
Chapter Six
State Feedback

Intuitively, the state may be regarded as a kind of information storage or memory or ac-
cumulation of past causes. We must, of course, demand that the set of internal states Σ be
sufficiently rich to carry all information about the past history of Σ to predict the effect of the
past upon the future. We do not insist, however, that the state is the least such information
although this is often a convenient assumption.
R. E. Kalman, P. L. Falb andM. A. Arbib, Topics in Mathematical System Theory, 1969 [KFA69].

This chapter describes how the feedback of a system’s state can be used to
shape the local behavior of a system. The concept of reachability is introduced and
used to investigate how to design the dynamics of a system through assignment
of its eigenvalues. In particular, it will be shown that under certain conditions it
is possible to assign the system eigenvalues arbitrarily by appropriate feedback of
the system state.

6.1 Reachability

One of the fundamental properties of a control system is what set of points in the
state space can be reached through the choice of a control input. It turns out that the
property of reachability is also fundamental in understanding the extent to which
feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of the system and focusing on
the evolution of the state, given by

dx
dt

= Ax+Bu, (6.1)

where x ∈ Rn, u ∈ R, A is an n× n matrix and B a column vector. A fundamental
question is whether it is possible to find control signals so that any point in the state
space can be reached through some choice of input. To study this, we define the
reachable set R(x0,≤ T ) as the set of all points x f such that there exists an input
u(t), 0≤ t ≤ T that steers the system from x(0) = x0 to x(T ) = x f , as illustrated in
Figure 6.1a.

Definition 6.1 (Reachability). A linear system is reachable if for any x0,x f ∈ Rn

there exists a T > 0 and u : [0,T ]→R such that the corresponding solution satisfies
x(0) = x0 and x(T ) = x f .

RMM
Feedback Systems by Astrom and Murray, v2.11bhttp://www.cds.caltech.edu/~murray/FBSwiki
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Figure 6.1: The reachable set for a control system. The setR(x0,≤ T ) shown in (a) is the set
of points reachable from x0 in time less than T . The phase portrait in (b) shows the dynamics
for a double integrator, with the natural dynamics drawn as horizontal arrows and the control
inputs drawn as vertical arrows. The set of achievable equilibrium points is the x axis. By
setting the control inputs as a function of the state, it is possible to steer the system to the
origin, as shown on the sample path.

The definition of reachability addresses whether it is possible to reach all points
in the state space in a transient fashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibrium points of the system
(since we can remain at those points once we get there). The set of all possible
equilibria for constant controls is given by

E = {xe : Axe+Bue = 0 for some ue ∈ R}.

This means that possible equilibria lie in a one- (or possibly higher) dimensional
subspace. If the matrix A is invertible, this subspace is spanned by A−1B.
The following example provides some insight into the possibilities.

Example 6.1 Double integrator
Consider a linear system consisting of a double integrator whose dynamics are
given by

dx1
dt

= x2,
dx2
dt

= u.

Figure 6.1b shows a phase portrait of the system. The open loop dynamics (u= 0)
are shown as horizontal arrows pointed to the right for x2 > 0 and to the left for
x2 < 0. The control input is represented by a double-headed arrow in the vertical
direction, corresponding to our ability to set the value of ẋ2. The set of equilibrium
points E corresponds to the x1 axis, with ue = 0.
Suppose first that we wish to reach the origin from an initial condition (a,0).

We can directly move the state up and down in the phase plane, but we must rely
on the natural dynamics to control the motion to the left and right. If a > 0, we
can move the origin by first setting u< 0, which will cause x2 to become negative.
Once x2 < 0, the value of x1 will begin to decrease and we will move to the left.
After a while, we can set u2 to be positive, moving x2 back toward zero and slowing
the motion in the x1 direction. If we bring x2 > 0, we can move the system state in
the opposite direction.
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Figure 6.1b shows a sample trajectory bringing the system to the origin. Note
that if we steer the system to an equilibrium point, it is possible to remain there
indefinitely (since ẋ1 = 0 when x2 = 0), but if we go to any other point in the state
space, we can pass through the point only in a transient fashion. ∇

To find general conditions under which a linear system is reachable, we will
first give a heuristic argument based on formal calculations with impulse functions.
We note that if we can reach all points in the state space through some choice of
input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system to an input u(t) is given
by

x(t) =
∫ t

0
eA(t−τ)Bu(τ)dτ . (6.2)

If we choose the input to be a impulse function δ (t) as defined in Section 5.3, the
state becomes

xδ =
∫ t

0
eA(t−τ)Bδ (τ)dτ =

dxS
dt

= eAtB.

(Note that the state changes instantaneously in response to the impulse.) We can
find the response to the derivative of an impulse function by taking the derivative
of the impulse response (Exercise 5.1):

xδ̇ =
dxδ
dt

= AeAtB.

Continuing this process and using the linearity of the system, the input

u(t) = α1δ (t)+α2δ̇ (t)+α3δ̈ (t)+ · · ·+αnδ (n−1)(t)

gives the state

x(t) = α1eAtB+α2AeAtB+α3A2eAtB+ · · ·+αnAn−1eAtB.

Taking the limit as t goes to zero through positive values, we get

lim
t→0+

x(t) = α1B+α2AB+α3A2B+ · · ·+αnAn−1B.

On the right is a linear combination of the columns of the matrix

Wr =


B AB · · · An−1B


 . (6.3)

To reach an arbitrary point in the state space, we thus require that there are n linear
independent columns of the matrix Wr. The matrix Wr is called the reachability
matrix.
An input consisting of a sum of impulse functions and their derivatives is a very

violent signal. To see that an arbitrary point can be reached with smoother signals
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we can make use of the convolution equation. Assuming that the initial condition
is zero, the state of a linear system is given by

x(t) =
∫ t

0
eA(t−τ)Bu(τ)dτ =

∫ t

0
eAτBu(t− τ)dτ .

It follows from the theory of matrix functions, specifically the Cayley–Hamilton
theorem (see Exercise 6.10), that

eAτ = Iα0(τ)+Aα1(τ)+ · · ·+An−1αn−1(τ),

where αi(τ) are scalar functions, and we find that

x(t) = B
∫ t

0
α0(τ)u(t− τ)dτ+AB

∫ t

0
α1(τ)u(t− τ)dτ

+ · · ·+An−1B
∫ t

0
αn−1(τ)u(t− τ)dτ .

Again we observe that the right-hand side is a linear combination of the columns
of the reachability matrixWr given by equation (6.3). This basic approach leads to
the following theorem.

Theorem 6.1 (Reachability rank condition). A linear system is reachable if and
only if the reachability matrix Wr is invertible.

The formal proof of this theorem is beyond the scope of this text but follows
along the lines of the sketch above and can be found in most books on linear
control theory, such as Callier and Desoer [CD91] or Lewis [Lew03]. We illustrate
the concept of reachability with the following example.

Example 6.2 Balance system
Consider the balance system introduced in Example 2.1 and shown in Figure 6.2.
Recall that this system is a model for a class of examples in which the center
of mass is balanced above a pivot point. One example is the Segway Personal
Transporter shown in Figure 6.2a, about which a natural question to ask is whether
we can move from one stationary point to another by appropriate application of
forces through the wheels.
The nonlinear equations of motion for the system are given in equation (2.9)

and repeated here:

(M+m)p̈−ml cosθ θ̈ =−cṗ−ml sinθ θ̇ 2+F,
(J+ml2)θ̈ −ml cosθ p̈=−γθ̇ +mgl sinθ .

