Chapter Eight

Transfer Functions

Thetypical regulator system can frequently be described, in essenyidigfdyential equations
of no more than perhaps the second, third or fourth order. ...In copttas order of the set
of differential equations describing the typical negative feedback amplgied in telephony
is likely to be very much greater. As a matter of idle curiosity, | once countédd out what
the order of the set of equations in an amplifier | had just designed wawld been, if | had
worked with the differential equations directly. It turned out to be 55.

Henrik Bode, 1960 [Bod60].

This chapter introduces the concept of ttamsfer functionwhich is a compact
description of the input/output relation for a linear systeCombining transfer
functions with block diagrams gives a powerful method foaldey with complex
linear systems. The relationship between transfer funstéod other descriptions
of system dynamics is also discussed.

8.1 Frequency Domain Modeling

Figure 8.1 is a block diagram for a typical control system sisting of a process to
be controlled and a controller that combines feedback agdfdéeward. We saw in
the previous two chapters how to analyze and design suatrsgsising state space
descriptions of the blocks. As mentioned in Chapter 2, arraditive approach is
to focus on the input/output characteristics of the syst&imce it is the inputs and
outputs that are used to connect the systems, one couldtekpédthis point of
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Figure 8.1: A block diagram for a feedback control system. The reference kigisafed
through a reference shaping block, which produces the signal thdienithcked. The error
between this signal and the output is fed to a controller, which producesgbeto the
process. Disturbances and noise are included as external signadsibub and output of
the process dynamics.
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view would allow an understanding of the overall behaviothef system. Transfer
functions are the main tool in implementing this point ofwitor linear systems.

The basic idea of the transfer function comes from lookinghatftequency
response of a system. Suppose that we have an input sign#éd frexiodic. Then
we can decompose this signal into the sum of a set of sinesasiues,

u(t) = > acsin(ket) + by coskat),
k=0
wherew is the fundamental frequency of the periodic input. Eachetéihms in this
input generates a corresponding sinusoidal output (irdgtetate), with possibly
shifted magnitude and phase. The gain and phase at eachriogcare determined
by the frequency response given in equation (5.24):

G(s) =C(sl — A B+ D, (8.1)

where we ses = i (kw) for eachk = 1, ..., 00 andi = +/—1. If we know the
steady-state frequency resporisés), we can thus compute the response to any
(periodic) signal using superposition.

The transfer function generalizes this notion to allow a desalass of input
signals besides periodic ones. As we shall see in the nekibsethe transfer
function represents the response of the system texaonential inpytu = €5t
It turns out that the form of the transfer function is preigbe same as that of
equation (8.1). This should not be surprising since we déreguation (8.1) by
writing sinusoids as sums of complex exponentials. Foyydie transfer function
is the ratio of the Laplace transforms of output and inpuhalgh one does not
have to understand the details of Laplace transforms in todeake use of transfer
functions.

Modeling a system through its response to sinusoidal andrexptial signals is
known asfrequency domain modelin@his terminology stems from the fact that
we represent the dynamics of the system in terms of the gerestdrequencys
rather than the time domain varialileThe transfer function provides a complete
representation of a linear system in the frequency domain.

The power of transfer functions is that they provide a paldidy convenient
representation in manipulating and analyzing complexlirfieedback systems. As
we shall see, there are many graphical representationsudfar functions that
capture interesting properties of the underlying dynamiicansfer functions also
make it possible to express the changes in a system becauseeling error, which
is essential when considering sensitivity to process tiaria of the sort discussed
in Chapter 12. More specifically, using transfer functiohg possible to analyze
what happens when dynamic models are approximated by statiels or when
high-order models are approximated by low-order modelg €dmsequence is that
we can introduce concepts that express the degree of statfii system.

While many of the concepts for state space modeling and sisadpply di-
rectly to nonlinear systems, frequency domain analysi$iepprimarily to linear
systems. The notions of gain and phase can be generalizedhliogar systems
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and, in particular, propagation of sinusoidal signals digio a nonlinear system
can approximately be captured by an analog of the frequessponse called the
describing function. These extensions of frequency respuiils be discussed in
Section 9.5.

8.2 Derivation of the Transfer Function

As we have seen in previous chapters, the input/output dipsaofh a linear sys-
tem have two components: the initial condition responsethadorced response.
In addition, we can speak of the transient properties of yiséesn and its steady-
state response to an input. The transfer function focusdseost¢ady-state forced
response to a given input and provides a mapping betweetsiapd their corre-
sponding outputs. In this section, we will derive the trangtinction in terms of
the exponential response of a linear system.

Transmission of Exponential Signals

To formally compute the transfer function of a system, wénvdke use of a special
type of signal, called aexponential signalpf the forme®, wheres = ¢ +iw is

a complex number. Exponential signals play an importantirolsear systems.
They appear in the solution of differential equations anchmitmpulse response
of linear systems, and many signals can be represented asexdals or sums of
exponentials. For example, a constant signal is singfflywith « = 0. Damped
sine and cosine signals can be represented by

el Hot — grtdel — e7t(coswt + i sinwt),

wheres < 0 determines the decay rate. Figure 8.2 gives examples dlsigmat
can be represented by complex exponentials; many othealsigan be represented
by linear combinations of these signals. As in the case ofsiidal signals, we will
allow complex-valued signals in the derivation that fol&valthough in practice
we always add together combinations of signals that restdidl-valued functions.

To investigate how a linear system responds to an expohéntiat u(t) = e
we consider the state space system

d
d—’t( — Ax+Bu,  y=Cx+Du. (8.2)

Let the input signal ba(t) = €% and assume that# 1j(A), j = 1,...,n, where
Zj(A) is the jth eigenvalue ofA. The state is then given by

t t
x(t) = e*x(0) +/ A= B dr = e*'x(0) + eAt/ es!I=A7B dr.
0 0
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Figure 8.2: Examples of exponential signals. The top row corresponds to expal&gnals
with a real exponent, and the bottom row corresponds to those with coexpexents. The
dashed line in the last two cases denotes the bounding envelope foritte@mycsignals. In
each case, if the real part of the exponent is negative then the seg®ls] while if the real
part is positive then it grows.

As we saw in Section 5.3, § # 1(A), the integral can be evaluated and we get
X(t) = eAx(0) + erl(s| — A)‘l(e(s"A)t - I)B
pr (x(O) — (sl — A)—ls) + (sl — AlBeE.
The output of equation (8.2) is thus
y(t) = Cx(t) + Du(t)
- CeAt(x(O) — (sl — A)—lB) + (C(sl “AB+ D)eSt, (8.3)
a linear combination of the exponential functiog®$ and e*t. The first term in
equation (8.3) is the transient response of the system |IRleate! can be written
in terms of the eigenvalues & (using the Jordan form in the case of repeated
eigenvalues), and hence the transient response is a liogdniration of terms of
the formetit, where/; are eigenvalues oA. If the system is stable, thet - 0
ast — oo and this term dies away.

The second term of the output (8.3) is proportional to thetingt) = e5t. This
term is called thepure exponential responsk the initial state is chosen as

x(0) = (sl — A)1B,

then the output consists of only the pure exponential respamd both the state
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and the output are proportional to the input:

x(t) = (sl — A)IBe! = (sl — A~ IBu(t),
y(t) = (C(sl — A™'B + D)e*' = (C(sl — A'B + D)u(t).

This is also the output we see in steady state, when the traasipresented by
the first term in equation (8.3) have died out. The map from thatito the output,

Gyu(s) = C(sl — A'B+ D, (8.4)

is thetransfer functiorfrom u to y for the system (8.2), and we can wrigét) =
Gyu(s)u(t) for the case thati(t) = e*'. Compare with the definition of frequency
response given by equation (5.24).

An important point in the derivation of the transfer functis the fact that
we have restricted so thats # 4;(A), the eigenvalues of. At those values of
s, we see that the response of the system is singular (sihee A will fail to
be invertible). Ifs = 4;(A), the response of the system to the exponential input
u=¢eitisy = p(t)e'it, wherep(t) is a polynomial of degree less than or equal
to the multiplicity of the eigenvalug; (see Exercise 84).

