.2). Therefore, in analogy to what is performed in electr@ecuits, one can
design a device to be placed between the oscillator and #uedo that the device
output is not changed by the load and the device doesffegtahe behavior of the
upstream oscillator. Specifically, consider a systias the one shown in Figure
6.4 that takesl as input and giveg as output. We would like to design it in such
a way that (a) the retroactivity to the input is very small; (b) theffect of the
retroactivity s to the output on the internal dynamics of the system is vergllsm
independently of itself; (c) its inpufoutput relationship is about linear. Such a
system is said to enjoy th@sulation property and will be called an insulation
component or insulation device. Indeed, such a system wiiléifiect an upstream
system because~ 0 and it will keep the same output signaindependentlyf
any connected downstream system. In electronics, amplédmgoy the insulation
property by virtue of the features of the operational ampliftgy amp) that they
employ [?] (Figure 6.7).

The concept of amplifier in the context of a biochemical netwaalks been
considered before in relation to its robustness and insulg@roperty from exter-
nal disturbances ([26] and [25]). Here, we revisit the afigslimechanism in the
context of gene transcriptional networks with the objextif mathematically and
computationally proving how suitable biochemical rediimas of such a mecha-
nism can attain properties (a), (b), and (c).

Retroactivity to the input

In electronic amplifierst is very small because the input stage of an op amp ab-
sorbs almost zero current (Figup&). This way, there is no voltage drop across
the output impedance of an upstream voltage source. Equéti®nquantifies the
effect of retroactivity on the dynamics of as a function of biochemical param-
eters that characterize the interconnection mechanismandfownstream system.
These parameters are thi@rity of the binding site 1kqy, the total concentration

of such binding sitegproT, and the level of the signa{(t). Therefore, to reduce
the retroactivity, we can choose parameters such that i&$pall. A suficient
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Figure 6.7: In diagram (a), we show the basic non-inverting amplifieuttithat is composed of
the op amp plus a feedback circuit. The op amp is the triangular shape kbatda input the
differential voltagev, —V_ and gives as (open) outpMyyt = A(V4 —V_), in which the gainA is
infinity in the ideal op amp. The blue circuit components represent tiib & circuit, while the red
componentis the load. Lettirng=R;/(R1 +Rp), direct computation leads i,; — V. /K asA — co.

That is, the output voltage does not depend on the load: the retroactiviltye toutput is almost
completely attenuated. In diagram (b), we zoom inside the op amp to shoab#teaction of its
internal structure. In an ideal op anff,= oo so that it absorbs almost zero current and any upstream
voltage generator will not experience a voltage drop at its output termipalsinterconnection with

the amplifier. That is, the retroactivity to the input of the amplifier is almosi.ze

condition is to choosky large (low dfinity) and prot small, for example. Having
small value ofptot andor low afinity implies that there is a small “flow” of pro-
tein X toward its target sites. Thus, we can say that a low aetiaty to the input
is obtained when the “input flow” to the system is small. Thigiptetation estab-
lishes a nice analogy to the electrical case, in which lowossttivity to the input
is obtained, as explained above, by a low input current. Snchtarpretation can
be further carried to the hydraulic example. In such an exenifpthe input flow
to the downstream tank is small compared, for example, tatiygut flow of the
downstream tank, the output pressure of the upstream tdhkatbe dfected by
the connection. Therefore, the retroactivity to the inputhaf downstream tank
will be small.

Retroactivity to the output

In electronic amplifiers, thefiect of the retroactivity to the outpwton the am-
plifier behavior is reduced to almost zero by virtue of a lartdpedretically in-
finite) amplification gain of the op amp and an equally large tiegdeedback
mechanism that regulates the output voltage (Figure 6.7hefgerealization of
amplifiers have been previously proposed (see [22], for el@mplowever, such
realizations focus mainly on trying to reproduce the layafuhe device instead of
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Figure 6.8: Diagram (a) shows the basic feedpatiplification mechanism by which amplifiers
attenuate thefect of the retroactivity to the outpst Diagram (b) shows an alternative representa-
tion of the same mechanism of diagram (a), which will be employed to désidmgical insulation
devices.

implementing the fundamental mechanism that allows it tpprly work as an in-
sulator. Such a mechanism can be illustrated in its simpbest by diagram (a) of
Figure 6.8, which is very well known to control engineers. &amplicity, we have
assumed in such a diagram that the retroactigity just an additive disturbance.
The reason why for large gaiiis the dfect of the retroactivitys to the output is
negligible can be verified through the following simple corgtion. The outpuy
is given by

y=G(u-Ky)+s

which leads to G s

~Y17kG "1 KG’

As G grows,y tends tou/K, which is independent of the retroactivisy
Therefore, a central enabler to attenuate the retroacefiiégt at the output of

a component is to (1) amplify through a large gain the inpuhefcomponent and

(2) to apply a large negative output feedback. We next illustthis general idea

in the context of a simple hydraulic system.

