Bibliography

Molecular Systems Biology, 7:519, 2011.

Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω-limit point</td>
<td>121</td>
</tr>
<tr>
<td>ω-limit set</td>
<td>121–123, 186</td>
</tr>
<tr>
<td>absolute activator</td>
<td>71–73</td>
</tr>
<tr>
<td>acceptor</td>
<td>79, 234</td>
</tr>
<tr>
<td>acetylation</td>
<td>74</td>
</tr>
<tr>
<td>activation</td>
<td>45, 55, 57, 60, 71, 73, 87, 88, 110, 114, 135, 169, 171, 182, 222, 243, 245, 252</td>
</tr>
<tr>
<td>allosteric activation</td>
<td>70–73</td>
</tr>
<tr>
<td>in activator-repressor clock</td>
<td>136, 184–189, 203, 207, 237, 241</td>
</tr>
<tr>
<td>in combinatorial promoters</td>
<td>143</td>
</tr>
<tr>
<td>reaction model</td>
<td>62, 64–66</td>
</tr>
<tr>
<td>actuators</td>
<td>20</td>
</tr>
<tr>
<td>adaptation</td>
<td>10, 107–110, 135, 189, 190, 199, 204</td>
</tr>
<tr>
<td>adenine</td>
<td>45, 48</td>
</tr>
<tr>
<td>adenosine triphosphate, see also ATP</td>
<td></td>
</tr>
<tr>
<td>adenosine triphosphate (ATP),</td>
<td>38</td>
</tr>
<tr>
<td>aequorea victoria</td>
<td>24</td>
</tr>
<tr>
<td>aerospace systems</td>
<td>15</td>
</tr>
<tr>
<td>affinity</td>
<td>40, 73, 170, 190, 212, 232</td>
</tr>
<tr>
<td>AHL, 171</td>
<td></td>
</tr>
<tr>
<td>allosteric regulation</td>
<td>56, 62, 70–74</td>
</tr>
<tr>
<td>amino acid</td>
<td>48, 51–52, 74, 171</td>
</tr>
<tr>
<td>amplification</td>
<td>205, 221–227, 243, 253, 257</td>
</tr>
<tr>
<td>amplifier</td>
<td>14, 18, 169</td>
</tr>
<tr>
<td>amplitude of response</td>
<td>98–100, 212, 213, 255</td>
</tr>
<tr>
<td>antibiotic</td>
<td>23–25</td>
</tr>
<tr>
<td>antitermination</td>
<td>60–61</td>
</tr>
<tr>
<td>arabinose</td>
<td>171</td>
</tr>
<tr>
<td>association rate constant</td>
<td>39, 62, 207</td>
</tr>
<tr>
<td>asymptotic stability</td>
<td>91, 92, 96, 97</td>
</tr>
<tr>
<td>asynchronous</td>
<td>50</td>
</tr>
<tr>
<td>aTc, 58, 171</td>
<td></td>
</tr>
<tr>
<td>ATP, 9, 15, 38, 74, 75, 79, 110</td>
<td></td>
</tr>
<tr>
<td>attenuation</td>
<td>103, 213</td>
</tr>
<tr>
<td>attractant</td>
<td>191–193</td>
</tr>
<tr>
<td>attractor (equilibrium point)</td>
<td>92</td>
</tr>
<tr>
<td>autocatalysis</td>
<td>119</td>
</tr>
<tr>
<td>autophosphorylation</td>
<td>193</td>
</tr>
<tr>
<td>autopilot</td>
<td>15, 16</td>
</tr>
<tr>
<td>autoregulation</td>
<td>66–68, 94, 98, 165, 171–177, 203, 240</td>
</tr>
<tr>
<td>back-effect</td>
<td></td>
</tr>
<tr>
<td>retroactivity</td>
<td>208</td>
</tr>
<tr>
<td>bacteria</td>
<td>22, 57, 191</td>
</tr>
<tr>
<td>bandwidth</td>
<td>98–100, 255</td>
</tr>
<tr>
<td>effect of retroactivity</td>
<td>213, 218–219</td>
</tr>
<tr>
<td>in a covalent modification cycle</td>
<td>133</td>
</tr>
<tr>
<td>basal expression rate</td>
<td>64–69, 87, 183</td>
</tr>
<tr>
<td>base</td>
<td>26, 45</td>
</tr>
<tr>
<td>base-pair</td>
<td>48, 50, 54, 170, 190</td>
</tr>
<tr>
<td>Bell Labs</td>
<td>14</td>
</tr>
<tr>
<td>Bendixson’s criterion</td>
<td>121, 135, 136</td>
</tr>
<tr>
<td>bifurcation</td>
<td>124–127</td>
</tr>
<tr>
<td>Hopf, see Hopf bifurcation</td>
<td></td>
</tr>
<tr>
<td>Hopf bifurcation</td>
<td>187–189</td>
</tr>
<tr>
<td>bifurcation diagram</td>
<td>125</td>
</tr>
<tr>
<td>bimodality</td>
<td>7</td>
</tr>
<tr>
<td>binding</td>
<td></td>
</tr>
<tr>
<td>competitive</td>
<td>42, 68, 86</td>
</tr>
<tr>
<td>cooperative</td>
<td>40, 68, 86, 241</td>
</tr>
<tr>
<td>of RNA polymerase</td>
<td>61–66, 142</td>
</tr>
<tr>
<td>reaction</td>
<td>39, 215, 248</td>
</tr>
<tr>
<td>reactions</td>
<td>72, 129, 208</td>
</tr>
<tr>
<td>receptor-ligand</td>
<td>193–202</td>
</tr>
<tr>
<td>site</td>
<td>189, 248</td>
</tr>
<tr>
<td>biobrick</td>
<td>26</td>
</tr>
<tr>
<td>biofuels</td>
<td>22</td>
</tr>
<tr>
<td>biological circuits</td>
<td>4, 22–28, 169–191, 206, 243</td>
</tr>
<tr>
<td>repressilator</td>
<td>24</td>
</tr>
<tr>
<td>birth process</td>
<td>154</td>
</tr>
<tr>
<td>bistability</td>
<td>6, 25</td>
</tr>
<tr>
<td>bistable</td>
<td>125</td>
</tr>
<tr>
<td>Black, H. S., 14, 16</td>
<td></td>
</tr>
<tr>
<td>block diagonal systems</td>
<td>96</td>
</tr>
</tbody>
</table>
Bode plot, 100, 102
Boltzmann constant, 31
buffer, 213, 250
burst, 119