Example 8.1 Damped oscillator
Consider the response of a damped linear oscillator, whase space dynamics
were studied in Section 6.3:

R O

This system is stable f > 0, and so we can look at the steady-state response to
an inputu = €*,

-1
Gyu(s) =C(sl = A)'B = [1 o] [a)o SJr_;Ug?wo] [kgO]

1 S
- [1 O] (52+26wos+a)3 [_“’0 S"'wao]) [ka’o] 59

ka3
2+ 20 woS + of

To compute the steady-state response to a step functiorgtwe=s0 and we see
that
u=1 - y = Gyu(Ou =k

If we wish to compute the steady-state response to a sinugeidrite
; 1. —iwt i Aot
u=sma)t=§(|e —ie'"),

y = % (iGyu(—iw)e ™ —iGy(iw)e™).
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We can now writeG (i o) in terms of its magnitude and phase,
ka)g

2 + 20 oS + @)

Gliw) = = Me“,

where the magnitude (or gaily) and phasé are given by
ka3 sind  —2¢ wow
B - 2 .
J@d—o??+ @rogw? 09 0=’

We can also make use of the fact ti&t—i ) is given by its complex conjugate
G*(iw), and it follows thatG(—iw) = Me™'?. Substituting these expressions into
our output equation, we obtain

M =

y = %‘ (l (Me—iﬂ)e—iwt —j (Meif))eia)t)

1, L .
- M = (ie™' @) —je! @) = M sin(wt + 0).

The responses to other signals can be computed by writingnphe &s an appro-
priate combination of exponential responses and usingiitye \%

Coordinate Changes

The matricesA, B andC in equation (8.2) depend on the choice of coordinate
system for the states. Since the transfer function relafag o outputs, it should
be invariant to coordinate changes in the state space. W #fig, consider the
model (8.2) and introduce new coordinardsy the transformatiom = T X, where

T is a nonsingular matrix. The system is then described by

dz - -
5; = T(Ax+ Bu) = TAT 'z4+ TBu=: Az+ By,

y=Cx+ DU =CT*'z+ Du=:Cz+ Du.

This system has the same form as equation (8.2), but the e=&jdB andC are

different: _ _ ~
A=TATY B=TB, C=cCT1L (8.7)

Computing the transfer function of the transformed model get
Gi)=Csl—AB+D=CT I -TATHITB+D
=C(T (sl - TAT‘l)T)_lB +D=C(sl — A B+ D=G0G(s),

which is identical to the transfer function (8.4) computeahi the system descrip-
tion (8.2). The transfer function is thus invariant to changéthe coordinates in
the state space.

Another property of the transfer function is that it corresg@s to the portion of the
state space dynamics thatis both reachable and observedeticular, if we make



8.2. DERIVATION OF THE TRANSFER FUNCTION 235

use of the Kalman decomposition (Section 7.5), then thefeafsction depends
only on the dynamics in the reachable and observable subapa¢Exercise 89).

Transfer Functions for Linear Systems

Consider a linear input/output system described by therobbed differential equa-
tion

d"y d"-ly d™u d™ 1y

y——m+ - =D, b

am + 1dt”—1+ + any Odtm+ L gtm—1
whereu is the input andy is the output. This type of description arises in many
applications, as described briefly in Section 2.2; bicycleaghyits and AFM mod-
eling are two specific examples. Note that here we have gerenladur previous
system description to allow both the input and its derivegito appear.

To determine the transfer function of the system (8.8)hlettput beu(t) = €.

Since the system is linear, there is an output of the systetisthlso an exponential
functiony(t) = yoe®'. Inserting the signals into equation (8.8), we find

ot bgu,  (8.8)

n-1

(" +as" 4 4 an)Yoe®™ = (bos™ + bys™ - + b)e”S,

and the response of the system can be completely descrikigglpolynomials
as) =s"+as" 4 +an, b(s) = bos™ + bys™ L + - - . + by
(8.9)

The polynomiah(s) is the characteristic polynomial of the ordinary diffeiaht
equation. Ifa(s) # 0, it follows that

b(s)
_ st __ st
y(t) = yo& = —a(s)e . (8.10)
The transfer function of the system (8.8) is thus the ratifunattion
b(s)
= — A1
GO = o (8.11)

where the polynomiala(s) andb(s) are given by equation (8.9). Notice that the
transfer function for the system (8.8) can be obtained byenson since the co-
efficients ofa(s) andb(s) are precisely the coefficients of the derivativesi@nd

y. Theorder of the transfer function is defined as the order of the dencmina
polynomial.

Equations (8.8)—(8.11) can be used to compute the trangietiéuns of many
simple ordinary differential equations. Table 8.1 givesmeoof the more com-
mon forms. The first five of these follow directly from the anatyabove. For the
proportional-integral-derivative (PID) controller, we keause of the fact that the
integral of an exponential input is given 10y/s)es.

Thelastentry in Table 8.1 is for a pure time delay, in whichdhiput is identical
tothe input atan earliertime. Time delays appear in mangsys. typical examples
are delays in nerve propagation, communication and massgoat. A system with
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Table 8.1: Transfer functions for some common ordinary differential equations

Type ODE Transfer Function
. 1
Integrator y=u S
Differentiator y=u S
1
First-order system y+ay=u —_—
Yy y+ay sra
. . 1
Double integrator y=u p
Damped oscillator { + 27wy + wly = u 1
), (0] = -
p Y + £{ awoy oY 2+ 2 w0s +

ki

PID controller y=kou+kyu+k [u kp+kds+§

Time delay y(t) = ut —17) e s

a time delay has the input/output relation
y(t) =ut — 7). (8.12)

As before, let the input be(t) = €. Assuming that there is an output of the form
y(t) = yo€e® and inserting into equation (8.12), we get

y(t) — yoest — s(t—1) — e—SreSt — e_STU(t).

The transfer function of a time delay is thGgs) = €57, which is not a rational
function but is analytic except at infinity. (A complex furaniisanalyticin a region
if it has no singularities in the region.)

Example 8.2 Electrical circuit elements
Modeling of electrical circuits is a common use of transtardtions. Consider, for
example, a resistor modeled by Ohm’s l&w= | R, whereV is the voltage across
the resister] is the current through the resistor aRdis the resistance value. If
we consider current to be the input and voltage to be the gutpel resistor has
the transfer functiorZ(s) = R. Z(s) is also called thémpedanceof the circuit
element.

Next we consider an inductor whose input/output charestteris given by

L—=V.
dt
Letting the current be (t) = €%, we find that the voltage i¥ (t) = Lse* and the
transfer function of an inductor is thugs) = Ls. A capacitor is characterized by
dv

C— =1
dt ’
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Figure 8.3: Stable amplifier based on negative feedback around an operatiopii@nirhe

block diagram on the left shows a typical amplifier with low-frequency d&ifR;. If we
model the dynamic response of the op ampzds) = ak/(s + a), then the gain falls off

at frequencyw = a, as shown in the gain curves on the right. The frequency response is
computed fok = 107, a = 100 rad/sR, =10° Q, andR; = 1, 1%, 10* and 16 Q.

and a similar analysis gives a transfer function from curtervoltage ofZ(s) =
1/(Cs). Using transfer functions, complex electrical circuits te analyzed alge-
braically by using the complex impedan£és) just as one would use the resistance
value in a resistor network. \%

Example 8.3 Operational amplifier circuit
To further illustrate the use of exponential signals, wesider the operational
amplifier circuit introduced in Section 3.3 and reproduced iguFé 8.3a. The
model introduced in Section 3.3 is a simplification becauskrtbar behavior of the
amplifier was modeled as a constant gain. In reality thereignéfisant dynamics
in the amplifier, and the static model,; = —ko (equation (3.10)) should therefore
be replaced by a dynamic model. In the linear range of theifigrplve can model
the operational amplifier as having a steady-state frequessponse
Dout ak

s~ Tsyra— G(s). (8.13)
This response corresponds to a first-order system with timstaonla. The
parametek is called theopen loop gainand the producak is called thegain-
bandwidth produgttypical values for these parameters ke 10’ andak = 10—
10° rad/s.

Since all of the elements of the circuit are modeled as beiaal if we drive
the inputo, with an exponential signa®!, then in steady state all signals will be
exponentials of the same form. This allows us to manipula&edtjuations describing
the system in an algebraic fashion. Hence we can write

D1 — D D — U2
R~ R and 0, = —G(9)v, (8.14)
using the fact that the currentinto the amplifier is very spaalive did in Section 3.3.
Eliminatingv between these equations gives the following transfer fonaif the
system

v2 —RzG(S) . —Rzak
U1 - Ri+ R+ RlG(S) a Riak + (Ry + Rz)(S-l—a)‘
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The low-frequency gain is obtained by settgg: 0, hence
—kR . R

k+DRi+R. RO
which is the result given by (3.11) in Section 3.3. The bandwaftthe amplifier

circuitis
. aRl(k—I-l)—l- Rz N aR—lk
Ri+ R Ry’

where the approximation holds f&/R; >> 1. The gain of the closed loop system
drops off at high frequencies &k/ (o (R1 + Ry)). The frequency response of the
transfer function is shown in Figure 8.3b fioe= 107, a = 100 rad/sR, = 10° Q
andR; = 1, 1%, 10* and 16 Q.