y

Hydraulic example.Consider the academic hydraulic example consisting of
two connected tanks shown in Figure 6.9. The objective is tmatte the féect
of the pressure applied from the downstream tank to the egustrtank, so that
the output pressure of the upstream system does not charegetidrdownstream
tank is connected. We let the input fldiy be amplified by a large fact@. Also,
we consider a large pipe in the upstream tank with output @owp, with G’ > k
andG’ > k;. Let p be the pressure at the output pipe of the upstream tank and
p: the pressure at the bottom of the downstream tank. One céy teait the
only equilibrium value for the pressupeat the output pipe of the upstream tank is
obtained forp > p; and it is given by

Gf
G’ + (Kka)/ (I3 + K2

Peq =
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Figure 6.9: We amplify the input flowlg through a large gaic and we apply a large negative
feedback by employing a large output pipe with output fléim/p.

If we let G’ be sufficiently larger thark; andk and we leiG’ = KG for some posi-
tive K = O(1), then forG sufficiently largepeq = (fo/K)?, which does not depend
on the presence of the downstream system. In fact, it is thee s the equilib-

rium value of the isolated upstream systéa% =pGfo—pG /p—-pk+/p for G
suficiently large and foG” = KG with K = O(1).

Coming back to the transcriptional example, consider th@r@pmated dy-
namics of equation (6.7) foX. Let us thus assume that we can apply a gaio
the inputk(t) and a negative feedback ga®i to X with G’ = KG. This leads to
the new dfferential equation for the connected system (6.7) given by

‘2_1( = (GK(t) - (G’ +6)X) (L - d(1)), (6.9)

in which we have defined(t) := dé—(y”) wherey(t) is given by the reduced system

%’ = Gk(t) = (G +8)(y—y(y)). It can be shown (se€] for details) that a& and
thus agG’ grow, the signak(t) generated by the connected system (6.9) becomes
close to the solutioiX(t) of the isolated system
(31_)'[( = Gk(t) - (G"+ )X, (6.10)
that is, the presence of the disturbance telth) will not significantly &fect the
time behavior ofX(t). Sinced(t) is a measure of the retroactivityfect on the
dynamics ofX, such an ffect is thus attenuated by employing large g&rendG’.
How can we obtain a large amplification gain G and a large negafeedback G
in a biological insulation componentPhis question is addressed in the following
chapter, in which we show two possible realizations of iagah devices.
+ DDV: You should put some
of the frequency analysis of
retroactivity on the

. .. . . . linearized system with its
6.4 Design of genetic circuits under the modularity assumption Bode plots

Based on the modeling assumptions introduced in Chapted bairthe tools for
studying the dynamics of a nonlinear system introduced iap@dr 2, a number of
synthetic genetic circuits have been designed and fabdday composing tran-
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scriptional modules through ingotutput connection (Figure 5.1). Through such
a design procedure one seeks to predict the behavior of @itdirg the behavior
of the composing units, once these have been well charaetkin isolation. This
approach is standard also in the design and fabricatiorecfrehic circuitry.

DDV: Explain how this ¥
analysis is related to the

modularity assumption of .
the earlier chapter 1 N€ repressilator

Elowitz and Leibler [11] constructed the first operational batry genetic circuit
consisting of three repressors arranged in ring fashichcamed it the “repressi-
lator” (See diagram d) of Figure 5.1). The repressilator exbiginusoidal, limit
cycle oscillations in periods of hours. The dynamical modehe repressilator
can be thus obtained my composing three transcriptionauteedn a loop fash-
ion through input functions as in expressi@?), Re-arranging the parameters, it
can thus be described by

fa=—ora+ f1(C)

AZ ra—oA

fg=-org+ f2(A)

BZ rg—oB

f'C = —(5I’C + fg(B)

C=rc-6C, (6.11)

where we consider two fierent cases for the shape of the input functiGnthree
identical repressions (the symmetric case) or two idehgictivations and one re-
pression (the non-symmetric case). For the symmetric eas#us assume that

2
fi(p) = f2(p) = f3(p) =

Since the regulation functions have all negative slope, hercktis an odd number

of them in the loop, there is only one equilibrium. One camthwoke Mallet-

Paret’s Theorem [19] or Hastings’ Theorefj (see Chapter 2 for the details) to

conclude that if the equilibrium point is unstable, the systadmits a non-constant

RMM: How much detail in periodic orbitf(see [?] for a detailed application of these theorems). Thus, one can

the application of suchsearch for parameter values to guarantee the instabilitijeoequilibrium point.
theorems do we want?rhis procedure was followed b@in the design of the repressilator. In particular,

one can show that the repressilator in equations (6.11) pasi@dic solution for

the ratioa/§ satisfying the relation

2 o o 43 4/3
ARy Sy

For the proof of this statement, the reader is referred?to This relationship
is plotted in the left plot of Figure 6.10. Whenincreases, the existence of an
unstable equilibrium point is guaranteed for larger rargfethe other parameter