(6.4)

For simplicity, we take c = γ = 0. Linearizing around the equilibrium point xe =
(p,0,0,0), the dynamics matrix and the control matrix are

A=

























0 0 1 0
0 0 0 1
0 m2l2g/µ 0 0
0 Mtmgl/µ 0 0

























, B=

























0
0

Jt/µ
lm/µ

























,
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Figure 6.2: Balance system. The Segway Personal Transporter shown in (a) is an example of
a balance system that uses torque applied to the wheels to keep the rider upright. A simplified
diagram for a balance system is shown in (b). The system consists of a mass m on a rod of
length l connected by a pivot to a cart with mass M.

where µ =MtJt −m2l2, Mt =M+m and Jt = J+ml2. The reachability matrix is

Wr =



























0 Jt/µ 0 gl3m3/µ2

0 lm/µ 0 gl2m2(m+M)/µ2

Jt/µ 0 gl3m3/µ2 0
lm/µ 0 gl2m2(m+M)/µ2 0



























. (6.5)

The determinant of this matrix is

det(Wr) =
g2l4m4

(µ)4
&= 0,

and we can conclude that the system is reachable. This implies that we can move
the system from any initial state to any final state and, in particular, that we can
always find an input to bring the system from an initial state to an equilibrium
point. ∇

It is useful to have an intuitive understanding of the mechanisms that make a
system unreachable. An example of such a system is given in Figure 6.3. The
system consists of two identical systems with the same input. Clearly, we cannot
separately cause the first and the second systems to do something different since
they have the same input. Hence we cannot reach arbitrary states, and so the system
is not reachable (Exercise 6.3).
More subtle mechanisms for nonreachability can also occur. For example, if

there is a linear combination of states that always remains constant, then the system
is not reachable. To see this, suppose that there exists a row vector H such that

0=
d
dt
Hx= H(Ax+Bu), for all u.
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Figure 6.3: An unreachable system. The cart–pendulum system shown on the left has a
single input that affects two pendula of equal length and mass. Since the forces affecting the
two pendula are the same and their dynamics are identical, it is not possible to arbitrarily
control the state of the system. The figure on the right is a block diagram representation of
this situation.

Then H is in the left null space of both A and B and it follows that

HWr = H


B AB · · · An−1B


= 0.

Hence the reachability matrix is not full rank. In this case, if we have an initial
condition x0 and we wish to reach a state x f for which Hx0 &= Hxf , then since
Hx(t) is constant, no input u can move from x0 to x f .

Reachable Canonical Form

As we have already seen in previous chapters, it is often convenient to change
coordinates and write the dynamics of the system in the transformed coordinates
z = Tx. One application of a change of coordinates is to convert a system into a
canonical form in which it is easy to perform certain types of analysis.
A linear state space system is in reachable canonical form if its dynamics are

given by

dz
dt

=



































−a1 −a2 −a3 . . . −an
1 0 0 . . . 0
0 1 0 . . . 0
... . . . . . . ...
0 1 0



































z+



































1
0
0
...
0



































u,

y=


b1 b2 b3 . . . bn


z+du.

(6.6)

A block diagram for a system in reachable canonical form is shown in Figure 6.4.
We see that the coefficients that appear in the A and B matrices show up directly
in the block diagram. Furthermore, the output of the system is a simple linear
combination of the outputs of the integration blocks.
The characteristic polynomial for a system in reachable canonical form is given
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Figure 6.4: Block diagram for a system in reachable canonical form. The individual states
of the system are represented by a chain of integrators whose input depends on the weighted
values of the states. The output is given by an appropriate combination of the system input
and other states.

by
λ (s) = sn+a1sn−1+ · · ·+an−1s+an. (6.7)

The reachability matrix also has a relatively simple structure:

Wr =


B AB . . . An−1B


=



































1 −a1 a21−a2 · · · ∗
0 1 −a1 · · · ∗
...

... . . . . . . ...
0 0 0 1 ∗
0 0 0 · · · 1



































,

where ∗ indicates a possibly nonzero term. This matrix is full rank since no col-
umn can be written as a linear combination of the others because of the triangular
structure of the matrix.

We now consider the problem of changing coordinates such that the dynamics
of a system can be written in reachable canonical form. Let A,B represent the
dynamics of a given system and Ã, B̃ be the dynamics in reachable canonical form.
Suppose that we wish to transform the original system into reachable canonical
form using a coordinate transformation z = Tx. As shown in the last chapter, the
dynamics matrix and the control matrix for the transformed system are

Ã= TAT−1, B̃= TB.

The reachability matrix for the transformed system then becomes

W̃r =


B̃ ÃB̃ · · · Ãn−1B̃


 .
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Transforming each element individually, we have

ÃB̃= TAT−1TB= TAB,
Ã2B̃= (TAT−1)2TB= TAT−1TAT−1TB= TA2B,

...
ÃnB̃= TAnB,

and hence the reachability matrix for the transformed system is

W̃r = T


B AB · · · An−1B


= TWr. (6.8)

Since Wr is invertible, we can thus solve for the transformation T that takes the
system into reachable canonical form:

T = W̃rW−1
r .

The following example illustrates the approach.

Example 6.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

dx
dt

=









α ω
−ω α








x+








0
1








u.

We wish to find the transformation that converts the system into reachable canon-
ical form:

Ã=









−a1 −a2
1 0








, B̃=









1
0








.

The coefficients a1 and a2 can be determined from the characteristic polynomial
for the original system:

λ (s) = det(sI−A) = s2−2αs+(α2+ω2) =⇒
a1 =−2α,
a2 = α2+ω2.

The reachability matrix for each system is

Wr =









0 ω
1 α








, W̃r =









1 −a1
0 1








.

The transformation T becomes

T = W̃rW−1
r =









−(a1+α)/ω 1
1/ω 0








=









α/ω 1
1/ω 0








,

and hence the coordinates








z1
z2








= Tx=









αx1/ω+ x2
x1/ω









put the system in reachable canonical form. ∇

We summarize the results of this section in the following theorem.
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Figure 6.5: A feedback control system with state feedback. The controller uses the system
state x and the reference input r to command the process through its input u. We model
disturbances via the additive input d.

Theorem 6.2 (Reachable canonical form). Let A and B be the dynamics and con-
trol matrices for a reachable system. Then there exists a transformation z = Tx
such that in the transformed coordinates the dynamics and control matrices are in
reachable canonical form (6.6) and the characteristic polynomial for A is given by

det(sI−A) = sn+a1sn−1+ · · ·+an−1s+an.

One important implication of this theorem is that for any reachable system, we
can assume without loss of generality that the coordinates are chosen such that the
system is in reachable canonical form. This is particularly useful for proofs, as we
shall see later in this chapter. However, for high-order systems, small changes in
the coefficients ai can give large changes in the eigenvalues. Hence, the reachable
canonical form is not always well conditioned and must be used with some care.

6.2 Stabilization by State Feedback

The state of a dynamical system is a collection of variables that permits prediction
of the future development of a system. We now explore the idea of designing the
dynamics of a system through feedback of the state. We will assume that the system
to be controlled is described by a linear state model and has a single input (for
simplicity). The feedback control law will be developed step by step using a single
idea: the positioning of closed loop eigenvalues in desired locations.

State Space Controller Structure

Figure 6.5 is a diagram of a typical control system using state feedback. The full
system consists of the process dynamics, which we take to be linear, the controller
elements K and kr, the reference input (or command signal) r and process dis-
turbances d. The goal of the feedback controller is to regulate the output of the
system y such that it tracks the reference input in the presence of disturbances and
also uncertainty in the process dynamics.
An important element of the control design is the performance specification.

The simplest performance specification is that of stability: in the absence of any
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disturbances, we would like the equilibrium point of the system to be asymptoti-
cally stable. More sophisticated performance specifications typically involve giv-
ing desired properties of the step or frequency response of the system, such as
specifying the desired rise time, overshoot and settling time of the step response.
Finally, we are often concerned with the disturbance attenuation properties of the
system: to what extent can we experience disturbance inputs d and still hold the
output y near the desired value?
Consider a system described by the linear differential equation

dx
dt

= Ax+Bu, y=Cx+Du, (6.9)

where we have ignored the disturbance signal d for now. Our goal is to drive the
output y to a given reference value r and hold it there. Notice that it may not be
possible to maintain all equilibria; see Exercise 6.8.
We begin by assuming that all components of the state vector are measured.

