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Chapter Six
State Feedback

Intuitively, the state may be regarded as a kind of information storage orameor ac-
cumulation of past causes. We must, of course, demand that theistdrofl states> be
sufficiently rich to carry all information about the past history2ofo predict the effect of the
past upon the future. We do not insist, however, that the state iedisésuch information
although this is often a convenient assumption.

R. E. Kalman, P. L. Falb and M. A. Arbiippics in Mathematical System Theat969 [KFA69].

This chapter describes how the feedback of a system’s statbeaised to
shape the local behavior of a system. The concept of readlabihtroduced and
used to investigate how to design the dynamics of a systeoughrassignment
of its eigenvalues. In particular, it will be shown that undertain conditions it
is possible to assign the system eigenvalues arbitrarilygmyopriate feedback of
the system state.

6.1 Reachability

One of the fundamental properties of a control system is wogbf points in the
state space can be reached through the choice of a contutl itfurns out that the
property of reachability is also fundamental in undersiagdhe extent to which
feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of thersyaihd focusing on
the evolution of the state, given by

dx

i Ax+ Bu, (6.1)
wherex € R", u € R, Ais ann x n matrix andB a column vector. A fundamental
guestion is whether it is possible to find control signals sb &my point in the state
space can be reached through some choice of input. To stigjyw define the
reachable seZ(xp, < T) as the set of all points; such that there exists an input
u(t), 0<t <T that steers the system frax(0) = Xo to X(T) = X¢, as illustrated in
Figure 6.1a.

Definition 6.1 (Reachability) A linear system iseachableif for any X, x; € R"
there exists & > 0 andu: [0, T] — R such that the corresponding solution satisfies
X(0) = xp andx(T) = Xs.
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Figure 6.1: The reachable set for a control system. TheZgty, < T) shown in (a) is the set
of points reachable fromy in time less thaf. The phase portrait in (b) shows the dynamics
for a double integrator, with the natural dynamics drawn as horizontakarand the control
inputs drawn as vertical arrows. The set of achievable equilibrium pi@rite x axis. By
setting the control inputs as a function of the state, it is possible to steer teensicsthe
origin, as shown on the sample path.

The definition of reachability addresses whether it is possibteach all points
in the state space inteansientfashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibriwmntp of the system
(since we can remain at those points once we get there). Trad a#itpossible
equilibria for constant controls is given by

& = {Xe : A%+ Bu. = 0 for someue € R}.

This means that possible equilibria lie in a one- (or posditidjrer) dimensional
subspace. If the matri& is invertible, this subspace is spannediyB.
The following example provides some insight into the podisids.

Example 6.1 Double integrator
Consider a linear system consisting of a double integratovse dynamics are
given by

dxg dxo

at ~® dt
Figure 6.1b shows a phase portrait of the system. The open jogpmcs (1= 0)
are shown as horizontal arrows pointed to the rightdor- O and to the left for
X2 < 0. The control input is represented by a double-headed arrdtei vertical
direction, corresponding to our ability to set the valugofThe set of equilibrium
points& corresponds to the axis, withue = 0.

Suppose first that we wish to reach the origin from an initialditon (a, 0).
We can directly move the state up and down in the phase plah&dmust rely
on the natural dynamics to control the motion to the left agtitr If a > 0, we
can move the origin by first setting< 0, which will causex; to become negative.
Oncex; < 0, the value ofk; will begin to decrease and we will move to the left.
After a while, we can sai, to be positive, moving, back toward zero and slowing
the motion in the; direction. If we bringx, > 0, we can move the system state in
the opposite direction.
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Figure 6.1b shows a sample trajectory bringing the systememtigin. Note
that if we steer the system to an equilibrium point, it is flolgsto remain there
indefinitely (sincex; = 0 whenx, = 0), but if we go to any other point in the state
space, we can pass through the point only in a transientdfashi O

To find general conditions under which a linear system is raialeh we will
first give a heuristic argument based on formal calculatiatiswpulse functions.
We note that if we can reach all points in the state space gifreaome choice of
input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system toputu(t) is given
by .
X(t) = / A-DBY(T) dr. 6.2)
0

If we choose the input to be a impulse functidft) as defined in Section 5.3, the
state becomes

t
X5 = / A-DBS(T)dT = (:;[S — B
0

(Note that the state changes instantaneously in resporibe tmpulse.) We can
find the response to the derivative of an impulse function kintathe derivative
of the impulse response (Exercise 5.1):

X5 = ij‘t“ = Ae'B.
Continuing this process and using the linearity of the systée input
u(t) = a18(t) + 028(t) + azd(t) + - + and ™V (t)
gives the state
X(t) = a1 B+ a,AMNB + azA2EN B+ - - - + a, AT 1B,
Taking the limit ag goes to zero through positive values, we get

lim x(t) = a1B+ 02AB+ azA?B+ - - - + a, A" 1B.
t—0+
On the right is a linear combination of the columns of the iratr
W — [B AB ... A”—ls] . (6.3)

To reach an arbitrary point in the state space, we thus rethat there ara linear
independent columns of the mathY. The matrixW; is called thereachability
matrix.

An input consisting of a sum of impulse functions and themasives is a very
violent signal. To see that an arbitrary point can be reaghigdsmoother signals



170 CHAPTER 6. STATE FEEDBACK

we can make use of the convolution equation. Assuming tleainitial condition
is zero, the state of a linear system is given by

- /Ot A-UBu(T)dT = /Ot TBU(t — T)dT.

It follows from the theory of matrix functions, specificallge Cayley—Hamilton
theorem (see Exercise 6.10), that

el = lao(T) +Ad(T)+--- +A”*1an,1(r),
whereq; (1) are scalar functions, and we find that

B/ ao(T)u(t — 1) dr+AB/ a1 (T)u(t—1)dr

+-- +A”‘1B/ On-1(T)u(t — 1) dr.
0

Again we observe that the right-hand side is a linear contioinaf the columns
of the reachability matri¥\f given by equation (6.3). This basic approach leads to
the following theorem.

Theorem 6.1 (Reachability rank condition)A linear system is reachable if and
only if the reachability matrix Wis invertible.

The formal proof of this theorem is beyond the scope of this lbex follows
along the lines of the sketch above and can be found in modktsboo linear
control theory, such as Callier and Desoer [CD91] or Lewis [08JvWe illustrate
the concept of reachability with the following example.

Example 6.2 Balance system
Consider the balance system introduced in Example 2.1 andsimoFigure 6.2.
Recall that this system is a model for a class of examples iichwtine center
of mass is balanced above a pivot point. One example is the BeBersonal
Transporter shown in Figure 6.2a, about which a natural aqures ask is whether
we can move from one stationary point to another by apprtggagaplication of
forces through the wheels.

