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Chapter 8
Resource Competition1

This chapter expands on some of the topics described in Section 7.1 and will even-
tually replace the material in that section. The material in this chapter is not cur-
rently included in the printed version of the book.

Genetic circuits operate by virtue of the resources that the cellular host is pro-
viding, including resources for transcription, translation, protein folding, and more.
So far in the book we have assumed that the level of such resources are constant
parameters, which appear, for example, in the transcription and translation rate
constants derived in Chapter 2. In this chapter, we revisit the form of those con-
stants and take into account that the level of shared resources may change as a
consequence of the demand applied by different gene expression modules.

8.1 Resource competition in bacterial genetic circuits

We are going to revisit the models of transcription and translation from Chapter 2
by considering now that RNAP and ribosomes are used by several genes concur-
rently. Let us consider genetic module i with mRNA mi and protein pi.

Transcription

We will write the differential equations corresponding to transcription as we did in
Chapter 2 as follows:

dmi

dt
= ui

(
Dtot,i

x/Ki

1+ x/Ki

)
→ωmi,

in which Dtot,i is the total DNA in module i, and the term in parentheses repre-
sents the RNAP bound to the DNA of module i, with x representing the concen-
tration of free RNAP, and ui is a constant that captures the effective “catalytic rate
constant” with which RNAP bound to DNA gives rise to an mRNA and encap-
sulates the speed at which the RNAP travels on the DNA. Here, Ki is the dis-
sociation constant of RNAP from DNA and we approximated x ↑ Ki, such that
Dtot,i

x/Ki
1+x/Ki

↓ Dtot,i · x/Ki. This is a reasonable approximation considering that the
free RNAP in the cell is typically around 100-200nM, and that Ki are typically on

1Thanks to Nicholas Nolan for editing this chapter.
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the order of 1,000nM [MJM+10]. With this approximation and letting xtot repre-
sent the total RNAP in the system, we can write the conservation law, assuming we
have two modules only:

xtot = x+Dtot,1 · x/K1+Dtot,2 · x/K2,

from which we obtain that the free level of RNAP is not constant but is affected by
the presence of transcribed genes:

x =
xtot

1+Dtot,1/K1+Dtot,2/K2
.

Given typical numbers, we estimate that Dtot,i/Ki ↓ 0.1, such that if we ask what
the relative change is in free RNAP when we add module 2, then we have that it is
given by:

Dtot,2/K2

1+Dtot,1/K1+Dtot,2/K2
↓ 10%,

which is negligible. So, based on this estimate, we do not expect that competition
for RNAP leads to significant impact on the free level of RNAP in bacterial cells.

Translation

We captured translation through the following differential equation:

dpi

dt
= ε

miy
K̄i
→ϑpi,

in which K̄i is the dissociation constant of the ribosome binding to the mRNA, with
y representing the concentration of free ribosomes, and mi ·y/K̄i representing the
concentration of ribosomes bound with mRNA mi. Letting ytot represent the total
ribosome level, we have the conservation law:

ytot = y+m1 ·y/K̄1+m2 ·y/K̄2,

so that free ribosome levels can be calculated as:

y =
ytot

1+m1/K̄1+m2/K̄2
.

Now consider that, when expressed from a low- to medium-copy plasmid, the
mRNA level can hover around 100 copies, or 100nM; we further have that K̄i
can be designed to span a wide range and can certainly reach values of 100nM
or lower [MJM+10]. Thus, we have that the relative change in free ribosome level
due to the addition of module 2 with m2 ↓ 200nM and m1 ↓ 100nM is given by:

m2/K̄2

1+m1/K̄1+m2/K̄2
↓ 50%,

which is non-negligible.
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Overall gene expression

Pulling the above together to obtain how output protein level p1 is affected when
adding the DNA of module 2, we obtain that:

dp1

dt
= εytot

m1/K̄1

1+m1/K̄1+m2/K̄2
→ϑp1,

in which:
mi =

ui

ω

Dtot,ix
Ki

↓ ui

ω

Dtot,ixtot

Ki
,

which, together, give:

dp1

dt
= εytot

u1

ω

Dtot,1xtot

K1K̄1




1

1+ u1
ω

Dtot,1 xtot
K1K̄1

+ u2
ω

Dtot,2 xtot
K2K̄2


→ϑp1,

in which the term in the parenthesis is a “correction factor” that appears when
considering the conservation law for ribosomes across different gene expression
modules. In Chapter 2, that factor was assumed to be 1.