1+p"
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Repressilator (symmetric case) Repressilator (symmetric case)

w0l p larger & gives less sensitivity
70k REGION THAT GIVES RISE. TO OSCILLATIONS

a?/ 82
period

Figure 6.10: (Left) Space of parameters that give rise to oscillatiorteéaepressilator in equations
(??). (Right) Period as a function éfande.

values. Equivalently, for fixed values afandd, asn increases the robustness of
the circuit oscillatory behavior to parametric variatianghe values ofx andé
increases. Of course, this “behavioral” robustness doegumrantee that other
important features of the oscillator, such as the periodejadre slightly changed
when parameters vary. Numerical studies indicated thapé¢hnied T approxima-
tively follows T « % and varies only little withy (right plot of Figure 6.10). From
the figure, we can note that as the valuejaficreases, the sensitivity of the pe-
riod to the variation ob itself decreases. However, increasingould necessitate
the increase of the cooperativity therefore indicating a possible trad#& that
should be taken into account in the design process in ordealemce the system
complexity and robustness of the oscillations.

A similar result for the existence of a periodic solution dan obtained for
the non-symmetric case in which the input functions of thedrtranscriptional
modules are modified to

2

f1(p) = —3

1(p) = T+p
a,2pn

fa(p) = Trp
azpn

that is, two interactions are activations and one only ispeassion. One can
verify that there is one equilibrium point only and againdke Mallet-Paret’s

Theorem [19] or Hastings’ Theorerf][to conclude that if the equilibrium point is
unstable, the system admits a non-constant periodic soluthe can thus obtain
the condition for oscillations again by establishing cdiodis on the parameters
that guarantee an unstable equilibrium. These conditiomsegrorted in Figure
6.11 (see?] for the detailed derivations). One can conclude that itasgible to
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Figure 6.11: Space of parameters that give rise to oscillations for gnesslator (non-symmetric
case).

“over design” the circuit to be in the region of parametercgpthat gives rise to
oscillations. It is also possible to show that increasirggritbmber of elements in
the oscillatory loop, the value ofsuficient for oscillatory behavior decreases. The
design criteria for obtaining oscillatory behavior aredlmummarized in Figures
6.10 and 6.11.

The activator-repressor clock

Consider the activator-repressor clock diagram shown iar€i$.1 c). The tran-
scriptional module for A has an input function that takes tmjouts: an activator
A and a repressor B. The transcriptional module B has an imnation that takes
only an activator A as its input. Lef andrg represent the concentration of m-
RNA of the activator and of the repressor, respectively. Aetind B denote the
protein concentration of the activator and of the repressspectively. Then, we
consider the following four-dimensional model describthg rate of change of
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Figure 6.12: Shape of the curves in theB plane corresponding tg =0, B=0 andtara =0, A=0as
function of the parameters. Letting; = K1(k1/(6164)), Kao = Kao(k1/(6164)), K2 = Ka(ka/(6268)),

Ko = Kpo(ke/(6268)), we haveAn = &L (1 (cog4/3)~ V3sin($/3))), Am = o + o-cog4/3),
671 6y1 " 3
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the species concentrations:
f'AI —51/6 ra+ Fl(A, B)
A=v(-6pA+Ki/erp)
fg=—02/€rg+F2(A)
B=—-6gB+ky/erp, (6.12)

in which the parameter regulates the dierence of time-scales between the re-
pressor and the activator dynamiess a parameter that regulates th&elience

of time-scales between the m-RNA and the protein dynamice pdrametee
determines how close model (6.12) is to a two-dimensionadehim which the
m-RNA dynamics are considered at the equilibrium. Thus,a singular pertur-
bation parameter (equations (6.12) can be taken to stasgaydlar perturbation
form by considering the change of variabfas=ra/e andrg = rg/€). The details
on singular perturbation can be found in Chapter 2. The fanstt; andF; are
the input functions and are given by

= (A,B)— KlAn+KAO
B T 1y A 9,8
KzAn + KBQ
Fa(A) = RPN

in which K; and K, are the maximal transcription rates, whikeg and Kgg are
the basal transcription rates when no activator is preséné Hill codficientn
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Figure 6.13: Design chart for the relaxation oscillator. One obtainsisast@scillations passed
the Hopf bifurcation, for values of suficiently large independently of theftérence of time scales
between the protein and the mRNA dynamics. We also notice that therelaes vy for which a
stable equilibrium point and a stable orbit coexist and valuedarfwhich two stable orbits coexist.
The interval ofy values for which two stable orbits coexist is too small to be able to numerically
setv in such an interval. Thus, this interval is not practically relevant. The gabfie for which a
stable equilibrium and a stable periodic orbit coexist is instead relevant.sithéion corresponds

to thehard excitationcondition [?] and occurs for realistic values of the separation of time-scales
between protein and m-RNA dynamics. Therefore, this simple oscillattif described by a four-
dimensional model can capture the features that lead to the long termessiom of the rhythm by
external inputsBirhythmicity[?] is also possible even if practically not relevant due to the numerical
difficulty of moving the system to one of the two periodic orbits. For more detaiésrehder is
referred to P, ?].

