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Chapter 6
Biological Circuit Components

In this chapter, we describe some simple circuits components that have been con-
structed in E. coli cells using the technology of synthetic biology. We will analyze
their behavior employing mainly the tools from Chapter 3 and some of the tools
from Chapter 4. The basic knowledge of Chapter 2 will be assumed.

6.1 Introduction to Biological Circuit Design

In Chapter 2 we have introduced a number of core processes and their modeling.
These include gene expression, transcriptional regulation, post-translational regu-
lation such as covalent modification of proteins, allosteric regulation of enzymes,
activity regulation of transcription factors through inducers, etc. These core pro-
cesses provide a rich set of functional building blocks, which can be combined
together to create circuits with prescribed functionalities.

For example, if we want to create an inverter, a device that returns high output
when the input is low and vice versa, we can use a gene regulated by a transcrip-
tion repressor. If we want to create a signal amplifier, we can employ a cascade
of covalent modification cycles. Specifically, if we want the amplifier to be lin-
ear, we should tune the amounts of protein substrates to be in smaller values than
the Michaelis-Menten constants. If instead we are looking for an almost digital
response, we could employ a covalent modification cycle with high amounts of
substrates compared to the Michaelis-Menten constants. Furthermore, if we are
looking for a fast input/output response, phosphorylation cycles are better candi-
dates than transcriptional systems.

In this chapter and in the next one, we illustrate how one can build circuits with
prescribed functionality using some of the building blocks of Chapter 2 and the
design techniques illustrated in Chapter 3. We will focus on two types of circuits:
gene circuits and signal transduction circuits. In some cases, we will illustrate de-
signs that incorporate both.

A gene circuit is usually depicted by a set of nodes, each representing a gene,
connected by unidirectional edges, representing a transcriptional activation or a re-
pression. Inducers will often appear as additional nodes, which activate or inhibit
a specific edge. Early examples of such circuits include an activator-repressor sys-
tem that can display toggle switch or clock behavior [5], a loop oscillator called
the repressilator obtained by connecting three inverters in a ring topology [27], a



200 CHAPTER 6. BIOLOGICAL CIRCUIT COMPONENTS

c) Activator-repressor clock

A
A B

A B

B

A C

a) Self repression b) Toggle switch

d) Repressilator

Figure 6.1: Early transcriptional circuits that have been fabricated in bacteria E. coli: the
negatively autoregulated gene [10], the toggle switch [31], the activator-repressor clock
[5], and the repressilator [27].

toggle switch obtained connecting two inverters in a ring fashion [31], and an au-
torepressed circuit [10] (Figure 6.1). Each node represents a gene and each arrow
from node Z to node X indicates that the transcription factor encoded in gene z,
denoted Z, regulates gene x [3]. If z represses the expression of x, the interaction is
represented by Z"X. If z activates the expression of x, the interaction is represented
by Z→X [3].

Basic synthetic biology technology

Simple synthetic gene circuits can be constituted from a set of (connected) tran-
scriptional components, which are made up by the DNA base-pair sequences that
compose the desired promoters, ribosome binding sites, gene coding region, and
terminators. We can choose these components from a library of basic interchange-
able parts, which are classified based on biochemical properties such as affinity
(of promoter, operator, or ribosome binding sites), strength (of a promoter), and
efficiency (of a terminator).

The desired sequence of parts is usually assembled on plasmids, which are cir-
cular pieces of DNA, separate from the host cell chromosome, with their own origin
of replication. These plasmids are then inserted, through a process called transfor-
mation in bacteria and transfection in yeast, in the host cell. Once in the host cell,
they express the proteins they code for by using the transcription and translation
machinery of the cell. There are three main types of plasmids: low copy number
(5-10 copies), medium copy number (15-20 copies), and high copy number (up to
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hundreds). The copy number reflects the average number of copies of the plasmid
inside the host cell. The higher the copy number, the more efficient the plasmid is
at replicating itself. The exact number of plasmids in each cell fluctuates stochas-
tically and cannot be exactly controlled.

In order to measure the amounts of proteins of interest, we make use of reporter
genes. A reporter gene codes for a protein that fluoresces in a specific color (red,
blue, green, yellow, etc.) when it is exposed to light of the correct wave-length. For
instance, green fluorescent protein (GFP) is a protein with the property that it fluo-
resces in green when exposed to UV light. It is produced by the jellyfish Aequoria
victoria, and its gene has been isolated so that it can be used as a reporter. Other
fluorescent proteins, such as yellow fluorescent protein (YFP) and red fluorescent
protein (RFP) are genetic variations of GFP.

A reporter gene is usually inserted downstream of the gene expressing the pro-
tein whose concentration we want to measure. In this case, both genes are under
the control of the same promoter and are transcribed into a single mRNA molecule.
The mRNA is then translated to protein and the two proteins will be fused together.
This technique sometimes affects the functionality of the protein of interest because
some of the regulatory sites may be occluded by the fluorescent protein. To prevent
this, another viable technique is to clone after the protein of interest the reporter
gene under the control of a copy of the same promoter that also controls the expres-
sion of the protein. This way the protein is not fused to the reporter protein, which
guarantees that the protein function is not affected. Also, the expression levels of
both proteins should be close to each other since they are controlled by (different
copies of) the same promoter.