The consequence of this expression is that, if u1 goes from zero to u↔1 > 0, then
we have that p1 goes from zero to p↔1 > 0 and p2 goes to p↔2 < p2, assuming u2 > 0.
Using the above expression, if one computes the ratio p↔2→p2

p↔1→p1
, we obtain that this is a

negative constant. In particular, there are positive constants c1,c2,c3,c4, such that:

p↔2→ p2

p↔1→ p1
= →c1+ c2K̄1

c3+ c4K̄2
,

which tells us that any pair of p1 and p2 are constrained on a line: Note that a

Figure 8.1: Isocost lines describe the “economy” of gene expression; the more p1 present
in the system, the lower the maximal level of p2 can be. Having a weaker RBS for p1
translates to having a larger K̄1.

weaker ribosome binding site for p1 yields a larger K̄1, and increases the negative
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slope because more ribosomes are required to achieve the same value of p1. In
summary, the isocost line is given by:

ϖp1+ϱp2 = ytot,

in which ϖ and ϱ are positive coefficients and ytot is the budget. The coefficients ϖ
and ϱ can be regarded as the prices of p1 and p2 and they depend on the ribosome
binding sites strengths encoded by 1/K̄i.

Transcriptional regulation

We next revisit the model of transcriptional regulation through Hill functions when
we have resource sharing. In particular, going back to Chapter 2 (eq. 2.24), we had
the following forms for transcriptional regulation for p↗ p1 or p ↘ p1:

dm1

dt
= F(p)→ωm1,

in which F(p) had the following forms, depending on whether p is a repressor or
an activator. For a repressor, we had:

F(p) = u1Dtot,1
x/K

1+ x/K




1
1+ p

kd(1+ x
K )


 ,

which was derived from the competitive binding reaction scheme x+D1 →→→ςφ→→→ C
and p+D1 →→→ςφ→→→ C1, in which D1 is the DNA in gene expression module 1, such

that the term C = Dtot,1
x/K

1+x/K

(
1

1+p/(kd(1+ x
K ))

)
is the amount of RNAP bound to the

DNA. With the assumption we made that x↑ K, the above expression simplifies to
F(p) = u1Dtot,1

x
K

1
1+p/kd

, in which we call F̄(p) = 1
1+p/kd

. Similarly, for an activator,
we have with this same assumption that

F(p) = u1Dtot,1
x
K

p/kd

1+ p/kd
,

in which C = Dtot,1
x
K

p/kd
1+p/kd

is the amount of RNAP bound to the DNA and it comes
from a cooperative binding scheme: p+D1 →→→ςφ→→→ C1 and x+C1 →→→ςφ→→→ C (see Chap-
ter 2). We also define F̄(p) = p/kd

1+p/kd
.

Now, we assume that we have two gene expression modules, one producing p1
and transcriptionally regulated by p j and the other producing p2 and transcription-
ally regulated by pk, so we have:

p j↗ p1, or p j ↘ p1,

and
pk↗ p2, or pk ↘ p2.
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We are then going to write the reaction rate equation describing each of p1 and p2.
To this end, we use the quasi-steady state of the mRNA level for both modules to
obtain

m1 =
u1

ω
Dtot,1

x
K1

F̄(p j), m2 =
u2

ω
Dtot,2

x
K2

F̄(pk)

in which xtot = x+Dtot,1(x/K1)F̄1(p j)+Dtot,2(x/K2)F̄2(pk), and since x/Ki↑ 1, we
can approximate x ↓ xtot. We thus have

dpi

dt
= ε

mi ·y
K̄i
→ϑpi,

in which y is given by the conservation law as before

ytot = y+m1 ·y/K̄1+m2 ·y/K̄2,

in which we can substitute the expressions of the mRNA levels m1 and m2 and
solve for y to obtain

y =
ytot

1+ (q1/K̄1)F̄1(p j)+ (q2/K̄2)F̄2(pk)
, qi =

ui

ω
Dtot,i

x
Ki
.

