Chapter Twelve
Robust Performance

However, by building an amplifier whose gain is deliberately made, sayedibels higher
than necessary (10000 fold excess on energy basis), and then féeeliogtput back on the
input in such a way as to throw away that excess gain, it has been fougsibpoto effect
extraordinary improvement in constancy of amplification and freedom fron-linearity.

Harold S. Black, “Stabilized Feedback Amplifiers,” 1934 [Bla34].

This chapter focuses on the analysis of robustness of fekdlyatems, a vast
topic for which we provide only an introduction to some of #&y concepts. We
consider the stability and performance of systems whoseegsodynamics are
uncertain and derive fundamental limits for robust stap#ind performance. To
do this we develop ways to describe uncertainty, both in ¢l fof parameter
variations and in the form of neglected dynamics. We alseflyrmention some
methods for designing controllers to achieve robust peréorce.

12.1 Modeling Uncertainty

Harold Black's quote above illustrates that one of the kegsusf feedback is to
provide robustness to uncertainty (“constancy of amplifce]. It is one of the
most useful properties of feedback and is what makes it plestsi design feedback
systems based on strongly simplified models.

One form of uncertainty in dynamical systemspigrametric uncertaintyin
which the parameters describing the system are unknowrpidalexample is the
variation of the mass of a car, which changes with the numbymissengers and the
weight of the baggage. When linearizing a nonlinear systeenparameters of the
linearized model also depend on the operating conditidisssiraightforward to in-
vestigate the effects of parametric uncertainty simplywaheating the performance
criteria for a range of parameters. Such a calculation rewbal consequences of
parameter variations. We illustrate by a simple example.

Example 12.1 Cruise control

The cruise control problem was described in Section 3.1, andcarRioller was
designed in Example 10.3. To investigate the effect of paramariations, we will
choose a controller designed for a nominal operating cmmddorresponding to
massm = 1600 kg, fourth gearo{ = 12) and speede = 25 m/s; the controller
gains arek, = 0.72 andk; = 0.18. Figure 12.1a shows the velocityand the

throttleu when encountering a hill with & 3lope with masses in the range 1680
m < 2000 kg, gear ratios 3—o:(= 10, 12 and 16) and velocity 18 » < 40 m/s.
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Figure 12.1: Responses of the cruise control system to a slope increase(aj and the
eigenvalues of the closed loop system (b). Model parameters aré sver@ wide range.

The simulations were done using models that were linearimmehd the different
operating conditions. The figure shows that there are vaniatio the response
but that they are quite reasonable. The largest velocityr ésron the range of
0.2-0.6 m/s, and the settling time is about 15 s. The contgolasis marginally
larger than 1 in some cases, which implies that the thrattielly open. A full
nonlinear simulation using a controller with windup prdieo is required if we
want to explore these cases in more detail. Figure 12.1b stimwsigenvalues of
the closed loop system for the different operating condgid he figure shows that
the closed loop system is well damped in all cases. \%

This example indicates that at least as far as parametraticars are concerned,
the design based on a simple nominal model will give satisfgccontrol. The
example also indicates that a controller with fixed paramsetan be used in all
cases. Notice that we have not considered operating consliiin low gear and at
low speed, but cruise controllers are not typically usedh@se cases.

Unmodeled Dynamics

It is generally easy to investigate the effects of paramefariations. However,
there are other uncertainties that also are importantsasisied at the end of Sec-
tion 2.3. The simple model of the cruise control system castonly the dynamics
of the forward motion of the vehicle and the torque charasties of the engine
and transmission. It does not, for example, include a detailodel of the engine
dynamics (whose combustion processes are extremely cenapline slight delays
that can occur in modern electronically controlled engifassa result of the pro-
cessing time of the embedded computers). These neglectdtnisms are called
unmodeled dynamics
Unmodeled dynamics can be accounted for by developing a cmrelex

model. Such models are commonly used for controller devedopybut substantial
effort is required to develop them. An alternative is to stgate if the closed loop
system is sensitive to generic forms of unmodeled dynariies.basic idea is to
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Figure 12.2: Unmodeled dynamics in linear systems. Uncertainty can be represesited u
additive perturbations (left), multiplicative perturbations (middle) or Besdk perturbations
(right). The nominal system iB, andA, 6 = A /P and Ag, represent unmodeled dynamics.

describe the unmodeled dynamics by including a transfestiom in the system
description whose frequency response is bounded but ogewmspecified. For
example, we might model the engine dynamics in the cruis¢raloexample as
a system that quickly provides the torque that is requestszligh the throttle,
giving a small deviation from the simplified model, which as®d the torque
response was instantaneous. This technique can also berusaghy instances
to model parameter variations, allowing a quite generalt@ggh to uncertainty
management.

In particular, we wish to explore if additional linear dyniasimay cause dif-
ficulties. A simple way is to assume that the transfer functdthe process is
P(s)+ A, whereP(s) is the nominal simplified transfer function andrepresents
the unmodeled dynamics in termsaafditive uncertaintyDifferent representations
of uncertainty are shown in Figure 12.2.

