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Chapter Eight

Transfer Functions

The typical regulator system can frequently be described, in essentadfférential equa-
tions of no more than perhaps the second, third or fourth order. . .ohtrast, the order of
the set of differential equations describing the typical negative feedbaghifeer used in
telephony is likely to be very much greater. As a matter of idle curiosity, ¢ aocnted to
find out what the order of the set of equations in an amplifier | had jusigded would have
been, if | had worked with the differential equations directly. It turnedtodtte 55.

Hendrik Bode, 1960 [Bod60].

This chapter introduces the concept of ttamsfer functionwhich is a compact
description of the input/output relation for a linear systeCombining transfer
functions with block diagrams gives a powerful method foaldey with complex
linear systems. The relationship between transfer funstiom other descriptions
of system dynamics is also discussed.

8.1 Frequency Domain Modeling

Figure 8.1 is a block diagram for a typical control system,sisting of a process
to be controlled and a controller that combines feedbackfeedforward. We
saw in the previous two chapters how to analyze and desigm sygtems using
state space descriptions of the blocks. As mentioned in €h&p an alternative
approach is to focus on the input/output characteristitise$ystem. Since it is the
inputs and outputs that are used to connect the systemspatteexpect that this
point of view would allow an understanding of the overall &ebr of the system.

i Reference Feedback d Process n
' shaping controller, dynamics
ro e ru 1% n y
— F C P -
l -1 |-
! Controller |

Figure 8.1: A block diagram for a feedback control system. The reference lsigisafed
through a reference shaping block, which produces the signal thdienithcked. The error
between this signal and the output is fed to a controller, which producesgbeto the
process. Disturbances and noise are included as external signadsi@pub and output of
the process dynamics.
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Transfer functions are the main tool in implementing thigpof view for linear
systems.

The basic idea of the transfer function comes from lookinghatftequency
response of a system. Suppose that we have an input signéd frexiodic. Then
we can decompose this signal into the sum of a set of sinesasites,

u(t) = i ay sin(kawt) 4 b cogkat),
K=0

where w is the fundamental frequency of the periodic input. Each eftdrms
in this input generates a corresponding sinusoidal outpustéady state), with
possibly shifted magnitude and phase. The gain and phaselafreguency are
determined by the frequency response given in equatiod)5.2

G(s) =C(sl—A)"1B+D, (8.1)

where we ses= i(kw) for eachk = 1, ..., % andi = /—1. If we know the steady-
state frequency respon€gs), we can thus compute the response to any (periodic)
signal using superposition.

The transfer function generalizes this notion to allow a desalass of input
signals besides periodic ones. As we shall see in the netsethe transfer func-
tion represents the response of the system texgonential inputu = €. It turns
out that the form of the transfer function is precisely themgaas that of equa-
tion (8.1). This should not be surprising since we derivedatiqu (8.1) by writing
sinusoids as sums of complex exponentials. Formally, sresfer function is the
ratio of the Laplace transforms of output and input, althoogk does not have
to understand the details of Laplace transforms in order tkenuse of transfer
functions.

Modeling a system through its response to sinusoidal andrexgial signals
is known adrequency domain modelinghis terminology stems from the fact that
we represent the dynamics of the system in terms of the géreztdrequencys
rather than the time domain varialtleThe transfer function provides a complete
representation of a linear system in the frequency domain.

The power of transfer functions is that they provide a paldidy convenient
representation in manipulating and analyzing complexalirfeedback systems.
As we shall see, there are many graphical representatidrensffer functions that
capture interesting properties of the underlying dynamiicansfer functions also
make it possible to express the changes in a system becausedeling error,
which is essential when considering sensitivity to proogssations of the sort
discussed in Chapter 12. More specifically, using transfestfans, it is possible to
analyze what happens when dynamic models are approximgtgetic models or
when high-order models are approximated by low-order nsdahe consequence
is that we can introduce concepts that express the degréahilfty of a system.

While many of the concepts for state space modeling and sisadpply di-
rectly to nonlinear systems, frequency domain analysi$iepprimarily to linear
systems. The notions of gain and phase can be generalizedhliogar systems
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and, in particular, propagation of sinusoidal signals digio a nonlinear system
can approximately be captured by an analog of the frequersponse called the
describing function. These extensions of frequency respuiils be discussed in
Section 9.5.

8.2 Derivation of the Transfer Function

As we have seen in previous chapters, the input/output dipgsaofh a linear sys-
tem have two components: the initial condition responsethadorced response.
In addition, we can speak of the transient properties of yiséesn and its steady-
state response to an input. The transfer function focuseseostéady-state forced
response to a given input and provides a mapping betweetsiapd their corre-
sponding outputs. In this section, we will derive the trengtinction in terms of
the exponential response of a linear system.

Transmission of Exponential Signals

To formally compute the transfer function of a system, wd wiake use of a
special type of signal, called axponential signalpf the forme®, wheres =
0 +iwis a complex number. Exponential signals play an importastirolinear
systems. They appear in the solution of differential equatiand in the impulse
response of linear systems, and many signals can be refgdsssnexponentials
or sums of exponentials. For example, a constant signahiglgie® with a = 0.
Damped sine and cosine signals can be represented by

eloHOt — gt — 9t (coswt + i sinwt),

whereog < 0 determines the decay rate. Figure 8.2 gives examples dlsigmt
can be represented by complex exponentials; many othealsigan be repre-
sented by linear combinations of these signals. As in the eisinusoidal signals,
we will allow complex-valued signals in the derivation thi@llows, although in
practice we always add together combinations of signatsrésailt in real-valued
functions.

To investigate how a linear system responds to an expohéniat u(t) = e
we consider the state space system

d
d%(:Ax+ B, y = Cx+Du. 8.2)

Let the input signal bei(t) = €™ and assume tha£ Aj(A), j = 1,...,n, where
Aj(A) is the jth eigenvalue oA. The state is then given by

X(t) = M(0) + /O CAt-TIgeT g — eMx(0) + e /0 L (S-ATR .
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Figure 8.2: Examples of exponential signals. The top row corresponds to expal&gnals

with a real exponent, and the bottom row corresponds to those with coexpexents. The
dashed line in the last two cases denotes the bounding envelope for iletaycsignals.

In each case, if the real part of the exponent is negative then thd diggeys, while if the
real part is positive then it grows.

As we saw in Section 5.3, §# A (A), the integral can be evaluated and we get
x(t) = eMx(0) + eAl(sl —A)*1<e(s'*A)t - I)B
v <x(0) (sl —A)*lB> +(sl—A)lBet,
The output of equation (8.2) is thus
y(t) = Cx(t) + Du(t)

—ceM (X(O) (sl —A)’lB> + (C(sl A B D) e, (8.3)
a linear combination of the exponential functiogts and €. The first term in
equation (8.3) is the transient response of the systemIRleate™ can be written
in terms of the eigenvalues @f (using the Jordan form in the case of repeated
eigenvalues), and hence the transient response is a liogdniration of terms of
the formeit, whereA; are eigenvalues dk. If the system is stable, thet — 0
ast — co and this term dies away.

The second term of the output (8.3) is proportional to the timgt) = €. This
term is called theure exponential responsk the initial state is chosen as

x(0) = (sl—A)"1B,

then the output consists of only the pure exponential respamd both the state
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and the output are proportional to the input:

X(t) = (sl—A)~1Be = (sl — A)"1Bu(t),
y(t) = (C(sl —A)'B+D)e™ = (C(sl —A) !B+ D)u(t).

This is also the output we see in steady state, when the traasipresented by
the first term in equation (8.3) have died out. The map from tpatito the output,

Gyu(s) =C(sl—A)"1B+D, (8.4)

is thetransfer functionfrom u to y for the system (8.2), and we can wrigét) =
Gyu(s)u(t) for the case thati(t) = €. Compare with the definition of frequency
response given by equation (5.24).

An important point in the derivation of the transfer functis the fact that
we have restricted so thats # Aj(A), the eigenvalues oA. At those values of
s, we see that the response of the system is singular (sineé\ will fail to be
invertible). Ifs=A;(A), the response of the system to the exponential inpuéhit
is y = p(t)e'it, wherep(t) is a polynomial of degree less than or equal to the
multiplicity of the eigenvalue\j (see Exercise 8.2).

Example 8.1 Damped oscillator
Consider the response of a damped linear oscillator, whase space dynamics
were studied in Section 6.3:

dx 0 [ 0
= [—wo —25000] X+ [kouo] u, y= [1 O] X. (8.5)

This system is stable f > 0, and so we can look at the steady-state response to
an inputu = e,

Gu(s) =C(si-A) 8= (1 0 [5 — ]1 [ko ]

w S+2{wy o
B 1 S+2{w —wp 0
B (1 0) (32+2Zwos+w§[ o s ]) [kwo] (8.6)
ke
P42 WS+ W

To compute the steady-state response to a step functioretse-90 and we see
that
u=1 = y=Gy(Ou=k.