By substituting this in the differential equation for p1, we obtain

dp1

dt
= εytot

q1/K̄1F̄1(p j)
1+ (q1/K̄1)F̄1(p j)+ (q2/K̄2)F̄2(pk)

→ϑp1,

or equivalently

dp1

dt
= εytot

u1xtot

ω

Dtot,1

K̄1K1
F̄(p j)




1

1+ u1
ω

Dtot,1 xtot
K1K̄1

F̄(p j)+ u2
ω

Dtot,2 xtot
K2K̄2

F̄(pk)


→ϑp1,

in which the term in parenthesis accounts for resource competition and was not
present in the classical Hill function-based model. We call Ji =

ui
ω

D1 · xtot
K1K̄i

the re-
source demand coefficient for module i. From this expression, we see that p1 de-
pends also on the concentration of regulators to protein p2 through F̄(pk) in the
denominator of the bracketed expression. From this, it follows that if pk is a re-
pressor and hence F̄(pk) is a decreasing function of pk, then the bracketed term is
an increasing function of pk. That is, p1 will increase as pk increases. On the other
hand, if pk is an activator and hence F̄(pk) is an increasing function of pk, then
the bracketed term is a decreasing function of pk. That is, p1 will decrease as pk
increases.

The consequence is that if p is a repressor, it becomes an effective activator for
any gene not repressed directly by it. Qualitatively, this occurs because by repress-
ing its target, it releases resources that become available to other genes. Similarly,
if p is an activator, it becomes an effective repressor for any gene not activated by
it. Qualitatively, this occurs because by activating its target, it sequesters resources
from other genes. These relationships are summarized in Figure 8.2.
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Figure 8.2: Solid black lines are intended transcriptional regulation interactions, while the
dotted black lines represent interactions arising due to resource sharing. In (a) and (b),
it can be seen that otherwise-uncoupled modules experience unintended interactions on
account of resource sharing. (c) This effect attenuates, but does not fundamentally modify,
the intended interaction, if that regulatory activity is exclusive to a single node. (d) The
overall regulatory impact of a node cannot be determined if that node acts on more than
one node, however.

8.2 Resource competition in mammalian genetic circuits

We are going to introduce a simplified model of transcriptional activation in mam-
malian cells and study how competition for gene expression resources affects gene
expression regulation. We will focus on transcription as opposed to translation,
since it was experimentally shown that, for mammalian systems, translation re-
sources are not a bottleneck in the current design of synthetic genetic circuits,
but transcription resources are [SJWDV21]. This provides a stark contrast to the
previous section, in which the opposite was true for bacterial systems. A transcrip-
tional activator A enables transcription by recruiting transcription co-activators to
the DNA. One of these co-activators that has been studied in the literature is the me-
diator, which is a complex of proteins that, once recruited to DNA by an activator,
stabilizes the binding of RNAP to the DNA [CKK+05]. We will lump this mediator
and similar co-activators that an activator protein binds and directs to DNA into a
species M. The activator protein achieves this through an activation domain (AD),
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C1

Pathway 1

D1C1*

A
M

Y

Pathway 2

A M

D1C1*

Y

D1C1

Figure 8.3: Two simplified models of the transcriptional activation of mammalian genes.
In Pathway 1, the mediator M forms a complex C1 with the activator protein A, which
then goes on to form an active complex C≃1 by binding to the DNA binding domain. In
Pathway 2, the activator protein binds to the DNA first, forming a complex C̄1 which
cannot produce proteins. It is only when the mediator binds to C̄1 that the system becomes
activated, producing Y .

which binds to the mediator and other co-activators. The DNA binding domain
(DBD) of the activator protein instead enables recruitment of these resources to the
DNA target [CKK+05]. We therefore model transcriptional activation as depicted
in Fig. 8.3 through the reactions:

