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Chapter 6
Biological Circuit Components

6.1 Biological Circuit Design

One of the fundamental building blocks employed in synthetic biology is the pro-
cess of transcriptional regulation, which is found in natural transcriptional net-
works. A transcriptional network is composed of a number of genes that express
proteins that then act as transcription factors for other genes. The rate at which a
gene is transcribed is controlled by the promoter, a regulatory region of DNA that
precedes the gene. RNA polymerase binds a defined site (a specific DNA sequence)
on the promoter. The quality of this site specifies the transcription rate of the gene
(the sequence of the site determines the chemical affinity of RNA polymerase to
the site). RNA polymerase acts on all of the genes. However, each transcription
factor modulates the transcription rate of a set of target genes. Transcription fac-
tors affect the transcription rate by binding specific sites on the promoter region
of the regulated genes. When bound, they change the probability per unit time
that RNA polymerase binds the promoter region. Transcription factors thus affect
the rate at which RNA polymerase initiates transcription. A transcription factor
can act as a repressor when it prevents RNA polymerase from binding to the pro-
moter site. A transcription factor acts as an activator if it facilitates the binding of
RNA polymerase to the promoter. Such interactions can be generally represented
as nodes connected by directed edges. Synthetic bio-molecular circuits are fabri-
cated typically in bacteria E. coli, by cutting and pasting together according to a
desired sequence genes and promoter sites (natural and engineered). Since the ex-
pression of a gene is under the control of the upstream promoter region, one can this
way create a desired circuit of activation and repression interactions among genes.
Early examples of such circuits include an activator-repressor system that can dis-
play toggle switch or clock behavior [6], a loop oscillator called the repressilator
obtained by connecting three inverters in a ring topology [18], a toggle switch ob-
tained connecting two inverters in a ring fashion [20], and an autorepressed circuit
[10] (Figure 6.1). Several scientific and technological developments accumulating
over the past four decades have set the stage for the design and fabrication of early
synthetic bio-molecular circuits (Figure 6.2).
An early milestone in the history of synthetic biology can be traced back to the

discovery of mathematical logic in gene regulation. In their 1961 paper, Jacob and
Monod introduced for the first time the idea of gene expression regulation through
transcriptional feedback [31]. Only a few years later (1969), special enzymes that
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Figure 6.1: Early transcriptional circuits that have been fabricated in bacteria E. coli: the
self-repression circuit [10], the toggle switch [20], the activator-repressor clock [6], and
the repressilator [18]. Each node represents a gene and each arrow from node Z to node
X indicates that the transcription factor encoded in z, denoted Z, regulates gene x [3]. If
z represses the expression of x, the interaction is represented by Z"X. If z activates the
expression of x, the interaction is represented by Z→X [3].

can cut double-stranded DNA at specific recognition sites (known as restriction
sites) were discovered by Arber and co-workers [4]. These enzymes, called re-
striction enzymes, were major enabler of recombinant DNA technology. One of
the most celebrated products of such a technology is the large scale production of
insulin by employing E. coli bacteria as a cell factory [57]. The development of re-
combinant DNA technology along with the demonstration in 1970 that genes can
be artificially synthesized, provided the ability to cut and paste natural or synthetic
promoters and genes in almost any fashion on size-wise compatible plasmids. This
“cut and paste” procedure is called cloning [2]. Cloning of any DNA fragment in-
volves four steps: fragmentation, ligation, transfection. The DNA of interest is first
isolated. Then, a ligation procedure is employed in which the amplified fragment
is inserted into a vector. The vector (which is frequently circular) is linearized by
means of restriction enzymes that cleave it at target sites called restriction sites. It
is then incubated with the fragment of interest with an enzyme called DNA ligase.
Polymerase chain reaction (PCR), devised in the 1980s, allows then to exponen-
tially amplify a small amount of DNA in amounts large enough to be used for
transfection and transformation in living cells [2]. Today, commercial synthesis of
DNA sequences and genes has become cheaper and faster with a price often below
$ 1 per base pair [8].
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Figure 6.2: Milestones in the history of synthetic biology.

In this part, we analyze the behavior of the early modules fabricated so far by
employing several of the techniques that we have studied in the previous chapters.