The nonlinear equations of motion for the system are givergiragon (2.9)
and repeated here:

(M+m)p—mlcosd 6 = —cp—mlsing 62 +F, (6.4

(J+ml?)6 — mlcosh p = —yO + mglsiné. '
For simplicity, we takec = y = 0. Linearizing around the equilibrium poirg =
(p,0,0,0), the dynamics matrix and the control matrix are

O 0 10 0
o 0 01 0
A=lo mazgu o o BT |aml|
0 Mimgl/u 0 O Im/u
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(a) Segway (b) Cart-pendulum system

Figure 6.2: Balance system. The Segway Personal Transporter shown in (esaanple of
a balance system that uses torque applied to the wheels to keep the riget. dpsimplified
diagram for a balance system is shown in (b). The system consists a§samuen a rod of
lengthl connected by a pivot to a cart with mags

whereu = My — 12, My = M +mandJ;, = J+ ml2. The reachability matrix is

0 J/u 0 gl3m? /2
| o Im/u 0 gl?m?(m-+M)/u?
= k/p 0 gi*m?/u? 0 (:9)
Im/u 0 glPmA(m+M)/u? 0
The determinant of this matrix is
g?l4m?

detW) = 2—— £0,
W) () .

and we can conclude that the system is reachable. This inthi¢sve can move
the system from any initial state to any final state and, ini@aer, that we can
always find an input to bring the system from an initial statemoequilibrium
point. O

It is useful to have an intuitive understanding of the medras that make a
system unreachable. An example of such a system is given urd=i§3. The
system consists of two identical systems with the same irpletarly, we cannot
separately cause the first and the second systems to do sogndifiérent since
they have the same input. Hence we cannot reach arbitraegséand so the system
is not reachable (Exercise 6.3).

More subtle mechanisms for nonreachability can also odeur.example, if
there is a linear combination of states that always remainstant, then the system
is not reachable. To see this, suppose that there exists @eaarH such that

0= %Hx: H(Ax+Bu), forallu.
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Figure 6.3: An unreachable system. The cart—-pendulum system shown on the $e# ha
single input that affects two pendula of equal length and mass. Sincertiesfaffecting the
two pendula are the same and their dynamics are identical, it is not possnleiti@rily
control the state of the system. The figure on the right is a block diagrarasentation of
this situation.

ThenH is in the left null space of botA andB and it follows that
HW = H [B AB ... A“—ls] =0,

Hence the reachability matrix is not full rank. In this cageye have an initial
conditionXp and we wish to reach a staxg for which Hxp # HX;, then since
Hx(t) is constant, no input can move fromxg to X;.

Reachable Canonical Form

As we have already seen in previous chapters, it is oftenesvent to change
coordinates and write the dynamics of the system in the fomamgd coordinates
z= Tx One application of a change of coordinates is to conversgesyinto a
canonical form in which it is easy to perform certain typesioélysis.

A linear state space system isreachable canonical fornf its dynamics are
given by

—a; —ad —ag ... —adn 1

g 1 0 0 .. 0 0

gz2_l1o 1 0 ... 0]z4]|0fy

dt : e : (6.6)
0 1 0 0

y— [bl b, by ... bn]z+du.

A block diagram for a system in reachable canonical form ashin Figure 6.4.
We see that the coefficients that appear inAlend B matrices show up directly
in the block diagram. Furthermore, the output of the system smple linear
combination of the outputs of the integration blocks.

The characteristic polynomial for a system in reachable wigabform is given
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Figure 6.4: Block diagram for a system in reachable canonical form. The indiVistates
of the system are represented by a chain of integrators whose inridiepn the weighted
values of the states. The output is given by an appropriate combinatibe sf/stem input
and other states.

by
A(S)="+ars" 1+ +a, 15+an (6.7)

The reachability matrix also has a relatively simple strrectu

1 —a a2—a *
0 1 —ay *
W = [B AB ... Anle] T
00 0 1 =«
0 0 0 1

wherex indicates a possibly nonzero term. This matrix is full rarmcsi no col-
umn can be written as a linear combination of the others tsecafithe triangular
structure of the matrix.

We now consider the problem of changing coordinates sudtitibalynamics
of a system can be written in reachable canonical form.A & represent the
dynamics of a given system aAdB be the dynamics in reachable canonical form.
Suppose that we wish to transform the original system intohalale canonical
form using a coordinate transformatias= T x. As shown in the last chapter, the
dynamics matrix and the control matrix for the transformgstem are

A=TAT 1 B=TB.
The reachability matrix for the transformed system then bexo

W — [é AB ... A”—lé].
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Transforming each element individually, we have
AB=TAT TB=TAB,
A’B = (TAT 1)2TB=TAT TAT !TB=TAB,

A"B = TA"B,
and hence the reachability matrix for the transformed sys$se
W =T [B AB ... A”—lB] —TW. (6.8)
SinceW; is invertible, we can thus solve for the transformatibrthat takes the
system into reachable canonical form:
T=Ww 1.
The following example illustrates the approach.

Example 6.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

dx a o 0

We wish to find the transformation that converts the systemrieachable canon-

ical form: 1
A_ | —& 5 _
(T 5= (o)

The coefficientsa; anda, can be determined from the characteristic polynomial
for the original system:

a;=—2d,

A(s) =det(sl—A) =& —2as+ (a? + w?) — R
=0 "+ w".

The reachability matrix for each system is

[0 w ~ (1 —&
U i B e
The transformatio becomes

vt —(alljcj)/w é] _ [‘i’//;" cl)]

and hence the coordinates

[Zl —Tx— [axl/w+xz]
Vi) X]_/O.)

put the system in reachable canonical form. O

We summarize the results of this section in the followingtieen.
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Controller Process

X = Ax+Bu
y=Cx+Du

Figure 6.5: A feedback control system with state feedback. The controller useystens
statex and the reference inputto command the process through its inputWe model
disturbances via the additive inpait

Theorem 6.2(Reachable canonical form).et A and B be the dynamics and con-
trol matrices for a reachable system. Then there exists asfmmation z= Tx
such that in the transformed coordinates the dynamics antt@anatrices are in
reachable canonical forr(6.6) and the characteristic polynomial for A is given by

detsl—A) ="+ a;s" 1+ ... +a,_15+an.

One important implication of this theorem is that for anyategble system, we
can assume without loss of generality that the coordinatestesen such that the
system is in reachable canonical form. This is particulaskgful for proofs, as we
shall see later in this chapter. However, for high-ordetesys, small changes in
the coefficients; can give large changes in the eigenvalues. Hence, the fgacha
canonical form is not always well conditioned and must belwgigh some care.

6.2 Stabilization by State Feedback

The state of a dynamical system is a collection of variablasghrmits prediction
of the future development of a system. We now explore the adekesigning the
dynamics of a system through feedback of the state. We vgillrag that the system
to be controlled is described by a linear state model and teasghe input (for
simplicity). The feedback control law will be developed shgystep using a single
idea: the positioning of closed loop eigenvalues in dedoedtions.

State Space Controller Structure

Figure 6.5 is a diagram of a typical control system using dtdback. The full
system consists of the process dynamics, which we take fodwr] the controller
elementsK andk;, the reference input (or command signaland process dis-
turbancedd. The goal of the feedback controller is to regulate the ouguhe
systemy such that it tracks the reference input in the presence tafrtiances and
also uncertainty in the process dynamics.

An important element of the control design is the perforneasigecification.
The simplest performance specification is that of stabilitythe absence of any
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disturbances, we would like the equilibrium point of theteys to be asymptoti-
cally stable. More sophisticated performance specificattgpically involve giv-
ing desired properties of the step or frequency responsheosystem, such as
specifying the desired rise time, overshoot and settlimg tof the step response.
Finally, we are often concerned with the disturbance attémuaroperties of the
system: to what extent can we experience disturbance impatsl still hold the
outputy near the desired value?

Consider a system described by the linear differential tgua

:1( = Ax+ Bu, y = Cx+ Du, (6.9)

where we have ignored the disturbance sigh&dr now. Our goal is to drive the
outputy to a given reference valueand hold it there. Notice that it may not be
possible to maintain all equilibria; see Exercise 6.8.