is chosen here to be= 2. The values ot and ofv do not dfect the number of
equilibria of the system, while the values of the other paatams are the ones that
control the number of equilibria. The set of valuesefk;, 5i,vi,5a, g that allow
the existence of a unique equilibrium can be determined byl@ymg graphical
techniques. In particular, we can plot the curves corregipgnto the sets oA, B
values for whichrg = 0 andB = 0 and the set oA, B values for whichra = 0 and
A=0asinFigure 6.12. The intersection of these two curves peswuite equilibria
of the system and conditions on the parameters can be dattrthat guarantee
the existence of one equilibrium only. In particular, weuieg that the basal ac-
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tivator transcription rate wheB is not present, which is proportional #no, is
suficiently smaller than the maximal transcription rate of tie@vator, which is
proportional toK1. Also, Kag must be non-zero. Also, in casg >> Kag, one can
verify that Ay ~ K1/2y; and thusM ~ K1/2+/y1y2. As a consequence, i€1/y1

increases then so must #@/ys. Finally, Am ~ 0, andm= /Kao/y2Am. As a
consequence, the smallégg becomes, the small&gy must be (see?] for more
details). Assume that the values I§f, ki, i, vi,da,6g8 have been chosen so that
there is a unigue equilibrium and we numerically study theuoence of periodic
solutions as the étierence in time-scales between protein and m-R&A&nd the
difference in time-scales between activator and repressae changed. In partic-
ular, we perform bifurcation analysis withandv the two bifurcation parameters.
These bifurcation results are summarized by Figure 6.13. Tdueras referred to
[?] for the details of the numerical analysis. In terms ofétamdy parameters, itis
thus possible to “over design” the system: if the activatgrainics is stliciently
sped up with respect to the repressor dynamics, the systemmpgers move across
a Hopf bifurcation (Hopf bifurcation was introduced in Cleq®) and stable oscil-
lations will arise. From a fabrication point of view, the aetior dynamics can be
sped up by adding suitable degradation tags to the actipadtein. The region of
the parameter space in which the system exhibits almoss$aidal damped oscil-
lations is on the left-hand side of the curve correspondirttpé Hopf bifurcation.
Since the data of [5] exhibits almost sinusoidal damped lagicihs, it is possible
that the clock is operating in a region of parameter spaceetieft” of the curve
corresponding to the Hopf bifurcation. If this were the ¢asereasing the separa-
tion of time-scales between the activator and the repregsmay lead to a stable
limit cycle.

6.5 Biological realizations of an insulation component

In the previous section, we have proposed a general mechamigrder to create

an insulation component. In particular, we have specified bow/ can alter the
biological features of the interconnection mechanism @eoto have low retroac-
tivity to the inputr and we have shown a general method to attenuate the retroac-
tivity to the outputs. Such a method consists of a large amplification of the input
and a large negative output feedback. The insulation comtevi# be inserted in
place of the transcriptional component of Figure 6.5. This guilarantee that the
system generating Z, an oscillator, for example, will mamtae same behavior
as in isolation and also that the downstream system thapexes its input will

not alter the behavior aX. The net result of this is that the oscillator generating
signalZ will be able to time downstream systems with the desiredehad ampli-
tude independently of the number and the features of doeanstisystems. In this
section, we determine two possible biological mechanidras ¢an be exploited

to obtain a large amplification gain to the inpatof the insulation component
and a large negative feedback on the oufputf the insulation component. Both
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mechanisms realize the negative feedback through enhdegeadation. The first
design realizes amplification through transcriptionahatibn, while the second
design through phosphorylation of a protein that is in alauoee in the system.

Design 1: Amplification through transcriptional activation

In this design, we obtain a large amplification of the inpuhaig(t) by having
promoter p (to which Z binds) be a strong, non leaky, promoter. The negati
feedback mechanism oX relies on enhanced degradation of X. Since this must
be large, one possible way to obtain an enhanced degradatiohis to have a
protease, called Y, be expressed by a strong constitutiveqter. The protease Y
will cause a degradation rate for X, which is larger if Y is m@bundant in the
system. This design is schematically shown in Figure 6.14.

4 Insulation component X
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Figure 6.14: We highlight in blue the parts that Designfeets. In particular, a negative feedback
occurring through post-translational regulation and a promoter thaupes a large signal ampli-
fication are the central parts of this design. The red part indicates thestt@am component that
takes as input the concentration of protein X.