If we wish to compute the steady-state response to a sinugeidrite

u=sinwt = % (ie 71t —je'@t)

LGy iw)e ™ — iGyy(iw)e™).

y:i
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We can now writé5(iw) in terms of its magnitude and phase,
G(iw) = sz+2?c(fs+w§ = Me?
where the magnitude (or gail¥) and phas@ are given by
ko sin@  —2{ ww
@ o a0
We can also make use of the fact ti&t-iw) is given by its complex conjugate

G*(iw), and it follows thatG(—iw) = Me '¢. Substituting these expressions into
our output equation, we obtain

)

M =

y=1 (ime®)eiex —i(me?)de)

2
1/ i .
=M 5 (le—l(wt+6) _ |e|(wt+9)) = Msin(wt + 6).
The responses to other signals can be computed by writingnthe as an appro-
priate combination of exponential responses and usingtitye O

Coordinate Changes

The matricesA, B andC in equation (8.2) depend on the choice of coordinate
system for the states. Since the transfer function relafag o outputs, it should
be invariant to coordinate changes in the state space. W #fig, consider the
model (8.2) and introduce new coordinardsy the transformatioz = T x, where

T is a nonsingular matrix. The system is then described by

d - a

d{ — T(Ax+Bu) = TAT 1z+ TBu=: Az+ Bu,
y=Cx+Du=CT 'z4+Du=:Cz+Du.

This system has the same form as equation (8.2), but the es&i@ andC are

different: . . .
A=TAT ! B=T1B, C=CTLl (8.7)

Computing the transfer function of the transformed model get
G(s) =C(sl -A) "B+D=CT *(sI -TAT ) "'TB+D
=C(T (sl —TAT*l)T)—lBjL D—C(sl—A)"'B+D=G(s),

which is identical to the transfer function (8.4) computeahi the system descrip-
tion (8.2). The transfer function is thus invariant to changéthe coordinates in
the state space.

Another property of the transfer function is that it corresgs to the portion of
the state space dynamics that is both reachable and obkerimlparticular, if
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we make use of the Kalman decomposition (Section 7.5), thetrémsfer func-
tion depends only on the dynamics in the reachable and dddslersubspacg,
(Exercise 8.7).

Transfer Functions for Linear Systems

Consider a linear input/output system described by therotbed differential equa-
tion
dy d"ly dMu d™ 1y
w—i_aldtn_l ++any— bOﬁ‘i‘le
whereu is the input andy is the output. This type of description arises in many
applications, as described briefly in Section 2.2; bicycleaghyits and AFM mod-
eling are two specific examples. Note that here we have gérextadur previous
system description to allow both the input and its derivettito appear.
To determine the transfer function of the system (8.8),Hetihput beu(t) =
e, Since the system is linear, there is an output of the systamishalso an
exponential functiory(t) = yoe™. Inserting the signals into equation (8.8), we find

(" + a4+ an)yoe™ = (bpS" 4+ bys™ L by)e,
and the response of the system can be completely describi@lpolynomials
ais) =" +as" 4 tay, b(s) = bos™+ b s+ + by (8.9)

The polynomiak(s) is the characteristic polynomial of the ordinary diffeiaht
equation. Ifa(s) # 0, it follows that

+ -+ bmu, (8.8)

y(t) = yoe™' = zges? (8.10)

The transfer function of the system (8.8) is thus the ratifunadtion

b(s)

G(s) = a9 (8.11)
where the polynomiala(s) andb(s) are given by equation (8.9). Notice that the
transfer function for the system (8.8) can be obtained byenson since the co-
efficients ofa(s) andb(s) are precisely the coefficients of the derivativesi@ind
y. The order of the transfer function is defined as the order of the denaimina
polynomial.

Equations (8.8)—(8.11) can be used to compute the trangietiéis of many
simple ordinary differential equations. Table 8.1 givesneoof the more com-
mon forms. The first five of these follow directly from the an&yabove. For the
proportional-integral-derivative (PID) controller, we keause of the fact that the
integral of an exponential input is given 10/s)e™.

The last entry in Table 8.1 is for a pure time delay, in whichab#put is iden-
tical to the input at an earlier time. Time delays appear imyrgystems: typical
examples are delays in nerve propagation, communicatidmess transport. A
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Table 8.1: Transfer functions for some common ordinary differential equations

Type ODE Transfer Function
. 1
Integrator y=u <
Differentiator y=u s
1
First-order system y+{ay=u —
Y yray s+a
. . 1
Double integrator y=u 2
Damped oscillator y 27 wpy+ wfy = u .
£+ 2 wos+ wf

ki

PID controller y=Kpu+kqU+ki fu kp+kds+§

Time delay y(t) =ult—1) e’

system with a time delay has the input/output relation
y(t) =u(t—1). (8.12)

As before, let the input be(t) = €. Assuming that there is an output of the form
y(t) = yoe™ and inserting into equation (8.12), we get

y(t) = yoeot = 170 — eSSt — e STy(t).

The transfer function of a time delay is thGgs) = €, which is not a rational
function but is analytic except at infinity. (A complex furani is analytic in a
region if it has no singularities in the region.)

Example 8.2 Electrical circuit elements

Modeling of electrical circuits is a common use of transtardtions. Consider, for
example, a resistor modeled by Ohm’s l8w= IR, whereV is the voltage across
the resisten is the current through the resistor aRdk the resistance value. If we
consider current to be the input and voltage to be the outpetresistor has the
transfer functiorZ(s) = R. Z(s) is also called thémpedancef the circuit element.

Next we consider an inductor whose input/output charastteris given by
dl
Ldt =V.

Letting the current beé(t) = €, we find that the voltage ¥ (t) = Lse" and the
transfer function of an inductor is thigs) = Ls. A capacitor is characterized by

oV _

gt b
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Figure 8.3: Stable amplifier based on negative feedback around an operatiopéfi@m

The block diagram on the left shows a typical amplifier with low-frequegan Ry /Ry . If

we model the dynamic response of the op am@@s = ak/(s+a), then the gain falls off at
frequencyw = aR1k/Rp, as shown in the gain curves on the right. The frequency response
is computed fok = 107, a= 10rad/sR, =10° Q, andR; = 1, 1(%, 10* and 16 Q.

and a similar analysis gives a transfer function from curtervoltage ofZ(s) =
1/(Cs). Using transfer functions, complex electrical circuits te analyzed alge-
braically by using the complex impedar£es) just as one would use the resistance
value in a resistor network. O

Example 8.3 Operational amplifier circuit

To further illustrate the use of exponential signals, wesider the operational am-
plifier circuit introduced in Section 3.3 and reproduced in Fég8.3a. The model
introduced in Section 3.3 is a simplification because the tibehavior of the am-
plifier was modeled as a constant gain. In reality there arg@fgignt dynamics in
the amplifier, and the static model,; = —kv (equation (3.10)) should therefore be
replaced by a dynamic model. In the linear range of the amplifie can model
the operational amplifier as having a steady-state frequessponse

Vout ak

v sta— G(s). (8.13)
This response corresponds to a first-order system with timstaonl/a. The
parametek is called theopen loop gainand the producék is called thegain-
bandwidth producttypical values for these parameters ke 10’ andak = 10'—
10° rad/s.

Since all of the elements of the circuit are modeled as beiregl if we drive
the inputvy with an exponential signa®™, then in steady state all signals will be
exponentials of the same form. This allows us to manipulaetuations describ-
ing the system in an algebraic fashion. Hence we can write

Vi —V . V—\Vo
RR R
using the fact that the current into the amplifier is very spelwe did in Sec-

tion 3.3. Eliminatingv between these equations gives the following transfer func-
tion of the system

\ - —RzG(S) —Roak

Vi Ri+R+RiG(S) Riakt (Ri+Ry)(s+a)

and  vo=-G(s)v, (8.14)
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The low-frequency gain is obtained by settiig 0, hence
kR R
(k+D)Ri+R ~ Ry’

which is the result given by (3.11) in Section 3.3. The bandwaftthe amplifier
circuit is

szvl (O) =

aRl(k+ D+R N aRilk
Ri+R Ry’

where the approximation holds f8 /Ry > 1. The gain of the closed loop system
drops off at high frequencies &k/(w(R; + Ry)). The frequency response of the
transfer function is shown in Figure 8.3b for= 107, a= 10 rad/sR, = 1¢° Q and
Ry =1, 1¢, 10* and 16 Q.

Note that in solving this example, we bypassed explicitlitimg the signals as
v = Vpe® and instead worked directly with assuming it was an exponential. This
shortcut is handy in solving problems of this sort and whemimaating block
diagrams. A comparison with Section 3.3, where we made the sabculation
whenG(s) was a constant, shows analysis of systems using transfetidos is
as easy as using static systems. The calculations are thaf¢ameesistance®;
andR; are replaced by impedances, as discussed in Example 8.2. O

Q)O:

Although we have focused thus far on ordinary differentiqliaions, transfer
functions can also be used for other types of linear syst&¥uesillustrate this
via an example of a transfer function for a partial differaihequation.

