Chapter Six
State Feedback

Intuitively, the state may be regarded as a kind of information storage olamesnaccumula-
tion of past causes. We must, of course, demand that the set of irgttesX be sufficiently
rich to carry all information about the past history &f to predict the effect of the past upon
the future. We do not insist, however, that the state isghstsuch information although this
is often a convenient assumption.

R.E.Kalman, P.L. Falband M. A. Arbiippics in Mathematical System Thedt969 [KFAG9].

This chapter describes how the feedback of a system’s stateeazsed to shape
the local behavior of a system. The concept of reachabilitytieduced and used
to investigate how to design the dynamics of a system thr@sgignment of its
eigenvalues. In particular, it will be shown that underagrtonditions it is possible
to assign the system eigenvalues arbitrarily by apprapfestdback of the system
state.

6.1 Reachability

One of the fundamental properties of a control system is wéeof points in the
state space can be reached through the choice of a contubl itjurns out that the
property of reachability is also fundamental in undersiagdhe extent to which
feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of thersyaihd focusing on
the evolution of the state, given by

dx
2 _ Ax+ B 6.1
T X+ Bu, (6.1)

wherex € R", u € R, Ais ann x n matrix andB a column vector. A fundamental
question is whether it is possible to find control signals sb &my point in the state
space can be reached through some choice of input. To stigjynh define the
reachable seR(xg, < T) as the set of all points; such that there exists an input

u(t), 0 <t < T that steers the system froxi0) = Xo to X(T) = X, as illustrated
in Figure 6.1a.

Definition 6.1 (Reachability) A linear system iseachabléf for any xg, x; € R"
there exists a > 0 andu: [0, T] — R such that the corresponding solution
satisfiex(0) = xg andx(T) = X;.
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(a) Reachable set (b) Reachability through control

Figure 6.1: The reachable set for a control system. Th&&gety, < T) shown in (a) is the set
of points reachable fromy in time less thaT . The phase portrait in (b) shows the dynamics
for a double integrator, with the natural dynamics drawn as horizontakarand the control
inputs drawn as vertical arrows. The set of achievable equilibrium piEirite x axis. By
setting the control inputs as a function of the state, it is possible to steer teensicsthe
origin, as shown on the sample path.

The definition of reachability addresses whether it is possibteach all points
in the state space inteansientfashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibrientp of the system
(since we can remain at those points once we get there). Thaf aéitpossible
equilibria for constant controls is given by

= {Xe : A% + Bue = O for someu, € R}.

This means that possible equilibria lie in a one- (or posdiligjer) dimensional
subspace. If the matriA is invertible, this subspace is spanned4yB.
The following example provides some insight into the poditis.

Example 6.1 Double integrator
Consider a linear system consisting of a double integrattwse dynamics are
given by

dxq dx

at =2 dt
Figure 6.1b shows a phase portrait of the system. The open jowndcs (| = 0)
are shown as horizontal arrows pointed to the right¢or- 0 and to the left for
X2 < 0. The control input is represented by a double-headed amdlaei vertical
direction, corresponding to our ability to set the valuepfThe set of equilibrium
points€ corresponds to the, axis, withue = 0.

Suppose first that we wish to reach the origin from an initialdition (a, 0).
We can directly move the state up and down in the phase plah&dmust rely
on the natural dynamics to control the motion to the left agttr If a > 0, we
can move the origin by first setting < 0, which will causex, to become negative.
Oncex, < 0, the value of; will begin to decrease and we will move to the left.
After a while, we can set, to be positive, moving, back toward zero and slowing
the motion in thex; direction. If we bringx, > 0, we can move the system state in
the opposite direction.
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Figure 6.1b shows a sample trajectory bringing the systememtigin. Note
that if we steer the system to an equilibrium point, it is flolgsto remain there
indefinitely (sincex; = 0 whenx, = 0), but if we go to any other point in the state
space, we can pass through the point only in a transientafashi \Y%

To find general conditions under which a linear system is ralleh we will
first give a heuristic argument based on formal calculatiatfsimpulse functions.
We note that if we can reach all points in the state space ¢fresome choice of
input, then we can also reach all equilibrium points.

Testing for Reachability
When the initial state is zero, the response of the system toputu(t) is given
by t
x(t) = / e*"t=IBu(r) dr. (6.2)
0

If we choose the input to be a impulse functié) as defined in Section 5.3, the

state becomes .
A(t—r) dxs At
Xs= | € Bo(r)dr = — = e™B.
0 dt

(Note that the state changes instantaneously in resporibe tmpulse.) We can
find the response to the derivative of an impulse function kintathe derivative
of the impulse response (Exercise 5.1):

X5 = d%
T:
Continuing this process and using the linearity of the systle input
u(t) = a1(t) + azg(t) + a35(t) 4+ .+ ang(n—l)(t)
gives the state

X(t) = 01e™B + a2 AN B + a3 A2eMB + - - - 4 0, AT 1B,

= AMB.

Taking the limit ag goes to zero through positive values, we get

lim x(t) = a1B 4+ a2 AB + a3A?B + - - - + an A" 1B.
t—>0+
On the right is a linear combination of the columns of the iRatr
W, = [B AB --. An—ls]. (6.3)

To reach an arbitrary point in the state space, we thus rethat there ara linear
independent columns of the matih, . The matrixW; is called thereachability
matrix.

An input consisting of a sum of impulse functions and themasives is a very
violent signal. To see that an arbitrary point can be reaghigtdsmoother signals
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we can make use of the convolution equation. Assuming tleainitial condition
is zero, the state of a linear system is given by

t t
x(t) = / eI Bu(r)dr = / eMBu(t — 7)dr.
0

0
It follows from the theory of matrix functions, specificallgg Cayley—Hamilton
theorem (see Exercise 6.10), that

e = lag(r) + Aaa(r) + -+ + A" a1 (1),

whereq; () are scalar functions, and we find that
t

t
x(t) = B/o ao(zt)ut —7)dr + AB/O ar(t)ut — 7)dr

t
4o+ An_lB/ an_1()u(t — r)dr.
0

Again we observe that the right-hand side is a linear contioinaf the columns
of the reachability matri¥\; given by equation (6.3). This basic approach leads to
the following theorem.

Theorem 6.1(Reachability rank condition)A linear system is reachable if and
only if the reachability matrix Wis invertible.

The formal proof of this theorem is beyond the scope of this bex follows
along the lines of the sketch above and can be found in modtsboo linear
control theory, such as Callier and Desoer [CD91] or Lewis [08}vWe illustrate
the concept of reachability with the following example.

Example 6.2 Balance system
Consider the balance system introduced in Example 2.1 awinsimoFigure 6.2.
Recall that this system is a model for a class of examplesicivithe center of mass
is balanced above a pivot point. One example is the SegwayiRérB@nsporter
shown in Figure 6.2a, about which a natural question to askétlver we can move
from one stationary point to another by appropriate appticeof forces through
the wheels.