Note that in solving this example, we bypassed explicitliting the signals as
v = voe® and instead worked directly with assuming it was an exponential. This
shortcut is handy in solving problems of this sort and whemimadating block
diagrams. A comparison with Section 3.3, where we made the sahculation
whenG(s) was a constant, shows analysis of systems using transfetidos is
as easy as using static systems. The calculations are thdafghmeesistancef;
andR; are replaced by impedances, as discussed in Example 8.2. \%

Guzvl (O) =

Although we have focused thus far on ordinary differentiplaions, transfer func-
tions can also be used for other types of linear systems. Mérite this via an
example of a transfer function for a partial differentiabiation.

Example 8.4 Heat propagation

Consider the problem of one-dimensional heat propagatiarsemi-infinite metal
rod. Assume that the input is the temperature at one end anthi output is the
temperature at a point along the rod. B¢k, t) be the temperature at position
and timet. With a proper choice of length scales and units, heat patgayis

described by the partial differential equation

00 %0

ot o2x’
and the point of interest can be assumed to have 1. The boundary condition
for the partial differential equation is

0(0, 1) = u(t).

(8.15)

To determine the transfer function we choose the input(Bis= €'. Assume that
there is a solution to the partial differential equationha forméd (x, t) = w (x)e™
and insert this into equation (8.15) to obtain

d?y
dx2’

with boundary conditiony (0) = €. This ordinary differential equation (with

sy (X) =
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independent variable) has the solution
w(X) = AdYS 4 Be™XV5,
Matching the boundary conditions givés= 0 andB = €%, so the solution is
y(t) = 0(L, 1) = y(1)es = e Ve = e VSu(t).

The system thus has the transfer funct®¢s) = e v5. As in the case of a time
delay, the transfer function is not a rational function Isuam analytic function. V

Gains, Poles and Zeros

The transfer function has many useful interpretations aedeatures of a transfer
function are often associated with important system progeerThree of the most
important features are the gain and the locations of thesgzoid zeros.

Thezero frequency gaiof a system is given by the magnitude of the transfer
function ats = 0. It represents the ratio of the steady-state value of thaubwith
respect to a step input (which can be represented-ag® with s = 0). For a state
space system, we computed the zero frequency gain in equat2R):

G(0)=D-CA!B.
For a system written as a linear differential equation

d"y dn—ly dMu dm™ 1y
ag— + - - =Db b
g TG T Ty =g Hhigin
if we assume that the input and output of the system are ausgipandug, then
we find thata, Yo = bnug. Hence the zero frequency gain is
b
GOy =L
Up an

Next consider a linear system with the rational transfectiom

b(s)
—as)
The roots of the polynomial(s) are called thgolesof the system, and the roots
of b(s) are called theerosof the system. Ifp is a pole, it follows that/(t) = e
is a solution of equation (8.8) with = 0 (the homogeneous solution). A pgte
corresponds to eodeof the system with corresponding modal solut&h. The
unforced motion of the system after an arbitrary excitatioa weighted sum of
modes.

Zeros have a different interpretation. Since the pure exp@ieutput corre-
sponding to the inputi(t) = €% with a(s) # 0 is G(s)e®, it follows that the pure
exponential output is zero bi(s) = 0. Zeros of the transfer function thus block
transmission of the corresponding exponential signals.

For a state space system with transfer func@s) = C(s| — A)"'B+ D, the
poles of the transfer function are the eigenvalues of theixAtin the state space

+ -+ bmu,

(8.16)

G(s)
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Figure 8.4: A pole zero diagram for a transfer function with zeros-&tand—1 and poles at
—3and—2+2j. The circles represent the locations of the zeros, and the crossesdtieris
of the poles. A complete characterization requires we also specify thefgia system.

model. One easy way to see this is to notice that the valug(sf is unbounded
whens is an eigenvalue of a system since this is precisely the gmbiofs where
the characteristic polynomial(s) = det(sl — A) = 0 (and hencesl — A is
noninvertible). It follows that the poles of a state spacsesy depend only on the
matrix A, which represents the intrinsic dynamics of the system. ®yetkat a
transfer function is stable if all of its poles have negat®al part.

To find the zeros of a state space system, we observe that teearercomplex
numberss such that the inputi(t) = uge® gives zero output. Inserting the pure
exponential responset) = xoe’! andy(t) = 0 in equation (8.2) gives

sy = Axe® + Buge® 0 = Ce'%y + De’lug,
which can be written as

A=sl B] [x] st
e o) (] e-e

This equation has a solution with nonzeg up only if the matrix on the left does
not have full rank. The zeros are thus the valsieach that the matrix

A—sl B
[c D] (8.17)

looses rank.

Since the zeros depend @y B, C and D, they therefore depend on how the
inputs and outputs are coupled to the states. Notice ingodatti that if the matrix
B has full row rank, then the matrix in equation (8.17) hdmearly independent
rows for all values ok. Similarly there aren linearly independent columns if the
matrix C has full column rank. This implies that systems where theimm&ror C
is square and full rank do not have zeros. In particular itmasdhat a system has
no zeros if it is fully actuated (each state can be contraiidépendently) or if the
full state is measured.

A convenient way to view the poles and zeros of a transfertfonés through
apole zero diagramas shown in Figure 8.4. In this diagram, each pole is marked
with a cross, and each zero with a circle. If there are ma@tgmles or zeros at a
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(a) Cart—pendulum system (c) Pole zero diagram far ¢

Figure 8.5: Poles and zeros for a balance system. The balance system (a) catékedn
around its vertical equilibrium point by a fourth order linear system. Tdiegpand zeros for
the transfer functionslyr andH,¢ are shown in (b) and (c), respectively.

fixed location, these are often indicated with overlappimgses or circles (or other
annotations). Poles in the left half-plane correspond tost@odes of the system,
and poles in the right half-plane correspond to unstableasdd/e thus call a pole
in the left-half plane atable poleand a pole in the right-half plane amstable
pole A similar terminology is used for zeros, even though th@zelo not directly
related to stability or instability of the system. Noticatlihe gain must also be
given to have a complete description of the transfer functio

Example 8.5 Balance system

Consider the dynamics for a balance system, shown in Fighré&Be transfer func-
tion for a balance system can be derived directly from thesg®rder equations,
given in Example 2.1:

d?p d20 dp . .d0. 2
T mIW cost) + T mlsme(a) =F,
d?p d?e _ .

—mi COS¢9—C|,[2 + Jt—dtz —mglsing +y6 = 0.

My

If we assume that andé are small, we can approximate this nonlinear system by
a set of linear second-order differential equations,

d?p d?9  dp

M= —ml=—— +Cc— = F

gz~ Mg TCar T
d?p d?0

de
—ml=— + J— +y— —mgly = 0.
mdt2+‘]tdt2+ydt mgle =0
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If we let F be an exponential signal, the resulting response satisfies
Ms?> p —mls?d +cs p= F,
3s?0 —mls? p+ysf —mglo =0,

where all signals are exponential signals. The resultingstea functions for the
position of the cart and the orientation of the pendulum arergby solving forp
andd in terms ofF to obtain

mls
Hpr =
P T Mk —m212)sh + (y M + c3)S2 + (¢y — Mimgl)s — mgIc
3>+ ys—mgl
HpF

= (Mg — m212)s? + (y My + ¢ J)s® + (cy — Mymgl)s?2 — mglcs

where each of the coefficients is positive. The pole zero diagrmr these two
transfer functions are shown in Figure 8.5 using the paraismétam Example 6.7.
If we assume the damping is small andset 0 andy = 0, we obtain

ml

Hyr =

oF (M & — m212)s2 — Mymgl’
Js? — mgl

Hor = .
PF (Mg — m212)s2 — Mymg)

This gives nonzero poles and zeros at

mgl M mgl

=+ | ———— ~ +2.68 z=4+ | — =~ +2.09.
P M. J — a2 i)

We see that these are quite close to the pole and zero losatiGiigure 8.5. V

8.3 Block Diagrams and Transfer Functions

The combination of block diagrams and transfer functions @werful way to
represent control systems. Transfer functions relatifigréint signals in the system
can be derived by purely algebraic manipulations of thesfiemfunctions of the
blocks usingolock diagram algebraTo show how this can be done, we will begin
with simple combinations of systems.

Consider a system that is a cascade combination of systetinghei transfer
functionsG;(s) andG,(s), as shown in Figure 8.6a. Let the input of the system
beu = €. The pure exponential output of the first block is the expoaésignal
G1u, which is also the input to the second system. The pure expi@ahentput of

the second system is
y = G2(Gu) = (G2Ga)u.