Just as fluorescent proteins can be used as a read out of a circuit, inducers func-
tion as external inputs that can be used to probe the system. Inducers function
by either disabling repressor proteins (negative inducers) or by enabling activa-
tor proteins (positive inducers). Two commonly used negative inducers are IPTG
and aTc. Isopropyl-β-D-1-thiogalactopyranoside (IPTG) induces activity of beta-
galactosidase, which is an enzyme that promotes lactose utilization, through bind-
ing and inhibiting the lac repressor LacI. The anhydrotetracycline (aTc) binds the
wild-type repressor (TetR) and prevents it from binding the Tet operator. Two com-
mon positive inducers are arabinose and AHL. Arabinose activates the transcrip-
tional activator AraC, which activates the pBAD promoter. Similarly, AHL is a
signaling molecule that activates the LuxR transcription factor. which activates the
pLux promoter.

Protein dynamics can be usually altered by the addition of a degradation tag at
the end of the coding region. A degradation tag is a sequence of base pairs that adds
an amino acid sequence to the functional protein that is recognized by proteases.
Proteases then bind to the protein, degrading it into a non-functional molecule. As
a consequence, the half life of the protein decreases, resulting into an increased
decay rate. Degradation tags are often employed to obtain a faster response of the
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protein concentration to input stimulation and to prevent protein accumulation.

6.2 Negative Autoregulation

In this section, we analyze the negatively autoregulated gene of Figure 6.1 and
focus on analyzing how the presence of the negative feedback affects the dynamics
of the system and how the negative feedback affects the noise properties of the
system. This system was introduced in Example 3.6.

Let A denote the concentration of protein A and let A be a transcriptional re-
pressor for its own production. Assuming that the mRNA dynamics are at the quasi-
steady state, the ODE model describing the self repressed system is given by

dA
dt
=

β

1+ (A/K)n
−δA.

We seek to compare the behavior of this autoregulated system to the behavior of
the unregulated one:

dA
dt
= β0−δA,

in which β0 is the unrepressed production rate.

Dynamic effects of negative autoregulation

As we showed via simulation in Example 2.3, negative autoregulation speeds up the
response to perturbations. Hence, the time the system takes to reach its steady state
decreases with negative feedback. In this section, we show this result analytically
by employing linearization about the steady state and by explicitly calculating the
time the system takes to reach it.

Let Ae = β0/δ be the steady state of the unregulated system and let z = A−Ae
denote the perturbation with respect to such a steady state. The dynamics of z are
given by

dz
dt
= −δz.

Given a small initial perturbation z0, the time response of z is given by the expo-
nential

z(t) = z0e−δt.

The “half-life” of the signal z(t) is the time it takes to reach half of z0. This is a
common measure for the speed of response of a system to an initial perturbation.
Simple mathematical calculation shows that thalf = ln(2)/δ.

Let now Ae be the steady state of the autoregulated system. Assuming that the
perturbation z with respect to such a steady state is small enough, we can employ
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linearization to describe the dynamics of z. These dynamics are given by

dz
dt
= −  δz,

in which
 δ = δ+

nAn−1
e /Kn

(1+ (Ae/K)n)2 .

In this case, we have that thalf = ln(2)/  δ.
Since  δ > δ (independently of the steady state Ae), we have that the dynamic

response to a perturbation is faster in the system with negative autoregulation. This
confirms the simulation findings of Example 2.3.

Noise filtering

In this section, we investigate the effect of the negative feedback on the noise spec-
trum of the system. In order to do this, we employ the Langevin modeling frame-
work and determine the frequency response to the noise on the various reaction
channels. We perform two different studies. In the first one, we assume that the de-
cay rate of the protein is much smaller than that of the mRNA. As a consequence,
the mRNA is at its quasi-steady state and we focus on the dynamics of the protein
only. In the second study, we investigate the consequence of having the mRNA and
protein decay rates in the same range so that the quasi-steady state assumption can-
not be made. In either case, we study both the open loop system and the closed loop
system (the system with negative autoregulation) and compare the corresponding
frequency responses.

Assuming mRNA at the quasi-steady state

In this case, the reactions for the open loop system are given by

R1: p
β0−−→ A+p, R2: A δ

−→ ∅,

in which β0 is the constitutive production rate, p is the DNA promoter, and δ is
the decay rate of the protein. Since the concentration of DNA promoter p is not
changed by these reactions, it is a constant, which we call ptot.

Employing the Langevin equation (4.9) of Section 4.1 and letting nA denote
the real-valued number of molecules of A and by np the real-valued number of
molecules of p, we obtain

dnA
dt
= β0np−δnA+

√

β0npN1−
√

δnAN2,

in which N1 and N2 are the noises on the production reaction and on the decay reac-
tion, respectively. By denoting A= nA/Ω the concentration of A and p= np/Ω= ptot
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the concentration of p, we have that

dA
dt
= β0ptot−δA+

1
√
Ω

(
√

β0ptotN1−
√
δAN2).