The nonlinear equations of motion for the system are giverguaton (2.9)

and repeated here:
(M +m)p—mlcos#d = —cp — mlsing 6% + F, (6.4)
(J + ml?®)d — mlcost p = —y O + mglsinb. '

For simplicity, we takec = y = 0. Linearizing around the equilibrium point
Xe = (P, 0, 0, 0), the dynamics matrix and the control matrix are

0 0 1 0 0
A 0 0 0 1 B 0
— o mA%g/x 0 O] o INY

0 Mimgl/u 0 O Im/u
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(a) Segway (b) Cart-pendulum system

Figure 6.2: Balance system. The Segway Personal Transporter shown in (asuarple of
a balance system that uses torque applied to the wheels to keep the riget. dpsimplified
diagram for a balance system is shown in (b). The system consists asamtm a rod of
lengthl connected by a pivot to a cart with masls

wherey = M J, — m?12, M; = M +mandJ, = J + ml2. The reachability matrix
is

0 J/u 0 gl3md/ 2
0 [ 0 [2m? M)/ u?
W — m/u O gl“m(m+ M)/ u (6.5)
J/w 0O gI°m*/u 0
Im/u 0  @??m?(m+ M)/ u? 0
The determinant of this matrix is
g2|4r-n4
dettW;) = ——— #0,
") w7

and we can conclude that the system is reachable. This inthiésve can move

the system from any initial state to any final state and, inigaer, that we can

always find an input to bring the system from an initial stat@tequilibrium point.
\Y%

It is useful to have an intuitive understanding of the medran that make a
system unreachable. An example of such a system is given urd=i§3. The
system consists of two identical systems with the same ir@@letrly, we cannot
separately cause the first and the second systems to do sognditiérent since
they have the same input. Hence we cannot reach arbitraegstand so the system
is not reachable (Exercise 6.3).

More subtle mechanisms for nonreachability can also odeurexample, if
there is a linear combination of states that always remainstant, then the system
is not reachable. To see this, suppose that there exists weciarH such that

d

0= &Hx= H(Ax + Bu), forallu.
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Figure 6.3: An unreachable system. The cart—pendulum system shown on thedefshrayle
input that affects two pendula of equal length and mass. Since thesfaffeeting the two
pendula are the same and their dynamics are identical, it is not possiblsttardly control

the state of the system. The figure on the right is a block diagram repaésanof this
situation.

ThenH is in the left null space of botl andB and it follows that
mM:H[B AB ... N*B]:Q

Hence the reachability matrix is not full rank. In this cageye have an initial
conditionxy and we wish to reach a staxg for which Hxg # HX;, then since
Hx(t) is constant, no inpui can move fromxg to X .

Reachable Canonical Form

As we have already seen in previous chapters, it is oftenezvent to change
coordinates and write the dynamics of the system in the fwamed coordinates
z = T x. One application of a change of coordinates is to conversteayinto a
canonical form in which it is easy to perform certain typesdlysis.

A linear state space system isregachable canonical fornf its dynamics are
given by

(—a; —a, —az ... —ay 1
1 0 0 .. 0 0
z_1o 1 0o ... 0 |z4]0fu
dt : TR : (6.6)
| 0 1 0 0
y=[b b, by ”.b42+du

A block diagram for a system in reachable canonical form ashin Figure 6.4.
We see that the coefficients that appear in Ah@nd B matrices show up directly
in the block diagram. Furthermore, the output of the system ssmple linear
combination of the outputs of the integration blocks.

The characteristic polynomial for a system in reachable wigabform is given
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Figure 6.4: Block diagram for a system in reachable canonical form. The indiVistates
of the system are represented by a chain of integrators whose inridiepn the weighted
values of the states. The output is given by an appropriate combinatibe sf/stem input
and other states.

by

n-1

As) =s"+as" 4+ a_1S+ an. (6.7)

The reachability matrix also has a relatively simple strrestu

1 —a al-a
0 1 —aa .-
w=[B AB .. AviB]=[: ]

*  *

|
*

0O O 0 -1

wheresx indicates a possibly nonzero term. This matrix is full ramcsi no col-
umn can be written as a linear combination of the others lsecatithe triangular
structure of the matrix.

We now consider the problem of changing coordinates sudtitiealynamics
of a system can be written in reachable canonical form.AeB represent the
dynamics of a given system ard B be the dynamics in reachable canonical form.
Suppose that we wish to transform the original system intohalale canonical
form using a coordinate transformatiar= T X. As shown in the last chapter, the
dynamics matrix and the control matrix for the transformgstesm are

A=TAT!, B=TB
The reachability matrix for the transformed system then bexo

wr=[é AB ... A”—lé].
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Transforming each element individually, we have
AB=TAT!TB=TAB,
A’B = (TAT H2TB=TAT 'TAT'TB=TA’B,

A'B=TA"B,
and hence the reachability matrix for the transformed sysse
W=T[B AB .- A™B| =Tw. (6.8)
SinceW, is invertible, we can thus solve for the transformatibrihat takes the
system into reachable canonical form:
T=ww?1
The following example illustrates the approach.

Example 6.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

dx a 0
il A LRSI

We wish to find the transformation that converts the systeargdchable canonical

form: a a 1
Al —a 5
23] ey

The coefficientsa; anda, can be determined from the characteristic polynomial
for the original system:

a; = —2a,

A(s) = det(sl — A) =2 — 2as+ (a® + 0°) = ,
=04+ w".

The reachability matrix for each system is

. 0 w YR 1 —a
w2 w3 r)
The transformatiom becomes
I —(a1+a)o 1 (a/w 1
T=WwW1l= =
o [ 1/w 0 | 1/w 0]

and hence the coordinates

[21] Ty — [aX1><20;; X7

put the system in reachable canonical form. \Y%

We summarize the results of this section in the followingtieen.
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d
Controller Process
X = AX+ Bu
r — y
y=Cx+ Du

Figure 6.5: A feedback control system with state feedback. The controller useystens
statex and the reference inputto command the process through its inputWe model
disturbances via the additive inpait

Theorem 6.2 (Reachable canonical formLet A and B be the dynamics and
control matrices for a reachable system. Then there existsstormation z= T x
such that in the transformed coordinates the dynamics antt@anatrices are in
reachable canonical forr(6.6)and the characteristic polynomial for A is given by

det(sl — A) =s"+a;s" 1+ ... +a,_1S+ an.

One important implication of this theorem is that for anyategble system, we
can assume without loss of generality that the coordinatestasen such that the
system is in reachable canonical form. This is particulaskgful for proofs, as we
shall see later in this chapter. However, for high-ordetesys, small changes in
the coefficients; can give large changes in the eigenvalues. Hence, the fgacha
canonical form is not always well conditioned and must belwgi¢gh some care.

6.2 Stabilization by State Feedback

The state of a dynamical system is a collection of variablasghrmits prediction
of the future development of a system. We now explore the @fedesigning
the dynamics of a system through feedback of the state. WexsgLlme that the
system to be controlled is described by a linear state madehas a single input
(for simplicity). The feedback control law will be developstép by step using a
single idea: the positioning of closed loop eigenvalueseisigd locations.

State Space Controller Structure

Figure 6.5 is a diagram of a typical control system using dtdback. The full
system consists of the process dynamics, which we take fodur] the controller
elementK andk;, the reference input (or command signagnd process distur-
bancedl. The goal of the feedback controller is to regulate the outpthie system
y such that it tracks the reference input in the presence tiiri@nces and also
uncertainty in the process dynamics.

An important element of the control design is the perforneasigecification.
The simplest performance specification is that of stabilitythe absence of any



176 CHAPTER 6. STATE FEEDBACK

disturbances, we would like the equilibrium point of theteys to be asymptotically
stable. More sophisticated performance specifications&ylgiinvolve giving de-
sired properties of the step or frequency response of thersysuch as specifying
the desired rise time, overshoot and settling time of the stsponse. Finally, we
are often concerned with the disturbance attenuation piepeof the system: to
what extent can we experience disturbance ingusd still hold the outpuy near
the desired value?
Consider a system described by the linear differential tgua

3_? — Ax+Bu,  y=Cx+Duy, (6.9)

where we have ignored the disturbance sigh&dr now. Our goal is to drive the
outputy to a given reference valueand hold it there. Notice that it may not be
possible to maintain all equilibria; see Exercise 6.8.