We begin by assuming that all components of the state vectomaasured.
Since the state at timecontains all the information necessary to predict the futur
behavior of the system, the most general time-invariantrobtaw is a function
of the state and the reference input:

u=a(xr).
If the feedback is restricted to be linear, it can be written a
u=—Kx-+kr, (6.10)

wherer is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in Figube Bhe nega-
tive sign is a convention to indicate that negative feedligtie normal situation.
The closed loop system obtained when the feedback (6.10pigeddo the sys-
tem (6.9) is given by

dx

dt
We attempt to determine the feedback giiiso that the closed loop system has
the characteristic polynomial

(A= BK)X+ Bk r. (6.11)

p(s) ="+ pas” 4+ + pr1S+ . (6.12)

This control problem is called theigenvalue assignment problampole place-
ment problerm{we will define poles more formally in Chapter 8).

Note thatk, does not affect the stability of the system (which is detaadiby
the eigenvalues oh — BK) but does affect the steady-state solution. In particular,
the equilibrium point and steady-state output for the aldsep system are given
by

Xe = _(A—BK)ilBK'r, Ye = CXe+ DuUe,

hencek. should be chosen such that=r (the desired output value). Sinkeis a
scalar, we can easily solve to show thaDif= 0 (the most common case),

k- =-1/(C(A—BK)'B). (6.13)
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Notice thatk, is exactly the inverse of the zero frequency gain of the cldsep
system. The solution fdD # O is left as an exercise.

Using the gainK andk,, we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to condtauch a state feedback
control law, we begin with a few examples that provide som&ddiatuition and
insights.

Example 6.4 Vehicle steering
In Example 5.12 we derived a normalized linear model for Velsteering. The
dynamics describing the lateral deviation were given by

)
cz[l o], D=0.

The reachability matrix for the system is thus

we o 0e) - 1 1)

The system is reachable since\det= —1 £ 0.

We now want to design a controller that stabilizes the dyearand tracks a
given reference valueof the lateral position of the vehicle. To do this we introduc
the feedback

U= —KX+kr = —kixg — koxo + ki,

and the closed loop system becomes

%:(A—BK)X+BM= [__ﬁl 1_yk2] - [ﬁj] "

dt —ko (6.14)
y=Cx+Du= [1 O] X.

The closed loop system has the characteristic polynomial

B st+yki yke—1) _
det(sI—A+BK)_det[ K S+k2]_sz+(yk1+k2)s+k1.

Suppose that we would like to use feedback to design the dysamhthe system
to have the characteristic polynomial

p(S) = §° + 2{c S+ W2

Comparing this polynomial with the characteristic polynahof the closed loop
system, we see that the feedback gains should be chosen as

ki=wf, ko =2{ctx— yof.
Equation (6.13) givek: = k; = «w?, and the control law can be written as

U= Ky(r — 1) — kaXp = G2(r — X1) — (2Zctx — Yo2)Xe.
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Figure 6.6: State feedback control of a steering system. Step responses obtétinedmy
trollers designed witl{; = 0.7 andaw, = 0.5, 1 and 2 [rad/s] are shown in (a). Notice that
response speed increases with increasigout that largew also give large initial control
actions. Step responses obtained with a controller designedawith 1 and{; = 0.5, 0.7
and 1 are shown in (b).

The step responses for the closed loop system for differdnesaf the de-
sign parameters are shown in Figure 6.6. The effect.dé shown in Figure 6.6a,
which shows that the response speed increases with incgaasi The responses
for wx = 0.5 and 1 have reasonable overshoot. The settling time is atsocarl
lengths fora, = 0.5 (beyond the end of the plot) and decreases to about 6 car
lengths fora, = 1. The control signad is large initially and goes to zero as time
increases because the closed loop dynamics have an imtedriag initial value
of the control signal isi(0) = k; = w?r, and thus the achievable response time is
limited by the available actuator signal. Notice in paréeuhe dramatic increase
in control signal wherw, changes from 1 to 2. The effect ¢f is shown in Fig-
ure 6.6b. The response speed and the overshoot increasesaiading damping.
Using these plots, we conclude that reasonable values ditsign parameters are
to havewy in the range of 0.5to 1 angt ~ 0.7. O

The example of the vehicle steering system illustrates hate $eedback can
be used to set the eigenvalues of a closed loop system toeaybialues.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the paeasnaf the system
are the coefficients of the characteristic polynomial. lhisrefore natural to con-
sider systems in this form when solving the eigenvalue assent problem.
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Consider a system in reachable canonical form, i.e,

—a; —a —az ... —ap 1

q 1 0 o ... 0 0

% _RerBu=|0 1 0 ... 0 |zif:|u

at : S 0 (6.15)
0 1 0 0

y=Cz= [bl by - bn] z

It follows from(6.7) that the open loop system has the chargstic polynomial
detsl—A) ="+ ays" 1+ ... +a,_15+an.

Before making a formal analysis we can gain some insight bgstigating the
block diagram of the system shown in Figure 6.4. The charatiepolynomial
is given by the parametegk in the figure. Notice that the parametsy can be
changed by feedback from statgto the inputu. It is thus straightforward to
change the coefficients of the characteristic polynomialtaiefeedback.

Returning to equations, introducing the control law

U= —Kz+kr = —kiz1 —kozp — - - — knzn + ki, (6.16)

the closed loop system becomes

—ay -k —ap—ky —az—ks ... —an—kn K
1 0 O .. 0O 0
z_ [ o 1 0 .. 0 |z|o]|r
dt : : : (6.17)
0 1 0 0
y— [bl by - bn] z

The feedback changes the elements of the first row oAthetrix, which corre-
sponds to the parameters of the characteristic polynoiftig.closed loop system
thus has the characteristic polynomial

' (A +k)S" 4 (a2 + ko) 2 (@1 +Kno1)S+ @n + k.
Requiring this polynomial to be equal to the desired closeg [polynomial
P(s) ="+ pas™ T+ -+ pr-1S+ P,
we find that the controller gains should be chosen as
ki=p1—ay, ko= p2—ay, kn= pn—an.

This feedback simply replaces the parameggiis the system (6.15) by;. The
feedback gain for a system in reachable canonical form & thu

Kz[pl—al p2—ag - pn—an). (6.18)
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To have zero frequency gain equal to unity, the paranietehould be chosen
as
_antke _pn

ke b bn’

(6.19)

Notice that it is essential to know the precise values of ipatarsa, andb, in
order to obtain the correct zero frequency gain. The zeraufray gain is thus
obtained by precise calibration. This is very different froftaining the correct
steady-state value by integral action, which we shall sémtén sections.