The transfer function of the series connection is tBus: G,G, i.e., the product
of the transfer functions. The order of the individual tramdtinctions is due to
the fact that we place the input signal on the right-hand efdihis expression,



8.3. BLOCK DIAGRAMS AND TRANSFER FUNCTIONS 243

G
u y u y u e y
G Gy, —» (=) G
G, T
-G,
(8) Gyu = G2Gy (b) Gyy = G1+ G2 (©)Gyu = G
14 GGy

Figure 8.6: Interconnections of linear systems. Series (a), parallel (b) antbéekdc) con-
nections are shown. The transfer functions for the composite systembec derived by
algebraic manipulations assuming exponential functions for all signals.

hence we first multiply by, and then byG,. Unfortunately, this has the opposite
ordering from the diagrams that we use, where we typicallyehihe signal flow
from left to right, so one needs to be careful. The orderinisartant if eitheiG,
or G; is a vector-valued transfer function, as we shall see in saxaenples.
Consider next a parallel connection of systems with thesterfunctionsG;
andG,, as shown in Figure 8.6b. Letting = €°' be the input to the system, the
pure exponential output of the first system is tlygerr= G;u and the output of the
second system i = G,u. The pure exponential output of the parallel connection
is thus

y =Giu+ Gou = (G1 4+ Gy)u,

and the transfer function for a parallel connectioBis= G; + Go..

Finally, consider a feedback connection of systems withriduester functions
G1 andG,, as shown in Figure 8.6¢. Let= €°' be the input to the systemy,be
the pure exponential output, ardbe the pure exponential part of the intermediate
signal given by the sum efand the output of the second block. Writing the relations
for the different blocks and the summation unit, we find

y = G16, e=u-—Gyy.
Elimination ofe gives

G,
=Giu-G 1+ GG =Gyu = ——U.
y 1( 2y) = (14 G1Gyy i =y 17 GG,
The transfer function of the feedback connection is thus
G
G=— -
1+ GG,

These three basic interconnections can be used as the basisrfputing transfer
functions for more complicated systems.
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d n

r e u v n y
——= F®® C@Né}>P®)*é}>

—1 |

Figure 8.7: Block diagram of a feedback system. The inputs to the system are thenege
signalr, the process disturbanceand the measurement noiseThe remaining signals in
the system can all be chosen as possible outputs, and transfer furmetiobs used to relate
the system inputs to the other labeled signals.

Control System Transfer Functions

Consider the system in Figure 8.7, which was given at the beggrof the chapter.
The system has three blocks representing a proPess feedback controlle€
and a feedforward controlldf. TogetherC and F define thecontrol lawfor the
system. There are three external signals: the referencefomand signaly, the
load disturbance and the measurement noiseA typical problem is to find out
how the erroke is related to the signals d andn.

To derive the relevant transfer functions we assume thatigtials are expo-
nential signals, drop the arguments of signals and trafsfetions and trace the
signals around the loop. We begin with the signal in which redrterested, in this
case the control erra, given by

e=Fr—y.
The signaly is the sum oh andy, wherey is the output of the process:
y=n+n  n=Pd+u), u=Ce
Combining these equations gives
e=Fr—y=Fr—(n+n)=Fr—(n+Pd+u)
=Fr —(n+ P(d+Ce),
and hence
e=Fr—-n—-Pd-PCe

Finally, solving this equation fog gives

o F . 1 . P

1+ PC 1+ PC 1+ PC

and the error is thus the sum of three terms, depending onefeeencer, the
measurement noiseand the load disturbaneck The functions

F -1 -P
=, G = 5 G =
1+ PC T I1rPC =11 PC
are transfer functions from referencenoisen and disturbancd to the errore.

d = Gerr + Genn + Gedd, (818)

(8.19)

er
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r e y r y
—| F PC - — F R

14+PC

(b)

PCF
1+PC

(@) (©

Figure 8.8: Example of block diagram algebra. The results from multiplying the poaed
controller transfer functions (from Figure 8.7) are shown in (a).I&=pg the feedback loop
with its transfer function equivalent yields (b), and finally multiplying the temgining
blocks gives the reference to output representation in (c).

We can also derive transfer functions by manipulating tleekodiagrams di-
rectly, asillustrated in Figure 8.8. Suppose we wish to comth transfer function
between the referenceand the outpuy. We begin by combining the process and
controller blocks in Figure 8.7 to obtain the diagram in Fig8r@a. We can now
eliminate the feedback loop using the algebra for a feedlvaekconnection (Fig-
ure 8.8b) and then use the series interconnection rule trobt

PCF
1y pPC
Similar manipulations can be used to obtain the other trarfafections (Exer-
cise 90).

The derivation illustrates an effective way to manipulateequations to obtain
the relations between inputs and outputs in a feedbackray3tee general idea is
to start with the signal of interest and to trace signalsiaddbe feedback loop until
coming back to the signal we started with. With some pracecgiations (8.18)
and (8.19) can be written directly by inspection of the bld@gram. Notice, for
example, that all terms in equation (8.19) have the samendieadors and that the
numerators are the blocks that one passes through when djoéugly from input
to output (ignoring the feedback). This type of rule can beldise&ompute transfer
functions by inspection, although for systems with muéifdedback loops it can
be tricky to compute them without writing down the algebraleitly.

(8.20)

Example 8.6 Vehicle steering

Consider the linearized model for vehicle steering intitlin Example 5.12. In
Examples 6.4 and 7.3 we designed a state feedback compeasdtstate esti-
mator for the system. A block diagram for the resulting colnglystem is given in
Figure 8.9. Note that we have split the estimator into two conemts G, (s) and
Gyy(s), corresponding to its inputsandy. The controller can be described as the
sum of two (open loop) transfer functions

u= Guy(s)y + Gur (9)r.

The first transfer functionG,y(s), describes the feedback term and the second,
Gur (), describes the feedforward term. We call thepen looptransfer functions
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Figure 8.9: Block diagram for a steering control system. The control system is nkesigp
maintain the lateral position of the vehicle along a reference curve (I¢f) sTructure of the
control system is shown on the right as a block diagram of transfetifursc The estimator
consists of two components that compute the estimatedssfaben the combination of the
input u and outputy of the process. The estimated state is fed through a state feedback
controller and combined with a reference gain to obtain the commandeihgtaagleu.

because they represent the relationships between thdssigitlhout considering
the dynamics of the process (e.g., removih@) from the system description). To
derive these functions, we compute the transfer functiongdch block and then
use block diagram algebra.

We begin with the estimator, which takasandy as its inputs and produces
an estimateX. The dynamics for this process were derived in Example 7.3 emd a
given by

% = (A—-LC)X+ Ly + Bu,
%= (sl—(A=LC))'Bu+ (sl = (A-LC))"'Ly.

G)?u G)”(y

Using the expressions fak, B, C andL from Example 7.3, we obtain

ys+1 [is+15
s2+1is+15 s2+1is+15
G)?U(S) = ] Gﬁy(s) = s
S—|—|1—y|2 I,s
24+ 11+ 15 s2+1is+15

wherel; andl, are the observer gains anpdis the scaled position of the center
of mass from the rear wheels. The controller was a state fekdimmpensator,
which can be viewed as a constant, multi-input, single-atutiansfer function of
the formu = —KX.

We can now proceed to compute the transfer function for tlezadlvcontrol
system. Using block diagram algebra, we have

—KGgy(s) s(kal1 + kal2) + ka2
1+ KGgu(s) 2+ s(yky + ko +11) + ki + 12 + kal1 — y kol

Guy(s) =
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and
K . k1(82 +11s+12)
1+ KGuu(s)  S2+s(yki+ka+11) +ki+ 12+ kaly — ykolo’
wherek; andk, are the controller gains.
Finally, we compute the full closed loop dynamics. We begirdbyiving the
transfer function for the proce$(s). We can compute this directly from the state

space description of the dynamics, which was given in Exarsdl2. Using that
description, we have

Gur(s) =

ys+1
)

-1
P(9) = Gyu(s) = C(s1 ~A)*B+D = [1 0 [(5) —31] [Vll _

The transfer function for the full closed loop system betwtwmninputr and the
outputy is then given by
kPO k(s+1D)
T L+ PEGYE) 2+ (ky +k)s+ki
Note that the observer gaihsandl, do not appear in this equation. This is because
we are considering steady-state analysis and, in steatdy sta estimated state

exactly tracks the state of the system assuming perfect lsidde will return to
this example in Chapter 12 to study the robustness of thitcplar approach. V

Pole/Zero Cancellations

Because transfer functions are often polynomials,iit can sometimes happen
that the numerator and denominator have a common factochvelain be canceled.
Sometimes these cancellations are simply algebraic singildits, but in other
situations they can mask potential fragilities in the mobhgbarticular, if a pole/zero
cancellation occurs because terms in separate blockastaigppen to coincide,
the cancellation may not occur if one of the systems is diigigrturbed. In some
situations this can result in severe differences betweertpected behavior and
the actual behavior.