We begin by assuming that all components of the state vectomaasured.
Since the state at tintecontains all the information necessary to predict the itur
behavior of the system, the most general time-invariantroblaw is a function of
the state and the reference input:

u=a(x,r).
If the feedback is restricted to be linear, it can be written a
u=—Kx+kr, (6.10)

wherer is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in FiguseThe negative
sign is a convention to indicate that negative feedbackasitirmal situation. The
closed loop system obtained when the feedback (6.10) issaiiplthe system (6.9)

is given b
g y dx
at = (A—-BK)x + Bkr. (6.11)

We attempt to determine the feedback gHirso that the closed loop system has
the characteristic polynomial

p(s) ="+ piS"t + - + Pr_1S+ P (6.12)

This control problem is called tredgenvalue assignment problempole placement
problem(we will define poles more formally in Chapter 8).

Note thatk, does not affect the stability of the system (which is detaeediby
the eigenvalues oA — BK) but does affect the steady-state solution. In particular,
the equilibrium point and steady-state output for the aldsep system are given
by

Xe=—(A—BK)™Bkr, Yo=Cx+ Due,

hencek, should be chosen such that= r (the desired output value). Sinkeis
a scalar, we can easily solve to show thdDit= 0 (the most common case),

k- =—1/(C(A— BK)™'B). (6.13)
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Notice thatk; is exactly the inverse of the zero frequency gain of the cdsep
system. The solution fob # 0 is left as an exercise.

Using the gainK andk;, we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to condtauch a state feedback
control law, we begin with a few examples that provide som&ddiatuition and
insights.

Example 6.4 Vehicle steering
In Example 5.12 we derived a normalized linear model for Vetsteering. The
dynamics describing the lateral deviation were given by

_|o1 _ |
a=loo] e i)
C= [1 0] , D=0
The reachability matrix for the system is thus
_ _|r 1
W,_[B AB] = [1 0].

The system is reachable since W¢t= —1 # 0.

We now want to design a controller that stabilizes the dyearand tracks a
given reference valueof the lateral position of the vehicle. To do this we introduc
the feedback

U=—KXx+kr =—kix; —kxo+Kktr,

and the closed loop system becomes

d_X_ 3 . —ykl 1—Vk2 ka
dt_(A BK)X+Bl<fr—[_k1 —ky ]X+[kr ]r, (6.14)

y=Cx+Du=[1 0]x.
The closed loop system has the characteristic polynomial

Ss+yk yke—1

det(sl — A+ BK):det[ K, stk

] ISz+(yk1+k2)S—+- kl.

Suppose that we would like to use feedback to design the dyisashthe system
to have the characteristic polynomial
p(S) = S* + 20cwcS + 2.

Comparing this polynomial with the characteristic polynahof the closed loop
system, we see that the feedback gains should be chosen as

ki = a)g, ko = 2¢corc — ycog.
Equation (6.13) givek: = k; = »?2, and the control law can be written as

U=ki(r — X1) — kaXo = 02(r — X1) — (e — y 02)%a.
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Figure 6.6: State feedback control of a steering system. Step responses obtétinedmy
trollers designed witly, = 0.7 andw, = 0.5, 1 and 2 [rad/s] are shown in (a). Notice that
response speed increases with increagindut that largeo. also give large initial control
actions. Step responses obtained with a controller designedwwith 1 and¢, = 0.5, 0.7
and 1 are shown in (b).

The step responses for the closed loop system for differduesaf the design
parameters are shown in Figure 6.6. The effeeidb shown in Figure 6.6a, which
shows that the response speed increases with increaginghe responses for
o = 0.5and 1 have reasonable overshoot. The settling time is abaatrlengths
for wc = 0.5 (beyond the end of the plot) and decreases to about 6 cahkefuy
we = 1. The control signad is large initially and goes to zero as time increases
because the closed loop dynamics have an integrator. Tra ugitue of the control
signal isu(0) = k- = w?r, and thus the achievable response time is limited by the
available actuator signal. Notice in particular the draoiatrease in control signal
whenw, changes from 1 to 2. The effectafis shown in Figure 6.6b. The response
speed and the overshoot increase with decreasing dampsingg these plots, we
conclude that reasonable values of the design parametgisiaaven. in the range
of 0.5t0 1 and, ~ 0.7. Y,

The example of the vehicle steering system illustrates hate $eedback can
be used to set the eigenvalues of a closed loop system toeaybialues.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the paeasrad the system are
the coefficients of the characteristic polynomial. It is #fere natural to consider
systems in this form when solving the eigenvalue assignpretiem.
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Consider a system in reachable canonical form, i.e,

—a; —a& —az ... —a 1
dz 1 0 o ... O 0
—=AZ+BU= 0 1 0 0 z+ |:|u
dt : S 0 (6.15)
0 1 0 0

It follows from(6.7) that the open loop system has the char&tic polynomial
det(sl — A) =s"+a;s" 1+ ... +a,_1S+ an.

Before making a formal analysis we can gain some insight bgstigating the
block diagram of the system shown in Figure 6.4. The charatiegolynomial is
given by the parametesg in the figure. Notice that the parameégican be changed
by feedback from state, to the inputu. It is thus straightforward to change the
coefficients of the characteristic polynomial by state femttb

Returning to equations, introducing the control law

U= —-Kz+kr = —kjzs —kozo — - - - — knzn + k1, (6.16)

the closed loop system becomes

[—a; —k; —a,—k, —ag—ks ... —a,—k, Kr
| o 1 o T o ||l
dt . T ’

0 1 0 0
y = :bn by b1] 2.

(6.17)
The feedback changes the elements of the first row oftheatrix, which corre-
sponds to the parameters of the characteristic polynoiftia.closed loop system
thus has the characteristic polynomial

S+ (@ + k)S" !+ (@2 + k)8 P 4+ 4 (@n-1+ Ka-1)S + 8 + K.
Requiring this polynomial to be equal to the desired closeg lpolynomial
p(s) ="+ pis" M + - + pr1S+ po,
we find that the controller gains should be chosen as
|21=p1—611, I22:p2—a2, r<n=pn—<’:1n-

This feedback simply replaces the parameggns the system (6.17) by;. The
feedback gain for a system in reachable canonical form & thu

K=[p-a p-a - p-a). (6.18)
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To have zero frequency gain equal to unity, the parametshould be chosen
as
o =ntha_ P
bn bn

(6.19)

Notice that it is essential to know the precise values ofipatarsa, andby, in order
to obtain the correct zero frequency gain. The zero frequgagyis thus obtained
by precise calibration. This is very different from obtaigihe correct steady-state
value by integral action, which we shall see in later sestion

Eigenvalue Assignment

We have seen through the examples how feedback can be usesdign the dy-

namics of a system through assignment of its eigenvaluesolVe the problem in
the general case, we simply change coordinates so that stensys in reachable
canonical form. Consider the system

%( = Ax+ Bu, y = Cx+ Du. (6.20)

We can change the coordinates by a linear transformatien T x so that the

transformed system is in reachable canonical form (6.1&) skch a system the
feedback is given by equation (6.16), where the coefficierdsgaven by equa-
tion (6.18). Transforming back to the original coordinages the feedback

U=—-Kz+kr=—-KTx+kr.
The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedbadBdnsider the system
given by equatioli6.20) with one input and one output. L&ts) = s" + a;s" 1 +
-+ 4+ an_1S + a, be the characteristic polynomial of A. If the system is redobé,
then there exists a feedback

u=—-Kx+kr
that gives a closed loop system with the characteristicrmiyial
p(S) ="+ P15+ + proaS+ o
and unity zero frequency gain between r and y. The feedbaokiggiven by
K:KT:[pl_al Po—ay --- pn—an] W Wt (6.21)

where a are the coefficients of the characteristic polynomial of tegtrix A and
the matrices WandW; are given by
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1 a3 & an—1
0 1 & an_2
Wo=[B AB - ATIB|, W= :
o o0 --- 1 a
0O 0 O 1

The reference gain is given by
k- =—-1/(C(A- BK)'B).