Pathway 1 : A+M →→ςφ→→
k1

C1, C1+D1 →→ςφ→→
k≃1 1

C≃1
ϖ→↗ Y+D1+C1,

Pathway 2 : A+D1 →→ςφ→→
k̄1

C̄1, C̄1+M →→ςφ→→
k̄≃1 1

C≃1
ϖ→↗ Y+ C̄1+M,

in which, for simplicity, we have lumped translation together with transcription.
The constants k represent dissociation constants, that is, the ratios between the dis-
sociation rate constant and the association rate constant for each reversible reaction
depicted. The reaction rate equation for the protein output Y will be given by:

dY
dt
= ϖC≃1→ϑY, (8.1)

in which C≃1 is the transcriptionally active complex from which RNAP can lead to
transcription. By setting the complexes to their quasi-steady state, we obtain that

C≃1 =
C̄1 · M

k̄≃1
+

C1 · D1

k≃1
, C̄1 =

A · D1

k̄1
, C1 =

A · M
k1
. (8.2)

Also, from the conservation law of DNA and letting Dtot,1 represent the total amount
of DNA, we obtain that Dtot,1 = D1+C≃1+ C̄1, in which assuming that the activator
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is in excess, we will have that most of the DNA is bound by the activator only, so
that C≃1↑ C̄1 and Dtot,1 ↓ D1+ C̄1. From this, it follows that

D1 =
Dtot,1

1+A/k̄1
. (8.3)

By substituting (8.2) and (8.3) into (8.1) and letting ↼ = 1
k̄≃1k̄1
+ 1

k1k≃1
, we have:

dY
dt
= ϖDtot,1↼

AM
1+A/k̄1

→ϑY.

When M is a constant parameter, the production rate has the standard form of a
Hill function for transcriptional activation (see Chapter 2).

In reality, however, M is not a constant — it is the free level of mediator and,
as such, it may be affected by the presence of other modules that also require it for
transcription activation. We will thus write the conservation law for the mediator.
In this process, we will also assume that there is another transcriptional module
which takes input activator A0 total DNA D0, produces output protein X, and has
the following complexes containing the mediator:

C0 =
M · A0

k0
, C≃0 =

A0 · D0 · M
k̄≃0k̄0

+
A0 · D0 · M

k0k≃0
.

This module has the same structure as module 1 in Fig. 8.3, in which we add
subscripts 0 to A and replace the 1 subscripts with 0. Letting Mtot represent the
total concentration of mediator, we can therefore write the mediator conservation
law as Mtot = M+C≃1 +C1 +C≃0 +C0, in which C1 and C0 represent the amount of
mediator bound to either A or A0, while C≃1 and C≃0 represent the amount of mediator
bound to the DNA D1 or D0. At this point, we can reason about numbers and note
that the amount of DNA — typically a few copies per cell — is much smaller than
the amount of activator protein in the system [MJM+10]. Therefore, we can safely
assume that C≃1 ↑ C1 and C≃0 ↑ C0. Therefore, we have Mtot ↓ C1 +C0, in which
using the expressions for C1 =

A · M
k1

and C0 =
A0 · M

k0
, we obtain that:

M =
Mtot

1+A/k1+A0/k0
.

By substituting this into the expression of the rate of change of Y , we finally obtain:

dY
dt
= ϖDtot,1↼Mtot

A
1+A/k̄1

(
1

1+A/k1+A0/k0

)
→ϑY.

The term in the bracket is a factor that appears by considering the conservation law
for the mediator and is absent in models that do not account for resource compe-
tition. The consequence of this factor on the steady state response of Y to A (in-
dependent of whether A0 is present) is a phenomenon called squelching, wherein
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A A0Y

A
A

A0
A0

Sign undetermined

Pool of co-activators

Y

Y Y

Figure 8.4: Summary of the effects of competition for transcriptional co-activators. (a)
Squelching: after a point, increasing the level of activator in the system leads to the tran-
scriptional repression of Y . (b) An orthogonal activator A0 sequesters resources from Y .

increasing the activator level A increases the steady state level of Y up to a certain
point, and after that further increasing the activator leads to complete target repres-
sion (Fig. 8.4(a)). Additionally, since A0 appears in the denominator, we observe
that the level Y decreases as the activator A0 for the competitor module is increased
(Fig. 8.4(b)). Squelching has been observed before and has to do with the fact that
when the activator A is in excess compared to the mediator M and the DNA, then
most of the mediator will bind to A “in solution” as opposed to on the DNA and
hence the likelihood of M binding to DNA will decrease.

