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Preface

This text serves as a supplement toFeedback Systemsby Åström and Murray [1]
(refered to throughout the text as AM08) and is intended for researchers interested
in the application of feedback and control to biomolecular systems. The text has
been designed so that it can be used in parallel withFeedback Systemsas part of a
course on biomolecular feedback and control systems, or as astandalone reference
for readers who have had a basic course in feedback and control theory. The full
text for AM08, along with additional supplemental materialand a copy of these
notes, is available on a companion web site:

http://www.cds.caltech.edu/∼murray/AMwiki/BFS

The text is intended to be useful to three overlapping audiences: graduate stu-
dents in biology and bioengineering interested in understanding the role of feed-
back in natural and engineered biomolecular systems; advanced undergraduates
and graduate students in engineering disciplines who are interested the use of feed-
back in biological circuit design; and established researchers in the the biological
sciences who want to explore the potential application of principles and tools from
control theory to biomolecular systems. We have written thetext assuming famil-
iarity with the material in AM08, but have tried to provide insights and motivation
so that the material can be learned in parallel. We also assume some familiarity
with cell biology, at the level of a freshman course for non-majors. The individ-
ual chapters in the text indicate the pre-requisites in moredetail, most of which
are covered either in AM08 or in the supplemental information available from the
companion web site.

Finish writing the preface. Acknowledgements RMM
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Notation

This is an internal chapter that is intended for use by the authors in fixing the
notation that is used throughout the text. In the first pass of the book we are
anticipating several conflicts in notation and the notes heremay be useful to early
users of the text.

Protein dynamics

We use P to refer to a protein, mP to refer to the mRNA associated with that protein
andp to refer to the gene that encodes P. The concentration of P can bewritten
either asP or [P], with a preference for the former. The concentration of mP can
be written either asmp (preferred) or [mP]. Parameters that are specific to genep
are written with a subscriptedp: αp, δp, etc.

The dynamics of protein production are given by

dmp

dt
= αp,0−γpmp,

dP
dt
= βpmp−δpP,

whereαp,0 is the (constitutive) rate of production,γp parameterizes the rate of
dilution and degradation of the mRNA mP,βp is the kinetic rate of protein pro-
duction andδp parameterizes the rate of dilution and degradation of the protein
P.

When we ignore the mRNA concentration, we write the simplifiedprotein dy-
namics as

dP
dt
= βp,0−δpP.

Assuming that the mRNA dynamics are fast compared to proteinproduction, then
the constantβp,0 is given by

βp,0 = βp
γp

αp,0
.

For regulated production of proteins using Hill functions,we modify the con-
stitutive rate of production to befp(Q) instead ofαp,0 or βp,0 as appropriate. The
Hill function is written in the form

fp(Q) =
αpq

kpq+Qnpq
.

The subscripts can be dropped if there is only one Hill function in use.
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Chemical reactions

We write the symbol for a chemical species A using roman type.The number
of molecules of a species A is written asna. The concentration of the species is
occasionally written as [A], but we more often use the notation A, as in the case of
proteins, orxa. For a reaction A+B←−→ C, we use the notation

R1 : A +B
k f
r1−−−⇀↽−−−

kr
r1

C
dC
dt
= k f

r1AB−kr
r1C

It will often be the case that two species A and B will form a covalent bond,
in which case we write the resulting species as AB. We will distinguish covalent
bonds from much weaker hydrogen bonding by writing the latter as A:B. Finally,
in some situations we will have labeled section of DNA that are connected together,
which we write as A−B, where here A represents the first portion of the DNA
strand and B represents the second portion. When describing(single) strands of
DNA, we write A′ to represent the Watson-Crick complement of the strand A.
Thus A−B:B′−A′ would represent a double stranded length of DNA with domains
A and B.

The choice of representing covalent molecules using the convential chemical
notation AB can lead to some confusion when writing the reaction dynamics using
A andB to represent the concentrations of those species. Namely, the symbolAB
could represent either the concentration of A times the concentration of B or the
concentration of AB. To remove this ambiguity, when using this notation we will
write [A][B] as A·B.

When working with a system of chemical reactions, we write Si , i = 1, . . . ,n
for the species and Rj , j = 1, . . . ,m for the reactions. We writeni to refer to the
molecular count for speciesi and xi = [Si ] to refer to the concentration of the
species. The individual equations for a given species are written

Missing. Figure out notation here. BST?

The collection of reactions are written as

ẋ= Nv(x,µ), ẋi = Ni j v j(x,µ)

wherexi is the concentration of species Si , N ∈ Rn×m is the stochiometry matrix,
v j is the reaction flux vector for reactionj, andµ is the collection of parameters
that the define the reaction rates.



preface.tex, v0.00 2008/06/12 07:03:00 (murray)

PART 1

Modeling and Analysis
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Chapter 1
Core Processes

The goal of this chapter is to describe basic biological mechanisms in a way
that can be represented by simple dynamic models. We begin the chapter with
a overview of the dynamics of prokaryotic and eukaryotic cells focused on the
processes that determine their behavior, followed by a discussion of the basic
modeling formalisms that we will utilize. We then proceed tostudy a number
of core processes within the cell, providing different model-based descriptions of
their dynamics that will be used in later chapters to analyzeand design biomolec-
ular systems. The focus in this chapter is on deterministic models using ordinary
differential equations; Chapter 3 describes how to model the stochastic nature of
biomolecular systems.

Prerequisites.Readers should have a basic understanding of ordinary differential
equations, at the level of Chapter 2 of AM08, and some basic familiarity with cell
biology, at the level of a freshman course for non-majors.† RMM: Update to match

wording in preface

1.1 The Cell as a Dynamical System

The cell is the fundamental building block of life. The molecular processes inside
the cell determine its behavior and are responsible for metabolizing nutrients, gen-
erating motion, procreation and the other functions of the organism. In complex,
multi-cellular organisms, different types of cells work together to enable more
complex functions. In this chapter we briefly describe the dynamics within a cell
and discuss the basic processes that govern its behavior andits interactions with its
environment (including other cells). A much more detailed introduction to the bi-
ology of the cell can be found in standard textbooks on cell biology such as Alberts
et al. [?] or Phillipset al. [?].

This section needs to be rewritten to reflect that context that appear later (there isRMM

a lot of duplication). The philosophy in this section should be to give a high level
view of the cell and its dynamics, without diving into too much detail. Most of the
more detailed material on transcription and translation should be moved to later
sections.

The central dogma: production and regulation of proteins

We begin by reviewing perhaps the most fundamental set of processes that is
present in all cells: the production of proteins from DNA. Although these pro-
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RNA
polymerase

DNA

Polypeptide

mRNA

Ribosome
Transcription

Translation

Figure 1.1: Biological circuitry. (a) Overview of the process by which proteins in the cell are made.
RNA is transcribed from DNA by an RNA polymerase enzyme. The RNA is then translated into a
protein by a molecular machine called a ribosome (from Åström and Murray [1]).

cesses rely on the machinery of the cell to function, we defera more detailed
description of the cell itself until a bit later in the section.

The genetic material inside a cell, encoded in its DNA, governs the response
to a cell to various conditions. DNA is organized into collections of genes, with
each gene encoding a corresponding protein that performs a specific function the
cell. Theactivation(turning on) orrepression(turning off) of a gene is determined
through a series of complex interactions that go on within a cell. These interactions
give rise to remarkable set of circuits that perform the functions required for life,
ranging from basic metabolism to locomotion to procreation. The genetic circuits
that occur in nature are incredible robust to external disturbances and they can
function in a variety of conditions.

The text below has been moved from later in the chapter; it may need updating toRMM

fix

Figure 1.1a outlines the basic processes of creating proteins from DNA.Transcription
is the process by which the enzyme RNA polymerase (RNAP) bindsone end of
a gene (called a promoter site) and moves sequentially down the gene to read the
sequence of bases and copy it in messenger RNA (mRNA).Translationis the pro-
cess by which a ribosome synthesizes proteins from mRNA. A ribosome moves
along the mRNA chain, attaching transfer RNA (tRNA) to the mRNA.

To understand how these processes occur (and some of the dynamics that gov-
ern their behavior), it will be useful to present a slightly more detailed description
of the underlying biochemistry.

DNA is double stranded molecule (see Figure 1.2) with the “direction” of each
strand specified by looking at the geometry of the sugars that make up its back-
bone. The strands of DNA consists of a sequence of nucleotidesthat consist of a
sugar molecule (deoxyribose) bound to one of 4 bases: adenine (A), cytocine (C),
guanine (G) and thymine (T). The two strands of DNA are complementary, with
A binding to T and C binding to G. The coding strand (by convention the top row
of a DNA sequence when it is written in text form) is specified from the 5’ end of
the DNA to the 3’ end of the DNA (5’ and 3’ refer to carbon locations on the de-
oxyribose backbone that are involved in linking together the nucleotides that make
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(a) Base pairs (b) Double stranded

Figure 1.2: Molecular structure of DNA. RMM: Expand caption.
RMM: Need better figures
that match the text

Figure 1.3: Geometric structure of DNA. RMM: Expand caption.

up DNA). The DNA that encodes proteins consists of a promoter region, regulator
regions (described in more detail below), a coding region and a termination region
(see Figure 1.3).

Need to add additional pictures here to go along with the text. RMM

RNA polymerase enzymes are present in the nucleus (for eukaryotes) or cyto-
plasm (for prokaryotes) and must localize and bind to the promoter region of the
DNA template. Once bound, the RNA polymerase “opens” the double stranded
DNA to expose the the nucleotides that make up the sequence, as shown in Fig-
ure 1.4. RNA polymerase then constructs an mRNA sequence that matches the 5’
to 3’ sequence of the DNA to which it is bound. By convention, we number the
first base pair that is transcribed as ’+1’ and the base pair prior to that (which is
not transcribed) is labeled as ’-1’. The promoter region is often shown with the -10
and -35 regions highlighted,† since these regions contain the nucleotide sequencesRMM: add to diagram

to which the RNA polymerase enzyme binds (the locations varyin different cell
types, but these two numbers are typically used).
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RMM: Need a better

picture; should match text

Figure 1.4: Production of proteins from DNA.RMM: Expand caption.

The RNA strand that is produced by RNA polymerase is also a sequence of nu-
cleotides with a sugar backbone. The sugar for RNA is ribose instead of deoxyri-
bose and mRNA typically exists as a single stranded molecule. Another difference
is that the the base thymine (T) is replaced by uracil (U) in RNAsequences. RNA
polymerase produces RNA one base pair at a time, as it moves from in the 5’ to
3’ direction along the DNA coding strand. RNA polymerase stops transcribing
DNA when it reaches a “termination region” on the DNA. This termination region
consists of a sequence that causes the RNA polymerase to unbind from the DNA.
The sequence is not conserved across species and in many cellsthe termination se-
quence is sometimes “leaky”, so that transcription will occasionally occur across
the terminator (we will see examples of this in theλ phage circuitry described in
the next chapter).

Once the mRNA is produced, it must be translated into a protein. This process
is slightly different in prokaryotes and eukaryotes. In prokaryotes, thereis a region
of the mRNA in which the ribosome (a molecular complex consisting of of both
proteins and RNA) binds. This region, called the ribosome binding site (RBS),
has some variability between different cell species and between different genes in
a given cell.

In eukaryotes, the RNA must undergo several additional steps before it is trans-
lated. The RNA sequence that has been created by RNA polymerase consists of
certain sequences of RNA that are spliced out of the RNA (by a molecular com-
plex called the spliceosome). The sequences are called “introns” and there can be
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Figure 1.5: The genetic code. RMM: Expand caption.

as many as 5–10† of these in a given transcript (although some transcripts have RMM: check

none). The sequences of RNA that are not spliced out of the final mRNA are
called “exons”. The term “pre-mRNA” is often used to distinguish between the
raw transcript and the spliced mRNA sequence. In addition tosplicing, the mRNA
is also modified to contain a “polyadenine tail” that consistsof a long sequence of
adenine (A) nucleotides on the 3’ end of the mRNA. This processed sequence is
then transported out of the nucleus into the cytoplasm, where the ribosomes can
bind to it.

Unlike prokaryotes, eukaryotes do not have a well defined ribosome binding
sequence and hence the process of the binding of the ribosometo the mRNA is
more complicated.

Describe in more detail some of the processes involved in ribosome binding inRMM

eukaryotes.

Once the ribosome is bound to the mRNA, it begins the process of translation.
Proteins consist of a sequence of amino acids and each amino acid has a set of
base pair sequences, called codons, that are used in the process of translation. A
codon consists of three base pairs and corresponds to one of the 20 amino acids
or a “stop” codon. The mapping between codons and amino acids is known as the
“genetic code”, shown in Figure 1.5. The ribosome translates each codon into the
corresponding amino acid using transfer RNA (tRNA) to integrate the appropriate
amino acid (which binds to the tRNA) into the polypeptide chain. A special codon,
AUG, is called the “start” codon and it specifies the location at which translation
begins, as well as coding for the amino acid methionine (a modified form is used
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in prokayrotes). All subsequent codons are translated by the ribosome into the
corresponding amino acid until it reaches one of the stop codons (typically UAA,
UAG and UGA).

The sequence of amino acids produced by the ribosome is a polypeptide chain
that folds on itself to form a protein. The process of folding is complicated and
involves a variety of chemical interactions that are not completely understood. It
is the folded protein that is “functional” and able to bind toother species in the cell
and perform the chemical reactions that underly the behavior of the organism.

There are a variety of mechanisms in the cell to regulate the production of
proteins. These regulatory mechanisms can occur at various points in the over-
all process that produces the protein.Transcriptional regulationrefers to regula-
tory mechanisms that control whether or not a gene is transcribed. The simplest
forms of transcriptional regulation are repression and activity, which are controlled
throughtranscription factors.

In the case of repression, the presence of a transcription factor (often a protein
that binds near the promoter) turns off the transcription of the gene and this type
of regulation is often called negative regulation or “down regulation”. In the case
of activation (or positive regulation), transcription is enhanced when an activator
protein binds to the promoter site (facilitating binding ofthe RNA polymerase). On
the upper side of the tRNA, amino acids are attached, corresponding to the three
bases currently attached on the bottom part of the tRNA. The protein is formed by
chaining the amino acids together. One regulatory mechanism of protein synthesis
is that translation of the mRNA chain may not be possible except under certain
conditions, and thus it should be activated. Similarly, someprotein may bind to
the mRNA preventing the tRNA to finish translation.

Prokaryotes

Outline:RMM

a. Cell architecture

b. Cell metabolism (energy production and biosynthesis)

c. Cell cycle

d. Example: E. coli (size, rate, census)

One of the simplest biological organisms is a bacterium, which consists of a
single cell that divides into genetically identical daughter cells. Bacteria are ex-
amples ofprokaryotic cellsand have a fairly simple architecture, as shown in Fig-
ure 1.6. The cell consists of a single main compartment, called the cytoplasm,
surrounded by an exterior cell wall. Some bacteria have flagella or pili that can be
used for locomotion. The model prokaryotic system isE. coli, which is approxi-
mate 2µm long and 1µm in diameter.†RMM: check

Add a more complete description of the basic structureRMM
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Figure 1.6: Architecture of a prokaryotic cell. Figure reproduced from Wikipedia.

Figure 1.7: Architecture of a eukaryotic cell. Figure reproduced fromWikipedia

Simple eukaryotes

Outline: RMM

a. Cell architecture

b. Cellular transport (internal and external)

c. Cell cycle (?)

d. Example: S. cerivisiae (size, rate, census)

Multi-cellular organisms

Outline: RMM

a. Determination of cell types (via protein expression)
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Figure 1.8: Architecture of a multi-cellular organism,C. elegans. Figure reproduced from Wikipedia

b. Differentiation and epigenetics

c. Cell-cell signaling

d. Example: C. elegans (size, rate, census)

Biochemical reactions in cells

Outline:RMM

a. Main chemical components of cells

b. Enzymes and proteins (including active forms)

c. DNA and RNA (including Watson-Crick, hybridization)

d. Free energy, thermal equilibrium, diffusion

Might make sense to move detailed information about DNA biochemistry from
Section 1.3 to here.

1.2 Modeling Techniques

In order to develop models for some of the core processes of the cell, we will
need to build up a basic description of the biochemical reactions that take place,
including production and degradation of proteins, regulation of transcription and
translation, intracellular sensing, action and computation, and intercellular signal-
ing. As in other disciplines, biomolecular systems can be modeled in a variety of
different ways, at many different levels of resolution. The choice of which model
to use depends on the questions that you want to answer, and good modeling takes
practice, experience and iteration. One must properly capture the aspects of the
system that are important, reason about the appropriate temporal and spatial scales
to be included, and take into account the types of simulationand analysis tools
be be applied. Models that are to be used for analyzing existing systems should
make testable predictions and provide insight into the underlying dynamics. De-
sign models must additionally capture enough of the important behavior to allow
decisions to be made regarding how to interconnect subsystems, choose parame-
ters and design regulatory elements.
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Figure 1.9: Statistical physics description of ligand-receptor binding. The cell is modeled as a com-
partment withΩ sites, one of which contains a receptor protein. Ligand molecules can occupy any of
the sites (first column) and we can compute the Gibbs free energy associated with each configuration
(second column). The first row represents all possible microstates in which the receptor protein is
not bound, while the second represents all configurations in which one of the ligands binds to the
receptor. By accounting for the multiplicity of each microstate (third column), we can compute the
weight of the given collection of microstates (fourth column). Figure from Phillips, Kondev and
Theriot [?].

In this section we describe the basic modeling frameworks that we will build
on throughout the rest of the text. We begin with descriptions that are tied to the
detailed physics and chemistry of the system, and then gradually build to models
that focus on capturing the behavior using reaction rate equations. In this chapter
our emphasis will be on dynamics with time scales measured inseconds to hours
and mean behavior averaged across a large number of molecules. We touch only
briefly on modeling in the case where stochastic behavior dominates and defer a
more detailed treatment until Chapter 3. Much of the work in this chapter builds
on the recent textbook by Phillipset al. [?].

Modeling using statistical physics

At the core of many of the reactions and multi-molecular interactions that take
place inside of cells is the chemical physics associated with binding between two
molecules. One way to capture some of the properties of theseinteractions is
through the use of statistical mechanics and thermodynamics.

Summarize key elements of statistical physics here, following the approach fromRMM

PKT08. Need to define∆G plus talk about microstates and other concepts from
statistical physics.

Example 1.1 (Ligand-receptor binding). To illustrate how these ideas can be ap-
plied in a cellular setting, consider the problem of determining the probability that
a ligand binds to a receptor protein, as illustrated in Figure1.9. We model the
system by breaking up the cell intoΩ different locations, each of the size of a lig-
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and molecule, and keeping track of the locations of theL ligand molecules. The
microstates of the system consist of all possible locationsof the ligand molecules,
including those in which one of the ligand molecules is boundto the receptor
molecule.

To compute the probability that the ligand is bound to the receptor, we must
compute the energy associated with each possible microstate and then compute the
weighted sum of the microstates corresponding to the ligandbeing bound, normal-
ized by the partition function. We letEsol represent the free energy associated with
a ligand in free solution andEbound represent the free energy associated with the
ligand being bound to the receptor. Thus, the energy associated with microstates
in which the ligand is not bound to the receptor is given by

∆Gsol= LEsol

and the energy associated with microstates in which one ligand is bound to the
receptor is given by

∆Gbound= (L−1)Esol+Ebound.

Next, we compute the number of possible ways in which each of these two
situations can occur. For the unbound ligand, we haveL molecules that can be in
any one ofΩ locations, and hence the total number of combinations is given by

Nsol=

(

Ω

L

)

=
Ω!

L!(Ω−L)!
≈ Ω

L

L!
,

where the final approximation is valid in the case whenL ≪ Ω. Similarly, the
number of microstates in which the ligand is bound to the receptor is

Nsol=

(

Ω

L−1

)

=
Ω!

(L−1)!(Ω−L+1)!
≈ Ω

L−1

(L−1)!
.

Using these two counts, the partition function for the system is given by

Z =≈ Ω
L

L!
e
− LEsol

kBT +
ΩL−1

(L−1)!
e
− (L−1)Esol+Ebound

kBT .

Finally, we can compute the steady state probability that theligand is bound by
computing the ratio of the weights for the desired states divided by the partition
function†RMM: Try to find a better

way to expressPbound.
Pbound=

1
Z
· Ω

L−1

(L−1)!
e
− (L−1)Esol+Ebound

kBT .

Plot Pboundas different parameters in the expression vary.RMM

∇

While we have carried out this calculation for the special case of a ligand
molecule binding to a receptor protein, in fact this same type of computation can be
used to compute the probability that a transcription factoris attached to a piece of
DNA or that two freely moving molecules bind to each other. Each of these cases
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simply comes down to enumerating all possible microstates,computing the energy
associated with each, and then computing the ratio of the sumof the weights for
the desired states to the complete partition function.

The Chemical Master Equation

The statistical physics model we have just considered gives adescription of the
steady stateproperties of the system. In many cases, it is clear that the system
reaches this steady state quickly and hence we can reason about the behavior of
the system just by modeling the free energy of the system. In other situations,
however, we care about the transient behavior of a system or the dynamics of a
system that does not have an equilibrium configuration. In these instances, we
must extend our formulation to keep track of how quickly the system transitions
from one microstate to another, known as thechemical kineticsof the system.

To model these dynamics, we return to our enumeration of all possible mi-
crostates of the system. LetP(q, t) represent the probability that the system is in
microstateq at a given timet. Hereq can be any of the very large number of pos-
sible microstates for the system. Letξ represent a possible difference between two
microstatesq1 andq2, so thatξ ranges over the set of all possible transitions from
one microstate to another. We describe the kinetics of the system by making use
of the propensity function a(ξ;q, t), which captures the instantaneous probability
that a system will transition between stateq and stateq+ ξ. More specifically, the
propensity function is defined such that

a(ξ; x, t)dt =Probability that the microstate will transition from
stateq to stateq+ ξ between timet and timet+dt.

We will give more detail in Chapter 3 regarding the validity of this functional form,
but for now we simply assume that such a function can be defined for our system.

Using the propensity function, we can keep track of the probability distribution
for the state by looking at all possible transitions into andout of the current state.
Specifically, givenP(q, t), the probability of being in stateq at time t, we can
computeP(q, t+dt) as

P(q, t+dt) = P(q, t)+
∑

ξ

a(ξ;q− ξ, t)P(q− ξ, t)dt−
∑

ξ

a(ξ;q, t)P(q, t)dt. (1.1)

This equation (and its many variants) is called thechemical master equation(CME).
The first sum on the right hand side represents the transitions into the stateq from
some other stateq− ξ and the second sum represents that transitions out of the
stateq into some other stateq+ ξ. As before,ξ in the sum ranges over all possible
transitions between microstates.

Under some additional assumptions described in Chapter??, we can rewrite
the master equation in differential form as

d
dt

P(q, t) =
∑

ξ

a(ξ;q− ξ, t)P(q− ξ, t)−
∑

ξ

a(ξ;q, t)P(q, t). (1.2)
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Table 1.1: Examples of propensity functions for some common cases [?]. Here we takera andrb to be
the effective radii of the molecules,m∗ =mamb/(ma+mb) is the reduced mass of the two molecules,
Ω is the volume over which the reaction occurs,T is temperature,kB is Boltzman’s constant andna,
nb are the numbers of molecules ofA andB present.

RMM: Add diffusional
propensity function Reaction type Propensity function

Reaction occurs if molecules “touch” Ω−1
(

8kBT
πm∗

)1/2
π(ra+ rb)2 ·nAnB

Reaction occurs if molecules collide with energyǫ Ω−1
(

8kBT
πm∗

)1/2
π(ra+ rb)2 ·e−ǫ/kBT ·nAnB

Steady state transcription factor PboundkocnRNAP

We see that the master equation is alinear differential equation with stateP(q, t).
However, it is important to note that the size of the state vector can be very large:
we must keep track of the probability of every possible microstate of the system.
For example, in the case of the ligand-receptor problem discussed earlier, this
has a exponential number of states based on the number of possible sites in the
model. Hence, even for very simple systems, the master equation cannot typically
be solved either analytically or in a numerically efficient fashion.

