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Chapter 5
Biological Circuit Components

In this chapter, we describe some simple circuit components that have been con-
structed in E. coli cells using the technology of synthetic biology and then consider
a more complicated circuit that already appears in natural systems to implement
adaptation. We will analyze the behavior of these circuits employing mainly the
tools from Chapter 3 and some of the tools from Chapter 4. The basic knowledge
of Chapter 2 will be assumed.

5.1 Introduction to biological circuit design

In Chapter 2 we introduced a number of core processes and models for those pro-
cesses, including gene expression, transcriptional regulation, post-translational reg-
ulation such as covalent modification of proteins, allosteric regulation of enzymes,
and activity regulation of transcription factors through inducers. These core pro-
cesses provide a rich set of functional building blocks, which can be combined
together to create circuits with prescribed functionalities.

For example, if we want to create an inverter, a device that returns high output
when the input is low and vice versa, we can use a gene regulated by a transcrip-
tional repressor. If we want to create a signal amplifier, we can employ a cas-
cade of covalent modification cycles. Specifically, if we want the amplifier to be
linear, we should tune the amounts of protein substrates to be smaller than the
Michaelis-Menten constants. Alternatively, we could employ a phosphotransfer
system, which provides a fairly linear input/output relationship for an extended
range of the input stimulation. If instead we are looking for an almost digital re-
sponse, we could employ a covalent modification cycle with high amounts of sub-
strates compared to the Michaelis-Menten constants. Furthermore, if we are look-
ing for a fast input/output response, phosphorylation cycles are better candidates
than transcriptional systems.

In this chapter and the next we illustrate how one can build circuits with pre-
scribed functionality using some of the building blocks of Chapter 2 and the design
techniques illustrated in Chapter 3. We will focus on two types of circuits: gene cir-
cuits and signal transduction circuits. In some cases, we will illustrate designs that
incorporate both.

A gene circuit is usually depicted by a set of nodes, each representing a gene,
connected by unidirectional edges, representing a transcriptional activation or a re-
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Figure 5.1: Early gene circuits that have been fabricated in bacteria E. coli: the negatively
autoregulated gene [10], the toggle switch [30], the activator-repressor clock [6], and the
repressilator [26].

pression. If gene z represses the expression of gene x, the interaction is represented
by Z −⊣X. If instead gene z activates the expression of gene x, the interaction is rep-
resented by Z→ X. Inducers will often appear as additional nodes, which activate
or inhibit a specific edge. Early examples of such circuits include an autoregulated
circuit [10], a toggle switch obtained by connecting two inverters in a ring fashion
[30], an activator-repressor system that can display toggle switch or clock behav-
ior [6], and a loop oscillator called the repressilator obtained by connecting three
inverters in a ring topology [26] (Figure 5.1).

Basic synthetic biology technology

Simple synthetic gene circuits can be constituted from a set of (connected) tran-
scriptional components, which are made up by the DNA base pair sequences that
compose the desired promoters, ribosome binding sites, gene coding region, and
terminators. We can choose these components from a library of basic parts, which
are classified based on biochemical properties such as affinity (of promoter, op-
erator, or ribosome binding sites), strength (of a promoter), and efficiency (of a
terminator).

The desired sequence of parts is usually assembled on plasmids, which are cir-
cular pieces of DNA, separate from the host cell chromosome, with their own origin
of replication. These plasmids are then inserted, through a process called transfor-
mation in bacteria and transfection in yeast, in the host cell. Once in the host cell,
they express the proteins they code for by using the transcription and translation
machinery of the cell. There are three main types of plasmids: low copy number
(5-10 copies), medium copy number (15-20 copies), and high copy number (up to
hundreds). The copy number reflects the average number of copies of the plasmid
inside the host cell. The higher the copy number, the more efficient the plasmid is
at replicating itself. The exact number of plasmids in each cell fluctuates stochas-
tically and cannot be exactly controlled.

In order to measure the amounts of proteins of interest, we make use of reporter

genes. A reporter gene codes for a protein that fluoresces in a specific color (red,
blue, green, or yellow, for example) when it is exposed to light of the appropriate
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wavelength. For instance, green fluorescent protein (GFP) is a protein with the
property that it fluoresces in green when exposed to UV light. It is produced by the
jellyfish Aequoria victoria and its gene has been isolated so that it can be used as a
reporter. Other fluorescent proteins, such as yellow fluorescent protein (YFP) and
red fluorescent protein (RFP), are genetic variations of GFP.

A reporter gene is usually inserted downstream of the gene expressing the pro-
tein whose concentration we want to measure. In this case, both genes are under
the control of the same promoter and are transcribed into a single mRNA molecule.
The mRNA is then translated to protein and the two proteins will be fused together.
This technique provides a direct way to measure the concentration of the protein
of interest but can affect the functionality of this protein because some of its regu-
latory sites may be occluded by the fluorescent protein. Another viable technique
is one in which the reporter gene is placed under the control of the same promoter
that is also controlling the expression of the protein of interest. In this case, the
production rates of the reporter and of the protein of interest are the same and,
as a consequence, the respective concentrations should mirror each other. The re-
porter thus provides an indirect measurement of the concentration of the protein of
interest.

Just as fluorescent proteins can be used as a readout of a circuit, inducers func-
tion as external inputs that can be used to probe the system. Two commonly used
negative inducers are IPTG and aTc, as explained in Section 2.3, while two com-
mon positive inducers are arabinose and AHL. Arabinose activates the transcrip-
tional activator AraC, which activates the pBAD promoter. Similarly, AHL is a
signaling molecule that activates the LuxR transcription factor, which activates the
pLux promoter.

Protein dynamics can usually be altered by the addition of a degradation tag
at the end of the corresponding coding region. A degradation tag is a sequence
of base pairs that adds an amino acid sequence to the functional protein that is
recognized by proteases. Proteases then bind to the protein, degrading it into a
non-functional molecule. As a consequence, the half-life of the protein decreases,
resulting in an increased decay rate. Degradation tags are often employed to obtain
a faster response of the protein concentration to input stimulation and to prevent
protein accumulation.

5.2 Negative autoregulation

In this section, we analyze the negatively autoregulated gene of Figure 5.1 and
focus on analyzing how the presence of the negative feedback affects the dynamics
and the noise properties of the system. This system was introduced in Example 2.2.

Let A be a transcription factor repressing its own production. Assuming that
the mRNA dynamics are at the quasi-steady state, the ODE model describing the
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negatively autoregulated system is given by

dA

dt
=

β

1+ (A/K)n
−γA. (5.1)

We seek to compare the behavior of this autoregulated system, which we also refer
to as the closed loop system, to the behavior of the unregulated one:

dA

dt
= β0−γA,

in which β0 is the unrepressed production rate. We refer to this second system as
the open loop system.

Dynamic effects of negative autoregulation

As we showed via simulation in Example 2.2, negative autoregulation speeds up
the response to perturbations. Hence, the time the system takes to reach its equi-
librium decreases with negative feedback. In this section, we illustrate how this
result can be analytically demonstrated by employing linearization. Specifically,
we linearize the system about its equilibrium point and calculate the time response
resulting from initializing the linearized system at an initial condition close to the
equilibrium point.

Let Ae = β0/γ be the equilibrium of the unregulated system and let z = A−Ae

denote the perturbation with respect to such an equilibrium. The dynamics of z are
given by

dz

dt
= −γz.

Given a small initial perturbation z0, the response of z is given by the exponential

z(t) = z0e−γt.

The “half-life” of the signal z(t) is the time z(t) takes to reach half of z0 and we
denote it by thalf. This is a common measure for the speed of response of a system to
an initial perturbation. Simple mathematical calculation shows that thalf = ln(2)/γ.
Note that the half-life does not depend on the production rate β0 and only depends
on the protein decay rate constant γ.

Now let Ae be the steady state of the negatively autoregulated system (5.1).
Assuming that the perturbation z with respect to the equilibrium is small enough,
we can employ linearization to describe the dynamics of z. These dynamics are
given by

dz

dt
= −γ̄z,

where

γ̄ = γ+β
nAn−1

e /K
n

(1+ (Ae/K)n)2 .
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In this case, we have that thalf = ln(2)/γ̄.
Since γ̄ > γ (for any positive value of Ae), we have that the dynamic response

to a perturbation is faster in the system with negative autoregulation. This confirms
the simulation findings of Example 2.2.

Noise filtering

We next investigate the effect of the negative autoregulation on the noisiness of
the system. In order to do this, we employ the Langevin modeling framework and
determine the frequency response to the intrinsic noise on the various reactions.
In particular, in the analysis that follows we treat Langevin equations as regular
ordinary differential equations with inputs, allowing us to apply the tools described
in Chapter 3.