This is a linear system and therefore we can calculate the frequency response to
any of the two inputs N1 and N2. The frequency response to input N1 is given by

GAN1 (ω) =
√

β0ptot/Ω
√
ω2+δ2

.

We now consider the autoregulated system. The reactions are given by

R1: p
β
−→ A+p, R2: A δ

−→ ∅,

R3: A+p a
−→ C, R4: C d

−→ A+p, ptot = p+C.

Employing the Langevin equation (4.9) of Section 4.1 and dividing both sides of
the equation to obtain concentrations, we obtain

dp
dt
= −aAp+d(ptot− p)+

1
√
Ω

(−
√

aApN3+

√

d(ptot− p)N4)
dA
dt
= βp−δA−aAp+d(ptot− p)+

1
√
Ω

(
√

βpN1−
√
δAN2−

√

aApN3+

√

d(ptot− p)N4),

in which N3 and N4 are the noises on the association and o the dissociation reac-
tions, respectively. Letting Kd = d/a, Γ1(t) = 1√

Ω
(−

√

aAp/KdN3+
√

d(ptot− p)N4),
and Γ2(t) = 1√

Ω
(
√
βpN1−

√
δAN2), we can rewrite the above system in the follow-

ing form:

dp
dt
= −aAp+d(ptot− p)+

√
dΓ1(t)

dA
dt
= βp−δA−aAp+d(ptot− p)+Γ2(t)+

√
dΓ1(t).

Since a,d ' δ,βp, this system displays two time scales. Denoting ε := δ/d and
defining y := A− p, the system can be further rewritten in standard singular pertur-
bation form (3.6):

ε
dp
dt
= −δAp/Kd+δ(ptot− p)+

√
ε
√
δΓ1(t)

dy
dt
= βp−δ(y+ p)+Γ2(t).
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By setting ε = 0 and assuming that ptot/Kd is sufficiently small, we obtain the
reduced system describing the dynamics of A as

dA
dt
= β

ptot
A/Kd+1

−δA+
1
√
Ω

(
√

βpN1−
√
δAN2) =: f (A,N1,N2).

The equilibrium point for this system corresponding to the mean values N1 = 0
and N2 = 0 of the inputs is given by

Ae =
1
2

(
√

K2
d +4βptotKd/δ−Kd).

The linearization of the system about this equilibrium point is given by

∂ f
∂A

∣
∣
∣
∣
∣Ae,N1=0,N2=0

= −β
ptot/Kd

(Ae/Kd+1)2+1
−δ =: −  δ,

b1 =
∂ f
∂N1

∣
∣
∣
∣
∣
Ae,N1=0,N2=0

=
1
√
Ω

√

βptot
Ae/Kd+1

, b2 =
∂ f
∂N2

∣
∣
∣
∣
∣
Ae,N1=0,N2=0

= −
√

δAe.

Hence, the frequency response to N1 is given by

Gc
AN1(ω) =

b1√
ω2+  δ2

.

In order to make a fair comparison between this response and that of the open
loop system, we need to make sure that the steady states of both systems are the
same. In order to do so, we set

β0 =
β

Ae/Kd+1
.

This can be attained by properly adjusting the strength of the promoter and of the
ribosome binding site.

As a consequence, b1 =
√

β0ptot/Ω. Since also  δ > δ, it is clear that Gc
AN1(ω) <

GAN1(ω) for all ω. This result implies that the negative feedback attenuates the
noise at all frequencies. The two frequency responses are plotted in Figure 6.2(a).

mRNA decay close to protein decay

In this case, we need to model the processes of transcription and translation sepa-
rately. Denoting mA the mRNA of A, the reactions describing the open loop system
modify to

R1: mA
β
−→mA+A, R2: A δ

−→ ∅, R5: p α−→mA+p, R6: mA
γ
−→ ∅,

while those describing the closed loop system modify to

R1: mA
β
−→mA+A, R2: A δ

−→ ∅,
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Figure 6.2: (a) Frequency response to noise N1(t) for both open loop and closed loop
for the model in which mRNA is assumed at its quasi-steady state. The parameters are
ptot = 10, Kd = 10, β = 0.001, δ = 0.01, Ω = 1, and β0 = 0.00092. (b) Frequency response
to noise N6(t) for both open loop and closed loop for the model in which mRNA decay is
close to protein decay. The parameters are ptot = 10, Kd = 10, α = 0.001, β = 0.01, γ = 0.01,
δ = 0.01, and α0 = 0.0618.

R3: A+p a
−→ C, R4: C d

−→ A+p,

R5: p α−→mA+p, R6: mA
γ
−→ ∅, ptot = p+C.