For simple problems, the eigenvalue assignment problembeasolved by
introducing the elementk of K as unknown variables. We then compute the
characteristic polynomial

A(s) = det(s| — A+ BK)

and equate coefficients of equal powers td the coefficients of the desired char-
acteristic polynomial

ps) =s"+ pis" -+ po1S+ p.

This gives a system of linear equations to deternkjin@he equations can always
be solved if the system is reachable, exactly as we did in Elag.

Equation (6.21), which is called Ackermann’s formula [AckAZCk85], can
be used for numeric computations. It is implemented in theTM#B function
acker. The MATLAB function pl ace is preferable for systems of high order
because it is better conditioned numerically.

Example 6.5 Predator—prey

Consider the problem of regulating the population of an gstesn by modulating
the food supply. We use the predator—prey model introduce®eiction 3.7. The
dynamics for the system are given by

dH H\  aHL
an _ H{1-") - H >0
ar — W ( k) cxn =Y
db _p3Hl 4l Lso

dt c+H

We choose the following nominal parameters for the systelmciwcorrespond to
the values used in previous simulations:

a=32, b=0.6, c¢=50,
d=056, k=125 r =16

We take the parameter corresponding to the growth rate for hares, as the input to
the system, which we might modulate by controlling a foodreedor the hares.
This is reflected in our model by the terim+ u) in the first equation. We choose
the number of lynxes as the output of our system.

To control this system, we first linearize the system aroumdetuilibrium
point of the systen(He, L¢), which can be determined numerically to ke ~
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(20.6, 29.5). This yields a linear dynamical system

d A 0.13 -0.93 V4} 17.2 . y4)

at 22]—[0.57 0 ] [22]+[ 0 ]”’ w=[o 1 [z2 :
wherez; = L — Lg, zZ2 = H — Hg ando = u. It is easy to check that the system
is reachable around the equilibriufr ») = (0O, 0), and hence we can assign the
eigenvalues of the system using state feedback.

Determining the eigenvalues of the closed loop system regjlialancing the
ability to modulate the input against the natural dynamidafie system. This can
be done by the process of trial and error or by using some ahibre systematic
techniques discussed in the remainder of the text. For nevgimply choose the

desired closed loop eigenvalues to bé at {—0.1, —0.2}. We can then solve for
the feedback gains using the techniques described earhiah results in

K = [0.025 —0.052] .

Finally, we solve for the reference galp, using equation (6.13) to obtakp =
0.002.
Putting these steps together, our control law becomes

v =—-Kz+Kkr.

In order to implement the control law, we must rewrite it @sihe original coordi-
nates for the system, yielding

U=Ue— KX —Xe) + ke (r — Vo)

= (0025 ~0052] [t' —206

_ 29.5] + 0.002(r — 29.5).

This rule tells us how much we should modulageas a function of the current
number of lynxes and hares in the ecosystem. Figure 6.7a shewsulation of

the resulting closed loop system using the parameters dedinede and starting
with an initial population of 15 hares and 20 lynxes. Note tha system quickly
stabilizes the population of lynxes at the reference value-(30). A phase portrait
of the system is given in Figure 6.7b, showing how other inttiemditions converge
to the stabilized equilibrium population. Notice that tly@mdmics are very different
from the natural dynamics (shown in Figure 3.20). \%

The results of this section show that we can use state feedbatsign the
dynamics of a system, under the strong assumption that wemeasure all of the
states. We shall address the availability of the statesaméxt chapter, when we
consider output feedback and state estimation. In addifibeorem 6.3, which
states that the eigenvalues can be assigned to arbitraatidos, is also highly
idealized and assumes that the dynamics of the process@maka high precision.
The robustness of state feedback combined with state estisnatconsidered in
Chapter 12 after we have developed the requisite tools.
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Figure 6.7: Simulation results for the controlled predator—prey system. The population
lynxes and hares as a function of time is shown in (a), and a phaseipfrtthe controlled
system is shown in (b). Feedback is used to make the population statlle-at20.6 and

e = 20.

6.3 State Feedback Design

The location of the eigenvalues determines the behaviomredtitised loop dynam-
ics, and hence where we place the eigenvalues is the maigndeéscision to be
made. As with all other feedback design problems, thereradetoffs among the
magnitude of the control inputs, the robustness of the sysiteperturbations and
the closed loop performance of the system. In this sectioexeenine some of
these trade-offs starting with the special case of secoddraystems.

Second-Order Systems

One class of systems that occurs frequently in the analpsisiasign of feedback
systems is second-order linear differential equationsaBse of their ubiquitous
nature, it is useful to apply the concepts of this chapteh&d specific class of
systems and build more intuition about the relationshipveen stability and per-
formance.

The canonical second-order system is a differential equatiche form

4 + 20 woq + w5q = kadu, y=q. (6.22)
In state space form, this system can be represented as
dx 0 wo 0
= [_wo _26600] X + [ka] u,  y= [1 o] X. (6.23)

The eigenvalues of this system are given by

A= —(woEJwd((?—1),

and we see that the origin is a stable equilibrium poiriyif> 0 ands > 0. Note
that the eigenvalues are complex’if< 1 and real otherwise. Equations (6.22)
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and (6.23) can be used to describe many second-order systeinging damped
oscillators, active filters and flexible structures, as showthé examples below.

The form of the solution depends on the valug pWhich is referred to as the
damping ratiofor the system. If” > 1, we say that the systemaserdampegdand
the natural response & 0) of the system is given by

X10 + X20 _ oX10+ X20 _
BX10 Ograt _ #X10F %20 gt
p—a p—a

wherea = wo( ++/¢? — 1) andf = wo(¢ — /(% — 1). We see that the response
consists of the sum of two exponentially decaying signéfs#+ 1, then the system

is critically dampedand solution becomes
y(t) = €7 (Xq0 + (X0 + C @oX10)t).

Note that this is still asymptotically stable as longgs> 0, although the second
term in the solution is increasing with time (but more slowhan the decaying
exponential that is multiplying it).

Finally, if 0 < ¢ < 1, then the solution is oscillatory and equation (6.22) id sa
to beunderdampedThe parametany is referred to as theatural frequencyf the
system, stemming from the fact that for snalkhe eigenvalues of the system are
approximatelyl = —¢wp + jwo. The natural response of the system is given by

yt) =

1 .
y(t) = g ¢t (xlo coswgt + (@xlo + —xzo) smwdt) ,
wq wq

wherewy = woy/1— (2 is called thedamped frequencyFor ¢ <« 1, wg ~ wy
defines the oscillation frequency of the solution amgves the damping rate relative
10 wyp.