To illustrate when we can have pole/zero cancellationssiden the block dia-
gram in Figure 8.7 witlF = 1 (no feedforward compensation) a@dand P given

by

Nc(s) Np(s)
C(s) = , P(s) = ——=.
©=as "¥ 740
The transfer function from to e is then given by
1 dc(s)dp(s
6ur(s) — (5)dp(S)

1+ PC de()dp(S) + Ne(s)np(s)”

If there are common factors in the numerator and denominetiynomials, then
these terms can be factored out and eliminated from bothuheerator and de-
nominator. For example, if the controller has a zers &t —a and the process has
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a pole ats = —a, then we will have

(s + a)di(s)dy(s) B d:(s)dy(s)
(54 a)de(9)d,(s) + (s+ )N (Np(s)  de(9)dy(S) + N (S)Np(S)’

Ger(s) =

whereng(s) and dy(s) represent the relevant polynomials with the tesm- a
factored out. In the case when < 0 (so that the zero or pole is in the right
half-plane), we see that there is no impact on the transfation Ge,.

Suppose instead that we compute the transfer functiondrtme, which repre-
sents the effect of a disturbance on the error between theerefe and the output.
This transfer function is given by

di(s)np(s)
(s + @)de(s)d},(s) + (s + A)ng(S)Np(s)

Ged(s) =

Notice thatifa < 0, then the pole is in the right half-plane and the transfection
Geqisunstable Hence, even though the transfer function froito e appears to be
okay (assuming a perfect pole/zero cancellation), thesteairiunction fromd to e
can exhibit unbounded behavior. This unwanted behaviopisay of anunstable
pole/zero cancellation

It turns out that the cancellation of a pole with a zero can bsunderstood in
terms of the state space representation of the systemsh&tsbity or observability
is lost when there are cancellations of poles and zeros (Ee98). A consequence
is that the transfer function represents the dynamics amlthé reachable and
observable subspace of a system (see Section 7.5).

Example 8.7 Cruise control

The input/output response from throttle to velocity for thmeérized model for a
car has the transfer functi@(s) = b/(s—a),a < 0. A simple (but not necessarily
good) way to design a PI controller is to choose the paramet¢ing Pl controller
so that the controller zero at= —k; /k, cancels the process polesat= a. The
transfer function from reference to velocityGs, (s) = bk,/(s+ bkp), and control
design is simply a matter of choosing the giainThe closed loop system dynamics
are of first order with the time constantik,.

Figure 8.10 shows the velocity error when the car encounteirscaease in the
road slope. A comparison with the controller used in FiguBb3Jreproduced in
dashed curves) shows that the controller based on poletaeellation has very
poor performance. The velocity error is larger, and it takksng time to settle.

Notice that the control signal remains practically constdtert = 15 even if
the error is large after that time. To understand what happenwill analyze the
system. The parameters of the systemare —0.0101 andb = 1.32, and the
controller parameters akg = 0.5 andk; = 0.0051. The closed loop time constant
is 1/(bkp) = 2.5 s, and we would expect that the error would settle in abhOust
(4 time constants). The transfer functions from road slopeetocity and control
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Figure 8.10: Car with PI cruise control encountering a sloping road. The velocity ésro
shown on the left and the throttle is shown on the right. Results with a Pl contvatle

kp = 0.5 andk; = 0.0051, where the process pale= —0.0101, is shown by solid lines, and
a controller withk, = 0.5 andk; = 0.5 is shown by dashed lines. Compare with Figure 3.3b.

signals are
bykps bk
G,(s) = P G = P_
0(S) G—a)(s+Dbky)’ uo(S) S+ bk,
Notice that the canceled mode= a = —0.0101 appears i, but not inGy.

The reason why the control signal remains constant is thaidhgoller has a zero
ats = —0.0101, which cancels the slowly decaying process mode. dlttiat the
error would diverge if the canceled pole was unstable. \Y%

The lesson we can learn from this example is that it is a bad toldgy to
cancel unstable or slow process poles. A more detailed sismu of pole/zero
cancellations is given in Section 12.4.

Algebraic Loops

When analyzing or simulating a system described by a blaadgrdim, itis necessary
to form the differential equations that describe the congadgstem. In many cases
the equations can be obtained by combining the differeatjahtions that describe
each subsystem and substituting variables. This simpleegtowe cannot be used
when there are closed loops of subsystems that all havec dinenection between
inputs and outputs, known as algebraic loop

To see what can happen, consider a system with two blockst-afdsr non-

linear system,

dx
q f(x, u), y = h(x), (8.21)

and a proportional controller described bby= —ky. There is no direct term since
the functionh does not depend an In that case we can obtain the equation for the
closed loop system simply by replacindy —kyin (8.21) to give

% = f(X: _ky)a y = h(X)

Such a procedure can easily be automated using simple formargulation.
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The situation is more complicated if there is a direct terny. # h(x, u), then
replacingu by —ky gives

% = f(x, —ky), y = h(x, =ky).
To obtain a differential equation foq, the algebraic equation= h(x, —ky) must
be solved to givey = a(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to sajabirdic equations
to obtain the differential equations for the complete systResolving algebraic
loops is a nontrivial problem because it requires the syinlsolution of algebraic
equations. Most block diagram-oriented modeling langeaganot handle alge-
braic loops, and they simply give a diagnosis that such laopgresent. In the era
of analog computing, algebraic loops were eliminated hyuhicing fast dynamics
between the loops. This created differential equationsfagtand slow modes that
are difficult to solve numerically. Advanced modeling langeslike Modelica use
several sophisticated methods to resolve algebraic loops.

8.4 The Bode Plot

The frequency response of a linear system can be computedtftransfer func-
tion by settings = i w, corresponding to a complex exponential

u(t) = €t = cogwt) + i sin(wt).
The resulting output has the form
y(t) = G(iw)e® = M@+ = M cogwt + ¢) + i M sin(wt + ¢),
whereM andg are the gain and phase Gf

Im G(i w)
n—m—.
ReG(iw)

The phase o6 is also called thargumenbf G, a term that comes from the theory
of complex variables.

It follows from linearity that the response to a single simids(sin or cos) is
amplified byM and phase-shifted hy. Note that-z < ¢ < =, so the arctangent
must be taken respecting the signs of the numerator and deatom It will often
be convenient to represent the phase in degrees rathettians. \We will use the
notationZG (i w) for the phase in degrees and & ) for the phase in radians. In
addition, while we always take a@(i w) to be in the rangé—=, 7], we will take
/G(iw) to be continuous, so that it can take on values outside thlgerafi-180°
to 180.

The frequency respon&(i w) can thus be represented by two curves: the gain
curve and the phase curve. Tdggn curvegives|G(i w)| as a function of frequency
w, and thephase curvgives/G(i w). One particularly useful way of drawing these

M = |G(iw)|, @ = arcta
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Figure 8.11: Bode plot of the transfer functio@(s) = 20 + 10/s + 10s corresponding to
an ideal PID controller. The top plot is the gain curve and the bottom plot isithse curve.
The dashed lines show straight-line approximations of the gain curve amttiesponding
phase curve.

curves is to use a log/log scale for the gain plot and a logglirscale for the phase
plot. This type of plot is called Bode plotand is shown in Figure 8.11.

Sketching and Interpreting Bode Plots

Part of the popularity of Bode plots is that they are easy wictkand interpret.
Since the frequency scale is logarithmic, they cover theviehaf a linear system

over a wide frequency range.
Consider a transfer function that is a rational functionhaf form

_ bi(s)ba(s)
GO = OO
We have
log|G(s)| = log|bi(s)| + log|b(s)| — log|ai(s)| — log|az(s)l,

and hence we can compute the gain curve by simply adding drtchsting gains
corresponding to terms in the numerator and denominatoileBiyn

£G(s) = Zbu(s) + £ba(s) — Lau(s) — Lay(s),

and so the phase curve can be determined in an analogousfaShice a polyno-
mial can be written as a product of terms of the type

k, s, s+a, %+ 2 ws+ w3,

it suffices to be able to sketch Bode diagrams for these ternesBblde plot of a
complex system is then obtained by adding the gains and plof$iee terms.
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Figure 8.12: Bode plots of the transfer functior®(s) = s fork = —=2, —1,0,1,2. On a
log-log scale, the gain curve is a straight line with sl&pesing a log-linear scale, the phase
curves for the transfer functions are constants, with phase equal to 0

The simplest term in a transfer function is one of the fafmwherek > 0 if
the term appears in the numerator &né 0 if the term is in the denominator. The

gain and phase of the term are given by
log|G(iw)| = klogw, ZG(iw) = 90k.