6.2 Self-repressed gene

In this section, we analyze the self repressed gene of Figure 6.1 and focus on ana-
lyzing how the presence of the negative feedback affects the dynamics of the sys-
tem [46] and how the negative feedback affects the noise properties of the system
[10, 7].
Let X denote the concentration of protein X and let X be a transcriptional re-

pressor for its own production. Assuming that the mRNA dynamics are at the quasi
steady state, the ODE model describing the self repressed system is given by

Ẋ =
β

1+X/K
−δX,

in which we have assumed that the Hill coefficient is equal to 1.We seek to compare
the behavior of this autoregulated system to the behavior of the unregulated one:

Ẋ = β0−δX,

in which β0 is the unrepressed production rate.

Dynamic effects of negative feedback

We show here that the rise time of the system decreases due to the presence of the
negative feedback, that is, the dynamics become faster. For the unrepressed system,
we obtain (by direct integration) the behavior of X(t) as

X(t) =
β0
δ
(1− e−δt),
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in which we have assumed zero initial condition. For the self repressed system,
assuming that X(t) is sufficiently small, we can use Taylor expansion about X = 0 to
approximate the dynamics about X = 0 by Ẋ = β− δ̄X+O(X2), in which δ̄ =−δ− βK .
As a consequence, we have that

X(t) =
β

δ̄
(1− e−δ̄t).

The rise time is the time X(t) takes to go from 10% of its final value to 90% of its
final value. In this case, we thus have that for the unrepressed system the rise time
is 2/δ, while for the self-repressed system is given by 2/δ̄. Since δ̄ > δ, we have
that the rise time for the self-repressed system is smaller and hence its dynamics
are faster. This was experimentally confirmed by [46].

Noise filtering

In this section, we investigate the effect of the negative feedback on the noise spec-
trum of the system. Specifically, we employ the Langevin modeling framework to
show that the presence of a negative feedback decreases the amplitude of the noise
at low frequency, while it increases it at higher frequency. In order to show this fact,
we perform here a simplified analysis, in which we model the unrepressed system
by the reactions

φ
β0−−→ X, X δ

−→ φ

and the self repressed system, following the approximations of the previous section,
by the reactions

φ
β
−→ X, X δ̄

−→ φ

in which δ̄ = −δ− βK . The reader can as an exercise model the self-repressed system
by considering all the involved reactions including the binding of the repressor to
DNA and verify that a result similar to the one we are about to show here follows.
As we have seen previously, the concentration X(t) in a stochastic model is a

random variable. In the Langevin approximation, it is given by X(t)= φ(t)+ 1√
Ω
Z(t),

in which φ(t) is the solution to the deterministic system while Z(t) is a zero-mean
random variable whose dynamics is determined by the Langevin equation:

Ż(t) = AZ(t)+BΓ(t),

in which A = ∂S f (X)∂X |X=φ(t) with S the stoichiometry matrix and f (X) is the vector
of reactions, while B = S

√

diag( f (φ(t)). The vector Γ(t) has entries given by real-
izations of white noise, in which each entry i models the noise on the ith reaction.
In the case in consideration, we are interested in the spectrum of the noise on the
steady state value of the system, so that φ(t) = X0 with X0 the steady state value.
Here, we assume for simplicity that the steady state value of the same for both the
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Figure 6.3: Bode plots of the transfer function TΓ2→Z(s) for both unrepressed (solid) and
self repressed (dashed) systems.

self repressed and the unrepressed system. For the unrepressed system, we have
that

f (X)= [β0 δX]′, S = [1 −1], A=−δ, B= [1 −1]
[ √
β0 0
0

√
δX0

]

= [
√

β0 −
√

δX0],

while for the self repressed system we have that

f (X)= [β δ̄X]′, S = [1 −1], A=−δ̄, B= [1 −1]
[ √
β 0
0

√

δ̄X0

]

= [
√

β −
√

δ̄X0].

It follows that the Langevin equations are given by

Ż(t) = −δZ(t)+
√

β0Γ1−
√

δX0Γ2

for the unrepressed system and by

Ż(t) = −δ̄Z(t)+
√

βΓ1−
√

δ̄X0Γ2

for the self repressed system.
We can calculate the noise spectrum by simply calculating the transfer func-

tion from Γi to Z, that is, TΓi→Z(s) and by computing their amplitudes AΓi→Z(ω) =
√

TΓi→Z( jω). This gives the expressions

AΓ1→Z(ω) =
√
β0√
ω2+δ2

, AΓ2→Z(ω) =
√
δX0√
ω2+δ2
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Figure 6.4: Nullclines for the toggle switch. By analyzing the direction of the vector field
in the proximity of the equilibria, one can deduce their stability.

for the unrepressed system and

AΓ1→Z(ω) =
√
β

√
ω2+ δ̄2

, AΓ2→Z(ω) =
√

δ̄X0√
ω2+ δ̄2

for the self repressed system. Figure 6.3 shows the amplitude AΓi→Z(ω)=
√

TΓ2→Z( jω).
Since δ̄ > δ, we have that the amplitude of the noise on X at low frequency is lower
for the self repressed circuit, while at higher frequency it is higher for the self re-
pressed circuit. This illustrates the spectral shift of the intrinsic noise toward the
high frequency as also experimentally demonstrated by [7].