Since the state at time t contains all the information necessary to predict the future
behavior of the system, the most general time-invariant control law is a function
of the state and the reference input:

u= α(x,r).

If the feedback is restricted to be linear, it can be written as

u=−Kx+ krr, (6.10)

where r is the reference value, assumed for now to be a constant.
This control law corresponds to the structure shown in Figure 6.5. The nega-

tive sign is a convention to indicate that negative feedback is the normal situation.
The closed loop system obtained when the feedback (6.10) is applied to the sys-
tem (6.9) is given by

dx
dt

= (A−BK)x+Bkrr. (6.11)

We attempt to determine the feedback gain K so that the closed loop system has
the characteristic polynomial

p(s) = sn+ p1sn−1+ · · ·+ pn−1s+ pn. (6.12)

This control problem is called the eigenvalue assignment problem or pole place-
ment problem (we will define poles more formally in Chapter 8).
Note that kr does not affect the stability of the system (which is determined by

the eigenvalues of A−BK) but does affect the steady-state solution. In particular,
the equilibrium point and steady-state output for the closed loop system are given
by

xe =−(A−BK)−1Bkrr, ye =Cxe+Due,

hence kr should be chosen such that ye = r (the desired output value). Since kr is a
scalar, we can easily solve to show that if D= 0 (the most common case),

kr =−1/
(

C(A−BK)−1B
)

. (6.13)
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Notice that kr is exactly the inverse of the zero frequency gain of the closed loop
system. The solution for D &= 0 is left as an exercise.
Using the gains K and kr, we are thus able to design the dynamics of the closed

loop system to satisfy our goal. To illustrate how to construct such a state feedback
control law, we begin with a few examples that provide some basic intuition and
insights.

Example 6.4 Vehicle steering
In Example 5.12 we derived a normalized linear model for vehicle steering. The
dynamics describing the lateral deviation were given by

A=









0 1
0 0








, B=









γ
1








,

C =


1 0


 , D= 0.

The reachability matrix for the system is thus

Wr =


B AB


=









γ 1
1 0








.

The system is reachable since detWr =−1 &= 0.
We now want to design a controller that stabilizes the dynamics and tracks a

given reference value r of the lateral position of the vehicle. To do this we introduce
the feedback

u=−Kx+ krr =−k1x1− k2x2+ krr,

and the closed loop system becomes

dx
dt

= (A−BK)x+Bkrr =








−γk1 1− γk2
−k1 −k2








x+








γkr
kr








r,

y=Cx+Du=


1 0


x.
(6.14)

The closed loop system has the characteristic polynomial

det(sI−A+BK) = det








s+ γk1 γk2−1
k1 s+ k2








= s2+(γk1+ k2)s+ k1.

Suppose that we would like to use feedback to design the dynamics of the system
to have the characteristic polynomial

p(s) = s2+2ζcωcs+ω2c .

Comparing this polynomial with the characteristic polynomial of the closed loop
system, we see that the feedback gains should be chosen as

k1 = ω2c , k2 = 2ζcωc− γω2c .

Equation (6.13) gives kr = k1 = ω2c , and the control law can be written as

u= k1(r− x1)− k2x2 = ω2c (r− x1)− (2ζcωc− γω2c )x2.
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Figure 6.6: State feedback control of a steering system. Step responses obtained with con-
trollers designed with ζc = 0.7 and ωc = 0.5, 1 and 2 [rad/s] are shown in (a). Notice that
response speed increases with increasing ωc, but that large ωc also give large initial control
actions. Step responses obtained with a controller designed with ωc = 1 and ζc = 0.5, 0.7
and 1 are shown in (b).

The step responses for the closed loop system for different values of the de-
sign parameters are shown in Figure 6.6. The effect of ωc is shown in Figure 6.6a,
which shows that the response speed increases with increasing ωc. The responses
for ωc = 0.5 and 1 have reasonable overshoot. The settling time is about 15 car
lengths for ωc = 0.5 (beyond the end of the plot) and decreases to about 6 car
lengths for ωc = 1. The control signal δ is large initially and goes to zero as time
increases because the closed loop dynamics have an integrator. The initial value
of the control signal is u(0) = kr = ω2c r, and thus the achievable response time is
limited by the available actuator signal. Notice in particular the dramatic increase
in control signal when ωc changes from 1 to 2. The effect of ζc is shown in Fig-
ure 6.6b. The response speed and the overshoot increase with decreasing damping.
Using these plots, we conclude that reasonable values of the design parameters are
to have ωc in the range of 0.5 to 1 and ζc ≈ 0.7. ∇

The example of the vehicle steering system illustrates how state feedback can
be used to set the eigenvalues of a closed loop system to arbitrary values.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the parameters of the system
are the coefficients of the characteristic polynomial. It is therefore natural to con-
sider systems in this form when solving the eigenvalue assignment problem.
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Consider a system in reachable canonical form, i.e,

dz
dt

= Ãz+ B̃u=



































−a1 −a2 −a3 . . . −an
1 0 0 . . . 0
0 1 0 . . . 0
... . . . . . . ...
0 1 0



































z+



































1
0
...
0
0



































u

y= C̃z=


b1 b2 · · · bn


z.

(6.15)

It follows from(6.7) that the open loop system has the characteristic polynomial

det(sI−A) = sn+a1sn−1+ · · ·+an−1s+an.

Before making a formal analysis we can gain some insight by investigating the
block diagram of the system shown in Figure 6.4. The characteristic polynomial
is given by the parameters ak in the figure. Notice that the parameter ak can be
changed by feedback from state zk to the input u. It is thus straightforward to
change the coefficients of the characteristic polynomial by state feedback.
Returning to equations, introducing the control law

u=−K̃z+ krr =−k̃1z1− k̃2z2− · · ·− k̃nzn+ krr, (6.16)

the closed loop system becomes

dz
dt

=



































−a1− k̃1 −a2− k̃2 −a3− k̃3 . . . −an− k̃n
1 0 0 . . . 0
0 1 0 . . . 0
... . . . . . . ...
0 1 0



































z+



































kr
0
0
...
0



































r,

y=


b1 b2 · · · bn


z.

(6.17)

The feedback changes the elements of the first row of the A matrix, which corre-
sponds to the parameters of the characteristic polynomial. The closed loop system
thus has the characteristic polynomial

sn+(a1+ k̃1)sn−1+(a2+ k̃2)sn−2+ · · ·+(an−1+ k̃n−1)s+an+ k̃n.

Requiring this polynomial to be equal to the desired closed loop polynomial

p(s) = sn+ p1sn−1+ · · ·+ pn−1s+ pn,

we find that the controller gains should be chosen as

k̃1 = p1−a1, k̃2 = p2−a2, . . . k̃n = pn−an.

This feedback simply replaces the parameters ai in the system (6.15) by pi. The
feedback gain for a system in reachable canonical form is thus

K̃ =


p1−a1 p2−a2 · · · pn−an


 . (6.18)
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To have zero frequency gain equal to unity, the parameter kr should be chosen
as

kr =
an+ k̃n
bn

=
pn
bn

. (6.19)

Notice that it is essential to know the precise values of parameters an and bn in
order to obtain the correct zero frequency gain. The zero frequency gain is thus
obtained by precise calibration. This is very different from obtaining the correct
steady-state value by integral action, which we shall see in later sections.

Eigenvalue Assignment

We have seen through the examples how feedback can be used to design the dy-
namics of a system through assignment of its eigenvalues. To solve the problem in
the general case, we simply change coordinates so that the system is in reachable
canonical form. Consider the system

dx
dt

= Ax+Bu, y=Cx+Du. (6.20)

We can change the coordinates by a linear transformation z = Tx so that the
transformed system is in reachable canonical form (6.15). For such a system the
feedback is given by equation (6.16), where the coefficients are given by equa-
tion (6.18). Transforming back to the original coordinates gives the feedback

u=−K̃z+ krr =−K̃Tx+ krr.