The gain curve is thus a straight line with sldpend the phase curve is a constant

at 90 x k. The case whek = 1 corresponds to a differentiator and has slope 1 with

phase 90 The case whek = —1 corresponds to an integrator and has slefie

with phase-90°. Bode plots of the various powerskfre shown in Figure 8.12.
Consider next the transfer function of a first-order systexgrgby

a
G(s) = ——.
© s+a
We have
|al
G(9)| = , /G(s) = Z(a) — Z(s+ a),
IG(9)| s+ al () @ ( )
and hence

. 1 . 180
log|G(iw)| = loga — > log (w? + &%), /G(w) = —— arctang.
T

The Bode plotis shown in Figure 8.13a, with the magnitude nbzedby the zero
frequency gain. Both the gain curve and the phase curve cappreximated by
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Figure 8.13:Bode plots for first- and second-order systems. (a) The first-eyetemG(s) =

a/(s + a) can be approximated by asymptotic curves (dashed) in both the gain @nd th
frequency, with the breakpoint in the gain curvesat a and the phase decreasing by 90
over afactor of 100 in frequency. (b) The second-order sy&ésh = w?/(S? + 2; woS+ @)

has a peak at frequeneyand then a slope 6f2 beyond the peak; the phase decreases from
0° to —180°. The height of the peak and the rate of change of phase dependingadamtiping
ratio¢ (¢ = 0.02, 0.1, 0.2, 0.5 and 1.0 shown).

the following straight lines

0 ifo <a
log|G(i ~
glGaw)] [Ioga—logw if o> a,

0 if o <a/10
/G(iw) ~ { —45—45(logw — loga) a/10 < w < 10a
-90 if o > 10a.

The approximate gain curve consists of a horizontal line ufpeiguencyw = a,
called thebreakpointor corner frequencyafter which the curve is a line of slope
—1 (on a log-log scale). The phase curve is zero up to frequapit9 and then
decreases linearly by 4/lecade up to frequency da0at which point it remains
constant at 90 Notice that a first-order system behaves like a constantofor |
frequencies and like an integrator for high frequencies)gare with the Bode plot

in Figure 8.12.
Finally, consider the transfer function for a second-orgstemm,

2
)

G(s) = ,
® $? + 200('S + ©F
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for which we have
1
log|G(iw)| = 2logwg — > log (w0 + 20§0?(20% — 1) + @),

20 wpw

Wi —

1
/G(iw) = —ﬂ)arctan
T

The gain curve has an asymptote with zero slopedfork wg. For large val-
ues ofw the gain curve has an asymptote with slep2. The largest gaiQ =
max, |G(iw)| =~ 1/(2¢), called theQ-value is obtained foiw ~ wg. The phase
is zero for low frequencies and approaches®1f80 large frequencies. The curves
can be approximated with the following piecewise linearregpions

. 0 if
l0g|G(iw)| ~ po oo
2logwg — 2logw if @ > wo,

0 if o << wo

/G(iw) ~
(1) [—180 if 0> wo.

The Bode plot is shown in Figure 8.13b. Note that the asympagiizoximation is
poor neaks = wg and that the Bode plot depends stronglyamear this frequency.

Given the Bode plots of the basic functions, we can now skittetirequency
response for a more general system. The following exampistifites the basic
idea.

Example 8.8 Asymptotic approximation for a transfer function
Consider the transfer function given by

Gls) = iR
(s + a)(s* + 2 woS + wp)
The Bode plot for this transfer function appears in Figure Bulith the complete
transfer function shown as a solid line and the asymptofic@pmation shown as
a dashed line.
We begin with the gain curve. At low frequency, the magnitisdgiven by
kb

GO0 = —.
0=

a < b < wo.

When we reaclw = a, the effect of the pole begins and the gain decreases with
slope—1. At o = b, the zero comes into play and we increase the slope by 1,
leaving the asymptote with net slope 0. This slope is used tngtieffect of the
second-order pole is seenat= wc, at which point the asymptote changes to slope
—2. We see that the gain curve is fairly accurate except ingg@mn of the peak
due to the second-order pole (since for this gagereasonably small).

The phase curve is more complicated since the effect of theepbietches
out much further. The effect of the pole beginswtat= a/10, at which point we
change from phase 0 to a slope -6fi5°/decade. The zero begins to affect the
phase atv = b/10, producing a flat section in the phase.cAt= 10a the phase
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Figure 8.14: Asymptotic approximation to a Bode plot. The thin line is the Bode plot for the
transfer functionG(s) = k(s + b)/(s + a)(s? + 27 woS + »3), wherea <« b < wo. Each
segment in the gain and phase curves represents a separate pothienapproximation,
where either a pole or a zero begins to have effect. Each segmentagpheximation is a
straight line between these points at a slope given by the rules for comphéreffects of
poles and zeros.

contributions from the pole end, and we are left with a sldped®°/decade (from
the zero). At the location of the second-order psle; i w¢, we get a jump in phase

of —180C. Finally, atw = 10b the phase contributions of the zero end, and we are
left with a phase of-180 degrees. We see that the straight-line approximation fo
the phase is not as accurate as it was for the gain curve,dngsgtcapture the basic
features of the phase changes as a function of frequency. \%

The Bode plot gives a quick overview of a system. Since any bicgna be
decomposed into a sum of sinusoids, it is possible to viseidlie behavior of a
system for different frequency ranges. The system can beedaw a filter that can
change the amplitude (and phase) of the input signals aiogpta the frequency
response. For example, if there are frequency ranges whergain curve has
constant slope and the phase is close to zero, the actior afygiem for signals
with these frequencies can be interpreted as a pure gainlag8imfor frequencies
where the slope is +1 and the phase close tQ 8@ action of the system can be
interpreted as a differentiator, as shown in Figure 8.12.

Three common types of frequency responses are shown in Figlise Bhe
system in Figure 8.15a is called@w-pass filtetbecause the gain is constant for
low frequencies and drops for high frequencies. Notice tihatfphase is zero for
low frequencies and-180 for high frequencies. The systems in Figure 8.15b and
c are called dand-pass filteandhigh-pass filteifor similar reasons.

To illustrate how different system behaviors can be reachftibe Bode plots
we consider the band-pass filter in Figure 8.15b. For freqesrariounds = wy,
the signal is passed through with no change in gain. Howéseirequencies well
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Figure 8.15: Bode plots for low-pass, band-pass and high-pass filters. The topapéotee
gain curves and the bottom plots are the phase curves. Each systers foragaencies in a
different range and attenuates frequencies outside of that range.

below or well abovayg, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For frecjasrbelowa/100
there is a phase lead of 9Q@and for frequencies above 1®there is a phase lag

of 90°. These actions correspond to differentiation and integmadf the signal in

these frequency ranges.

Example 8.9 Transcriptional regulation
Consider a genetic circuit consisting of a single gene. Vgbwa study the response
of the protein concentration to fluctuations in the mRNA dyiemWe consider
two cases: aonstitutive promotefno regulation) and self-repression (negative
feedback), illustrated in Figure 8.16. The dynamics of théesysare given by

dm dp

—_—= —ym-—u, — = fm—0p,

T a(p)—7y T B p
whereu is a disturbance term that affects mRNA transcription.

For the case of no feedback we havg) = ag, and the system has an equi-

librium point atme = ag/y, Pe = Bao/(dy ). The transfer function from to p is

given by

—5
(s+7)(s+0)
For the case of negative regulation, we have

| (q) —
GP,(5) =

01
a(p)_1+kpn+a0>
and the equilibrium points satisfy
0 o Y0
Me = — Pe, + o0 =)yMe = — Pe.

B 1+Kkpd B
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Figure 8.16: Noise attenuation in a genetic circuit. The open loop system (a) consists of a
constitutive promoter, while the closed loop circuit (b) is self-regulatedrnégtative feedback
(repressor). The frequency response for each circuit is shoya).in

The resulting transfer function is given by

B _ Nogkpl™t
S+nGE+o)+po  © A+km?

Figure 8.16c shows the frequency response for the two cirdivé see that the
feedback circuit attenuates the response of the systenstiorloiinces with low-
frequency content but slightly amplifies disturbances at fiigquency (compared
to the open loop system). Notice that these curves are vmilasito the frequency
response curves for the op amp shown in Figure 8.3b. \%

G, (s) =

Transfer Functions from Experiments

The transfer function of a system provides a summary of thetioptput response
and is very useful for analysis and design. However, modétiom first principles
can be difficult and time-consuming. Fortunately, we candfigld an input/output
model for a given application by directly measuring the érelocy response and
fitting a transfer function to it. To do so, we perturb the infmuthe system using a
sinusoidal signal at a fixed frequency. When steady statacheal, the amplitude
ratio and the phase lag give the frequency response for titagan frequency. The
complete frequency response is obtained by sweeping oeere of frequencies.