Because of the simple form of a second-order system, it isiplesto solve
for the step and frequency responses in analytical form. dheisn for the step
response depends on the magnitudg:of

_c
V1-=¢2

yt) =k (1—e L+ wot)), =1

y(t) = k(l — e7¢! coswgt — g ¢t Sina)dt), c<l

1 » (6.24)
— _ = ¢ —wot ((—4/¢?=1)
y(t) = k (1 2( =t 1)emntV
1 ;
S _q)e et/
+2(\/¢‘2—1 1)e )’ ¢>1

where we have takex(0) = 0. Note that for the lightly damped case & 1) we
have an oscillatory solution at frequenoy.

Step responses of systems with= 1 and different values aof are shown in
Figure 6.8. The shape of the response is determined, land the speed of the
response is determined ly (included in the time axis scaling): the response is
faster ifwg is larger.
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Figure 6.8: Step response for a second-order system. Normalized step respdios the
system (6.23) for =0, 0.4, 0.7, 1 and 1.2. As the damping ratio is increased, the rise time
of the system gets longer, but there is less overshoot. The horizoigakan scaled units
wot; higher values ofu, result in a faster response (rise time and settling time).

Inaddition to the explicit form of the solution, we can aleorgoute the properties
of the step response that were defined in Section 5.3. For egatogompute the
maximum overshoot for an underdamped system, we rewriteutpt as

y(t) = k(l - ﬁe‘m‘ sin(wgt + go)), (6.25)

wherep = arccog . The maximum overshoot will occur at the first time in which
the derivative ofy is zero, which can be shown to be

Mp = e7¢/V1=¢,
Similar computations can be done for the other charactesisfia step response.

Table 6.1 summarizes the calculations.
The frequency response for a second-order system can alsanimited ex-

Table 6.1: Properties of the step response for a second-order system with & 1.

Property Value c=05 ¢=1//2 (=1
Steady-state value k k k k
Rise time T =1/wp -€/¥  18/wy 2.2/wq 2.7 /awo
Overshoot M, =e "V 16% 4% 0%

Settling time (2%) Ts~ 4/ wo 8.0/wy  5.9/wp 5.8/wq
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Figure 6.9:Frequency response of a second-order system (6.23). (aMalger as a function
of ¢. (b) Frequency response as a functiog ofhe upper curve shows the gain ralilg and
the lower curve shows the phase shiffor small; there is a large peak in the magnitude of
the frequency response and a rapid change in phase centesed af. As ¢ is increased,
the magnitude of the peak drops and the phase changes more smobilegié and -180.

plicitly and is given by
kw% ka)g

Mel? = =
(iw)2+2¢wp(iw) + 0f  ©f —o? + 2if oo

A graphical illustration of the frequency response is giweRigure 6.9. Notice the

resonant peak that increases with decreagirighe peak is often characterized by

is Q-value defined axQ = 1/2¢. The properties of the frequency response for a

second-order system are summarized in Table 6.2.

Example 6.6 Drug administration
To illustrate the use of these formulas, consider the twogrtment model for
drug administration, described in Section 3.6. The dynanfitseosystem are

dc [—-ko—ki ki bo .
a_[ K —kZ]C+[O u, y_[O 1]x,

wherec; andc, are the concentrations of the drug in each compartnkerit,=
0,...,2 andby are parameters of the systemis the flow rate of the drug into

Table 6.2: Properties of the frequency response for a second-order systard w ¢ < 1.

Property Value ¢ =01 ¢=05 ¢=1/v2
Zero frequency gain Mg k k k
Bandwidth wp 154wg 1.27wg wo

Resonant peak gain M, 1.54k 127k k
Resonant frequency wm, wo 0.707w9 O
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Figure 6.10: Open loop versus closed loop drug administration. Comparison betwagn d
administration using a sequence of doses versus continuously monttegingncentrations
and adjusting the dosage continuously. In each case, the concentratampieximately)
maintained at the desired level, but the closed loop system has substansaiat@bility

in drug concentration.

compartment 1 anglis the concentration of the drug in compartment 2. We assume
that we can measure the concentrations of the drug in eachartment, and we
would like to design a feedback law to maintain the output givan reference
valuer.

We choosg” = 0.9 to minimize the overshoot and choose the rise time to be
T, = 10 min. Using the formulas in Table 6.1, this gives a valuedgr= 0.22.
We can now compute the gain to place the eigenvalues at tbagidm. Setting
u=—Kx+ kr, the closed loop eigenvalues for the system satisfy

A(s) = —0.198 0.0959.

Choosingk; = —0.2027 andk, = 0.2005 gives the desired closed loop behavior.
Equation (6.13) gives the reference ghjin= 0.0645. The response of the con-
troller is shown in Figure 6.10 and compared with an open laagiegy involving
administering periodic doses of the drug. \%

Higher-Order Systems

Our emphasis so far has considered only second-order syskmhigher-order
systems, eigenvalue assignment is considerably more dliffespecially when
trying to account for the many trade-offs that are preseatfeedback design.
One of the other reasons why second-order systems play suchpeortant
role in feedback systems is that even for more complicatetsys the response is
often characterized by theiominant eigenvaluego define these more precisely,
consider a system with eigenvalugs j = 1, ..., n. We define thelamping ratio
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for a complex eigenvalug to be

—Rel
1Al

We say that a complex conjugate pair of eigenvalies’ is adominant pairif it
has the lowest damping ratio compared with all other eigergof the system.

Assuming that a system is stable, the dominant pair of e&jaag tends to be
the most important element of the response. To see thismasthat we have a
system in Jordan form with a simple Jordan block correspanth the dominant
pair of eigenvalues:

A
dz 2
24 J2 z+ Bu =Cz
T + ) y

J

(Note that the state may be complex because of the Jordan transformation.) The
response of the system will be a linear combination of thparses from each
of the individual Jordan subsystems. As we see from Figurefér§ < 1 the
subsystem with the slowest response is precisely the ohelvdtsmallest damping
ratio. Hence, when we add the responses from each of thedndivsubsystems,
it is the dominant pair of eigenvalues that will be the priynfactor after the initial
transients due to the other terms in the solution die outl&\this simple analysis
does not always hold (e.g., if some nondominant terms hagenaoefficients
because of the particular form of the system), it is oftercéee that the dominant
eigenvalues determine the (step) response of the system.

The only formal requirement for eigenvalue assignment i ttie system be
reachable. In practice there are many other constraintsulsecthe selection of
eigenvalues has a strong effect on the magnitude and rateaafje of the control
signal. Large eigenvalues will in general require large argignals as well as
fast changes of the signals. The capability of the actuatdifsherefore impose
constraints on the possible location of closed loop eiderga These issues will
be discussed in depth in Chapters 11 and 12.

We illustrate some of the main ideas using the balance sya$esm example.

Example 6.7 Balance system
Consider the problem of stabilizing a balance system, whgeamics were given
in Example 6.2. The dynamics are given by

0 0 1 0 0
A |0 0 0 1 o 0
|0 mAPg/u —cd/u —ydim/u|’ Y
0 Mimgl/u —clm/u =y Mi/u Im/

whereM; = M 4+m, J = J + ml?, u = MJ, — m??2 and we have left andy
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nonzero. We use the following parameters for the systemidsponding roughly
to a human being balanced on a stabilizing cart):

M =10 kg m=80kg c¢c=0.1Ns/m
J =100 kg nt/s, | =1m, y =0.01Nms

The eigenvalues of the open loop dynamics are given4y0, 4.7, —1.94+2.7i.
We have verified already in Example 6.2 that the system is rééshand hence
we can use state feedback to stabilize the system and prawigsired level of
performance.