Despite its complexity, the master equation does capture many of the important
details of the chemical physics of the system and we shall useit as our basic repre-
sentation of the underlying dynamics. As we shall see, starting from this equation
we can then derive a variety of alternative approximations that allow us to answer
specific equations of interest.

The key element of the master equation is the propensity function a(ξ;q, t),
which governs the rate of transition between microstates. The propensity function
can be computed in a number of specific cases, as shown in Table 1.1. Although
the detailed value of the propensity function can be quite complex, its functional
form is often relatively simple. In particular, for a unimolecular reactionξ of the
form A→ B, the propensity function is proportional to the number of molecules
of A that are present:

a(ξ;q, t) = cξnA. (1.3)

This follows from the fact that each reaction is independent and hence the likeli-
hood of a reaction happening depends directly on the number of copies of A that
are present.

Similarly, for a bimolecular reaction, we have that the likelihood of a reaction
occurring is proportional to the product of the number of molecules of each type
that are present (since this is the number of independent reactions that can occur).
Hence, for a reactionξ of the form A+B −−→ C we have

a(ξ;q, t) = cξnAnB. (1.4)

The rigorous verification of this functional form is beyond thescope of this text,
but roughly

describe where this comes from.RMM

A special case of this occurs when A= B, so that our reaction is given by
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2A→ B. In this case we must take into account that a molecule cannotreact with
itself, and so the propensity function is of the form

a(ξ;q, t) = cξnA(nA−1). (1.5)

Although it is tempting to extend this formula to the case of more than two
species being involved in a reaction, the more correct description is to implement
the combination of biomolecular reactions:

A +B+C−−→ D =⇒
A +B −−→ AB AB +C−−→ D

A +C−−→ AC AC+B −−→ D

B+C−−→ BC BC+A −−→ D

This more detailed description reflects that fact that it is extremely unlikely that
three molecules will all come together at precisely the sameinstant, versus the
much more likely possibility that two molecules will initially react, followed be a
second reaction involving the third molecule.

Add example, including SSA simulation results RMM

Mass action kinetics

Although very general in form, the chemical master equationsuffers from being a
very high dimensional representation of the dynamics of thesystem. We shall see
in Chapter 3 how to implement simulations that obey the master equation, but in
many instances we will not need this level of detail in our modeling. In particular,
there are many situations in which the number of molecules ofa given species
is such that we can reason about the behavior of a chemically reacting system
by keeping track of theconcentrationof each species as a real number. This is
of course an approximation, but if the number of molecules issufficiently large,
then the approximation will generally be valid and our models can be dramatically
simplified.

To go from the chemical master equation to a simplified form of the dynamics,
we begin by making a number of assumptions. First, we assume that we can
represent the state of a given species by its concentrationcA = nA/Ω, wherenA is
the number of molecules ofA in a given volumeΩ. We also treat this concentration
as a real number, ignoring the fact that the real concentration is quantized. Finally,
we assume that our reactions take place in a well-stirred volume, so that the rate
of interactions between two species is determined by the concentrations of the
species.

Before proceeding, we should recall that in many (and perhaps most) situations
inside of cells, these assumptions arenot particularly good ones. Biomolecular
systems often have very small molecular counts and are anything but well mixed.
Hence, we should not expect that models based on these assumptions should per-
form well at all. However, experience indicates that in manycases the basic form
of the equations provides a good model for the underlying dynamics and hence we
often find it convenient to proceed in this manner.
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Putting aside our potential concerns, we can now proceed to write the dynam-
ics of a system consisting of a set of speciesSi , i = 1, . . . ,N undergoing a set of
reactionsRj , j = 1, . . . ,M. We write xi = [Si ] for the concentration of speciesi
(viewed as a real number). Because we are interested in the case where the num-
ber of molecules is large, we no longer attempt to keep track of every possible
configuration, but rather simply assume that the state of the system at any given
time is given by concentrationsxi . Hence the state space for our system is given
by x∈ RN and we seek to write our dynamics in the form of a differential equation

ẋ= f (x,µ)

where f :RN→RN describes the rate of change of the concentrations as a function
of the instantaneous concentrations andµ represents the parameters that govern the
dynamic behavior.

To illustrate the general form of the dynamics, it is convenient to consider a
simple example. Consider a reaction of the form

A +B −−→ C.

Each time this reaction occurs, we decrease the number of molecules ofA andB by
1 and increase the number of molecules ofC by 1. Using the discussion from the
chemical master equation, we know that the likelihood that the reaction occurs in a
given intervaldt is given bya(ξ; x, t)dt= cξnAnBdt wherecξ is a constant. Another
way of viewing this equation is that the rate at which reactions occur is given by
a(ξ; x, t). Look first at the species C, we can thus write

d
dt

[C] = cξnAnB = (cξΩ
2)[A][B] =: kξ[A][B]

where we have used the fact that [A]= nA/Ω and similarly for B. The constantkξ
is therate constantfor the reaction. In a similar fashion we can write equationsto
describe the dynamics of A and B and the entire system of equations is given by

d
dt

[A] = −kξ[A][B]

d
dt

[B] = −kξ[A][B]

d
dt

[C] = kξ[A][B]

or

Ȧ= −kξA·B
Ḃ= −kξA·B
Ċ = kξA·B

These equations are known as themass action kineticsor thereaction rate equa-
tionsfor the system.

Note that the same rate constant appears in each term, since the rate of pro-
duction of C must match the rate of depletion of A and B. We adopt the standard
notation for chemical reactions and write the reaction as

A +B
kξ
−→ C

wherekξ is the reaction rate.
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It is easy to generalize this equation to more general reactions. For example, if
we have a reversible reaction of the form RMM: Update to match

notation standard

A +2B
k1−−⇀↽−−
k2

2C+D

then the dynamics for the species concentrations can be written as RMM: Update to match
notation standard

d
dt

[A] = k2[C]2[D] −k1[A][B] 2,

d
dt

[B] = 2k2[C]2[D] −2k1[A][B] 2,

d
dt

[C] = 2k1[A][B] 2−2k2[C]2[D] ,

d
dt

[D] = k1[A][B] 2−k2[C]2[D] ,

(1.6)

Rearranging this equation, we can write the dynamics as RMM: Update to match
notation standard

d
dt
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. (1.7)

We see that in this composition, the first term on the right handside is a matrix
of integers reflecting the stoichiometry of the reactions andthe second term is a
vector of rates of the individual reactions.† RMM: Expand a bit

More generally, given a chemical reaction consisting of a set of speciesSi ,
i = 1, . . . ,n and a set of reactionsRj , j = 1, . . . ,m, we can write the mass action
kinetics in the form

dx
dt
= Nv(x)

whereN ∈ Rn×m is thestoichiometry matrixfor the system andv(x) ∈ RM is the
reaction flux vector. Each row ofv(x) corresponds to the rate at which a given
reaction occurs and the corresponding column of the stoichiometry matrix corre-
sponds to the changes in concentration of the relevant species. As we shall see in
the next chapter, the structure form of this equation will allow us to explore some
of the properties of the dynamics of chemically reacting systems.

Add an example here. Should related to the example in the previous subsection, ifRMM

possible. Plan: covalent modification of an allosteric effector.

We will often find it convenient to represent collections of chemical reactions
using simple diagrams, so that we can see the basic interconnection between var-
ious chemical species and properties. A standard chemical reaction diagram is
shown in Figure 1.10.

Add a few paragraphs here on graphical representations of chemical reactions.RMM

Show the standard chemical reaction, but also the notation that we will use in the
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(a) Chemical notation (b) Controls notation

Figure 1.10: Notation for chemical reactions

book.

Reduced order mechanisms

In this section, we look at the dynamics associated with enzymatically controlled
reactions, which occur frequently in biomolecular systems. Under some assump-
tions on the relative rates or reactions and concentrationsof species, it is possible
to derive reduced order expressions for the dynamics of the system. We focus here
on a informal derivation of the relevant results, but returnto these examples in the
next chapter to illustrate that same the results can derivedusing a more formal and
rigorous approach.

Insert the standard Michaelis-Menten enzyme kinetics hereRMM

I’m not sure if the material below belongs at this point in thetext. It really shouldRMM

come after we have introduced analytical models for transcription. Work on the
outline first and then move around this text as needed.

Monomer case..Let p denote the promoter upstream a gene with total concen-
tration ptot. Let X be a transcription factor that binds to promoter p. We seek to
determine at the steady state the amount of promoter bound toX and the amount
free. The chemical reactions involved are given by

X +p
kon−−−−⇀↽−−−−
ko f f

C, andp+C = ptot,

for which we can write the associated ODE model as

Ċ = konX(ptot−C)−ko f fC.

By settingĊ = 0 and denotingKD := ko f f/kon, we obtain the expressions:

C =
Xptot

X+KD
, andp=

ptotKD

X+KD
.

The constantKD is the inverse of the affinity of X to p.



coreproc.tex, v0.00 2008/06/12 07:03:00 (murray)

1.2. MODELING TECHNIQUES 19

Dimer case..Assume now that X binds to p only after a dimerization. Then, we
have that the reactions involved are given by

X +X
k1−−⇀↽−−
k2

Xd, Xd+p
kon−−−−⇀↽−−−−
ko f f

C, andp+C = ptot,

in which Xd denotes the dimer of X. The corresponding ODE model is given by

Ẋd = k1X2−k2Xd, Ċ = konXd(ptot−C)−ko f fC.

By settingẊd = 0, Ċ = 0, and by denotingkM = k1/k2, we we obtain that

Xd = kMX2, C =
Xdptot

Xd+KD
, andp=

ptotKD

Xd+KD
,

so that

C =
kM ptotX2

KMX2+KD
, andp=

ptotKD

KMX2+KD
.

As an exercise, the reader can verify that if X binds to p only as a complex of n
copies of X, that is,

X +X + ...+X
k1−−⇀↽−−
k2

Xn, Xn+p
kon−−−−⇀↽−−−−
ko f f

C, andp+C = ptot,

then we have that

C =
kM ptotXn

KMXn+KD
, andp=

ptotKD

KMXn+KD
.

Activator and repressor case..Consider finally the case in which two proteins Xa

(an activator, for example) and Xr (a repressor, for example) both bind to promoter
sites p. Let C be the complex formed between Xa and p and let̄C be the complex
formed between Xs and p. Then, we have the following reaction system

Xa+p
kon−−−−⇀↽−−−−
ko f f

C, Xr+p
k̄on−−−−⇀↽−−−−
k̄o f f

C̄ andp+C+ C̄ = ptot,

for which, we can write the ODE system as

Ċ = konXa(ptot−C− C̄)−ko f fC, ˙̄C = k̄onXr (ptot−C− C̄)−ko f fC̄.

By setting the derivatives to zero, we obtain that

C(konXa+ko f f ) = konXa(ptot− C̄), C̄(k̄onXr + k̄o f f ) = k̄onXr (ptot−C),

which, lettingK̄D := k̄o f f/k̄on, leads to

C̄ =
Xr (ptot−C)

Xr + K̄D
, and, C

(

Xa+KD−
XaXr

Xr + K̄D

)

= Xa

(

K̄D

Xr + K̄D

)

ptot,

from which we finally obtain that

C =
XaptotK̄D

K̄DXa+KDXr +KDK̄D
, andC̄ =

Xr ptotKD

KDXr + K̄DXa+KDK̄D
.
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Note that in this derivation, we have assumed that both the activator and the re-
pressors bind as monomers. If they were binding as dimers, the reader should
verify that they would appear in the final expressions with a power two. Note also
that in this derivation we have assumed that the activator and the repressor cannot
simultaneously bind to the promoter. If they were binding simultaneously to the
promoter, we would have included another complex includingthe activator, the
repressor, and the promoter. Denoting this new complex byC′, we would have
added also the two additional reactions

C+Xr

k′on−−−−⇀↽−−−−
k′o f f

C
′
, andC̄+Xa

k̄′on−−−−⇀↽−−−−
k̄′o f f

C
′

and we would have modified the conservation law for the promoter to ptot = p+
C+C̄+C′. The reader can verify that in this case a mixed termXr Xa would appear
in the equilibrium expressions.

Here, we need to decide how much more detail to add. In principle, one couldDDV

consider all possible combinations of monomer, dimer, tetramer, etc. and actova-
tor, repressor, AND, different occupation states for the promoter, i.e., to consider
exclusive binding or competitive binding.

Chemical reaction networks

Review basic ideas in chemical reaction networks, including lifting the dynamicsRMM

to a larger state space. This may belong in the next chapter (dynamics).

1.3 Transcription and Translation

In this section we consider the processes of transcription and translation in more
detail, using the stochastic and deterministic modeling techniques described in the
previous section to capture the fundamental dynamic behavior.

Modeling transcription and translation

Models of transcription and translation can be done at a variety of levels of detail
and which model to use depends on the questions that one wantsto analyze.

The various stochastic processes that underly detailed models of transcrip-
tion and translation can be specified using the stochastic modeling framework
described in the previous section. In particular, using either models of binding
energy or measured rates, we can construct propensity functions for each of the
many reactions that lead to production of proteins, including the motion of RNA
polymerase and the ribosome along DNA and RNA. For many problems in which
the detailed stochastic nature of the molecular dynamics ofthe cell are important,
these models are the most relevant.
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Add an example here based on Arkin’s early work showing stochastic processesRMM

in a cell. Can either use simulac or some other detailed cell simulator (Ecell?).
Should be consistent and/or complement with simpler model used in previous sec-
tion.

In many situations, a much simpler model of the transcription, translation and
folding processes can be utilized. If we assume that RNA polymerase binds to
DNA at some average rate and that transcription takes some fixed time (depending
on the length of the gene), then the process of transcriptioncan be described using
the differential equation

dmp

dt
= αp,0−γpmp, m∗p(t) =mp(t−τm,p), (1.8)

wheremp is the concentration of mRNA for proteinP, m∗p is the concentration
of “active” mRNA, αp,0 is the rate of production of the mRNA for proteinP and
γp is the rate of degredation of the mRNA. The active mRNA is the mRNA that
is avaiable for translation by the ribosome. We model its concentration through a
simple time delay of lengthτm,P that accounts for the transcription of the ribosome
binding site in prokaryotes or splicing and transport from the nucleus in eukary-
otes. The constantsαp,0 andγp capture the average rates of production, which in
turn depend on the more detailed biochemical reactions thatunderlie transcription.

Once the active mRNA is produced, the process of translationcan be described
via a similar ordinary differential equation the describes the production of a func-
tional protein: RMM: Need to discuss this

notation
dP
dt
= βp,0m∗p−δpP,

P∗

dt
= β∗pP(t−τ f ,p)−P∗−δ∗pP∗ (1.9)

HereP represents the concentration of the polypeptide chain for the protein,P∗

represents the concentration of functional protein (afterfolding). The parameters
that govern the dynamics areβp,0, the rate of translation of mRNA;δp andδ∗p, the
rate of degradation and dilution ofP andP∗ respectiviely;β∗p, the rate at which un-
folded protein is folded; andτ f ,p, the time delay associated with folding and other
processes required to make the protein functional. Note that the rate of production
of the polypeptide chainP depends on the active mRNA concentration and the rate
of production of the functional proteinP depends on how much unfolded protein
is available. We model this amount by looking at the polypeptide concentration at
a timeτ f ,p seconds ago,P(t−τ f ,p), minus the amount of already functional protein
, P(t). The degradation and dilution term, parameterized byδP andδ∗P∗, captures
both the rates at which the polypeptide chain and the proteinare degraded and the
rates at which these species are diluted due to cell growth.

Add an example here, showing who to compute the various constants involved andRMM

then simulating the rates of production of a protein. It would be nice to compare
this with data from E.coli and yeast showing a circuit with a constitutive promoter
in front of a fluourescent reporter.
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Table 1.2: Rates of core processes involved in the creation of proteins from DNA in E. coli.

Process Characteristic rate Source
mRNA production 10–30 bp/sec Vogel and Jensen
Protein production 10–30 aa/sec PKT08
Protein folding ???
mRNA half life ∼ 100 sec YM03
Cell division time ∼ 3000 sec ???
Protein half life ∼ 5×104 sec YM03
Protein diffusion along DNA up to 104 bp/sec

In many situations the time delays described in the dynamicsof protein pro-
duction are small compared with the time scales at which the protein concentration
changes (depending on the values of the other parameters in the system). In such
cases, we can simplify the our model of the dynamics of protein production and
write

dmp

dt
= αp,0−γpmp,

dP
dt

= βp,0mp−δpP. (1.10)

Note that we have dropped the superscript∗ since we are assuming that all mRNA
is active and proteins are functional.

Add another example in which the time delays are small and we can ignore them.RMM

Something that relates to the lac operon might be good here, sothat we can build
on it later.

Is there something else we want to put into this section? Perhaps some more de-RMM

tailed models of transcription/translation? Other effects that one can take into ac-
count if needed? Circuit diagrams for protein production (probalby not)? Perhaps
put the transcriptioanl regulation system here (as a subsection)??

Rates

Table 1.2 shows the rates of some of the key processes involved in the production
of proteins. It is important to note that each of these steps is highly stochastic, with
molecules binding together based on some propensity that depends on the binding
energy but also the other molecules present in the cell. In addition, although we
have described everything as a sequential process, each of the steps of transcrip-
tion, translation and folding are happening simultaneously. In fact, there can be
multiple RNA polymerases that are bound to the DNA, each producing a tran-
script. In prokaryotes, as soon as the ribosome binding sitehas been transcribed,
the ribosome can bind and begin translation. It is also possible to have multiple
ribosomes bound to a single piece of mRNA. Hence the overall process can be
extremely stochastic and asynchronous.
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Figure 1.11: Regulation of proteins. RMM: Expand caption.

1.4 Transcriptional Regulation

The operation of a cell is governed by the selective expression of genes in the DNA
of the organism, which control which functions the cell is able to perform at any
given time. The regulation of these genes is accomplished through a variety of
mechanisms, some of the more common of which we explore in this section and
the next.

Transcriptional regulation refers to the selective expression of genes by ac-
tivating or repressing the transcription of DNA into mRNA. The simplest such
regulation occurs in prokaryotes, where proteins can bind to “operator regions”
in the vicinity of the promoter region of a gene and affect the binding of RNA
polymerase and the subsequent initiation of transcription. A protein is called an
repressorif it blocks the transcription of a given gene, most commonlyby binding
to the DNA and blocking the access of RNA polymerase to the promoter. Anacti-
vatoroperates in the opposite fashion: it recruits RNA polymerase to the promoter
region and hence transcription only occurs when the activator (protein) is present.

Describe the detailed binding process and its representation in terms of individual RMM

rate equations for the different configurations, including an example of this for the
Lac operon.

A simplified version of the dynamics can be obtained by assuming that tran-
scription factors bind to the DNA rapidly, so that they are insteady state config-
urations. In this case, we can make use of the steady state statistical mechanics
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Figure 1.12: Hill function for an activator (left) and for a repressor (right).

techniques described in Section 1.2 and relate the expression of the gene to the
probability that the activator or repressor is bound to the DNA (Pbound).

Work on the transition between the previous paragraph and the material that fol-RMM

lows. Need to integrate this with the material that Domitilla sent (currently in the
previous section, but probably belongs here. Also need to update notation to match
book standard.

A simple model of the transcriptional regulation process isthrough the use of
a Hill function [9, 20]. Consider the regulation of a proteinA with a concentration
given by A and a corresponding mRNA concentrationma. Let B be a second
protein with concentrationB that represses the production of protein A through
transcriptional regulation. The resulting dynamics ofA andma can be written as

dma

dt
=

αab

kab+Bnab
+αa0−γama,

dA
dt
= βama−δaA, (1.11)

whereαab+ αa0 is the unregulated transcription rate,γa represents the rate of
degradation of mRNA,αab, kab andnab are parameters that describe how B re-
presses A,βa represents the rate of production of the protein from its corresponding
mRNA andδa represents the rate of degradation of the protein A. The parameter
αa0 describes the “leakiness” of the promoter, andnab is called the Hill coefficient
and relates to the cooperativity of the promoter.

A similar model can be used when a protein activates the production of another
protein rather than repressing it. In this case, the equations have the form

dma

dt
=
αabkabBnab

kab+Bnab
+αa0−γama,

dA
dt
= βama−δaA, (1.12)

where the variables are the same as described previously. Note that in the case of
the activator, ifB is zero, then the production rate isαa0 (versusαab+αa0 for the
repressor). AsB gets large, the first term in the expression for ˙ma approaches 1
and the transcription rate becomesαab+αa0 (versusαa0 for the repressor). Thus
we see that the activator and repressor act in opposite fashion from each other.

Old text from circuits chapter is commented out here. Should look through andRMM
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make sure we covered everything above

We just described how the Hill function can model the regulation of a gene by
a single transcription factor. However, several genes can be regulated by multiple
transcription factors, some of which may be activators and some may be repressors.
The input function can thus take several forms depending on the roles (activators
versus repressors) of the various transcription factors [3]. In general, the input
function of a transcriptional module that takes as input transcription factors Xi for
i ∈ {1, ...,N} will be denotedf (X1, ...,Xn).

Consider a transcriptional module with input functionf (X1, ...,Xn). The inter-
nal dynamics of the transcriptional module usually models mRNA and protein dy-
namics through the processes of transcription and translation. Protein production
is balanced by decay, which can occur throughdegradationor dilution. Degrada-
tion occurs when the protein is destroyed by specialized proteins in the cell that,
for example, recognize a specific part of the protein and destroy it. Dilution is due
to the reduction in concentration of the protein due to the increase of cell volume
during growth. In a similar way, mRNA production is also balanced by dilution
and degradation processes. Thus, the dynamics of a transcriptional module is often
well captured by the following ordinary differential equations:

drY

dt
= f (X1, ...,Xn)−α1rY

dY
dt
= γ rY−α2Y, (1.13)

in whichrY denotes the concentration ofmRNAtranslated by geneY, the constants
αi ’s incorporate the dilution and degradation processes, andγ is a constant that
establishes the rate at which the mRNA is translated.

Example 1.2 (Represillator). As an example of how these models can be used, we
consider the model of a “repressilator,” originally due to Elowitz and Leibler [11].
The repressilator is a synthetic circuit in which three proteins each repress another
in a cycle. This is shown schematically in Figure 1.13a, where the three proteins
are TetR,λ cI and LacI.

The basic idea of the repressilator is that if TetR is present,then it represses
the production ofλ cI. If λ cI is absent, then LacI is produced (at the unregulated
transcription rate), which in turn represses TetR. Once TetR is repressed, thenλ cI
is no longer repressed, and so on. If the dynamics of the circuit are designed
properly, the resulting protein concentrations will oscillate.

We can model this system using three copies of equation (1.11), with A and
B replaced by the appropriate combination of TetR, cI and LacI. The state of the
system is then given byx= (mTetR, pTetR,mcI, pcI,mLacI, pLacI). Figure 1.13b shows
the traces of the three protein concentrations for parameters n = 2, α = 0.5, k =
6.25×10−4, α0 = 5×10−4, γ = 5.8×10−3, β = 0.12 andδ = 1.2×10−3 with initial
conditionsx(0)= (1,0,0,200,0,0) (following [11]). ∇

Second example: combinatorial promotor with oscillator example. RMM
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(b) Repressilator simulation

Figure 1.13: The repressilator genetic regulatory network. (a) A schematic diagram of the repres-
silator, showing the layout of the genes in the plasmid that holds the circuit aswell as the circuit
diagram (center). (b) A simulation of a simple model for the repressilator, showing the oscillation of
the individual protein concentrations. (Figure courtesy M. Elowitz.)

Figure 1.14: Circuit diagram for transcriptional regulation of a gene.

Several other methods of transcriptional regulation can exist in cells.