We perform two different studies. In the first one, we assume that the decay
rate of the protein is much slower than that of the mRNA. As a consequence, the
mRNA concentration can be well approximated by its quasi-steady state value and
we focus on the dynamics of the protein only. In the second study, we investigate
the consequence of having the mRNA and protein decay rates in the same range
so that the quasi-steady state assumption cannot be made. This can be the case,
for example, when degradation tags are added to the protein to make its decay
rate larger. In either case, we study both the open loop system and the closed loop
system (the system with negative autoregulation) and compare the corresponding
frequency responses to noise.

Assuming that mRNA is at its quasi-steady state

In this case, the reactions for the open loop system are given by

R1 : p
β0
−−→ A+p, R2 : A

γ
−→ ∅,

in which β0 is the constitutive production rate, p is the DNA promoter, and γ is
the decay rate of the protein. Since the concentration of DNA promoter p is not
changed by these reactions, it is a constant, which we call ptot.

Employing the Langevin equation (4.11) of Section 4.1 and letting nA de-
note the real-valued number of molecules of A and np the real-valued number of
molecules of p, we obtain

dnA

dt
= β0np−γnA+

√

β0np Γ1−
√
γnA Γ2,

in which Γ1 and Γ2 depend on the noise on the production reaction and on the
decay reaction, respectively. By letting A = nA/Ω denote the concentration of A
and p = np/Ω = ptot denote the concentration of p, we have that

dA

dt
= β0 ptot−γA+

1
√
Ω

(
√

β0 ptot Γ1−
√

γA Γ2). (5.2)
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This is a linear system and therefore we can calculate the frequency response to
any of the two inputs Γ1 and Γ2. In particular, the frequency response to input Γ1

has magnitude given by

Mo(ω) =

√

β0 ptot/Ω
√

ω2+γ2
. (5.3)

We now consider the autoregulated system. The reactions are given by

R1 : p
β
−→ A+p, R2 : A

γ
−→ ∅,

R3 : A+p
a
−→ C, R4 : C

d
−→ A+p.

Defining ptot = p+C and employing the Langevin equation (4.11) of Section 4.1,
we obtain

dp

dt
= −aAp+d(ptot− p)+

1
√
Ω

(−
√

aAp Γ3+
√

d(ptot− p) Γ4),

dA

dt
= βp−γA−aAp+d(ptot− p)+

1
√
Ω

(
√

βp Γ1−
√

γA Γ2−
√

aAp Γ3

+
√

d(ptot− p) Γ4),

in which Γ3 and Γ4 are the noises corresponding to the association and dissociation
reactions, respectively. Letting Kd = d/a,

N1 =
1
√
Ω

(−
√

Ap/Kd Γ3+
√

(ptot− p) Γ4), N2 =
1
√
Ω

(
√

βp Γ1−
√

γA Γ2),

we can rewrite the above system in the following form:

dp

dt
= −aAp+d(ptot− p)+

√
dN1(t),

dA

dt
= βp−γA−aAp+d(ptot− p)+N2(t)+

√
dN1(t).

Since d≫ γ,β, this system displays two time scales. Letting ϵ := γ/d and defining
y := A− p, the system can be rewritten in standard singular perturbation form (3.24):

ϵ
dp

dt
= −γAp/Kd+γ(ptot− p)+

√
ϵ
√
γN1(t),

dy

dt
= βp−γ(y+ p)+N2(t).

By setting ϵ = 0, we obtain the quasi-steady state value p= ptot/(1+A/Kd). Writing
Ȧ = ẏ+ ṗ, using the chain rule for ṗ, and assuming that ptot/Kd is sufficiently small,
we obtain the reduced system describing the dynamics of A as

dA

dt
= β

ptot

1+A/Kd
−γA+

1
√
Ω

(√

β
ptot

1+A/Kd
Γ1−

√

γA Γ2

)

=: f (A,Γ1,Γ2). (5.4)
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The equilibrium point for this system corresponding to the mean values Γ1 = 0
and Γ2 = 0 of the inputs is given by

Ae =
1
2

(√

K2
d +4βptotKd/γ−Kd

)

.

The linearization of the system about this equilibrium point is given by

∂ f

∂A

∣
∣
∣
∣
∣
Ae,Γ1=0,Γ2=0

= −β
ptot/Kd

(1+Ae/Kd)2 −γ =: −γ̄,

b1 =
∂ f

∂Γ1

∣
∣
∣
∣
∣
Ae,Γ1=0,Γ2=0

=
1
√
Ω

√

βptot

1+Ae/Kd
, b2 =

∂ f

∂Γ2

∣
∣
∣
∣
∣
Ae,Γ1=0,Γ2=0

= −
1
√
Ω

√

γAe.

Hence, the frequency response to Γ1 has magnitude given by

Mc(ω) =
b1

√

ω2+ γ̄2
. (5.5)

In order to make a fair comparison between this response and that of the open
loop system, we need the equilibrium points of both systems to be the same. In
order to guarantee this, we set β such that

β

1+Ae/Kd
= β0.

This can be attained, for example, by properly adjusting the strength of the pro-
moter and of the ribosome binding site. As a consequence, we have that b1 =
√

β0 ptot/Ω. Since we also have that γ̄ > γ, comparing expressions (5.3) and (5.5)
it follows that Mc(ω) < Mo(ω) for all ω. That is, the magnitude of the frequency
response of the closed loop system is smaller than that of the open loop system at
all frequencies. Hence, negative autoregulation attenuates noise at all frequencies.
The two frequency responses are plotted in Figure 5.2a. A similar result could be
obtained for the frequency response with respect to the input Γ2 (see Exercise 5.1).

mRNA decay close to protein decay

In the case in which mRNA and protein decay rates are comparable, we need to
model both the processes of transcription and translation. Letting mA denote the
mRNA of A, the reactions describing the open loop system modify to

R1 : mA
κ
−→mA+A, R2 : A

γ
−→ ∅,

R5 : p
α0−−→mA+p, R6 : mA

δ
−→ ∅,



176 CHAPTER 5. BIOLOGICAL CIRCUIT COMPONENTS

10-5 10-3 10-1
0

20

40

60

80

100

M
ag

ni
tu

de

Frequency ω (rad/s)

(a) Slow protein decay

10-5 10-3 10-1
0

10

20

30

40

M
ag

ni
tu

de

 

 
open loop
closed loop

Frequency ω (rad/s)

(b) Enhanced protein decay

Figure 5.2: Effect of negative autoregulation on noise propagation. (a) Magnitude of the
frequency response to noise Γ1(t) for both open loop and closed loop systems for the model
in which mRNA is assumed at its quasi-steady state. The parameters are ptot = 10 nM,
Kd = 10 nM, β = 0.001 min−1, γ = 0.001 min−1, and β0 = 0.00092 min−1, and we assume
unit volume Ω. (b) Frequency response to noise Γ6(t) for both open loop and closed loop
for the model in which mRNA decay is close to protein decay. The parameters are ptot = 10
nM, Kd = 10 nM, α = 0.001 min−1, β = 0.01 min−1, δ = 0.01 min−1, γ = 0.01 min−1, and
α0 = 0.0618 min−1.

while those describing the closed loop system become

R1 : mA
κ
−→mA+A, R2 : A

γ
−→ ∅,

R3 : A+p
a
−→ C, R4 : C

d
−→ A+p,

R5 : p
α
−→mA+p, R6 : mA

δ
−→ ∅.

Defining ptot = p+C, employing the Langevin equation, and applying singular
perturbation as performed before, we obtain the dynamics of the system as

dmA

dt
= F(A)−δmA+

1
√
Ω

(
√

F(A) Γ5−
√

δmA Γ6),

dA

dt
= κmA−γA+

1
√
Ω

(
√
κmA Γ1−

√

γA Γ2),

in which Γ5 and Γ6 model the noise on the production reaction and decay reaction
of mRNA, respectively. For the open loop system we have F(A) = α0 ptot, while for
the closed loop system we have the Hill function

F(A) =
αptot

1+A/Kd
.

The equilibrium point for the open loop system is given by

mo
e =
α0 ptot

δ
, Ao

e =
κα0 ptot

δγ
.
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Considering Γ6 as the input of interest, the linearization of the system at this equi-
librium is given by

Ao =

(

−δ 0
κ −γ

)

, Bo =

( √

δmo
e/Ω

0

)

.

Letting K = κ/(γKd), the equilibrium for the closed loop system is given by

Ac
e =
κmc

e

γ
, mc

e =
1
2

(

−1/K +
√

(1/K)2+4αptot/(Kδ)
)

.