CAP, 59
cascade, 136
 MAPK, 81–86, 227
 of covalent modification cycles, 169
 of phosphorylation cycles, 74
 of transcriptional activators, 86
 signaling cascade, 9, 10
catalytic rate constant, 43, 77, 230
catalytic site, 71
CDKs, see cyclin dependent kinases
center (equilibrium point), 93
center manifold, 127
central dogma, 45–50
characteristic curve, 77, 214–217, 240
characteristic polynomial, 95, 181
CheA kinase, 26, 193, 200
CheB protein, 193
chemical kinetics, 30, 32–34, 144
chemical Langevin equation, 36, 150–152, 167, 173, 253
chemical master equation, 144–150
chemotaxis, 9, 191
CheW protein, 193
circadian rhythm, 114–117
circuit motifs, 109, 170
circuits
 activator-repressor clock, 184–189
 chemotaxis, 191–202
 incoherent feedforward loop, 189
 insulation device, 222–227, 229–235
 interconnection of, 236–238
 repressilator, 180–184
 toggle switch, 177–180
clock
 activator-repressor, 184–189, 203, 207, 236, 241
 repressilator, 180–184
cloning, 23
closed complex, 45, 147
closed loop, 12, 14, 101, 102, 105, 172
 versus open loop, 12
coding region, 45–47, 170
coefficient
 Hill, 41, 183, 203
 of variation, 150
 response, 77, 216
 coherent feedforward loop, 69
 combinatorial promoter, 58, 68, 87, 142, 184, 191
 competitive binding, see binding
 competitive inhibition, 70, 88
 complexity, of control systems, 17
 concentration, 34
 conservation, 229, 241
 of DNA, 63, 251
 of enzyme, 72, 81
 of protein, 83, 98, 197, 215
 of RNA polymerase, 246
 of species, 37, 43
 context-dependence, 256
 contracting, 112
 contracting system, 112
 control, 11, 20, 108
 early examples, 14
 in chemotaxis, 191
 in post-transcriptional regulation, 74
 control matrix, 22
 control signal, 20
 cooperative, 41
 cooperative binding, see binding
 cooperativity, 41, 68, 183, 204
 coordinate transformations, 96
COPASI, 107
copy number
 of plasmid, 170, 189, 249
 covalent modification, 38, 74, 133
 in insulation devices, 227
 model, 74–79
 retroactivity effects, 214
crosstalk, 17, 133, 243
cruise control, 13–14
 robustness, 14
Curtiss seaplane, 16
cut-off frequency, 98
cycle
 cell cycle, 114
 limit, see limit cycle
 modification, see covalent modification
 phosphorylation, see phosphorylation
cyclic AMP, 58
cyclic feedback system, 123, 180–184
cyclin dependent kinases, 114
cyclins, 114
cytoplasm, 45
decay
 of a protein, 53, 130, 133
 rate, 171, 172
degradation, 75, 222, 253
 effect on repressilator, 184
 model, 37, 53–55
 of mRNA, 52, 102
tag, 37, 171, 173, 189, 190
delay
 in protein production, 53–54, 87
 in transcriptional regulation, 87
 load-induced, 228
demand for resources, 243
density
 probability, 152, 155
dephosphorylation, see phosphorylation
 design
 of circuits, see biological circuits
 of dynamics, 15–16, 97
 of insulation devices, see insulation device
device, see insulation device
diagonal systems, 95
 transforming to, 96
differential equation, see ordinary differential equation (ODE)
diffusion
 of protein along DNA, 49
 of RNA polymerase along DNA, 50
term, 152
dilution, 53–55, 240
 model, 53–55
 rate, 184
dimer, 40, 56, 86
dimerization, 40, 129
direct term, 22
dissociation constant, 40, 71, 73, 179, 190, 195, 203
 of inducer, 65
 of RNA polymerase, 48, 49, 63
 of transcription factor, 49, 68, 212, 248, 249, 252
dissociation rate constant, 39, 43, 210, 252
distribution
 Poisson, 155
 probability, 148, 150, 152, 154
disturbance, 5, 17, 21, 134, 166
 adaptation to, 199
 limitations, 134
 response to, 101
 disturbance attenuation, 111
 in biological systems, 102
 in retroactivity, 220
disturbance rejection, 108, 111
DNA, 45–46
 ligase, 23
 looping, 56
donor
 of phosphate, see phosphate donor
doubling time, 248
drift term, 152
duplication, 114
dynamical systems, 12, 89
 linear, 95
dynamics matrix, 22, 96
E. coli
 as a cell chassis, 169
 cell division time, 114
 characteristic concentrations, 248
 characteristic rates, 49
 chemotaxis, 191
 sigma factors, 57
 economic systems, 17
 effective load, 212, 216, 240
eigenvalues, 95, 96
 eigenvector, 95, 96
 electrical circuits, 4
 electrical engineering, 18–20
 elongation
 in transcription, 50
 in translation, 51
 TEC, 47
 energy level
 in receptor complex, 193
 of microstates, 31, 140–144
engineered circuits, 26
 entropy, 140
 enzymatic reaction, 43–44, 71, 130
 enzyme, 43, 130, 137
 kinase, see kinase
 phosphatase, see phosphatase
RNA polymerase, see RNA polymerase
RNase, see RNase
equilibrium point, 90–93, 95
bifurcations of, 124
for planar systems, 92
region of attraction, 92
eukaryotes, 45, 51, 74
exons, 47
expected value, 158
expression, see gene expression
extrinsic noise, 8
gain, 100
in high gain feedback, see feedback
in integral feedback, 108
loop, 123
of a frequency response, 100
zero frequency, 100
Gaussian distribution, 165
Gaussian random variable, 151
Gaussian white noise, 152, 167, 254
gene, 45–46
gene expression, 44–55
Genetic circuits, see biological circuits
Genetic switch, 25
genome, 22
GFP, 24, 171
Gillespie algorithm, 157
global behavior, 92
globally stable system, 92
glucose, 60
glycolytic oscillations, 119, 127
glycolysis, see glycolytic oscillations
green fluorescent protein, see GFP
growth rate, 53, 246, 248
half-life, 49, 172
harmonic oscillator, 117–119
heat shock, 57, 58
heteroclinic orbit, 119, 123
high-copy plasmid, see plasmid
Hill coefficient
in MAPKKK cascade, 85
Hill function, 41, 86, 129
for a repressor, 63
for an activator, 65
response coefficient, 77
homeostasis, 109
homoclinic orbit, 118
Hopf bifurcation, 125–127, 188
hysteresis, 18
impedance in biomolecular systems, 208
implicit function theorem, 128
impulse response, 160
independent random variables, 151
inducers, 58, 65–66
inducible promoter, 227
inhibition
allosteric inhibition, 71–72