To decide where to place the closed loop eigenvalues, wethaté¢he closed
loop dynamics will roughly consist of two components: a sefast dynamics
that stabilize the pendulum in the inverted position andtatslower dynamics
that control the position of the cart. For the fast dynamies look to the natural
period of the pendulum (in the hanging-down position), whi given bywy =
vmgl/(J + ml2) ~ 2.1 rad/s. To provide a fast response we choose a dampiag rati
of ¢ = 0.5 and try to place the first pair of eigenvaluesiab ~ —¢wo £ wo ~
—1 + 2i, where we have used the approximation t{idt— ;2 ~ 1. For the slow
dynamics, we choose the damping ratio to bétd provide a small overshoot and
choose the natural frequency to b i give arise time of approximately 5 s. This
gives eigenvalues; 4 = —0.35+ 0.35i.

The controller consists of a feedback on the state and a fieealfd gain for the
reference input. The feedback gain is given by

g=9.8m/s.

K = [—15.6 1730 —50.1 443] ,

which can be computed using Theorem 6.3 or using the MATIpABce com-
mand. The feedforward gain ks = —1/(C(A — BK)™'B) = —15.5. The step
response for the resulting controller (applied to the liizeal system) is given in
Figure 6.11a. While the step response gives the desiredatbastics, the input
required (bottom left) is excessively large, almost thieees the force of gravity
at its peak.

To provide a more realistic response, we can redesign thiatien to have
slower dynamics. We see that the peak of the input force saruthe fast time scale,
and hence we choose to slow this down by a factor of 3, leatieglamping ratio
unchanged. We also slow down the second set of eigenvalitbshe intuition that
we should move the position of the cart more slowly than weikta the pendulum
dynamics. Leaving the damping ratio for the slow dynamicsanged at 0 and
changing the frequency to 1 (corresponding to a rise timgpfaimately 10 s),
the desired eigenvalues become

A ={-0.33+£0.66i, —0.18+ 0.18}.

The performance of the resulting controller is shown in Figufelb. \%

As we see from this example, it can be difficult to determine nette place
the eigenvalues using state feedback. This is one of theipailrionitations of this
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Figure 6.11: State feedback control of a balance system. The step response mifalleo
designed to give fast performance is shown in (a). Although the nsspoharacteristics
(top left) look very good, the input magnitude (bottom left) is very large. #s laggressive
controller is shown in (b). Here the response time is slowed down, but e magnitude
is much more reasonable. Both step responses are applied to the lidebnizenics.

approach, especially for systems of higher dimension.ragdtcontrol techniques,
such as the linear quadratic regulator problem discusseil @@ one approach
that is available. One can also focus on the frequency regpion performing the
design, which is the subject of Chapters 8-12.

Linear Quadratic Regulators

As an alternative to selecting the closed loop eigenvaloations to accomplish a
certain objective, the gains for a state feedback controdia instead be chosen is
by attempting to optimize a cost function. This can be paldityiuseful in helping
balance the performance of the system with the magnitudeeoiinputs required
to achieve that level of performance.

The infinite horizon, linear quadratic regulator (LQR) problemone of the
most common optimal control problems. Given a multi-inpogar system

dx
a:Ax+Bu, x e R", ueRP,

we attempt to minimize the quadratic cost function

J= /Oo (x"Qux 4+ u" Quu) dt, (6.26)
0

whereQy > 0 andQ, > 0 are symmetric, positive (semi-) definite matrices of
the appropriate dimensions. This cost function represetreda-off between the
distance of the state from the origin and the cost of the obimput. By choosing
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the matriceQy and Q,, we can balance the rate of convergence of the solutions
with the cost of the control.
The solution to the LQR problem is given by a linear control ldihe form

u=-Q;'B"Px,
whereP € R™" is a positive definite, symmetric matrix that satisfies the &égoa
PA+A"P-PBQ'BTP + Q,=0. (6.27)

Equation (6.27) is called thalgebraic Riccati equatioand can be solved numer-
ically (e.g., using thé gr command in MATLAB).

One of the key questions in LQR design is how to choose the we@hand
Qu. To guarantee that a solution exists, we must h@ye> 0 andQ, > 0. In
addition, there are certain “observability” conditions Qg that limit its choice.
Here we assum@®, > 0 to ensure that solutions to the algebraic Riccati equation
always exist.

To choose specific values for the cost function weightsandQ,,, we must use
our knowledge of the system we are trying to control. A patéidy simple choice
is to use diagonal weights

01 0 p1 0
QX = T . s QU = ’ .
0 qn o pn

For this choice ofQ« andQ,, the individual diagonal elements describe how much
each state and input (squared) should contribute to thealbvarst. Hence, we
can take states that should remain small and attach highghtwelues to them.
Similarly, we can penalize an input versus the states and iojnts through choice

of the corresponding input weigjat

Example 6.8 Vectored thrust aircraft
Consider the original dynamics of the system (2.26), writtestate space form as

2 0
0
Z5
dz_ Z6 1 0 1
Fri —gsin@—%zzl + | 5 cos0 Fp— Zsind F,
—gcosd — £z L sind F1 + = cost F
0 r
R

(see Example 5.4). The system parametersnare: 4 kg, J = 0.0475 kg m,
r =0.25m,g = 9.8 m/¢, ¢ = 0.05 N s/m, which corresponds to a scaled model
of the system. The equilibrium point for the system is giverFpy= 0, F, = mg
andze = (Xe, Ye, 0,0, 0, 0). To derive the linearized model near an equilibrium
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point, we compute the linearization according to equat®i4):

(0 0 O 1 0 0) [ O 0 ]
00 O 0 1 0 0 0
A— 00 O 0 0 1 B — 0 0
~ 10 0 —g —-c¢/m 0 0] I “11l/m 0 |’
00 O 0 —c/m O 0 1I/m
0 0 O 0 0 0 (r/J 0 |
(1 0 0 0 0 Q (0 O
C:_o10000’ D:_oo]'
Lettingz = z — ze ando = U — U, the linearized system is given by
dz
at + bo, y

It can be verified that the system is reachable.
To compute a linear quadratic regulator for the system, vite wre cost function
as

3= / (@ Quz+ 0T Qo )dt,
0

wherez = z— z, andv = U — U represent the local coordinates around the desired
equilibrium point(ze, ue). We begin with diagonal matrices for the state and input
costs:

1 00 0 0 Q
01 00O0O
001000 10
“=loo0oo0 10 0" Q":[o 1]‘
0 00OO0T10
(0 0 0 0 0 1
This gives a control law of the form = —K z, which can then be used to derive

the control law in terms of the original variables:
U=10+Ue=—K(Z— Z) + Ue.

As computed in Example 5.4, the equilibrium points haye= (0, mg) andz, =

(Xe, Ye, 0,0, 0, 0). The response of the controller to a step change in the desired
position is shown in Figure 6.12a. The response can be tunedljogtimg the
weights in the LQR cost. Figure 6.12b shows the response ir thiezction for
different choices of the weight. \%

Linear quadratic regulators can also be designed for destiree systems, as
illustrated by the following example.