Example 8.4 Heat propagation
Consider the problem of one-dimensional heat propagatiarsemi-infinite metal
rod. Assume that the input is the temperature at one end anthi output is the
temperature at a point along the rod. l&¥i,t) be the temperature at position
and timet. With a proper choice of length scales and units, heat paiiayis
described by the partial differential equation

00 0%6

— = =5 8.15

ot 9%’ (8.15)
and the point of interest can be assumed to kxavel. The boundary condition for
the partial differential equation is

0(0,t) = u(t).

To determine the transfer function we choose the input(s= €. Assume that
there is a solution to the partial differential equationtef form6(x,t) = @(x)e™
and insert this into equation (8.15) to obtain
d2
=38

dx2’
with boundary conditiony(0) = 1. This ordinary differential equation (with inde-
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pendent variable&) has the solution
W(X) = A8VS+Be S,
Matching the boundary conditions givAs= 0 andB = 1, so the solution is
y(t) =60(Lt) = P(1)et = e Vet = e Vou(t).

The system thus has the transfer funct®fs) = e V5. As in the case of a time
delay, the transfer function is not a rational function i analytic function.
O

Gains, Poles and Zeros

The transfer function has many useful interpretations aadgatures of a transfer
function are often associated with important system ptigmrThree of the most
important features are the gain and the locations of thesgid zeros.

The zero frequency gaiof a system is given by the magnitude of the transfer
function ats= 0. It represents the ratio of the steady-state value of thgubwith
respect to a step input (which can be represented-as™ with s= 0). For a state
space system, we computed the zero frequency gain in equatzR):

G(0)=D-CA!B.

For a system written as a linear differential equation
dvy d"1y dMu d™ 1y
dtn g T Y = Dogm TP gm

if we assume that the input and output of the system are ausstaandug, then

we find thata,yp = bmup. Hence the zero frequency gain is

_ Yo _ bm

U an
Next consider a linear system with the rational transfectiom

G(s) = @

a(s)

+ -+ bmu,

G(0) (8.16)

The roots of the polynomiad(s) are called thgolesof the system, and the roots
of b(s) are called theerosof the system. Ifp is a pole, it follows thag/(t) = eP

is a solution of equation (8.8) with = 0 (the homogeneous solution). A pgbe
corresponds to enodeof the system with corresponding modal solut&th The
unforced motion of the system after an arbitrary excitat®oa weighted sum of
modes.

Zeros have a different interpretation. Since the pure expaleutput corre-
sponding to the inputi(t) = €™ with a(s) # 0 is G(s)e%, it follows that the pure
exponential output is zero i(s) = 0. Zeros of the transfer function thus block
transmission of the corresponding exponential signals.
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For a state space system with transfer func@®gs) = C(sl — A)~*B+ D, the
poles of the transfer function are the eigenvalues of theixnatin the state space
model. One easy way to see this is to notice that the valu&®fis unbounded
whensis an eigenvalue of a system since this is precisely the gebiofs where
the characteristic polynomial (s) = det(sl — A) = 0 (and hencesl — A is non-
invertible). It follows that the poles of a state space gystepend only on the
matrix A, which represents the intrinsic dynamics of the system. 8yetkat a
transfer function is stable if all of its poles have negat®al part.

To find the zeros of a state space system, we observe that theeazercomplex
numberss such that the inputi(t) = uge®™ gives zero output. Inserting the pure
exponential responsét) = xoe™ andy(t) = 0 in equation (8.2) gives

s€xg = Axpe™ + Buge™ 0 = Ce'xy + De’up,

which can be written as
A—sl B X0 | st
"™ o) (&) #-o

This equation has a solution with nonzeg) ug only if the matrix on the left does
not have full rank. The zeros are thus the valsisach that the matrix

A—sl B
[c D] (8.17)

loses rank.

Since the zeros depend @y B, C andD, they therefore depend on how the
inputs and outputs are coupled to the states. Notice ingodatti that if the matrix
B has full row rank, then the matrix in equation (8.17) ndmearly independent
rows for all values of. Similarly there aren linearly independent columns if the
matrix C has full column rank. This implies that systems where the im&ior C
is square and full rank do not have zeros. In particular itmadhat a system has
no zeros if it is fully actuated (each state can be contratiddpendently) or if the
full state is measured.

A convenient way to view the poles and zeros of a transfertfondés through
apole zero diagramas shown in Figure 8.4. In this diagram, each pole is marked
with a cross, and each zero with a circle. If there are m@tmbles or zeros at
a fixed location, these are often indicated with overlappirgses or circles (or
other annotations). Poles in the left half-plane corresgorgtable modes of the
system, and poles in the right half-plane correspond toabiestmodes. We thus
call a pole in the left-half plane stable poleand a pole in the right-half plane an
unstable poleA similar terminology is used for zeros, even though thegeato
not directly relate to stability or instability of the systeNotice that the gain must
also be given to have a complete description of the tranafeation.

Example 8.5 Balance system
Consider the dynamics for a balance system, shown in FigbreT®e transfer
function for a balance system can be derived directly froensiacond-order equa-
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Re

x -2

Figure 8.4: A pole zero diagram for a transfer function with zeros-&tand—1 and poles at
—3and—-2+2j. The circles represent the locations of the zeros, and the crossesdtiers
of the poles. A complete characterization requires we also specify thefjdia system.

tions, given in Example 2.1:

2 2
dp —mlﬂcost9+cﬁ)+mlsin9(@)2 =F,

M ez dt2 dt dt

d?p d?e . -

—mlcosf— — —maglsin6+y6 = 0.
de g ~melsin v

If we assume thafl and6 are small, we can approximate this nonlinear system by

a set of linear second-order differential equations,

d?p d?6  dp
Mgz ~ Mg +oqr = F
d?p .d%0 de

If we let F be an exponential signal, the resulting response satisfies

Ms®p—mls’ 6 +csp=F,
%s?6 —mIg p+ys8 —mglo =0,
where all signals are exponential signals. The resultingstea functions for the

position of the cart and the orientation of the pendulum arergby solving forp
and@ in terms off to obtain

mls
Hor = (Mt — mP12)s® + (yMy 4 ¢&)s? + (cy — Mimgl)s— mglc’
H 3s? + ys—mgl
pF =

(MeJy — m212)s* + (yMg + ¢3)s3 + (cy — Mimgl)s? — mglcs

where each of the coefficients is positive. The pole zero dmagror these two
transfer functions are shown in Figure 8.5 using the parasmétamn Example 6.7.
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(a) Cart—pendulum system (c) Pole zero diagram fdfl e

Figure 8.5: Poles and zeros for a balance system. The balance system (a) cauékedn
around its vertical equilibrium point by a fourth order linear system. Tdlegpand zeros for
the transfer functionBlgr andHpr are shown in (b) and (c), respectively.

If we assume the damping is small andset 0 andy = 0, we obtain

ml

Hor = (Mt — mP12)s? — Mymgll’
2 —mgl

Hor — J g

(Mg — mP12)s? — Mymgl) -
This gives nonzero poles and zeros at

. mgiM _ ., /mgl
p_i,/MtJt_nﬂzNiz.as, 2=y 3~ +209

We see that these are quite close to the pole and zero losatidiigure 8.5. [

8.3 Block Diagrams and Transfer Functions

The combination of block diagrams and transfer functions peaerful way to
represent control systems. Transfer functions relatiffgréint signals in the sys-
tem can be derived by purely algebraic manipulations of rhwesfer functions of
the blocks usindlock diagram algebraTo show how this can be done, we will
begin with simple combinations of systems.

Consider a system that is a cascade combination of systetinghei transfer
functionsGs (s) andGy(s), as shown in Figure 8.6a. Let the input of the system
beu = €. The pure exponential output of the first block is the expomaéstgnal
G1u, which is also the input to the second system. The pure expiahentput of

the second system is
y= Gz(Glu) = (GzGl)U.
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Gy
u y u % y u € Y
Gy Gy (%) Gy
Gy T
—Gy
() Gyu = G261 (b) Gyu =G+ G, __ G
© Gyu 1+ GGy

Figure 8.6: Interconnections of linear systems. Series (a), parallel (b) antbéekdc) con-
nections are shown. The transfer functions for the composite systembecderived by
algebraic manipulations assuming exponential functions for all signals.

The transfer function of the series connection is tGus G,G;, i.e., the product
of the transfer functions. The order of the individual tramdtinctions is due to
the fact that we place the input signal on the right-hand eidiis expression,
hence we first multiply bys; and then byG,. Unfortunately, this has the opposite
ordering from the diagrams that we use, where we typicallyehibe signal flow
from left to right, so one needs to be careful. The orderingjsdrtant if eitheiGy
or G is a vector-valued transfer function, as we shall see in ssxaeples.