Add material on sigma factors and inducers here. Follow Alon, Appendix 2RMM

Talk aboutσ factors in prokaryotesRMM

Transcriptional regulation in eukaryotes is more complex than in prokaryotes.
In many situations the transcription of a given gene is affected by many differ-
ent transcription factors, with multiple molecules being required to initiate and/or
suppress transcription.

Talk about co-factors in eukaryotesRMM

We will often find it convenient to represent the process of regulation in a
graphical fashion that hides the specific details of the modelthat we choose to
use. Figure 1.14 shows the notation that we will use in this text to represent the
process of transcription, translation and regulation.

Add a figure showing the diagram notation that we will use, along with a descrip-RMM

tion of what the various symbols mean.
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Figure 1.15: Circuit diagram for the yeast GAL switch.

Describe the GAL system in yeast as an example of transcriptional regulation RMM

mechanisms. Need to sort out how much of the sequestration wewant to describe
here (probably all of it)

1.5 Post-Transcriptional Regulation

In addition to regulation of expression through modifications of the process of
transcription, cells can also regulate the activity of proteins via a collection of
other post-transcriptional modifications. These include methods of modulating the
translation of proteins, as well as affecting the activity of a protein via changes in
shape, calledallosteric regulation.

Allosteric modifications

Covalent modifications

One of the most common types of post-transcriptional regulation is through the
phosphorylationof proteins. Phosphorylation is an enzymatic process in which a
phosphate group is added to a protein and the resulting conformation of the protein
changes, usually from an inactive configuration to an active one. The enzyme
that adds the phosphate group is called aphosphotransferaseor a kinaseand it
operates by transferring a phosphate group from a bound ATP molecule to the
protein, leaving behind ADP and the phosphorylated protein. Dephosphorylation
is a complementary enzymatic process that can remove a phosphate group from
a protein. The enzyme that performs dephosphorylation is called aphosphotase.
This process is illustrated in the circuit diagram in Figure 1.16.

The dynamics associated with phosphorylation correspond toa sequence of
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X

E

F:XP

F

Xp

E:ADP:XpE:ATP:X

E:ATP E:ADP

ADPATP

(a) Full reaction (b) Reduced reaction

Figure 1.16: Circuit diagram for phosphorylation and dephoshorylation of a proteinX via a kinaseE
and phosphotaseF.

chemical reactions:

Phosphorylation Dephosphorylation

E+ATP
k1−−−⇀↽−−−
k−1

E∗ Xp+F−−→ Xp:F

E∗+X −−→ E∗:X X ∗:F−−→ X +F

E∗:X −−→ E:ADP:X∗

E:ADP:X∗ −−−⇀↽−−− E:ADP+X

E:ADP−−→ E+ADP

These can be modeled using standard mass action kinetics:

dEX
dt
=

dFX∗

dt
=

dX∗

dt
= k1EX−k2EX+k3X∗F

Xtot = X+EX+XpXtot = X+EX+Xp

We ignore the kinetics of ATP and ADP under the assumption thatthese species
are plentiful.

We can simplify these equations by assuming that the enzyme binds quickly
to the protein (so that the EX is in steady state) and simplify the resulting model.
Solving for the steady state value of EX yields

EX= .

Similarly, we can replace the dynamics of FX* with its steady state value,

FXp = .
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Substituting these steady state values into the kinetics forX * , we obtain

dXp

dt
= α

X
Km+X

−β X∗

Kn+X∗

Talk about other related types of protein modification, such as phosphotransfer andRMM

methylation.

Phosphotransfer

RNA-based regulation

Describe RNA-based regulation schemes, including ribosymes and RNAi. RMM

1.6 Cellular subsystems

RMM

1. MAPK cascades

(a) Note: to do this completely, we probably need singular perturbations.
So, likely we will leave the equations unreduced and show the reduced
order model after the next chapter

(b) Using Klipp formulation for now

2. Integral feedback

3. Logical operations (incl Lac operon, lambda phage)

Intercellular Signalling

RMM

1. Transport across the membrane

2. Membrane receptors, ligand binding, G-proteins
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Chapter 2
Dynamic Behavior

In this chapter, we describe some of the tools from dynamicalsystems and feed-
back control theory that will be used in the rest of the text toanalyze and design
biological circuits, building on tools already described in AM08. We focus here
on deterministic models and the associated analyses; stochastic methods are given
in Chapter 3.

Prerequisites. Readers should have a understanding of the tools for analyzing
stability of solutions to ordinary differential equations, at the level of Chapter 4 of
AM08. We will also make use of linearized input/output models in state space,
based on the techniques described in Chapter 5 of AM08, and sensitivity function
methods, described in Chapters 11 and 12 of AM08 and buildingon the frequency
domain techniques described in Chapters 8–10.

2.1 Analysis near equilibria

We begin by considering the dynamics of the system near an equilibrium point.

Parametric uncertainty

Consider a general nonlinear system of the from

ẋ= f (x,µ,w),

wherex ∈ Rn is the system state,µ ∈ Rp are the system parameters andw ∈ Rq

is a set of external inputs. Letxe(µ0,w0) represent an equilibrium point for fixed
parametersµ0 and external inputw0, so thatf (xe,µ0,w0) = 0.

The stability of the system around the equilibrium point can be analyzed using
the tools described in AM08. Here we focus instead on understanding how the
equilibrium point varies as a function of changes in the parametersµ and external
inputsw.

We start by assuming thatw = 0 and investigating howxe depends onµ. The
simplest approach is to analytically solve the equationf (xe,µ0) = 0 for xe. How-
ever, this is often difficult to do in closed form and so as an alternative we instead
look at the linearized response given bySxeµ = dxe/dµ, the (infinitesimal) change
in the equilibrium state due to a change in the parameter. To determineSxeµ we
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Table 2.1: Parameter values for Lac operon example.

begin by differentiating the relationshipf (xe(µ),µ) = 0 with respect toµ:

d f
dµ
=
∂ f
∂x
∂xe

∂µ
+
∂ f
∂µ

=⇒ ∂xe

∂µ
= −

(

∂ f
∂x

)−1
∂ f
∂µ

∣

∣

∣

∣

∣

(xe,µ0)
. (2.1)

These quantities can be computed numerically and hence we canevaluate the effect
of small changes in the parametersµ on the equilibrium statexe. It is straightfor-
ward to perform a similar analysis to determine the effects of small changes in the
external inputw.†RMM: Add exercise

showing the result
Example 2.1 (Sensitivity analysis of the Lac operon). Consider the model of the
Lac operon introduced in Section??. For the genelacZ(which encodes the protein
β-galactosidase), we letB represent the protein concentration andmB represent the
mRNA concentration. We also consider the concentration of the internal lactose
L, which we will treat as an external input, and the concentration of allolactose,A.
Assuming that the time delays considered previously can be ignored, the dynamics
in terms of these variables are†RMM: Need to convert the

Hill functions to the
standard form used in BFS dmb

dt
= αb fba(A,µ)−γbmb, fba(A,µ) =

1+k1An

k+k1An ,

dB
dt
= βbmb−δbB, fal(L,µ) =

L
kL+L

,

dA
ddt
= αaB fal(L,µ)−βaB faa(A,µ)−γaA, faa(A,µ) =

A
ka+A

.

(2.2)

Here the state isx= (mb,B,A) ∈ R3, the input isw= L ∈ R and the parameters are
µ = (αb,βb,αa,γb, δb,γa,n,k,k1,kL,ka,βa) ∈ R12. The values for the parameters is
listed in Table 2.1.
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The behavior of the Lac system depends on the amount of lactose that is present
in the cell. At low concentrations of lactose, the lac operonis turned off and the
proteins required to metabolize lactose are not expressed.At high concentrations
of lactose, the lac operon is turned on and the metabolic machinery is activated.
In our model, these two operating conditions are measured bythe concentration
of β-galactosidaseB and allolactoseA. At intermediate concentrations of lactose,
the system has multiple equilibrium points, with two stableequilibrium points
corresponding to high and low concentrations of bothA andB.

We investigate the dynamics around one of the equilibrium points correspond-
ing to an intermediate input ofL = 42µM. There are three equilibrium points at
this value of the input:

x1,e= (), x2,e= (), x3,e= ().

We choose the third equilibrium point, corresponding to thelactose metabolic ma-
chinery being activitated and study the sensitivity of the steady state concentrations
of allolactose (A) andβ-galactosidase (B) to changes in the parameter values.

The dynamics of the system can be represented in the form ˙x= f (x,µ,L) with

f (x,µ,L) =


. . .


 .

To compute the sensitivity with respect to the parameters, we compute the deriva-
tives of f with respect to the statex,

∂ f
∂x
=





























−γb 0 αb
∂ fba
∂A

βb −δb 0
0 αa fal −βB∂ faa

∂A





























and the parametersµ,

∂ f
∂µ
=





 fba 0 0 −mb 0 0 ∂ fba
∂n

∂ fba
∂k

∂ fba
∂k1

0 0 0




 .

Carrying out the relevant computations and evaluating the resulting expression
numerically, we obtain

∂xe

∂µ
=



. . .


 .

We can also normalize the sensitivity computation:† RMM: These has not yet
been described in the text.
Wait until MCA to present
it?

S̄xeµ = D−1(xe)SxeµD
−1(µ0) = . . .

Add computation of sensitivity with respect toL (or leave as exercise?) RMM

∇

More generally, we may wish to evaluate the sensitivity of a (non-constant) so-
lution to parameter changes. This can be done by computing thefunctiondx(t)/dµ,
which describes how the state changes at each instant in timeas a function of
(small) changes in the parametersµ.
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Add something on biological relevanceRMM

Let x(t; x0,µ0) be a solution of the dynamics with initial conditionx0 and pa-
rametersµ0. To computedx/dµ, we write down a differential equation for how it
evolves in time:

d
dt

(

dx
dµ

)

=
d
dµ

(

dx
dt

)

=
d
dµ

( f (x,µ,w))

=
∂ f
∂x

dx
dµ
+
∂ f
∂µ
.

This is a differential equation withn×mstatesSi j = dxi/dµ j and with initial condi-
tion Si j (0)= 0 (since changes to the parameters to not affect the initial conditions).

To solve these equations, we must simultaneously solve for the statex and the
sensitivityS (whose dynamics depend onx). Thus, we must solve the set ofn +
nmcoupled differential equations

dx
dt
= f (x,µ,w),

dSxµ

dt
= ∂ f x(x,µ,w)Sxµ+

∂ f
∂µ

(x,µ,w).

Talk about how this can also be used to compute S(T) instead of doing the algebra.RMM

Example 2.2 (Lac operon during a step change inL). Need to work out this ex-RMM

ample in MATLAB and figure out how to best show the results

∇

Frequency domain analysis

Insert some introductory material to remind the reader of the fundamental ideas ofRMM

frequency domain analysis from AM08. Think of Nimfa as the prototypical reader
for this portion of the material.

Another way to look at the sensitivity of the solutions near equilibria to changes
in parameters and inputs is to use frequency domain techniques. We focus on the
case of an equilibrium solutionx(t; x0,µ0) = xe. Let z= x− xe, w̃ = w−w0 and
µ̃ = µ− µ0 represent the deviation of the state, input and parameters from their
nominal values. We can write the dynamics of the perturbed system using its
linearization:

ż=

(

∂ f
∂x

)

(xe,µ0,w0)
·z+

(

∂ f
∂µ

)

(xe,µ0,w0)
· µ̃+

(

∂ f
∂w

)

(xe,µ0,w0)
· w̃.

This linear system describes small deviations fromxe(µ0,w0) but allowsµ̃ andw̃
to be time-varying instead of the constant case considered earlier.

To analyze the resulting deviations, it is convenient to look at the system in the
frequency domain. Lety=Cxbe a set of values of interest. The transfer functions
between ˜µ, w̃ andy are given by

Hyµ̃(s) =C(sI−A)−1Bµ, Hyw̃(s) =C(sI−A)−1Bw,
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RMM: This figure is not in
the right place. Need to
figure out where to
introduce it. Probably the
previous chapter, if Lac is a
running example there.lacI

cAMP

CAP

lactose

Z Y A

A:R

repressor

allolactose
glucose

galactose

M

R B P

beta−gal

permease

ALLe

Figure 2.1: Schematic diagram for the Lac operon system

where

A=
∂ f
∂x

∣

∣

∣

∣

∣

(xe,µ0,w0)
, Bµ =

∂ f
∂µ

∣

∣

∣

∣

∣

(xe,µ0,w0)
, Bw =

∂ f
∂w

∣

∣

∣

∣

∣

(xe,µ0,w0)
.

Note that if we lets= 0, we get the respond to small, constant changes in
parameters. For example, the change in the outputsy as a function of constant
changes in the parameters is given by

Hyµ̃(0)=CA−1Bµ =CSx,µ,

which matches our previous parametric analysis.

Example 2.3 (Lac operon). Write up Lac operon example RMM

∇

A slightly more general analysis of sensitivity can be accomplished using the con-�
trol theoretic notions of sensitivity described in AM08, Chapter 12. Rather than
just considering static changes to parameter values, we caninstead consider the
case ofunmodeled dynamics, in which we allow bounded input/output uncertain-
ties to enter the system dynamics. This can be used to model parameters whose
values are unknown and also time-varying, as well as capturing uncertain dynam-
ics that are being ignored or approximated.

To illustrate the basic approach, consider the problem of determining the sen-
sitivity of a set of reactions to a set of additional unmodeled reactions, whose
detailed effects are unknown but assumed to be bounded. We set this problem up
using the general framework shown in Figure 2.2.
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Figure 2.2: Analysis of dynamic uncertainty in a reaction system.

Work through the sensitivity analysis, showingRMM

dHzw

dS2
= . . . =⇒ dHzw

dHzw
=

()

dS2

dS2
.

Should also show the relationship between this type of computation and the MCA
sensitivity analysis in the next section (if there is any).

Need a good example of this sort of analysis here. Perhaps the effect of time-delaysRMM

in the Lac operon?

2.2 Analysis of Reaction Rate Equations

The previous section considered analysis techniques for general nonlinear systems.
In this section, we specialize to the case where the dynamicshave the form of a
reaction rate equation:RMM: Change in notation:

µ→ p andx→ s. Decide
which to use.

ṡ= Nv(s, p), (2.3)

wheres is the vector of species concentrations,p is the vector of reaction parame-
ters,N is the stoichiometry matrix,v(s, p) is the reaction rate (or flux) vector.

Reduced reaction dynamics
RMM: Need to find out the

usual name for this When analyzing reaction rate equations, it is often the casethat there are con-
served quantities in the dynamics. For example, conservation of mass will imply
that if all compounds containing a given species are captured by the model, the
total mass of that species will be constant. This type of constraint will then give a
conserved quantity of the formci = Hi s whereHi represents that combinations of
species in which the given element appears. Sinceci is constant, it followed that
ċi = 0 and, aggregating the set of all conserved species, we have

0= ċ= Hẋ= HNv(s, p) for all s.

If we assume that the vector of fluxes spansRm (the range ofv : Rn×Rp→ Rm),
then this implies that the conserved quantities correspondto the left null space of
the stoichiometry matrixN.
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It is often useful to remove the conserved quantities from the description of the
dynamics and write the dynamics for a set of independent species. To do this, we
transform the state of the system into two sets of variables:













si

sd













=













P
H













s. (2.4)

The vectorsi = Ps is the set of independent species and is typically chosen as
a subset of the original species of the model (so that the rowsP consists of all
zeros and a single 1 in the column corresponding to the selected species). The
matrix H should span the left null space ofN, so thatsd represents the set of
dependent concentrations. These dependent species do not necessarily correspond
to individual species, but instead are often combinations of species (for example,
the total concentration of a given element that appears in a number of molecules
that participate in the reaction). RMM: Is this wording

clear? Correct? Rethink
after working through some
of the examples.

Take a look at the Klipp book for examples of how this decomposition is done. RMM

There are also lots of examples there.

Given the decomposition (2.4), we can rewrite the dynamics of the system in
terms of the independent variablessi . We start by noting that givensi andsd, we
can reconstruct the full set of speciess:

s=












P
H













−1










si

sd













= Lsi +c0,

L =












P
H













−1










I
0













c0 =













P
H













−1










0
c













wherec0 represents the conserved quantities.† We now write the dynamics forsi RMM: This is what we
need eventually, but this
notation is a bit
cumbersome. Rethink
c= Hs.

as
ṡi = Pṡ= PNv(Lsi +c0, p) = Nrvr (si ,c0, p), (2.5)

whereNr is the reduced stoichiometry matrix andvr is the rate vector with the
conserved quantities separated out as constant parameters.

The reduced order dynamics in equation (2.5) represent the evolution of the
independent species in the reaction. Givensi , we can “lift” the dynamics from the
independent species to the full set of species by writings= Lsi +c0. The vectorc0
represents the values of the conserved quantities, which must be specified in order
to compute the values of the full set of species. In addition,sinces= Lsi +c0, we
have that

˙̇s= Lṡi = LNrvr (si ,c0, p) = LNrv(s, p),

which implies that
N = LNr .

Thus,L also “lifts” the reduced stoichiometry matrix from the reduced space to
the full space.

Example: phosphorylation, without ATP, ADP RMM
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Metabolic control analysis

Metabolic control analysis (MCA) focuses on the study of thesensitivity of steady
state concentrations and fluxes to changes in various system parameters. The basic
concepts are equivalent to the sensitivity analysis tools described in Section 2.1,
specialized to the case of reaction rate equations. In this section we provide a
brief introduction to the key ideas, emphasizing the mapping between the general
concepts and MCA terminology (as originally done by Ingalls[?]).

Consider the reduced set of chemical reactions

ṡi = Nrvr (si , p) = Nrv(Lsi +c0, p).

We wish to compute the sensitivity of the equilibrium concentrationsse and equi-
librium fluxesve to the parametersp. We start by linearizing the dynamics around
an equilibrium pointse. Definingx= s−se, u= p− p0 and f (x,u)=Nrv(se+x, p0+

u), we can write the linearized dynamics as

ẋ= Ax+Bu, A=

(

Nr
∂v
∂s

L

)

, B=

(

Nr
∂v
∂p

)

, (2.6)

which has the form of a linear differential equation with statex and inputu.
In metabolic control analysis, the following terms are defined:

ǭp =
dv
dp

∣

∣

∣

∣

∣

se,po

flux control coefficients

R̄s
p =
∂se

∂p
= C̄sǭp C̄s = concentration control coefficients

R̄v
p =
∂ve

∂p
= C̄vǭp C̄v = rate control coefficients

These relationships describe how the equilibrium concentration and equilibrium
rates change as a function of the perturbations in the parameters. The two control
matrices provide a mapping between the variation in the flux vector evaluated at
equilibrium,

(

∂v
∂p

)

se,p0

,

and the corresponding differential changes in the equilibrium point,∂se/∂p and
∂ve/∂p. Note that

∂ve

∂p
,

(

∂v
∂p

)

se,p0

.

The left side is the relative change in the equilibrium rates,while the right side is
the change in the rate functionv(s, p) evaluated at an equilibrium point.†RMM: Add an exercise

showing why these are
different.

To derive the coefficient matricesC̄s andC̄v, we simply take the linear equa-
tion (2.6) and choose outputs corresponding tos andv:

ys= Ix, yv =
∂v
∂s

Lx+
∂v
∂p

u.
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Using these relationships, we can compute the transfer functions

Hs(s) = (sI−A)−1B=
[

(

sI−Nr
∂v
∂s

L
)−1Nr

] ∂v
∂p
,

Hv(s) =
∂v
∂s

L(sI−A)−1B+
∂v
∂p
=

[∂v
∂s

L
(

sI−Nr
∂v
∂s

L
)−1Nr + I

] ∂v
∂p
.

Classical metabolic control analysis considers only the equilibrium concentrations,
and so these transfer functions would be evaluated ats= 0 to obtain the equilibrium
equations.

These equations are often normalized by the equilibrium concentrations and
parameter values, so that all quantities are expressed as fractional quantities. If we
define

Ds= diag{se}, Dv = diag{v(se, p0)}, Dp = diag{p0},

the the normalized coefficient matrices (without the overbar) are given by

Cs= (Ds)−1C̄sDv, Cv = (Dv)−1C̄vDv,

Rs
p = (Ds)−1R̄s

pDp, Rv
p = (Dv)−1R̄v

pDp.

Add exercises on MCA theorems RMM

Make sure to cite Ingalls and Hoffmeyr appropriately RMM

Add examples. Can we tie to running? RMM

Flux balance analysis

Flux balance analysis is a technique for studying the relative rate of different reac-
tions in a complex reaction system. We are most interested inthe case where there
may be multiple pathways in a system, so that the number of reactionsm is greater
than the number of speciesn. The dynamics

ṡ= Nv(s, p)

thus have the property that the matrixN has more columns that rows and hence
there are multiple reactions that can produce a given set of species. Flux balance is
often applied to pathway analysis in metabolic systems to understand the limiting
pathways for a given species and the the effects of changes in the network (e.g.,
through gene deletions) to the production capacity.

To perform a flux balance analysis, we begin by separating the reactions of the
pathway into internal fluxesvi versus exchanges fluxve, as illustrated in Figure 2.3.
The dynamics of the resulting system now be written as

ṡ= Nv(s, p) = N












vi

ve













= Nvi(s, p)−be,
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Figure 2.3: Flux balance analysis.

wherebe=−Nve† represents the effects of external fluxes on the species dynamics.RMM: Make sure signs
and notation match

conventional notation
Since the matrixN has more columns that rows, it has aright null space and hence
there are many different internal fluxes that can produce a given change in species.

In particular, we are interested studying the steady state properties of the sys-
tem. In this case, we have that ˙s= 0 and we are left with an algebraic system

Nvi = be.

Work through the various types of questions that one can answer with this model.RMM

Main points to touch on should come from Schilling paper and Klant/Stelling chap-
ter.

• Prediction of optimal distribution based on a performance criterion:

maxJ = cTv subject to Nvi = be, vi ≥ 0

• Determine bounds on ranges of fluxes (extreme pathways)

• Effects of gene knockouts, environmental stresses, etc

Include examples from Schilling and Klant/Stelling, ideally tied to running exam-
ples.

Power law formalism

Chemical reaction rate equations are nonlinear differential equations whenever two
or more species interact. However, the nonlinearities are very structured: they can
be decomposed into a stoichiometry matrix and flux rates, and the flux rates typ-
ically consist of either polynomial terms or simple ratios of polynomials (e.g.,
Michaelis-Menten kinetics or Hill functions). In this section we consider power
law representations that exploit these properties and attempt to provide simpler
techniques for understand the relationships between species concentrations, pa-
rameter values and flux rates. This formalism was developed by Savageau [?] and
is also called biochemical systems theory (BST).
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The general power law formalism describes a set of reaction dynamics using a
set of differential equations of the form

dxi

dt
=

∑

r

Er

n+m
∏

j=1

x
ǫrj
j −

∑

s

Es

n+m
∏

j=1

x
ǫsj
j , i = 1, . . .n. (2.7)

Here, xi is the concentration for speciesi, with i = 1, . . . ,n representing internal
species andi = n+ 1, . . . ,m representing external species, and the dynamics are
broken into two summations. The first sum is over the set of reactions that pro-
duce the speciesxi and the second is over the reactions that utilizexi (and so
decrease its concentration). The linear coefficientsEr andEs are the activity lev-
els and correspond to the rate constants (for metabolic networks the rate constants
are often proportional to a fixed enzyme level, hence the use ofthe symbolE).
The exponentsǫrj and ǫsi are thekinetic ordersof the production and utilization
reactions.

In this general form, the power law formalism is able to exactly capture mass
action kinetics, but it does not provide any additional structure. If we consider a
general rate equation of the formvi(x1, . . . , xn+m), we can approximate this function
in a number of ways. The first is through its linearization,

vi(x1, . . . , xn+m≈ vi(x1,e, . . . , xn+m,e)+
∑ ∂v
∂x j

(

x j − x j,e
)

+higher order terms.