Employing the Langevin equation in terms of concentrations, and applying singular
perturbation as performed before, we obtain the dynamics of the system as

dmA

dt
= f (A)−γmA+

1
√
Ω

(
√

f (A)N5−
√
γmAN6)

dA
dt
= βmA−δA+

1
√
Ω

(
√

βmAN1−
√
δAN2),

in which N5 and N6 are the noise on the production reaction and decay reaction of
mRNA, respectively. For the open loop system f (A) = α0ptot, while for the closed
loop system

f (A) =
αptot

A/Kd+1
.

The steady state for the open loop system is given by

mo
e =
α0
γ
, Aoe =

α0β

γδ
.

Considering N6 to be the input of interest, the linearization of the system at this
equilibrium is given by

Ao =
(

−γ 0
β −δ

)

, Bo =
( √

γmo
e/Ω

0

)

.
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Letting K = β/(δKd), the steady state for the closed loop system is given by

Ace =
βme

δ
, mc

e =
1
2

(

−1/K +
√

(1/K)2+4αptot/(Kγ)
)

.

The linearization of the closed loop system at this equilibrium point is given by

Ac =
(

−γ −G
β −δ

)

, Bc =
( √

γmc
e/Ω

0

)

,

in which G = αptot/(Ace/Kd + 1)2 represents the contribution of the negative feed-
back. The larger the value of G the stronger the negative feedback.

In order to make a fair comparison between the two systems, we need to make
the steady states be the same. In order to do this, we can set α0 = α/(Ace/Kd + 1),
which can be done by suitably changing the strengths of the promoter and ribosome
binding sites.

The open loop and closed loop transfer functions are given by

Go
AN6

(s) =
β
√

γme/Ω

(s+γ)(s+δ)
,

and by

Gc
AN6

(s) =
β
√

γme/Ω

s2+ s(γ+δ)+γδ+G
,

respectively. By looking at these expressions, it is clear that the open loop transfer
function has two real poles, while the closed loop transfer function can have com-
plex conjugate poles when G is sufficiently large. As a consequence, noise N6 can
be amplified at sufficiently high frequencies. Figure 6.2(b) shows the correspond-
ing frequency responses for both the open loop and the closed loop system.

It is clear that the presence of the negative feedback attenuates noise with re-
spect to the open loop system at low frequency, but it amplifies it at higher fre-
quency. This is a very well known effect known as the “water bed effect”, according
to which negative feedback decreases the effect of disturbances at low frequency,
but it can amplify it at higher frequency. This effect is not found in first order mod-
els, as demonstrated by the derivations when mRNA is at the quasi-steady state.
This illustrates the spectral shift of the frequency response to intrinsic noise toward
the high frequency, as also experimentally demonstrated [6].

6.3 The Toggle Switch

The toggle switch is composed of two genes that mutually repress each other, as
shown in the diagram of Figure 6.3 [31]. We start by describing a simple model
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Figure 6.3: Nullclines for the toggle switch. By analyzing the direction of the vector field
in the proximity of the equilibria, one can deduce their stability as described in Section 3.1.

with no inducers. By assuming that the mRNA dynamics are at the quasi-steady
state, we obtain a two dimensional differential equation model given by

dA
dt
=

β

1+ (B/K)n
−δA,

dB
dt

=
β

1+ (A/K)n
−δB,

in which we have assumed for simplicity that the parameters of the repression
functions are the same for A and B.

The number and stability of equilibria can be analyzed by performing nullcline
analysis since the system is two-dimensional. Specifically, by setting dA/dt = 0 and
dB/dt = 0, we obtain the nullclines shown in Figure 6.3. In the case in which the
parameters are the same for both A and B, the nullclines intersect at three points,
which determine the steady states of this system.

The nullclines partition the plane into six regions. By determining the sign of
dA/dt and dB/dt in each of these six regions, one determines the direction in which
the vector field is pointing in each of these regions. From these directions, one
immediately deduces that the steady state for which A = B is unstable while the
other two are stable. This is thus a bistable system.

The system converges to one steady state or the other depending on the initial
condition. If the initial condition is in the region of attraction of one steady state,
it converges to that steady state. The 45 degree line divides the plane into the two
regions of attraction of the stable steady states. Once the system has converged
to one of the two steady states, it cannot switch to the other unless an external
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Figure 6.4: time traces for A(t) and B(t) when inducer concentrations u1 and u2 are changed.
In the simulation, we have n = 2, Kd,1 = Kd,2 = 1, K2 = 0.1, β = 1, and δ = 1. The inducers
are such that u1 = 10 for t < 100 and u1 = 0 for t ≥ 100, while u2 = 0 for t < 100 and u2 = 10
for t ≥ 100.

stimulation is applied that moves the initial condition to the region of attraction of
the other steady state.

In the toggle switch by [31], external stimulations were added in form of neg-
ative inducers for A and B. Let u1 be the negative inducer for A and u2 be the
negative inducer for B. Then, as we have seen in Section 2.3, the expressions of
the Hill functions need to be modified to replace A by A(1/(1+u1/Kd,1)) and B by
B(1/(1+u2/Kd,2)), in which Kd,1 and Kd,2 are the dissociation constants of u1 with
A and of u2 with B, respectively. We show in Figure 6.4 time traces for A(t) and
B(t) when the inducer concentrations are changed. Specifically, initially u1 is high
until time 100 while u2 is low until this time. As a consequence, A does not repress
B while B represses A. Accordingly, the concentration of A stays low until time
100 and the concentration of B stays high. After time 100, u2 is high and u1 is low.
As a consequence B does not repress A while A represses B. In this situation, A
switches to its high value and B switches to its low value.