Eigenvalue Assignment

We have seen through the examples how feedback can be usedigo the dy-
namics of a system through assignment of its eigenvaluesolVe the problem in
the general case, we simply change coordinates so that skensys in reachable
canonical form. Consider the system

dx
Fri Ax+ Bu, y =Cx+Du. (6.20)
We can change the coordinates by a linear transformatienT x so that the
transformed system is in reachable canonical form (6.1&) skch a system the
feedback is given by equation (6.16), where the coefficierdsgaven by equa-
tion (6.18). Transforming back to the original coordinagess the feedback

u=—Kz+kr=—KTx+kr.
The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedbadBdnsider the system
given by equatiol§6.20), with one input and one output. L&ts) = " +a;s" 1 +
---+an_1S+ an be the characteristic polynomial of A. If the system is reatha
then there exists a feedback

U= —Kx+kr
that gives a closed loop system with the characteristicrpmtyial
P(s) ="+ piS" -+ pro1S+ Pn
and unity zero frequency gain between r and y. The feedbaokiggiven by
K=RT=(pi-a pe-a - po—an) W (6.21)

where a are the coefficients of the characteristic polynomial of tietrix A and
the matrices WandW; are given by
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1l a1 & an—1
0 1 & an-2
Wr:(B AB ... A“—ls], W= | : S
0 O 1 a1
00 0 .- 1

The reference gain is given by
k- =—1/(C(A—BK) 'B).

For simple problems, the eigenvalue assignment problenbeaolved by in-
troducing the elementg of K as unknown variables. We then compute the char-
acteristic polynomial

A(s) = def(sl — A+ BK)

and equate coefficients of equal powers td the coefficients of the desired char-
acteristic polynomial

p(s) ="+ P18 1+ + pn_1S+ pn-

This gives a system of linear equations to deternkin@he equations can always
be solved if the system is reachable, exactly as we did in Elag.

Equation (6.21), which is called Ackermann’s formula [AckZAZk85], can
be used for numeric computations. It is implemented in theTM#®B function
acker . The MATLAB function pl ace is preferable for systems of high order
because it is better conditioned numerically.

Example 6.5 Predator—prey

Consider the problem of regulating the population of an gstesn by modulating
the food supply. We use the predator—prey model introducegiection 3.7. The
dynamics for the system are given by

dH H aHL

_ == >
i (r+u)H<1 k) o H=zo
dL aHL
— =pb———dL, L>0.
dt bC+H dL, 20

We choose the following nominal parameters for the systenigiwcorrespond to
the values used in previous simulations:

a=32, b=06, c=50,
d=056, k=125 r=16.

We take the parameteycorresponding to the growth rate for hares, as the input to
the system, which we might modulate by controlling a foodreedor the hares.
This is reflected in our model by the terfn+ u) in the first equation. We choose
the number of lynxes as the output of our system.

To control this system, we first linearize the system aroumdetuilibrium
point of the systen{He,Le), which can be determined numerically to ke~
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(20.6,29.5). This yields a linear dynamical system

d (z 013 -0.93) (= 17.2 z

ai () = 057 07 (&) (6] w0 2],
wherezz =H —He, 2 = L — Le andv = u. It is easy to check that the system
is reachable around the equilibriufm v) = (0,0), and hence we can assign the
eigenvalues of the system using state feedback.

Determining the eigenvalues of the closed loop system regjlialancing the
ability to modulate the input against the natural dynamiafie system. This can
be done by the process of trial and error or by using some ahtbre systematic
techniques discussed in the remainder of the text. For nevgimply choose the
desired closed loop eigenvalues to ba at {—0.1,—-0.2}. We can then solve for
the feedback gains using the techniques described earliah results in

K — (0.025 —0.052] .

Finally, we solve for the reference gakp, using equation (6.13) to obtalp =
0.002.
Putting these steps together, our control law becomes

v=—Kz+kLy,

wherelq is the desired number of lynxes. In order to implement therobtaw,
we must rewrite it using the original coordinates for theteys yielding

U=Ue— K(X—Xe) +kr (Lg — Ye)
H - 206

= (0.025 —0.052] [L_29.5

] +0.002(Lg — 29.5).

This rule tells us how much we should modulatas a function of the current
number of lynxes and hares in the ecosystem. Figure 6.7a shewsulation of

the resulting closed loop system using the parameters dedineek and starting
with an initial population of 15 hares and 20 lynxes. Note tha system quickly
stabilizes the population of lynxes at the reference valge=(30). A phase por-
trait of the system is given in Figure 6.7b, showing how otimétial conditions

converge to the stabilized equilibrium population. Notibat the dynamics are
very different from the natural dynamics (shown in Figure03.2 O

The results of this section show that we can use state feedbatsign the
dynamics of a system, under the strong assumption that weeasure all of the
states. We shall address the availability of the statesaméxt chapter, when we
consider output feedback and state estimation. In addifibeorem 6.3, which
states that the eigenvalues can be assigned to arbitratydos, is also highly ide-
alized and assumes that the dynamics of the process are kndvigh precision.
The robustness of state feedback combined with state eetisnatconsidered in
Chapter 12 after we have developed the requisite tools.
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Figure 6.7: Simulation results for the controlled predator—prey system. The population
lynxes and hares as a function of time is shown in (a), and a phaseipfrtthe controlled
system is shown in (b). Feedback is used to make the population staie=a0.6 and
Le =30.

6.3 State Feedback Design

The location of the eigenvalues determines the behavioreofldsed loop dynam-
ics, and hence where we place the eigenvalues is the maignddscision to be
made. As with all other feedback design problems, thereradetoffs among the
magnitude of the control inputs, the robustness of the sysbeperturbations and
the closed loop performance of the system. In this sectiorexenine some of
these trade-offs starting with the special case of secodédraystems.

Second-Order Systems

One class of systems that occurs frequently in the analpsisiasign of feedback
systems is second-order linear differential equationsaBse of their ubiquitous
nature, it is useful to apply the concepts of this chapteh#d specific class of
systems and build more intuition about the relationshipveen stability and per-
formance.

The canonical second-order system is a differential equatiche form

G+ 2¢ an+ whd = kagu, y=g. (6.22)
In state space form, this system can be represented as
dx (O wo 0 -
pri [—wo —ZZwo] X+ [kwo] u, y= (1 O] X. (6.23)

The eigenvalues of this system are given by

A= —Za+/wB(72-1),

and we see that the origin is a stable equilibrium poimbgf> 0 and{ > 0. Note
that the eigenvalues are complex{if< 1 and real otherwise. Equations (6.22)
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and (6.23) can be used to describe many second-order systeinsging damped
oscillators, active filters and flexible structures, as showthé examples below.
The form of the solution depends on the valu€ pivhich is referred to as the
damping ratiofor the system. I > 1, we say that the systemaserdampegdand
the natural response & 0) of the system is given by
_ BxiotXe0 ot OX10+X20 _pi

y(t) B-a B a ;
wherea = ap({ ++/{?—1) andB = wn({ — /(% —1). We see that the response

consists of the sum of two exponentially decaying sign&ié = 1, then the system
is critically dampedand solution becomes

y(t) = e_Zabt (X10+ (X20+ ZO.leo)t) .

Note that this is still asymptotically stable as longwias> 0, although the second
term in the solution is increasing with time (but more slowan the decaying
exponential that is multiplying it).

Finally, if 0 < { < 1, then the solution is oscillatory and equation (6.22) id sa
to beunderdampedTlhe parametemy is referred to as theatural frequencyf the
system, stemming from the fact that for sm@llthe eigenvalues of the system are
A = —{wyEiwg/1— 2. The natural response of the system is given by

_ o {ot dan 1 i
y(t)=e <xlocoswdt+ < o X10+ wdxzo) smwdt> ,

wherewy = woy/1— {2 is called thedamped frequencyor < 1, ay ~ wy de-
fines the oscillation frequency of the solution ahdives the damping rate relative
to wy.