We have used exactly this approximation in previous sections.
A different approximation can be obtained by taking a Taylor series expansion

for logvi :

logvi(x1, . . . , xn+m≈ logvi(x1,e, . . . , xn+m,e)+
∑ ∂ logvi

∂ logx j

(

logxi− logxi,e
)

+higher order terms.

If we define
gi, j =

∂ logvi

∂ logx j
=

x j

vi
· ∂vi

∂x j

and collect terms, we have

logvi(x) ≈ logαi +gi,1 logx1+ · · ·+gi,n+m logxn+m.

Converting this back from log coordinates, we can thus right

vi(x) ≈ αi

n+m
∏

j=1

x
gi, j

j .

Using this approximation on the sums in equation (2.7), we can approximate
the resulting dynamics as

dxi

dt
= αi

∏

xgi , j
j −βi

∏

xhi , j
j ,

whereαi andgi, j are the rate constant and kinetic orders for the production terms
andβi andhi, j are the rate constant and kineeetic orders for reactions that utilize
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xi . While this is only an approximation, its form is convenientt for performing
equilibrium analyses. In particular, if ˙xi = 0 then we can equate the production rate
to the utilization rate adn take the log of this expression toobtain

logαi +
∑

gi, j logx j = logβi +
∑

hi, j logx j .

This is now a linear equation for the logs of the concentrations in terms of the
various parameters that enter the system.

Work through the analysis from here following BST and providesome examples.RMM

Then work through the relationship between BST, MCA and FBA, as described by
Savageau.

2.3 Analysis of Limit Cycles using Harmonic Balance

Unlike the case of linear systems, where it is possible to full characterize the solu-
tions of a model and there are a wide variety of analysis techniques available, the
behavior of nonlinear systems is harder to analyze, especially away from equilib-
rium points (where the linearization gives a good approximation). One of the more
useful techniques for studying the behavior of nonlinear systems is the method of
harmonic balance, of which a special case is the method ofdescribing functions.
This section explores the use of harmonic balance and describing functions for an-
alyzing nonlinear systems, including the detection and analysis of limit cycles and
the propogation of noise through nonlinear systems.

Describing functions

For special nonlinear systems like the one shown in Figure 2.4a, which consists
of a feedback connection between a linear system and a staticnonlinearity, it is
possible to obtain a generalization of Nyquist’s stabilitycriterion based on the idea
of describing functions. Following the approach of the Nyquist stability condition,
we will investigate the conditions for maintaining an oscillation in the system. If
the linear subsystem has low-pass character, its output is approximately sinusoidal
even if its input is highly irregular. The condition for oscillation can then be found
by exploring the propagation of a sinusoid that correspondsto the first harmonic.

To carry out this analysis, we have to analyze how a sinusoidal signal prop-
agates through a static nonlinear system. In particular we investigate how the
first harmonic of the output of the nonlinearity is related to its (sinusoidal) input.
Letting F represent the nonlinear function, we expandF(eiωt) in terms of its har-
monics:

F(aeiωt) =
∞
∑

n=0

Mn(a)ei(nωt+φn(a)),

whereMn(a) andφn(a) represent the gain and phase of thenth harmonic, which
depend on the input amplitude since the functionF is nonlinear. We define the
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L(s)

−N( · )

AB

(a) Block diagram

Re

Im

−1/N(a)

G(iω)

(b) Nyquist plot

Figure 2.4: Describing function analysis. A feedback connection between a static nonlinearity and a
linear system is shown in (a). The linear system is characterized by its transfer functionL(s), which
depends on frequency, and the nonlinearity by its describing functionN(a), which depends on the
amplitudea of its input. The Nyquist plot ofL(iω) and the plot of the−1/N(a) are shown in (b). The
intersection of the curves represents a possible limit cycle.

describing function to be the complex gain of the first harmonic:

N(a) = M1(a)eiφn(a). (2.8)

The function can also be computed by assuming that the input isa sinusoid and
using the first term in the Fourier series of the resulting output.

Arguing as we did when deriving Nyquist’s stability criterion, we find that an
oscillation can be maintained if

L(iω)N(a) = −1. (2.9)

This equation means that if we inject a sinusoid at A in Figure 2.4, the same signal
will appear at B and an oscillation can be maintained by connecting the points.
Equation (2.9) gives two conditions for finding the frequencyω of the oscillation
and its amplitudea: the phase must be 180◦, and the magnitude must be unity.
A convenient way to solve the equation is to plotL(iω) and−1/N(a) on the same
diagram as shown in Figure 2.4b. The diagram is similar to the Nyquist plot where
the critical point−1 is replaced by the curve−1/N(a) anda ranges from 0 to∞.

It is possible to define describing functions for types of inputs other than si-
nusoids. Describing function analysis is a simple method, but it is approximate
because it assumes that higher harmonics can be neglected. Excellent treatments
of describing function techniques can be found in the texts by Atherton [?] and
Graham and McRuer [?].† RMM: Move this once this

section is written
Add biological example here RMM

Stability of limit cycles using describing functions

In order to check the stability of a limit cycle, we must reason about how solutions
that have initial conditions near the limit cycle evolve in time and whether they
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(a) (b)

Figure 2.5: Heuristic stability of limit cycles using describing functions. (a)To check if a perturbation
from amplitudeA0 to amplitudeA0+ δA is stabilizing, we check to see if the Nyquist criterion is
satisfied for the original frequency response and the perturbed critical point P1 = 1/N(A0+ δA). (b)
An example of a nonlinear system with multiple limit cycles. Stable limit cycles arelabeled ’s’ and
unstable limit cycles are labeled ’u’.

move closer to the limit cycle (asymptotic stability) or diverge from the limit cycle
(instability).

In the text below, need to changeA to a to match AM08.RMM

We begin by arguing heuristically, using the Nyquist plot inFigure 2.4b. Sup-
pose that we were to consider a perturbed limit cycle with amplitude A0 + δA,
whereA0 is the amplitude of the limit cycle predicted by the describing function
method. If we did so, then the point of intersection of the describing function and
the frequency response would move fromP0 = 1/N(A0) to P1 = 1/N(A0+ δA), as
shown in Figure 2.5a. Now evaluate the Nyquist criterion for the frequency re-
sponse with critical pointP1. If the criterion indicates that the perturbed system
is stable (i.e., no net encirclements ofP1 for a stable process), then intuitively the
amplitude of the perturbed solution would decrease and we would return to our
original amplitude limit cycle. Conversely, if the Nyquistcriterion with critical
point P1 indicates instability, then the oscillation would grow andhence we can
infer that the limit cycle is unstable.

While this heuristic method is intuitively appealing, it does not always give the
correct answer. Indeed, even the prediction of the existance of a limit cycle using
describing fucntions can be incorrect unless the system satisfies some additional
conditions. We present here one such set of conditions, due to Mees [?].

Suppose that (ω0,A0) satisfies the describing function balance equationP(iω0)=
−1/N(A0) and that the the frequency response curve and the describing function
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locus are transverse (not tangent) at their intersection. Define

ρ(ω)2 =
∑

k=3,5,9,...

|P(ikω0)|2, “gain of harmonics”

p(a)2 = ‖n(asint)‖22− |aN(a)|2, “first harmonic error”

q(a, ǫ) = ‖m(asint, ǫ)‖2, “slope bound”

m(x, ǫ) =max{|N(x+ ǫ)−N(x)|, |N(x− ǫ)−N(x)|}.
Now find anǫ such that for all (ω,a) near (ω,a0),

ρ(ω)(p(a)+q(a, ǫ)) ≤ ǫ

and letΩ ∈ R2
+ be the set of (ω,a) such that

|N(a)+1/G(iω)| ≤ q(a, ǫ)/a.

Theorem 2.1. SupposeΩ is bounded and there exists a unique(ω,a0) ∈ Ω sat-
isfying the balance equation. Then there exists a periodic solution of the form
y(t) = asin(ωt)+y∗(t) with remnan‖y∗‖∞ ≤ ǫ.

Sketch of proof.Reduced to the contraction mapping theorem, which generatesρ,
p andq.

The basic idea behind this theorem is that if the harmonics in the loop ex-
pression die off sufficiently fast, then we can insure that there is truly a periodic
solution and bound the error of the higher harmonics. There isalso a graphical
version of the stability theorem that checks for “complete intersections” between
the describing function locus and the Nyquist curve [?].

Add example RMM

Look for some simple versions of stability theorems that we can include as well.RMM

Handwritten notes say there is a describing function version of the Hopf theorem
that also might be nice to include.

Mathematically, the stability of a limit cycle can be analyzed by taking the lin-�
earization of the system around the (non-equilibrium) solution. To see how this is
done, consider a nonlinear system of the form

ẋ= f (x)

that has a solutionxd(t) that is periodic with periodT. To compute the linearization
of the dynamics around the equilibrium point, we compute thedynamics of the
errore= x− xd:

ė= f (x)− f (xd) = F(e, xd(t)) ≈ A(t)e

whereA(t) is the time-varying linearization given by

A(t) =
∂F
∂e

(e, xd)
∣

∣

∣

∣

∣

e=0,xd(t)
.
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Figure 2.6: Random input describing function analysis.

The dynamics matrixA(t) is also periodic and so the dynamics of the linearization
are a given by a periodic, linear ordinary differential equation.

The dynamics of periodic linear systems can be studied usingFloquettheory,
which we briefly review here. LetΦ(t,0) be the (T-periodic) fundamental matrix
for ė= A(t)e, so that the solution is given byx(t) = Φ(t,0)x(0). It can be show
thatΦ(t,0) has the formφ(t,0)= P(t)eFt whereP(t) = P(t+T) ∈ Rn×n is a periodic
matrix andF ∈Rn×n is a constant matrix. We can now check stability by examining
the eigenvalues of the matrixeFT , which corresponds to the “first return” map for
the system.

Random input describing functions

In addition to allowing prediction and analysis of limit cycles, describing functions
can also be used to analyze the propogation of noise through nonlinear feedback
systems. This approach is known as therandom input describing functionmethod.

As in the single input describing function method, we begin with a system in
the form of a a linear system with a nonlinear feedback, as shown in Figure 2.3.
To analyze this system, we construct an input that contains both a sinusoid and a
random inputr(t):

y= b+asin(ωt+φ)+ r(t),

whereb is the bias term,a is the amplitude of the sinusoidal term,φ is a uniform
random variable andr(t) is a stationary Gaussian random process with variance
σ2 and correlationρ(τ). We approximate the response of the system through the
nonlinearity by

N(y(t)) ≈ Nbb+Naasin(ωt+φ)+Nbr(t),

whereNv is called thebias gain, Na is the sinusoidal gain andNb is the stochastic
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gain. These functions are given by RMM: Need to check these
equations

Nb(b,a,σ) =
1
b

E{ f (y)} = 1

(2π)3/2σb

∫ 2π

0

∫ ∞

−∞
f (b+asinθ+ r(t))e

− r2

2σ2 drdθ

Na(b,a,σ) =
2
a

E{ f (y)sinθ} = 2

(2π)3/2σa

∫ 2π

0

∫ ∞

−∞
f (b+asinθ+ r(t))sinθe

− r2

2σ2 drdθ

Nr (b,a,σ) =
1

σ2
E{ f (y)r} = 1

(2π)3/2σ3

∫ 2π

0

∫ ∞

−∞
f (b+asinθ+ r(t))re

− r2

2σ2 drdθ

(2.10)
The random input describing function method has a number of special cases.

If we takeσ = 0, then it can be shown that we recover the standard describing
function method. If we instead takea = 0, we can study how noise propogates
through the system. Recall that in the linear case, where thefeedback term is
given by a constant gainN that spectral density of the outputy is given by

Sy(ω) = Hyd(−iω)Sd(ω)Hyd(iω), σy =
1
2π

∫ ∞

−∞
Sy(ω)dω.

In the nonlinear case, we replaceN with Nr (σy) so that

Hyd(s) =
P(s)

1+P(s)Nr (σy)
, σy =

1
2π

∫ ∞

−∞
Hyd(−iω)Sd(ω)Hyd(iω). (2.11)

Note that this equation gives an algebraic relationship forσy that can be solved
and then used to computeNr (σ) andSy(ω). RMM: Note that ifHyd(s)

is an unstable transfer
function,σy→∞.

Consider next the case of both a limit cycle and random noise,

y(t) = asin(ωt+φ)+ r(t).

We now look for solutions of the coupled equations

Hyd(s) =
P(s)

1+P(s)Nr (σy)
, σy =

1
2π

∫ ∞

−∞
Hyd(−iω)Sd(ω)Hyd(iω),

Na(a,σy)P(iω0) = −1.
(2.12)

If we can finda, σy andω0 that satisfy all of the equations, then we get a descrip-
tion of y(t).

Add example RMM

Need to turn the text below into something substantial, plusan example. May notRMM

be useful to include here.

It is interesting to note that it can sometimes happen thatSd(ω) can cause
an unstable (noiseless) system to be stable. Similarly, we can get a system with
Nr (0,σy) that destabilizes and otherwise stable system.
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2.4 Bifurcations

2.5 Model Reduction Techniques

Singular Perturbation

Let (x,y) ∈ D := Dx×DyR
n×Rm and consider the vector field

ẋ= f (x,y), ǫẏ= g(x,y), (x(0),y(0))= (x0,y0)

in which ǫ > 0 is a small parameter, that is,ǫ ≪ 1. Sinceǫ ≪ 1, the absolute
value of the time derivative ofy can be much larger than the one of the derivative
of x, resulting in ay dynamics that is much faster than thex dynamics. That is,
this system has a slow time scale avolution (the one ofx) and a fast time-scale
evolution (the one ofy). If one is interested only on the slower time-scale, then
the above system can be approximated (under suitable conditions) by thereduced
system

˙̄x= f (x̄, ȳ), 0= g(x̄, ȳ), x̄(0)= x0

which, lettingy = γ(x) (called the slow manifold) the locally unique solution of
g(x,y) = 0, leads to

˙̄x= f (x̄,γ(x̄)), x(0)= x0.

We seek to determine under what conditions the solutionx(t) is “close” to the
solution x̄(t) of the reduced system. This problem can be addressed by analyzing
the fast dynamics. Let thenτ = t/ǫ be the fast time scale, we have that

dx
dτ
= ǫ f (x,y),

dy
dτ
= g(x,y), (x(0),y(0))= (x0,y0),

so that whenǫ≪ 1, x(τ) does not appreciably change. Therefore, the above system
in theτ time scale can be approximated by

dy
dτ
= g(x0,y), y(0)= y0,

in which x is “frozen” at the initial condition. This system is usually referred to as
theboundary layersystem. If for allx0, we have thaty(τ) converges toγ(x0), then
for t > 0 we will have that the solutionx(t) is well approximated by the solution
x̄(t) to the reduced system. This qualitative explanation is moreprecisely captured
by the following theorem (originally due to Tikonov).

Theorem 2.2. Assume that∂
∂yg(x,y)

∣

∣

∣

∣

y=γ(x)
< 0 uniformly for x∈ Dx. Let the solu-

tion of the reduced system be uniquely defined for t∈ [0, t f ]. Then, for all tb ∈ (0, t f ]
there isǫ∗ > 0 and setΩ ⊆ D such that

x(t)− x̄(t) =O(ǫ) uniformly for t∈ [0, t f ]

y(t)−γ(x̄(t)) =O(ǫ) uniformly for t∈ [tb, t f ]

providedǫ < ǫ∗ and(x0,y0) ∈Ω.
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Maybe include an academic exaple (linear?) with a diagram/simulation showingDDV

the convergence to the slow manifold

Things to include RMM

• Poincaŕe-Bendixson Theorem and its extensions

• P-B (from Wiggins)

• Hastings (from his paper)

• Mallet-Paret and Smith (from their paper)

• Hopf Bifurcation - From Wiggins book

• Monotone systems - rule out periodic behavior (from Smith andSontag pa-
pers)

• multistability and hysteresis (from sontag paper and tutorial)
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Chapter 3
Stochastic Behavior

In this chapter we explore stochastic behavior in biomolecular systems, building on
our preliminary discussion of stochastic modeling in Section 1.2. We begin by re-
viewing the various methods for modeling stochastic processes using the chemical
master equation (CME), the chemical Langevin equation (CLE) andthe Fokker-
Planck equation (FPE). Given a stochastic description, we can then analyze the
behavior of the system using a variety of stochastic simulation and analysis tools.
In many cases, we must simplify the dynamics of the system in order to obtain
a tractable model, and we describe several methods for doingso, including finite
state projection, linearization and Markov chain representations. We also investi-
gate how to use data to identify some the structure and parameters of stochastic
models.

Prerequisites.This chapter makes use of a variety of topics in stochastic processes
that are not covered in AM08. Readers should have a good working knowledge of
basic probability and some exposure to simple stochastic processes (e.g., Brownian
motion).

3.1 Stochastic systems

We begin by briefly introducing the general notions of stochastic systems in con-
tinuous time and with continuous states. Some of the materialin this section is
drawn from the AM08 supplement on Optimization-Based Control Systems [?].

Review of random variables

A (real-valued) random variable Xis a variable that can take on any value accord-
ing to aprobability distribution P:

P(xl ≤ X ≤ xu) = probability thatx takes on a value in the rangexl , xu.

More generally, we writeP(A) as the probability that an eventA will occur (e.g.,
A= {xl ≤ X ≤ xu}). It follows from the definition that ifX is a random variable in
the range [L,U] then P(L ≤ X ≤ U) = 1. Similarly, if Y ∈ [L,U] then P(L ≤ X ≤
Y) = 1−P(Y≤ X ≤ U).

We characterize a random variable in terms of theprobability density function
(pdf) p(x):

P(xl ≤ X ≤ xu) =
∫ xu

xl

p(x)dx. (3.1)
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p(x)

L U

(a) Uniform distribution

µ

p(x)

σ

(b) Gaussian distributionRMM: Fix vertical
alignment

Figure 3.1: Probability density function (pdf) for uniform and Gaussiandistributions.

This can be taken as the definition of the pdf, but it is also possible to compute
p(x) given the distributionP as long as the distribution is suitably smooth:RMM: Not sure if this is

the best way to write this.
Use cdf instead?

p(x) =
∂P(xl ≤ x≤ xu)

∂xu

∣

∣

∣

∣

∣xl fixed,
xu = x,

x> xl .

We will sometimes writepX(x) when we wish to make explicit that the pdf is
associated with the random variableX. Note that we use capital letters to refer to
a random variable and lower case letters to refer to a specific value.

Probability distributions provide a general way to describestochastic phenom-
ena. Some standard probability distributions include auniform distribution,

p(x) =
1

U −L
, (3.2)

and aGaussian distribution(also called anormal distribution),

p(x) =
1

√
2πσ2

e
−1

2

( x−µ
σ

)2

. (3.3)

In the Gaussian distribution, the parameterµ is called themeanof the distribution
andσ is called thestandard deviationof the distribution. Figure 3.1 gives a graph-
ical representation of uniform and Gaussian pdfs. There manyother distributions
that arise in applications, but for the purpose of these notes we focus on uniform
distributions and Gaussian distributions.

If two random variables are related, we can talk about theirjoint probability:
PX,Y(A,B) is the probability that both eventA occurs forX and B occurs forY.
This is sometimes written asP(A∩B). For continuous random variables, these can
be characterized in terms of ajoint probability density functionRMM: Note that here we

useX, Y instead ofx, y, as
we did previous. Decide

which is best. P(xl ≤ X ≤ xu, yl ≤ Y≤ yu) =
∫ yu

yl

∫ xu

xl

p(x,y)dxdy. (3.4)

The joint pdf thus describes the relationship betweenX andY, and for sufficiently
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smooth distributions we have RMM: Rewrite in terms of
joint cdf?

p(x,y) =
∂2P(xl ≤ X ≤ xu, yl ≤ Y≤ yu)

∂xu∂yu

∣

∣

∣

∣

∣

∣
xl ,yl fixed,
xu = x, yu = y,

x> xl ,

y> yl .

We say thatX and Y are independentif p(x,y) = p(x)p(y), which implies that
PX,Y(A,B) = PX(A)PY(B) for eventsA associated withX andB associated withY.
Equivalently,P(A∩B) = P(A)P(B) if A andB are independent.

Theconditional probabilityfor an eventA given that an eventB has occurred,
written asP(A|B), is given by

P(A|B) =
P(A∩B)

P(B)
. (3.5)

If the eventsAandBare independent, thenP(A|B)=P(A). Note that the individual,
joint and conditional probability distributions are all different, so we should really
write PX,Y(A∩B), PX|Y(A|B) andPY(B).

In the current text we never make use of Bayes’ theorem. We should probably RMM

either omit the material that follows or (preferably) show how to derive some of
the results that we use in a Bayesian framework (perhaps as exercises?).

If X is dependent onY thenY is also dependent onX. Bayes’ theoremrelates
the conditional and individual probabilities:

P(A|B) =
P(B|A)P(A)

P(B)
, P(B) , 0. (3.6)

Bayes’ theorem gives the conditional probability of eventA on eventB given the
inverse relationship (B givenA). It can be used in situations in which we wish to
evaluate a hypothesisH given dataD when we have some model for how likely
the data is given the hypothesis, along with the unconditioned probabilities for
both the hypothesis and the data. As we shall see†, Bayes’ theorem can be used toRMM: Verify or delete

construct estimates of a system’s state given measurementsand a model.
The analog of the probability density function for conditional probability is the

conditional probability density function p(x|y) RMM: Check to see if this
is the right way to handle
p(y) = 0

p(x|y) =



















p(x,y)
p(y)

0< p(y) <∞

0 otherwise.
(3.7)

It follows that
p(x,y) = p(x|y)p(y) (3.8)

and
P(xl ≤ X ≤ xu|y) := P(xl ≤ X ≤ xu|Y= y)

=

∫ xu

xl

p(x|y)dx=

∫ xu

xl
p(x,y)dx

p(y)
.

(3.9)
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If X andY are independent thanp(x|y) = p(x) andp(y|x) = p(y). Note thatp(x,y)
and p(x|y) are different density functions, though they are related through equa-
tion (3.8). If X andY are related with joint probability density functionp(x,y) and
conditional probability density functionp(x|y) then

p(x) =
∫ ∞

−∞
p(x,y)dy=

∫ ∞

−∞
p(x|y)p(y)dy.

Example 3.1 (Conditional probability for sum). Consider three random variables
X, Y andZ related by the expression

Z = X+Y.

In other words, the value of the random variableZ is given by choosing values
from two random variablesX and Y and adding them. We assume thatX and
Y are independent Gaussian random variables with meanµ1 andµ2 and standard
deviationσ = 1 (the same for both variables).

Clearly the random variableZ is not independent ofX (or Y) since if we know
the values ofX then it provides information about the likely value ofZ. To see
this, we compute the joint probability betweenZ andX. Let

A= {xl ≤ x≤ xu}, B= {zl ≤ z≤ zu}.

The joint probability of both eventsA andB occurring is given by

PX,Z(A∩B) = P(xl ≤ x≤ xu, zl ≤ x+y≤ zu)

= P(xl ≤ x≤ xu, zl − x≤ y≤ zu− x).

We can compute this probability by using the probability density functions forX
andY:

P(A∩B) =
∫ xu

xl

(

∫ zu−x

zl−x
pY(y)dy

)

pX(x)dx

=

∫ xu

xl

∫ zu

zl

pY(z− x)pX(x)dzdx=:
∫ zu

zl

∫ xu

xl

pZ,X(z, x)dxdz.

Using Gaussians forX andY we have

pZ,X(z, x) =
1
√

2π
e−

1
2(z− x−µY)2

· 1
√

2π
e−

1
2(x−µX)2

=
1
2π

e−
1
2
(

(z− x−µY)2+ (x−µX)2)

.

A similar expression holds forpZ,Y. ∇

Given a random variableX, we can define various standard measures of the
distribution. Theexpectationor meanof a random variable is defined as

E{X} = 〈X〉 =
∫ ∞

−∞
x p(x)dx,
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and themean squareof a random variable is

E{X2} = 〈X2〉 =
∫ ∞

−∞
x2 p(x)dx.