6.4 The Repressilator

Elowitz and Leibler [27] constructed the first operational oscillatory genetic circuit
consisting of three repressors arranged in ring fashion, and coined it the “repres-
silator” (Figure 6.1d). The repressilator exhibits sinusoidal, limit cycle oscillations
in periods of hours, slower than the cell-division life cycle. Therefore, the state of
the oscillator is transmitted between generations from mother to daughter cells.

The dynamical model of the repressilator can be obtained by composing three
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transcriptional modules in a loop fashion. The dynamics can be written as

dmA

dt
= −δmA+ f1(C)

dA
dt
= mA−δA

dmB

dt
= −δmB+ f2(A)

dB
dt
= mB−δB

dmC
dt
= −δmC + f3(B)

dC
dt
= mC −δC,

where we take

f1(p) = f2(p) = f3(p) =
α2

1+ pn
.

This structure belongs to the class of cyclic feedback systems that we have studied
in Section 3.4. In particular, the Mallet-Paret and Smith theorem and Hastings the-
orem (see Section 3.4 for the details) can be applied to infer that if the system has
a unique equilibrium point and this is unstable, then it admits a periodic solution.
Therefore, we first determine the number of equilibria and their stability.

The equilibria of the system can be found by setting the time derivatives to zero.
We thus obtain that

A =
f1(C)
δ2
, B =

f2(A)
δ2
, C =

f3(B)
δ2
,

which combined together yield to

A =
1
δ2
f1

(

1
δ2
f3

(

1
δ2
f2(A)

))

=: g(A).

The solution to this equation determines the set of steady states of the system. The
number of steady states is given by the number of crossings of the two functions
h1(A) = g(A) and h2(A) = A. Since h2 is strictly monotonically increasing, we ob-
tain a unique steady state if h1 is monotonically decreasing. This is the case when
g′(A) = dg(A)

dA < 0. Otherwise, there could be multiple steady states. Since we have
that

sign(g′(A)) = Π3
i=1sign( f ′i (P)),

then ifΠ3
i=1sign( f ′i (P))< 0 the system has a unique steady state. We call the product

Π3
i=1sign( f ′i (P)) the loop gain.

Thus, any cyclic feedback system with negative loop gain will have a unique
steady state. It can be shown that a cyclic feedback system with positive loop gain
belongs to the class of monotone systems and hence cannot have periodic orbits
[62]. In the present case, system (6.4) is such that f ′i < 0, so that the loop gain is
negative and there is a unique steady state. We next study the stability of this steady
state by studying the linearization of the system.
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Figure 6.5: (a) Space of parameters that give rise to oscillations for the repressilator in
equation (6.4). (b) Period as a function of δ and α.

Letting P denote the steady state value of the protein concentrations for A, B,
and C, the linearization of the system is given by

J =





−δ 0 0 0 0 f ′1(P)
1 −δ 0 0 0 0
0 f ′2(P) −δ 0 0 0
0 0 1 −δ 0 0
0 0 0 f ′3(P) −δ 0
0 0 0 0 1 −δ





,

whose characteristic polynomial is given by

det(λI− J) = (λ+δ)6−Π3
i=1 f

′
i (P). (6.1)

In the case in which fi(P) = α2/(1+ pn) for i ∈ {1,2,3}, this characteristic polyno-
mial has a root with positive real part if the ratio α/δ satisfies the relation

α2/δ2 >
n

√

4/3
n−4/3

(

1+
4/3

n−4/3

)

.

For the proof of this statement, the reader is referred to [21]. This relationship
is plotted in Figure 6.5 (b).

When n increases, the existence of an unstable equilibrium point is guaranteed
for larger ranges of the other parameter values. Of course, this “behavioral” robust-
ness does not guarantee that other important features of the oscillator, such as the
period are not changed when parameters vary. Numerical studies indicate that the
period T approximatively follows T ∝ 1/δ, and varies little with respect to α (Fig-
ure 6.5b). From the figure, we see that as the value of δ increases, the sensitivity of
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the period to the variation of δ itself decreases. However, increasing δ would ne-
cessitate the increase of the cooperativity n, therefore indicating a possible tradeoff
that should be taken into account in the design process in order to balance the sys-
tem complexity and robustness of the oscillations. From a practical point of view,
n can be changed by selecting repressors that bind cooperatively to the promoter.
In practice, it is usually hard to obtain values of n greater than two.

A similar result for the existence of a periodic solution can be obtained for
the non-symmetric case in which the input functions of the three transcriptional
modules are modified to

f1(p) =
α2

3
1+ pn

, f2(p) =
α2pn

1+ pn
, f3(p) =

α2pn

1+ pn
.