6.3 The Toggle Switch

The toggle switch is composed of two genes that mutually repress each other as
shown in the diagram of Figure 6.4 [20]. By assuming that the mRNA dynamics
are at the quasi steady state, we obtain two dimensional ODE model given by

Ȧ =
β

1+ (B/K)n
−δA

Ḃ =
β

1+ (A/K)n
−δB,
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in which we have assumed for simplifying the analysis that the parameters of the
repression functions are the same for A and B. The number and stability of equi-
libria can be analyzed by performing nullcline analysis since the system is two-
dimensional. Specifically, by setting Ȧ = 0 and Ḃ = 0, we obtain the nullclines
shown in Figure 6.4. In the case in which the parameters are the same for both A
and B, the nullcline always intersect in three points, which determine the steady
states of this system. The nullclines partition the plane into six regions. By deter-
mining the sign of Ȧ and Ḃ in each of these six regions, one determines the direction
in which the vector field is pointing in each of these regions (see Figure 6.4). From
these directions, one immediately deduces that the steady state for which A = B is
instable while the other two are stable. This is thus a bistable system. When the
system converges to one steady steady or the other depending on whether the ini-
tial condition is in the region of attraction of one steady state or the other. Once
the system has converged to one of the two steady states, it cannot switch to the
other unless an external stimulation is applied that moves the initial condition to
the region of attraction of the other steady state [20]. Note that a bistable system,
when subject to noise, can give rise to noise-induced oscillations.

6.4 The repressilator

Elowitz and Leibler [18] constructed the first operational oscillatory genetic circuit
consisting of three repressors arranged in ring fashion, and coined it the “repres-
silator” (See diagram d) of Figure 6.1). The repressilator exhibits sinusoidal, limit
cycle oscillations in periods of hours. The dynamical model of the repressilator
can be obtained by composing three transcriptional modules in a loop fashion. The
dynamics can be written as

ṙA = −δrA+ f1(C)
Ȧ = rA−δA
ṙB = −δrB+ f2(A)
Ḃ = rB−δB
ṙC = −δrC + f3(B)
Ċ = rC −δC, (6.1)

in which in the original design[18], we had that

f1(p) = f2(p) = f3(p) =
α2

1+ pn
.

This structure belongs to the class of cyclic feedback systems that we have studied
in earlier chapters. In particular, Mallet-Paret and Smith Theorem [37] and Hast-
ings Theorem [27] (see Chapter 3 for the details) can be applied to infer that if the
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system has a unique equilibrium point and this is unstable, then it admits a peri-
odic solution. Therefore, we first determine the number of equilibria and then their
stability. The equilibria of the system can be found by setting the time derivatives
to zero. We thus obtain that

A =
f1(C)
δ2
, B =

f2(A)
δ2
, C =

f3(B)
δ2
,

which combined together yield to

A =
1
δ2
f1
(

1
δ2
f3
(

1
δ2
f2(A)
))

=: g(A).

The solution to this equation determines the set of steady states of the system. The
system will have one steady state if g′(A) = dg(A)

dA < 0, otherwise, it could have
multiple steady states. Since we have that

sign(g′(A)) = Π3i=1sign( f
′
i (P)),

then if Π3i=1sign( f
′
i (P)) < 0 the system has a unique steady state. We name the

productΠ3i=1sign( f
′
i (P)) loop gain. Thus, any cyclic feedback system with negative

loop gain will have a unique steady state. It can be shown that a cyclic feedback
system with positive loop gain belongs to the class of monotone system and hence
cannot have periodic orbits [37]. In the present case, system 6.1 is such that f ′i < 0,
so that the loop gain is negative and there is a unique steady state. We next study
the stability of this steady state by studying the Jacobian of the system.
Denoting by P the steady state value of the protein concentrations for A, B, and

C, the Jacobian of the system is given by

J =





















































−δ 0 0 0 0 f ′1(P)
1 −δ 0 0 0 0
0 f ′2(P) −δ 0 0 0
0 0 1 −δ 0 0
0 0 0 f ′3(P) −δ 0
0 0 0 0 1 −δ





















































,

whose characteristic polynomial is given by p(λ)= det(λI− J)= (λ+δ)6−Π3i=1 f
′
i (P).