If we let µ represent the expectation (or mean) ofX then we define thevarianceof
X as

E{(X−µ)2} = 〈(X−〈X〉)2〉 =
∫ ∞

−∞
(x−µ)2 p(x)dx.

We will often write the variance asσ2. As the notation indicates, if we have a
Gaussian random variable with meanµ and (stationary) standard deviationσ, then
the expectation and variance as computed above returnµ andσ2.

Add something about the fact that for a Gaussian the second moment about theRMM

mean is sufficient? Eg, 3rd moment is zero, etc

Several useful properties follow from the definitions.
RMM: Fix the style of this
proposition: properties
don’t all grammatically
agreeProposition 3.1 (Properties of random variables).

RMM: Think about a better
way to word this1. The expected value preserves linearity: E{αX+βY} = αE{X}+βE{Y}

2. If X is a Gaussian random variable with meanµ and varianceσ2, thenαX
is Gaussian with meanαX and varianceα2σ2.

3. If X and Y are Gaussian random variables with meansµX, µY and variances
σ2

X, σ2
Y,

p(x) =
1

√

2πσ2
X

e
− 1

2

(

x−µX
σX

)2

, p(y) =
1

√

2πσ2
Y

e
− 1

2

(

y−µY
σY

)2

,

then X+Y is a Gaussian random variable with meanµZ = µX + µY and
varianceσ2

Z = σ
2
X+σ

2
Y,

p(x+y) =
1

√

2πσ2
Z

e
− 1

2

(

x+y−µZ
σZ

)2

.

Proof. The first item follows directly from the definition of expectation. The sec-
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ond statement is proved using the definitions:

P(xl ≤ αX ≤ xu) = P(
xl

α
≤ X ≤ xu

α
)

=

∫
xu
α

xl
α

1
√

2πσ2
e−

1
2

( x−µ
σ

)2

dx

=

∫ xu

xl

1

α
√

2πσ2
e−

1
2

( y/α−µ
σ

)2

dy

=

∫ xu

xl

1
√

2πα2σ2
e−

1
2

( y−αµ
ασ

)2

dy =
∫ xu

xl

p(y)dy

The third item is left as an exercise.

Introduction to random processes

A continuous-time random processis a stochastic system characterized by the evo-
lution of a random variableX(t), t ∈ [0,T]. We are interested in understanding how
the (random) state of the system is related at separate times. The process is defined
in terms of the “correlation” ofX(t1) with X(t2).

We callX(t) ∈ Rn thestateof the random process. For the casen> 1, we have
a vector of random processes:

X(t) =



























X1(t)
...

Xn(t)



























We can characterize the state in terms of a (vector-valued) time-varying pdf,

P(xl ≤ Xi(t) ≤ xu) =
∫ xu

xl

pXi (x; t)dx.

Note that the state of a random process is not enough to determine the next state
(otherwise it would be a deterministic process). We typically omit indexing of the
individual states unless the meaning is not clear from context.

We can characterize the dynamics of a random process by its statistical charac-
teristics, written in terms ofjoint probabilitydensity functions:

P(x1l ≤ Xi(t1) ≤ x1u, x2l ≤ X j(t2) ≤ x2u)

=

∫ x2u

x2l

∫ x1u

x1l

pXi ,Yi (x1, x2; t1, t2)dx1dx2

The functionp(xi , x j ; t1, t2) is called ajoint probability density functionand de-
pends both on the individual states that are being compared and the time instants
over which they are compared. Note that ifi = j, thenpXi ,Xi describes howXi at
time t1 is related toXi at timet2.

In general, the distributions used to describe a random process depend on the
specific time or times that we evaluate the random variables. However, in some
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cases the relationship only depends on the difference in time and not the ab-
solute times (similar to the notion of time invariance in deterministic systems,
as described in AM08). A process isstationary if p(x, t + τ) = p(x, t) for all τ,
p(xi , x j ; t1+ τ, t2+ τ) = p(xi , x j ; t1, t2), etc. In this case we can writep(xi , x j ;τ) for
the joint probability distribution. Stationary distributions roughly correspond to
the steady state properties of a random process and we will often restrict our atten-
tion to this case.

In looking at biomolecular systems, we are going to be interested in random
processes in which the changes in the state occur when a random event occurs
(such as a molecular reaction or binding event). In this case, it is natural to describe
the state of the system in terms of a set of timest0 < t1 < t2 < · · · < tn andX(ti) is
the random variable that corresponds to the possible statesof the system at timeti .
Note that time time instants do not have to be uniformly spaced and most often (for
biomolecular systems) they will not be. All of the definitionsabove carry through,
and the process can now be described by a probability distribution of the form

P(X(ti) ∈ [xi , xi +dxi ], i = 1, . . . ,n) = p(xn, xn−1, . . . , x0; tn, tn−1, . . . , t0)dxndxn−1dx1,

wheredxi are taken as infinitesimal quantities.† RMM: check

An important class of stochastic systems is those for which the next state of the
system depends only on the current state of the system and notthe history of the
process. Suppose that

P(X(tn) ∈ [xn, xn+dxn]|X(ti) ∈ [xi , xi+dxi ]|, i =1, . . . ,n−1)=P(X(tn) ∈ [xn, xn+dxn]|X(tn−1) ∈ [xn−1, xn−1+dxn−1]).
(3.10)

That is, the probability of being in a given state at timetn dependsonlyon the state
that we were in at the previous time instanttn−1 and not the entire history of states
prior to tn−1. A stochastic process that satisfies this property is called aMarkov
process.

In practice we do not usually specify random processes via the joint probabil-
ity distribution p(xi , x j ; t1, t2) but instead describe them in terms of apropogater
function. Let X(t) be a Markov process and define the Markov propogator as

Ξ(dt; x, t) = X(t+dt)−X(t), given X(t)= x.

The propogator function describes how the random variable attime t is related
to the random variable at timet + dt. Since bothX(t + dt) and X(t) are random
variables,Ξ(dt; x, t) is also a random variable and hence it can be described by its
density function, which we denote asΠ(ξ, x;dt, t): RMM: Pretty sure this

equation is not right; need
to figure out how to better
map to Gillespie formalismPx≤ X(t+dt) ≤ x+ ξ =

∫ x+ξ

x
Π(dx, x;dt, t)dx.

The previous definitions for mean, variance and correlation can be extended to
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the continuous time, vector-valued case by indexing the individual states:RMM: Think about
whether to writeR(s, t)

instead ofR(t, s)

E{X(t)} =



























E{X1(t)}
...

E{Xn(t)}



























=: µ(t)

E{X(t)XT(s)} =



























E{X1(t)X1(s)} . . . E{X1(t)Xn(s)}
. . .

...

E{Xn(t)Xn(s)}



























=: R(t, s)

Note that the random variables and their statistical properties are all indexed by
the timet (and s). The matrixR(t, s) is called thecorrelation matrixfor X(t) ∈
R

n. If t = s thenR(t, t) describes how the elements ofx are correlated at timet
(with each other) and is called thecovariance matrix. Note that the elements on
the diagonal ofR(t, t) are the variances of the corresponding scalar variables. A
random process is uncorrelated ifR(t, s) = 0 for all t , s. This implies thatX(t) and
X(s) are independent random events and is equivalent topX,Y(x,y) = pX(x)pY(y).

If a random process is stationary, then it can be shown thatR(t+τ, s+τ)=R(t, s)
and it follows that the correlation matrix depends only ont− s. In this case we will
often writeR(t, s) = R(s− t) or simpleR(τ) whereτ is the correlation time. The
correlation matrix in this case is simplyR(0).

In the case whereX is also scalar random process, the correlation matrix is
also a scalar and we will writeρ(τ), which we refer to as the (scalar) correla-
tion function. Furthermore, for stationary scalar random processes, the correla-
tion function depends only on the absolute value of the correlation function, so
ρ(tau) = ρ(−τ) = ρ(|τ|). This property also holds for the diagonal entries of the
correlation matrix sinceRii (s, t) = Rii (t, s) from the definition.

Example 3.2 (Ornstein-Uhlenbeck process). Consider a scalar random processRMM: Check to make sure
the way we desribe this
links with the classical

definition of
ORnstein-Uhlenbeck

properly.

defined by a Gaussian pdf withµ = 0,

p(x, t) =
1

√
2πσ2

e
− 1

2
x2

σ2 ,

and a correlation function given by

ρ(t1, t2) =
Q

2ω0
e−ω0|t2−t1|.

The correlation function is illustrated in Figure 3.2. This process is also known
as anOrnstein-Uhlenbeck process, a term that is commonly used in the scientific
literature. This is a stationary process. ∇

Don’t know whether we need to keep this here. The nomenclatureis pretty con-RMM

sistent in the chemical physics literature

The terminology and notation for covariance and correlationvaries between
disciplines. In some communities (e.g., statistics), the term “cross-covariance” is
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ρ(t1− t2)

τ = t1− t2

Figure 3.2: Correlation function for a first-order Markov process.

used to refer to the covariance between two random vectorsX andY, to distin-
guish this from the covariance of the elements ofX with each other. The term
“cross-correlation” is sometimes also used.MATLAB has a number of functions to
implement covariance and correlation, which mostly match the terminology here: RMM: Too informal

• cov(X) - this returns the variance of the vectorX that represents samples
of a given random variable or the covariance of the columns ofa matrixX
where the rows represent observations.

• cov(X, Y) - equivalen tocov([X(:), Y(:)]). Computes the covariance
between the columns ofX andY, where the row are observations.

• xcorr(X, Y) - the “cross-correlation” between two random sequences. If
these sequences came from a random process, this is basically the correlation
function.

• xcov(X, Y) - this returns the “cross-covariance”, whichMATLAB defines as
the “mean-removed cross-correlation”.

TheMATLAB help pages give the exact formulas used for each, so the main point
here is to be careful to make sure you know what you really want.

Should probably rewrite this and instead include some of the more standard ran-RMM

dom processes such as Weiner and Ornstein-Uhlenbeck. Then talk about white
noise process in that contenxt (ala Gillespie)

We will also make use of a special type of random process referred to as “white
noise”. A white noise process X(t) satisfiesE{X(t)} = 0 andR(t, s) =Wδ(s− t),
whereδ(τ) is the impulse function andW is called thenoise intensity. White noise
is an idealized process, similar to the impulse function or Heaviside (step) function
in deterministic systems. In particular, we note thatρ(0) = E{X2(t)} = ∞, so the
covariance is infinite and we never see this signal in practice. However, like the
step function, it is very useful for characterizing the responds of a linear system,
as described in the following proposition.

3.2 Stochastic Modeling of Biochemical Systems

Chemical reactions in the cell can be modeled as a collectionof stochastic events
corresponding to chemical reactions between species, including binding and un-
binding of molecules (such as RNA polymerase and DNA), conversion of one set
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Figure 3.3: Different methods of modeling biomolecular systems

of species into another, and enzymatically controlled covalent modifications such
as phosphorylation. We can model these reactions at a variety of scales and using
a variety of representations, as depicted in Figure 3.3, depending on the question
we want to answer with the model. In this section we will brieflysurvey some of
the different representations that can be used for stochastic models of biochemical
systems, following the approach described in the textbook by Gillespie??.

Chemical master equation

In this subsection we will go from the general discussion prior to this to the specificRMM

case of chemical reactions. Only the main equations are given here for now.

P(x, t|x0, t0) = Probability thatX(t) = x given thatX(t0) = x0.

The propensity function defines the probability that a given reaction occurs in
a sufficiently small time stepdt:

a j(x, t)dt = Probability that reaction Rj will occur between timet and
time t+dt given thatX(t) = x.

The linear dependence ondt relies on the fact thatdt is chosen sufficiently small.
We will typically assume thata j does not depend on the timet and writea j(x)dt
for the probability that reactionj occurs in statex.

Using the propensity function, we can compute the distribution of states at time
t+dt given the distribution at timet:

P(x, t+dt|x0, t0) = P(x, t|x0, t0)
(

1−
M
∑

j=1

a j(x)dt
)

+

M
∑

j=1

P(x− ξ j |x0, t0)a j(x− ξ j)dt

= P(x, t|x0, t0)+
M
∑

j=1

(

a j(x− ξ j)P(x− ξ j , t|x0, t0)−a j(x)P(x, t|x0, t0)
)

dt.

(3.11)
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Sincedt is small, we can take the limit asdt→ 0 and we obtain thechemical
master equation(CME):

∂P
∂t

(x, t|x0, t0) =
M
∑

j=1

(

a j(x− ξ j)P(x− ξ j , t|x0, t0)−a j(x)P(x, t|x0, t0)
)

(3.12)

Chemical Langevin equation

We now go to the limit of continuous variables and derive the chemical LangevinRMM

equations. Again, only the key equations are included for now.

dXi(t)
dt
=

M
∑

j=1

ξ ji a j(X(t))+
M
∑

j=1

ξ ji a
1/2
j (X(t))Γ j(t) =: Ai(X(t))+

M
∑

j=1

Bi j (X(t))Γ j(t)

(3.13)

Fokker-Planck equations

Derivation of the Fokker-Planck equations goes here. Just the formulas for now. RMM

Consider first the case of a random process in one dimension. Weassume that
the random process is in the same form as the previous section:

dX(t)
dt
= A(X(t))+D1/2(X(t))Γ(t). (3.14)

The functionA(X) is called the drift term andD(X) is the diffusion term†. It can be RMM: Check these names

shown that the probability distributionP(x, t|x0, t0) satisfies the partial differential
equation

∂P
∂t

(x, t|x0, t0) = − ∂
∂x

(

A(x, t)P(x, t|x0, t0)
)

+
1
2
∂2

∂x2

(

D(x, t)P(x, t|x0, t0)
)

(3.15)

In the multivariate case, a bit more care is required. Using the chemical Langevin
equation (3.13), we define

Di(x, t) =
M
∑

j=1

b2
i j (x, t), Ci j (x, t) =

M
∑

k=1

bik(x, t)b jk(x, t), i < j = 1, . . . ,M.
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The Fokker-Planck equation now becomes

∂P
∂t

(x, t|x0, t0) =−
M
∑

i=1

∂

∂xi

(

Ai(x, t)P(x, t|x0, t0)
)

+
1
2

M
∑

i=1

∂

∂xi

∂2

∂x2

(

Di(x, t)P(x, t|x0, t0)
)

+

M
∑

i, j = 1
i < j

∂2

∂xi∂x j

(

Ci j (x, t)P(x, t|x0, t0)
)

.

(3.16)

Rate reaction equations

As we already saw in Chapter 1, the reaction rate equations can be used to describe
the dynamics of a chemical system in the case where there are alarge number of
molecules whose state can be approximated using just the concentrations of the
molecules. We rederive the results from Section 1.2 here, being more careful to
point out what approximations are being made.

We start with the chemical Langevin equations (3.13), from which we can write
the dynamics for the average quantity of the each species at each point in time:

d〈Xi(t)〉
dt

=

M
∑

j=1

ξ ji 〈a j(X(t))〉,

where the second order term drops out under the assumption that theΓ j ’s are in-
dependent processes. We see that the reaction rate equations follow by defining
xi = 〈Xi〉/Ω and assumingthat 〈a j(X(t))〉 = a j(〈X(t)〉). This relationship is true
whena j is linear (e.g., in the case of a unimolecular reaction), butis an approxi-
mation otherwise.

Say more here about the approximations in terms of things likedt and also giveRMM

some examples showing when the approximation is a good one versus a bad one.

3.3 Analysis of Stochastic Systems

3.4 Linearized Modeling and Analysis

In this section we consider the special case of linear stochastic systems that are
driven by random processes.



stochastic.tex, v0.00 2008/06/12 07:03:00 (murray)

3.4. LINEARIZED MODELING AND ANALYSIS 63

Linear input/output response

We now consider the problem of how to compute the response of alinear system
to a random process. We assume we have a linear system described in state space
as

Ẋ = AX+FW, Y =CX (3.17)

Given an “input”W, which is itself a random process with meanµ(t), variance
σ2(t) and correlationρ(t, t+τ),† what is the description of the random processY? RMM: Do we actually

handle this level of
generality?

Let W be a white noise process, with zero mean and noise intensityQ:

ρ(τ) = Qδ(τ).

We can write the output of the system in terms of the convolution integral

Y(t) =
∫ t

0
h(t−τ)W(τ)dτ,

whereh(t−τ) is the impulse response for the system

h(t−τ) =CeA(t−τ)B+Dδ(t−τ).

We now compute the statistics of the output, starting with the mean:

E{Y(t)} = E{
∫ t

0
h(t−η)W(η)dη}

=

∫ t

0
h(t−η)E{W(η)}dη = 0.

Note here that we have relied on the linearity of the convolution integral to pull the
expectation inside the integral.

We can compute the covariance of the output by computing the correlationρ(τ)
and settingσ2 = ρ(0). The correlation function fory is RMM: t1, t2? t2 > t1?

ρY(t, s) = E{Y(t)Y(s)} = E{
∫ t

0
h(t−η)W(η)dη ·

∫ s

0
h(s− ξ)W(ξ)dξ}

= E{
∫ t

0

∫ s

0
h(t−η)W(η)W(ξ)h(s− ξ)dηdξ}

Once again linearity allows us to exchange expectation and integration† RMM: This derivation only
works if W is white noise,
which is not yet defined.
FIXρY(t, s) =

∫ t

0

∫ s

0
h(t−η)E{W(η)W(ξ)}h(s− ξ)dηdξ

=

∫ t

0

∫ s

0
h(t−η)Qδ(η− ξ)h(s− ξ)dηdξ

=

∫ t

0
h(t−η)Qh(s−η)dη
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Now letτ = s− t and write

ρY(τ) = ρY(t, t+τ) =
∫ t

0
h(t−η)Qh(t+τ−η)dη

=

∫ t

0
h(ξ)Qh(ξ+τ)dξ (settingξ = t−η)

Finally, we lett→∞ (steady state)

lim
t→∞
ρY(t, t+τ) = ρ̄Y(τ) =

∫ ∞

0
h(ξ)Qh(ξ+τ)dξ (3.18)

If this integral exists, then we can compute the second orderstatistics for the output
Y.

We can provide a more explicit formula for the correlation functionρ in terms
of the matricesA, F andC by expanding equation (3.18). We will consider the gen-
eral case whereW ∈ Rp andY ∈ Rq and use the correlation matrixR(t, s) instead of
the correlation functionρ(t, s). Define thestate transition matrixΦ(t, t0) = eA(t−t0)

so that the solution of system (3.17) is given by

x(t) = Φ(t, t0)x(t0)+
∫ t

t0

Φ(t,λ)Fw(λ)dλ

Proposition 3.2 (Stochastic response to white noise). Let E{X(t0)XT(t0)} = P(t0)
and W be white noise with E{W(λ)WT(ξ)} = RWδ(λ− ξ). Then the correlation
matrix for X is given by

RX(t, s) = P(t)ΦT(s, t)

where P(t) satisfies the linear matrix differential equation

Ṗ(t) = AP+PAT +FRWF, P(0) = P0.

Proof. Using the definition of the correlation matrix, we have

E{X(t)XT(s)} = E
{

Φ(t,0)X(0)XT(0)ΦT(t,0)+cross terms

+

∫ t

0
Φ(t, ξ)FW(ξ)dξ

∫ s

0
Wt(λ)FTΦ(s,λ)dλ

}

= Φ(t,0)E{X(0)XT(0)}Φ(s,0)

+

∫ t

0

∫ s

0
Φ(t, ξ)FE{W(ξ)WT(λ)}FTΦ(s,λ)dξdλ

= Φ(t,0)P(0)φT(s,0)+
∫ t

0
Φ(t,λ)FRW(λ)FTΦ(s,λ)dλ.

Now use the fact thatΦ(s,0)= Φ(s, t)Φ(t,0) (and similar relations) to obtain

RX(t, s) = P(t)ΦT(s, t)

where

P(t) = Φ(t,0)P(0)ΦT(t,0)+
∫ T

0
Φ(t,λ)FRWFT(λ)ΦT(t,λ)dλ
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Finally, differentiate to obtain

Ṗ(t) = AP+PAT +FRWF, P(0) = P0

(see Friedland for details). RMM: Work out

The correlation matrix for the outputY can be computing using the fact that
Y = CX and henceRY = CTRXC. We will often be interested in the steady state
properties of the output, which given by the following proposition.

Proposition 3.3 (Steady state response to white noise). For a time-invariant linear
system driven by white noise, the correlation matrices for the state and output
converge in steady state to

RX(τ) = RX(t, t+τ) = PeATτ, RY(τ) =CRX(τ)CT

where P satisfies the algebraic equation

AP+PAT +FRWFT = 0 P> 0. (3.19)

Add proof, especially the fact thatP approaches a constant. RMM

Equation (3.19) is called theLyapunov equationand can be solved in MATLAB
using the functionlyap.

Example 3.3 (First-order system). Consider a scalar linear process

Ẋ = −aX+W, Y= cX,

whereW is a white, Gaussian random process with noise intensityσ2. Using the
results of Proposition 3.2, the correlation function forX is given by

RX(t, t+τ) = p(t)e−aτ

wherep(t) > 0 satisfies
p(t) = −2ap+σ2.

We can solve explicitly forp(t) since it is a (non-homogeneous) linear differential
equation:

p(t) = e−2atp(0)+ (1−e−2at)
σ2

2a
.

Finally, making use of the fact thatY= cX we have

ρ(t, t+τ) = c2(e−2atp(0)+ (1−e−2at)
σ2

2a
)e−aτ.

In steady state, the correlation function for the output becomes

ρ(τ) =
c2σ2

2a
e−aτ.

Note correlation function has the same form as the Ornstein-Uhlenbeck process in
Example 3.2 (withQ= c2σ2). ∇
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Add response to Gaussian process (exercise?)RMM

Random Processes in the Frequency Domain

As in the case of deterministic linear systems, we can analyze a stochastic linear
system either in the state space or the frequency domain. The frequency domain
approach provides a very rich set of tools for modeling and analysis of intercon-
nected systems, relying on the frequency response and transfer functions to repre-
sent the flow of signals around the system.

Given a random processX(t), we can look at the frequency content of the prop-
erties of the response. In particular, if we letρ(τ) be the correlation function for a
(scalar) random process, then we define thepower spectral density functionas the
Fourier transform ofρ:

S(ω) =
∫ ∞

−∞
ρ(τ)e− jωτdτ, ρ(τ) =

1
2π

∫ ∞

−∞
S(ω)ejωτdτ.

The power spectral density provides an indication of how quickly the values of
a random process can change through the frequency content: if there is high fre-
quency content in the power spectral density, the values of the random variable can
change quickly in time.

Example 3.4 (First-order Markov process). To illustrate the use of these measures,
consider a first-order Markov process as defined in Example 3.2. The correlation
function is

ρ(τ) =
Q

2ω0
e−ω0(τ).

The power spectral density becomes

S(ω) =
∫ ∞

−∞

Q
2ω0

e−ω|τ|e− jωτdτ

=

∫ 0

−∞

Q
2ω0

e(ω− jω)τdτ+
∫ ∞

0

Q
2ω0

e(−ω− jω)τdτ =
Q

ω2+ω2
0

.

We see that the power spectral density is similar to a transfer function and we
can plotS(ω) as a function ofω in a manner similar to a Bode plot, as shown in
Figure 3.4. Note that althoughS(ω) has a form similar to a transfer function, it is
a real-valued function and is not defined for complexs. ∇

Using the power spectral density, we can more formally define “white noise”:
a white noise processis a zero-mean, random process with power spectral density
S(ω) =W = constant for allω. If X(t) ∈ Rn (a random vector), thenW ∈ Rn×n.
We see that a random process is white if all frequencies are equally represented in
its power spectral density; this spectral property is the reason for the terminology
“white”. The following proposition verifies that this formal definition agrees with
our previous (time domain) definition.
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logω

logS(ω)

ω0

Figure 3.4: Spectral power density for a first-order Markov process.
.

Proposition 3.4. For a white noise process,

ρ(τ) =
1
2π

∫ ∞

−∞
S(ω)ejωτdτ =Wδ(τ),

whereδ(τ) is the unit impulse function.