The extent of these effects depend on the binding constants of the activators
to the mediator, which are dictated by the so called strength of the activation do-
main. Typical activation domains (in order of strength) include VPR, VP16, and
VP64 [SJWDV21].

8.3 Feedforward control to mitigate the effects of resource
sharing

EndoRNAse

me

E

Output

iFFL Structure
ERN

ERNm

P

P

P

R R

R

Uncontrolled
Controlled

R0
∆R∆R

∆P

Figure 8.5: Feedforward controller to attenuate the effect of changes of transcriptional
resource R on the output protein P (a) and corresponding incoherent iFFL diagram (b).
We show in (c) the steady state response of the protein to a change ∆R with respect to a
nominal value R of the resource level.
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In the case of genetic circuits in the mammalian cell, we saw that gene expres-
sion modules become coupled with each other because they compete for transcrip-
tional resources, and in particular, transcriptional co-activators such as the media-
tor complex. In particular, when a gene becomes activated through expression of
an activator protein, transcriptional co-activators’ free levels decrease as they are
sequestered away by the activator. The lowering of the free level of co-activator
causes a lowering of gene expression in any other module. Here, we are going to
address the question of how to make the protein output level of one gene expression
module be insensitive to changes in the free level of transcriptional co-activators.
To this end, we propose a feedforward control approach by which we repress the
output protein level by a molecule that also requires transcriptional co-activators in
order to be expressed. This way, when the co-activator level drops, the drop in the
level of this molecule causes a de-repression of the output protein, which ultimately
compensates the initial decrease due to the drop in co-activator level. This design
is depicted in Figure 8.5(a). Specifically, we choose to repress the output protein’s
mRNA m through an endoribonuclease (ERN), denoted by E, which is designed to
bind a target sequence on the mRNA m of the output protein P. Letting R represent
the transcriptional resource that is subject to fluctuations, then the effect on P of a
drop of this resource level will be compensated by a decreased degradation of its
mRNA m.

We model this system by transcription rates that are proportional to the free
level of the resource R (see Chapter 2) and by capturing the action of E on m
through the degradation enzymatic-like reaction:

E+m
a→ςφ→
d

C, C
k→↗ E.

We therefore write the reaction rate equations as:

dP
dt
= εm→ϑP, dm

dt
= ϖR→ωm→am · E+ (d+ k)C

dmE

dt
= ϖ̄R→ωmE ,

dE
dt
= ε̄mE →ϑE→am · E+ (d+ k)C,

dC
dt
= am · E→ (d+ k)C→ϑC ↓ am · E→ (d+ k)C,

in which we have accounted for the separation of time scales between decay and
catalytic rates ϑ ↑ k. After performing the QSSA for the complex C, we obtain
that C =m · E/Km, in which Km is the Michaelis-Menten constant of the enzymatic
reaction and is given by KM = (d + k)/a. After setting the mRNA levels to their
quasi-steady state, we obtain:

m =
ϖR

ω+ (k/Km)R
,
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so that we obtain the reduced ODE model:

dE
dt
= ε̄
ϖ̄

ω
R→ϑE, dP

dt
= ε

ϖR
ω+ (k/Km)R

→ϑP.

We are going to study first the steady state behavior of the protein level P as a
function of a perturbation of R about its nominal value R0. After setting the deriva-
tives to zero, we obtain that the steady state value of the protein level is given by

P =
ε

ϑ
ϖ

R
ω+ (k/Km) ε̄ϖ̄ωϑR

.

From this expression, we observe that when

(k/Km)
ε̄ϖ̄

ωϑ
R⇐ ω,

then the steady state protein level becomes independent of the resource level R:

P ↓ ε
ϑ
ϖ

1
(k/Km) ε̄ϖ̄ωϑ

.

This effect is shown in Figure 8.5(c): when there is no feedforward controller, a ∆R
change of the free resource level with respect to its nominal level R0 will transfer
to a large change (depicted by the double arrow) in the level of P. By contrast, with
the feedforward controller, the range of R values where the expression of P changes
substantially with R is highly restricted to low values of R. As a consequence, the
same ∆R change results in practically no change on the output protein level P.