In the case in which fi(P) = α2

1+pn for i ∈ {1,2,3}, this characteristic polynomial has
a root with positive real part if the ratio α/δ satisfies the relation

α2/δ2 >
n

√

4/3
n−4/3

(1+
4/3

n−4/3
).

For the proof of this statement, the reader is referred to [16]. This relationship is
plotted in the left plot of Figure 6.5. When n increases, the existence of an unsta-
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Figure 6.5: (Left) Space of parameters that give rise to oscillations for the repressilator in
equations (6.1). (Right) Period as a function of δ and α.

ble equilibrium point is guaranteed for larger ranges of the other parameter values.
Equivalently, for fixed values of α and δ, as n increases the robustness of the circuit
oscillatory behavior to parametric variations in the values of α and δ increases. Of
course, this “behavioral” robustness does not guarantee that other important fea-
tures of the oscillator, such as the period value, are slightly changed when param-
eters vary. Numerical studies indicated that the period T approximatively follows
T ∝ 1

δ , and varies only little with α (right plot of Figure 6.5). From the figure, we
can note that as the value of δ increases, the sensitivity of the period to the varia-
tion of δ itself decreases. However, increasing δ would necessitate the increase of
the cooperativity n, therefore indicating a possible trade off that should be taken
into account in the design process in order to balance the system complexity and
robustness of the oscillations.
A similar result for the existence of a periodic solution can be obtained for

the non-symmetric case in which the input functions of the three transcriptional
modules are modified to

f1(p) =
α23
1+ pn

f2(p) =
α2pn

1+ pn

f3(p) =
α2pn

1+ pn
,

that is, two interactions are activations and one only is a repression. Since the loop
gain is still negative, there is one equilibrium point only. We can thus obtain the
condition for oscillations again by establishing conditions on the parameters that
guarantee that at least one root of the characteristic polynomial ?? has positive
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Figure 6.6: Space of parameters that give rise to oscillations for the repressilator (non-
symmetric case).

real part. These conditions are reported in Figure 6.6 (see [16] for the detailed
derivations). One can conclude that it is possible to “over design” the circuit to be
in the region of parameter space that gives rise to oscillations. It is also possible
to show that increasing the number of elements in the oscillatory loop, the value
of n sufficient for oscillatory behavior decreases. The design criteria for obtaining
oscillatory behavior are thus summarized in Figures 6.5 and 6.6.

6.5 Activator-repressor clock

Consider the activator-repressor clock diagram shown in Figure 6.1 c). The tran-
scriptional module for A has an input function that takes two inputs: an activator
A and a repressor B. The transcriptional module B has an input function that takes
only an activator A as its input. Let rA and rB represent the concentration of m-RNA
of the activator and of the repressor, respectively. Let A and B denote the protein
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1− (cos(φ/3)−
√
3sin(φ/3))

)

, AM = K̄1
6γ1 +

K̄1
3γ1 cos(φ/3), φ = atan
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,

m =
√

K̄1A2m+K̄A0−Am(1+γ1A2m)
γ2Am , M =

√

K̄1A2M+K̄A0−AM(1+γ1A
2
M)

γ2AM .

concentration of the activator and of the repressor, respectively. Then, we consider
the following four-dimensional model describing the rate of change of the species
concentrations:

ṙA = −δ1rA+F1(A,B)
Ȧ = −δAA+ k1rA
ṙB = −δ2rB+F2(A)
Ḃ = −δBB+ k2rB, (6.2)

in which the functions F1 and F2 are the input functions and are given by

F1(A,B) =
K1An+KA0

1+γ1An+γ2Bn

F2(A) =
K2An+KB0
1+γ3An

.

Two-dimensional analysis. We first assume the mRNA dynamics to be at the
QSS and perform a two dimensional analysis to invoke Poincarè-Bendixson The-
orem. Then, we analyze the four dimensional system and perform a bifurcation
study. We thus denote f1(A,B) := k1

δ1
F1(A,B) and f2(A) := k2

δ2
F2(A) and K̄1 := K1 k1δ1 ,
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K̄A0 :=KA0 k1δ1 , K̄2 :=K2
k2
δ2
, and K̄B0 :=KB0 k2δ2 . For simplicity, we also denote f (A,B) :=

−δA + f1(A,B) and g(A,B) := −δBB+ f2(A) so that the two-dimensional system is
given by

Ȧ = f (A,B)
Ḃ = g(A,B).