Proof. If τ , 0 then

ρ(τ) =
1
2π

∫ ∞

−∞
W(cos(ωτ)+ j sin(ωτ)dτ = 0

If τ = 0 thenρ(τ) =∞. Can show that

ρ(0)= lim
ǫ→0

∫ ǫ

−ǫ

∫ ∞

−∞
(· · · )dωdτ =Wδ(0)

Given a linear system

Ẋ = AX+FW, Y=CX,

with W given by white noise, we can compute the spectral density function cor-
responding to the outputY. We start by computing the Fourier transform of the
steady state correlation function (3.18):

SY(ω) =
∫ ∞

−∞

[∫ ∞

0
h(ξ)Qh(ξ+τ)dξ

]

e− jωτdτ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

−∞
h(ξ+τ)e− jωτdτ

]

dξ

=

∫ ∞

0
h(ξ)Q

[∫ ∞

0
h(λ)e− jω(λ−ξ) dλ

]

dξ

=

∫ ∞

0
h(ξ)ejωξ dξ ·QH( jω) = H(− jω)QuH( jω)

This is then the (steady state) response of a linear system to white noise.
As with transfer functions, one of the advantages of computations in the fre-

quency domain is that the composition of two linear systems can be represented
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p(v) =
1

√
2πRV

e
− v2

2RV

SV(ω) = RV

V −→ H −→ Y
p(y) =

1
√

2πRY
e
− y2

2RY

SY(ω) = H(− jω)RVH( jω)

ρV(τ) = RVδ(τ)
Ẋ = AX+FV

Y=CX

ρY(τ) = RY(τ) =CPe−A|τ|CT

AP+PAT +FRVFT = 0

Figure 3.5: Summary of steady state stochastic response.

by multiplication. In the case of the power spectral density, if we pass white noise
through a system with transfer functionH1(s) followed by transfer functionH2(s),
the resulting power spectral density of the output is given by

SY(ω) = H1(− jω)H2(− jω)QuH2( jω)H1( jω).

As stated earlier, white noise is an idealized signal that isnot seen in practice.
One of the ways to produced more realistic models of noise anddisturbances it
to apply a filter to white noise that matches a measured power spectral density
function. Thus, we wish to find a covarianceW and filterH(s) such that we match
the statisticsS(ω) of a measured noise or disturbance signal. In other words, given
S(ω), find W > 0 andH(s) such thatS(ω) = H(− jω)WH( jω). This problem is
know as thespectral factorization problem.

Add exampleRMM

Figure 3.5 summarizes the relationship between the time and frequency do-
mains.

Application to Biomolecular Systems

3.5 Markov chain modeling and analysis

3.6 System identification techniques
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Chapter 4
Feedback Examples

Write up examples from ASCC workshop+ others RMM

4.1 The Lac Operon

4.2 Heat Shock Response in Bacteria

4.3 Bacteriophage λ

Bacteriophageλ (also calledλ phage or phageλ) is a virus that infectsE. coli and
propogates itself by integrating its DNA into the genome of the infected cell. The
virus includes a decision “switch” that determines whetherthe virus should pro-
pogate itself by DNA integration (thelysogenicphase) or whether it should destroy
the host cell and spread to other nearby bacteria (thelytic phase). In this section we
describe what is known about the modeling of the lysis/lysogeny decision-making
circuitry and explore some of the properties of its dynamics.

The material in this section is based on the work of Ptashne [?], Arkin et al. [?]
and St. Pierre et al. [?]. The models used to create the plots in this section are
available on the companion web site for the text.† RMM: Put copies of the

models there, with
appropriate permissions as
needed.Phage λ lifecycle

A detailed model for λ

Reduced order models for λ

Dynamic analysis

Open issues

4.4 Yeast mating response
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Figure 4.1: Growth cycle of phageλ. From Ptashne.
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Figure 4.2: A detailed circuit diagram for theλ decision-making circuit. From Arkin, Ross and
McAdams (1998).

(a) (b)

Figure 4.3: Simulation results using the detailed model.
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Possible “interlude” here to talk about computer modeling tools that are available.RMM

This could also go before feedback examples chapter.
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PART 2

Design and Synthesis
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Chapter 5
Biological Circuit Components

Add intro paragraph+ prerequisites DDV

5.1 Biology Circuit Design

Add intro material here making the transition from the previous chapters into de-RMM

sign oriented chapters. Shorten the next paragraph to reflect the prior discussion
of that material in the earlier chapters.

One of the fundamental building blocks employed in synthetic biology is the
process of transcriptional regulation, which is found in natural transcriptional net-
works. A transcriptional network is composed of a number of genes that express
proteins that then act as transcription factors for other genes. The rate at which
a gene is transcribed is controlled by thepromoter, a regulatory region of DNA
that precedes the gene. RNA polymerase binds a defined site (a specific DNA se-
quence) on the promoter. The quality of this site specifies the transcription rate of
the gene (the sequence of the site determines the chemical affinity of RNA poly-
merase to the site). RNA polymerase acts on all of the genes. However, each
transcription factor modulates the transcription rate of aset of target genes. Tran-
scription factors affect the transcription rate by binding specific sites on the pro-
moter region of the regulated genes. When bound, they changethe probability per
unit time that RNA polymerase binds the promoter region. Transcription factors
thus affect the rate at which RNA polymerase initiates transcription. A transcrip-
tion factor can act as arepressorwhen it prevents RNA polymerase from binding
to the promoter site. A transcription factor acts as anactivator if it facilitates the
binding of RNA polymerase to the promoter. Such interactionscan be generally
represented as nodes connected by directed edges. Syntheticbio-molecular circuits
are fabricated typically in bacteriaE. coli, by cutting and pasting together accord-
ing to a desired sequence genes and promoter sites (natural and engineered). Since
the expression of a gene is under the control of the upstream promoter region,
one can this way create a desired circuit of activation and repression interactions
among genes. Early examples of such circuits include an activator-repressor sys-
tem that can display toggle switch or clock behavior [5], a loop oscillator called
the repressilator obtained by connecting three inverters in a ring topology [11],
a toggle switch obtained connecting two inverters in a ring fashion [13], and an
autorepressed circuit [7] (Figure 5.1). Several scientific andtechnological devel-
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c) Activator-repressor clock

A
A B

A B

B

A C

a) Self repression b) Toggle switch

d) Repressilator

Figure 5.1: Early transcriptional circuits that have been fabricated in bacteria E. coli: the self-
repression circuit [7], the toggle switch [13], the activator-repressor clock [5], and the repressilator
[11]. Each node represents a gene and each arrow from node Z to node X indicates that the tran-
scription factor encoded in z, denoted Z, regulates gene x [3]. If z represses the expression of x, the
interaction is represented by Z⊣X. If z activates the expression of x, the interaction is represented by
Z→X [3].

opments accumulating over the past four decades have set thestage for the design
and fabrication of early synthetic bio-molecular circuits(Figure 5.2).

An early milestone in the history of synthetic biology can betraced back to the
discovery of mathematical logic in gene regulation. In their 1961 paper, Jacob and
Monod introduced for the first time the idea of gene expressionregulation through
transcriptional feedback [17]. Only a few years later (1969), special enzymes that
can cut double-stranded DNA at specific recognition sites (known as restriction
sites) were discovered by Arber and co-workers [4]. These enzymes, called re-
striction enzymes, were major enabler of recombinant DNA technology. One of
the most celebrated products of such a technology is the large scale production
of insulin by employingE. coli bacteria as a cell factory [29]. The development
of recombinant DNA technology along with the demonstrationin 1970 that genes
can be artificially synthesized, provided the ability to cut and paste natural or syn-
thetic promoters and genes in almost any fashion on size-wise compatible plas-
mids. This “cut and paste” procedure is calledcloning [2]. Cloning of any DNA
fragment involves four steps:fragmentation, ligation, transfection.† The DNA ofRMM: and ???

interest is first isolated. Then, a ligation procedure is employed in which the am-
plified fragment is inserted into a vector. The vector (which isfrequently circular)
is linearized by means of restriction enzymes that cleave itat target sites called
restriction sites. It is then incubated with the fragment ofinterest with an enzyme
calledDNA ligase. Polymerase chain reaction (PCR), devised in the 1980s, allows
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Figure 5.2: Milestones in the history of synthetic biology.† DDV: Need better quality
picture

then to exponentially amplify a small amount of DNA in amounts large enough to
be used for transfection and transformation in living cells[2]. Today, commercial
synthesis of DNA sequences and genes has become cheaper and faster with a price
often below $ 1 per base pair [6].† RMM: Should probably

remove this; will be out of
dateExpand the paragraph below to be a full subsection on reporters, including proteinDDV

fusion versus promoter fusion

Another key enabling technology has been the development ofin vivomeasure-
ment techniques that allow to measure the amount of protein produced by a target
gene x. For instance, green fluorescent protein (GFP) is a protein with the property
that it fluoresces in green when exposed to UV light. It is produced by the jellyfish
Aequoria victoria, and its gene has been isolated so that it can be used as a reporter
gene. The GFP gene is inserted (cloned) into the chromosome, adjacent to or very
close to the location of gene x, so both are controlled by the same promoter region.
Thus, gene x and GFP are transcribed simultaneously and then translated, so by
measuring the intensity of the GFP light emitted one can estimate how much of x
is being expressed. Other fluorescent proteins, such as yellow fluorescent protein
(YFP) and red fluorescent protein (RFP) are genetic variations of the GFP.

Replace the paragraph below with more material on inducers,including both neg-RMM

ative and postive inducers.

Just as fluorescent proteins can be used as a read out of a circuit, inducers
function as external inputs that can be used to probe the system. Inducers function
by disabling repressor proteins. Repressor proteins bind to the DNA strand and
prevent RNA polymerase from being able to attach to the DNA and synthesize
mRNA. Inducers bind to repressor proteins, causing them to change shape and
making them unable to bind to DNA. Therefore, they allow transcription to take
place.

Take material on electronics and hydraulics and put them in “insert” environments,RMM

so that we can format them differently at a later time. Simple example shown
below.
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Inset (Electronic circuits). One of the current directions of the field is to cre-
ate circuitry with more complex functionalities by assembling simpler circuits,
such as those in Figure 5.1. This tendency is consistent with what has been ob-
served in the history of electronics: after the bipolar junction transistor (BJT)
was invented in 1947 by William Shockley and co-workers, the transistor era
started. A major breakthrough in the transistor era occurred in 1964 with the
invention of the first operational amplifier (op amp), which ledthe way to stan-
dardized modular and integrated circuit design. By comparison, synthetic biol-
ogy may be directing toward a similar development, in which modular and inte-
grated circuit design becomes a reality. This is witnessed byseveral recent ef-
forts toward formally characterizing interconnection mechanisms between mod-
ules, impedance-like effects, and op amp-like devices to counteract impedance
problems [14, 24, 23, 10, 22, 26, 25]. ♦
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Chapter 6
Interconnecting Components

6.1 Input/Output Modeling and the Modularity Assumption

Each node y of a transcriptional circuitry is usually modeledas an input/output
module taking as input the concentrations of transcriptionfactors that regulate
gene y and giving as output the concentration of protein expressed by gene y, de-
noted Y. This is not the only possible choice for delimiting a module: one could in
fact let the messenger RNA (mRNA) or the RNA polymerase flow along the DNA
(as suggested by [12]) play the role of input and output signals. The transcription
factor enters as input of the transcriptional module through the binding and unbind-
ing dynamics of the transcription factors with the DNA promoter sites upstream
of gene y. The internal dynamics of the transcriptional component is determined
by the transcription and translation dynamics.† The processes of transcription andDDV: Here, we should refer

to specific expressions in
the core processes chapter

translation are much slower than the binding dynamics of thetranscription factor to
the promoter sites on the DNA [3]. Thus, the binding of the transcription factor to
the DNA promoter site reaches the equilibrium in seconds, while transcription and
translation of the target gene takes minutes to hours. This time scale separation,
a key feature of transcriptional circuits, leads to the following central modeling
simplification.

Modularity assumption. The dynamics of transcription factor/DNA
binding are considered at the equilibrium and each transcription factor
concentration enters the input/output transcriptional module through
static input functions that drive the transcription/translation dynamics
(Figure 6.1).

Transcriptional I/O module

Transcription
X

f (X)

YInput Function Translation

Figure 6.1: A transcriptional module is modeled as an input/output component with input function
given by the transcription regulation functionf (X) and with internal dynamics established by the
transcription and translation processes.
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Figure 6.2: The clock behavior can be destroyed by a load. As the number of downstream binding
sites for A,pTOT, is increased in the load, the activator and repressor dynamics loose their synchro-
nization and ultimately the oscillations disappear.

For engineering a system with prescribed behavior, one has to be able to change
the physical features so as to change the values of the parameters of the model.
This is often possible. For example, the binding affinity (1/K in the Hill function
model) of a transcription factor to its site on the promoter can be affected by single
or multiple base pairs substitutions. The protein decay rate(constantα2 in equa-
tion (1.13)) can be increased by adding degradation tags at the end of the gene
expressing proteinY (http://parts.mit.edu/registry/index.php/Help:Tag). (Degrada-
tion) Tags are genetic additions to the end of a sequence which modify expressed
proteins in different ways such as marking the protein for faster degradation. Pro-
moters that can accept multiple input transcription factors (called combinatorial
promoters) to implement regulation functions that take multiple inputs can be re-
alized by combining the operator sites of several simple promoters [?].† For ex-DDV: Check here the

terminology and the various
italics

ample, the operatorsOR1−OR2 from theλ promoter of theλ bacteriophage can be
used as binding sites for theλ transcription factor [21]. Then, the pairOR2−OR1
from the 434 promoter from the 434 bacteriophage [8] can be placed at the end of
theOR1−OR2 sequence from theλ promoter. Depending on the relative positions
of these sites and on their distance from the RNA polymerase binding site, the
434 transcription factor may act as a repressor as when this protein is bound to its
OR2−OR1 sites it prevents the polymerase to bind, while theλ transcription factor
may act as an activator.

6.2 Beyond the Modularity Assumption: Retroactivity

In the previous sections, we have outlined a circuit design process, often used
in synthetic biology, that relies on the interconnection ofwell characterized in-
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put/output transcriptional modules through suitable static input functions. Exam-
ples of designs performed through this process can be found in Chapter 8. It
deeply relies on the modularity assumption, by virtue of which the behavior of
the obtained circuit topology can be directly predicted by the properties of the
composing units. For example, the monotonicity of the inputfunctions of the
transcriptional modules composing the repressilator havebeen a key feature to
formally show the existence of periodic solutions. The form of the input functions
in the activator-repressor clock design have been key enablers to easily predict the
location and number of equilibria as the parameters are changed. The modularity
assumption implies that when two modules are connected together, their behavior
does not change because of the interconnection. However, a fundamental systems-
engineering issue that arises when interconnecting subsystems is how the process
of transmitting a signal to a “downstream” component affects the dynamic state
of the sending component. Indeed, after designing, testing, and characterizing the
input/output behavior of an individual component in isolation, itis certainly de-
sirable if its characteristics do not change substantiallywhen another component
is connected to its output channel. This issue, the effect of “loads” on the out-
put of a system, is well-understood in many fields of engineering, for example in
electrical circuit design. It has often been pointed out that similar issues arise for
biological systems. Alon states that “modules in engineering, and presumably also
in biology, have special features that make them easily embedded in almost any
system. For example, output nodes should have ‘low impedance,’ so that adding
on additional downstream clients should not drain the output to existing clients (up
to some limit).” An extensive review on problems of loads andmodularity in sig-
naling networks can be found in [27, 25, 26], where the authors propose concrete
analogies with similar problems arising in electrical circuits.

These questions are even more delicate insyntheticbiology. For example, sup-
pose that we have built a timing device, a clock made up of a network of activation
and/or repression interactions among certain genes and proteins, such as the one
of diagram c) of Figure 5.1. Next, we want to employ this clock (upstream sys-
tem) in order to drive one or more components (downstream systems), by using
as itsoutputsignal the oscillating concentrationA(t) of the activator. From a sys-
tems/signals point of view,A(t) becomes aninput to the second system (Figure
6.2). The terms “upstream” and “downstream” reflect the direction in which we
think of signals as traveling,from the clockto the systems being synchronized.
However, this is only an idealization, because the binding and unbinding of A to
promoter sites in a downstream system competes with the biochemical interactions
that constitute the upstream block (retroactivity) and maytherefore disrupt the op-
eration of the clock itself (Figure 6.2). One possible approach to avoid disrupting
the behavior of the clock, motivated by the approach used with reporters such as
GFP, is to introduce a gene coding for a new protein X, placed under the control
of the same promoter as the gene for A, and using the concentration of X, which
presumably mirrors that of A, to drive the downstream system. This approach,
however, has still the problem that the behavior of the X concentration in time
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p1

h

h1

f0

p

Figure 6.3: On the left, we represent a tank system that takes as input theconstant flowf0 and gives
as output the pressurep at the output pipe. On the right, we show a downstream tank.

may be altered and even disrupted by the addition of downstream systems that
drain X. The net result is still that the downstream systems are not properly timed.

Modeling retroactivity

† We broadly call retroactivity the phenomenon by which the behavior of an up-RMM: This section is
considering some standard
examples from engineering

to illustrate the concept. Let
me know if you think they

are not useful.

stream system is changed upon interconnection to a downstream system. As a
simple example, which may be more familiar to an engineeringaudience, consider
the one-tank system shown on the left of Figure 6.3. We consider a constant input
flow f0 as input to the tank system and the pressurep at the output pipe is con-
sidered the output of the tank system. The corresponding output flow is given by
k
√

p, in which k is a positive constant depending on the geometry of the system.
The pressurep is given by (neglecting the atmospheric pressure for simplicity)
p= ρh, in which h is the height of the water level in the tank andρ is water den-
sity. LetA be the cross section of the tank, then the tank system can be represented
by the equation

A
dp
dt
= ρ f0−ρk

√
p. (6.1)

Let us now connect the output pipe of the same tank to the input pipe of a down-
stream tank shown on the right of Figure 6.3. Letp1 = ρh1 be the pressure gener-
ated by the downstream tank at its input and output pipes. Then, the flow at the out-
put of the upstream tank will change and will now be given byg(p, p1)= k

√

|p− p1|
if p> p1 and byg(p, p1) = −k

√

|p− p1| if p≤ p1. As a consequence, the time be-
havior of the pressurep generated at the output pipe of the upstream tank will
change to

A
dp
dt
= ρ f0−ρg(p, p1)

A1
dp1

dt
= ρg(p, p1)−ρk1

√
p1, (6.2)

in which A1 is the cross section of the downstream tank andk1 is a positive param-
eter depending on the geometry of the downstream tank. Thus, the input/output
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Figure 6.4: A systemS input and output signals. The red signals denote signals originating by
retroactivity upon interconnection.

response of the tank measured in isolation (equation (6.1))does not stay the same
when the tank is connected through its output pipe to anothertank (equation (6.2)).
We will model this phenomenon by a signal that travels from downstream to up-
stream, which we callretroactivity. The amount of such a retroactivity will change
depending on the features of the interconnection and of the downstream system.
For example, if the aperture of the pipe connecting the two tanks is very small
compared to the aperture of an output pipe of the downstream tank, the pressure
p at the output of the upstream tank will not change much when the downstream
tank is connected.

We thus model a system by adding an additional input, calleds, to the system
to model any change in its dynamics that may occur upon interconnection with a
downstream system. Similarly, we add to a system a signalr as another output
to model the fact that when such a system is connected downstream of another
system, it will send upstream a signal that will alter the dynamics of the upstream
system. More generally, we define a systemS to have internal statex, two types
of inputs (I), and two types of outputs (O): an input “u” (I), an output “y” (O), a
retroactivity to the input“ r” (O), and aretroactivity to the output“ s” (I) (Figure
6.4). We will thus represent a systemS by the equations

ẋ= f (x,u, s), y= Y(x,u, s), r = R(x,u, s), (6.3)

in which f ,Y,R are arbitrary functions and the signalsx,u, s, r,y may be scalars
or vectors. In such a formalism, we define the input/output model of the isolated
system as the one in equations (6.3) withoutr in which we have also sets= 0. Let
Si be a system with inputsui andsi and with outputsyi andr i . Let S1 andS2 be
two systems with disjoint sets of internal states. We define the interconnection of
an upstream systemS1 with a downstream systemS2 by simply settingy1 = u2
ands1 = r2. For interconnecting two systems, we require that the two systems do
not have internal states in common.

Retroactivity in gene transcriptional circuits

In the previous section, we have defined retroactivity as a general concept mod-
eling the fact that when an upstream system is input/output connected to a down-
stream one, its dynamic behavior can change. In this section, we focus on tran-
scriptional circuits and show what form the retroactivity takes.

Some of the material below is repeated. Rewrite at some point. DDV
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We denote by X the protein, byX (italics) the average protein concentration,
and by x (lower case) the gene expressing protein X. A transcriptional component
that takes as input protein Z and gives as output protein X is shown in Figure 6.5
in the dashed box. The activity of the promoter controlling gene x depends on the

Downstream transcriptional componentX

x

Z

Transcriptional component

pp0

Figure 6.5: The transcriptional component takes as inputu protein concentrationZ and gives as
outputy protein concentrationX. The transcription factor Z binds to operator sites on the promoter.
The red part belongs to a downstream transcriptional block that takes protein concentrationX as its
input.

amount of Z bound to the promoter. IfZ= Z(t), such an activity changes with time.
We denote it byk(t). By neglecting the mRNA dynamics, which are not relevant
for the current discussion, we can write the dynamics ofX as

dX
dt
= k(t)−δX, (6.4)

in whichδ is the decay rate of the protein. We refer to equation (6.4) asthe isolated
system dynamics. For the current study, the mRNA dynamics can be neglected
because we focus on how the dynamics ofX changes when we add downstream
systems to which X binds. As a consequence, also the specific form of k(t) is
not relevant. Now, assume that X drives a downstream transcriptional module by
binding to a promoter p with concentrationp (the red part of Figure 6.5). The
reversible binding reaction of X with p is given by

X+p ⇋kon
koff

C,

in which C is the complex protein-promoter andkon andkoff are the binding and
dissociation rates of the protein X to the promoter site p. Since the promoter is
not subject to decay, its total concentrationpTOT is conserved so that we can write
p+C = pTOT. Therefore, the new dynamics ofX is governed by the equationsDDV: Try using braces

instead of box.
dX
dt
= k(t)−δX+ koffC−kon(pTOT−C)X , s= koffC−kon(pTOT−C)X

dC
dt
=−koffC+kon(pTOT−C)X, (6.5)

in which the terms in the box represent the signals, that is, the retroactivity to the
output, while the second of equations (6.5) describes the dynamics of the input
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stage of the downstream system driven byX. Then, we can interprets as being a
mass flow between the upstream and the downstream system. Whens= 0, the first
of equations (6.5) reduces to the dynamics of the isolated system given in equation
(6.4). Here, we have assumed that X binds directly to the promoter p. The case
in which a signal molecule is needed to transform X to the active form that then
binds to p, can be treated in a similar way by considering the additional reversible
reaction of X binding to the signal molecule. The end result ofadding this reaction
is the one of having similar terms in the box of equation (6.5)involving also the
signaling molecule concentration.

Add examples after the text below showing concrete calculatiiions DDV

How large is the effect of the retroactivity s on the dynamics of X and what are
the biological parameters that affect it?We focus on the retroactivity to the output
s. We can analyze the effect of the retroactivity to the inputr on the upstream
system by simply analyzing the dynamics ofZ in the presence of its binding sites
p0 in Figure 6.5 in a way similar to how we analyze the dynamics ofX in the
presence of the downstream binding sites p. The effect of the retroactivitys on
the behavior ofX can be very large (Figure??). This is undesirable in a number
of situations in which we would like an upstream system to “drive” a downstream
one as is the case, for example, when a biological oscillatorhas to time a num-
ber of downstream processes. If, due to the retroactivity, the output signal of the
upstream process becomes too low and/or out of phase with the output signal of
the isolated system (as in Figure 6.6), the coordination between the oscillator and
the downstream processes will be lost. We next propose a procedure to obtain an
operative quantification of the effect of the retroactivity on the dynamics of the
upstream system.