In order to investigate whether such a design realizes a kmplification and
a large negative feedback ohas needed, we analyze the full infouttput model
for the block in the dashed box of Figure 6.14. In particulae éxpression of
gene x is assumed to be a two-step process, which incorpaatse the mRNA
dynamics. Incorporating these dynamics in the model is/aglefor the current
study because they may contribute to an undesired delayekattheZ and X
signals. The reaction of the protease Y with protein X is medels the two-step
reaction

X+Y & Wby,

which can be found in standard references (8gdqgr example). The inpubutput
system model of the insulation component that takes an input and givex as
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an output is given by the following equations

dz
< = KO —6Z+’ k_-Zp—k:Z(poToT - Zp) \ (6.13)
dz,
dd—”t*" = GZy— 61y (6.15)
dXx
St =M~ Y X+ 712W = 62X + | koC —konX(proT-C) | (6.16)
%V =1 XY = 72W — W (6.17)
?TT = 1Y X+BW+aG —yY + W (6.18)
dC
ot = KorC +konX(pror-C), (6.19)

in which we have assumed that the expression of gene z isotledtby a pro-
moter with activityk(t). These equations will be studied numerically and analyzed
mathematically in a simplified form. The varialdg is the concentration of pro-
tein Z bound to the promoter controlling genepg,tot is the total concentration
of the promoter g controlling gene xmy is the concentration of messenger RNA
of X, C is the concentration of X bound to the downstream bindiregsitith total
concentrationpror, v is the decay rate of the protease Y. The valu&as the
production rate of X mRNA per unit concentration of Z boundhe promoter
controlling x; the promoter controlling gene y has streng®) for some constant
a, and it has the same order of magnitude strength as the peomttrolling x.
The terms in the box in equation (6.13) represent the refxdigct to the input

of the insulation component in FiguR?. The terms in the box in equation (6.16)
represent the retroactivity to the output of the insulation component of Figure
??. The dynamics of equations (6.13)—(6.19) withe(the elements in the box in
equation (6.16)) describe the dynamicsivith no downstream system.

We mathematically explain why system (6.13)—(6.19) alldwsattenuate the
effect of s on theX dynamics. Equations (6.13) and (6.14) simply determine the
signalZp(t) that is the input to equations (6.15)—(6.19). For the dismn regard-
ing the attenuation of theffect of s, it is not relevant what the specific form of sig-
nalZ(t) is. Let thenZy(t) be any bounded signg(t). Since equation (6.15) takes
v(t) as an input, we will have thay = Gv(t), for a suitable signal(t). Let us as-
sume for the sake of simplifying the analysis that the pisg@aaction is a one step
reaction, that is, X Y &5 Y. Therefore, equation (6.18) simplifies%é =aG-yY
and equation (6.16) simplifies @5 = yMy —BY X—= 62X+ KogC — konX(pr 0T - C).

If we consider the protease to be at its equilibrium, we hheeX(t) = aG/y. As
a consequence, thedynamics becomes

>

(jj_)t( = vGW(t) — (ﬂa/G/y+52)X+’ KofC = konX(proT - C)
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Figure 6.15: Design 1: results forftBrent gain<s. In all plots, red (dotted line) is the inpitto

the insulation device, green (solid line) is the outudf the insulation device in isolation (without
the downstream binding sites p), blue (dashed line) is the oxtmftthe insulation device when
downstream sites p are present. In all pléd¢) = 0.01(1+ sin(wt)), prot = 100, Koy = Kon = 10,

6 = 0.01, andw = 0.005. The parameter values ate= 0.01, pptor=1,71=1n2=8=7 =0.01,

k. =200,k; =10,¢=0.1,62=0.1,v=0.1, andG = 1000 100 10,1. The retroactivity to the output
is not well attenuated for values of the g&@n= 1 and the attenuation capability begins to worsen for
G =10.

with C determined by equation (6.19). By using the same singuldufiation
argument employed in the previous section, we obtain treatlyimamics o will
be after a fast transient approximatively given by

O — 66 - (B + 52)X)(1- (). (6.20)

in which 0< d(t) < 1 is the dfect of the retroactivitys. Then, a$G increasesX(t)
becomes closer to the solution of the isolated system

dX _
i vGV(t) — (BaG/y + 62) X,
as explained in SectioPR?.
We now turn to the question of minimizing the retroactivitythe inputr be-

cause its ffect can alter the input signa(t). In order to decrease we guarantee

1See the supplementary material for the mathematical details.
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that the retroactivity measure given in equati@®){s small. This is seen to be true
if (kg +2)?/(poToTka) is very large, in which kg = k, /k_ is the dfinity of the
binding site p to Z. Since after a short transie@dly = (po.To1Z)/(Kd + Z), for Z,
not to be a distorted version &f it is enough to ask th& > Z. This, combined
with the requirement thakg + Z)?/(poToTka) is very large, leads to the require-
ment potot/Kg < 1. Summarizing, for not having distortiorffects betweeiz
andZ, and small retroactivity, we need that

kg > Z andpgTot/Ky < 1. (6.21)