The linearization of the closed loop system at this equilibrium point is given by

Ac =

(

−δ −g

κ −γ

)

, Bc =

( √

δmc
e/Ω

0

)

, (5.6)

in which g = (αptot/Kd)/(1+ Ac
e/Kd)2 represents the contribution of the negative

autoregulation. The larger the value of g—obtained, for example, by making Kd

smaller (see Exercise 5.2)—the stronger the negative autoregulation.
In order to make a fair comparison between the open loop and closed loop

system, we again set the equilibrium points to be the same. To do this, we choose α
such that α/(1+Ac

e/Kd)= α0, which can be done by suitably changing the strengths
of the promoter and ribosome binding site.

The open loop and closed loop transfer functions are thus given by

Go
AΓ6

(s) =
κ
√
δme/Ω

(s+δ)(s+γ)
, Gc

AΓ6
(s) =

κ
√
δme/Ω

s2+ s(δ+γ)+δγ+ κg
.

From these expressions, it follows that the open loop transfer function has two
real poles, while the closed loop transfer function can have complex conjugate
poles when g is sufficiently large. As a consequence, noise Γ6 can be amplified at
sufficiently high frequencies. Figure 5.2b shows the magnitude M(ω) of the corre-
sponding frequency responses for both the open loop and the closed loop systems.

It follows that the presence of negative autoregulation attenuates noise with
respect to the open loop system at low frequency, but it can amplify noise at higher
frequency. This is a very well-studied phenomenon known as the “waterbed effect,”
according to which negative feedback decreases the effect of disturbances at low
frequency, but it can amplify it at higher frequency. This effect is not found in first-
order models, as demonstrated by the derivations performed when mRNA is at the
quasi-steady state. This illustrates the spectral shift of the frequency response to
intrinsic noise towards the high frequency, as also experimentally reported [7].

5.3 The toggle switch

The toggle switch is composed of two genes that mutually repress each other, as
shown in the diagram of Figure 5.1. We start by describing a simple model with no
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Figure 5.3: Genetic toggle switch. (a) Nullclines for the toggle switch. By analyzing the
direction of the vector field in the proximity of the equilibria, one can deduce their stability
as described in Section 3.1. (b) Time traces for A(t) and B(t) when inducer concentrations
u1(t) and u2(t) are changed. The plots show a scaled version of these signals, whose ab-
solute values are u1 = u2 = 1 in the indicated intervals of time. In the simulation, we have
n = 2, Kd,1 = Kd,2 = 1 nM, K =

√
0.1 nM, β = 1 hrs−1, and γ = 1 hrs−1.

inducers. By assuming that the mRNA dynamics are at the quasi-steady state, we
obtain a two-dimensional differential equation model given by

dA

dt
=

β

1+ (B/K)n
−γA,

dB

dt
=

β

1+ (A/K)n
−γB,

in which we have assumed for simplicity that the parameters of the repression
functions are the same for A and B.

Since the system is two-dimensional, both the number and stability of equilibria
can be analyzed by performing nullcline analysis (see Section 3.1). Specifically, by
setting dA/dt = 0 and dB/dt = 0 and letting n ≥ 2, we obtain the nullclines shown
in Figure 5.3a. The nullclines intersect at three points, which determine the equi-
librium points of this system. The stability of these equilibria can be determined
by the following graphical reasoning.

The nullclines partition the plane into six regions. By determining the sign of
dA/dt and dB/dt in each of these six regions, we can determine the direction in
which the vector field is pointing in each of these regions. From these directions,
we can deduce that the equilibrium occurring for intermediate values of A and B

(at which A = B) is unstable while the other two are stable (see the arrows in Figure
5.3a). Hence, the toggle switch is a bistable system.

The system trajectories converge to one equilibrium or the other depending on
whether the initial condition is in the region of attraction of the first or the second
equilibrium. The 45-degree line divides the plane into the two regions of attraction
of the stable equilibrium points. Once the system’s trajectory has converged to
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Figure 5.4: Genetic toggle switch with inducers. (a) Nullclines for the toggle switch (solid
and dashed lines) and how the nullcline Ḃ = 0 changes when inducer u1 is added (dash-
dotted line). (b) Nullclines for the toggle switch (solid line) and how the nullcline Ȧ = 0
changes when inducer u2 is added (dotted line). Parameter values are as in Figure 5.3.

one of the two equilibrium points, it cannot switch to the other unless an external
(transient) stimulation is applied.

In the genetic toggle switch developed by Gardner et al. [30], external stimu-
lations were added in the form of negative inducers for A and B. Specifically, let
u1 be the negative inducer for A and u2 be the negative inducer for B. Then, as we
have seen in Section 2.3, the expressions of the Hill functions need to be modified
to replace A by A(1/(1+u1/Kd,1)) and B by B(1/(1+u2/Kd,2)), in which Kd,1 and
Kd,2 are the dissociation constants of u1 with A and of u2 with B, respectively.
Hence, the system dynamics become

dA

dt
=

β

1+ (B/KB(u2))n
−γA,

dB

dt
=

β

1+ (A/KA(u1))n
−γB,

in which we have let KA(u1) = K(1+u1/Kd,1) and KB(u2) = K(1+u2/Kd,2) denote
the effective K values of the Hill functions. We show in Figure 5.3b time traces
for A(t) and B(t) when the inducer concentrations are changed. The system starts
from initial conditions in which B is high and A is low without inducers. Then, at
time 50 the system is presented with a short pulse in u2, which causes A to rise
since it prevents B to repress A. As A rises, B is repressed and hence B decreases
to the low value and the system state switches to the other stable steady state. The
system remains in this steady state also after the inducer u2 is removed until another
transient stimulus is presented at time 150. At this time, there is a pulse in u1, which
inhibits the ability of A to repress B and, as a consequence, B rises, thus repressing
A, and the system returns to its original steady state.

Note that the effect of the inducers in this model is that of temporarily changing
the shape of the nullclines by increasing the values of KA and KB. Specifically, high
values of u1 with u2 = 0 will lead to increased values of KA, which will shift the
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point of half-maximal value of the Hill function β/(1+ (A/KA)n) to the right. As a
consequence, the nullclines will intersect at one point only, in which the value of B

is high and the value of A is low (Figure 5.4a). The opposite will occur when u2 is
high and u1 = 0, leading to only one intersection point in which B is low and A is
high (Figure 5.4b).

5.4 The repressilator

Elowitz and Leibler constructed an oscillatory genetic circuit consisting of three
repressors arranged in a ring fashion and called it the “repressilator” [26] (Fig-
ure 5.1). The repressilator exhibits sinusoidal, limit cycle oscillations in periods of
hours, slower than the cell-division time. Therefore, the state of the oscillator is
transmitted between generations from mother to daughter cells.

A dynamical model of the repressilator can be obtained by composing three
transcriptional modules in a loop fashion. The dynamics can be written as

dmA

dt
= F1(C)−δmA,

dA

dt
= κmA−γA,

dmB

dt
= F2(A)−δmB,

dB

dt
= κmB−γB,

dmC

dt
= F3(B)−δmC,

dC

dt
= κmC−γC,

(5.7)

where we take

F1(P) = F2(P) = F3(P) = F(P) =
α

1+ (P/K)n
,

and assume initially that the parameters are the same for all the three repressor
modules. The structure of system (5.7) belongs to the class of cyclic feedback
systems that we have studied in Section 3.3. In particular, the Mallet-Paret and
Smith Theorem 3.5 and Hastings et al. Theorem 3.4 can be applied to infer that if
the system has a unique equilibrium point and this equilibrium is unstable, then the
system admits a periodic solution. Therefore, to apply these results, we determine
the number of equilibria and their stability.

The equilibria of the system can be found by setting the time derivatives to zero.
Letting β = (κ/δ), we obtain

Aeq =
βF1(Ceq)
γ

, Beq =
βF2(Aeq)
γ

, Ceq =
βF3(Beq)
γ

,

which combined together yield

Aeq =
β

γ
F1

(

β

γ
F3

(

β

γ
F2(Aeq)

))

=: g(Aeq).

The solution to this equation determines the set of equilibria of the system. The
number of equilibria is given by the number of crossings of the two functions
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h1(A) = g(A) and h2(A) = A. Since h2 is strictly monotonically increasing, we ob-
tain a unique equilibrium if h1 is monotonically decreasing. This is the case when
g′(A) = dg(A)/dA < 0, otherwise there could be multiple equilibrium points. Since
we have that

sign(g′(A)) =
3∏

i=1

sign(F′i (A)),

it follows that if Π3
i=1sign(F′i (A)) < 0 the system has a unique equilibrium. We call

the product Π3
i=1sign(F′i (A)) the loop sign.