For simplicity, we assume m = 1 and γi = 1 for all i. We then study whether the
system admits a periodic solution for n = 1. We analyze the nullclines to deter-
mine the number and location of steady states. Specifically, g(A,B) = 0 leads to
B = K̄2A+K̄B0

(1+A)δA , which is an increasing function of A. Setting f (A,B) = 0, we obtain
that B = K̄1A+K̄A0−δAA(1+A)

δAA , which is a monotonically increasing function of A. As
a consequence, we have one equilibrium only. The Jacobian of the system at this
equilibrium is given by

J =












∂ f
∂A

∂ f
∂B

∂g
∂A

∂g
∂B













.

In order for the equilibrium to be unstable and not a saddle, it is necessary and
sufficient that

Trace(J) > 0 and det(J) > 0,

in which Trace(J) = ∂ f∂A +
∂g
∂B . Since at the equilibrium point we have that

dB
dA
| f (A,B)=0 < 0

and by the implicit function theorem dB
dA | f (A,B)=0 = −

∂ f /∂A
∂ f /∂B , we have that

∂ f
∂A < 0

because ∂g∂B < 0. As a consequence, we have that Trace(J) < 0 and hence the equi-
librium point it either stable or a saddle. Furthermore, the nullclines are such that

dB
dA
|g(A,B)=0 >

dB
dA
| f (A,B)=0,

and since by the implicit function theorem we also have that dBdA |g(A,B)=0 = −
∂g/∂A
∂g/∂B ,

it follows that det(J) > 0. Hence, the steady state is always stable and therefore, the
omega-limit set of any point on the plane cannot be a periodic orbit.
We now assume that n = 2. In this case, the nullcline f (A,B) = 0 leads to the

set depicted in Figure 6.7 for suitable relationships among the values of the K̄’s. In
order for the equilibrium to be unstable and not a saddle, we require that Trace(J)>
0, which leads to

δB
∂ f1/∂A−δA

< 1.

Further, one can verify that the crossing of the nullclines given in Figure 6.7 leads
to det(J) > 0 just as in the case n = 1.
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Four-dimensional analysis. Then, we consider the following four-dimensional
model describing the rate of change of the species concentrations:

ṙA = −δ1/ε rA+F1(A,B)
Ȧ = ν(−δAA+ k1/ε rA)
ṙB = −δ2/ε rB+F2(A)
Ḃ = −δBB+ k2/ε rB, (6.3)

in which the parameter ν regulates the difference of time-scales between the re-
pressor and the activator dynamics, ε is a parameter that regulates the difference of
time-scales between the m-RNA and the protein dynamics. The parameter ε deter-
mines how close model (6.3) is to a two-dimensional model in which the m-RNA
dynamics are considered at the equilibrium. Thus, ε is a singular perturbation pa-
rameter (equations (6.3) can be taken to standard singular perturbation form by
considering the change of variables rA = rA/ε and rB = rB/ε). The details on singu-
lar perturbation can be found in Chapter 3. The values of ε and of ν do not affect the
number of equilibria of the system, while the values of the other parameters are the
ones that control the number of equilibria. The set of values of Ki,ki,δi,γi,δA,δB
that allow the existence of a unique equilibrium can be determined by employing
graphical techniques. In particular, we can plot the curves corresponding to the
sets of A,B values for which ṙB = 0 and Ḃ = 0 and the set of A,B values for which
ṙA = 0 and Ȧ = 0 as in Figure 6.7. The intersection of these two curves provides
the equilibria of the system and conditions on the parameters can be determined
that guarantee the existence of one equilibrium only. In particular, we require that
the basal activator transcription rate when B is not present, which is proportional
to K̄A0, is sufficiently smaller than the maximal transcription rate of the activator,
which is proportional to K̄1. Also, K̄A0 must be non-zero. Also, in case K̄1 >> K̄A0,
one can verify that AM ≈ K̄1/2γ1 and thus M ≈ K̄1/2