Simulation results. Simulation results are presented for the insulation system
of equations (6.13)—(6.19) as the mathematical analysssicii a system is only
valid under the approximation that the protease reacticm asie step reaction.
In all simulations, we consider protein decay rates to fHrin! to obtain

a protein half life of about one hour. We consider always @opér forcing
k(t) = 0.01(1+ sin(wt)), in which we assume that such a periodic signal has been
generated by a synthetic biological oscillator. Thereftire oscillating signals are
chosen to have a period that is about 12 times the proteirlifealh accordance

to what is experimentally observed in the synthetic clock?hfAll simulation re-
sults were obtained by using MATLAB (Simulink), with variabkeg ODE solver
ODEZ23s. For large gain§(= 1000,G = 100), the performance considerably im-
proves compared to the case in whiXiwas generated by a plain transcriptional
component accepting as an input (Figure 6.6). For lower gairs € 10,G = 1),

the performance starts to degrade@¢ 10 and becomes not acceptable®« 1
(Figure 6.15). Since we can vie® as the number of transcripts produced per
unit time (one minute) per complex of protein Z bound to préengy, values

G =100,1000 may be diicult to realizein vivo, while the value$s = 10,1 could

be more easily realized. The values of the parameters chodéigure 6.15 are
such thaky > Z andpotot < Kg. This is enough to guarantee that there is small
retroactivityr to the input of the insulation device independently of thiigaof

the gainG, according to relations (6.21). The poorer performance efdbvice
for G = 1 is therefore entirely due to poor attenuation of the retigdy sto the
output.

Design 2: Amplification through phosphorylation

In this design, the amplification & is obtained by havin@ activate the phos-
phorylation of a protein X, which is available in the systamabundance. That is,
Z is a kinase for a protein X. The phosphorylated form of X, e@lIK,, binds to
the downstream sites, while X does not. A negative feedbacKpis obtained
by having a phosphatase Y activate the dephosphorylatipnodéin X,. Protein
Y is also available in abundance in the system. This mechaissihepicted in
Figure 6.16. A similar design has been proposed by [26, 25}hich a MAPK
cascade plus a negative feedback loop that spans the |entyh MAPK cascade
is considered as a feedback amplifier. Our design is much simagl it involves



designexamps.tex, v0.00 2008/12 07:03:00 (murray)

104 CHAPTER 6. INTERCONNECTING COMPONENTS

Insulation component

Figure 6.16: The dashed box contains the insulation device. The bligehpginlight the mechanism
that provides negative feedback and amplification. Negative fekdizairs through a phosphatase
Y that converts the active fornXp back to its inactive formX. Amplification occurs through Z
activating the phosphorylation of X.

only one phosphorylation cycle and does not require thetiaddi feedback loop.
In fact, we realize a strong negative feedback by the actidineophosphatase that
converts the active protein formpXo its inactive form X. This negative feedback,
whose strength can be tuned by varying the amount of phasgdat the system,
is enough to mathematically and computationally show thadesired insulation
properties are satisfied.

We consider two dferent models for the phosphorylation and dephosphoryla-
tion processes. A one step reaction model is initially cdergd to illustrate what
biochemical parameters realize the input g@irand the negative feedback.
Then, we turn to a more realistic two step model to perform arpatric analysis
and numerical simulation. The one step model that we considke one of [15]:

Z+X 874X,

and
Y + X, BY +X.

We assume that there is plenty of protein X and of phosphatdeethe system
and that these quantities are conserved. The conservatingofes X + Xp +

C = Xtor, in which X is the inactive protein, Xis the phosphorylated protein
that binds to the downstream sites p, and C is the complexegpliosphorylated
protein X, bound to the promoter p. Thg, dynamics can be described by the first
equation in the following model

dX X
d_tp =laXrorz() (l_ XT(ZT N XTCOT )_ koY % +’ Ko C —konXp(ProT - CG'PZ)
O ey +korXp(proT—C). (6.23)

The boxed terms represent the retroactigtyp the output of the insulation sys-
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tem of Figure 6.16. For a weakly activated pathway ([1%}),< XroT. Also,
if we assume that the concentration of total X is large comgbdo the concen-
tration of the downstream binding sites, thatfsot > proT, equation (6.22) is
approximatively equal to

dXo

T3 = ki Xto1Z(t) - kZYXp + koﬁC - konxp(pTOT -C).

DenoteG = ki Xtot andG’ = koY. Exploiting again the dierence of time scales
between theX, dynamics and th€ dynamics, after a fast initial transient, the
dynamics ofX, can be well approximated by

dXp ,
¢ = (GZM)-G'Xp)(1-d(). (6.24)

in which 0< d(t) < 1 is the dfect of the retroactivitys to the output after a short

transient. Therefore, fd andG’ large enoughXp(t) tends to the solutioX(t)

of the isolated systen‘% = GZ(t) - G'X,, as explained in SectidPP2. As a con-

sequence, thefiect of the retroactivity to the outputis attenuated by increasing
kiXtoT andkoY enough. That is, to obtain large input and feedback gains, one
should have large phosphorylatidephosphorylation rates giod a large amount

of protein X and phosphatase Y in the system. This revealstiteavalues of

the phosphorylatigdephosphorylation rates cover an important role toward the
realization of the insulation property of the module of Figy@ap.