Consider next a parallel connection of systems with thesfearfunctionsGy
andG,, as shown in Figure 8.6b. Letting= €% be the input to the system, the
pure exponential output of the first system is tlygr= Gyu and the output of the
second system s = G,u. The pure exponential output of the parallel connection
is thus

y = Giu+ Gou = (G1+ Go)u,

and the transfer function for a parallel connectiofis- G1 + G».

Finally, consider a feedback connection of systems withriduester functions
G; andGg, as shown in Figure 8.6c¢. Lat= € be the input to the systembe the
pure exponential output, ambe the pure exponential part of the intermediate sig-
nal given by the sum af and the output of the second block. Writing the relations
for the different blocks and the summation unit, we find

y=G16 e=u—Gyy.
Elimination ofe gives
Gy
=G (u—G 1+G1Gly=G =——Uu.
y=Gi(u-Gy) = ([1+GiG)y=6Giu = vy 1JrGleu
The transfer function of the feedback connection is thus
146Gy

These three basic interconnections can be used as the basisrfputing transfer
functions for more complicated systems.
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r e u % n y
— F(9 C(s) a(g—» P(s) %é%%

—1 |

Figure 8.7: Block diagram of a feedback system. The inputs to the system are thenege
signalr, the process disturbanceand the measurement noiseThe remaining signals in
the system can all be chosen as possible outputs, and transfer furmetiobs used to relate
the system inputs to the other labeled signals.

Control System Transfer Functions

Consider the system in Figure 8.7, which was given at the beggrof the chapter.
The system has three blocks representing a prdgesteedback controll€® and a
feedforward controlleF. TogetherC andF define thecontrol lawfor the system.
There are three external signals: the reference (or commigndlpr, the load
disturbanceal and the measurement noiseA typical problem is to find out how
the erroreis related to the signals d andn.

To derive the relevant transfer functions we assume thatigtials are expo-
nential signals, drop the arguments of signals and trafisfetions and trace the
signals around the loop. We begin with the signal in which weiaterested, in
this case the control errey given by

e=Fr—y.
The signaly is the sum oh andn, wheren is the output of the process:
y=n+n, n="P(d+u), u=_Ce
Combining these equations gives
e=Fr—y=Fr—(n+n)=Fr—(n+P(d+u))
=Fr—(n+P(d+Ceg),
and hence
e=Fr—n—Pd—PCe
Finally, solving this equation fog gives
e F .1 P
1+PC 1+PC 1+4PC

and the error is thus the sum of three terms, depending orefeeencer, the
measurement noigeand the load disturbanak The functions

F -1 -P
“1ipc % Tiipe ST iipc
are transfer functions from referencenoisen and disturbancd to the errore.

d = Gerl + Gen + Gegd, (8.18)

Ger (8.19)



8.3. BLOCK DIAGRAMS AND TRANSFER FUNCTIONS 245
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— F PC = — F "l TP T
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1+PC
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Figure 8.8: Example of block diagram algebra. The results from multiplying the poaed
controller transfer functions (from Figure 8.7) are shown in (a).I&=pg the feedback loop
with its transfer function equivalent yields (b), and finally multiplying the temgining
blocks gives the reference to output representation in (c).

We can also derive transfer functions by manipulating tleekodiagrams di-
rectly, as illustrated in Figure 8.8. Suppose we wish to comphe transfer func-
tion between the referenceand the outpuy. We begin by combining the process
and controller blocks in Figure 8.7 to obtain the diagram iruFég3.8a. We can
now eliminate the feedback loop using the algebra for a faekimterconnection
(Figure 8.8b) and then use the series interconnection rudbtiin

PCF
Y 14PC
Similar manipulations can be used to obtain the other trarfgfections (Exer-
cise 8.8).

The derivation illustrates an effective way to manipulategquations to obtain
the relations between inputs and outputs in a feedbackmy3iee general idea is
to start with the signal of interest and to trace signalsiaddbe feedback loop until
coming back to the signal we started with. With some practcgiations (8.18)
and (8.19) can be written directly by inspection of the bld@gram. Notice, for
example, that all terms in equation (8.19) have the samerdigradors and that the
numerators are the blocks that one passes through when djogagly from input
to output (ignoring the feedback). This type of rule can belise&ompute transfer
functions by inspection, although for systems with muétifdedback loops it can
be tricky to compute them without writing down the algebral@itly.

(8.20)

Example 8.6 Vehicle steering

Consider the linearized model for vehicle steering intitlin Example 5.12. In
Examples 6.4 and 7.3 we designed a state feedback compeardtstate esti-
mator for the system. A block diagram for the resulting colnglystem is given in
Figure 8.9. Note that we have split the estimator into two conemts Gg,(s) and
Ggy(s), corresponding to its inputsandy. The controller can be described as the
sum of two (open loop) transfer functions

U= Guy(s)y+ Gur(s)r.

The first transfer functionGyy(s), describes the feedback term and the second,
Gur(s), describes the feedforward term. We call thepen looptransfer functions
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| y
—= & —® - P(9) -
| K s it
: . i U Ry il
| %! i
| —1 —,—éi :\
| Controller ] E sfimét?[;l

Figure 8.9: Block diagram for a steering control system. The control system is nkesigp
maintain the lateral position of the vehicle along a reference curve (I¢f) sTructure of the
control system is shown on the right as a block diagram of transfetifursc The estimator
consists of two components that compute the estimated»steden the combination of the
input u and outputy of the process. The estimated state is fed through a state feedback
controller and combined with a reference gain to obtain the commandethgtaagleu.

because they represent the relationships between thdssigitlhout considering
the dynamics of the process (e.g., remowitig) from the system description). To
derive these functions, we compute the transfer functiongdch block and then
use block diagram algebra.

We begin with the estimator, which takasandy as its inputs and produces
an estimate."The dynamics for this process were derived in Example 7.3 ead a
given by

‘;)t( — (A—LC)%+Ly+Bu,
2= (sl— (A—LC)) 'Bu+ (sl — (A—LC)) Ly.

Gsu G)?y

Using the expressions féy, B, C andL from Example 7.3, we obtain

ys+1 l1s+15
L +1is+1o S+11s+15
Gau(s) = ) G)Zy(s) = )
S+l —vylo los
L +11s+15 S +11s+15

wherel; andl, are the observer gains amds the scaled position of the center
of mass from the rear wheels. The controller was a state fekdtmmpensator,
which can be viewed as a constant, multi-input, single-autiansfer function of
the formu = —KX.

We can now proceed to compute the transfer function for threzadlvcontrol
system. Using block diagram algebra, we have

_ —Kny(S) _ S(k1|1+k2|2)+k1|2
1+ KGgy(s) P +s(yki +ka+11) + ki + 12+ kalp — ykol2

Guy(s)
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and

_ Kr _ ki (S +115+12)
1+KGgry(s) S?+s(yki+ko+11) +ki+12+koly — ykolo’

wherek; andk; are the state feedback gains ands the reference gain.

Finally, we compute the full closed loop dynamics. We begirdbyiving the
transfer function for the proceg%s). We can compute this directly from the state
space description of the dynamics, which was given in Exarsdl2. Using that
description, we have

P(S) = Gyu(s) = C(sl~A) "B+ D= (1 0) [8 —31] -’ [‘1’] _ vs;ll

The transfer function for the full closed loop system betw#eninputr and the
outputy is then given by

Gur(S)

PG ke(ys+1)
~ 1-P(9Guy(s) P+ (kiy+k)s+ki

Note that the observer gaihsandl, do not appear in this equation. This is because
we are considering steady-state analysis and, in steatdy gtae estimated state
exactly tracks the state of the system assuming perfect Isiodde will return to
this example in Chapter 12 to study the robustness of thiecpéar approach. [

Gyr

Pole/Zero Cancellations

Because transfer functions are often polynomials,iit can sometimes happen
that the numerator and denominator have a common factogchwddan be can-
celed. Sometimes these cancellations are simply algebrafdifications, but in
other situations they can mask potential fragilities intti@del. In particular, if a
pole/zero cancellation occurs because terms in sepaxatkdihat just happen to
coincide, the cancellation may not occur if one of the systerslightly perturbed.
In some situations this can result in severe differencesdsat the expected be-
havior and the actual behavior.