Because of the simple form of a second-order system, it isiplesto solve
for the step and frequency responses in analytical form. dhaisn for the step
response depends on the magnitudé:of

Z
V1-22

k(1-e (1+ant)), (=1

y(t) =k <1—e‘5‘“Ot COSyt — e‘Z‘*btsina)dt) , (<1

y(t)

6.24)
_ Y —aot({—+/{%-1) (
Y(t)_k<1 §<m+1)e
1 Z _ 2_1
+§( fz_l_l)e wt(¢+v/¢ )), Z>1,

where we have takex(0) = 0. Note that for the lightly damped cas¢ € 1) we
have an oscillatory solution at frequenay.

Step responses of systems witk= 1 and different values of are shown in
Figure 6.8. The shape of the response is determined, land the speed of the
response is determined loy (included in the time axis scaling): the response is
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Figure 6.8: Step response for a second-order system. Normalized step respdos the
system (6.23) fo{ = 0, 0.4, 0.7, 1 and 1.2. As the damping ratio is increased, the rise time
of the system gets longer, but there is less overshoot. The horizoigakan scaled units
wot; higher values oty result in a faster response (rise time and settling time).

faster ifwy is larger.

In addition to the explicit form of the solution, we can alsorgute the proper-
ties of the step response that were defined in Section 5.3. Bor@g, to compute
the maximum overshoot for an underdamped system, we retdteutput as

\/11_7Z2e‘5‘*’Ot sin(wgt + ¢)> : (6.25)

y(t) =k (1—

where¢ = arccog . The maximum overshoot will occur at the first time in which
the derivative ofy is zero, which can be shown to be

My = e VL

Similar computations can be done for the other charactesisfia step response.
Table 6.1 summarizes the calculations.
The frequency response for a second-order system can alsonfjmited ex-

Table 6.1: Properties of the step response for a second-order system withQ 1.

Property Value (=05 ¢=1/vV2 (=1
Steady-state value k k k k
Rise time T ~1/ap -e?/@%  18/wy 2.2/ 2.7/
Overshoot Mp=e™/VI-C 1606 4% 0%

Settling time (2%) Ts~ 4/l wo 8.0/wpy 5.9/uwp 5.8/wy
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Figure 6.9: Frequency response of a second-order system (6.23). (a)Malges as a func-
tion of {. (b) Frequency response as a functior{ofThe upper curve shows the gain ratio
M, and the lower curve shows the phase s8ift-or small{ there is a large peak in the
magnitude of the frequency response and a rapid change in phaseedesico = . As {

is increased, the magnitude of the peak drops and the phase chamgesmoothly between

0° and -180.

plicitly and is given by
o _ ke kg
(iw)2+20wp(iw)+wg  f— w?+ 2 wpw
A graphical illustration of the frequency response is giveRigure 6.9. Notice the
resonant peak that increases with decreaginthe peak is often characterized by

its Q-value defined a$) = 1/2¢. The properties of the frequency response for a
second-order system are summarized in Table 6.2.

Example 6.6 Drug administration
To illustrate the use of these formulas, consider the twogrtment model for
drug administration, described in Section 3.6. The dynanfitiseosystem are

dC_ —ko—ki kg bo B
i [ ko —kz] c+ [O u, y= [O 1) c,

wherec; andc; are the concentrations of the drug in each compartnigmt=

Table 6.2: Properties of the frequency response for a second-order syster@ w { < 1.

Property Value (=01 (=05 (=1/V2
Zero frequency gain Mg k k k
Bandwidth Wy 154wy 127w o

Resonant peak gain M, 1.54k 127k k
Resonant frequency wmnr wp 0.7070y O
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Figure 6.10: Open loop versus closed loop drug administration. Comparison betwagn d
administration using a sequence of doses versus continuously monttegingncentrations
and adjusting the dosage continuously. In each case, the concentratampisximately)
maintained at the desired level, but the closed loop system has substansaiat@bility

in drug concentration.

0,...,2 andbg are parameters of the systemis the flow rate of the drug into
compartment 1 angis the concentration of the drug in compartment 2. We assume
that we can measure the concentrations of the drug in eachartmment, and we
would like to design a feedback law to maintain the output given reference
valuer.

We choose& = 0.9 to minimize the overshoot and choose the rise time to be
T, = 10 min. Using the formulas in Table 6.1, this gives a valuedgr= 0.22.
We can now compute the gain to place the eigenvalues at tbatidm. Setting
u= —Kx+Kkr, the closed loop eigenvalues for the system satisfy

A(s) = —0.198- 0.0954.

Choosingk; = —0.2027 andk, = 0.2005 gives the desired closed loop behavior.
Equation (6.13) gives the reference géjn= 0.0645. The response of the con-
troller is shown in Figure 6.10 and compared with an open ldgiegy involving
administering periodic doses of the drug. O

Higher-Order Systems

Our emphasis so far has considered only second-order syskamhigher-order
systems, eigenvalue assignment is considerably more dliffespecially when
trying to account for the many trade-offs that are preseatfeedback design.
One of the other reasons why second-order systems play suchpeortant
role in feedback systems is that even for more complicatetisys the response is
often characterized by theiominant eigenvalueJo define these more precisely,
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consider a system with eigenvalugs j = 1,...,n. We define thelamping ratio
for a complex eigenvalug to be

—ReA
Al

We say that a complex conjugate pair of eigenvalligs* is adominant pairif it
has the lowest damping ratio compared with all other eigergof the system.

Assuming that a system is stable, the dominant pair of eajaag tends to be
the most important element of the response. To see thismasthat we have a
system in Jordan form with a simple Jordan block correspantb the dominant
pair of eigenvalues:

A

7=

A*
th: J z+Bu, y=Cz

J

(Note that the state may be complex because of the Jordan transformation.) The
response of the system will be a linear combination of thpaeses from each
of the individual Jordan subsystems. As we see from Figurefér& < 1 the
subsystem with the slowest response is precisely the ohdlgtsmallest damping
ratio. Hence, when we add the responses from each of thedndivsubsystems,
it is the dominant pair of eigenvalues that will be the priynfaictor after the initial
transients due to the other terms in the solution die outl&\this simple analysis
does not always hold (e.g., if some nondominant terms hagedaoefficients
because of the particular form of the system), it is oftercte that the dominant
eigenvalues determine the (step) response of the system.

The only formal requirement for eigenvalue assignment i ttha system be
reachable. In practice there are many other constraintsulsecthe selection of
eigenvalues has a strong effect on the magnitude and ratenfje of the control
signal. Large eigenvalues will in general require large argignals as well as
fast changes of the signals. The capability of the actuatdrsherefore impose
constraints on the possible location of closed loop eigelega These issues will
be discussed in depth in Chapters 11 and 12.

We illustrate some of the main ideas using the balance syassesn example.

Example 6.7 Balance system
Consider the problem of stabilizing a balance system, whigsamics were given
in Example 6.2. The dynamics are given by

0 0 1 0 0
A 0 0 0 1 B_ 0
|0 mA%g/u —cd/u —ydIm/u > T X/

0 Mimgl/u —clm/u  —yMi/u Im/u
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whereM; =M +m, J = J+ml?, u = Mg — @12 and we have left andy nonzero.
We use the following parameters for the system (correspgnaiughly to a human
being balanced on a stabilizing cart):

M = 10kg, m= 80 kg c=0.1Ns/m
J =100 kg nf/<, | =1m, y=0.01Nms

The eigenvalues of the open loop dynamics are giveh#y0,4.7, — 1.9+ 2.7i.
We have verified already in Example 6.2 that the system is rééehand hence
we can use state feedback to stabilize the system and prawigsired level of
performance.