Quantification of the retroactivity to the output

† In this section, we propose a general approach for providingan operative quan-RMM: Please, let me know
how much detail do you
expect in these sections.
For now, I put the basic
results omitting the
derivations

tification of the retroactivity to the output on the dynamics of the upstream system.DDV: This material is
repeatedThis approach can be generally applied whenever there is a separation of time-

scales between the dynamics of the output of the upstream module and the dynam-
ics of the input stage of the downstream module. This separation of time-scales is
always encountered in transcriptional circuits. In fact, the dynamics of the input
stage of a downstream system is governed by the reversible binding reaction of the
transcription factor with the operator sites. These reactions are often on the time
scales of a second and thus are fast compared to the time scales of transcription
and translation (often of several minutes) [3]. These determine, in turn, the dynam-
ics of the output of a transcriptional module. Such a separation of time-scales is
encountered even when we extend a transcriptional network to include as intercon-
nection mechanisms between transcriptional modules protein-protein interactions
(often with a subsecond timescale [28]), as encountered in signal transduction net-
works.
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Figure 6.6: The dramatic effect of interconnection. Simulation results for the system in equations
(6.5). The green plot (solid line) representsX(t) originating by equations (6.4), while the blue plot
(dashed line) representsX(t) obtained by equation (??). Both transient and permanent behaviors are
different. Here,k(t) = 0.01(1+ sin(ωt)) with ω = 0.005 in the left side plots andω = 0 in the right
side plots,kon = 10, koff = 10, δ = 0.01, pTOT = 100,X(0)= 5. The choice of protein decay rate (in
min−1) corresponds to a half life of about one hour. The frequency of oscillations is chosen to have
a period of about 12 times the protein half life in accordance to what is experimentally observed in
the synthetic clock of [5].

We quantify the difference between the dynamics ofX in the isolated system
(equation (6.4)) and the dynamics ofX in the connected system (equations (6.5))
by establishing conditions on the biological parameters that make the two dynam-
ics close to each other. This is achieved by exploiting the difference of time scales
between the protein production and decay processes and its binding and unbind-
ing process to the promoter p. By virtue of this separation oftime scales, we can
approximate system (6.5) by a one dimensional system describing the evolution of
X on the slow manifold [18]. This reduced system takes the form:

dX̄
dt
= k(t)−δX̄+ s̄,

whereX̄ is an approximation ofX and s̄ is an approximation ofs, which can be
written ass̄=−R(X̄)(k(t)−δX̄). If R(X̄) is zero, then also ¯s= 0 and the dynamics of
X̄ becomes the same as the one of the isolated system (6.4). SinceX̄ approximates
X, the dynamics ofX in the full system (6.5) is also close to the dynamics of the
isolated system (6.4) wheneverR(X̄)= 0. The factorR(X̄) provides then a measure
of the retroactivity on the dynamics ofX. It is also computable as a function
of measurable biochemical parameters and of the signalX traveling across the
interconnection, as we next illustrate.

Consider again the full system in equations (6.5), in which the binding and
unbinding dynamics is much faster than protein production and decay, that is,
koff≫ k(t), koff≫ δ [3], andkon= koff/kd with kd =O(1). Even if the second equa-
tion goes to equilibrium very fast compared to the first one, the above system is not
in “standard singular perturbation form” [18]. To explicitly model the difference in
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time scales between the two equations of system (6.5), we introduce a parameterǫ,
which we define asǫ = δ/koff. Sincekoff≫ δ, we also have thatǫ≪ 1. Substituting
koff = δ/ǫ, kon= δ/(ǫkd), and lettingy= X+C (thetotal protein concentration), we
obtain the system in singular perturbation form

dy
dt
= k(t)−δ(y−C)

ǫ
dC
dt
=−δC+ δ

kd
(pTOT−C)(y−C). (6.6)

This means, as some authors proposed [?], that y (total concentration of protein)
is the slow variable of the system (6.5) as opposed toX (concentration of free
protein). We can then obtain an approximation of the dynamics of X in the limit
in which ǫ is very small, by settingǫ = 0. This leads to (see [10] for details) the
approximatedX dynamics

dX̄
dt
= k(t)−δX̄− (k(t)−δX̄)

dγ(ȳ)
dȳ
. (6.7)

The smallerǫ, the better is the approximation. SincēX well approximatesX for ǫ
small, conditions for which the dynamics of equation (6.7) is close to the dynamics
of the isolated system (6.4) also guarantee that the dynamics of X given in system
(6.5) is close to the dynamics of the isolated system.

The difference between the dynamics in equation (6.7) (the connected system
after a fast transient) and the dynamics in equation (6.4) (the isolated system) is
zero when the termdγ(ȳ)

dȳ in equation (6.7) is also zero. We thus consider the factor
dγ(ȳ)

dȳ as a quantification of the retroactivitysafter a fast transient in the approxima-

tion in whichǫ ≈ 0. We can also interpret the factordγ(ȳ)
dȳ as a percentage variation

of the dynamics of the connected system with respect to the dynamics of the iso-
lated system at the quasi steady state. We next determine thephysical meaning
of such a factor by calculating a more useful expression thatis a function of key
biochemical parameters. By using the implicit function theorem, one can compute
the following expression fordγ(ȳ)

dȳ :

dγ(ȳ)
dȳ
=

1

1+ (1+X̄/kd)2

pTOT/kd

=: R(X̄), (6.8)

in which one can verify thatR(X̄) < 1 (see [10] for details). The expressionR(X̄)
quantifies the retroactivity to the output on the dynamics ofX after a fast transient,
when we approximateX with X̄ in the limit in which ǫ ≈ 0. The retroactivity
measure is thus low if the affinity of the binding sites p is small (kd large) or if
the signalX(t) is large enough compared topTOT. Thus, the expression ofR(X̄)
provides an operative quantification of the retroactivity: such an expression can
in fact be evaluated once the association and dissociation constants of X to p are
known, the concentration of the binding sitespTOT is known, and the range of
operation of the signal̄X(t) that travels across the interconnection is also known.
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Therefore, the modularity assumption introduced in Section?? holds if the
value ofR(X̄) is low enough. As a consequence, the design of a simple circuit
motif such as the ones of Figure 5.1 can assume modularity if the interconnections
among the composing modules can be designed so that the valueof R(X̄) as given
in expression (6.8) is low.

6.3 Insulation Devices to Enforce Modularity

Of course, it is not always possible to design an interconnection such that the
retroactivity is low. This is, for example, the case of an oscillator that has to time
a downstream load: the load cannot be in general designed andthe oscillator must
perform well in the face of unknown and possibly variable load properties (Figure
6.2). Therefore, in analogy to what is performed in electrical circuits, one can
design a device to be placed between the oscillator and the load so that the device
output is not changed by the load and the device does not affect the behavior of the
upstream oscillator. Specifically, consider a systemS as the one shown in Figure
6.4 that takesu as input and givesy as output. We would like to design it in such
a way that (a) the retroactivityr to the input is very small; (b) the effect of the
retroactivitys to the output on the internal dynamics of the system is very small
independently ofs itself; (c) its input/output relationship is about linear. Such a
system is said to enjoy theinsulation property and will be called an insulation
component or insulation device. Indeed, such a system will not affect an upstream
system becauser ≈ 0 and it will keep the same output signaly independentlyof
any connected downstream system. In electronics, amplifiersenjoy the insulation
property by virtue of the features of the operational amplifier (op amp) that they
employ [?] (Figure 6.7).

The concept of amplifier in the context of a biochemical networkhas been
considered before in relation to its robustness and insulation property from exter-
nal disturbances ([26] and [25]). Here, we revisit the amplifier mechanism in the
context of gene transcriptional networks with the objective of mathematically and
computationally proving how suitable biochemical realizations of such a mecha-
nism can attain properties (a), (b), and (c).

Retroactivity to the input

In electronic amplifiers,r is very small because the input stage of an op amp ab-
sorbs almost zero current (Figure??). This way, there is no voltage drop across
the output impedance of an upstream voltage source. Equation(6.8) quantifies the
effect of retroactivity on the dynamics ofX as a function of biochemical param-
eters that characterize the interconnection mechanism with a downstream system.
These parameters are the affinity of the binding site 1/kd, the total concentration
of such binding sitepTOT, and the level of the signalX(t). Therefore, to reduce
the retroactivity, we can choose parameters such that (6.8)is small. A sufficient
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Figure 6.7: In diagram (a), we show the basic non-inverting amplifier circuit that is composed of
the op amp plus a feedback circuit. The op amp is the triangular shape that takes as input the
differential voltageV+ −V− and gives as (open) outputVout = A(V+ −V−), in which the gainA is
infinity in the ideal op amp. The blue circuit components represent the feedback circuit, while the red
component is the load. LettingK =R1/(R1+R2), direct computation leads toVout→V+/K asA→∞.
That is, the output voltage does not depend on the load: the retroactivity tothe output is almost
completely attenuated. In diagram (b), we zoom inside the op amp to show theabstraction of its
internal structure. In an ideal op amp,Ri =∞ so that it absorbs almost zero current and any upstream
voltage generator will not experience a voltage drop at its output terminalsupon interconnection with
the amplifier. That is, the retroactivity to the input of the amplifier is almost zero.

condition is to choosekd large (low affinity) andpTOT small, for example. Having
small value ofpTOT and/or low affinity implies that there is a small “flow” of pro-
tein X toward its target sites. Thus, we can say that a low retroactivity to the input
is obtained when the “input flow” to the system is small. This interpretation estab-
lishes a nice analogy to the electrical case, in which low retroactivity to the input
is obtained, as explained above, by a low input current. Such an interpretation can
be further carried to the hydraulic example. In such an example, if the input flow
to the downstream tank is small compared, for example, to theoutput flow of the
downstream tank, the output pressure of the upstream tank will not be affected by
the connection. Therefore, the retroactivity to the input ofthe downstream tank
will be small.

Retroactivity to the output

In electronic amplifiers, the effect of the retroactivity to the outputs on the am-
plifier behavior is reduced to almost zero by virtue of a large (theoretically in-
finite) amplification gain of the op amp and an equally large negative feedback
mechanism that regulates the output voltage (Figure 6.7). Genetic realization of
amplifiers have been previously proposed (see [22], for example). However, such
realizations focus mainly on trying to reproduce the layoutof the device instead of
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Figure 6.8: Diagram (a) shows the basic feedback/amplification mechanism by which amplifiers
attenuate the effect of the retroactivity to the outputs. Diagram (b) shows an alternative representa-
tion of the same mechanism of diagram (a), which will be employed to designbiological insulation
devices.

implementing the fundamental mechanism that allows it to properly work as an in-
sulator. Such a mechanism can be illustrated in its simplest form by diagram (a) of
Figure 6.8, which is very well known to control engineers. Forsimplicity, we have
assumed in such a diagram that the retroactivitys is just an additive disturbance.
The reason why for large gainsG the effect of the retroactivitys to the output is
negligible can be verified through the following simple computation. The outputy
is given by

y=G(u−Ky)+ s,

which leads to
y= u

G
1+KG

+
s

1+KG
.

As G grows,y tends tou/K, which is independent of the retroactivitys.
Therefore, a central enabler to attenuate the retroactivityeffect at the output of

a component is to (1) amplify through a large gain the input ofthe component and
(2) to apply a large negative output feedback. We next illustrate this general idea
in the context of a simple hydraulic system.

Hydraulic example.Consider the academic hydraulic example consisting of
two connected tanks shown in Figure 6.9. The objective is to attenuate the effect
of the pressure applied from the downstream tank to the upstream tank, so that
the output pressure of the upstream system does not change when the downstream
tank is connected. We let the input flowf0 be amplified by a large factorG. Also,
we consider a large pipe in the upstream tank with output flowG′

√
p, with G′≫ k

andG′ ≫ k1. Let p be the pressure at the output pipe of the upstream tank and
p1 the pressure at the bottom of the downstream tank. One can verify that the
only equilibrium value for the pressurep at the output pipe of the upstream tank is
obtained forp> p1 and it is given by

peq=

























G f0

G′+ (kk1)/
√

k2
1+k2
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Figure 6.9: We amplify the input flowf0 through a large gainG and we apply a large negative
feedback by employing a large output pipe with output flowG′

√
p.

If we let G′ be sufficiently larger thank1 andk and we letG′ = KG for some posi-
tive K = O(1), then forG sufficiently largepeq≈ ( f0/K)2, which does not depend
on the presence of the downstream system. In fact, it is the same as the equilib-
rium value of the isolated upstream systemAdp

dt = ρG f0− ρG′
√

p− ρk√p for G
sufficiently large and forG′ = KG with K =O(1).

Coming back to the transcriptional example, consider the approximated dy-
namics of equation (6.7) forX. Let us thus assume that we can apply a gainG to
the inputk(t) and a negative feedback gainG′ to X with G′ = KG. This leads to
the new differential equation for the connected system (6.7) given by

dX
dt
=

(

Gk(t)− (G′+δ)X
)

(1−d(t)), (6.9)

in which we have definedd(t) := dγ(y)
dy , wherey(t) is given by the reduced system

dy
dt =Gk(t)− (G′ + δ)(y−γ(y)). It can be shown (see [?] for details) that asG and
thus asG′ grow, the signalX(t) generated by the connected system (6.9) becomes
close to the solutionX(t) of the isolated system

dX
dt
=Gk(t)− (G′+δ)X, (6.10)

that is, the presence of the disturbance termd(t) will not significantly affect the
time behavior ofX(t). Sinced(t) is a measure of the retroactivity effect on the
dynamics ofX, such an effect is thus attenuated by employing large gainsG andG′.
How can we obtain a large amplification gain G and a large negative feedback G′

in a biological insulation component?This question is addressed in the following
chapter, in which we show two possible realizations of insulation devices.
† DDV: You should put some

of the frequency analysis of
retroactivity on the
linearized system with its
Bode plots6.4 Design of genetic circuits under the modularity assumption

Based on the modeling assumptions introduced in Chapter 1 and on the tools for
studying the dynamics of a nonlinear system introduced in Chapter 2, a number of
synthetic genetic circuits have been designed and fabricated by composing tran-
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scriptional modules through input/output connection (Figure 5.1). Through such
a design procedure one seeks to predict the behavior of a circuit by the behavior
of the composing units, once these have been well characterized in isolation. This
approach is standard also in the design and fabrication of electronic circuitry.
†DDV: Explain how this

analysis is related to the
modularity assumption of

the earlier chapterThe repressilator

Elowitz and Leibler [11] constructed the first operational oscillatory genetic circuit
consisting of three repressors arranged in ring fashion, and coined it the “repressi-
lator” (See diagram d) of Figure 5.1). The repressilator exhibits sinusoidal, limit
cycle oscillations in periods of hours. The dynamical model of the repressilator
can be thus obtained my composing three transcriptional modules in a loop fash-
ion through input functions as in expression (??). Re-arranging the parameters, it
can thus be described by

ṙA=−δrA+ f1(C)

Ȧ= rA−δA
ṙB=−δrB+ f2(A)

Ḃ= rB−δB
ṙC =−δrC+ f3(B)

Ċ= rC−δC, (6.11)

where we consider two different cases for the shape of the input functionsfi : three
identical repressions (the symmetric case) or two identical activations and one re-
pression (the non-symmetric case). For the symmetric case,we thus assume that

f1(p) = f2(p) = f3(p) =
α2

1+ pn .

Since the regulation functions have all negative slope, and there is an odd number
of them in the loop, there is only one equilibrium. One can then invoke Mallet-
Paret’s Theorem [19] or Hastings’ Theorem [?] (see Chapter 2 for the details) to
conclude that if the equilibrium point is unstable, the system admits a non-constant
periodic orbit†(see [?] for a detailed application of these theorems). Thus, one canRMM: How much detail in

the application of such
theorems do we want?

search for parameter values to guarantee the instability ofthe equilibrium point.
This procedure was followed by [?] in the design of the repressilator. In particular,
one can show that the repressilator in equations (6.11) has aperiodic solution for
the ratioα/δ satisfying the relation

α2/δ2 >
n

√

4/3
n−4/3

(1+
4/3

n−4/3
).

For the proof of this statement, the reader is referred to [?]. This relationship
is plotted in the left plot of Figure 6.10. Whenn increases, the existence of an
unstable equilibrium point is guaranteed for larger rangesof the other parameter
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Figure 6.10: (Left) Space of parameters that give rise to oscillations for the repressilator in equations
(??). (Right) Period as a function ofδ andα.

values. Equivalently, for fixed values ofα andδ, asn increases the robustness of
the circuit oscillatory behavior to parametric variationsin the values ofα andδ
increases. Of course, this “behavioral” robustness does not guarantee that other
important features of the oscillator, such as the period value, are slightly changed
when parameters vary. Numerical studies indicated that theperiodT approxima-
tively follows T ∝ 1

δ
, and varies only little withα (right plot of Figure 6.10). From

the figure, we can note that as the value ofδ increases, the sensitivity of the pe-
riod to the variation ofδ itself decreases. However, increasingδ would necessitate
the increase of the cooperativityn, therefore indicating a possible trade off that
should be taken into account in the design process in order tobalance the system
complexity and robustness of the oscillations.

A similar result for the existence of a periodic solution canbe obtained for
the non-symmetric case in which the input functions of the three transcriptional
modules are modified to

f1(p)=
α2

3

1+ pn

f2(p)=
α2pn

1+ pn

f3(p)=
α2pn

1+ pn ,

that is, two interactions are activations and one only is a repression. One can
verify that there is one equilibrium point only and again invoke Mallet-Paret’s
Theorem [19] or Hastings’ Theorem [?] to conclude that if the equilibrium point is
unstable, the system admits a non-constant periodic solution. We can thus obtain
the condition for oscillations again by establishing conditions on the parameters
that guarantee an unstable equilibrium. These conditions are reported in Figure
6.11 (see [?] for the detailed derivations). One can conclude that it is possible to
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Figure 6.11: Space of parameters that give rise to oscillations for the repressilator (non-symmetric
case).

“over design” the circuit to be in the region of parameter space that gives rise to
oscillations. It is also possible to show that increasing the number of elements in
the oscillatory loop, the value ofnsufficient for oscillatory behavior decreases. The
design criteria for obtaining oscillatory behavior are thus summarized in Figures
6.10 and 6.11.

The activator-repressor clock

Consider the activator-repressor clock diagram shown in Figure 5.1 c). The tran-
scriptional module for A has an input function that takes twoinputs: an activator
A and a repressor B. The transcriptional module B has an input function that takes
only an activator A as its input. LetrA andrB represent the concentration of m-
RNA of the activator and of the repressor, respectively. LetA and B denote the
protein concentration of the activator and of the repressor, respectively. Then, we
consider the following four-dimensional model describingthe rate of change of
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K̄1
6γ1

(

1− (cos(φ/3)−
√

3sin(φ/3))
)

, AM =
K̄1
6γ1
+

K̄1
3γ1

cos(φ/3),

φ = atan
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, m=
√

K̄1A2
m+K̄A0−Am(1+γ1A2

m)
γ2Am

, M =

√

K̄1A2
M+K̄A0−AM (1+γ1A2

M )
γ2AM

.

the species concentrations:

ṙA=−δ1/ǫ rA+F1(A,B)

Ȧ= ν(−δAA+k1/ǫ rA)

ṙB=−δ2/ǫ rB+F2(A)

Ḃ=−δBB+k2/ǫ rB, (6.12)

in which the parameterν regulates the difference of time-scales between the re-
pressor and the activator dynamics,ǫ is a parameter that regulates the difference
of time-scales between the m-RNA and the protein dynamics. The parameterǫ
determines how close model (6.12) is to a two-dimensional model in which the
m-RNA dynamics are considered at the equilibrium. Thus,ǫ is a singular pertur-
bation parameter (equations (6.12) can be taken to standardsingular perturbation
form by considering the change of variablesrA = rA/ǫ andrB = rB/ǫ). The details
on singular perturbation can be found in Chapter 2. The functionsF1 andF2 are
the input functions and are given by

F1(A,B)=
K1An+KA0

1+γ1An+γ2Bn

F2(A)=
K2An+KB0

1+γ3An ,

in which K1 andK2 are the maximal transcription rates, whileKA0 andKB0 are
the basal transcription rates when no activator is present.The Hill coefficient n
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Figure 6.13: Design chart for the relaxation oscillator. One obtains sustained oscillations passed
the Hopf bifurcation, for values ofν sufficiently large independently of the difference of time scales
between the protein and the mRNA dynamics. We also notice that there are values ofν for which a
stable equilibrium point and a stable orbit coexist and values ofν for which two stable orbits coexist.
The interval ofν values for which two stable orbits coexist is too small to be able to numerically
setν in such an interval. Thus, this interval is not practically relevant. The values of ν for which a
stable equilibrium and a stable periodic orbit coexist is instead relevant. Thissituation corresponds
to thehard excitationcondition [?] and occurs for realistic values of the separation of time-scales
between protein and m-RNA dynamics. Therefore, this simple oscillator motif described by a four-
dimensional model can capture the features that lead to the long term suppression of the rhythm by
external inputs.Birhythmicity[?] is also possible even if practically not relevant due to the numerical
difficulty of moving the system to one of the two periodic orbits. For more details, the reader is
referred to [?, ?].

is chosen here to ben = 2. The values ofǫ and ofν do not affect the number of
equilibria of the system, while the values of the other parameters are the ones that
control the number of equilibria. The set of values ofKi ,ki , δi ,γi , δA, δB that allow
the existence of a unique equilibrium can be determined by employing graphical
techniques. In particular, we can plot the curves corresponding to the sets ofA,B
values for which ˙rB = 0 andḂ= 0 and the set ofA,B values for which ˙rA = 0 and
Ȧ= 0 as in Figure 6.12. The intersection of these two curves provides the equilibria
of the system and conditions on the parameters can be determined that guarantee
the existence of one equilibrium only. In particular, we require that the basal ac-



designexamps.tex, v0.00 2008/06/12 07:03:00 (murray)

6.5. BIOLOGICAL REALIZATIONS OF AN INSULATION COMPONENT 99

tivator transcription rate whenB is not present, which is proportional tōKA0, is
sufficiently smaller than the maximal transcription rate of the activator, which is
proportional toK̄1. Also, K̄A0 must be non-zero. Also, in casēK1 >> K̄A0, one can
verify that AM ≈ K̄1/2γ1 and thusM ≈ K̄1/2

√
γ1γ2. As a consequence, if̄K1/γ1

increases then so must dōK2/γ3. Finally, Am ≈ 0, andm≈
√

K̄A0/γ2Am. As a
consequence, the smaller̄KA0 becomes, the smaller̄KB0 must be (see [?] for more
details). Assume that the values ofKi ,ki , δi ,γi , δA, δB have been chosen so that
there is a unique equilibrium and we numerically study the occurrence of periodic
solutions as the difference in time-scales between protein and m-RNA,ǫ, and the
difference in time-scales between activator and repressor,ν, are changed. In partic-
ular, we perform bifurcation analysis withǫ andν the two bifurcation parameters.
These bifurcation results are summarized by Figure 6.13. The reader is referred to
[?] for the details of the numerical analysis. In terms of theǫ andν parameters, it is
thus possible to “over design” the system: if the activator dynamics is sufficiently
sped up with respect to the repressor dynamics, the system parameters move across
a Hopf bifurcation (Hopf bifurcation was introduced in Chapter 2) and stable oscil-
lations will arise. From a fabrication point of view, the activator dynamics can be
sped up by adding suitable degradation tags to the activatorprotein. The region of
the parameter space in which the system exhibits almost sinusoidal damped oscil-
lations is on the left-hand side of the curve corresponding to the Hopf bifurcation.
Since the data of [5] exhibits almost sinusoidal damped oscillations, it is possible
that the clock is operating in a region of parameter space on the “left” of the curve
corresponding to the Hopf bifurcation. If this were the case, increasing the separa-
tion of time-scales between the activator and the repressor, ν, may lead to a stable
limit cycle.