factor, see transcription factor
feedback, 12–18, 22, 67, 94, 97, 102, 106, 115, 171, 177
as technology enabler, 16
drawbacks of, 13, 16
high gain, 111–112, 220
in biomolecular systems, 5, 7
in cruise control, 14
in oscillator, see cyclic feedback system
integral, see integral feedback
limitations of, 134
robustness through, 13
versus feedforward, 17
versus retroactivity, 209
feedforward, 17
feedforward loop, 69, 108–111
circuit, 189, 204
filter
low-pass, 98
noise filtering, 173, 255
first-order kinetics, 44
flagella, 10, 191–192
flagellar motor, 191
flight control, 15
fluorescent reporters, 24, 171
Fokker-Planck equation, 152–153
fold-change detection, 112–113
folding of a protein, 48, 51
forward Kolmogorov equation, 145
Fourier transform, 163, 164
fragmentation of DNA, 23
frequency response, 19–21, 98–101, 133, 134, 173–177, 203
effects of retroactivity, 213–214
fusion of proteins, 171
input/output models, 18, 20, 21
inputs, 21
insulation device, 219–235
insulin production, 22
integral feedback, 108–109, 135, 193
interconnection of systems, 205
intrinsic noise, 8, 177
invariant region, 122
IPTG, 58, 171
irreversible reaction, 77
isolated system, 209
isomerization, 45, 50, 62, 65