It follows that any cyclic feedback system with negative loop sign will have a
unique equilibrium. In the present case, system (5.7) is such that F′i < 0, so that the
loop sign is negative and there is a unique equilibrium. We next study the stability
of this equilibrium by studying the linearization of the system.

Letting P denote the equilibrium value of the protein concentrations for A, B,
and C, the Jacobian matrix of the system is given by

J =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−δ 0 0 0 0 F′1(P)
κ −γ 0 0 0 0
0 F′2(P) −δ 0 0 0
0 0 κ −γ 0 0
0 0 0 F′3(P) −δ 0
0 0 0 0 κ −γ

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

whose characteristic polynomial is given by

det(sI− J) = (s+γ)3(s+δ)3− κ3
3∏

i=1

F′i (P). (5.8)

The roots of this characteristic polynomial are given by

(s+γ)(s+δ) = r,

in which r ∈ {κF′(P),−(κF′(P)/2)(1− i
√

3),−(κF′(P)/2)(1+ i
√

3)} and i =
√
−1

represents the imaginary unit. In order to invoke Hastings et al. Theorem 3.4 to
infer the existence of a periodic orbit, it is sufficient that one of the roots of the
characteristic polynomial has positive real part. This is the case if

κ|F′(P)| > 2γδ, |F′(P)| = α
n(Pn−1/Kn)

(1+ (P/K)n)2 ,

in which P is the equilibrium value satisfying the equilibrium condition

P =
β

γ

α

1+ (P/K)n
.



182 CHAPTER 5. BIOLOGICAL CIRCUIT COMPONENTS

B

A C

(a) Repressilator

1.51 32 2.5
0

2

4

6

8

10

n

β/γ

(b) Parameter space

Figure 5.5: Parameter space for the repressilator. (a) Repressilator diagram. (b) Space of
parameters that give rise to oscillations. Here, we have set K = 1 for simplicity.

One can plot the pair of values (n,β/γ) for which the above two conditions are
satisfied. This leads to the plot of Figure 5.5b. When n increases, the existence of
an unstable equilibrium point is guaranteed for larger ranges of β/γ. Of course,
this “behavioral” robustness does not guarantee that other important features of the
oscillator, such as the period, are not changed when parameters vary.

A similar result for the existence of a periodic solution can be obtained when
two of the Hill functions are monotonically increasing and only one is monotoni-
cally decreasing:

F1(P) =
α

1+ (P/K)n
, F2(P) =

α(P/K)n

1+ (P/K)n
, F3(P) =

α(P/K)n

1+ (P/K)n
.

That is, two interactions are activations and one is a repression. We refer to this
as the “non-symmetric” design. Since the loop sign is still negative, there is only
one equilibrium point. We can thus obtain the condition for oscillations again by
establishing conditions on the parameters that guarantee that at least one root of
the characteristic polynomial (5.8) has positive real part, that is,

κ(|F′1(P3)F′2(P1)F′3(P2)|)(1/3) > 2γδ, (5.9)

in which P1,P2,P3 are the equilibrium values of A, B, and C, respectively. These
equilibrium values satisfy:

P2 =
β

γ

(P1/K)n

1+ (P1/K)n
, P3 =

β

γ

(P2/K)n

1+ (P2/K)n
, P1(1+ (P3/K)n) =

β

γ
.

Using these expressions numerically and checking for each combination of the
parameters (n,β/γ) whether (5.9) is satisfied, we can plot the combinations of n

and β/γ values that lead to an unstable equilibrium. This is shown in Figure 5.6b.
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Figure 5.6: Parameter space for a loop oscillator. (a) Oscillator diagram. (b) Space of pa-
rameters that give rise to oscillations. As the value of n is increased, the range of the other
parameter for which a periodic cycle exists becomes larger. Here, we have set K = 1.

From this figure, we can deduce that the qualitative shape of the parameter space
that leads to a limit cycle is the same in the repressilator and in the non-symmetric
design. One can conclude that it is then possible to design the circuit such that the
parameters land in the filled region of the plots.

In practice, values of the Hill coefficient n between one and two can be obtained
by employing repressors that have cooperativity higher than or equal to two. There
are plenty of such repressors, including those originally used in the repressilator
design [26]. However, values of n greater than two may be hard to reach in practice.
To overcome this problem, one can include more elements in the loop. In fact, it is
possible to show that the value of n sufficient for obtaining an unstable equilibrium
decreases when the number of elements in the loop is increased (see Exercise 5.6).
Figure 5.7a shows a simulation of the repressilator.

In addition to determining the space of parameters that lead to periodic trajec-
tories, it is also relevant to determine the parameters to which the system behavior
is the most sensitive. To address this question, we can use the parameter sensitivity
analysis tools of Section 3.2. In this case, we model the repressilator Hill functions
adding the basal expression rate as it was originally done in [26]:

F1(P) = F2(P) = F3(P) =
α

1+ (P/K)n
+α0.

Letting x = (mA,A,mB,B,mC,C) and θ = (α0,δ,κ,γ,α,K), we can compute the sen-
sitivity S x,θ along the limit cycle corresponding to nominal parameter vector θ0 as
illustrated in Section 3.2:

dS x,θ

dt
= M(t,θ0)S x,θ +N(t,θ0),
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Figure 5.7: Repressilator parameter sensitivity analysis. (a) Protein concentrations as func-
tions of time. (b) Sensitivity plots. The most important parameters are the protein and
mRNA decay rates γ and δ. Parameter values used in the simulations are α = 800 nM/s,
α0 = 5× 10−4 nM/s, δ = 5.78× 10−3 s−1, γ = 1.16× 10−3 s−1, κ = 0.116 s−1, n = 2, and
K = 1600 nM.

where M(t,θ0) and N(t,θ0) are both periodic in time. If the dynamics of S x,θ are
stable then the resulting solutions will be periodic, showing how the dynamics
around the limit cycle depend on the parameter values. The results are shown in
Figure 5.7, where we plot the steady state sensitivity of A as a function of time. We
see, for example, that the limit cycle depends strongly on the protein degradation
and dilution rate δ, indicating that changes in this value can lead to (relatively)
large variations in the magnitude of the limit cycle.

5.5 Activator-repressor clock

Consider the activator-repressor clock diagram shown in Figure 5.1. The activator
A takes two inputs: the activator A itself and the repressor B. The repressor B
has the activator A as the only input. Let mA and mB represent the mRNA of the
activator and of the repressor, respectively. Then, we consider the following four-
dimensional model describing the rate of change of the species concentrations:

dmA

dt
= F1(A,B)−δAmA,

dA

dt
= κAmA−γAA,

dmB

dt
= F2(A)−δBmB,

dB

dt
= κBmB−γBB,

(5.10)

in which the functions F1 and F2 are Hill functions and given by

F1(A,B) =
αA(A/KA)n+αA0

1+ (A/KA)n+ (B/KB)m
, F2(A) =

αB(A/KA)n+αB0

1+ (A/KA)n
.

The Hill function F1 can be obtained through a combinatorial promoter, where
there are sites both for an activator and for a repressor. The Hill function F2 has the
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Figure 5.8: Nullclines for the two-dimensional system (5.11). Graph (a) shows the only
possible configuration of the nullclines when n = 1. Graph (b) shows a possible configura-
tion of the nullclines when n= 2. In this configuration, there is a unique equilibrium, which
can be unstable.

form considered for an activator when transcription can still occur at a basal level
even in the absence of an activator (see Section 2.3).

We first assume the mRNA dynamics to be at the quasi-steady state so that we
can perform two-dimensional analysis and invoke the Poincaré-Bendixson theo-
rem (Section 3.3). Then, we analyze the four-dimensional system and perform a
bifurcation study.

Two-dimensional analysis

We let f1(A,B) := (κA/δA)F1(A,B) and f2(A) := (κB/δB)F2(A). For simplicity, we
also define f (A,B) := −γAA+ f1(A,B) and g(A,B) := −γBB+ f2(A) so that the two-
dimensional system is given by

dA

dt
= f (A,B),

dB

dt
= g(A,B). (5.11)

To simplify notation, we set KA = KB = 1 and take m = 1, without loss of generality
as similar results can be obtained when m > 1 (see Exercise 5.7).

