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Figure 5.5: Examples of chemotaxis. Figure from Phillips, Kondev and Theriot [34]; used
with permission of Garland Science.

5.4 Bacterial Chemotaxis

Chemotaxis refers to the process by which micro-organisms move in response to
chemical stimuli. Examples of chemotaxis include the ability of organisms to move
in the direction of nutrients or move away from toxins in the environment. Chemo-
taxis is called positive chemotaxis if the motion is in the direction of the stimulus
and negative chemotaxis if the motion is away from the stimulant, as shown in Fig-
ure 5.5. Many chemotaxis mechanisms are stochastic in nature, with biased random
motions causing the average behavior to be either positive, negative or neutral (in
the absence of stimuli).

In this section we look in some detail at bacterial chemotaxis, which E. coli use
to move in the direction of increasing nutrients. The material in this section is based
primarily on the work of Barkai and Leibler [8] and Rao, Kirby and Arkin [36].

Control system overview

The chemotaxis system in E. coli consists of a sensing system that detects the
presence of nutrients, and actuation system that propels the organims in its envi-
ronment, and control circuitry that determines how the cell should move in the
presence of chemicals that stimulate the sensing system. The approximate location
of these elements are shown in Figure ??.

The actuation system in the E. coli consists of a set of flagella that can be spun
using a flagellar motor embedded in the outer membrane of the cell, as shown
in Figure 5.6a. When the flagella all spin in the counter clockwise direction, the
individual flagella form a bundle and cause the organism to move roughly in a
straight line. This behavior if called a “run” motion. Alternatively, if the flagella
spin in the clockwise direction, the individual flagella do not form a bundle and the
organism “tumbles”, causing it to rotate (Figure 5.6b). The selection of the motor
direction is controlled by the protein CheY: if phosphorylated CheY binds to the



fbkexamps.tex, v1220 2010-03-04 14:33:31Z (murray)

5.4-2 CHAPTER 5. FEEDBACK EXAMPLES

counterclockwise
rotation (run)

ligand

flagellar
motor

b o

|- receptor

CheY clockwise

/

tumble P I
flagellar flagellum "§\h®%’ ':z?) %

— [ T————

(a) (b) ()

outer
membrane

inner
membrane

Figure 4.16¢ Physical Biology of the Cell (0 Garland Science 2009)

Figure 5.6: Bacterial chemotaxis. Figures from Phillips, Kondev and Theriot [34]; used
with permission of Garland Science.

motor complex, the motor spins clockwise (tumble), otherwise it spins counter-
clockwise (run).

Because of the size of the organism, it is not possible for a bacterium to sense
gradients across its length. Hence, a more sophisticated strategy is used, in which
the organism undergoes a combination of run and tumble motions. The basic idea
is illustrated in Figure 5.6¢c: when high concentration of ligand (nutrient) is present,
the CheY protein is left unphosphorylated and does not bind to the actuation com-
plex, resulting in a counter-clockwise rotation of the flagellar motor (run). Con-
versely, if the ligand is present then the molecular machinery of the cell causes
CheY to be phosphorylated and this modifies the flagellar motor dynamics so that a
clockwise rotation occurs (tumble). The net effect of this combination of behaviors
is that when the organism is traveling through regions of higher nutrient concen-
tration, it continues to move in a straight line for a longer period before tumbling,
causing it to move in directions of increasing nutrient concentration.

A simple model for the molecular control system that regulates chemotaxis is
shown in Figure 5.7. We start with the basic sensing and and actuation mechanisms.
A membrane bound protein MCP (methyl-accepting chemotaxis protein) that is
capable of binding to the external ligand serves as a signal transducing element
from the cell exterior to the cytoplasm. Two proteins, CheW and CheA, form a
complex with MCP. This complex can either be in an active or inactive state. In the
active state, CheA is autophosphorylated and serves as a phosphotransferase for



RMM: Obtain permission

fbkexamps.tex, v1220 2010-03-04 14:33:31Z (murray)

5.4. BACTERIAL CHEMOTAXIS 5.4-3

|\ Actuation

-

Ran, Kity and Ak
PLoS Biingy, 2064

Figure 5.7: Control system for chemotaxis. Figure from Rao ef al. [36] (Figure 1A).

two additional proteins, CheB and CheY. The phosphorylated form of CheY then
binds to the motor complex, causing clockwise rotation of the motor.