Jacobian matrix, 97, 181, 186, 202
jellyfish, 24, 171

Kelvin degrees, 31
kinase, 38, 74, 75, 81, 88, 133, 225, 236
Kolmogorov equation, 145
Kozak sequence, 48

Lacl (Lac repressor), 60
lactose, 58
Langevin equation, see chemical Langevin equation
Laplace transforms, 19
leakiness of transcription, 62, 64, 87
leucine, 59
ligand, 10, 27, 74, 193
ligation, 23
limit cycle, 116–123, 125, 135, 180, 183, 188, 241
limitations in design, 135
linear time-invariant systems, 19, 22, 94
load, 206, 216, 249
robustness to, 235
load-induced delay, see delay
loading in biological circuits, 205
local behavior, 92, 97
low-pass filter, see filter
lysine, 74
lysis/lysogeny, 25

macrostate, 31, 141, 143
magnitude (of frequency response), 99, 100
MAPK cascade, 81–86
maturation time, 48, 49
mature mRNA, 48
mean, 150, 153, 160, 166
measured signals, 20–22
mechanics, 20
membrane-bound protein, 193
memory, 6
messenger RNA (mRNA), 47, 49
metabolic burden, 256
metabolic network, 119
metabolism, 8
methylation, 74
in bacterial chemotaxis, 194
methylation reaction rates, 198, 201
methylation reactions, 195, 201
Michaelis-Menten constant, 43, 72
and ultrasensitivity, 79
Michaelis-Menten kinetics, 44, 72
and quasi-steady state approximation, 132
in double phosphorylation, 82
in methylation, 201
micro-RNA, 110
microstate, 30, 140–144, 154
mitogen activated protein kinase (MAPK), 81
mitosis, 114
model reduction, see reduction of models
in retroactivity analysis, 240
model uncertainty, 6
modeling
chemotaxis, 194
chemical reactions, 29
input/output modeling, 205
stochastic systems, 139
modeling simplified models, use of, 21
modification
allosteric, see allosteric regulation
covalent, see covalent modification
modular interconnection, 205
modularity, 16, 26, 206
modularity assumption
in circuit design, 206
validity, 212
molecular dynamics, 30
motor, see flagellar motor
mRNA degradation, see degradation
production, 50
translation, 51
multistable, 125
mutations, 7