That is, two interactions are activations and one only is a repression. Since the
loop gain is still negative, there is only one equilibrium point only. We can thus
obtain the condition for oscillations again by establishing conditions on the param-
eters that guarantee that at least one root of the characteristic polynomial (6.1) has
positive real part, that is,

(0.86)2n 3

√

pn3
(1+ pn3)(1+ pn2)(1+ pn1)

> 1. (6.2)

We rewrite p1 and p3 as functions of p2 by using two of the equilibrium rela-
tions:

p1 = n

√

p2

α2/δ2− p2
, p3 =

α2/δ2pn2
1+ pn2

.

Using these expressions in (6.2), we can find all possible values of p2 that satisfy
(6.2) for a fixed pair (α2/δ2,n). These values of p2 correspond to the possible values
of α2

3/δ
2 by means of the third equilibrium condition

α2
3/δ

2 = p1(1+ pn3).

For each pair (α2/δ2,n), we finally obtain all possible values of α2
3/δ

2 that satisfy
the equilibrium conditions and inequality (6.2). These conditions are reported in
Figure 6.6 (see [21] for the detailed derivations).

One can conclude that it is possible to “over design” the circuit to be in the
region of parameter space that gives rise to oscillations. In practice, values of n be-
tween one and two can be obtained by employing repressors that have coopearivity
higher than or equal to two. There are plenty of such repressors, including those
originally used in the repressilator design [27]. However, values of n greater than
two may be hard to reach in practice. It is also possible to show that increasing the
number of elements in the loop, the value of n sufficient for oscillatory behavior
decreases (see Exercises).
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Figure 6.6: Space of parameters that give rise to oscillations for the repressilator (non-
symmetric case). As the value of n is increased, the ranges of the other parameters for
which sustained oscillations exist become larger.

6.5 Activator-repressor clock

Consider the activator-repressor clock diagram shown in Figure 6.1(c). The tran-
scriptional module A has an input function that takes two inputs: an activator A and
a repressor B. The transcriptional module B has an input function that takes only
an activator A as its input. Let mA and mB represent the concentration of mRNA
of the activator and of the repressor, respectively. Let A and B denote the protein
concentration of the activator and of the repressor, respectively. Then, we consider
the following four-dimensional model describing the rate of change of the species
concentrations:

dmA

dt
= −δ1mA+F1(A,B),

dA
dt
= −δAA+β1mA,

dmB

dt
= −δ2rB+F2(A),

dB
dt
= −δBB+β2mB,
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A

BB
f(A,B) = 0

g(A,B) = 0

(a) n = 1

A

BB

f(A,B) = 0
g(A,B) = 0

(b) n = 2

Figure 6.7: Nullclines for the two-dimensional system of equation (6.5). (a) shows the only
possible configuration of the nullclines when n = 1. (b) shows a possible configuration of
the nullclines when n = 2. In this configuration, there is a unique equilibrium, which can
be unstable.

in which the functions F1 and F2 are Hill functions and given by

F1(A,B) =
K1An+KA0

1+ (A/k1)n+ (B/k2)m
, F2(A) =

K2An+KB0
1+ (A/k1)n

.

The Hill function F1 can be obtained through a combinatorial promoter, where
there are sites both for an activator and for a repressor (see Section 2.3).

Two-dimensional analysis

We first assume the mRNA dynamics to be at the quasi-steady state so that we can
perform two dimensional analysis and invoke the Poincarè-Bendixson theorem.
Then, we analyze the four dimensional system and perform a bifurcation study.

We let f1(A,B) := (β1/δ1)F1(A,B) and f2(A) := (β2/δ2)F2(A). For simplicity,
we also denote f (A,B) := −δAA+ f1(A,B) and g(A,B) := −δBB+ f2(A) so that the
two-dimensional system is given by

dA
dt
= f (A,B),

dB
dt

= g(A,B).

For simplicity, we assume m = 1 and ki = 1 for all i.
We first study whether the system admits a periodic solution for n = 1. To do

so, we analyze the nullclines to determine the number and location of steady states.
Denote  K1 = K1(β1/δ1),  K2 = K2(β2/δ2),  KA0 = KA0(β1/δ1), and  KB0 = KB0(β1/δ1).
Then, g(A,B) = 0 leads to

B =
 K2A+  KB0
(1+A)δA

,
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which is an increasing function of A. Setting f (A,B) = 0, we obtain that

B =
 K1A+  KA0−δAA(1+A)

δAA
,

which is a monotonically decreasing function of A. These nullclines are displayed
in Figure 6.7(a).

We see that we have one equilibrium only. To determine the stability of such
an equilibrium, we calculate the linearization of the system at such an equilibrium.
This is given by

J =





∂ f
∂A

∂ f
∂B

∂g
∂A

∂g
∂B





In order for the equilibrium to be unstable and not a saddle, it is necessary and
sufficient that tr(J) > 0 and det(J) > 0.

Graphical inspection of the nullclines at the equilibrium (see 6.7(a)), shows that

dB
dA

∣
∣
∣
∣
∣ f (A,B)=0

< 0.