The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedback). Consider the system
given by equation (6.20), with one input and one output. Let λ (s) = sn+a1sn−1+
· · ·+ an−1s+ an be the characteristic polynomial of A. If the system is reachable,
then there exists a feedback

u=−Kx+ krr

that gives a closed loop system with the characteristic polynomial

p(s) = sn+ p1sn−1+ · · ·+ pn−1s+ pn

and unity zero frequency gain between r and y. The feedback gain is given by

K = K̃T =


p1−a1 p2−a2 · · · pn−an


W̃rW−1
r , (6.21)

where ai are the coefficients of the characteristic polynomial of the matrix A and
the matrices Wr and W̃r are given by
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Wr =


B AB · · · An−1B


 , W̃r =



































1 a1 a2 · · · an−1
0 1 a1 · · · an−2
... . . . . . . ...
0 0 · · · 1 a1
0 0 0 · · · 1



































−1

.

The reference gain is given by

kr =−1/
(

C(A−BK)−1B
)

.

For simple problems, the eigenvalue assignment problem can be solved by in-
troducing the elements ki of K as unknown variables. We then compute the char-
acteristic polynomial

λ (s) = det(sI−A+BK)

and equate coefficients of equal powers of s to the coefficients of the desired char-
acteristic polynomial

p(s) = sn+ p1sn−1+ · · ·+ pn−1s+ pn.

This gives a system of linear equations to determine ki. The equations can always
be solved if the system is reachable, exactly as we did in Example 6.4.
Equation (6.21), which is called Ackermann’s formula [Ack72, Ack85], can

be used for numeric computations. It is implemented in the MATLAB function
acker. The MATLAB function place is preferable for systems of high order
because it is better conditioned numerically.

Example 6.5 Predator–prey
Consider the problem of regulating the population of an ecosystem by modulating
the food supply. We use the predator–prey model introduced in Section 3.7. The
dynamics for the system are given by

dH
dt

= (r+u)H
(

1−
H
k

)

−
aHL
c+H

, H ≥ 0,

dL
dt

= b
aHL
c+H

−dL, L≥ 0.

We choose the following nominal parameters for the system, which correspond to
the values used in previous simulations:

a= 3.2, b= 0.6, c= 50,
d = 0.56, k = 125 r = 1.6.

We take the parameter r, corresponding to the growth rate for hares, as the input to
the system, which we might modulate by controlling a food source for the hares.
This is reflected in our model by the term (r+u) in the first equation. We choose
the number of lynxes as the output of our system.
To control this system, we first linearize the system around the equilibrium

point of the system (He,Le), which can be determined numerically to be xe ≈
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(20.6,29.5). This yields a linear dynamical system

d
dt









z1
z2








=









0.13 −0.93
0.57 0

















z1
z2








+









17.2
0








v, w=



0 1












z1
z2








,

where z1 = H −He, z2 = L− Le and v = u. It is easy to check that the system
is reachable around the equilibrium (z,v) = (0,0), and hence we can assign the
eigenvalues of the system using state feedback.
Determining the eigenvalues of the closed loop system requires balancing the

ability to modulate the input against the natural dynamics of the system. This can
be done by the process of trial and error or by using some of the more systematic
techniques discussed in the remainder of the text. For now, we simply choose the
desired closed loop eigenvalues to be at λ = {−0.1,−0.2}. We can then solve for
the feedback gains using the techniques described earlier, which results in

K =


0.025 −0.052


 .

Finally, we solve for the reference gain kr, using equation (6.13) to obtain kr =
0.002.
Putting these steps together, our control law becomes

v=−Kz+ krLd ,

where Ld is the desired number of lynxes. In order to implement the control law,
we must rewrite it using the original coordinates for the system, yielding

u= ue−K(x− xe)+ kr(Ld− ye)

=−


0.025 −0.052












H−20.6
L−29.5








+0.002(Ld−29.5).

This rule tells us how much we should modulate u as a function of the current
number of lynxes and hares in the ecosystem. Figure 6.7a shows a simulation of
the resulting closed loop system using the parameters defined above and starting
with an initial population of 15 hares and 20 lynxes. Note that the system quickly
stabilizes the population of lynxes at the reference value (Ld = 30). A phase por-
trait of the system is given in Figure 6.7b, showing how other initial conditions
converge to the stabilized equilibrium population. Notice that the dynamics are
very different from the natural dynamics (shown in Figure 3.20). ∇

The results of this section show that we can use state feedback to design the
dynamics of a system, under the strong assumption that we can measure all of the
states. We shall address the availability of the states in the next chapter, when we
consider output feedback and state estimation. In addition, Theorem 6.3, which
states that the eigenvalues can be assigned to arbitrary locations, is also highly ide-
alized and assumes that the dynamics of the process are known to high precision.
The robustness of state feedback combined with state estimators is considered in
Chapter 12 after we have developed the requisite tools.
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Figure 6.7: Simulation results for the controlled predator–prey system. The population of
lynxes and hares as a function of time is shown in (a), and a phase portrait for the controlled
system is shown in (b). Feedback is used to make the population stable at He = 20.6 and
Le = 30.

6.3 State Feedback Design

The location of the eigenvalues determines the behavior of the closed loop dynam-
ics, and hence where we place the eigenvalues is the main design decision to be
made. As with all other feedback design problems, there are trade-offs among the
magnitude of the control inputs, the robustness of the system to perturbations and
the closed loop performance of the system. In this section we examine some of
these trade-offs starting with the special case of second-order systems.

Second-Order Systems

One class of systems that occurs frequently in the analysis and design of feedback
systems is second-order linear differential equations. Because of their ubiquitous
nature, it is useful to apply the concepts of this chapter to that specific class of
systems and build more intuition about the relationship between stability and per-
formance.
The canonical second-order system is a differential equation of the form

q̈+2ζω0q̇+ω20q= kω20u, y= q. (6.22)

In state space form, this system can be represented as
dx
dt

=









0 ω0
−ω0 −2ζω0








x+








0
kω0








u, y=



1 0


x. (6.23)

The eigenvalues of this system are given by

λ =−ζω0±
√

ω20 (ζ
2−1),

and we see that the origin is a stable equilibrium point if ω0 > 0 and ζ > 0. Note
that the eigenvalues are complex if ζ < 1 and real otherwise. Equations (6.22)
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and (6.23) can be used to describe many second-order systems, including damped
oscillators, active filters and flexible structures, as shown in the examples below.
The form of the solution depends on the value of ζ , which is referred to as the

damping ratio for the system. If ζ > 1, we say that the system is overdamped, and
the natural response (u= 0) of the system is given by

y(t) =
βx10+ x20
β −α

e−αt −
αx10+ x20
β −α

e−β t ,

where α =ω0(ζ +
√

ζ 2−1) and β =ω0(ζ −
√

ζ 2−1). We see that the response
consists of the sum of two exponentially decaying signals. If ζ = 1, then the system
is critically damped and solution becomes

y(t) = e−ζω0t
(

x10+(x20+ζω0x10)t
)

.