Example 6.9 Web server control

Consider the web server example given in Section 3.4, whaseeete-time model
for the system was given. We wish to design a control law tk& the server
parameters so that the average server processor load isanaahat a desired
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Figure 6.12: Step response for a vectored thrust aircraft. The plot in (a) shows &inely
positions of the aircraft when it is commanded to move 1 m in each diredtidiv) the x
motion is shown for control weights = 1, 1%, 10*. A higher weight of the input term in
the cost function causes a more sluggish response.

level. Since other processes may be running on the servewdheserver must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figure 6\/&.focus on
the special case where we wish to control only the processar lising both the
KeepAl i ve andMaxC i ent s parameters. We also include a “disturbance” on
the measured load that represents the use of the procegslag by other processes
running on the server. The system has the same basic strastilvegeneric control
system in Figure 6.5, with the variation that the disturbasrters after the process
dynamics.

The dynamics of the system are given by a set of differencetiemqsaof the
form

X[k + 1] = AX[K] + BUlK],  YcpdK] = CepuX[K] + depul K],

wherex = (Xcpu, Xmem) IS the statey = (Uka, Umc) is the inputdc,, is the processing
load from other processes on the computer ygglis the total processor load.
We choose our controller to be a state feedback controlldreoform

u=—K [ pru] + krrcpu,

Xmem

Feedback d
Precompensation Controller Server
cpu € u n y
— k C - P -
—1 |-

Figure 6.13: Feedback control of a web server. The controller sets the values efdhe
server parameters based on the difference between the nominalgters. (determined by
k.r) and the current loag,,. The disturbance represents the load due to other processes
running on the server. Note that the measurement is taken after thebdisterso that we
measure the total load on the server.
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whererp, is the desired processor load. Note that we have used theurseas
processor loag,, instead of the state to ensure that we adjust the systemtmpera
based on the actual load. (This modification is necessary becdithe nonstandard
way in which the disturbance enters the process dynamics.)

The feedback gain matriX can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, tivégftost function given

by
_[5 0 _ [1/502 0
Qu= [o 1]’ Q“—[ 0 1/1000’-]'

The cost function for the stat®, is chosen so that we place more emphasis on
the processor load versus the memory use. The cost functiaindanputsQ,

is chosen so as to normalize the two inputs, witkezpAl i ve timeout of 50 s
having the same weightad/axCl i ent s value of 1000. These values are squared
since the cost associated with the inputs is givemb@,u. Using the dynamics

in Section 3.4 and thél gr command in MATLAB, the resulting gains become

« _ [-223 101
= | 3827 777]"

As in the case of a continuous-time control system, the eefar gaink; is
chosen to yield the desired equilibrium point for the syst8ettingx[k + 1] =
X[K] = Xe, the steady-state equilibrium point and output for a giwfanence input
r are given by

Xe = (A— BK)Xe + Bkr, Ve = CXe.

This is a matrix differential equation in whidh is a column vector that sets the
two inputs values based on the desired reference. If we tekddsired output to
be of the formy, = (r, 0), then we must solve

[é] =C(A—BK —1)"'Bk.

Solving this equation fok., we obtain

o~ (cm-r-e)” (3] - 222

The dynamics of the closed loop system are illustrated in Ei§ur4. We apply
a change in load ofi;,, = 0.3 at timet = 10 s, forcing the controller to adjust
the operation of the server to attempt to maintain the deédoad at 057. Note
that both thekeepAl i ve andMaxCl i ent s parameters are adjusted. Although
the load is decreased, it remains approximately 0.2 ab@vddhkired steady state.
(Better results can be obtained using the techniques ofeakiesection.) \%
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Figure 6.14:Web server with LQR control. The plotin (a) shows the state of the systelerun

a change in external load appliedkat= 10 ms. The corresponding web server parameters
(system inputs) are shown in (b). The controller is able to reduce tha effthe disturbance

by approximately 40%.

6.4 Integral Action

Controllers based on state feedback achieve the corredysttate response to
command signals by careful calibration of the gairHowever, one of the primary
uses of feedback is to allow good performance in the presehcmcertainty,
and hence requiring that we have@tactmodel of the process is undesirable. An
alternative to calibration is to make use of integral feetthan which the controller
uses an integrator to provide zero steady-state error. T$ie bancept of integral
feedback was given in Section 1.5 and in Section 3.1; here wdda@ more
complete description and analysis.

The basic approach in integral feedback is to create a stige controller
that computes the integral of the error signal, which is teed as a feedback term.
We do this by augmenting the description of the system withva statez:

d [x Ax + Bu Ax + Bu
TEN e B Coa B
The statez is seen to be the integral of the difference between the ttualkautput
y and desired output Note that if we find a compensator that stabilizes the system,
then we will necessarily have= 0 in steady state and henge-=r in steady state.

Given the augmented system, we design a state space centrothe usual
fashion, with a control law of the form

u=—-Kx—-kz+kr, (6.29)

whereK is the usual state feedback terinjs the integral term anl, is used to
set the nominal input for the desired steady state. The negudquilibrium point
for the system is given as

Xe=—(A—BK)"B(kr —kiZ).

Note that the value df, is not specified but rather will automatically settle to the
value that makeg = y — r = 0, which implies that at equilibrium the output will
equal the reference value. This holds independently of teeip values ofA,
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B andK as long as the system is stable (which can be done througb@gie
choice ofK andk;).
The final compensator is given by

dz
= —Kx—k r —=y-r
LI X |Z+k|'3 dt y >

where we have now included the dynamics of the integratoagspthe specifica-
tion of the controller. This type of compensator is known dg@amic compensator
since it has its own internal dynamics. The following exaniiilistrates the basic
approach.

Example 6.10 Cruise control
Consider the cruise control example introduced in SectitraBd considered fur-
therin Example 5.11. The linearized dynamics of the processwaran equilibrium
pointwe, Ue are given by

dx

a:ax—bge+bw, Y =10 =X+ ve,

wherex = v —ve, w = U—Ug, Mis the mass of the car adds the angle of the road.
The constana depends on the throttle characteristic and is given in Exabyll.
If we augment the system with an integrator, the processrdigssbecome

dx dz
a:ax_bge+bw, a: _Ur:Ue+X_Ur,

or, in state space form,

)18 [ ][9]0

Note that when the system is at equilibrium, we have that 0, which implies
that the vehicle speed = ve + X should be equal to the desired reference speed
vy . Our controller will be of the form

dz

Friml Al u=—kpx —kiz+kor,

and the gaingp, ki andk; will be chosen to stabilize the system and provide the
correct input for the reference speed.
Assume that we wish to design the closed loop system to havehtiracteristic
polynomial
A(S) = s+ ;S + ay.

Setting the disturbancg = 0, the characteristic polynomial of the closed loop
system is given by
det(sl — (A— BK)) = s* + (bkp — a)s + bk,
and hence we set
a+a
k, =
p b ’

k=-=, k=-1/(C(A-BK)'B)= %.
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Figure 6.15:Velocity and throttle for a car with cruise control based on proportioreslied)
and PI control (solid). The PI controller is able to adjust the throttle to cosgte for the
effect of the hill and maintain the speed at the reference valug €f20 m/s.

The resulting controller stabilizes the system and henegbid = y — v, to zero,
resulting in perfect tracking. Notice that even if we haverab error in the values
of the parameters defining the system, as long as the clospaigenvalues are
still stable, then the tracking error will approach zero. Jltive exact calibration
required in our previous approach (usikg is not needed here. Indeed, we can
even choosg&; = 0 and let the feedback controller do all of the work.