The activity of the receptor complex is governed by two primary factors: the
binding of a ligand molecule to the MCP protein and the presence or absence of
up to 4 methyl groups on the MCP protein. The specific dependence on each of
these factors is somewhat complicated. Roughly speaking, when the ligand L is
bound to the receptor then the complex is less likely to be active. Furthermore, as
more methyl groups are present, the ligand binding probability increases, allowing
the gain of the sensor to be adjusted through methylation. Finally, even in the ab-
sence of ligand the receptor complex can be active, with the probability increasing
with increased methylation. Figure 5.8 summarizes the possible states, their free
energies and the probability of activity.

Several other elements are contained in the chemotaxis control circuit. The most
important of these are implemented by the proteins CheR and CheB, both of which
affect the receptor complex. [?], which is constitutively produced in the cell, methy-
lates the receptor complex at one of the four different methylation sites. Conversely,
the phosphorylated form of CheB demethylates the receptor complex. As described
above, the methylation patterns of the receptor complex affect its activity, which in
turn affects the phosphorylation of CheA and, in turn, phosphorylation of CheY
and CheB. The combination of CheA, CheB and the methylation of the receptor
complex forms a negative feedback loop: if the receptor is active, then CheA phos-
phorylates CheB, which in turn demethylates the receptor complex, making it less
active. As we shall see when we investigate the detailed dynamics, this feedback
loop corresponds to an integral feedback law. This integral action allows the cell to
adjust to different levels of ligand concentration, so that the behavior of the system
is invariant to the absolute nutrient levels (this is explained in more detail below).
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Figure 5.8: Receptor complex states. The probability of a given state being in an active
configuration is given by p. Figure obtained from [?].

Modeling

The detailed reactions that implement chemotaxis are illustrated in Figure 2?2.
Letting T represent the receptor complex and T# represent an active form, the
basic reactions can be written as

TA+A=—=T"A — AP+T"”
AP +B = AP.B— A+BP BP+P=—BP.:P— B+P (5.6)
AP+Y = AP:Y — A+YP YP+Z =—YP:P — Y+P

where CheA, CheB, CheY and CheZ are written simply as A, B, Y and Z for
simplicity and P is a non-specific phosphotase. We see that these are basically
three linked sets of phosphorylation and dephosphorylation reactions, with CheA
serving as a phosphotransferase and P and CheZ serving as phosphotases.

The description of the methylation of the receptor complex is a bit more com-
plicated. Each receptor complex can have multiple methyl groups attached and the
activity of the receptor complex depends on both the amount of methylation and
whether a ligand is attached to the receptor site. Furthermore, the binding prob-
abilities for the receptor also depend on the methylation pattern. To capture this,
we use the set of reactions that are illustrated in Figure 5.10. In this diagram, T
represents a receptor that has i methylation sites filled) and ligand state s (which
can be either u if unoccupied or o if occupied). We let M represent the maximum
number of methylation sites (M = 4 for E. coli).

Using this notation, the transitions between the states correspond to the reac-
tions shown in Figures 5.7 and 5.9:

T!+BP == T"BP — T}, +BP i>0
T'+R=T'R— T}, +R i<M

i+1
Tiu+L S Tio
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Figure 5.9: Circuit diagram for chemotaxis.

We now must write reactions for each of the receptor complexes with CheA. Each
form of the receptor complex has a different activity level and so the most complete
description is to write a separate reaction for each T, and T," species:

Kl ke
i i
T +A=T"A — AP+T],
ke

where x € {o,u} and i =0,..., M. This set of reactions replaces the placeholder
reaction TA + A == T*:A — AP+ T4 used earlier.

RMM Include simulation results on the full model here

While the equations above give a fairly complete description of the reactions that Supplement
implement the chemotaxis control circuit, there are still many missing effects.

RMM Summarize some of the main features that are missing.
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Figure 5.10: Methylation model for chemotaxis. Figure from Barkai and Leibler [8] (Box
1). Note: the figure uses the notation E® for the receptor complex instead of T .
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Reduced-order models

The detailed model described above is sufficiently complicated that it can be dif-
ficult to analyze. In this section we develop a slightly simpler model that can be
used to explore the adaptation properties of the circuit, which happen on a slower
time-scale.

We begin by simplifying the representation of the receptor complex and its
methylation pattern. Let L(¢) represent the ligand concentration and 7; represent
the concentration of the receptor complex with i sides methylated. If we assume
that the binding reaction of the ligand L to the complex is fast, we can write the
probability that a receptor complex with i sites methylated is in its active state as a
static function «;(L), which we take to be of the form
oL K

ai(l) = ——+ 1=
Ki+L Kp+L

The coefficients @ and a; capture the effect of presence or absence of the ligand on
the activity level of the complex. Note that @; has the form of a Michaelis-Menten
function, reflecting our assumption that ligand binding is fast compared to the rest
of the dynamics in the model. Following [?], we take the coefficients to be

ap =0, a; =0.1, ar =0.5, a3 =0.75, as =1,

o __ o __ o __ o __ o __
ap =0, ay =0, a,=0.1, a;=0.5, a, =1.

and choose K;, = 10 uM.