Note that this is still asymptotically stable as long as ω0 > 0, although the second
term in the solution is increasing with time (but more slowly than the decaying
exponential that is multiplying it).
Finally, if 0< ζ < 1, then the solution is oscillatory and equation (6.22) is said

to be underdamped. The parameter ω0 is referred to as the natural frequency of the
system, stemming from the fact that for small ζ , the eigenvalues of the system are
λ =−ζω0± iω0

√

1−ζ 2. The natural response of the system is given by

y(t) = e−ζω0t
(

x10 cosωdt+
(ζω0
ωd

x10+
1
ωd

x20
)

sinωdt
)

,

where ωd = ω0
√

1−ζ 2 is called the damped frequency. For ζ + 1, ωd ≈ ω0 de-
fines the oscillation frequency of the solution and ζ gives the damping rate relative
to ω0.
Because of the simple form of a second-order system, it is possible to solve

for the step and frequency responses in analytical form. The solution for the step
response depends on the magnitude of ζ :

y(t) = k

(

1− e−ζω0t cosωdt−
ζ

√

1−ζ 2
e−ζω0t sinωdt

)

, ζ < 1;

y(t) = k
(

1− e−ω0t(1+ω0t)
)

, ζ = 1;

y(t) = k
(

1−
1
2

(

ζ√
ζ 2−1

+1
)

e−ω0t(ζ−
√
ζ 2−1)

+
1
2

(

ζ√
ζ 2−1

−1
)

e−ω0t(ζ+
√
ζ 2−1)

)

, ζ > 1,

(6.24)

where we have taken x(0) = 0. Note that for the lightly damped case (ζ < 1) we
have an oscillatory solution at frequency ωd .
Step responses of systems with k = 1 and different values of ζ are shown in

Figure 6.8. The shape of the response is determined by ζ , and the speed of the
response is determined by ω0 (included in the time axis scaling): the response is
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Figure 6.8: Step response for a second-order system. Normalized step responses h for the
system (6.23) for ζ = 0, 0.4, 0.7, 1 and 1.2. As the damping ratio is increased, the rise time
of the system gets longer, but there is less overshoot. The horizontal axis is in scaled units
ω0t; higher values of ω0 result in a faster response (rise time and settling time).

faster if ω0 is larger.
In addition to the explicit form of the solution, we can also compute the proper-

ties of the step response that were defined in Section 5.3. For example, to compute
the maximum overshoot for an underdamped system, we rewrite the output as

y(t) = k

(

1−
1

√

1−ζ 2
e−ζω0t sin(ωdt+ϕ)

)

, (6.25)

where ϕ = arccosζ . The maximum overshoot will occur at the first time in which
the derivative of y is zero, which can be shown to be

Mp = e−πζ/
√
1−ζ 2

.

Similar computations can be done for the other characteristics of a step response.
Table 6.1 summarizes the calculations.
The frequency response for a second-order system can also be computed ex-

Table 6.1: Properties of the step response for a second-order system with 0< ζ < 1.

Property Value ζ = 0.5 ζ = 1/
√
2 ζ = 1

Steady-state value k k k k

Rise time Tr ≈ 1/ω0 ·eϕ/ tanϕ 1.8/ω0 2.2/ω0 2.7/ω0

Overshoot Mp = e−πζ/
√
1−ζ 2 16% 4% 0%

Settling time (2%) Ts ≈ 4/ζω0 8.0/ω0 5.9/ω0 5.8/ω0
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Figure 6.9: Frequency response of a second-order system (6.23). (a) Eigenvalues as a func-
tion of ζ . (b) Frequency response as a function of ζ . The upper curve shows the gain ratio
M, and the lower curve shows the phase shift θ . For small ζ there is a large peak in the
magnitude of the frequency response and a rapid change in phase centered at ω = ω0. As ζ
is increased, the magnitude of the peak drops and the phase changes more smoothly between
0◦ and -180◦.

plicitly and is given by

Mejθ =
kω20

(iω)2+2ζω0(iω)+ω20
=

kω20
ω20 −ω2+2iζω0ω

.

A graphical illustration of the frequency response is given in Figure 6.9. Notice the
resonant peak that increases with decreasing ζ . The peak is often characterized by
its Q-value, defined as Q = 1/2ζ . The properties of the frequency response for a
second-order system are summarized in Table 6.2.

Example 6.6 Drug administration
To illustrate the use of these formulas, consider the two-compartment model for
drug administration, described in Section 3.6. The dynamics of the system are

dc
dt

=









−k0− k1 k1
k2 −k2








c+








b0
0








u, y=



0 1


c,

where c1 and c2 are the concentrations of the drug in each compartment, ki, i =

Table 6.2: Properties of the frequency response for a second-order system with 0< ζ < 1.

Property Value ζ = 0.1 ζ = 0.5 ζ = 1/
√
2

Zero frequency gain M0 k k k

Bandwidth ωb 1.54ω0 1.27ω0 ω0

Resonant peak gain Mr 1.54k 1.27k k

Resonant frequency ωmr ω0 0.707ω0 0
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Figure 6.10: Open loop versus closed loop drug administration. Comparison between drug
administration using a sequence of doses versus continuously monitoring the concentrations
and adjusting the dosage continuously. In each case, the concentration is (approximately)
maintained at the desired level, but the closed loop system has substantially less variability
in drug concentration.

0, . . . ,2 and b0 are parameters of the system, u is the flow rate of the drug into
compartment 1 and y is the concentration of the drug in compartment 2. We assume
that we can measure the concentrations of the drug in each compartment, and we
would like to design a feedback law to maintain the output at a given reference
value r.
We choose ζ = 0.9 to minimize the overshoot and choose the rise time to be

Tr = 10 min. Using the formulas in Table 6.1, this gives a value for ω0 = 0.22.
We can now compute the gain to place the eigenvalues at this location. Setting
u=−Kx+ krr, the closed loop eigenvalues for the system satisfy

λ (s) =−0.198±0.0959i.

Choosing k1 = −0.2027 and k2 = 0.2005 gives the desired closed loop behavior.
Equation (6.13) gives the reference gain kr = 0.0645. The response of the con-
troller is shown in Figure 6.10 and compared with an open loop strategy involving
administering periodic doses of the drug. ∇

Higher-Order Systems

Our emphasis so far has considered only second-order systems. For higher-order
systems, eigenvalue assignment is considerably more difficult, especially when
trying to account for the many trade-offs that are present in a feedback design.
One of the other reasons why second-order systems play such an important

role in feedback systems is that even for more complicated systems the response is
often characterized by the dominant eigenvalues. To define these more precisely,
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consider a system with eigenvalues λ j, j = 1, . . . ,n. We define the damping ratio
for a complex eigenvalue λ to be

ζ =
−Reλ
|λ |

.

We say that a complex conjugate pair of eigenvalues λ , λ ∗ is a dominant pair if it
has the lowest damping ratio compared with all other eigenvalues of the system.
Assuming that a system is stable, the dominant pair of eigenvalues tends to be

the most important element of the response. To see this, assume that we have a
system in Jordan form with a simple Jordan block corresponding to the dominant
pair of eigenvalues:

dz
dt

=



































λ
λ ∗

J2
. . .

Jk



































z+Bu, y=Cz.

(Note that the state z may be complex because of the Jordan transformation.) The
response of the system will be a linear combination of the responses from each
of the individual Jordan subsystems. As we see from Figure 6.8, for ζ < 1 the
subsystemwith the slowest response is precisely the one with the smallest damping
ratio. Hence, when we add the responses from each of the individual subsystems,
it is the dominant pair of eigenvalues that will be the primary factor after the initial
transients due to the other terms in the solution die out. While this simple analysis
does not always hold (e.g., if some nondominant terms have larger coefficients
because of the particular form of the system), it is often the case that the dominant
eigenvalues determine the (step) response of the system.
The only formal requirement for eigenvalue assignment is that the system be

reachable. In practice there are many other constraints because the selection of
eigenvalues has a strong effect on the magnitude and rate of change of the control
signal. Large eigenvalues will in general require large control signals as well as
fast changes of the signals. The capability of the actuators will therefore impose
constraints on the possible location of closed loop eigenvalues. These issues will
be discussed in depth in Chapters 11 and 12.
We illustrate some of the main ideas using the balance system as an example.