We first study whether the system admits a periodic solution for n = 1. To do so,
we analyze the nullclines to determine the number and location of steady states. Let
ᾱA = αA(κA/δA), ᾱB = αB(κB/δB), ᾱA0 = αA0(κA/δA), and ᾱB0 = αB0(κB/δB). Then,
g(A,B) = 0 leads to

B =
ᾱBA+ ᾱB0

(1+A)γB
,

which is an increasing function of A. Setting f (A,B) = 0, we obtain that

B =
ᾱAA+ ᾱA0−γAA(1+A)

γAA
,
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which is a monotonically decreasing function of A. These nullclines are displayed
in Figure 5.8a.

We see that we have only one equilibrium point. To determine the stability of
the equilibrium, we calculate the linearization of the system at such an equilibrium.
This is given by the Jacobian matrix

J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f

∂A

∂ f

∂B

∂g

∂A

∂g

∂B

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In order for the equilibrium to be unstable and not a saddle, it is necessary and
sufficient that tr(J) > 0 and det(J) > 0. Graphical inspection of the nullclines at the
equilibrium (see Figure 5.8a) shows that

dB

dA

∣
∣
∣
∣
∣
f (A,B)=0

< 0.

By the implicit function theorem (Section 3.5), we further have that

dB

dA

∣
∣
∣
∣
∣
f (A,B)=0

= −
∂ f /∂A

∂ f /∂B
,

so that ∂ f /∂A < 0 because ∂ f /∂B < 0. As a consequence, we have that tr(J) < 0
and hence the equilibrium point is either stable or a saddle.

To determine the sign of det(J), we further inspect the nullclines and find that

dB

dA

∣
∣
∣
∣
∣
g(A,B)=0

>
dB

dA

∣
∣
∣
∣
∣
f (A,B)=0

.

Again using the implicit function theorem we have that

dB

dA

∣
∣
∣
∣
∣
g(A,B)=0

= −
∂g/∂A

∂g/∂B
,

so that det(J) > 0. Hence, the ω-limit set (Section 3.3) of any point in the plane is
necessarily not part of a periodic orbit. It follows that to guarantee that any initial
condition converges to a periodic orbit, we need to require that n > 1.

We now study the case n = 2. In this case, the nullcline f (A,B) = 0 changes
and can have the shape shown in Figure 5.8b. In the case in which, as in the figure,
there is only one equilibrium point and the nullclines both have positive slope at the
intersection (equivalent to det(J) > 0), the equilibrium is unstable and not a saddle
if tr(J) > 0. This is the case when

γB

∂ f1/∂A−γA
< 1.
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Figure 5.9: Effect of the trace of the Jacobian on the stability of the equilibrium. The above
plots illustrate the trajectories of system (5.11) for both a functional (tr(J) > 0) and a non-
functional (tr(J) < 0) clock. The parameters in the simulation are δA = 1 = δB = 1 hrs−1,
αA = 250 nM/hrs, αB = 30 nM/hrs, αA0 = .04 nM/hrs, αB0 = .004 nM/hrs, γA = 1 hrs−1,
κA = κB = 1 hrs−1, KA = KB = 1 nM, n = 2 and m = 4. In the functional clock, γB = 0.5
hrs−1, whereas in the non-functional clock, γB = 1.5 hrs−1.

This condition reveals the crucial design requirement for the functioning of the
clock. Specifically, the repressor B time scale must be sufficiently slower than the
activator A time scale. This point is illustrated in the simulations of Figure 5.9, in
which we see that if γB is too large, the trace becomes negative and oscillations
disappear.

Four-dimensional analysis

In order to deepen our understanding of the role of time scale separation between
activator and repressor dynamics, we perform a time scale analysis employing the
bifurcation tools described in Section 3.4. To this end, we consider the following
four-dimensional model describing the rate of change of the species concentrations:

dmA

dt
= F1(A,B)− (δA/ϵ) mA,

dA

dt
= ν

(

(κA/ϵ) mA−γAA
)

,

dmB

dt
= F2(A)− (δB/ϵ) mB,

dB

dt
= (κB/ϵ) mB−γBB.

(5.12)

This system is the same as system (5.10), where we have explicitly introduced
two parameters ν and ϵ that model time scale differences, as follows. The param-
eter ν determines the relative time scale between the activator and the repressor
dynamics. As ν increases, the activator dynamics become faster compared to the
repressor dynamics. The parameter ϵ determines the relative time scale between
the protein and mRNA dynamics. As ϵ becomes smaller, the mRNA dynamics be-
come faster compared to protein dynamics and model (5.12) becomes close to the
two-dimensional model (5.11), in which the mRNA dynamics are considered at
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Figure 5.10: Design chart for the activator-repressor clock. We obtain sustained oscillations
past the Hopf bifurcation point for values of ν sufficiently large independent of the differ-
ence of time scales between the protein and the mRNA dynamics. We also notice that there
are values of ν for which a stable equilibrium point and a stable limit cycle coexist and
values of ν for which two stable limit cycles coexist. The interval of ν values for which two
stable limit cycles coexist is too small to be able to numerically set ν in such an interval.
Thus, this interval is not practically relevant. The values of ν for which a stable equilibrium
and a stable periodic orbit coexist are instead relevant. Figure adapted from [21].

the quasi-steady state. Thus, ϵ is a singular perturbation parameter. In particular,
equations (5.12) can be taken to standard singular perturbation form by consider-
ing the change of variables m̄A = mA/ϵ and m̄B = mB/ϵ. The details on singular
perturbation can be found in Section 3.5.

The values of ϵ and of ν do not affect the number of equilibria of the system
but they do determine the stability of the equilibrium points. We thus perform bi-
furcation analysis with ϵ and ν as the two bifurcation parameters. The bifurcation
analysis results are summarized by Figure 5.10. In terms of the ϵ and ν parameters,
it is thus possible to design the system as follows: if the activator dynamics are
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(a) Incoherent feedforward loop
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(b) Genetic implementation

Figure 5.11: The incoherent feedforward loop (a) with a possible implementation (b). The
circuit is integrated on a DNA plasmid denoted u. Protein A is under the control of a
constitutive promoter in the DNA plasmid u, while B is repressed by A. Protein B, in turn,
is also expressed by a gene in the plasmid u. Hence B is also “activated” by u.

sufficiently sped up with respect to the repressor dynamics, the system undergoes
a Hopf bifurcation (Hopf bifurcation was introduced in Section 3.3) and a stable
periodic orbit arises. The chart illustrates that for intermediate values of 1/ϵ, more
complicated dynamic behaviors can arise in which a stable equilibrium coexists
with a stable limit cycle. This situation corresponds to the hard excitation condi-
tion [60] and occurs for realistic values of the separation of time scales between
protein and mRNA dynamics. Therefore, this simple oscillator motif described by
a four-dimensional model can capture interesting dynamic behaviors, including
features that lead to the long-term suppression of a rhythm by external inputs.

From a fabrication point of view, the activator dynamics can be sped up by
adding suitable degradation tags to the activator protein. Similarly, the repressor
dynamics can be slowed down by adding repressor DNA binding sites (see Chapter
6 and the effects of retroactivity on dynamic behavior).

5.6 An incoherent feedforward loop (IFFL)

In Section 3.2, we described various mechanisms to obtain robustness to external
perturbations. In particular, one such mechanism is provided by incoherent feed-
forward loops. Here, we describe an implementation that was proposed for mak-
ing the equilibrium values of protein expression robust to perturbations in DNA
plasmid copy number [14]. In this implementation, the input u is the amount of
DNA plasmid coding for both the intermediate regulator A and the output protein
B. The intermediate regulator A represses the expression of the output protein B
through transcriptional repression (Figure 5.11). The expectation is that the equi-
librium value of B is independent of the concentration u of the plasmid. That is, the
concentration of B should adapt to the copy number of its own plasmid.

In order to analyze whether the adaptation property holds, we write the differ-
ential equation model describing the system, assuming that the mRNA dynamics
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Figure 5.12: Behavior of the equilibrium value of B as a function of the input u. Concen-
tration is in µM.

are at the quasi-steady state. This model is given by

dA

dt
= k0u−γA,

dB

dt
=

k1u

1+ (A/Kd)
−γB, (5.13)

in which k0 is the constitutive rate at which A is expressed and Kd is the disso-
ciation constant of the binding of A with the promoter. This implementation has
been called the sniffer in Section 3.2. The equilibrium of the system is obtained by
setting the time derivatives to zero and gives

A =
k0

γ
u, B =

k1u

γ+ k0u/Kd
.