√
γ1γ2. As a consequence,

if K̄1/γ1 increases then so must do K̄2/γ3. Finally, Am ≈ 0, and m ≈
√

K̄A0/γ2Am.
As a consequence, the smaller K̄A0 becomes, the smaller K̄B0 must be (see [15] for
more details). Assume that the values of Ki,ki,δi,γi,δA,δB have been chosen so that
there is a unique equilibrium and we numerically study the occurrence of periodic
solutions as the difference in time-scales between protein and m-RNA, ε, and the
difference in time-scales between activator and repressor, ν, are changed. In partic-
ular, we perform bifurcation analysis with ε and ν the two bifurcation parameters.
These bifurcation results are summarized by Figure 6.8. The reader is referred to
[15] for the details of the numerical analysis. In terms of the ε and ν parameters, it
is thus possible to “over design” the system: if the activator dynamics is sufficiently
sped up with respect to the repressor dynamics, the system parameters move across
a Hopf bifurcation (Hopf bifurcation was introduced in Chapter 3) and stable oscil-
lations will arise. From a fabrication point of view, the activator dynamics can be
sped up by adding suitable degradation tags to the activator protein. The region of
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Figure 6.8: Design chart for the relaxation oscillator. One obtains sustained oscillations
passed the Hopf bifurcation, for values of ν sufficiently large independently of the differ-
ence of time scales between the protein and the mRNA dynamics. We also notice that there
are values of ν for which a stable equilibrium point and a stable orbit coexist and values of
ν for which two stable orbits coexist. The interval of ν values for which two stable orbits
coexist is too small to be able to numerically set ν in such an interval. Thus, this interval is
not practically relevant. The values of ν for which a stable equilibrium and a stable periodic
orbit coexist is instead relevant. This situation corresponds to the hard excitation condition
[35] and occurs for realistic values of the separation of time-scales between protein and
m-RNA dynamics. Therefore, this simple oscillator motif described by a four-dimensional
model can capture the features that lead to the long term suppression of the rhythm by
external inputs. Birhythmicity [23] is also possible even if practically not relevant due to
the numerical difficulty of moving the system to one of the two periodic orbits. For more
details, the reader is referred to [15, 12].

the parameter space in which the system exhibits almost sinusoidal damped oscil-
lations is on the left-hand side of the curve corresponding to the Hopf bifurcation.
Since the data of [6] exhibits almost sinusoidal damped oscillations, it is possible
that the clock is operating in a region of parameter space on the “left” of the curve
corresponding to the Hopf bifurcation. If this were the case, increasing the separa-
tion of time-scales between the activator and the repressor, ν, may lead to a stable
limit cycle.
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Another key enabling technology has been the development of in vivomeasure-
ment techniques that allow to measure the amount of protein produced by a target
gene x. For instance, green fluorescent protein (GFP) is a protein with the property
that it fluoresces in green when exposed to UV light. It is produced by the jellyfish
Aequoria victoria, and its gene has been isolated so that it can be used as a reporter
gene. The GFP gene is inserted (cloned) into the chromosome, adjacent to or very
close to the location of gene x, so both are controlled by the same promoter region.
Thus, gene x and GFP are transcribed simultaneously and then translated, so by
measuring the intensity of the GFP light emitted one can estimate how much of x
is being expressed. Other fluorescent proteins, such as yellow fluorescent protein
(YFP) and red fluorescent protein (RFP) are genetic variations of the GFP.
Just as fluorescent proteins can be used as a read out of a circuit, inducers

function as external inputs that can be used to probe the system. Inducers function
by disabling repressor proteins. Repressor proteins bind to the DNA strand and
prevent RNA polymerase from being able to attach to the DNA and synthesize
mRNA. Inducers bind to repressor proteins, causing them to change shape and
making them unable to bind to DNA. Therefore, they allow transcription to take
place.

Inset (Electronic circuits). One of the current directions of the field is to create
circuitry with more complex functionalities by assembling simpler circuits, such
as those in Figure 6.1. This tendency is consistent with what has been observed in
the history of electronics: after the bipolar junction transistor (BJT) was invented
in 1947 by William Shockley and co-workers, the transistor era started. A major
breakthrough in the transistor era occurred in 1964 with the invention of the first
operational amplifier (op amp), which led the way to standardized modular and in-
tegrated circuit design. By comparison, synthetic biology may be directing toward
a similar development, in which modular and integrated circuit design becomes
a reality. This is witnessed by several recent efforts toward formally characteriz-
ing interconnection mechanisms between modules, impedance-like effects, and op
amp-like devices to counteract impedance problems [26, 49, 48, 17, 47, 52, 51]. ♦
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