Example 6.7 Balance system
Consider the problem of stabilizing a balance system, whose dynamics were given
in Example 6.2. The dynamics are given by

A=

























0 0 1 0
0 0 0 1
0 m2l2g/µ −cJt/µ −γJt lm/µ
0 Mtmgl/µ −clm/µ −γMt/µ

























, B=

























0
0

Jt/µ
lm/µ

























,
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whereMt =M+m, Jt = J+ml2, µ =MtJt−m2l2 and we have left c and γ nonzero.
We use the following parameters for the system (corresponding roughly to a human
being balanced on a stabilizing cart):

M = 10 kg, m= 80 kg, c= 0.1 Ns/m,
J = 100 kgm2/s2, l = 1 m, γ = 0.01 Nms,

g= 9.8 m/s2.

The eigenvalues of the open loop dynamics are given by λ ≈ 0,4.7,−1.9±2.7i.
We have verified already in Example 6.2 that the system is reachable, and hence
we can use state feedback to stabilize the system and provide a desired level of
performance.
To decide where to place the closed loop eigenvalues, we note that the closed

loop dynamics will roughly consist of two components: a set of fast dynamics
that stabilize the pendulum in the inverted position and a set of slower dynamics
that control the position of the cart. For the fast dynamics, we look to the natural
period of the pendulum (in the hanging-down position), which is given by ω0 =
√

mgl/(J+ml2)≈ 2.1 rad/s. To provide a fast response we choose a damping ratio
of ζ = 0.5 and try to place the first pair of eigenvalues at λ1,2 ≈ −ζω0± iω0 ≈
−1± 2i, where we have used the approximation that

√

1−ζ 2 ≈ 1. For the slow
dynamics, we choose the damping ratio to be 0.7 to provide a small overshoot and
choose the natural frequency to be 0.5 to give a rise time of approximately 5 s.
This gives eigenvalues λ3,4 =−0.35±0.35i.
The controller consists of a feedback on the state and a feedforward gain for

the reference input. The feedback gain is given by

K =


−15.6 1730 −50.1 443


 ,

which can be computed using Theorem 6.3 or using the MATLAB place com-
mand. The feedforward gain is kr = −1/(C(A−BK)−1B) = −15.5. The step re-
sponse for the resulting controller (applied to the linearized system) is given in
Figure 6.11a. While the step response gives the desired characteristics, the input
required (bottom left) is excessively large, almost three times the force of gravity
at its peak.
To provide a more realistic response, we can redesign the controller to have

slower dynamics. We see that the peak of the input force occurs on the fast time
scale, and hence we choose to slow this down by a factor of 3, leaving the damp-
ing ratio unchanged. We also slow down the second set of eigenvalues, with the
intuition that we should move the position of the cart more slowly than we sta-
bilize the pendulum dynamics. Leaving the damping ratio for the slow dynamics
unchanged at 0.7 and changing the frequency to 1 (corresponding to a rise time of
approximately 10 s), the desired eigenvalues become

λ = {−0.33±0.66i,−0.18±0.18i}.

The performance of the resulting controller is shown in Figure 6.11b. ∇

As we see from this example, it can be difficult to determine where to place
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Figure 6.11: State feedback control of a balance system. The step response of a controller
designed to give fast performance is shown in (a). Although the response characteristics
(top left) look very good, the input magnitude (bottom left) is very large. A less aggressive
controller is shown in (b). Here the response time is slowed down, but the input magnitude
is much more reasonable. Both step responses are applied to the linearized dynamics.

the eigenvalues using state feedback. This is one of the principal limitations of this
approach, especially for systems of higher dimension. Optimal control techniques,
such as the linear quadratic regulator problem discussed next, are one approach
that is available. One can also focus on the frequency response for performing the
design, which is the subject of Chapters 8–12.

Linear Quadratic Regulators
!

As an alternative to selecting the closed loop eigenvalue locations to accomplish a
certain objective, the gains for a state feedback controller can instead be chosen is
by attempting to optimize a cost function. This can be particularly useful in helping
balance the performance of the system with the magnitude of the inputs required
to achieve that level of performance.
The infinite horizon, linear quadratic regulator (LQR) problem is one of the

most common optimal control problems. Given a multi-input linear system
dx
dt

= Ax+Bu, x ∈ R
n, u ∈ R

p,

we attempt to minimize the quadratic cost function

J̃ =
∫ ∞

0

(

xTQxx+uTQuu
)

dt, (6.26)

where Qx ≥ 0 and Qu > 0 are symmetric, positive (semi-) definite matrices of
the appropriate dimensions. This cost function represents a trade-off between the
distance of the state from the origin and the cost of the control input. By choosing
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the matrices Qx and Qu, we can balance the rate of convergence of the solutions
with the cost of the control.
The solution to the LQR problem is given by a linear control law of the form

u=−Q−1
u BTPx,

where P ∈ Rn×n is a positive definite, symmetric matrix that satisfies the equation

PA+ATP−PBQ−1
u BTP+Qx = 0. (6.27)

Equation (6.27) is called the algebraic Riccati equation and can be solved numer-
ically (e.g., using the lqr command in MATLAB).
One of the key questions in LQR design is how to choose the weights Qx and

Qu. To guarantee that a solution exists, we must have Qx ≥ 0 and Qu > 0. In addi-
tion, there are certain “observability” conditions on Qx that limit its choice. Here
we assume Qx > 0 to ensure that solutions to the algebraic Riccati equation always
exist.
To choose specific values for the cost function weights Qx and Qu, we must use

our knowledge of the system we are trying to control. A particularly simple choice
is to use diagonal weights

Qx =



















q1 0
. . .

0 qn



















, Qu =



















ρ1 0
. . .

0 ρn



















.

For this choice of Qx and Qu, the individual diagonal elements describe how much
each state and input (squared) should contribute to the overall cost. Hence, we can
take states that should remain small and attach higher weight values to them. Sim-
ilarly, we can penalize an input versus the states and other inputs through choice
of the corresponding input weight ρ .

Example 6.8 Vectored thrust aircraft
Consider the original dynamics of the system (2.26), written in state space form as

dz
dt

=







































z4
z5
z6

− c
m z4

−g− c
m z5
0







































+













































0
0
0

1
m cosθ F1−

1
m sinθ F2

1
m sinθ F1+

1
m cosθ F2

r
J F1













































(see also Example 5.4). The system parameters are m = 4 kg, J = 0.0475 kgm2,
r = 0.25 m, g= 9.8 m/s2, c= 0.05 Ns/m, which corresponds to a scaled model of
the system. The equilibrium point for the system is given by F1 = 0, F2 = mg and
ze = (xe,ye,0,0,0,0). To derive the linearized model near an equilibrium point, we
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compute the linearization according to equation (5.34):

A=







































0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −g −c/m 0 0
0 0 0 0 −c/m 0
0 0 0 0 0 0







































, B=







































0 0
0 0
0 0
1/m 0
0 1/m
r/J 0







































,

C =









1 0 0 0 0 0
0 1 0 0 0 0








, D=









0 0
0 0








.

Letting ξ = z− ze and v= F−Fe, the linearized system is given by
dξ
dt

= Aξ +Bv, y=Cξ .

It can be verified that the system is reachable.
To compute a linear quadratic regulator for the system, we write the cost func-

tion as
J =

∫ ∞

0
(ξ TQξ ξ + vTQvv)dt,

where ξ = z− ze and v = F −Fe again represent the local coordinates around the
desired equilibrium point (ze,Fe). We begin with diagonal matrices for the state
and input costs:

Qξ =







































1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







































, Qv =









ρ 0
0 ρ








.

This gives a control law of the form v = −Kξ , which can then be used to derive
the control law in terms of the original variables:

F = v+Fe =−K(z− ze)+Fe.

As computed in Example 5.4, the equilibrium points have Fe = (0,mg) and ze =
(xe,ye,0,0,0,0). The response of the controller to a step change in the desired
position is shown in Figure 6.12a for ρ = 1. The response can be tuned by adjusting
the weights in the LQR cost. Figure 6.12b shows the response in the x direction
for different choices of the weight ρ . ∇

Linear quadratic regulators can also be designed for discrete-time systems, as
illustrated by the following example.