6.5 Biological realizations of an insulation component

In the previous section, we have proposed a general mechanism in order to create
an insulation component. In particular, we have specified howone can alter the
biological features of the interconnection mechanism in order to have low retroac-
tivity to the inputr and we have shown a general method to attenuate the retroac-
tivity to the outputs. Such a method consists of a large amplification of the input
and a large negative output feedback. The insulation component will be inserted in
place of the transcriptional component of Figure 6.5. This will guarantee that the
system generating Z, an oscillator, for example, will maintain the same behavior
as in isolation and also that the downstream system that acceptsX as its input will
not alter the behavior ofX. The net result of this is that the oscillator generating
signalZ will be able to time downstream systems with the desired phase and ampli-
tude independently of the number and the features of downstream systems. In this
section, we determine two possible biological mechanisms that can be exploited
to obtain a large amplification gain to the inputZ of the insulation component
and a large negative feedback on the outputX of the insulation component. Both
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mechanisms realize the negative feedback through enhanceddegradation. The first
design realizes amplification through transcriptional activation, while the second
design through phosphorylation of a protein that is in abundance in the system.

Design 1: Amplification through transcriptional activation

In this design, we obtain a large amplification of the input signal Z(t) by having
promoter p0 (to which Z binds) be a strong, non leaky, promoter. The negative
feedback mechanism onX relies on enhanced degradation of X. Since this must
be large, one possible way to obtain an enhanced degradationfor X is to have a
protease, called Y, be expressed by a strong constitutive promoter. The protease Y
will cause a degradation rate for X, which is larger if Y is more abundant in the
system. This design is schematically shown in Figure 6.14.

W

p
x

y

Z

Y

p0

Insulation component X

Figure 6.14: We highlight in blue the parts that Design 1 affects. In particular, a negative feedback
occurring through post-translational regulation and a promoter that produces a large signal ampli-
fication are the central parts of this design. The red part indicates the downstream component that
takes as input the concentration of protein X.

In order to investigate whether such a design realizes a large amplification and
a large negative feedback onX as needed, we analyze the full input/output model
for the block in the dashed box of Figure 6.14. In particular, the expression of
gene x is assumed to be a two-step process, which incorporates also the mRNA
dynamics. Incorporating these dynamics in the model is relevant for the current
study because they may contribute to an undesired delay between theZ and X
signals. The reaction of the protease Y with protein X is modeled as the two-step
reaction

X +Y⇋η1η2 W→β Y,

which can be found in standard references (see [?], for example). The input/output
system model of the insulation component that takesZ as an input and givesX as
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an output is given by the following equations

dZ
dt
= k(t)−δZ+ k−Zp−k+Z(p0,TOT−Zp) (6.13)

dZp

dt
= k+Z(p0,TOT−Zp)−k−Zp (6.14)

dmX

dt
=GZp−δ1mX (6.15)

dX
dt
= νmX−η1YX+η2W−δ2X+ koffC−konX(pTOT−C) (6.16)

dW
dt
= η1XY−η2W−βW (6.17)

dY
dt
=−η1YX+βW+αG−γY+η2W (6.18)

dC
dt
=−koffC+konX(pTOT−C), (6.19)

in which we have assumed that the expression of gene z is controlled by a pro-
moter with activityk(t). These equations will be studied numerically and analyzed
mathematically in a simplified form. The variableZp is the concentration of pro-
tein Z bound to the promoter controlling gene x,p0,TOT is the total concentration
of the promoter p0 controlling gene x,mX is the concentration of messenger RNA
of X, C is the concentration of X bound to the downstream binding sites with total
concentrationpTOT, γ is the decay rate of the protease Y. The value ofG is the
production rate of X mRNA per unit concentration of Z bound tothe promoter
controlling x; the promoter controlling gene y has strengthαG, for some constant
α, and it has the same order of magnitude strength as the promoter controlling x.
The terms in the box in equation (6.13) represent the retroactivity r to the input
of the insulation component in Figure??. The terms in the box in equation (6.16)
represent the retroactivitys to the output of the insulation component of Figure
??. The dynamics of equations (6.13)–(6.19) withouts (the elements in the box in
equation (6.16)) describe the dynamics ofX with no downstream system.

We mathematically explain why system (6.13)–(6.19) allowsto attenuate the
effect of s on theX dynamics. Equations (6.13) and (6.14) simply determine the
signalZp(t) that is the input to equations (6.15)–(6.19). For the discussion regard-
ing the attenuation of the effect ofs, it is not relevant what the specific form of sig-
nalZp(t) is. Let thenZp(t) be any bounded signalv(t). Since equation (6.15) takes
v(t) as an input, we will have thatmX =Gv̄(t), for a suitable signal ¯v(t). Let us as-
sume for the sake of simplifying the analysis that the protease reaction is a one step
reaction, that is, X+Y→β Y. Therefore, equation (6.18) simplifies todY

dt = αG−γY
and equation (6.16) simplifies todX

dt = νmX−βYX−δ2X+koffC−konX(pTOT−C).
If we consider the protease to be at its equilibrium, we have thatY(t) = αG/γ. As
a consequence, theX dynamics becomes

dX
dt
= νGv̄(t)− (βαG/γ+δ2)X+ koffC−konX(pTOT−C) ,



designexamps.tex, v0.00 2008/06/12 07:03:00 (murray)

102 CHAPTER 6. INTERCONNECTING COMPONENTS

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

Time (min)

P
ro

te
in

 C
on

ce
nt

ra
tio

n

G=1000

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

Time (min)

P
ro

te
in

 C
on

ce
nt

ra
tio

n

 G=10

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

Time (min)

P
ro

te
in

 C
on

ce
nt

ra
tio

n

G=1

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

Time (min)

P
ro

te
in

 C
on

ce
nt

ra
tio

n

G=100

A

B

C

D

Figure 6.15: Design 1: results for different gainsG. In all plots, red (dotted line) is the inputZ to
the insulation device, green (solid line) is the outputX of the insulation device in isolation (without
the downstream binding sites p), blue (dashed line) is the outputX of the insulation device when
downstream sites p are present. In all plots,k(t) = 0.01(1+ sin(ωt)), pTOT = 100, koff = kon = 10,
δ = 0.01, andω = 0.005. The parameter values areδ1 = 0.01, p0,TOT = 1, η1 = η2 = β = γ = 0.01,
k− = 200,k+ = 10,α = 0.1, δ2 = 0.1, ν = 0.1, andG= 1000,100,10,1. The retroactivity to the output
is not well attenuated for values of the gainG= 1 and the attenuation capability begins to worsen for
G = 10.

with C determined by equation (6.19). By using the same singular perturbation
argument employed in the previous section, we obtain that the dynamics ofX will
be after a fast transient approximatively given by

dX
dt
= (νGv̄(t)− (βαG/γ+δ2)X)(1−d(t)), (6.20)

in which 0< d(t) < 1 is the effect of the retroactivitys. Then, asG increases,X(t)
becomes closer to the solution of the isolated system

dX
dt
= νGv̄(t)− (βαG/γ+δ2)X,

as explained in Section??1.
We now turn to the question of minimizing the retroactivity to the inputr be-

cause its effect can alter the input signalZ(t). In order to decreaser, we guarantee

1See the supplementary material for the mathematical details.
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that the retroactivity measure given in equation (??) is small. This is seen to be true
if ( k̄d+Z)2/(p0,TOTk̄d) is very large, in which 1/k̄d = k+/k− is the affinity of the
binding site p0 to Z. Since after a short transient,Zp = (p0,TOTZ)/(k̄d+Z), for Zp

not to be a distorted version ofZ, it is enough to ask that̄kd≫ Z. This, combined
with the requirement that (̄kd+Z)2/(p0,TOTk̄d) is very large, leads to the require-
ment p0,TOT/k̄d ≪ 1. Summarizing, for not having distortion effects betweenZ
andZp and small retroactivityr, we need that

k̄d≫ Z andp0,TOT/k̄d≪ 1. (6.21)

Simulation results. Simulation results are presented for the insulation system
of equations (6.13)–(6.19) as the mathematical analysis ofsuch a system is only
valid under the approximation that the protease reaction isa one step reaction.
In all simulations, we consider protein decay rates to be 0.01min−1 to obtain
a protein half life of about one hour. We consider always a periodic forcing
k(t) = 0.01(1+ sin(ωt)), in which we assume that such a periodic signal has been
generated by a synthetic biological oscillator. Therefore,the oscillating signals are
chosen to have a period that is about 12 times the protein halflife in accordance
to what is experimentally observed in the synthetic clock of[?]. All simulation re-
sults were obtained by using MATLAB (Simulink), with variable step ODE solver
ODE23s. For large gains (G = 1000,G = 100), the performance considerably im-
proves compared to the case in whichX was generated by a plain transcriptional
component acceptingZ as an input (Figure 6.6). For lower gains (G = 10,G = 1),
the performance starts to degrade forG= 10 and becomes not acceptable forG= 1
(Figure 6.15). Since we can viewG as the number of transcripts produced per
unit time (one minute) per complex of protein Z bound to promoter p0, values
G = 100,1000 may be difficult to realizein vivo, while the valuesG = 10,1 could
be more easily realized. The values of the parameters chosen in Figure 6.15 are
such that̄kd≫ Z andp0,TOT≪ k̄d. This is enough to guarantee that there is small
retroactivityr to the input of the insulation device independently of the value of
the gainG, according to relations (6.21). The poorer performance of the device
for G = 1 is therefore entirely due to poor attenuation of the retroactivity s to the
output.

Design 2: Amplification through phosphorylation

In this design, the amplification ofZ is obtained by havingZ activate the phos-
phorylation of a protein X, which is available in the system in abundance. That is,
Z is a kinase for a protein X. The phosphorylated form of X, called Xp, binds to
the downstream sites, while X does not. A negative feedback on Xp is obtained
by having a phosphatase Y activate the dephosphorylation ofprotein Xp. Protein
Y is also available in abundance in the system. This mechanismis depicted in
Figure 6.16. A similar design has been proposed by [26, 25], inwhich a MAPK
cascade plus a negative feedback loop that spans the length of the MAPK cascade
is considered as a feedback amplifier. Our design is much simpler as it involves
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Figure 6.16: The dashed box contains the insulation device. The blue parts highlight the mechanism
that provides negative feedback and amplification. Negative feedback occurs through a phosphatase
Y that converts the active formXp back to its inactive formX. Amplification occurs through Z
activating the phosphorylation of X.

only one phosphorylation cycle and does not require the additional feedback loop.
In fact, we realize a strong negative feedback by the action of the phosphatase that
converts the active protein form Xp to its inactive form X. This negative feedback,
whose strength can be tuned by varying the amount of phosphatase in the system,
is enough to mathematically and computationally show that the desired insulation
properties are satisfied.

We consider two different models for the phosphorylation and dephosphoryla-
tion processes. A one step reaction model is initially considered to illustrate what
biochemical parameters realize the input gainG and the negative feedbackG′.
Then, we turn to a more realistic two step model to perform a parametric analysis
and numerical simulation. The one step model that we consideris the one of [15]:

Z+X→k1Z+Xp,

and
Y +Xp→k2Y +X.

We assume that there is plenty of protein X and of phosphataseY in the system
and that these quantities are conserved. The conservation ofX gives X+ Xp+

C = XTOT, in which X is the inactive protein, Xp is the phosphorylated protein
that binds to the downstream sites p, and C is the complex of the phosphorylated
protein Xp bound to the promoter p. TheXp dynamics can be described by the first
equation in the following model

dXp

dt
= k1XTOTZ(t)

(

1−
Xp

XTOT
− C

XTOT

)

−k2YXp+ koffC−konXp(pTOT−C)(6.22)

dC
dt
=−koffC+konXp(pTOT−C). (6.23)

The boxed terms represent the retroactivitys to the output of the insulation sys-
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tem of Figure 6.16. For a weakly activated pathway ([15]),Xp ≪ XTOT. Also,
if we assume that the concentration of total X is large compared to the concen-
tration of the downstream binding sites, that is,XTOT≫ pTOT, equation (6.22) is
approximatively equal to

dXp

dt
= k1XTOTZ(t)−k2YXp+koffC−konXp(pTOT−C).

DenoteG = k1XTOT andG′ = k2Y. Exploiting again the difference of time scales
between theXp dynamics and theC dynamics, after a fast initial transient, the
dynamics ofXp can be well approximated by

dXp

dt
= (GZ(t)−G′Xp)(1−d(t)), (6.24)

in which 0< d(t) < 1 is the effect of the retroactivitys to the output after a short
transient. Therefore, forG andG′ large enough,Xp(t) tends to the solutionXp(t)

of the isolated system
dXp
dt =GZ(t)−G′Xp, as explained in Section??2. As a con-

sequence, the effect of the retroactivity to the outputs is attenuated by increasing
k1XTOT andk2Y enough. That is, to obtain large input and feedback gains, one
should have large phosphorylation/dephosphorylation rates and/or a large amount
of protein X and phosphatase Y in the system. This reveals thatthe values of
the phosphorylation/dephosphorylation rates cover an important role toward the
realization of the insulation property of the module of Figure ??.

We next consider a more complex model for the phosphorylation and dephos-
phorylation reactions and perform a parametric analysis tohighlight the roles of
the various parameters for attaining the insulation properties. In particular, we
consider a two-step reaction model such as those in [16]. According to this model,
we have the following two reactions for phosphorylation anddephosphorylation,
respectively:

X +Z⇋β1
β2

C1→k1 Xp+Z, (6.25)

and

Y +Xp⇋
α1
α2

C2→k2 X +Y, (6.26)

in which C1 is the [protein X/kinase Z] complex and C2 is the [phosphatase Y/protein
Xp] complex. Additionally, we have the conservation equationsYTOT=Y+C2, XTOT=

X+Xp+C1+C2+C, because proteins X and Y are not degraded. Therefore, the

2See the supplementary material for the mathematical details.
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differential equations modeling the insulation system of Figure6.16 become

dZ
dt
= k(t)−δZ −β1ZXTOT(1− Xp

XTOT
− C1

XTOT
− C2

XTOT
− C

XTOT
)+ (β2+k1)C1(6.27)

dC1

dt
=−(β2+k1)C1+β1ZXTOT(1−

Xp

XTOT
− C1

XTOT
− C2

XTOT
− C

XTOT
) (6.28)

dC2

dt
=−(k2+α2)C2+α1YTOTXp(1− C2

YTOT
) (6.29)

dXp

dt
= k1C1+α2C2−α1YTOTXp(1− C2

YTOT
)+ koffC−konXp(pTOT−C) (6.30)

dC
dt
=−koffC+konXp(pTOT−C), (6.31)

in which the expression of gene z is controlled by a promoter with activity k(t).
The terms in the large box in equation (6.27) represent the retroactivity r to the
input, while the terms in the small box in equation (6.27) andin the boxes of
equations (6.28) and (6.30) represent the retroactivitys to the output. We assume
that XTOT≫ pTOT so that in equations (6.27) and (6.28) we can neglect the term
C/XTOT becauseC < pTOT. Also, phosphorylation and dephosphorylation reac-
tions in equations (6.25) and (6.26) can occur at a much faster rate (on the time
scale of a second [?]) than protein production and decay processes (on the time
scale of minutes [3]). ChoosingXTOT andYTOT sufficiently large, the separation
of time-scales between equation (6.27) and equations (6.28–6.31) can be explicitly
modeled by lettingǫ = δ/koff, kon= koff/kd, and by defining the new rate constants
b1 = β1XTOTǫ/δ, a1 = α1YTOTǫ/δ, b2 = β2ǫ/δ, a2 = α2ǫ/δ, ci = ǫki/δ. Letting
z= Z+C1 (the total amount of kinase) be the slow variable, we obtain the system
in the standard singular perturbation form

dz
dt
= k(t)−δ(z−C1)

ǫ
dC1

dt
=−δ(b2+c1)C1+δb1(z−C1)(1−

Xp

XTOT
− C1

XTOT
− C2

XTOT
)

ǫ
dC2

dt
=−δ(c2+a2)C2+δa1Xp(1− C2

YTOT
)

ǫ
dXp

dt
= δc1C1+δa2C2−δa1Xp(1− C2

YTOT
)+ δC−δ/kd(pTOT−C)Xp

ǫ
dC
dt
=−δC+δ/kd(pTOT−C)Xp, (6.32)

in which the boxed terms represent the retroactivity to the outputs. We then com-
pute the dynamics on the slow manifold by lettingǫ = 0. When we setǫ = 0, the
terms due to the retroactivitysvanish. This means that if the internal dynamics of
the insulation device evolve on a time scale that is much faster than the dynamics
of the input signalZ, then (provided we also haveXTOT≫ pTOT) the retroactivity
s to the output has no effect on the dynamics ofXp at the quasi steady state. This
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is a crucial feature of this design. Lettingγ = (β2+ k1)/β1 and γ̄ = (α2+ k2)/α1,
settingǫ = 0 in the third and fourth equations of (6.32) the following relationships
can be obtained:

C1 = F1(Xp) =

XpYTOTk2
γ̄k1

1+Xp/γ̄
, C2 = F2(Xp) =

XpYTOT
γ̄

1+Xp/γ̄
. (6.33)

Using expressions (6.33) in the second of equations (6.32) with ǫ = 0 leads to

F1(Xp)(b2+c1+
b1Z

XTOT
) = b1Z(1−

Xp

XTOT
−

F2(Xp)

XTOT
). (6.34)

Assuming for simplicity thatXp≪ γ̄, we obtain thatF1(Xp) ≈ XpYTOTk2
γ̄k1

and that

F2(Xp)≈ Xp
γ̄

YTOT. As a consequence of these simplifications, equation (6.34) leads
to

Xp =
b1Z

b1Z
XTOT

(1+YTOT/γ̄+ (YTOTk2)/(γ̄k1))+ YTOTk2
γ̄k1

(b2+c1)
:=m(Z).

In order not to have distortion fromZ to Xp, we require that

Z≪
YTOT

k2
k1

γ

γ̄

1+ YTOT
γ̄
+

YTOT
γ̄

k2
k1

, (6.35)

so thatm(Z) ≈ Z XTOTγ̄k1
YTOTγk2

and therefore we have a linear relationship betweenXp

andZ with gain fromZ to Xp given by XTOTγ̄k1
YTOTγk2

. In order not to have attenuation
from Z to Xp we require that the gain is greater than or equal to one, that is,

input/output gain≈ XTOTγ̄k1

YTOTγk2
≥ 1. (6.36)

Requirements (6.35), (6.36), andXp≪ γ̄ are enough to guarantee that we do not
have nonlinear distortion betweenZ and Xp and thatXp is not attenuated with
respect toZ. In order to guarantee that the retroactivityr to the input is sufficiently
small, we need to quantify the retroactivity effect on theZ dynamics due to the
binding of Z with X. To achieve this, we proceed as in Section?? by computing
the Z dynamics on the slow manifold, which gives a good approximation of the
dynamics ofZ if ǫ ≈ 0. Such a dynamics is given by

dZ
dt
= (k(t)−δZ)

(

1− dF1

dXp

dXp

dz

)

,

in which dF1
dXp

dXp
dz measures the effect of the retroactivityr to the input on theZ

dynamics. Direct computation ofdF1
dXp

and of
dXp
dz along with Xp ≪ γ̄ and with

(6.35) leads todF1
dXp

dXp
dz ≈ XTOT/γ, so that in order to have small retroactivity to the

input, we require that
XTOT

γ
≪ 1. (6.37)
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Phosphorylation and dephosphorylation with fast time scale
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Figure 6.17: Simulation results for system in equations (6.27–6.31). Inall plots, pTOT = 100,koff =

kon = 10, δ = 0.01, k(t) = 0.01(1+ sin(ωt)), andω = 0.005. In subplots A and B,k1 = k2 = 50,
α1 = β1 = 0.01, β2 = α2 = 10, andYTOT = XTOT = 1500. In subplot A, the signalXp(t) without
the downstream binding sites p is in green (solid line), while the same signal withthe downstream
binding sites p is in blue (dashed line). The small error shows that the effect of the retroactivity
to the outputs is attenuated very well. In subplot B, the signalZ(t) without X to which Z binds
is in red (solid), while the same signalZ(t) with X present in the system (XTOT = 1500) is in black
(dashed line). The small error confirms a small retroactivity to the input.The values of the complexes
concentrationsC1 andC2 oscillate about 0.4, so they are comparable to the values ofXp.

Concluding, for having attenuation of the effect of the retroactivity to the output
s, we require that the time scale of the phosphorylation/dephosphorylation reac-
tions is much faster than the production and decay processesof Z (the input to
the insulation device) and thatXTOT≫ pTOT, that is, the total amount of protein
X is in abundance compared to the downstream binding sites p.To obtain also a
small effect of the retroactivity to the input, we require thatγ ≫ XTOT as estab-
lished by relation (6.37). This is satisfied if, for example, kinase Z has low affinity
to binding with X. To keep the input/output gain betweenZ andXp close to one
(from equation (6.36)), one can chooseXTOT = YTOT, and equal coefficients for
the phosphorylation and dephosphorylation reactions, that is, γ = γ̄ andk1 = k2.

Simulation results. System in equations (6.27–6.31) was simulated with and
without the downstream binding sites p, that is, with and without, respectively, the
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terms in the small box of equation (6.27) and in the boxes in equations (6.30) and
(6.28). This is performed to highlight the effect of the retroactivity to the outputs
on the dynamics ofXp. The simulations validate our theoretical study that indicates
that whenXTOT≫ pTOT and the time scales of phosphorylation/dephosphorylation
are much faster than the time scale of decay and production ofthe protein Z, the
retroactivity to the outputs is very well attenuated (Figure 6.17, plot A). Similarly,
the time behavior ofZ was simulated with and without the terms in the large box
in equation (6.27), that is, with and without X to which Z binds, to verify whether
the insulation component exhibits retroactivity to the input r. In particular, the
accordance of the behaviors ofZ(t) with and without its downstream binding sites
on X (Figure 6.17, plot B), indicates that there is no substantial retroactivity to the
input r generated by the insulation device. This is obtained becauseXTOT≪ γ as
indicated in equation (6.37), in which 1/γ can be interpreted as the affinity of the
binding of X to Z. Our simulation study also indicates that a faster time scale of the
phosphorylation/dephosphorylation reactions is necessary, even for high values of
XTOT andYTOT, to maintain perfect attenuation of the retroactivity to the output
s and small retroactivity to the outputr. In fact, slowing down the time scale of
phosphorylation and dephosphorylation, the system loosesits insulation property
(Figure 6.18). In particular, the attenuation of the effect of the retroactivity to
the outputs is lost because there is not enough separation of time scalesbetween
theZ dynamics and the internal device dynamics. The device also displays a non
negligible amount of retroactivity to the input because theconditionγ≪ XTOT is
not satisfied anymore.
† DDV: Should put the

frequency analysis of the
linearized Pho/Depho
device and Bode plots
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Phosphorylation and dephosphorylation with slow time scale
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Figure 6.18: In all plots,pTOT = 100 andkoff = kon = 10, δ = 0.01, k(t) = 0.01(1+ sin(ωt)), and
ω = 0.005. Phosphorylation and dephosphorylation rates are slower than the ones in Figure 6.17, that
is, k1 = k2 = 0.01, while the other parameters are left the same, that is,α2 = β2 = 10,α1 = β1 = 0.01,
andYTOT = XTOT = 1500. In subplot A, the signalXp(t) without the downstream binding sites p is in
green (solid line), while the same signal with the downstream binding sites p is inblue (dashed line).
The effect of the retroactivity to the outputs is dramatic. In subplot B, the signalZ(t) without X in
the system is in red (solid line), while the same signalZ(t) with X in the system is in black (dashed
line). The device thus also displays a large retroactivity to the inputr.
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Chapter 8
Design Examples
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