The total concentration of active receptors can now be written in terms of the
receptor complex concentrations 7; and the activity probabilities «;(L). We write
the concentration of activated complex T# and inactivated complex T' as

4 4
TA = Za/,-(L)Ti, T! = Z(l — ()T

i=0 i=0
These formulas can now be used in our dynamics as an effective concentration of
active or inactive receptors, justifying the notation that we used in equation (5.6).

We next model the transition between the methylation patterns on the receptor.

We assume that the rate of methylation depends on the activity of the receptor
complex, with active receptors less likely to be demethylated and inactive receptors
less likely to be methylated [36, ?]. Let

PR P
rp = s IR = [l
B B TA R R K+ T1

represent rates of the methylation and demethylation reactions.f We choose the RMM: Talk more about
coefficients as where these come from

kp=0.5, Kp=5.5, krg=0255Kr=0.251,



fbkexamps.tex, v1220 2010-03-04 14:33:31Z (murray)

5.4. BACTERIAL CHEMOTAXIS 5.4-7

We can now write the methylation dynamics as

%Ti =rr(1 = @is1(L)Ti-1 + rpaiv1(L)Tivy — rr(1 = ai(L)T; — rpai(L)T;,
where the first and second terms represent transitions into this state via methylation
or demethylation of neighboring states (see Figure 5.10) and the last two terms
represent transitions out of the current state by methylation and demethylation,
respectively. Note that the equations for Ty and T are slightly different since the
demethylation and methylation reactions are not present, respectively.

Finally, we write the dynamics of the phosphorylation and dephosphorylation
reactions, and the binding of CheY? to the motor complex. Under the assumption
that the concentrations of the phosphorylated proteins is small relative to the total
protein concentration, we can approximate the reaction dynamics as

d
EAP =50T*A—-100APY —30APB,

d
EYP =100A”Y —0.1Y? = 5[M]Y? + 19[M:YP] - 30Y?,

d
—BP =30A”B- B?,
dt

C%[M:Yp] =5[M]Y? — 19[M:YP].

The total concentrations of the species are given by

A+AP=5nM,  B+B/=2nM,  Y+YP+[M:YP]=179nM,
[M]+[M:YP]=58nM, R=02nM, X},7:=5nM.

The reaction coeflicients and concentrations are taken from Rao et al [36].

Figure 5.11a shows a the concentration of the phosphorylated proteins based on
a simulation of the model. Initially, all species are started in their unphosphorylated
and unmethylated states. At time 7 = 500 s the ligand concentration is increased to
L =10 uM and at time 7 = 1000 it is returned to zero. We see that immediately after
the ligand is added, the CheY P concentration drops, allowing longer runs between
tumble motions. After a short period, however, the CheY P concentration adapts to
the higher concentration and the nominal run versus tumble behavior is restored.
Similarly, after the ligand concentration is decreased the concentration of CheY?
increases, causing a larger fraction of tumbles (and subsequent changes in direc-
tion). Again, adaptation over a longer time scale returns that CheY concentration
to its nominal value.

Figure 5.11b helps explain the adaptation response. We see that the average
amount of methylation of the receptor proteins increases when the ligand concen-
tration is high, which decreases the activity of CheA (and hence decreases the

RMM: Say more phosphorylation of CheY).}
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Figure 5.11: Simulation and analysis of reduced-order chemotaxis model.

A simpler model can be obtained by ignoring the detailed methylation pattern Supplement
completely. We can do this by modeling the entire receptor complex as a single
species T that exists in an active state T* and an inactive state T'. We then keep
track of the total methylation M, which is modulated by CheR and CheB, and use
this to modulate the amount of active and inactive receptor complex, as shown in
Figure 5.12.

Figure out Barkai, Leibler paper and summarize here (including simulations). RMM

Supplement

Integral action

The perfect adaptation mechanism in the chemotaxis control circuitry has the same
function as the use of integral action in control system design: by including a feed-
back on the integral of the error, it is possible to provide exact cancellation to
constant disturbances. In this section we demonstrate that a simplified version of
the dynamics can indeed be regarding as integral action of an appropriate signal.
This interpretation was first pointed out by Yi ef al [?].
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Figure 5.12: Reduced-order model for chemotaxis. Figure from Barkai and Leibler [8]
(Figure 1).
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