Example 6.9 Web server control
Consider the web server example given in Section 3.4, where a discrete-time model
for the system was given. We wish to design a control law that sets the server
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Figure 6.12: Step response for a vectored thrust aircraft. The plot in (a) shows the x and y
positions of the aircraft when it is commanded to move 1 m in each direction. In (b) the x
motion is shown for control weights ρ = 1, 102, 104. A higher weight of the input term in
the cost function causes a more sluggish response.

parameters so that the average server processor load is maintained at a desired
level. Since other processes may be running on the server, the web server must
adjust its parameters in response to changes in the load.
A block diagram for the control system is shown in Figure 6.13. We focus

on the special case where we wish to control only the processor load using both
the KeepAlive and MaxClients parameters. We also include a “disturbance”
on the measured load that represents the use of the processing cycles by other
processes running on the server. The system has the same basic structure as the
generic control system in Figure 6.5, with the variation that the disturbance enters
after the process dynamics.
The dynamics of the system are given by a set of difference equations of the

form

x[k+1] = Ax[k]+Bu[k], ycpu[k] =Ccpux[k]+dcpu[k],

where x= (xcpu,xmem) is the state, u= (uka,umc) is the input, dcpu is the processing
load from other processes on the computer and ycpu is the total processor load.

Feedback

Σ
rcpu u

Σ

d

yη

Precompensation Controller

kr
e

C

−1

Server

P

Figure 6.13: Feedback control of a web server. The controller sets the values of the web
server parameters based on the difference between the nominal parameters (determined by
krr) and the current load ycpu. The disturbance d represents the load due to other processes
running on the server. Note that the measurement is taken after the disturbance so that we
measure the total load on the server.
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We choose our controller to be a state feedback controller of the form

u=−K








ycpu
xmem








+ krrcpu,

where rcpu is the desired processor load. Note that we have used the measured pro-
cessor load ycpu instead of the state to ensure that we adjust the system operation
based on the actual load. (This modification is necessary because of the nonstan-
dard way in which the disturbance enters the process dynamics.)
The feedback gain matrix K can be chosen by any of the methods described in

this chapter. Here we use a linear quadratic regulator, with the cost function given
by

Qx =









5 0
0 1








, Qu =









1/502 0
0 1/10002








.

The cost function for the state Qx is chosen so that we place more emphasis on
the processor load versus the memory use. The cost function for the inputs Qu is
chosen so as to normalize the two inputs, with a KeepAlive timeout of 50 s hav-
ing the same weight as a MaxClients value of 1000. These values are squared
since the cost associated with the inputs is given by uTQuu. Using the dynamics in
Section 3.4 and the dlqr command in MATLAB, the resulting gains become

K =









−22.3 10.1
382.7 77.7








.

As in the case of a continuous-time control system, the reference gain kr is
chosen to yield the desired equilibrium point for the system. Setting x[k+ 1] =
x[k] = xe, the steady-state equilibrium point and output for a given reference input
r are given by

xe = (A−BK)xe+Bkrr, ye =Cxe.

This is a matrix differential equation in which kr is a column vector that sets the
two inputs values based on the desired reference. If we take the desired output to
be of the form ye = (r,0), then we must solve









1
0








=C(A−BK− I)−1Bkr.

Solving this equation for kr, we obtain

kr =
(

(

C(A−BK− I)−1B
)

)−1








1
0








=









49.3
539.5








.

The dynamics of the closed loop system are illustrated in Figure 6.14. We apply
a change in load of dcpu = 0.3 at time t = 10 s, forcing the controller to adjust the
operation of the server to attempt to maintain the desired load at 0.57. Note that
both the KeepAlive and MaxClients parameters are adjusted. Although the
load is decreased, it remains approximately 0.2 above the desired steady state.
(Better results can be obtained using the techniques of the next section.) ∇
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Figure 6.14:Web server with LQR control. The plot in (a) shows the state of the system un-
der a change in external load applied at k= 10 ms. The corresponding web server parameters
(system inputs) are shown in (b). The controller is able to reduce the effect of the disturbance
by approximately 40%.

6.4 Integral Action

Controllers based on state feedback achieve the correct steady-state response to
command signals by careful calibration of the gain kr. However, one of the primary
uses of feedback is to allow good performance in the presence of uncertainty, and
hence requiring that we have an exact model of the process is undesirable. An
alternative to calibration is to make use of integral feedback, in which the controller
uses an integrator to provide zero steady-state error. The basic concept of integral
feedback was given in Section 1.5 and in Section 3.1; here we provide a more
complete description and analysis.
The basic approach in integral feedback is to create a state within the controller

that computes the integral of the error signal, which is then used as a feedback
term. We do this by augmenting the description of the system with a new state z:

d
dt









x
z








=









Ax+Bu
y− r








=









Ax+Bu
Cx− r








. (6.28)

The state z is seen to be the integral of the difference between the the actual output
y and desired output r. Note that if we find a compensator that stabilizes the system,
then we will necessarily have ż= 0 in steady state and hence y= r in steady state.
Given the augmented system, we design a state space controller in the usual

fashion, with a control law of the form

u=−Kx− kiz+ krr, (6.29)

where K is the usual state feedback term, ki is the integral term and kr is used to
set the nominal input for the desired steady state. The resulting equilibrium point
for the system is given as

xe =−(A−BK)−1B(krr− kize).

Note that the value of ze is not specified but rather will automatically settle to the
value that makes ż = y− r = 0, which implies that at equilibrium the output will
equal the reference value. This holds independently of the specific values of A,



196 CHAPTER 6. STATE FEEDBACK

B and K as long as the system is stable (which can be done through appropriate
choice of K and ki).
The final compensator is given by

u=−Kx− kiz+ krr,
dz
dt

= y− r,

where we have now included the dynamics of the integrator as part of the specifi-
cation of the controller. This type of compensator is known as a dynamic compen-
sator since it has its own internal dynamics. The following example illustrates the
basic approach.

Example 6.10 Cruise control
Consider the cruise control example introduced in Section 3.1 and considered fur-
ther in Example 5.11. The linearized dynamics of the process around an equilib-
rium point ve, ue are given by

dx
dt

= ax−bgθ +bw, y= v= x+ ve,

where x= v−ve, w= u−ue,m is the mass of the car and θ is the angle of the road.
The constant a depends on the throttle characteristic and is given in Example 5.11.
If we augment the system with an integrator, the process dynamics become

dx
dt

= ax−bgθ +bw,
dz
dt

= y− vr = ve+ x− vr,

or, in state space form,
d
dt









x
z








=









a 0
1 0

















x
z








+









b
0








w+









−bg
0








θ +









0
ve− vr








.

Note that when the system is at equilibrium, we have that ż= 0, which implies that
the vehicle speed v= ve+x should be equal to the desired reference speed vr. Our
controller will be of the form

dz
dt

= y− vr, w=−kpx− kiz+ krvr,

and the gains kp, ki and kr will be chosen to stabilize the system and provide the
correct input for the reference speed.
Assume that we wish to design the closed loop system to have the characteristic

polynomial
λ (s) = s2+a1s+a2.

Setting the disturbance θ = 0, the characteristic polynomial of the closed loop
system is given by

det
(

sI− (A−BK)
)

= s2+(bkp−a)s+bki,

and hence we set

kp =
a1+a
b

, ki =
a2
b
, kr =−1/

(

C(A−BK)−1B
)

=
a
b
.
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Figure 6.15: Velocity and throttle for a car with cruise control based on proportional
(dashed) and PI control (solid). The PI controller is able to adjust the throttle to compen-
sate for the effect of the hill and maintain the speed at the reference value of vr = 20 m/s.