By the implicit function theorem (Section 3.6), we further have that

dB
dA

∣
∣
∣
∣
∣ f (A,B)=0

= −
∂ f /∂A
∂ f /∂B

,

so that ∂ f /∂A < 0 because ∂ f /∂B < 0. As a consequence, we have that tr(J) < 0
and hence the equilibrium point is either stable or a saddle.

To determine the sign of det(J), we further inspect the nullclines and find that

dB
dA

∣
∣
∣
∣
∣g(A,B)=0

>
dB
dA

∣
∣
∣
∣
∣ f (A,B)=0

.

Again using the implicit function theorem we have that

dB
dA

∣
∣
∣
∣
∣g(A,B)=0

= −
∂g/∂A
∂g/∂B

,

so that det(J) > 0. Hence, the ω-limit set (Section 3.4) of any point in the plane
is not necessarily a periodic orbit. Hence, to guarantee that any initial condition
converges to a periodic orbit, we need to require that n > 1.

We now study the case n = 2. In this case, the nullcline f (A,B) = 0 changes and
can have the shape shown in Figure 6.7 (b). In the case in which, as in the figure,
there is an equilibrium point only and the nullclines intersect both with positive
slope (equivalent to det(J) > 0), the equilibrium is unstable and not a saddle if
tr(J) > 0, which is satisfied if

δB

∂ f1/∂A−δA
< 1.
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Figure 6.8: Effect of the trace of the Jacobian on the stability of the equilibrium. The
above plots illustrate the trajectories of system (6.5) for both Functional (tr(J) > 0) and
a Non-Functional (tr(J) < 0) Clocks. The parameters in the simulation are δ1 = δ2 = 1,
K1 = K2 = 100, KA0 = .04, KB0 = .004, δA = 1, β1 = β2 = 1, and k1 = k2 = 1. In the Functional
Clock, δB = 0.5 whereas in the Non-Functional Clock, δB = 1.5. Parameters K1 and K2
were chosen to give about 500-2000 copies of protein per cell for activated promoters.
Parameters KA0 and KB0 were chosen to give about 1-10 copies per cell for non-activated
promoters.

This condition reveals the crucial design requirement for the functioning of the
clock. Specifically the repressor B time scale must be sufficiently slower than the
activator A time scale. This point is illustrated in the simulations of Figure 6.8, in
which we see that if δB is too large, the trace becomes negative and oscillations
disappear.

Four-dimensional analysis

In order to specifically study time scale separation between activator and repressor
as a crucial design requirement for the clock, we perform a time scale analysis
employing bifurcation the tools described in Section 3.5. To this end, we consider
the following four-dimensional model describing the rate of change of the species
concentrations:

dmA

dt
= −δ1/ε mA+F1(A,B),

dA
dt
= ν(−δAA+β1/ε mA),

dmB

dt
= −δ2/ε mB+F2(A),

dB
dt
= −δBB+β2/ε mB.

This system is the same as system (6.5) where we have explicitly introduced two
parameters, ν and ε, which model time scale differences as follows. The parameter
ν regulates the difference of time scale between the repressor and the activator
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dynamics while ε regulates the difference of time scale between the mRNA and
the protein dynamics. The parameter ε determines how close model (6.5) is to the
two-dimensional model (6.5), in which the mRNA dynamics are considered at the
quasi-steady state. Thus, ε is a singular perturbation parameter (equations (6.5)
can be taken to standard singular perturbation form by considering the change of
variables mA = mA/ε and mB = mB/ε). The details on singular perturbation can be
found in Section 3.6.

The values of ε and of ν do not affect the number of equilibria of the system. We
then perform bifurcation analysis with ε and ν the two bifurcation parameters. The
bifurcation analysis results are summarized by Figure 6.9. The reader is referred to
[20] for the details of the numerical analysis. In terms of the ε and ν parameters, it is
thus possible to “over design” the system: if the activator dynamics are sufficiently
sped up with respect to the repressor dynamics, the system undergoes a Hopf bi-
furcation (Hopf bifurcation was introduced in Section 3.4) and stable oscillations
will arise.

From a fabrication point of view, the activator dynamics can be sped up by
adding suitable degradation tags to the activator protein. Similarly, the repressor
dynamics can be slowed down by adding repressor DNA binding sites (see Chapter
7 and the effects of retroactivity on dynamic behavior).

6.6 An Incoherent Feedforward Loop (IFFL)

Several genetic implementations of incoherent feedforward loops are possible [3].
Here, we describe an implementation proposed for making the steady state levels
of protein expression adapt to DNA plasmid copy number [13]. In this implemen-
tation, the input u is the amount of DNA plasmid coding for both the intermediate
regulator LacI (L) with concentration L and the output RFP (R) with concentration
R. The intermediate regulator LacI represses through transcriptional repression the
expression of the output protein RFP (Figure 6.10). The expectation is that the
steady state value of the RFP expression is independent of the concentration u of
the plasmid. That is, the concentration of RFP should adapt to the copy number of
its own plasmid.