By using correlation techniques it is possible to deterntireefrequency re-
sponse very accurately, and an analytic transfer funcéonbe obtained from the
frequency response by curve fitting. The success of this approas led to in-
struments and software that automate this process, cglectrum analyzersie
illustrate the basic concept through two examples.

Example 8.10 Atomic force microscope
To illustrate the utility of spectrum analysis, we consitterdynamics of the atomic
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Figure 8.17: Frequency response of a preloaded piezoelectric drive for an afontie
microscope. The Bode plot shows the response of the measuref@trifamstion (solid) and
the fitted transfer function (dashed).

force microscope, introduced in Section 3.5. Experimentédrd@nation of the
frequency response is particularly attractive for thisetysbecause its dynamics are
very fast and hence experiments can be done quickly. A tyei@ample is given in
Figure 8.17, which shows an experimentally determined faqy response (solid
line). In this case the frequency response was obtained#tlan a second. The
transfer function

ka)ga)ga)g(sz + 201015 + w%) (S? 4 204w4S + a)ﬁ)e—S’
W35(S? + 202055 + 3)(S? + 203w3S + 03)(S? + 205055 + ©F)’

with wyx = 27 fx and f; = 2.42 kHz,;; = 0.03, f, = 2.55 kHz,;» = 0.03, f3 =

6.45 kHz,;3 = 0.042, f, = 8.25 kHz,i4 = 0.025, fs = 9.3 kHz,(5 = 0.032,

r = 10~* s andk = 5, was fit to the data (dashed line). The frequencies associated
with the zeros are located where the gain curve has mininth{tenfrequencies
associated with the poles are located where the gain cus/bal maxima. The
relative damping ratios are adjusted to give a good fit to maxdnmd minima. When

a good fit to the gain curve is obtained, the time delay is a€§lst give a good fit to

the phase curve. The piezo drive is preloaded, and a simplelrbids dynamics

is derived in Exercise 23. The pole at 2.42 kHz correspondstodmpoline mode
derived in the exercise; the other resonances are higheesnod

G(s) =

\%

Example 8.11 Pupillary light reflex dynamics

The human eye is an organ that is easily accessible for expetant has a control

system that adjusts the pupil opening to regulate the liglehisity at the retina.
This control system was explored extensively by Stark in th&0$gSta68].

To determine the dynamics, light intensity on the eye wagdasinusoidally and

the pupil opening was measured. A fundamental difficulty & the closed loop
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Figure 8.18:Light stimulation of the eye. In (a) the light beam is so large that it alwayerso
the whole pupil, giving closed loop dynamics. In (b) the light is focused artb@am which
is so narrow that it is not influenced by the pupil opening, giving opep thmamics. In (c)
the light beam is focused on the edge of the pupil opening, which hasftue @fincreasing
the gain of the system since small changes in the pupil opening have aféegeon the
amount of light entering the eye. From Stark [Sta68].

system is insensitive to internal system parameters, slysasa@f a closed loop
system thus gives little information about the internalgendies of the system. Stark
used a clever experimental technique that allowed him testigate both open and
closed loop dynamics. He excited the system by varying tieasgity of a light beam
focused on the eye and measured pupil area, as illustratgdune 8.18. By using
a wide light beam that covers the whole pupil, the measurégiees the closed
loop dynamics. The open loop dynamics were obtained by usimeyraw beam,
which is small enough that it is not influenced by the pupil apgnThe result of
one experiment for determining open loop dynamics is gimdfigure 8.19. Fitting
a transfer function to the gain curve gives a good fit@gs) = 0.17/(1+ 0.08s)3.
This curve gives a poor fit to the phase curve as shown by the dashee in
Figure 8.19. The fit to the phase curve is improved by adding adiefey, which
leaves the gain curve unchanged while substantially mojfthe phase curve.
The final fit gives the model

0.17
G(s) = —0.2s
©) (1+ 0.08s)3
The Bode plot of this is shown with solid curves in Figure 8.1%ddling of the
pupillary reflex from first principles is discussed in detai[K801]. \Y%

Notice that for both the AFM drive and pupillary dynamics itrist easy to
derive appropriate models from first principles. In pragctitis often fruitful to use
acombination of analytical modeling and experimental idieation of parameters.
Experimental determination of frequency response is |&sgtive for systems with
slow dynamics because the experiment takes a long time.

8.5 Laplace Transforms @

Transfer functions are conventionally introduced usinglaeg transforms, and in
this section we derive the transfer function using this falism. We assume basic
familiarity with Laplace transforms; students who are notifaar with them can
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Figure 8.19: Sample curves from an open loop frequency response of the et)eafhef a
Bode plot for the open loop dynamics (right). The solid curve showsdd fite data using a
third-order transfer function with time delay. The dashed curve in theeBdat is the phase
of the system without time delay, showing that the delay is needed to pragagtyre the
phase. (Figure redrawn from the data of Stark [Sta68].)

safely skip this section. A good reference for the matherahtnaterial in this
section is the classic book by Widder [Wid41].

Traditionally, Laplace transforms were used to computeaesegs of linear sys-
tems to different stimuli. Today we can easily generate #sponses using com-
puters. Only a few elementary properties are needed foc basirol applications.
There is, however, a beautiful theory for Laplace transfotmsinakes it possible
to use many powerful tools from the theory of functions of enpex variable to

get deep insights into the behavior of systems.
Consider a functiorf (t), f : Rt — R, that is integrable and grows no faster

thane™' for some finitesy € R and larget. The Laplace transform magsto a
functionF = Lf : C —» C of a complex variable. It is defined by

F(s) = /OOO e S'f(t)dt, Res> . (8.22)

The transform has some properties that makes it well suitetb#b with linear

systems.
First we observe that the transform is linear because

L(@af +bg) = /OOO e s'(af(t) + bg(t)) dt
(8.23)

= a/ e St (t) dt + b/ e S'gt)dt =aLf + bLg.
0 0

Next we calculate the Laplace transform of the derivative fofretion. We have

ﬁﬂ =/ e‘Stf’(t)dt=e‘5tf(t))m+s/ e S'f(t)dt = —f(0) +sLT,
dt  Jo 0 0
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where the second equality is obtained using integrationdsispWe thus obtain

df
L’a =sLf — f(0) =sF(s) — f(0). (8.24)

Thisformulais particularly simple if the initial conditisrare zero because it follows
that differentiation of a function corresponds to muligliion of the transform by
S.

Since differentiation corresponds to multiplication §ywe can expect that
integration corresponds to division ByThis is true, as can be seen by calculating
the Laplace transform of an integral. Using integration btgpave get

c/otf(f)df Z/Ooo(e_St/otf(‘L')d‘L')dt

e—st t 00 00 g—st 1 OO—S‘E
_—?/Of(r)dr)o +/0 S f(r)dt—g/o e > f(r)dr,

t 1 1
E/O f(dr=—L£f =F(). (8.25)

hence

Next consider a linear time-invariant system with zeroidhistate. We saw in
Section 5.3 that the relation between the inp@nd the outpuy is given by the
convolution integral

yt) = /OOO h(t — 7)u(z) dz,

whereh(t) is the impulse response for the system. Taking the Laplansftram of
this expression, we have

Y(s) =/0006‘3ty(t)dt=/00o e‘St/OOO h(t — 7)u(r) dz dt
00 t
:/ / e St=De S h(t — r)u(r) dr dt
0 0

= /OO e >u(r)dr /OO e Sth(t) dt = H(s)U(s).
0 0

Thus, the input/output response is givenY§s) = H(s)U(s), whereH, U and
Y are the Laplace transforms bf u andy. The system theoretic interpretation
is that the Laplace transform of the output of a linear system product of two
terms, the Laplace transform of the infuits) and the Laplace transform of the
impulse response of the systdr(s). A mathematical interpretation is that the
Laplace transform of a convolution is the product of the tfamss of the functions
that are convolved. The fact that the formMés) = H (s)U (s) is much simpler
than a convolution is one reason why Laplace transforms hewerbe popular in
engineering.

We can also use the Laplace transform to derive the transfetiéun for a state
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space system. Consider, for example, a linear state spatarsgescribed by

d
d_?[(:Ax+Bu, y=Cx+ Du.

Taking Laplace transformsnder the assumption that all initial values are zero
gives
SX(s) = AX(s) + BU(s) Y(s) = CX(s) + DU(s).

Elimination of X (s) gives
Y(s) = (C(sl —AB+ D)U(s). (8.26)

The transfer function i§(s) = C(s| — A)~*B + D (compare with equation (8.4)).