Integral feedback can also be used to compensate for comBsinrbances.
Figure 6.15 shows the results of a simulation in which the caoenters a hill
with angled = 4° att = 8 s. The stability of the system is not affected by this
external disturbance, and so we once again see that thevetotsty converges
to the reference speed. This ability to handle constant riiafices is a general
property of controllers with integral feedback (see Exeréist). \%

6.5 Further Reading

The importance of state models and state feedback was déstirsthe seminal
paper by Kalman [Kal60], where the state feedback gain wéasdd by solving
an optimization problem that minimized a quadratic losscfiom. The notions
of reachability and observability (Chapter 7) are also dud&alman [Kal61b]
(see also [Gil63, KHN63]). Kalman defines controllabilitydareachability as the
ability to reach the origin and an arbitrary state, respebttiKFA69]. We note that
in most textbooks the term “controllability” is used insdeaf “reachability,” but
we prefer the latter term because it is more descriptivesfuhdamental property
of being able to reach arbitrary states. Most undergradieateooks on control
contain material on state space systems, including, fanple Franklin, Powell
and Emami-Naeini [FPENO5] and Ogata [Oga01l]. Friedland’s te&ld&ri04]
covers the material in the previous, current and next chapt@nsiderable detail,
including the topic of optimal control.
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Exercises

6.1 (Double integrator) Consider the double integrator. Findeagwise constant
control strategy that drives the system from the origin tostatex = (1, 1).

6.2 (Reachability from nonzero initial state) Extend the argotie Section 6.1 to
show that if a system is reachable from an initial state ab zieis reachable from
a nonzero initial state.

6.3 (Unreachable systems) Consider the system shown in Fig8réAGite the
dynamics of the two systems as

dx dz
— = AX+ Bu — = Az+ Bu.
at TR g +

If x andz have the same initial condition, they will always have thmeastate
regardless of the input that is applied. Show that this veslahe definition of
reachability and further show that the reachability makixis not full rank.

6.4 (Integral feedback for rejecting constant disturbancesjsitier a linear system
of the form

dx
a:Ax+Bu+Fd, y = CX

whereuis ascalar and is a disturbance that enters the system through a distuebanc
vectorF € R". Assume that the matriR is invertible and the zero frequency gain
C A~!B is nonzero. Show that integral feedback can be used to comiecius a
constant disturbance by giving zero steady-state outpot even wherd # 0.

6.5(Rear-steered bicycle) A simple model for a bicycle wasmglwequation (3.5)
in Section 3.2. A model for a bicycle with rear-wheel steeiimg@btained by re-
versing the sign of the velocity in the model. Determine thieditions under which
this systems is reachable and explain any situations inlwthie system is not
reachable.

6.6 (Characteristic polynomial for reachable canonical fo8hpw that the char-
acteristic polynomial for a system in reachable canonigahfis given by equa-
tion (6.7) and that

d"z, d"-1z dz _d™ Ry

am + a1 dt—1 + --‘+an—1a +anZ = dtnk’
wherez, is thekth state.

6.7 (Reachability matrix for reachable canonical form) Comsi@system in reach-
able canonical form. Show that the inverse of the reachqlildtrix is given by

(1 a a - an )
0 1 a -+ An-1

Wil=1]0 0 1

r

: t. ag
(0 0 0 --- 1
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6.8 (Non-maintainable equilibria) Consider the normalizeddelmf a pendulum
on a cart

d?x ! d?0

dtz 7 dt?
wherex is cart position and is pendulum angle. Can the angle= 6, for 6y # 0
be maintained?

=-0+u,

6.9 (Eigenvalue assignment for unreachable system) Considaysiem

dx 0 1 1
a:[o 0]x+[0]u, y=[1 O]x,
with the control law
U= —kix; — koo + K.

Show that eigenvalues of the system cannot be assigned tmayhbialues.

6.10 (Cayley—Hamilton theorem) LeA € R™" be a matrix with characteristic
polynomiali(s) = det(sl — A) = s" 4+ a;s" 1 + .- - + a,_1S + a,. Assume that
the matrixA can be diagonalized and show that it satisfies

AA) = A"+ a A" a1 A+ anl =0,

Use the result to show th#&, k > n, can be rewritten in terms of powers Afof
order less than.

6.11 (Motor drive) Consider the normalized model of the motowerin Exer-
cise 2.10. Using the following normalized parameters,

J; =10/9, J, =10, c=0.1, k=1, ki =1,

verify that the eigenvalues of the open loop system afe 80.05+ i. Design a
state feedback that gives a closed loop system with eigeesal, —1 and—1+i.
This choice implies that the oscillatory eigenvalues wilvizell damped and that
the eigenvalues at the origin are replaced by eigenvaluéseonegative real axis.
Simulate the responses of the closed loop system to stepehanthe command
signal ford, and a step change in a disturbance torque on the second rotor.

6.12(Whipple bicycle model) Consider the Whipple bicycle mogiekn by equa-
tion (3.7) in Section 3.2. Using the parameters from the comngpaweb site, the
model is unstable at the velocity= 5 m/s and the open loop eigenvalues are -1.84,
-14.29 and 130+ 4.60i. Find the gains of a controller that stabilizes the bicycle
and gives closed loop eigenvalues at -2, -10 afddt i. Simulate the response of
the system to a step change in the steering reference of €ad02
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6.13 (Atomic force microscope) Consider the model of an AFM in eabimode
given in Example 5.9:

0 1 0 0 0
dx | —ke/(Mi+my) —co/(Mi+my) 1/my 0 X+ 0 y
dt 0 0 0 w3 o™
0 0 —w3 —2{3603 w3
y= ma mko myCp 1 0] .
mp+my LmMp+mey mg+m;

Use the MATLAB scriptaf m dat a. mfrom the companion web site to generate the
system matrices.

(a) Compute the reachability matrix of the system and nuradyi determine its
rank. Scale the model by using milliseconds instead of secasiime units. Repeat
the calculation of the reachability matrix and its rank.

(b) Find a state feedback controller that gives a closed lgstem with complex
poles having damping ratio 0.707. Use the scaled model éocdmputations.

(c) Compute state feedback gains using linear quadratitraoiExperiment by
using different weights. Compute the gains tar= g = 0,93 = g2 = 1 and
p1 = 0.1 and explain the result. Chooge= g, = gz = g4 = 1 and explore what
happens to the feedback gains and closed loop eigenvaliwes yau change:.
Use the scaled system for this computation.

6.14 Consider the second-order system

d?y dy du
— 4+ 05—= =a— .
a2 T Pq YT g T

Let the initial conditions be zero.

(&) Show that the initial slope of the unit step response Biscuss what it means
whena < 0.

(b) Show that there are points on the unit step response thahariant witha.
Discuss qualitatively the effect of the paramedtam the solution.

(c) Simulate the system and explore the effea oh the rise time and overshoot.

6.15(Bryson’s rule) Bryson and Ho [BH75] have suggested thevfathg method
for choosing the matrice®y and Q, in equation (6.26). Start by choosir@y
and Q, as diagonal matrices whose elements are the inverses ofjtizees of
the maxima of the corresponding variables. Then modify theehts to obtain a
compromise among response time, damping and control effpply this method
to the motor drive in Exercise 6.11. Assume that the largdsiegaof thep; and

@, are 1, the largest values ¢f and¢, are 2 and the largest control signal is 10.
Simulate the closed loop system f@1(0) = 1 and all other states are initialized to
0. Explore the effects of different values of the diagonatredats forQy andQ,.