From this expression, we can see that as Kd decreases, the denominator of
the right-hand side expression tends to k0u/Kd resulting in the equilibrium value
B = k1Kd/k0, which does not depend on the input u. Hence, in this case, adaptation
would be reached. This is the case if the affinity of A to its operator sites is ex-
tremely high, resulting also in a strong repression and hence a lower value of B. In
practice, however, the value of Kd is nonzero, hence the adaptation is not perfect.
We show in Figure 5.12 the equilibrium value of B as a function of the input u for
different values of Kd. As expected, lower values of Kd lead to weaker dependence
of B on the u variable.

In this analysis, we have not modeled the cooperativity of the binding of protein
A to the promoter. We leave as an exercise to show that the adaptation behavior
persists in the case cooperativity is included (see Exercise 5.8).

For engineering a system with prescribed behavior, one has to be able to change
the physical features so as to change the values of the parameters of the model.
This is often possible. For example, the binding affinity (1/Kd in the Hill function)
of a transcription factor to its site on the promoter can be weakened by single or
multiple base-pair substitutions. The protein decay rate can be increased by adding
degradation tags at the end of the gene expressing protein B. Promoters that can
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Figure 5.13: Examples of chemotaxis. In the absence of attractant or repellent, the bac-
terium follows a random walk. In the presence of an attractant, the random walk is biased
in the direction in which the concentration of attractant increases (positive chemotaxis),
while in the presence of a repellent the random walk is biased in the direction in which
the concentration of the repellent decreases (negative chemotaxis). Figure adapted from
Phillips, Kondev and Theriot [78].

accept multiple transcription factors (combinatorial promoters) can be realized by
combining the operator sites of several simple promoters [46]. Finally, the overall
protein production rate can be tuned by controlling a number of different system
properties, including promoter’s and the ribosome binding site’s strength.

5.7 Bacterial chemotaxis

Chemotaxis refers to the process by which microorganisms move in response to
chemical stimuli. Examples of chemotaxis include the ability of organisms to move
in the direction of nutrients or move away from toxins in the environment. Chemo-
taxis is called positive chemotaxis if the motion is in the direction of the stimulus
and negative chemotaxis if the motion is away from the stimulant, as shown in
Figure 5.13. Many chemotaxis mechanisms are stochastic in nature, with biased
random motions causing the average behavior to be either positive, negative or
neutral (in the absence of stimuli).

In this section we look in some detail at bacterial chemotaxis, which E. coli use
to move in the direction of increasing nutrients. The material in this section is based
primarily on the work of Barkai and Leibler [9] and Rao, Kirby and Arkin [83].

Control system overview

The chemotaxis system in E. coli consists of a sensing system that detects the pres-
ence of nutrients, an actuation system that propels the organism in its environment,
and control circuitry that determines how the cell should move in the presence of
chemicals that stimulate the sensing system.

The actuation system in E. coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown in
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Figure 5.14: Bacterial chemotaxis. (a) Flagellar motors are responsible for spinning flag-
ella. (b) When flagella spin in the clockwise direction, the organism tumbles, while when
they spin in the counterclockwise direction, the organism runs. (c) The direction in which
the flagella spin is determined by whether the CheY protein is phosphorylated. Figures
adapted from Phillips, Kondev and Theriot [78].

Figure 5.14a. When the flagella all spin in the counterclockwise direction, the indi-
vidual flagella form a bundle and cause the organism to move roughly in a straight
line. This behavior is called a “run” motion. Alternatively, if the flagella spin in the
clockwise direction, the individual flagella do not form a bundle and the organism
“tumbles,” causing it to rotate (Figure 5.14b). The selection of the motor direc-
tion is controlled by the protein CheY: if phosphorylated CheY binds to the motor
complex, the motor spins clockwise (tumble), otherwise it spins counterclockwise
(run) (Figure 5.14c).

A question that we address here is how the bacterium moves in the direction in
which the attractant concentration increases. Because of the small size of the organ-
ism, it is not possible for a bacterium to sense gradients across its length. Hence,
a more sophisticated strategy is used, in which the temporal gradient, as opposed
to the spatial gradient, guides the organism motion through suitable combination
of run and tumble motions. To sense temporal gradients, E. coli compares the cur-
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(b) Receptor complex states

Figure 5.15: Control system for chemotaxis. (a) The sensing system is implemented by the
receptor complex, which detects the presence of a ligand in the cell’s outer environment.
The computation part is implemented by a combined phosphorylation/methylation process,
which realizes a form of integral feedback. The actuation component is realized by the
CheY phosphorylated protein controlling directly the direction in which the motor spins.
Figure from Rao et al. [83] (Figure 1A). (b) Receptor complex states. The probability of a
given state being in an active configuration is given by p. ∆E represents the difference in
energy levels from a reference state. Figure adapted from [72].

rent concentration of attractant to the past concentration of attractant and if the
concentration increases, then the concentration of phosphorylated CheY protein is
reduced. As a consequence, less phosphorylated CheY will bind to the motor com-
plex and the tumbling frequency is reduced. The net result is a biased random walk
in which the bacterium tends to move toward the direction in which the gradient of
attractant concentration increases.

A simple model for the molecular control system that regulates chemotaxis is
shown in Figure 5.15a. We start with the basic sensing and actuation mechanisms.
A membrane-bound protein MCP (methyl-accepting chemotaxis protein) that is
capable of binding to the external ligand serves as a signal transducing element
from the cell exterior to the cytoplasm. Two other proteins, CheW and CheA, form
a complex with MCP. This complex can either be in an active or inactive state. In
the active state, CheA is autophosphorylated and serves as a phosphotransferase for
two additional proteins, CheB and CheY. The phosphorylated form of CheY then
binds to the motor complex, causing clockwise rotation of the motor (tumble).

The activity of the receptor complex is governed by two primary factors: the
binding of a ligand molecule to the MCP protein and the presence or absence of
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up to four methyl groups on the MCP protein. The specific dependence on each
of these factors is somewhat complicated. Roughly speaking, when the ligand L
is bound to the receptor then the complex is less likely to be active. Furthermore,
as more methyl groups are present, the ligand binding probability increases, al-
lowing the gain of the sensor to be adjusted through methylation. Finally, even in
the absence of ligand the receptor complex can be active, with the probability of it
being active increasing with increased methylation. Figure 5.15b summarizes the
possible states, their free energies and the probability of activity.

Several other elements are contained in the chemotaxis control circuit. The most
important of these are implemented by the proteins CheR and CheB, both of which
affect the receptor complex. CheR, which is constitutively produced in the cell,
methylates the receptor complex at one of the four different methylation sites. Con-
versely, the phosphorylated form of CheB demethylates the receptor complex. As
described above, the methylation patterns of the receptor complex affect its activ-
ity, which affects the phosphorylation of CheA and, in turn, phosphorylation of
CheY and CheB. The combination of CheA, CheB and the methylation of the re-
ceptor complex forms a negative feedback loop: if the receptor is active, then CheA
phosphorylates CheB, which in turn demethylates the receptor complex, making it
less active. As we shall see when we investigate the detailed dynamics below, this
feedback loop corresponds to a type of integral feedback law. This integral action
allows the cell to adjust to different levels of ligand concentration, so that the be-
havior of the system is invariant to the absolute ligand levels.

Modeling

From a high level, we can view the chemotaxis as a dynamical system that takes the
ligand L concentration as an input and produces the phosphorylated CheY bound
to the motor complex as an output, which determines the tumbling frequency. We
let T represent the receptor complex and we write A, B, Y and Z for CheA, CheB,
CheY and CheZ, respectively. As in previous chapters, for a protein X we let X*

represent its phosphorylated form.
Each receptor complex can have multiple methyl groups attached and the ac-

tivity of the receptor complex depends on both the amount of methylation and
whether a ligand is attached to the receptor site (Figure 5.15b). Furthermore, the
binding probabilities for the receptor also depend on the methylation pattern. We
let Tx

i represent a receptor that has i methylation sites filled and ligand state x
(which can be either u if unoccupied or o if occupied). We let m represent the
maximum number of methylation sites (m = 4 for E. coli). Using this notation, the
transitions between the states correspond to the following reactions (also shown in
Figure 5.16):

Tu
i +L −−−⇀↽−−− To

i ,
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Figure 5.16: Methylation model for chemotaxis. Figure adapted from [9] (Box 1).

Tx
i +B∗ −−−⇀↽−−− Tx

i :B∗ −−→ Tx
i−1+B∗, i > 0, x ∈ {u,o},

Tx
i +R −−−⇀↽−−− Tx

i :R −−→ Tx
i+1+R, i < m, x ∈ {u,o},

in which the first reaction models the binding of the ligand L to the receptor com-
plex, the second reaction models the demethylation of methylated receptor com-
plex by B*, and the third reaction models the methylation of the receptor complex
by R.