In order to achieve this, we need to design our system to have a large ε̄ and/or a
large ϖ̄, which implies large level of the endoribonuclease E since these parameters
are the transcription and translation rate constants therefor. We can achieve the
same effect by increasing k/Km, that is, by making the degradation more effective.
This can be achieved by improving the binding affinity of E to the target mRNA m,
which makes Km smaller.

Note that when we accomplish this, the level of P will also decrease. In order
to keep the same level of P while at the same time mitigating the effect of a change
in R, we can increase the promoter strength of the translation rate constant of P by
increasing ε and/or ϖ.

Finally, we observe that any time there is perfect adaptation — in this case,
when we assume ω is negligible — there must be a hidden integral action in the sys-
tem. This action can be observed in the full system of equations before approximat-
ing the mRNA to its quasi-steady state. Specifically, we take mE(t) = ϖ̄R

ω (1→ e→ωt)
and consider a candidate memory variable z, where z = E/ϱ→mϖ with ϱ = ε̄(ϖ̄/ω),
we have that

dz
dt
= E(m

k
ϖKm

→ ϑ
ϱ

)→Re→ωt.
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When t is large enough for the transient to die out, the above becomes an integrator.
When the steady state is reached and z achieves a constant (one can check that the
system’s equilibrium is asymptotically stable), then we have that dz/dt = 0 implies
E(m k

ϖKm
→ ϑϱ ) = 0. Assuming E ! 0, this implies that m (and therefore also P) will

have a steady state value that is independent of R.

Remark. As an exercise one can check that if E were a protease for P, then the same
adaptation result would hold. These adaptation results would hold also of the re-
source being perturbed were a translation resource. Instead, if E were a microRNA,
one could check that translation resource variability would not be compensated for,
but only transcriptional resource variability would be compensated for.

8.4 Feedback control to mitigate the effects of resource sharing

Genetic module

Controller

Genetic module

Controller

Resources

Genetic moduleGenetic module

Controller

Resources

Decentralized Approach Centralized Approach

Figure 8.6: Feedback control for mitigating the effect of resource sharing. (a) Decen-
tralized feedback control: the resource input to each module is subject to variability due
to loading applied by other modules. As a consequence, we can regard the variation of
resource as a disturbance d, which is applied to every module. Every module will have a
“local” feedback controller around it to make the output y independent of d. (b) Centralized
feedback control: Each module applies a load to the resources. The controller’s objective
is to keep the free resource level R constant independent of the load. As a consequence,
each module’s output will not be affected by the addition of other modules.

In order to mitigate the effects of resource competition through feedback con-
trol, there are two main approaches. The first, which we call a decentralized ap-
proach (Fig. 8.6(a)), considers the change in resource level applied to any given
module due to the presence of other modules as a disturbance d to the module
itself. In this case, each module will implement a controller, the decentralized con-
troller, which aims to keep the module’s output unchanged when a disturbance hits
the system [HQDV18]. In this way, every module will have its own controller. Al-
though each controller should in principle be designed independent of the others,
in practice this is not quite possible [QDV21]. The second approach, which we call
a centralized approach (Fig. 8.6(b)), considers the load applied by the modules to
the cellular system, creating the resource as a disturbance to the “resource system”.
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As a consequence, within this view, the controller is designed around the resource
system and aims at keeping the resource output level constant independent of the
loads applied by the modules [DKJB18]. Here, we describe in detail two different
decentralized control designs that have been implemented in bacterial [HQDV18]
and mammalian [JQI+22] cells.

Before proceeding, we recall that integral control can be used for the following
purpose. Letting x represent the internal state of the genetic module, such as the
mRNA and protein levels, and the output y represent the protein level, we have the
following general description for a quasi-integral feedback control, which accounts
for the molecule dilution that is unavoidable in growing cells:

dx
dt
= f (x,z,d), y = g(x), and

dz
dt
= k(u→ y)→ϑz,

in which z is the controller variable implementing the quasi-integral action, ϑz rep-
resents the decay rate of z and can be regarded as the integrator leakage, d is the
disturbance, and u is a reference input. Without leakage (i.e., with ϑ = 0), if the sys-
tem is asymptotically stable — that is, trajectories converge to an equilibrium point
— then at steady state dz/dt = 0, which implies that y = u independent of d. How-
ever, with leakage, this is no longer true. To make this statement approximately
true with leakage, one can engineer k to be very large, that is, we can set k = k̄/↽
with 0 < ↽↑ 1 and k̄ > 0. In this case, and under asymptotic stability assumptions,
we have that at steady state k̄(u→ y)→↽ϑz = 0, which leads to y ↓ u, which is inde-
pendent of the disturbance d. Therefore, we will implement biomolecular systems
that can achieve the following quasi-integral control (QIC) structure:

dx
dt
= f (x,z,d), y = g(x), and

dz
dt
=

k̄
↽

(u→ y)→ϑz.

Therefore, if a system of ODEs has the above structure, in which the QIC is
apparent, and the system’s equilibrium is asymptotically stable, then we can imme-
diately conclude that the output y will asymptotically, and approximately, approach
a function of the reference input u and will be independent of the disturbance d.
Note that in general it is difficult to prove global asymptotic stability of the equi-
librium; therefore we will only request local asymptotic stability. In this case, the
result will hold as long as the initial condition is sufficiently close to the equi-
librium. Local asymptotic stability can be demonstrated by linearizing the system
about the equilibrium and by showing that the eigenvalues all have strictly negative
real component.

Bacterial feedback controller

For bacteria, we will consider a controller that can maintain the output protein of
a genetic module at a constant level despite changes in free ribosome level, due
to ribosome sequestration by other modules. Given that the perturbation is applied
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Figure 8.7: Implementations of feedback controllers to mitigate the effect of resource
variability. (a) Post-transcriptional controller to mitigate variability in ribosome levels. (b)
Transcriptional controller to mitigate variability in transcription co-factor levels.

to the translation process, we will be implementing a post-transcriptional feedback
controller. Specifically, we use sRNA interference as a method to implement post-
transcriptional actuation as illustrated in Fig. 8.7(a). To this end, we recall that the
sRNA reaction is given by

s+m
k→↗ ⇒,

in which s represents the sRNA and m its target RNA, where the target mRNA
has a complementary sequence in the 5’ region that is recognized by the sRNA.
Upon binding, the resulting double-stranded RNA will be targeted by molecular
processes that degrade both molecules together. We will then let the sRNA be ac-
tivated by (a proxy for) the output protein P, such that the reaction rate equations
describing the system are given by:

ds
dt
= ϱF(P)→ km · s→ωs, dm

dt
= ϖ→ km · s→ωm, dP

dt
= ε(R)m→ϑP,

in which ε(R) = k f R/Km is the translation rate constant, which is proportional to
the level of free ribosomes R, whose variation we can regard as a disturbance.
Here F(P) is an activating Hill function and we have “pulled out” the maximal
expression rate constant ϱ, which we will consider a tunable parameter through the
promoter strength. Here, ϖ is also a tunable parameter, which we can increase by
increasing the promoter strength for the mRNA.

In order to determine whether y = P is approximately independent of the varia-
tions in d = R, we must (a) find the memory variable z and (b) demonstrate that the
system’s equilibrium is asymptotically stable, at least locally, from the Jacobian of
the system. For (a), we take as candidate memory variable z = m→ s, such that

dz
dt
= ϖ→ϱF(P)→ωz,

and take both ϖ and ϱ to be large, which we represent by assuming that there is an
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↽↑ 1 such that ϖ = ϖ̄/↽ and ϱ̄ = ϱ/↽. We therefore obtain:

dz
dt
=

1
↽

(
ϖ̄→ ϱ̄F(P)

)
→ωz,

which provides the QIC structure. At this point, we are left to determine whether
the whole closed-loop system is asymptotically stable. By setting all derivatives to
zero, one can find that there is a unique equilibrium point. Performing system lin-
earization at this equilibrium results in a Jacobian matrix whose eigenvalues always
have negative real component as long as ⇀F(P)/⇀P > 0. Under these conditions,
then we have that at steady state P will satisfy ϖ̄→ ϱ̄F(P) ↓ 0, which results into a
value of P that is approximately independent of R, the disturbance. For details on
the rigorous proof for stability, the reader is referred to Lecture 10 (supplements to
Chapter 3).