To decide where to place the closed loop eigenvalues, wethaté¢he closed
loop dynamics will roughly consist of two components: a sefast dynamics
that stabilize the pendulum in the inverted position andtatelower dynamics
that control the position of the cart. For the fast dynamies look to the natural
period of the pendulum (in the hanging-down position), Whi given bywy =

mgl/(J+ ml2) ~ 2.1 rad/s. To provide a fast response we choose a damping rati
of { = 0.5 and try to place the first pair of eigenvaluesAab ~ —{wpy £iwp ~
—14 2i, where we have used the approximation thét — {2 ~ 1. For the slow
dynamics, we choose the damping ratio to bétd provide a small overshoot and
choose the natural frequency to b& @o give a rise time of approximately 5 s.
This gives eigenvalueks 4 = —0.35+ 0.35i.

The controller consists of a feedback on the state and a feeeaifd gain for
the reference input. The feedback gain is given by

g=9.8m/g.

K::[—156 1730 -50.1 443,

which can be computed using Theorem 6.3 or using the MATIpABICe com-
mand. The feedforward gain k¢ = —1/(C(A—BK)~!B) = —15.5. The step re-
sponse for the resulting controller (applied to the lineedli system) is given in
Figure 6.11a. While the step response gives the desiredathestics, the input
required (bottom left) is excessively large, almost thiees the force of gravity
at its peak.

To provide a more realistic response, we can redesign thiatien to have
slower dynamics. We see that the peak of the input force samuthe fast time
scale, and hence we choose to slow this down by a factor o&@ing the damp-
ing ratio unchanged. We also slow down the second set of wadjgs, with the
intuition that we should move the position of the cart mo@my than we sta-
bilize the pendulum dynamics. Leaving the damping ratio fier slow dynamics
unchanged at.@ and changing the frequency to 1 (corresponding to a rise ¢ifm
approximately 10 s), the desired eigenvalues become

A ={—0.3340.66i, —0.18--0.18i}.

The performance of the resulting controller is shown in Figufelb. O

As we see from this example, it can be difficult to determine nette place
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Figure 6.11: State feedback control of a balance system. The step response mifalleo
designed to give fast performance is shown in (a). Although the nsspoharacteristics
(top left) look very good, the input magnitude (bottom left) is very large. #s laggressive
controller is shown in (b). Here the response time is slowed down, but e magnitude
is much more reasonable. Both step responses are applied to the lidebnizenics.

the eigenvalues using state feedback. This is one of theipaidonitations of this
approach, especially for systems of higher dimension.ragdtcontrol techniques,
such as the linear quadratic regulator problem discusseil axe@ one approach
that is available. One can also focus on the frequency ragpion performing the
design, which is the subject of Chapters 8-12.

Linear Quadratic Regulators

As an alternative to selecting the closed loop eigenvaloations to accomplish a
certain objective, the gains for a state feedback controdla instead be chosen is
by attempting to optimize a cost function. This can be paldityuseful in helping
balance the performance of the system with the magnitudeeoinputs required
to achieve that level of performance.

The infinite horizon, linear quadratic regulator (LQR) probl&one of the

most common optimal control problems. Given a multi-inpogér system
dx

dt
we attempt to minimize the quadratic cost function

= [T T
J= /0 (xTQux+uT Quu) dt, (6.26)

whereQy > 0 andQy > 0 are symmetric, positive (semi-) definite matrices of
the appropriate dimensions. This cost function represetreda-off between the
distance of the state from the origin and the cost of the obimput. By choosing

= Ax+Bu, x€R", ucRP,
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the matricegQx andQ,, we can balance the rate of convergence of the solutions
with the cost of the control.
The solution to the LQR problem is given by a linear control ldhe form

u=-Q,'B"Px
whereP € R™" is a positive definite, symmetric matrix that satisfies the égna

PA+ATP—PBQ;B"P+Q,=0. (6.27)
Equation (6.27) is called thalgebraic Riccati equatioand can be solved numer-
ically (e.g., using thé gr command in MATLAB).

One of the key questions in LQR design is how to choose the wsei@hand
Qu. To guarantee that a solution exists, we must l@ver 0 andQy > 0. In addi-
tion, there are certain “observability” conditions Qg that limit its choice. Here
we assume&)y > 0 to ensure that solutions to the algebraic Riccati equatiways
exist.

To choose specific values for the cost function weigtandQ,, we must use
our knowledge of the system we are trying to control. A patédy simple choice
is to use diagonal weights

a1 0 pP1 0
QX: ) QU:
0 qn 0 Pn

For this choice o)y andQy, the individual diagonal elements describe how much
each state and input (squared) should contribute to thalbeest. Hence, we can
take states that should remain small and attach higher tvegdjies to them. Sim-
ilarly, we can penalize an input versus the states and otipeits through choice
of the corresponding input weigpt

Example 6.8 Vectored thrust aircraft
Consider the original dynamics of the system (2.26), writtestate space form as

) 0
0
% 0
dz Zs 1 1
at - _%24 5 COsOFy — . sinfF,
—g— <2z L Sin6F,+ LcosOF,
0 r
ik

(see also Example 5.4). The system parametersased kg, J = 0.0475 kgm,
r=0.25mg=29.8 m/2, ¢ = 0.05 N 's/m, which corresponds to a scaled model of
the system. The equilibrium point for the system is giverFby= 0, / = mgand

Ze = (Xe,Ye,0,0,0,0). To derive the linearized model near an equilibrium poirg, w
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compute the linearization according to equation (5.34):

(0 0 O 1 0 O 0 0
0 0 O 0 1 0 0 0
A 0 0 O 0 0 1 B_ 0 0
10 0 g -¢/m 0 0O}’ ~|1/m O |’
00 O 0 —-c¢/moO 0 1/m
0 0 O 0 0 O (. r/3 0 )
1 000O0O0 00
C:\01oooo]7 D:oo]'
Letting{ = z— z. andv = F — F, the linearized system is given by
dé
— =A¢{+B =Cg¢.
gt = A+ BV y=C¢

It can be verified that the system is reachable.
To compute a linear quadratic regulator for the system, vige\ihre cost func-
tion as

_ ° T T
1= [ Qe v awat

whereé = z— z, andv = F — F; again represent the local coordinates around the
desired equilibrium poinfz, Fe). We begin with diagonal matrices for the state
and input costs:

_ _[p O

OO PrOOoOOo
R OOOOoO
elelololo]

(oNolNoNoNol
oNolNoNol el
oNeoNeoh ool

0

This gives a control law of the form= —K¢&, which can then be used to derive
the control law in terms of the original variables:

F=v+FR=-K(z—2)+F.

As computed in Example 5.4, the equilibrium points h&ye= (0,mg) andz. =
(Xe,Ye,0,0,0,0). The response of the controller to a step change in the desired
position is shown in Figure 6.12a fpr= 1. The response can be tuned by adjusting
the weights in the LQR cost. Figure 6.12b shows the respondesixdirection

for different choices of the weiglg. O

Linear quadratic regulators can also be designed for destiree systems, as
illustrated by the following example.