We now must write reactions for each of the receptor complexes with CheA.
Each form of the receptor complex has a different activity level that determines
the extent to which CheA can be phosphorylated. Therefore, we write a separate
reaction for each form, which for simplicity we assume to be a one-step process
for each To

i and Tu
i species:

Tx
i +A

kx
i−→ Tx

i +A∗,

where x ∈ {o,u} and i = 0, . . . ,m. As a consequence, the production rate of A* by all
the above reactions is given by

A

4∑

i=1

(

ko
i T o

i + ku
i T u

i

)

.

Considering that the ligand-receptor binding reaction is at its quasi-steady state be-
cause it is very fast, and letting Ti = T u

i +T o
i represent the total amount of receptors

with i sites methylated, we further have that

T u
i =

1
1+L/KL

Ti, T o
i =

L/KL

1+L/KL
Ti,

in which KL is the dissociation constant of the receptor complex-ligand binding. It
follows that if we let T A

i denote the “effective” concentration of Ti that phosphory-
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Figure 5.17: Probability of activity αi(L) as a function of the ligand concentration L.

lates A, we have

ka
i T A

i = ko
i T o

i + ku
i T u

i = Ti

(

ku
i + ko

i (L/KL)
1+L/KL

)

,

for a suitably defined constant ka
i . Hence, we can write

T A
i = αi(L)Ti, with αi(L) =

αo
i (L/KL)

1+L/KL
+

α1
i

1+L/KL
,

and T I
i = Ti − T A

i , for suitable constants α1
i and αo

i . The coefficients αo
i and α1

i

capture the effect of presence or absence of the ligand on the activity level of the
complex and αi(L) can be interpreted as the probability of activity. Following [83],
we take the coefficients to be

α1
0 = 0, α1

1 = 0.1, α1
2 = 0.5, α1

3 = 0.75, α1
4 = 1,

αo
0 = 0, αo

1 = 0, αo
2 = 0.1, αo

3 = 0.5, αo
4 = 1,

and choose KL = 10 µM. Figure 5.17 shows how each αi(L) varies with L.
The total concentration of active receptors can now be written in terms of the

receptor complex concentrations Ti and the activity probabilities αi(L). We write
the concentration of activated complex TA and inactivated complex TI as

T A =

4∑

i=0

αi(L)Ti, T I =

4∑

i=0

(1−αi(L))Ti.

These formulas can now be used in our dynamics as an effective concentration of
active or inactive receptors. In particular, letting k0 represent a lumped reaction
rate constant for the phosphorylation of A by TA, for which we employ a one-step
reaction model, we have

TA+A
k0−→ TA+A∗. (5.14)
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We next model the transition between the methylation patterns on the receptor.
For this, we assume that CheR binds only inactive receptors and phosphorylated
CheB binds only to active receptors [83, 72]. This leads to the following reactions:

TA
i +B∗

aB−−⇀↽−−
dB

TA
i :B∗

kB−−→ TA
i−1+B∗, i ∈ {2,3,4},

TA
1 +B∗

aB−−⇀↽−−
dB

TA
1 :B∗,

TI
i +R

aR−−⇀↽−−
dR

TI
i :R

kR−−→ TI
i+1+R, i ∈ {1,2,3},

TI
4+R

aR−−⇀↽−−
dR

TI
4:R,

in which we accounted for the fact that R can still bind to TI
4 even without methy-

lating it and B* can still bind TA
1 even without demethylating it. Assuming the

complexes’ concentrations are at their quasi-steady state values, and letting KR =

(dR + kR)/aR and KB = (dB+ kB)/aB denote the Michaelis-Menten constant for the
above enzymatic reactions, we have the following relations:

[TR
i :R] =

T I
i R

KR
, [TA

i :B∗] =
T A

i B∗

KB
,

in which we have approximated dR/aR (dB/aB) by KR (KB) accounting for the
fact that kR ≪ dR (kB ≪ dB). We can now write the differential equation for Ti

considering the fact that
dTi

dt
=

dT I
i

dt
+

dT A
i

dt
.

Specifically, we have that

dT I
i

dt
= −kR

T I
i R

KR
+ kR

T I
i−1R

KR
,

dT A
i

dt
= −kB

T A
i B∗

KB
+ kB

T A
i+1B∗

KB
,

with the conservation laws Rtot = R+
∑4

i=1[TI
i :R] and B∗tot = B∗ +

∑4
i=1[Ti:B

∗], in
which B∗tot represents the total amount of phosphorylated CheB protein. Consider-
ing the quasi-steady state expressions for the complexes and the fact that

∑4
i=1 T A

i =

T A and
∑4

i=1 T I
i = T I , these conservation laws lead to

R =
Rtot

1+T I/KR
, B∗ =

B∗tot

1+T A/KB
.

Defining

rR = kR
Rtot

KR+T I
, rB = kB

B∗tot

KB+T A
,
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which represent the effective rates of the methylation and demethylation reactions,
we finally obtain that

d

dt
Ti = rR

(

1−αi−1(L)
)

Ti−1 + rBαi+1(L)Ti+1 − rR
(

1−αi(L)
)

Ti − rBαi(L)Ti,

where the first and second terms represent transitions into this state via methylation
or demethylation of neighboring states (see Figure 5.16) and the last two terms
represent transitions out of the current state by methylation and demethylation,
respectively. Note that the equations for T0 and T4 are slightly different since the
demethylation and methylation reactions are not present, respectively.

Finally, we write the phosphotransfer and dephosphorylation reactions among
CheA, CheB, and CheY, and the binding of CheY* to the motor complex M:

A∗+Y
k1−→ A+Y∗, Y∗

k2−→ Y,

A∗+B
k3−→ A+B∗, B∗

k4−→ B,

TA
i :B∗

k4−→ TA
i :B, i ∈ {1,2,3,4},

Y∗+M
a
−⇀↽−

d
Y∗:M,

in which the first reaction is the phosphotransfer from CheA* to CheY*, the sec-
ond reaction is the dephosphorylation of CheY* by CheZ, the third reaction is the
phosphotransfer from CheA* to CheB, the fourth and fifth reactions are the de-
phosphorylation of CheB*, which can be dephosphorylated also when bound to the
receptor, and the last reaction is the binding of CheY* with the motor complex M
to form the complex Y* : M, which increases the probability that the motor will
rotate clockwise. The resulting ODE model is given by

d

dt
A∗ = k0T AA− k1A∗Y − k3A∗B,

d

dt
Y∗ = k1A∗Y − k2Y∗ −aMY∗+d[M:Y∗],

d

dt
B∗tot = k3A∗B− k4B∗tot,

d

dt
[M:Y∗] = aMY∗ −d[M:Y∗],

with conservation laws

A+A∗ = Atot, B+B∗tot = Btot,

Y +Y∗+ [M:Y∗] = Ytot, M+ [M:Y∗] = Mtot.

Figure 5.18a shows the concentration of the phosphorylated proteins based on
a simulation of the model. Initially, all species are started in their unphosphory-
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Figure 5.18: Simulation and analysis of reduced-order chemotaxis model. The parame-
ters are taken from Rao et al. [83] and given by k0 = 50 s−1nM−1, k1 = 100 s−1nM−1,
k3 = 30 s−1nM−1, k2 = 30 s−1nM−1, a = 50 s−1nM−1, d = 19 s−1, and k4 = 1 s−1. The con-
centrations are Rtot = 0.2 nM,

∑4
i=0 Ti = 5 nM, Atot = 5 nM, Btot = 2 nM, and Ytot = 17.9 nM.

Also, we have kB = 0.5 s−1, KB = 5.5 nM, kR = 0.255 s−1, and KR = 0.251 nM.

lated and demethylated states. At time 500 s the ligand concentration is increased
to L= 10 µM and at time 1000 s it is returned to zero. We see that immediately after
the ligand is added, the CheY* concentration drops, allowing longer runs between
tumble motions. After a short period, however, the CheY* concentration adapts to
the higher concentration and the nominal run versus tumble behavior is restored.
Similarly, after the ligand concentration is decreased the concentration of CheY*

increases, causing a larger fraction of tumbles (and subsequent changes in direc-
tion). Again, adaptation over a longer time scale returns the CheY concentration to
its nominal value. The chemotaxis circuit pathway from T to CheY (to the motor)
explains the sudden drop of CheY* when the ligand L is added. The slower methy-
lation of the receptor complex catalyzed by CheR and removed by CheB slowly
takes the value of CheY* to the pre-stimulus level.