We next consider a more complex model for the phosphorylatitd dephos-
phorylation reactions and perform a parametric analystsdblight the roles of
the various parameters for attaining the insulation priger In particular, we
consider a two-step reaction model such as those in [16]orireg to this model,
we have the following two reactions for phosphorylation aeghosphorylation,
respectively:

X+Z %cl'_%xpu, (6.25)
and
Y +XpBC BX+Y, (6.26)

in which G is the [protein Xkinase Z] complex and £1s the [phosphatase/proteirfj
Xp] complex. Additionally, we have the conservation equaitror =Y +Co, Xrot =}
X+ Xp+C1+Cy+C, because proteins X and Y are not degraded. Therefore, the

2See the supplementary material for the mathematical details.
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differential equations modeling the insulation system of Figuté become

dz
d_ =k(t)-6Z —-p1Z%ror(1- XTOT X(T:<13T - X(T:<2)T - XTCOT + (B2 +ki)AB;27)
ar =—(B2+k1)C1+B1ZXr01(1— x T Ko Xoor | Xror ) (6.28)
dC C
—2 = (ke +a2)Co + a1YrorXp(l- 2y (6.29)
dt YTOT
dX
ot —P =Kk C1 + @2Co— a1 YrorXp(1- —) +’ KofC — konXp(pProT - C) ‘ (6.30)
dC
= —kogC + konXp(proT - C), (6.31)

in which the expression of gene z is controlled by a promotién activity k(t).

The terms in the large box in equation (6.27) represent theaetivity r to the
input, while the terms in the small box in equation (6.27) amdhe boxes of
equations (6.28) and (6.30) represent the retroactsitythe output. We assume
that Xtot > prot SO that in equations (6.27) and (6.28) we can neglect the term
C/XtoT1 becauseC < pyoT7. Also, phosphorylation and dephosphorylation reac-
tions in equations (6.25) and (6.26) can occur at a muchrfaste (on the time
scale of a second?]) than protein production and decay processes (on the time
scale of minutes [3]). Choosingror and Yot suficiently large, the separation

of time-scales between equation (6.27) and equations{6.38) can be explicitly
modeled by letting = /Ko, Kon = Kog/Kad, and by defining the new rate constants
by = B1X7oT1€/6, a1 = a1YToTE/S, b2 = Bo€/6, ar = are/d, C = €kj/5. Letting
z=Z+Cq (the total amount of kinase) be the slow variable, we obtaénsystem

in the standard singular perturbation form

d
=k -0z-Cy)

dC1 X Cl CZ

—— =-8(b2 +¢1)Cy +6b1(z— Cy)(1- -

It (b2 +¢1)Cyp + by (z—Ca)( Xror  Xror  Xror

dCz_ C2

EW =-0(C2+ap)Co + a1 Xp(1- r)

dXp

EW—50101+58.2C2 6a1Xp(1——)+’6C 6/kd(prot— C)Xp‘
0T = ~oC+ o ka(pror—C)Xp, (6.32)

in which the boxed terms represent the retroactivity to tinpuat s. We then com-
pute the dynamics on the slow manifold by letting 0. When we set = 0, the
terms due to the retroactivityvanish. This means that if the internal dynamics of
the insulation device evolve on a time scale that is muclefdaktin the dynamics
of the input signak, then (provided we also havé ot > proT) the retroactivity
sto the output has nofkect on the dynamics of, at the quasi steady state. This
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is a crucial feature of this design. Letting= (82 + k1)/B1 andy = (a2 + ko) /a1,
settinge = 0 in the third and fourth equations of (6.32) the followingat®nships
can be obtained:

XpYTOTkz XpYTOT
=F1(Xp) = = =F = :
C1=Fi(Xp) = X Xp/ : 2(Xp) = ToX o Xp/ (6.33)
Using expressions (6.33) in the second of equations (6.8R)en= O leads to
b1Z Xp  Fa(Xp)
F1(Xp)(b2+C1+ ———) = by Z(1— c—— — — 2Py (6.34)
XTotT Xtor  XtoT

Assuming for simplicity thalX, < y, we obtain thaF1(X,) ~ X"—YYT%'(Z and that
Fo(Xp) = %YTOT. As a consequence of these simplifications, equation (6234ls!
to biZ
Xp = 5 YTOT 2 =m(2).
2Z (1+ Yror/y+ (Yrotke) /(ka)) + (b2 + Cl)

In order not to have distortion fro to X, we require that

Yrorg
ki
VA S L y

, (6.35)
Yror , Yror ke

so thatm(Z) ~ éTg—T?f and therefore we have a linear relationship betw¥gn

andZ with gain fromZ to X, given by XTOT?‘; In order not to have attenuation
from Z to Xp we require that the gain is greater than or equal to one,shat i