8.6 Further Reading

The idea of characterizing a linear system by its steadg-sé&ponse to sinusoids
was introduced by Fourier in his investigation of heat caridu in solids [Fou07].
Much later, it was used by the electrical engineer Steinméiz imtroduced the
i w method for analyzing electrical circuits. Transfer funos were introduced via
the Laplace transform by Gardner Barnes [GB42], who also tisea to calcu-
late the response of linear systems. The Laplace transfornvevgsmportant in
the early phase of control because it made it possible to fantsients via tables
(see, e.g., [JNP47]). Combined with block diagrams, trarisfections and Laplace
transforms provided powerful techniques for dealing witmplex systems. Cal-
culation of responses based on Laplace transforms is lesstamp today, when
responses of linear systems can easily be generated usimguters. There are
many excellent books on the use of Laplace transforms andféafunctions for
modeling and analysis of linear input/output systems. ificathl texts on control
such as [DBO04], [FPENO5] and [Oga01] are representative exasnplole/zero
cancellation was one of the mysteries of early control thdois clear that com-
mon factors can be canceled in a rational function, but diatioas have system
theoretical consequences that were not clearly understotild<alman’s decom-
position of a linear system was introduced [KHN63]. In thikdi@wing chapters, we
will use transfer functions extensively to analyze stépiind to describe model
uncertainty.

Exercises

83 Let G(s) be the transfer function for a linear system. Show that if we ap
ply an inputu(t) = Asin(wt), then the steady-state output is given yy) =
|G(iw)|Asin(wt + argG (i w)). (Hint: Start by showing that the real part of a com-
plex number is a linear operation and then use this fact.)
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84 Consider the system

X =aX+u
dt ’

Compute the exponential response of the system and use tasive the transfer
function fromu to y. Show that whers = a, a pole of the transfer function, the
response to the exponential input) = et is x(t) = €2'x(0) + te?".

85 (Inverted pendulum) A model for an inverted pendulum wasohiced in Ex-
ample 2.2. Neglecting damping and linearizing the penduwound the upright
position gives a linear system characterized by the matrice

0 1 0
A= [mgl/l 0], B= [1/JI], c=[1 0], p=0
Determine the transfer function of the system.

86 (Solutions corresponding to poles and zeros) Consider ffeelitial equation

dny dn—ly d—1y d"—2u
TG +a1W+---+any:blerszJr---ernu.

(2) Let/ be aroot of the characteristic polynomial

Sn + a.:Lsn—l

+--4a,=0.
Show that ifu(t) = 0, the differential equation has the solutipft) = e*'.
(b) Letx be a zero of the polynomial

b(s) = bys" 1+ bs" 2+ .- - + b

Show that if the input isu(t) = €, then there is a solution to the differential
equation that is identically zero.

87 (Operational amplifier) Consider the operational amplifiégrdduced in Sec-
tion 3.3 and analyzed in Example 8.3. A PI controller can bettoa®ed using an
op amp by replacing the resistBp with a resistor and capacitor in series, as shown
in Figure 3.10. The resulting transfer function of the cirgsigiven by

1 kCs
GE=- (R2 + C_s) ' ((lec + RC)s + 1) :

wherek is the gain of the op amR; andR; are the resistances in the compensation
network andC is the capacitance.

(a) Sketch the Bode plot for the system under the assumptadi ti R, > R;.
You should label the key features in your plot, including ¢iagn and phase at low
frequency, the slopes of the gain curve, the frequenciehatiwvthe gain changes
slope, etc.
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(b) Suppose now that we include some dynamics in the ampliBesutlined in
Example 8.1. This would involve replacing the g&iwith the transfer function

Compute the resulting transfer function for the system, (ieplacek with H (s))
and find the poles and zeros assuming the following paramatees

—<= =100 k=10°, RC=1 T =001

(c) Sketch the Bode plot for the transfer function in part (b)ng straight line
approximations and compare this to the exact plot of thesfearfunction (using
MATLAB). Make sure to label the important features in your plot

88 (Transfer function for state space system) Consider tleafiatate space system

dx
— = AX+ Bu, =Cx.
dt + y

(a) Show that the transfer function is

byS" 4+ bps" 2 4 - + by
s"+ays"t 4 +an

G(s) =

2

where
bj=CB, b,=CAB+a,CB, ..., by=CA"'B4+aCA"*B+...+a, 1CB
andi(s) = s" + a;s" 1 + - - - + a, is the characteristic polynomial fak.

(b) Compute the transfer function for a linear system inhedte canonical form
and show that it matches the transfer function given above.

89 (Kalman decomposition) Show that the transfer function ofstesm depends
only on the dynamics in the reachable and observable subsgabhe Kalman
decomposition. (Hint: Consider the representation giveaduation (7.27).)

90 Using block diagram algebra, show that the transfer funstioomd to y and
ntoy in Figure 8.7 are given by

P 1

Guy= —— Gyg= —.
Yi= 17 PC Yi= 11 PC

91 (Bode plot for a simple zero) Show that the Bode plot for tran$finction
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G(s) = (s+ a)/a can be approximated by

ifw < a

0
log|G(iw)| ~
0g|Gw)l [Ioga)—loga if o> a,

0 if o <a/10
ZG(iw) ~ {45+ 45(logw — loga) a/10 < w < 10a
90 if o > 10a.

92 (Vectored thrust aircraft) Consider the lateral dynamits wectored thrust
aircraft as described in Example 2.9. Show that the dynamicsheadescribed
using the following block diagram:

u ! i m —év— 1 X
! Js? 9 me + cs

Use this block diagram to compute the transfer functionsifg to ¢ andx and
show that they satisfy

J& —mgr

Hou, = il
fus J(MS + c9)

r
@5 HXU]_ ==
93 (Common poles) Consider a closed loop system of the form aftEi§.7, with

F = 1 andP andC having a pole/zero cancellation. Show that if each systemtis

written in state space form, the resulting closed loop systenot reachable and
not observable.

94 (Congestion control) Consider the congestion control rhddscribed in Sec-
tion 3.4. Letw represent the individual window size for a set\bidentical sources,

g represent the end-to-end probability of a dropped pabketpresent the number

of packets in the router’s buffer armrepresent the probability that that a packet is
dropped by the router. We write = Nw to represent the total number of packets
being received from alN sources. Show that the linearized model can be described
by the transfer functions

e—‘[fs

Gle(S) = szq (S) = pr(s) =P,

TeS+ €778’ B Oe(7eS + Qewe)’

where(we, be) is the equilibrium point for the system, is the steady-state round-
trip time andz is the forward propagation time.

95 (Inverted pendulum with PD control) Consider the normalizeatrted pen-
dulum system, whose transfer function is given Bgs) = 1/(s®> — 1) (Exer-
cise 85). A proportional-derivative control law for thisstgm has transfer function
C(s) = kp+kys(see Table 8.1). Suppose that we chd®é®) = a(s—1). Compute
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the closed loop dynamics and show that the system has gaihgeof reference
signals but does not have good disturbance rejection pieper

96 (Vehicle suspension [HB90]) Active and passive dampingused in cars to
give a smooth ride on a bumpy road. A schematic diagram of withra damping

system in shown in the figure below.
b

F

Y+
o ] +—2)
F A~

Xw

(Porter Class | race car driven by Todd Cuffaro)

This model is called guarter car modeland the car is approximated with two
masses, one representing one fourth of the car body and hiee @twheel. The
actuator exerts a fordé between the wheel and the body based on feedback from
the distance between the body and the center of the wheektiespace.

Let xy, X, andx; represent the heights of body, wheel and road measured from
their equilibria. A simple model of the system is given by News equations for
the body and the wheel,

mbXb = Fa mll)).(-u) =—-F+ kt (Xr - Xu));

wheremy, is a quarter of the body mass,, is the effective mass of the wheel
including brakes and part of the suspension systemypisprung magsandk; is
the tire stiffness. For a conventional damper consisting sibring and a damper,
we haveF = k(x, — Xp) + (X, — Xp). For an active damper the forde can
be more general and can also depend on riding conditiongr R@mfort can be
characterized by the transfer functiGn, from road heighk; to body acceleration
a = Xp. Show that this transfer function has the propeBy (iw) = ki/mp,
wherew; = /ki/m,, (thetire hop frequency The equation implies that there are
fundamental limitations to the comfort that can be achieveéd any damper.

97 (Vibration absorber) Damping vibrations is a common engjimg problem. A
schematic diagram of a damper is shown below:
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crl==l & %
my

s

The disturbing vibration is a sinusoidal force acting on magsand the damper
consists of the mass, and the spring,. Show that the transfer function from
disturbance force to height of the massn; is

m252 + ko
M1mMyS* + MyCyS3 + (Meko + Mo(Ky + ko))S? + koS + kiks
How should the mass, and the stiffnes&, be chosen to eliminate a sinusoidal

oscillation with frequencysg. (More details are vibration absorbers is given in the
classic text by Den Hartog [DH85, pp. 87-93].)

GX1F =