Example 6.9 Web server control
Consider the web server example given in Section 3.4, whaseeete-time model
for the system was given. We wish to design a control law tk& the server
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Figure 6.12: Step response for a vectored thrust aircraft. The plot in (a) showsahdy
positions of the aircraft when it is commanded to move 1 m in each diredtigi) the x
motion is shown for control weights = 1, 1%, 10*. A higher weight of the input term in
the cost function causes a more sluggish response.

parameters so that the average server processor load isamaiah at a desired
level. Since other processes may be running on the servewedheserver must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figure 6 \\& focus
on the special case where we wish to control only the procédsad using both
theKeepAl i ve andMaxCl i ent s parameters. We also include a “disturbance”
on the measured load that represents the use of the progesgiles by other
processes running on the server. The system has the samestoastare as the
generic control system in Figure 6.5, with the variation thatdisturbance enters
after the process dynamics.

The dynamics of the system are given by a set of differencetiemsaof the
form

X[k+ 1] = Axk] + Bulk], Yepu[K] = Cepux[K] + depulK],

wherex = (Xcpu, Xmem) IS the statey = (Uka, Umc) is the inputdcpy is the processing
load from other processes on the computer yagglis the total processor load.

Feedback d
Precompensation Controller Server
lcpu e u n y
— Kk C = P —
1 |-

Figure 6.13: Feedback control of a web server. The controller sets the values efdhe
server parameters based on the difference between the nominalgtera (determined by
krr) and the current loagkpy. The disturbance represents the load due to other processes
running on the server. Note that the measurement is taken after thebdisterso that we
measure the total load on the server.
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We choose our controller to be a state feedback controllgreoform

u:—K[ﬁW]+h&m
Xmem
wherercpy is the desired processor load. Note that we have used theinedgso-
cessor loadcpy instead of the state to ensure that we adjust the systemtimpera
based on the actual load. (This modification is necessary bea#ithe nonstan-
dard way in which the disturbance enters the process dyisamic

The feedback gain matrik can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, tivéttcost function given

by
(5 0 _ (1/5¢° 0
E=lo 1] X=|"0 1/100C )

The cost function for the sta®y is chosen so that we place more emphasis on
the processor load versus the memory use. The cost functidghdanputsQy is
chosen so as to normalize the two inputs, wike2pAl i ve timeout of 50 s hav-
ing the same weight asNaxCl i ent s value of 1000. These values are squared
since the cost associated with the inputs is givens®,u. Using the dynamics in
Section 3.4 and thél gr command in MATLAB, the resulting gains become

«_ [~223 101
~ (3827 777}

As in the case of a continuous-time control system, the eefa gairk; is
chosen to yield the desired equilibrium point for the syst&®ttingx[k + 1] =
X[K] = e, the steady-state equilibrium point and output for a givefanence input
r are given by

Xe = (A—BK)xe+ Bk, Ye = CXe.

This is a matrix differential equation in whidh is a column vector that sets the
two inputs values based on the desired reference. If we bekddsired output to
be of the formye = (r,0), then we must solve

[é] =C(A—BK—1)"1Bk.

Solving this equation fok,, we obtain

- en-ncm)” (3 - ()

The dynamics of the closed loop system are illustrated in Eigut4. We apply
a change in load adcp, = 0.3 at timet = 10 s, forcing the controller to adjust the
operation of the server to attempt to maintain the desirad bt 057. Note that
both theKeepAl i ve andMaxCl i ent s parameters are adjusted. Although the
load is decreased, it remains approximately 0.2 above tbiedesteady state.
(Better results can be obtained using the techniques ofeakiesection.) O
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Figure 6.14:Web server with LQR control. The plot in (a) shows the state of the system un
der a change in external load appliedat 10 ms. The corresponding web server parameters
(system inputs) are shown in (b). The controller is able to reduce tha effthe disturbance

by approximately 40%.

6.4 Integral Action

Controllers based on state feedback achieve the corredysttate response to
command signals by careful calibration of the gairHowever, one of the primary
uses of feedback is to allow good performance in the presaineecertainty, and
hence requiring that we have axactmodel of the process is undesirable. An
alternative to calibration is to make use of integral featthan which the controller
uses an integrator to provide zero steady-state error. T$ie bancept of integral
feedback was given in Section 1.5 and in Section 3.1; here wddar@ more
complete description and analysis.

The basic approach in integral feedback is to create a st#iewhe controller
that computes the integral of the error signal, which is theed as a feedback
term. We do this by augmenting the description of the systé@imawmnew state:

d (x] _ (Ax+Bu) _ (Ax+Bu

a)-(57)- (%) ew
The statezis seen to be the integral of the difference between the thabautput
y and desired outpuit Note that if we find a compensator that stabilizes the system,
then we will necessarily have= 0 in steady state and henge- r in steady state.

Given the augmented system, we design a state space centrothe usual
fashion, with a control law of the form

u=—Kx—kz+kcr, (6.29)

whereK is the usual state feedback terknjs the integral term ang; is used to
set the nominal input for the desired steady state. The negudtjuilibrium point
for the system is given as

Xe = —(A—BK) 'B(k —kize).

Note that the value df; is not specified but rather will automatically settle to the
value that makeg =y —r = 0, which implies that at equilibrium the output will
equal the reference value. This holds independently of teeip values ofA,
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B andK as long as the system is stable (which can be done througb@gie
choice ofK andk;).
The final compensator is given by

dz
u=—Kx—kz+kr, Frimb At

where we have now included the dynamics of the integratoagsgb the specifi-
cation of the controller. This type of compensator is knowa dgnamic compen-
satorsince it has its own internal dynamics. The following exanililstrates the
basic approach.

Example 6.10 Cruise control
Consider the cruise control example introduced in SectitraBd considered fur-
ther in Example 5.11. The linearized dynamics of the processnar an equilib-
rium pointve, Ue are given by
dx
dt
wherex =v— Ve, W= U— Ug, Mis the mass of the car arftiis the angle of the road.
The constana depends on the throttle characteristic and is given in Examyll.
If we augment the system with an integrator, the processrdigsabecome
dx
dt
or, in state space form,

(=129 () () () (u2)

Note that when the system is at equilibrium, we have z5a0, which implies that
the vehicle speed= v+ x should be equal to the desired reference speedur
controller will be of the form

dz
a:y—Vr7 W:—kpX—k|Z+krVr,

and the gaing,, ki andk; will be chosen to stabilize the system and provide the
correct input for the reference speed.

Assume that we wish to design the closed loop system to havehdracteristic
polynomial

= ax— bg6 + bw, Y =V=X+ Vg,

d
= ax— bg6 + bw, d—tzzy—vr:ve+x—vr,

A(s) = 52+als+ ap.

Setting the disturbanc@ = 0, the characteristic polynomial of the closed loop
system is given by

det(sl — (A—BK)) = & + (bk, — a)s+ bk,

and hence we set
a;+a _
k=TS k=22 k=-1/(C(A-BK)'B)

_a
. ==

b
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Figure 6.15: Velocity and throttle for a car with cruise control based on proportional
(dashed) and PI control (solid). The PI controller is able to adjust thutlito compen-
sate for the effect of the hill and maintain the speed at the reference e&lu= 20 m/s.

The resulting controller stabilizes the system and henecggbd=y — v; to zero,
resulting in perfect tracking. Notice that even if we haverab error in the values
of the parameters defining the system, as long as the clospaigenvalues are
still stable, then the tracking error will approach zero. Jltve exact calibration
required in our previous approach (usikg is not needed here. Indeed, we can
even choos& = 0 and let the feedback controller do all of the work.