To illustrate when we can have pole/zero cancellationssiden the block dia-
gram in Figure 8.7 witlk = 1 (no feedforward compensation) a@andP given

by

cl="9  pg =09

T do(9)’ dp(s)’
The transfer function from to e is then given by
1 de(s)dp(S)

Ger(9)

T 1+PC  de(5)dp(S) + Ne(S)Np(S)”

If there are common factors in the numerator and denominetiynomials, then
these terms can be factored out and eliminated from bothuhesrator and de-
nominator. For example, if the controller has a zers-at—a and the process has
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a pole ats = —a, then we will have

Gor(s) = (s+a)d(s)dy(s) B de(s)dp(s)
S (s+a)de(8)dp(s) + (s+aNL(INp(s)  de(S)dp(S) + Ne(S)Np(S)”

wheren;(s) anddj,(s) represent the relevant polynomials with the tesma fac-
tored out. In the case wherx 0O (so that the zero or pole is in the right half-plane),
we see that there is no impact on the transfer fundBgn

Suppose instead that we compute the transfer functiondrtme, which repre-
sents the effect of a disturbance on the error between theerefe and the output.
This transfer function is given by

de(s)np(s)
(s+a)de(s)dy(s) + (s+a)ne(s)np(s)

Ged(s) - -

Notice that ifa < 0, then the pole is in the right half-plane and the transfecfion
Geg is unstable Hence, even though the transfer function froto e appears to be
okay (assuming a perfect pole/zero cancellation), thesteafiunction fromd to e
can exhibit unbounded behavior. This unwanted behaviopis#y of anunstable
pole/zero cancellatian

It turns out that the cancellation of a pole with a zero can bisunderstood in
terms of the state space representation of the systemsh&tsbity or observability
is lost when there are cancellations of poles and zeros (EExe8cll). A conse-
guence is that the transfer function represents the dyrsaomiy in the reachable
and observable subspace of a system (see Section 7.5).

Example 8.7 Cruise control

The input/output response from throttle to velocity for thmeérized model for a
car has the transfer functig®(s) = b/(s—a), a < 0. A simple (but not necessarily
good) way to design a PI controller is to choose the paramet¢ine Pl controller
so that the controller zero at= —k; /kp cancels the process pole s a. The
transfer function from reference to velocity@s, (s) = bkp/(s+ bkp), and control
design is simply a matter of choosing the gainThe closed loop system dynamics
are of first order with the time constantiikp.

Figure 8.10 shows the velocity error when the car encounteirscaease in the
road slope. A comparison with the controller used in FiguBb3Jreproduced in
dashed curves) shows that the controller based on poletaecellation has very
poor performance. The velocity error is larger, and it takksng time to settle.

Notice that the control signal remains practically constftert = 15 even
if the error is large after that time. To understand what leagpwe will analyze
the system. The parameters of the systenaare—0.0101 ando = 1.32, and the
controller parameters akg = 0.5 andk; = 0.0051. The closed loop time constant
is 1/(bkp) = 2.5's, and we would expect that the error would settle in ahOwst
(4 time constants). The transfer functions from road slopeetocity and control



8.3. BLOCK DIAGRAMS AND TRANSFER FUNCTIONS 249

% 20 0.6/ N .
E o / —=
> E 0.4} 4 i
219 2
§ = 0.2t —k =0.0051]
< - - -k =05
18 Il Il Il 0 Il Il Il
0 10 20 30 40 0 10 20 30 40
Timet [s] Timet [s]

Figure 8.10: Car with PI cruise control encountering a sloping road. The velocity ésro
shown on the left and the throttle is shown on the right. Results with a Pl contvatle

kp = 0.5 andk; = 0.0051, where the process pale- —0.0101, is shown by solid lines, and
a controller withkp = 0.5 andk; = 0.5 is shown by dashed lines. Compare with Figure 3.3b.

signals are

bys bk
(s—a)(s+bkp)’ ~ s+bky’

Notice that the canceled mode= a = —0.0101 appears iG,g but not inGg.
The reason why the control signal remains constant is thaiathgoller has a zero
ats= —0.0101, which cancels the slowly decaying process mode. dlthiat the
error would diverge if the canceled pole was unstable. O

Guo(s) = Gus(S)

The lesson we can learn from this example is that it is a bad toldgy to
cancel unstable or slow process poles. A more detailed sksmu of pole/zero
cancellations is given in Section 12.4.

Algebraic Loops

When analyzing or simulating a system described by a bloaggrdim, it is neces-
sary to form the differential equations that describe thmmgete system. In many
cases the equations can be obtained by combining the diffekrequations that
describe each subsystem and substituting variables. Thigesprocedure cannot
be used when there are closed loops of subsystems that elatdikect connection
between inputs and outputs, known asaégebraic loop
To see what can happen, consider a system with two blockst-@ftter non-

linear system,

% = f(x,u), y =h(x), (8.21)
and a proportional controller described by= —ky. There is no direct term since
the functionh does not depend am In that case we can obtain the equation for
the closed loop system simply by replacimgy —kyin (8.21) to give

dx
a - f(Xv_ky)a y= h(X)

Such a procedure can easily be automated using simple formargulation.
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The situation is more complicated if there is a direct terny.# h(x,u), then

replacingu by —ky gives

% = f(x,—ky), y = h(x, —ky).
To obtain a differential equation fog, the algebraic equatiop= h(x, —ky) must
be solved to givey = a(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to sajebirdic equations
to obtain the differential equations for the complete aystResolving algebraic
loops is a nontrivial problem because it requires the symtmalution of alge-
braic equations. Most block diagram-oriented modelingyleages cannot handle
algebraic loops, and they simply give a diagnosis that soopd are present. In
the era of analog computing, algebraic loops were elimahateintroducing fast
dynamics between the loops. This created differential éopmtvith fast and slow
modes that are difficult to solve numerically. Advanced modelanguages like
Modelica use several sophisticated methods to resolvémgdoops.

8.4 The Bode Plot

The frequency response of a linear system can be computedtftransfer func-
tion by settings= iw, corresponding to a complex exponential

u(t) = €t = cog wt) +isin(wt).
The resulting output has the form
y(t) = G(iw)e™ = Me(@+9) — Mcog wt + @) +iM sin(wt + ¢),

whereM and¢ are the gain and phase Gf
. I
M= |G(iw)], ¢:arctann;7..

The phase of is also called thargumenbf G, a term that comes from the theory
of complex variables.

It follows from linearity that the response to a single siids(sin or cos) is
amplified byM and phase-shifted b§. Note that—m < ¢ < 1, so the arctangent
must be taken respecting the signs of the numerator and deatom It will often
be convenient to represent the phase in degrees rathettians. \We will use the
notation/G(iw) for the phase in degrees and &(@w) for the phase in radians.
In addition, while we always take a@iw) to be in the rangé—r, 11}, we will
take Z/G(iw) to be continuous, so that it can take on values outside trgerah
—180 to 180.

The frequency respon$&iw) can thus be represented by two curves: the gain
curve and the phase curve. Téi@n curvegives|G(iw)| as a function of frequency
w, and thephase curvegives ZG(iw). One particularly useful way of drawing
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Figure 8.11:Bode plot of the transfer functid@(s) = 20+ 10/s+ 10s corresponding to an
ideal PID controller. The top plot is the gain curve and the bottom plot is thsehurve.
The dashed lines show straight-line approximations of the gain curve amttiesponding
phase curve.

these curves is to use a log/log scale for the gain plot ang/krlear scale for the
phase plot. This type of plot is calledB®de plotand is shown in Figure 8.11.

Sketching and Interpreting Bode Plots

Part of the popularity of Bode plots is that they are easy &ictkand interpret.
Since the frequency scale is logarithmic, they cover theviehaf a linear system

over a wide frequency range.
Consider a transfer function that is a rational functionhaf form

_ by(s)b2(s)
G(s) = m

We have
log|G(s)| = log|bi(s)| +log|bz(s)| —log|as(s)| — log|ax(s)|,

and hence we can compute the gain curve by simply adding drtchsting gains
corresponding to terms in the numerator and denominatoileBiyn

LG(S) = £bi(s) + £by(s) — Zay(s) — Zax(9),

and so the phase curve can be determined in an analogousrfaSimce a poly-
nomial can be written as a product of terms of the type

k, s, s+a, S +2{ws+ag,

it suffices to be able to sketch Bode diagrams for these ternesBblde plot of a
complex system is then obtained by adding the gains and plof$lee terms.
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Figure 8.12:Bode plots of the transfer functios) = Kfork=-2,-1,0,1,2.0na log-
log scale, the gain curve is a straight line with sldpé&Jsing a log-linear scale, the phase
curves for the transfer functions are constants, with phase equat tol00

The simplest term in a transfer function is one of the fafnwherek > 0 if
the term appears in the numerator &nd O if the term is in the denominator. The
gain and phase of the term are given by

log|G(iw)| =klogw, ZG(iw)=90k.

The gain curve is thus a straight line with sldpend the phase curve is a constant

at 90 x k. The case whek= 1 corresponds to a differentiator and has slope 1 with

phase 90. The case whek = —1 corresponds to an integrator and has slefe

with phase-90°. Bode plots of the various powers loare shown in Figure 8.12.
Consider next the transfer function of a first-order systexgrgby

a
==
We have
El
G(s)| = , /G(s) = Z(a) — Z(s+a),
69 = o1 a (9= (@) - Z(s+a)
and hence

log|G(iw)| = loga— % log(w?+a?), /G(iw)= —Liic)arctang.