Figure 5.18b helps explain the adaptation response. We see that the average
amount of methylation of the receptor proteins increases when the ligand concen-
tration is high, which decreases the activity of CheA (and hence decreases the
phosphorylation of CheY).

Integral action

The perfect adaptation mechanism in the chemotaxis control circuitry has the same
function as the use of integral action in control system design: by including a feed-
back on the integral of the error, it is possible to provide exact cancellation to
constant disturbances. In this section we demonstrate that a simplified version of
the dynamics can indeed be regarded as integral action of an appropriate signal.
This interpretation was first pointed out by Yi et al. [102].
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Figure 5.19: Reduced-order model of receptor activity. Star indicates activated complex
and “m” indicates methylated complex. Figure adapted from [4], Figure 7.9.

We begin by formulating an even simpler model for the system dynamics that
captures the basic features required to understand the integral action. We consider
the receptor complex T and the kinase CheA as a single entity denoted by X, which
can be either methylated or not. We ignore the number of methylated sites and sim-
ply group all the methylated forms into a lumped stated called Xm. Also, we assume
that only the methylated state can be activated and the activity is determined by the
ligand L concentration (through the functions αi(L)). We let X*

m represent this ac-
tive state and ignore the additional phosphorylation dynamics of CheY, so that we
take the concentration X∗m as our measure of overall activity.

We take the ligand into account by assuming that the transition between the
active form X*

m and the inactive form Xm depends on the ligand concentration:
higher ligand concentration will increase the rate of transition to the inactive state.
The activation/deactivation reactions are then written as

R0 : X∗m
k f (L)
−−−−⇀↽−−−−

kr
Xm activation/deactivation,

in which the deactivation rate k f (L) is an increasing function of L. As before, CheR
methylates the receptor and CheB* demethylates it. We simplify the picture by only
allowing CheB* to act on the active state X*

m and CheR to act on the inactive state.
Figure 5.19 shows the transitions between the various forms X.

This model is a considerable simplification from the ligand binding model that
is illustrated in Figures 5.15b and 5.16. In the previous models, there is some prob-
ability of activity with or without methylation and with or without ligand. In this
simplified model, we assume that only three states are of interest: demethylated,
methylated/inactive and methylated/active. We also modify the way that ligand
binding is captured and instead of keeping track of all of the possibilities in Fig-
ure 5.15b, we assume that the ligand transitions us from an active state X*

m to an
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inactive Xm. These states and transitions are roughly consistent with the different
energy levels and probabilities in Figure 5.15b, but it is clearly a much coarser
model.

Accepting these approximations, the model illustrated in Figure 5.19 results in
the methylation and demethylation reactions

R1 : X+R −−−⇀↽−−− X:R −−→ Xm+R methylation,

R2 : X∗m+B∗ −−−⇀↽−−− X∗m:B∗ −−→ X+B∗ demethylation.

For simplicity we take both R and B* to have constant concentration.
We can further approximate the first and second reactions by their Michaelis-

Menten forms, which yield net methylation and demethylation rates (for those re-
actions)

v+ = kRR
X

KX +X
, v− = kBB∗

X∗m
KX∗m +X∗m

.

If we further assume that X ≫ KX > 1, then the methylation rate can be further
simplified:

v+ = kRR
X

KX +X
≈ KRR.

Using these approximations, we can write the resulting dynamics for the overall
system as

d

dt
Xm = kRR+ k f (L)X∗m− krXm,

d

dt
X∗m = −kBB∗

X∗m
KX∗m +X∗m

− k f (L)X∗m+ krXm.

We wish to use this model to understand how the steady state activity level X∗m
depends on the ligand concentration L (which enters through the deactivation rate
k f (L)).

It will be useful to rewrite the dynamics in terms of the activated complex con-
centration X∗m and the total methylated complex concentration Xm,tot = Xm+X∗m. A
simple set of algebraic manipulations yields

dX∗m
dt
= kr(Xm,tot−X∗m)− kBB∗

X∗m
KX∗m +X∗m

− k f (L)X∗m,

dXm,tot

dt
= kRR− kBB∗

X∗m
KX∗m +X∗m

.

From the second equation, we see that the the concentration of methylated complex
Xm,tot is a balance between the action of the methylation reaction (R1, at rate v+)
and the demethylation reaction (R2, at rate v−). Since the action of a ligand binding
to the receptor complex increases the rate of deactivation of the complex (R0),
in the presence of a ligand we will increase the amount of methylated complex
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and, (via reaction R1) eventually restore the amount of the activated complex. This
represents the adaptation mechanism in this simplified model.

To further explore the effect of adaptation, we compute the equilibrium points
for the system. Setting the time derivatives to zero, we obtain

X∗m,e =
KX∗mkRR

kBB∗ − kRR
,

Xm,tot,e =
1
kr

(

krX∗m+ kBB∗
X∗m

KX∗m +X∗m
+ k f (L)X∗m

)

.

Note that the solution for the active complex X∗m,e in the first equation does not
depend on k f (L) (or kr) and hence the steady state solution is independent of the
ligand concentration. Thus, in steady state, the concentration of activated complex
adapts to the steady state value of the ligand that is present, making it insensitive
to the steady state value of this input.

In order to demonstrate that after a perturbation due to addition of the ligand the
value of X∗m returns to its equilibrium, we need to prove that the equilibrium point
(Xm,tot,e,X

∗
m,e) is asymptotically stable. To do so, let x = Xm,tot, y = X∗m and rewrite

the system model as

dx

dt
= kRR− kBB∗

y

KX∗m + y
,

dy

dt
= kr(x− y)− kBB∗

y

KX∗m + y
− k f (L)y,

which is in the standard integral feedback form introduced in Section 3.2. The
stability of the equilibrium point (xe,ye) = (Xm,tot,e,X

∗
m,e) can be determined by cal-

culating the Jacobian matrix J of this system at the equilibrium. This gives

J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −kBB∗
KX∗m

(ye+KX∗m
)2

kr −kBB∗
KX∗m

(ye+KX∗m
)2 − k f (L)− kr

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for which
tr(J) < 0 and det(J) > 0,

implying that the equilibrium point is asymptotically stable.
The dynamics for Xm,tot can be viewed as an integral action: when the concen-

tration of X∗m matches its reference value (with no ligand present), the quantity of
methylated complex Xm,tot remains constant. But if Xm,tot does not match this ref-
erence value, then Xm,tot increases at a rate proportional to the methylation “error”
(measured here by difference in the nominal reaction rates v+ and v−). It can be
shown that this type of integral action is necessary to achieve perfect adaptation in
a robust manner [102].
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Exercises

5.1 Consider the negatively autoregulated system given in equation (5.4). Deter-
mine the frequency response with respect to noise input Γ2 and compare its mag-
nitude to that of the open loop system in equation (5.2).

5.2 Consider the contribution of the negative autoregulation given by the param-
eter g in equation (5.6). Study how g changes when the value of the dissociation
constant Kd is changed.

5.3 Consider the negatively autoregulated system

dA

dt
=

β

1+ (A/K)n
−γA.

Explore through linearization how increasing the Hill coefficient affects the re-
sponse time of the system. Also, compare the results of the linearization analysis
to the behavior of the nonlinear system obtained through simulation.

5.4 Consider the toggle switch model

dA

dt
=

βA

1+ (B/K)n
−γA,

dB

dt
=

βB

1+ (A/K)m
−γB.

Here, we are going to explore the parameter space that makes the system work as
a toggle switch. To do so, answer the following questions:

(i) Consider m = n = 1. Determine the number and stability of the equilibria as
the values of βA and βB are changed.

(ii) Consider m = 1 and n > 1 and determine the number and stability of the
equilibria (as other parameters change).

(iii) Consider m= n= 2. Determine parameter conditions on βA,βB,γ,K for which
the system is bistable, i.e., there are two stable steady states.

5.5 Consider the repressilator model and the parameter space for oscillations pro-
vided in Figure 5.5. Determine how this parameter space changes if the value of K

in the Hill function is changed.

5.6 Consider the “generalized” model of the repressilator in which we have m

repressors (with m an odd number) in the loop. Explore via simulation the fact that
when m is increased, the system oscillates for smaller values of the Hill coefficient
n.

5.7 Consider the activator-repressor clock model given in equations (5.11). Deter-
mine the number and stability of the equilibria as performed in the text for the case
in which m > 1.
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5.8 Consider the feedforward circuit shown in Figure 5.11. Assume that we ac-
count for cooperativity such that the model becomes

dA

dt
= k0u−γA,

dB

dt
=

k1u

1+ (A/Kd)n
−γB.

Show that the adaptation property still holds under suitable parameter conditions.
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