negative autoregulation, see autoregulation
negative chemotaxis, 10, 191
negative inducer, 58, 65, 171, 179
networking, 4
neutral stability, 91, 93
neutrophil, 110
noise
extrinsic, see extrinsic noise
intrinsic, see intrinsic noise
noise filtering, see filter
noise intensity, 160
non-absolute activator, 71, 88
nonlinear systems, 21, 97, 124
linear approximation, 97
nucleotides, 45
nullcline analysis, 93–94
of the activator-repressor clock, 185
of the toggle switch, 177
nut region, 61
Nyquist plot, 101

observability, 21
one-step reaction model
in enzymatic reactions, 231
in gene expression, 257
in phosphorylation, 77, 88, 196, 241
open complex, 45, 50, 62, 146
open loop, 12
operator, 61, 236
operator region, 55
operator sites, 191, 241
operon, 56
lac, 25, 56
orbit, 117
heteroclinic, see heteroclinic orbit
homoclinic, see homoclinic orbit
periodic, 117, 125, 181, 186, 189
order, of a system, 21
ordinary differential equation (ODE), 35
Ornstein-Uhlenbeck process, 159, 162
oscillations, see limit cycle
oscillator
activator-repressor clock, 189
harmonic, see harmonic oscillator
in glycolysis, 127
loaded, 210
loop, 183
natural, 114
repressilator, 170
with two genes, 136

p53, 59
parametric stability, see bifurcation
parametric uncertainty, 103–107
partition function, 31, 141, 144
pathway
chemotaxis, 199
metabolic, 9
signal transduction, 81
signaling, 9
weakly activated, 226
PCR amplification, 23
periodic orbit, see orbit
perturbation
attenuation, see attenuation
sensitivity to, see sensitivity
singular, see singular perturbation
phage λ, 61
phase lag, 99, 100, 213
phase portrait, 91, 118, 124
phenotype, 4
phosphatase, 74, 75, 99, 226, 241, 257
phosphate donor, 79, 233
phosphate group, 9, 38, 74, 75, 79
phosphorylation, 74, 88, 98, 133, 134, 241, 257
double, 81
in chemotaxis, 194
in insulation devices, 225, 229
in MAPKKK cascade, 81
reactions, 38
system model, 76
phosphotransfer
in chemotaxis, 198
in insulation devices, 233
model, 79–81, 88
PI control, 13
pitchfork bifurcation, 125, see bifurcation
planar dynamical systems, 92
plasmid, 23, 170, 189, 212, 247
Poincaré-Bendixson theorem, 122, 185
INDEX