The Bode plot is shown in Figure 8.13a, with the magnitude nbzed by the
zero frequency gain. Both the gain curve and the phase carvbeapproximated



8.4.

G(iw)|

ZG(iw) [deg]

THE BODE PLOT

253

10°F Exact ] 17 Exact ]
3 - — —Approx § — = = = Approx {
10 ~ S 0 4
] O
- EE - |
10_2 E 1U2
0 1 — 0
= ()]
L 4 (5]
=~ Rl
-90F 3 -90
’ 119
—-180F b -180
a/100 a/10 a 10a 10 wp/100 wp/10  @o 10wy 100wy
Frequencyw [rad/s] Frequencyw [rad/s]
(a) First-order system (b) Second-order system

Figure 8.13: Bode plots for first- and second-order systems. (a) The first-cgsiem

G(s) = a/(s+a) can be approximated by asymptotic curves (dashed) in both the gain and
the frequency, with the breakpoint in the gain curvevat a and the phase decreasing by 90
over a factor of 100 in frequency. (b) The second-order sySésn= aﬁ/(sz+25abs+ wg)

has a peak at frequeneyand then a slope of2 beyond the peak; the phase decreases from
0° to —180°. The height of the peak and the rate of change of phase depending dartip-

ing ratio (¢ =0.02,0.1, 0.2, 0.5 and 1.0 shown).

by the following straight lines

log|G(ie)| ~ {O

ZG(iw) ~

ifw<a
loga—logw if w>a,

0 if w<a/l0
—45—45(logw—loga) a/10< w < 10a
-90 if w > 10a.

The approximate gain curve consists of a horizontal line ufpeguencyw = a,
called thebreakpointor corner frequencyafter which the curve is a line of slope
—1 (on a log-log scale). The phase curve is zero up to frequafit§ and then
decreases linearly by 4slecade up to frequency a0at which point it remains
constant at 90 Notice that a first-order system behaves like a constantofor |
frequencies and like an integrator for high frequenciespgare with the Bode
plot in Figure 8.12.
Finally, consider the transfer function for a second-orgstem,

_ w5
G(s) = S+ 2w0{s+ W’
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for which we have
. 1
log|G(icw)| = 2logay — 5 log (w* + 20 w?(20% — 1) + o),

/G(iw) = —@arctanzgﬂ.
m wh — W?
The gain curve has an asymptote with zero slopediox «y. For large val-
ues ofw the gain curve has an asymptote with slop2. The largest gaiQ =
max, |G(iw)| ~ 1/(2¢), called theQ-value is obtained forw ~ wy. The phase is
zero for low frequencies and approaches 1 large frequencies. The curves
can be approximated with the following piecewise linearregpions

0g/Glio) ~ 4 if w <

g "] 2logan — 2logw  if w> ,
/Gliw) ~ 0 if <y
T ]1-180 ifw> w.

The Bode plot is shown in Figure 8.13b. Note that the asympapjizoximation is
poor neaiw = wy and that the Bode plot depends stronglyamear this frequency.

Given the Bode plots of the basic functions, we can now skittetirequency
response for a more general system. The following exampistifites the basic
idea.

Example 8.8 Asymptotic approximation for a transfer function
Consider the transfer function given by

B k(s+b)
Gls) = (s+a)(+2 wos+ wg)’

The Bode plot for this transfer function appears in Figure Bulith the complete
transfer function shown as a solid line and the asymptotic@pmation shown as
a dashed line.

We begin with the gain curve. At low frequency, the magnitigdgiven by

G(0) = akbz.

Wo
When we reaclw = a, the effect of the pole begins and the gain decreases with
slope—1. At w = b, the zero comes into play and we increase the slope by 1,
leaving the asymptote with net slope 0. This slope is used tgtieffect of the
second-order pole is seen@at= an, at which point the asymptote changes to slope
—2. We see that the gain curve is fairly accurate except ingg®mn of the peak
due to the second-order pole (since for this cadsereasonably small).

The phase curve is more complicated since the effect of theepbietches
out much further. The effect of the pole beginsuat= a/10, at which point we
change from phase 0 to a slope -efi5°/decade. The zero begins to affect the
phase atw = b/10, producing a flat section in the phase.@At 10a the phase

a<k< b« wp.
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Figure 8.14: Asymptotic approximation to a Bode plot. The thin line is the Bode plot for

the transfer functioB(s) = k(s+b)/(s+a)(s* + 2{ wps+ wf), wherea < b < ap. Each

segment in the gain and phase curves represents a separate pottienapproximation,
where either a pole or a zero begins to have effect. Each segmentagpheximation is a
straight line between these points at a slope given by the rules for comphéreffects of
poles and zeros.

contributions from the pole end, and we are left with a sldped®°/decade (from

the zero). At the location of the second-order pske,icy, we get a jump in phase

of —180C. Finally, atcw = 10b the phase contributions of the zero end, and we are
left with a phase of-180 degrees. We see that the straight-line approximation fo
the phase is not as accurate as it was for the gain curve, doe# capture the
basic features of the phase changes as a function of freguenc O

The Bode plot gives a quick overview of a system. Since any bicgna be
decomposed into a sum of sinusoids, it is possible to viseidlie behavior of a
system for different frequency ranges. The system can beedew a filter that can
change the amplitude (and phase) of the input signals aiogpta the frequency
response. For example, if there are frequency ranges whergain curve has
constant slope and the phase is close to zero, the actiore afygiem for signals
with these frequencies can be interpreted as a pure gaina8imior frequencies
where the slope is +1 and the phase close tQ 8@ action of the system can be
interpreted as a differentiator, as shown in Figure 8.12.

Three common types of frequency responses are shown in Figlise Bhe
system in Figure 8.15a is called@w-pass filterbecause the gain is constant for
low frequencies and drops for high frequencies. Notice tih@tphase is zero for
low frequencies and-180 for high frequencies. The systems in Figure 8.15b and
c are called dand-pass filteandhigh-pass filteifor similar reasons.

To illustrate how different system behaviors can be reachftibe Bode plots
we consider the band-pass filter in Figure 8.15b. For freqasranioundo = ),
the signal is passed through with no change in gain. Howéseirequencies well



256 CHAPTER 8. TRANSFER FUNCTIONS

10 — T ] e 1] 1
i 3 /\ P
g 10 k| Q/ 10 3 g 10
1 SO——— 102 107 -
180 " " " 180 " " " 180 u " "
5 Iz 2 >
o 0 o © o ©
N 1 N N 1
-180 " . T -180! " . . -180! . . .
wp/100 o 100uy wp/100 o 100 w/100 o 100wy
Frequencyw [rad/s] Frequencyw [rad/s] Frequencyw [rad/s]
wp 2 aps &
Gs)= 55— Gs)=5——— GS)=5————
® & + 20 wos+ w§ ©) & + 20 wos+ w§ © & + 20 wos+ w§
(a) Low-pass filter (b) Band-pass filter (c) High-pass filter

Figure 8.15: Bode plots for low-pass, band-pass and high-pass filters. The topapéotae
gain curves and the bottom plots are the phase curves. Each systers foagsencies in a
different range and attenuates frequencies outside of that range.

below or well abovewy, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For fretjastbeloway /100
there is a phase lead of 9Q@and for frequencies above 1d§there is a phase lag

of 90°. These actions correspond to differentiation and integmatf the signal in
these frequency ranges.

Example 8.9 Transcriptional regulation
Consider a genetic circuit consisting of a single gene. Wehwo study the re-
sponse of the protein concentration to fluctuations in the wRIjnamics. We
consider two cases: eonstitutive promotefno regulation) and self-repression
(negative feedback), illustrated in Figure 8.16. The dynaroicthe system are
given by
dm
dt
wherev is a disturbance term that affects mRNA transcription.
For the case of no feedback we havep) = ap, and the system has an equi-
librium point atme = aop/y, pe = Bao/(dy). The transfer function fromr to p is

given by 8
Go(S) =
pv(S) (s+Yy)(s+9)
For the case of negative regulation, we have

d
a(p)-ym-v, = pm-3p,

(o}
a(p):ﬁ—i—ao,

and the equilibrium points satisfy
yo

o) a
me:Bpea m—l—ﬁo:wﬂe:?p&
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Figure 8.16: Noise attenuation in a genetic circuit. The open loop system (a) consists of a
constitutive promoter, while the closed loop circuit (b) is self-regulated nétpative feed-
back (repressor). The frequency response for each circuibigrsim (c).