From a practical point of view, we can ensure that ϖ and ϱ are large by picking
strong promoters for the sRNA and mRNA. Stability, not only requires that P is
an activator for s, thereby implementing a negative feedback, but also that P does
not saturate F(P), which can occur if P is too large. In this case, a change in P
will result in no change in F(P), leading to a system that is practically open loop.
Therefore, to ensure the feedback is active, it is necessary to ensure that P is not
too large. Given that F(P) = P/Kd/(a+ P/Kd), assuming Hill coefficient equal to
1, we will need to ensure that P < Kd, in which Kd is the dissociation constant of
the binding of P to the DNA promoter sites. Experimentally, we can ensure this by
increasing Kd, which can be accomplished by introducing point mutations in the
sequence of DNA binding sites to artificially weaken the binding of P to its target
site.

Mammalian feedback controller

In the case of mammalian systems, we learned that the resource most commonly
competed for is a transcriptional resource required for transcription initiation. One
such transcription co-factor is best known as the mediator and it helps stabilize
the binding of the RNAP to the promoter. It is recruited to the DNA by activators,
which bind it through their activation domain (AD). Because then the perturbation
hitting a genetic module when such a resource is sequestered occurs at the tran-
scription level, we have a disturbance on the transcription rate. As a consequence,
the same type of controller used for bacterial systems will not work, since it can
only mitigate perturbations hitting the translation rate. To this end, we need to con-
sider a controller that acts on transcription, not on translation (Fig 8.7(b)). In this
design, we consider a covalent modification cycle as the biomolecular process to
implement the feedback due to its ability to implement an integral controller (see
Lecture 10 and supplements to Chapter 3).

Specifically, looking at Figure 8.7(b), we note that if d drops and causes a drop
in the level of P, then the rate from X≃ to X will also drop, thereby increasing the



8-16 BIBLIOGRAPHY

level of X≃, which will increase the transcription rate of P, thereby compensating
for the original drop in the level of P. We can write a reaction rate equation for this
system describing the rate of change of P and of X≃ as follows:

dP
dt
= ϖ(R)

X≃

X≃+Kd
→ϑP, dX≃

dt
= k1u

X
X+K1

→ k2P
X≃

X≃+K2
→ωX≃,

in which ϖ(R) captures the expression rate as a function of the shared resources
R, whose concentration is subject to perturbations, and the dynamics of X≃ are
taken from Chapter 2, where they were derived from the two-step enzymatic reac-
tions of phosphorylation and dephosphorylation. The constants K1 and K2 are the
Michaelis-Menten constants of the two enzymatic reactions forming the covalent
modification cycle.

As before, we will (a) look for a QIC structure with a clear memory variable z,
and (b) assess the stability of the system. For (a), we will assume that we can take
X ⇐ K1 and X≃ ⇐ K2, that is, that the enzymatic reactions are in the zero order
regime. We will also account for the fact that the catalytic rate constants of the
enzymatic reactions ki are much larger than protein decay ω. With this, we can take
as small parameter ↽ = ω/k2↑ 1 and re-write the above ODEs as:

dX≃

dt
=
ω

↽

(
k1

k2
→P
)
,

which is in the form of a QIC. In order to check (b), we can use the linearization
matrix and check its eigenvalues. This analysis will reveal that the eigenvalues
have negative real part as long as ⇀F/⇀X≃ > 0, in which F(X≃) = X≃/(Kd + X≃).
This requirement translates into a requirement on X≃ being sufficiently small as
to not saturate the F function. If it does, then the feedback loop breaks and the
system becomes open loop and loses asymptotic stability. Therefore, we will ask
that X≃ <Kd, which gives two conflicting requirements in X≃, that is, K1↑ X≃ <Kd.
This is in practice difficult to reach. In fact, to satisfy the left-hand side, one would
express X from a strong promoter to achieve a high X and X≃ value and ensure we
have sufficient amount of input u. With this level of X≃, to ensure the right-hand
side inequality, one can increase Kd by performing single base pair mutations on
the operator sequence. This system was designed this way in [JQI+22].
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