The resulting controller stabilizes the system and hence brings ż = y− vr to zero,
resulting in perfect tracking. Notice that even if we have a small error in the values
of the parameters defining the system, as long as the closed loop eigenvalues are
still stable, then the tracking error will approach zero. Thus the exact calibration
required in our previous approach (using kr) is not needed here. Indeed, we can
even choose kr = 0 and let the feedback controller do all of the work.
Integral feedback can also be used to compensate for constant disturbances.

Figure 6.15 shows the results of a simulation in which the car encounters a hill
with angle θ = 4◦ at t = 8 s. The stability of the system is not affected by this
external disturbance, and so we once again see that the car’s velocity converges
to the reference speed. This ability to handle constant disturbances is a general
property of controllers with integral feedback (see Exercise 6.4). ∇

6.5 Further Reading

The importance of state models and state feedback was discussed in the seminal
paper by Kalman [Kal60], where the state feedback gain was obtained by solving
an optimization problem that minimized a quadratic loss function. The notions
of reachability and observability (Chapter 7) are also due to Kalman [Kal61b]
(see also [Gil63, KHN63]). Kalman defines controllability and reachability as the
ability to reach the origin and an arbitrary state, respectively [KFA69]. We note that
in most textbooks the term “controllability” is used instead of “reachability,” but
we prefer the latter term because it is more descriptive of the fundamental property
of being able to reach arbitrary states. Most undergraduate textbooks on control
contain material on state space systems, including, for example, Franklin, Powell
and Emami-Naeini [FPEN05] and Ogata [Oga01]. Friedland’s textbook [Fri04]
covers the material in the previous, current and next chapter in considerable detail,
including the topic of optimal control.
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Exercises

6.1 (Double integrator) Consider the double integrator. Find a piecewise constant
control strategy that drives the system from the origin to the state x= (1,1).
6.2 (Reachability from nonzero initial state) Extend the argument in Section 6.1 to
show that if a system is reachable from an initial state of zero, it is reachable from
a nonzero initial state.
6.3 (Unreachable systems) Consider the system shown in Figure 6.3. Write the
dynamics of the two systems as

dx
dt

= Ax+Bu,
dz
dt

= Az+Bu.

If x and z have the same initial condition, they will always have the same state
regardless of the input that is applied. Show that this violates the definition of
reachability and further show that the reachability matrixWr is not full rank.
6.4 (Integral feedback for rejecting constant disturbances) Consider a linear system
of the form dx

dt
= Ax+Bu+Fd, y=Cx

where u is a scalar and d is a disturbance that enters the system through a distur-
bance vector F ∈Rn. Assume that the matrix A is invertible and the zero frequency
gainCA−1B is nonzero. Show that integral feedback can be used to compensate for
a constant disturbance by giving zero steady-state output error even when d &= 0.
6.5 (Rear-steered bicycle) A simple model for a bicycle was given by equation (3.5)
in Section 3.2. Amodel for a bicycle with rear-wheel steering is obtained by revers-
ing the sign of the velocity in the model. Determine the conditions under which
this systems is reachable and explain any situations in which the system is not
reachable.
6.6 (Characteristic polynomial for reachable canonical form) Show that the char-
acteristic polynomial for a system in reachable canonical form is given by equa-
tion (6.7) and that

dnzk
dtn

+a1
dn−1zk
dtn−1

+ · · ·+an−1
dzk
dt

+anzk =
dn−ku
dtn−k

,

where zk is the kth state.
6.7 (Reachability matrix for reachable canonical form) Consider a system in reach-
able canonical form. Show that the inverse of the reachability matrix is given by

W̃−1
r =





































1 a1 a2 · · · an
0 1 a1 · · · an−1
0 0 1 . . . ...
... . . . a1
0 0 0 · · · 1





































.
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6.8 (Non-maintainable equilibria) Consider the normalized model of a pendulum
on a cart

d2x
dt2

= u,
d2θ
dt2

=−θ +u,

where x is cart position and θ is pendulum angle. Can the angle θ = θ0 for θ0 &= 0
be maintained?

6.9 (Eigenvalue assignment for unreachable system) Consider the system

dx
dt

=









0 1
0 0








x+








1
0








u, y=



1 0


x,

with the control law
u=−k1x1− k2x2+ krr.

Show that eigenvalues of the system cannot be assigned to arbitrary values.

6.10 (Cayley–Hamilton theorem) Let A ∈ Rn×n be a matrix with characteristic
polynomial λ (s) = det(sI−A) = sn+ a1sn−1+ · · ·+ an−1s+ an. Assume that the
matrix A can be diagonalized and show that it satisfies

λ (A) = An+a1An−1+ · · ·+an−1A+anI = 0,

Use the result to show that Ak, k ≥ n, can be rewritten in terms of powers of A of
order less than n.

6.11 (Motor drive) Consider the normalized model of the motor drive in Exer-
cise 2.10. Using the following normalized parameters,

J1 = 10/9, J2 = 10, c= 0.1, k = 1, kI = 1,

verify that the eigenvalues of the open loop system are 0,0,−0.05± i. Design a
state feedback that gives a closed loop system with eigenvalues−2,−1 and−1± i.
This choice implies that the oscillatory eigenvalues will be well damped and that
the eigenvalues at the origin are replaced by eigenvalues on the negative real axis.
Simulate the responses of the closed loop system to step changes in the command
signal for θ2 and a step change in a disturbance torque on the second rotor.

6.12 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (3.7) in Section 3.2. Using the parameters from the companion web site, the
model is unstable at the velocity v= 5 m/s and the open loop eigenvalues are -1.84,
-14.29 and 1.30± 4.60i. Find the gains of a controller that stabilizes the bicycle
and gives closed loop eigenvalues at -2, -10 and −1± i. Simulate the response of
the system to a step change in the steering reference of 0.002 rad.
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6.13 (Atomic force microscope) Consider the model of an AFM in contact mode
given in Example 5.9:

dx
dt

=























0 1 0 0
−k2/(m1+m2) −c2/(m1+m2) 1/m2 0

0 0 0 ω3
0 0 −ω3 −2ζ3ω3























x+























0
0
0
ω3























u,

y=
m2

m1+m2







m1k2
m1+m2

m1c2
m1+m2

1 0




x.

Use the MATLAB script afm_data.m from the companion web site to generate the
system matrices.

(a) Compute the reachability matrix of the system and numerically determine its
rank. Scale the model by using milliseconds instead of seconds as time units. Re-
peat the calculation of the reachability matrix and its rank.
(b) Find a state feedback controller that gives a closed loop system with complex
poles having damping ratio 0.707. Use the scaled model for the computations.
(c) Compute state feedback gains using linear quadratic control. Experiment by
using different weights. Compute the gains for q1 = q2 = 0,q3 = q4 = 1 and ρ1 =
0.1 and explain the result. Choose q1= q2= q3= q4= 1 and explore what happens
to the feedback gains and closed loop eigenvalues when you change ρ1. Use the
scaled system for this computation.

6.14 Consider the second-order system
d2y
dt2

+0.5
dy
dt

+ y= a
du
dt

+u.

Let the initial conditions be zero.

(a) Show that the initial slope of the unit step response is a. Discuss what it means
when a< 0.
(b) Show that there are points on the unit step response that are invariant with a.
Discuss qualitatively the effect of the parameter a on the solution.
(c) Simulate the system and explore the effect of a on the rise time and overshoot.

6.15 (Bryson’s rule) Bryson and Ho [BH75] have suggested the following method
for choosing the matrices Qx and Qu in equation (6.26). Start by choosing Qx
and Qu as diagonal matrices whose elements are the inverses of the squares of
the maxima of the corresponding variables. Then modify the elements to obtain a
compromise among response time, damping and control effort. Apply this method
to the motor drive in Exercise 6.11. Assume that the largest values of the ϕ1 and
ϕ2 are 1, the largest values of ϕ̇1 and ϕ̇2 are 2 and the largest control signal is 10.
Simulate the closed loop system for ϕ2(0) = 1 and all other states are initialized to
0. Explore the effects of different values of the diagonal elements for Qx and Qu.