In order to analyze whether the adaptation property holds, we write the differ-
ential equation model describing the system, assuming the mRNA dynamics are at
the quasi-steady state. This model is given by

dL
dt
= k0u−δL,

dR
dt
=

k1u
1+ (L/Kd)

−δR, (6.3)

in which k0 is the constitutive rate at which LacI is expressed and Kd is the dissoci-
ation constant of LacI from the operator sites on the lac promoter. This implemen-
tation has been called the sniffer in Section 3.2. The steady state of the system is
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Figure 6.9: Design chart for the relaxation oscillator. We obtain sustained oscillations past
the Hopf bifurcation point, for values of ν sufficiently large independently of the difference
of time scales between the protein and the mRNA dynamics. We also notice that there are
values of ν for which a stable equilibrium point and a stable orbit coexist and values of
ν for which two stable orbits coexist. The interval of ν values for which two stable orbits
coexist is too small to be able to numerically set ν in such an interval. Thus, this interval is
not practically relevant. The values of ν for which a stable equilibrium and a stable periodic
orbit coexist is instead relevant. This situation corresponds to the hard excitation condition
[58] and occurs for realistic values of the separation of time-scales between protein and
m-RNA dynamics. Therefore, this simple oscillator motif described by a four-dimensional
model can capture the features that lead to the long term suppression of the rhythm by
external inputs.

obtained by setting the time derivatives to zero and gives

L =
k0
δ
u, R =

k1u
δ+ k0u/Kd

.

From this expression, one can easily note that as Kd decreases, the denominator
of the right-side expression tends to k0u/Kd resulting into the steady state value
R = k1Kd/k0, which does not depend on the input u. Hence, in this case, adaptation
would be reached. This is the case if the affinity of LacI to its operator sites is
extremely high, resulting also in a strong repression and hence a lower value of
R. In practice, however, the value of Kd is non-zero, hence the adaptation is not
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u L R

LacI RFP 

u

Figure 6.10: (Left) The incoherent feedforward motif. (Right) A possible implementation
of the incoherent feedforward motif. Here, LacI (L) is under the control of a constitutive
promoter in amounts u, while RFP (R) is under the control of the lac promoter, also in
amounts u. Hence RFP is also activated by u as the RFP gene is found in amounts u just
like the LacI gene.

perfect. We show in Figure 6.11 the behavior of the steady state of R as a function
of the input u for different values of Kd. Ideally, for perfect adaptation, this should
be a horizontal line.

In this study, we have modeled protein L as binding with its promoter with no
cooperativity. If L is LacI, the cooperativity of binding is n = 4. We leave as an
exercise to show that the adaptation behavior persist in this case (see Exercises).

For engineering a system with prescribed behavior, one has to be able to change
the physical features so as to change the values of the parameters of the model.
This is often possible. For example, the binding affinity (1/Kd in the Hill function
model) of a transcription factor to its site on the promoter can be affected by sin-
gle or multiple base pairs substitutions. The protein decay rate can be increased by
adding degradation tags at the end of the gene expressing protein Y. Promoters that
can accept multiple input transcription factors (combinatorial promoters) to imple-
ment regulation functions that take multiple inputs can be realized by combining
the operator sites of several simple promoters [19].

Exercises

6.1 Consider the toggle switch:

Ȧ =
β

1+ (B/K1)n
−α1A, Ḃ =

γ

1+ (A/K2)m
−α2B.

Here, we are going to explore the parameter space that makes the system work as
a toggle. To do so, answer the following questions:

(a) Consider m = n = 1. Determine the number and stability of the equilibria.
(b) Consider m = 1 and n > 1 and determine the number and stability of the equi-
libria (as other parameters change).
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Figure 6.11: Behavior of the steady state value of y as a function of the input u.

(c) Consider m = n = 2. Determine parameter conditions on β,γ,α1,α2 for which
the system is bistable, i.e., there are two stable steady states.

6.2 Consider the “generalized” model of the repressilator in which we have m
repressors (with m an odd number) in the ring. Explore via simulation the fact that
when m is increased, the system oscillates for smaller values of the Hill coefficient
n.

6.3 Consider the oscillator design of Stricker et al. [90]. Build a four dimensional
model including mRNA concentration and protein concentration. Then reduce this
fourth order model to a second order model using the QSS approximation for the
mRNA dynamics. Then, investigate the following points:

(a) Use the Poincaré-Bendixson theorem to determine under what conditions the
system in 2D admits a periodic orbit.
(b) Simulate the four dimensional system and the two dimensional system for pa-
rameter values that give oscillations and study how close the trajectories of the 2D
approximation are to those of the 4D system.
(c) Determine whether the four dimensional system has a Hopf bifurcation (either
analytically or numerically).

6.4 Consider the feedforward circuit shown in Figure 6.11. Assume now to model
the fact that the cooperativity of binding of LacI to its promoter is 4. The model
then modifies to

dL
dt
= k0u−δL,

dR
dt
=

k1u
1+ (L/Kd)4 −δR. (6.4)

Show that the adaptation property still holds under suitable parameter conditions.
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