The resulting transfer function is given by

cl B nalkrg_l
Gpuls) = (s+y)(s+9)+Bo’ 9= (14+kp)2’

Figure 8.16¢ shows the frequency response for the two cirdive see that the
feedback circuit attenuates the response of the systenstorioiinces with low-
frequency content but slightly amplifies disturbances at fiigquency (compared
to the open loop system). Notice that these curves are vmilasito the frequency
response curves for the op amp shown in Figure 8.3b. O

Transfer Functions from Experiments

The transfer function of a system provides a summary of thetioptput response
and is very useful for analysis and design. However, moddiiom first prin-
ciples can be difficult and time-consuming. Fortunately, \aa often build an
input/output model for a given application by directly maidsg the frequency
response and fitting a transfer function to it. To do so, weupkrthe input to the
system using a sinusoidal signal at a fixed frequency. Whewlgt&ate is reached,
the amplitude ratio and the phase lag give the frequencynsspfor the excitation
frequency. The complete frequency response is obtained bgEng over a range
of frequencies.

By using correlation techniques it is possible to deterntireefrequency re-
sponse very accurately, and an analytic transfer functionbe obtained from the
frequency response by curve fitting. The success of this apjproas led to in-
struments and software that automate this process, cglectrum analyzerdVe
illustrate the basic concept through two examples.

Example 8.10 Atomic force microscope
To illustrate the utility of spectrum analysis, we considee dynamics of the
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Figure 8.17: Frequency response of a preloaded piezoelectric drive for an aforoemi-
croscope. The Bode plot shows the response of the measurecetramsttion (solid) and
the fitted transfer function (dashed).

atomic force microscope, introduced in Section 3.5. Expantaledetermination
of the frequency response is particularly attractive fas #ystem because its dy-
namics are very fast and hence experiments can be doneyidipical example
is given in Figure 8.17, which shows an experimentally deteeghfrequency re-
sponse (solid line). In this case the frequency responsebtamed in less than a
second. The transfer function

kKBRS + 20 s+ WD) (S + 20acus+ wf)e
 QPR( + 2005+ W) (F + 2030ns+ wF) (P + 25w+ wE)’

with w = 2rtfy and f; = 2.42 kHz,{; = 0.03, f, = 2.55 kHZ,Zz =0.03, f3 =
6.45 kHz,{3 = 0.042,f4=8.25 kHz,{4 = 0.025, f5 = 9.3 kHz,{5 = 0.032,1 = 10*s
andk =5, was fit to the data (dashed line). The frequencies assoeigtethe ze-
ros are located where the gain curve has minima, and thedneigs associated
with the poles are located where the gain curve has localmexihe relative
damping ratios are adjusted to give a good fit to maxima andmanWhen a
good fit to the gain curve is obtained, the time delay is adjuigyive a good fit
to the phase curve. The piezo drive is preloaded, and a simgdelof its dynam-
ics is derived in Exercise 3.7. The pole at 2.42 kHz corresptmtize trampoline
mode derived in the exercise; the other resonances arerhygiues.

G(s)

O

Example 8.11 Pupillary light reflex dynamics

The human eye is an organ that is easily accessible for expetant has a control

system that adjusts the pupil opening to regulate the liglehisity at the retina.
This control system was explored extensively by Stark in the0$gSta68].

To determine the dynamics, light intensity on the eye wagdasinusoidally and

the pupil opening was measured. A fundamental difficulty & the closed loop
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Figure 8.18: Light stimulation of the eye. In (a) the light beam is so large that it always
covers the whole pupil, giving closed loop dynamics. In (b) the light isi$ed into a beam
which is so narrow that it is not influenced by the pupil opening, givingrdpop dynamics.

In (c) the light beam is focused on the edge of the pupil opening, whishtheeffect of
increasing the gain of the system since small changes in the pupil openiegttarge effect

on the amount of light entering the eye. From Stark [Sta68].

system is insensitive to internal system parameters, slysasiaf a closed loop
system thus gives little information about the internalpenies of the system.
Stark used a clever experimental technique that allowed bimviestigate both
open and closed loop dynamics. He excited the system byngiie intensity
of a light beam focused on the eye and measured pupil areldysisated in Fig-
ure 8.18. By using a wide light beam that covers the wholelptf@ measurement
gives the closed loop dynamics. The open loop dynamics wegsenala by using
a narrow beam, which is small enough that it is not influencethbypupil open-
ing. The result of one experiment for determining open loopagiyics is given
in Figure 8.19. Fitting a transfer function to the gain curveegia good fit for
G(s) = 0.17/(1+0.08s)3. This curve gives a poor fit to the phase curve as shown
by the dashed curve in Figure 8.19. The fit to the phase curve isirag by
adding a time delay, which leaves the gain curve unchangel@ whbstantially
modifying the phase curve. The final fit gives the model

— 0.17 —0.2s
C9= a7 0085°
The Bode plot of this is shown with solid curves in Figure 8.1%ddling of the
pupillary reflex from first principles is discussed in detai[K$01]. O

Notice that for both the AFM drive and pupillary dynamics inist easy to de-
rive appropriate models from first principles. In practi¢és bften fruitful to use a
combination of analytical modeling and experimental idfesattion of parameters.
Experimental determination of frequency response is lgsacéive for systems
with slow dynamics because the experiment takes a long time.

8.5 Laplace Transforms @

Transfer functions are conventionally introduced usinglaeg transforms, and in
this section we derive the transfer function using this falism. We assume basic
familiarity with Laplace transforms; students who are notifaar with them can
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Figure 8.19: Sample curves from an open loop frequency response of the et)eafhef a
Bode plot for the open loop dynamics (right). The solid curve showsdd fite data using a
third-order transfer function with time delay. The dashed curve in theeBdat is the phase
of the system without time delay, showing that the delay is needed to pragagtyre the
phase. (Figure redrawn from the data of Stark [Sta68].)

safely skip this section. A good reference for the matherahtnaterial in this
section is the classic book by Widder [Wid41].

Traditionally, Laplace transforms were used to computeaeses of linear
systems to different stimuli. Today we can easily generageresponses using
computers. Only a few elementary properties are neededafic lwontrol appli-
cations. There is, however, a beautiful theory for Laplacestfi@ms that makes
it possible to use many powerful tools from the theory of timts of a complex
variable to get deep insights into the behavior of systems.

Consider a functiorf (t), f : R™ — R, that is integrable and grows no faster
thane™ for some finitesy € R and larget. The Laplace transform magdsto a
functionF = Zf : C — C of a complex variable. It is defined by

F(s) = /OooeStf(t)dt, Res> . (8.22)

The transform has some properties that makes it well suiteteébd with linear

systems.
First we observe that the transform is linear because
Z(af +bg) = / e S(af(t) + bg(t))dt
% o - (8.23)
— a/ e St (1) dt + b/ e Sg(t)dt = a2 + b.zg.
0 0

Next we calculate the Laplace transform of the derivative fofrgtion. We have

00

xdf—/ e_Stf’(t)dt:e_Stf(t)’:+S/ e S (t)dt = —f(0) +sZf,
0

dt 0
where the second equality is obtained using integrationaoispWe thus obtain
iﬂg =sZf —f(0) =sF(s)— f(0). (8.24)

dt
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This formula is particularly simple if the initial conditisrare zero because it fol-
lows that differentiation of a function corresponds to riplitation of the trans-
form bys.

Since differentiation corresponds to multiplication §ywe can expect that
integration corresponds to division byThis is true, as can be seen by calculating
the Laplace transform of an integral. Using integration btgpave get

x/ dr—/ (e‘S‘/tf( )dr)dt
:—St/f dr

t 1 1
.z/o f(r)dr =2 =ZF(s) (8.25)

Next consider a linear time-invariant system with zeroiahistate. We saw in
Section 5.3 that the relation between the inpand the outpuy is given by the

convolution integral N
:/ h(t—t)u(t)dt
0

whereh(t) is the impulse response for the system. Taking the Laplaosfoem
of this expression, we have

Y(s):/ dt—/ St/ h(t — 7)u(T) drdt

0

_ / e Th(t — T)u(7)dr dt

:/ e Tu(t dr/ e Sth(t)dt =H(s)U(s).
0 JO

Thus, the input/output response is given¥ayg) = H(s)U(s), whereH, U andY
are the Laplace transforms bf u andy. The system theoretic interpretation is
that the Laplace transform of the output of a linear system psoauct of two
terms, the Laplace transform of the infuifs) and the Laplace transform of the
impulse response of the systet{s). A mathematical interpretation is that the
Laplace transform of a convolution is the product of the tframss of the functions
that are convolved. The fact that the formiés) = H(s)U (s) is much simpler
than a convolution is one reason why Laplace transforms hewerbe popular in
engineering.

We can also use the Laplace transform to derive the transfetiéun for a state
space system. Consider, for example, a linear state spat@sygescribed by

((jjt = Ax+ Bu, y=Cx+Du.

Taking Laplace transformsnder the assumption that all initial values are zero
gives

1 ® —ST
5/0 e > f(r)dr,

hence

sX(s) = AX(s) +BU(s) Y(s) =CX(s)+DU(s).
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Elimination of X(s) gives
Y(s) = (C(sI—A)*lBJr D)U(s). (8.26)

The transfer function i§(s) = C(sl — A) "B+ D (compare with equation (8.4)).