Integral feedback can also be used to compensate for comBsinrbances.
Figure 6.15 shows the results of a simulation in which the caoenters a hill
with angle@ = 4° att = 8 s. The stability of the system is not affected by this
external disturbance, and so we once again see that thevetotsty converges
to the reference speed. This ability to handle constant riiatices is a general
property of controllers with integral feedback (see Exer&st). O

6.5 Further Reading

The importance of state models and state feedback was déstirsthe seminal
paper by Kalman [Kal60], where the state feedback gain wéaidd by solving
an optimization problem that minimized a quadratic losscfiom. The notions
of reachability and observability (Chapter 7) are also dud&alman [Kal61b]
(see also [Gil63, KHN63]). Kalman defines controllabilitydareachability as the
ability to reach the origin and an arbitrary state, respebttiKFA69]. We note that
in most textbooks the term “controllability” is used insdeaf “reachability,” but
we prefer the latter term because it is more descriptivesfuhdamental property
of being able to reach arbitrary states. Most undergradieateooks on control
contain material on state space systems, including, fanple Franklin, Powell
and Emami-Naeini [FPENO5] and Ogata [Oga01l]. Friedland’s tekld&ri04]
covers the material in the previous, current and next chapt®nsiderable detail,
including the topic of optimal control.
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Exercises

6.1 (Double integrator) Consider the double integrator. Findeagwise constant
control strategy that drives the system from the origin todtatex = (1,1).

6.2 (Reachability from nonzero initial state) Extend the argotie Section 6.1 to
show that if a system is reachable from an initial state aob zieis reachable from
a nonzero initial state.

6.3 (Unreachable systems) Consider the system shown in Fig8reAgite the
dynamics of the two systems as

dx dz

i AX—+ BuU, Frie Az+Bu.

If x andz have the same initial condition, they will always have thmeastate
regardless of the input that is applied. Show that this vialahe definition of

reachability and further show that the reachability matvxs not full rank.

6.4 (Integral feedback for rejecting constant disturbances)stier a linear system
of the form

:li(—AX—i—Bu—i—Fd, y=Cx

whereu is a scalar and is a disturbance that enters the system through a distur-
bance vectoF € R". Assume that the matrikis invertible and the zero frequency
gainCA 1B is nonzero. Show that integral feedback can be used to coraiecios

a constant disturbance by giving zero steady-state outputeven wherd # O.

6.5(Rear-steered bicycle) A simple model for a bicycle wasmgiwequation (3.5)
in Section 3.2. A model for a bicycle with rear-wheel steerggbtained by revers-
ing the sign of the velocity in the model. Determine the ctinds under which
this systems is reachable and explain any situations inhwttie system is not
reachable.

6.6 (Characteristic polynomial for reachable canonical foBhpw that the char-
acteristic polynomial for a system in reachable canonicahfis given by equa-
tion (6.7) and that

d" dn-t d d"ku
dtﬁ( Far By 1 Aok =

dtn-1 dt dtn-k’
wherez is thekth state.

6.7 (Reachability matrix for reachable canonical form) Coesi@system in reach-
able canonical form. Show that the inverse of the reachglildtrix is given by

1 a a - an
0 1 a -+ an-1

W1i=1]10 0 1
E . al
00 0 -~ 1
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6.8 (Non-maintainable equilibria) Consider the normalizeddelf a pendulum

on a cart
a2 d20

—=u
dt? ’ dt?

wherex is cart position and@ is pendulum angle. Can the an@le= 6, for 6y £ 0
be maintained?

=—-0+u,

6.9 (Eigenvalue assignment for unreachable system) Consideysiem

dx 01 1
dt [o o] X+ [o] Y v=(1 0)x
with the control law
U= —kix1 —koxo + k.

Show that eigenvalues of the system cannot be assigned tmayhbialues.

6.10 (Cayley—Hamilton theorem) LeA € R™" be a matrix with characteristic
polynomialA (s) = det(sl — A) = s+ a;s" 1 + .- + a, 1S+ a,. Assume that the
matrix A can be diagonalized and show that it satisfies

AA) =A"+a A" ay 1A+anl =0,

Use the result to show tha¥, k > n, can be rewritten in terms of powers Afof
order less than.

6.11 (Motor drive) Consider the normalized model of the motowverin Exer-
cise 2.10. Using the following normalized parameters,

J1 = 10/9, Jo =10, c=0.1, k= 1 k = 1,

verify that the eigenvalues of the open loop system afe-00.05+i. Design a
state feedback that gives a closed loop system with eigeesal, —1 and—1+1.
This choice implies that the oscillatory eigenvalues wilvizell damped and that
the eigenvalues at the origin are replaced by eigenvaluéseomegative real axis.
Simulate the responses of the closed loop system to stepehanthe command
signal for6, and a step change in a disturbance torque on the second rotor.

6.12(Whipple bicycle model) Consider the Whipple bicycle mogiekn by equa-
tion (3.7) in Section 3.2. Using the parameters from the cangoaweb site, the
model is unstable at the velociy= 5 m/s and the open loop eigenvalues are -1.84,
-14.29 and 130+ 4.60i. Find the gains of a controller that stabilizes the bicycle
and gives closed loop eigenvalues at -2, -10 aiddt i. Simulate the response of
the system to a step change in the steering reference of tad02
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6.13 (Atomic force microscope) Consider the model of an AFM in eabimode
given in Example 5.9:

0 1 0 0 0
ax [ —ke/(m+mp) —Cz/(M+mp) 1/mp O w2,
dt 0 0 0 w3 ol

0 0 —w3  —2{3003 w3

my [ mka mc 4 o] «
Mm+Mm LM+ M+

Use the MATLAB scriptaf m dat a. mfrom the companion web site to generate the
system matrices.

y:

(a) Compute the reachability matrix of the system and nura#yi determine its
rank. Scale the model by using milliseconds instead of secaadime units. Re-
peat the calculation of the reachability matrix and its rank

(b) Find a state feedback controller that gives a closed lgefem with complex
poles having damping ratio 0.707. Use the scaled model écdmputations.

(c) Compute state feedback gains using linear quadratitaoiExperiment by
using different weights. Compute the gains@er=qgo = 0,03 = s = 1 andp; =
0.1 and explain the result. Chooge= 0> = g3 = g4 = 1 and explore what happens
to the feedback gains and closed loop eigenvalues when yemgelp;. Use the
scaled system for this computation.

6.14 Consider the second-order system
d?y dy du
@_’—OSE +y= aa—FU.

Let the initial conditions be zero.

(a) Show that the initial slope of the unit step response Biscuss what it means
whena < 0.

(b) Show that there are points on the unit step response thatariant witha.
Discuss qualitatively the effect of the parametem the solution.

(c) Simulate the system and explore the effec ofi the rise time and overshoot.

6.15(Bryson’s rule) Bryson and Ho [BH75] have suggested thefaihg method
for choosing the matriceQyx and Q, in equation (6.26). Start by choosiri@
and Q, as diagonal matrices whose elements are the inverses ofjtlaees of
the maxima of the corresponding variables. Then modify theehts to obtain a
compromise among response time, damping and control effpply this method
to the motor drive in Exercise 6.11. Assume that the largdsiegeof theg; and

¢ are 1, the largest values ¢f and¢, are 2 and the largest control signal is 10.
Simulate the closed loop system ifp(0) = 1 and all other states are initialized to
0. Explore the effects of different values of the diagonafredats forQ, andQ.