Xrotyk
YroTyke
Requirements (6.35), (6.36), aig) < y are enough to guarantee that we do not
have nonlinear distortion betweéhand X, and thatX, is not attenuated with
respect tZ. In order to guarantee that the retroactivity the input is sfficiently
small, we need to quantify the retroactivitffect on theZ dynamics due to the
binding of Z with X. To achieve this, we proceed as in Secf?@rby computing
the Z dynamics on the slow manifold, which gives a good approxiomadf the
dynamics oZ if e ~ 0. Such a dynamics is given by

- o-(1- 2 32).

input/output gains >1 (6.36)

in which g;l ddz measures thefiect of the retroactlwty to the input on thez

dynamics. Direct computation (ﬂ‘— and of anng with X, <y and with

(6.35) leads tcﬂTp 1z ~ Xtot/v, so thatin order to have small retroactivity to the

input, we require that
XroT

Y

< 1 (6.37)
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Phosphorylation and dephosphorylation with fast time scale
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Figure 6.17: Simulation results for system in equations (6.27-6.38Il ptots, prot = 100,kyy =
kon = 10, 6 = 0.01, k(t) = 0.01(1+ sin(wt)), andw = 0.005. In subplots A and Bk; = ky = 50,
a1 =1 =0.01, 82 = @2 = 10, andY7o1 = XToT = 1500. In subplot A, the signafy(t) without
the downstream binding sites p is in green (solid line), while the same signatheittiownstream
binding sites p is in blue (dashed line). The small error shows thatftketef the retroactivity
to the outputs is attenuated very well. In subplot B, the sigizdt) without X to which Z binds
is in red (solid), while the same sign&(t) with X present in the systenXgot = 1500) is in black
(dashed line). The small error confirms a small retroactivity to the iffhe.values of the complexes
concentration€; andC; oscillate about 0.4, so they are comparable to the valuXg.of

Concluding, for having attenuation of th&ect of the retroactivity to the output
s, we require that the time scale of the phosphorylgtiephosphorylation reac-
tions is much faster than the production and decay procedgséqthe input to
the insulation device) and thXt ot > prorT, that is, the total amount of protein
Xis in abundance compared to the downstream binding sitd® mbtain also a
small dfect of the retroactivity to the input, we require that> Xtot as estab-
lished by relation (6.37). This is satisfied if, for exampladse Z has lowfénity
to binding with X. To keep the inpfdutput gain betweed and X, close to one
(from equation (6.36)), one can choo%eoT = Y1oT, and equal cd&cients for
the phosphorylation and dephosphorylation reactionsjshga =y andk; = k.
Simulation results. System in equations (6.27—6.31) was simulated with and
without the downstream binding sites p, that is, with andhauit, respectively, the
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terms in the small box of equation (6.27) and in the boxes iraggns (6.30) and
(6.28). This is performed to highlight théfect of the retroactivity to the outpst
on the dynamics oXp. The simulations validate our theoretical study that intisa
that whenXy ot > prot and the time scales of phosphorylafidephosphorylation
are much faster than the time scale of decay and productitimegfrotein Z, the
retroactivity to the outpusis very well attenuated (Figure 6.17, plot A). Similarly,
the time behavior o was simulated with and without the terms in the large box
in equation (6.27), that is, with and without X to which Z b&do verify whether
the insulation component exhibits retroactivity to theutp. In particular, the
accordance of the behaviorsaft) with and without its downstream binding sites
on X (Figure 6.17, plot B), indicates that there is no sub&hrgtroactivity to the
inputr generated by the insulation device. This is obtained becétise < y as
indicated in equation (6.37), in which/iL can be interpreted as théiaity of the
binding of X to Z. Our simulation study also indicates thatstéatime scale of the
phosphorylatiofdephosphorylation reactions is necessary, even for hilglesaf
XtoT1 andY7oT, to maintain perfect attenuation of the retroactivity te tiutput

s and small retroactivity to the output In fact, slowing down the time scale of
phosphorylation and dephosphorylation, the system lobs@ssulation property
(Figure 6.18). In particular, the attenuation of theet of the retroactivity to
the outputsis lost because there is not enough separation of time Soetegen
theZ dynamics and the internal device dynamics. The device afgmalis a non
negligible amount of retroactivity to the input becausedbeditiony < Xrort is
not satisfied anymore.

T DDV: Should put the
frequency analysis of the
linearized Ph@epho
device and Bode plots
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Phosphorylation and dephosphorylation with slow time scale
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Figure 6.18: In all plotspror = 100 andkqy = kon = 10, § = 0.01, k(t) = 0.01(1+ sin(wt)), and

w = 0.005. Phosphorylation and dephosphorylation rates are slower thangkéwoFigure 6.17, that
is, k1 = ko = 0.01, while the other parameters are left the same, thapis,3> = 10,1 =1 = 0.01,
andYtot = XtoT = 1500. In subplot A, the signadp(t) without the downstream binding sites p is in
green (solid line), while the same signal with the downstream binding sites pligser{dashed line).
The dfect of the retroactivity to the outpstis dramatic. In subplot B, the signa(t) without X in
the system is in red (solid line), while the same sigh@) with X in the system is in black (dashed
line). The device thus also displays a large retroactivity to the input
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