8.6 Further Reading

The idea of characterizing a linear system by its steadg-sé&ponse to sinusoids
was introduced by Fourier in his investigation of heat caridu in solids [Fou07].
Much later, it was used by the electrical engineer Steinmétziwtroduced théw
method for analyzing electrical circuits. Transfer funos were introduced via the
Laplace transform by Gardner Barnes [GB42], who also used thealculate the
response of linear systems. The Laplace transform was veyriarg in the early
phase of control because it made it possible to find transiéatsibles (see, e.g.,
[JNP47]). Combined with block diagrams, transfer functiansl Laplace trans-
forms provided powerful techniques for dealing with compgystems. Calcu-
lation of responses based on Laplace transforms is less tampdoday, when
responses of linear systems can easily be generated usimguters. There are
many excellent books on the use of Laplace transforms andféafunctions for
modeling and analysis of linear input/output systems. ifi@thl texts on control
such as [DBO04], [FPENO5] and [Oga01] are representative exasmplole/zero
cancellation was one of the mysteries of early control thebis clear that com-
mon factors can be canceled in a rational function, but diatioes have system
theoretical consequences that were not clearly understotild<alman’s decom-
position of a linear system was introduced [KHN63]. In thikdi@ing chapters, we
will use transfer functions extensively to analyze stépiind to describe model
uncertainty.

Exercises

8.1 Let G(s) be the transfer function for a linear system. Show that if we ap
ply an inputu(t) = Asin(wt), then the steady-state output is given yiy) =
|G(iw)|Asin(wt + argG(iw)). (Hint: Start by showing that the real part of a com-
plex number is a linear operation and then use this fact.)

8.2 Consider the system

d—x—ax+u
dt ’

Compute the exponential response of the system and use tesive the transfer
function fromu to x. Show that whers = a, a pole of the transfer function, the
response to the exponential input) = €% is x(t) = €x(0) +te.
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8.3 (Inverted pendulum) A model for an inverted pendulum wasonhiced in
Example 2.2. Neglecting damping and linearizing the pendwtound the upright
position gives a linear system characterized by the matrice

A= [mgcl)/Jt 3] B:[]_;)Jt], C:(l 0), D=0

Determine the transfer function of the system.
8.4 (Solutions corresponding to poles and zeros) Consider ffegetitial equation
dny dnfly dnflu dnfzu

+o by

(a) LetA be aroot of the characteristic polynomial
S+as 4. 4a,=0.
Show that ifu(t) = 0, the differential equation has the solutigh) = €.
(b) Letk be a zero of the polynomial
b(s) = byt + b8 2+ - + by,

Show that if the input isu(t) = €, then there is a solution to the differential
equation that is identically zero.

8.5 (Operational amplifier) Consider the operational amplifig¢raduced in Sec-
tion 3.3 and analyzed in Example 8.3. A PI controller can be ttoaed using
an op amp by replacing the resis®s with a resistor and capacitor in series, as
shown in Figure 3.10. The resulting transfer function of thiewst is given by

1 kCs
Gls) =~ (R”Cs) ' (((k+ 1)R.C+R,C)s+ 1) :

wherek is the gain of the op am|R; andR; are the resistances in the compensation
network andC is the capacitance.

(a) Sketch the Bode plot for the system under the assumptaik tis R, > R;.
You should label the key features in your plot, including ¢iaén and phase at low
frequency, the slopes of the gain curve, the frequenciehatiwvthe gain changes
slope, etc.
(b) Suppose now that we include some dynamics in the ampliSesudined in
Example 8.1. This would involve replacing the g&iwith the transfer function
k
H(s) = .
8 =1sT
Compute the resulting transfer function for the system, (ieplacek with H(s))
and find the poles and zeros assuming the following paramelees
Ro

Ezloq k=1CP, R.C =1, T=0.01
1
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(c) Sketch the Bode plot for the transfer function in part (bing straight line
approximations and compare this to the exact plot of thesfeairfunction (using
MATLAB). Make sure to label the important features in your plot

8.6 (Transfer function for state space system) Consider tlealistate space sys-

tem
dx

— =Ax+B =C
gt X+ Bu, y X.
Show that the transfer function is
by 14+ by 24...+b
G(s) = 1 + 271 + -+ Dp
S+t +---+ap

)

where
bi=CB, by=CAB+aiCB, ..., b,=CA™'B+a,CA"?B+---+a,_1CB
andA (s) = "+ a1 + - - + a, is the characteristic polynomial féx.

8.7 (Kalman decomposition) Show that the transfer function ofsdéesn depends
only on the dynamics in the reachable and observable subsgaihe Kalman
decomposition. (Hint: Consider the representation giweaduation (7.27).)

8.8 Using block diagram algebra, show that the transfer funstioomd to y and
ntoyin Figure 8.7 are given by

P 1
Gug=-—— Gyp= -
Y4 = 15 PC M= 11pPC

8.9 (Bode plot for a simple zero) Show that the Bode plot for tran$finction
G(s) = (s+a)/acan be approximated by

_ 0 ifw<a
log|G ~
0g|G(iw)] {|ng_|oga if w>a,

0 if w<a/l0
ZG(iw) ~ < 45+ 45(logw—loga) a/10< w < 10a
90 if w> 10a.

8.10(Vectored thrust aircraft) Consider the lateral dynamitca @ectored thrust
aircraft as described in Example 2.9. Show that the dynamicsheadescribed
using the following block diagram:

r 0 % v 1
th T2 = -md m2 +cs X
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Use this block diagram to compute the transfer functionsifug to 6 andx and
show that they satisfy

J$ —mgr

r
Hou, = -, Hw = 55 =

8.11(Common poles) 1Con]sﬁ‘%nler a closled &%ﬁ@%&e‘?ﬁ) of the form airEi§.7,

with F = 1 andP andC having a pole/zero cancellation. Show that if each syst

is written in state space form, the resulting closed loopesyss not reachable and

not observable.

8.12(Congestion control) Consider the congestion control rhdescribed in Sec-
tion 3.4. Letw represent the individual window size for a setbidentical sources,
g represent the end-to-end probability of a dropped pabkepresent the number
of packets in the router’s buffer anglrepresent the probability that a packet is
dropped by the router. We writg = Nw to represent the total number of packets
being received from aM sources. Show that the linearized model can be described
by the transfer functions
e TfS N
Goils) Ga(9) Oe(TeS+ QeWe)’

TS+ e 1Y
where(we, be) is the equilibrium point for the syster is the steady-state round-
trip time andt; is the forward propagation time.

pr(S) =P,

8.13(Inverted pendulum with PD control) Consider the normalizeerted pen-
dulum system, whose transfer function is giverAigg) = 1/(s> — 1) (Exercise 8.3).
A proportional-derivative control law for this system heaisfer functiorC(s) =
Kp + kys (see Table 8.1). Suppose that we cho0$8) = a(s— 1). Compute the
closed loop dynamics and show that the system has good rnitpaokireference
signals but does not have good disturbance rejection preper

8.14(Vehicle suspension [HB90]) Active and passive dampinguse in cars to
give a smooth ride on a bumpy road. A schematic diagram of withia damping
system in shown in the figure below.

(Porter Class | race car driven by Todd Cuffaro)

This model is called guarter car modeland the car is approximated with two
masses, one representing one fourth of the car body and hiee @twheel. The
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actuator exerts a forde between the wheel and the body based on feedback from
the distance between the body and the center of the wheeaktiespacg.

Let Xy, Xw andx; represent the heights of body, wheel and road measured from
their equilibria. A simple model of the system is given by News equations for
the body and the wheel,

mpXp = F, MyXw = —F + ke (% — Xw),

wheremy, is a quarter of the body massy, is the effective mass of the wheel
including brakes and part of the suspension systemuitisprung magsandk; is
the tire stiffness. For a conventional damper consisting sibring and a damper,
we haveF = k(xw — Xp) + C(Xw — Xp). FOr an active damper the forée can be
more general and can also depend on riding conditions. Ridexfort can be
characterized by the transfer functi@y from road heightx, to body acceler-
ationa = X,. Show that this transfer function has the prope&ty, (ic) = ki /My,
whereaw = /k/my (thetire hop frequency The equation implies that there are
fundamental limitations to the comfort that can be achievigd any damper.

8.15(Vibration absorber) Damping vibrations is a common engiimg problem.
A schematic diagram of a damper is shown below:

TF
e T
5

=l kl%
my

T

The disturbing vibration is a sinusoidal force acting on mmagsand the damper
consists of the massy, and the sprind,. Show that the transfer function from
disturbance force to heighi of the massn, is

mps? + ko
myMps* + My S8 + (meka + mp (kg + kz))Sz +koCiS+kiko
How should the massy and the stiffnes&, be chosen to eliminate a sinusoidal

oscillation with frequencyw. (More details are vibration absorbers is given in the
classic text by Den Hartog [DH85, pp. 87-93].)

GX]_F -