Poisson distribution, 150
poles, 101
PoPS, 206
portrait, see phase portrait
positive autoregulation, 66, 114
positive chemotaxis, 10, 191
positive feedback, 18, see also positive autoregulation
positive inducer, 58, 65, 171
post-transcriptional regulation, 70–81
power spectral density function, 163
pre-mRNA, 48
probability density function, 152
probability of a microstate, 31, 140, 154, 229, 235, 261, 267, 283, 298, 310, 321, 344
probability of a reaction, 35
process control, 4
product of enzymatic reaction, 71
production of proteins, see central dogma
promoter, 46
propensity function, 32, 145
protease, 37
in insulation devices, 222
pyruvate, 119
quasi-steady state, 63, 65, 72, 81, 85, 129, 171, 174, 185, 190, 195, 212, 227, 246
quasi-steady state approximation, 43, 132
queuing, 52, 249
random, see Gaussian random variable
rate, see reaction rate
reachability, 21
reaction
bimolecular, 33, 35, 146, 166
unimolecular, 33, 145, 154
reaction kinetics, 30
reaction models
enzymatic reaction, see two-step reaction model
gene expression, 50–52
transcriptional regulation, 61–70
reaction rate, 37
reaction rate equations, 34–39
receptor, 193
recombinant DNA, 22
recruitment model, 62
reduction of models, 127–133, 174
in clocks, 188
in phosphorylation, 136
in retroactivity analysis, 211, 224, 241
in the design of insulation devices, 228
regulation
in post-transcriptional regulation, see post-transcriptional regulation
in transcriptional regulation, see transcriptional regulation
rejection, see disturbance rejection
repellent, 191
reporter genes, 170
repressilator, 24, see clock
repression, 55–57, 86, 87, 114, 136, 141, 143, 146, 170, see LacI (Lac repressor)
in activator-repressor clock, 184, 237, 241
in combinatorial promoters, 143
in repressilator, 180
leaky, 87
model, 62
resource, 243
restriction enzymes, 22
retroactivity, 206–209
in gene circuits, 209–214
in signaling systems, 214–219
retroactivity attenuation, 219–235, 243, 257
rhythm, see circadian rhythm
ribosome, 46
ribosome binding site, 46–54, 67, 170, 175, 191
ribosome binding site (RBS), 46
RNA polymerase, 30, 45, 55, 141, 148
and repressor, 146
competition for, 243–253
in transcription reactions, 50
in transcriptional regulation, 61–65
RNase, 52
robustness, 13–14, 103–113, 134, 235
saddle (equilibrium point), 92, 118, 122, 186
saddle node bifurcation, 125
scale invariance, 112–113
screening, 23
self-repression, 105
sensing system, 8
in chemotaxis, 191, 193
sensitivity
in covalent modification, 77–79
in covalent modification cycles, 214
in the MAPKKK cascade, 84
in the repressilator, 183
in transcriptional regulation, 102
to perturbations, 103–107, 134
sensor matrix, 22
separation
of time scales, 187, 211, 229
separatrix, 93
serine, 74
Shine-Dalgarno, 46
sigma factors, 57
sigmoidal stimulus response, 84
signaling
intracellular, 81
signaling cascades, 86
signaling molecule, 5, 74, 171
signaling system, 8
retroactivity in, see retroactivity
simulation of stochastic systems, 154–157
single-cell microscopy, 2
singular perturbation, 127–133
sink (equilibrium point), 92
slow manifold, 128, 133, 137, 211, 217, 228, 241
sniffer, 110, 135, 190
source (equilibrium point), 92
specific binding, 248
spectral shift, 177
stability, 15, 90
asymptotic stability, 91, 97
in the sense of Lyapunov, 91
local versus global, 92
neutrally stable, 91, 93
of a system, 95
of equilibrium points, 90–98
of linear systems, 94–97
of solutions, 91
unstable solutions, 92
using linear approximation, 97
start codon, 46, 48
state, of a dynamical system, 20, 21
state space, 18, 21, 35
state vector, 21
statistical mechanics, 30–32, 139–144
steady state characteristic, see characteristic curve
steady state response, 99, 162
step input, 19
step response, 19, 20
in transcriptional components, 211
of a covalent modification cycle, 218
stochastic linear systems, 157–164
stochastic simulation algorithm, 157
stochastic systems models, see modeling
stoichiometry matrix, 37, 145, 229
stop codon, 46, 48, 51
subcritical Hopf bifurcation, see bifurcation
substrate, 38, 43, 70, 85, 130
supercritical Hopf bifurcation, see bifurcation
superposition, 19
switch-like response, 77
switching behavior, 18
synthesis of proteins, see central dogma
synthetic biology, 22–28, 170–171
system state, 141
systems biology, 1–8
termination of transcription, 45, 50
termination region, 46
terminator, 46
tetracycline, 24
thermodynamics, 30, 139
threonine, 74
time-invariant systems, 21
toggle switch, see circuits
tradeoffs in design, 232, 243–257
transcription, 44–55
transcription factor, 55
transcriptional regulation, 55–70, 105, 136
transcritical bifurcation, 125, see bifurcation
transfection, 23, 170
transfer function, 100
transformation, 23, 170
translation, 44–55
tRNA, 48
tryptophan, 109
tumor suppressor, 59
two-step reaction model, 75
tyrosine, 74
ubiquitination, 75
ultrasensitive response, 78
effects of retroactivity, 214
uncertainty, 13–14, 21, see parametric uncertainty
disturbances and noise, 21
unidirectional transmission, 85
unmodeled dynamics, 6, 107
unstable solution, for a dynamical system, 92, 97
uracil, 46
uridylylation, 214
viral DNA, 59
virus, 7
waterbed effect, 177
white noise, 160, 163
Wright, W., 15
yeast, 7, 28
zero frequency gain, 100
zero-order kinetics, 44
zero-order ultrasensitivity, 78, 84
zeros, 101
zinc finger, 59