When Are Two Systems Similar? The Vinnicombe Metric @

A fundamental issue in describing robustness is to determiren two systems are
close. Given such a characterization, we can then attengdoribe robustness
according to how close the actual system must be to the madwidier to still
achieve the desired levels of performance. This seeminglgdant problem is
not as simple as it may appear. A naive approach is to saywhasystems are
close if their open loop responses are close. Even if thisapp®tural, there are
complications, as illustrated by the following examples.

Example 12.2 Similar in open loop but large differences in closed tip
The systems with the transfer functions

k
s+1 S+ 1(ST+1)2
have very similar open loop responses for small valuds af illustrated in the top
plot in Figure 12.3a, which is plotted fdr = 0.025 andk = 100. The differences
between the step responses are barely noticeable in the.fichgetep responses

with unit gain error feedback are shown in the bottom plot iguiFé 12.3a. Notice
that one closed loop system is stable and the other one ishlest \%

Pi(s) =

Pa(s) (12.1)

Example 12.3 Different in open loop but similar in closed loop
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Figure 12.3:Determining when two systems are close. The plots in (a) show a situation whe
the open loop responses are almost identical, but the closed loop sesgoe very different.
The processes are given by equation (12.1) wita 100 andT = 0.025. The plots in (b)
show the opposite situation: the systems are different in open loop butrsimilased loop.
The processes are given by equation (12.2) Wwith 100.

Consider the systems

Py() = <. (12.2)

k
P = —
1(S) s s—1

+1
The open loop responses are very different bec&®sestable and, is unstable,
as shown in the top plot in Figure 12.3b. Closing a feedbacg leibh unit gain
around the systems, we find that the closed loop transferitunscare

k
= —0, I2(s) = Stk_1’

which are very close for large as shown in Figure 12.3b. \%

These examples show that if our goal is to close a feedbackiloopy be very

misleading to compare the open loop responses of the system.
Inspired by these examples we introduce Yhenicombe metricwhich is a

distance measure that is appropriate for closed loop sgsteansider two systems
with the transfer function®; and P,, and define

|P1(iw) — Pa(iow)]
VA+Pi0)P) A+ [Pio))

which is a metric with the property @ d(Py, P,) < 1. The numbed(P;, P,) can
be interpreted as the difference between the complemeséasitivity functions
for the closed loop systems that are obtained with unit faekilaround?; and P,;
see Exercise 12.3. The metric also has a nice geometric iatation, as shown in

(12.3)

d(Py, P2) = sup

()
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Figure 12.4: Geometric interpretation ad(P;, P,). At each frequency, the points on the
Nyquist curve forP; (solid) andP, (dashed) are projected onto a sphere of radius 1 sitting
at the origin of the complex plane. The projection of the poirtilis shown. The distance
between the two systems is defined as the maximum distance between ttotigmsjef
P.(iw) and P,(iw) over all frequencies. The figure is plotted for the transfer functions
Pi(s) = 2/(s+ 1) andPx(s) = 2/(s — 1). (Diagram courtesy G. Vinnicombe.)

Figure 12.4, where the Nyquist plots Bf and P, are projected onto a sphere with
diameter 1 at the origin of the complex plane (calledRiemann sphejePoints

in the complex plane are projected onto the sphere by a lnoei¢in the point and
the north pole (Figure 12.4). The distarttié®;, P,) is the shortest chordal distance
between the projections & (i w) and P, (i w). The distance is small whe®, and

P, are small or large, but it emphasizes the behavior aroundjdire crossover
frequency.

The distancal(Py, P,) has one drawback for the purpose of comparing the
behavior of systems under feedbackPjfis perturbed continuously fromd; to P,
there can be intermediate transfer functi®hshered (P, P) is 1 evenifd(Py, P;)
is small (see Exercise 12.4). To explore when this could happe observe that

(1+ P(iw)Pi(—i®))(1+ P(—iw)Pyi(iw))
1+ Pi)?) 1+ [P(w)?) '

The right-hand side is zero, and hera@, P) = 1if 1 + P(iw)Pi(—iw) =0
for somew. To explore when this could occur, we investigate the befrasfi the
function 14- P (s) P1(—s) whenP is perturbed fronP; to P,. If the functionsf,(s) =
1+ Pi1(s)Pi(—s) andfy(s) = 1+ P,(s) P1(—s) do not have the same number of zeros
in the right half-plane, there is an intermedi&such that & P(iw) P1(—iw) = 0
for somew. To exclude this case we introduce the Gets all pairs(Py, P,) such
that the functiond; = 1+ P1(s)Pi(—s) and f, = 1+ P,(s) P1(—s) have the same
number of zeros in the right half-plane.

TheVinnicombe metrior v-gap metricis defined as

1—d?*(P, P) =

d(Py, Po), if (P, P)eC

12.4
1, otherwise ( )

0 (P, P2) = [

Vinnicombe [Vin01] showed that, (P;, P,) is a metric, he gave strong robustness
results based on the metric and he developed the theory $terag with many
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inputs and many outputs. We illustrate its use by computiregrhetric for the
systems in the previous examples.

Example 12.4 Vinnicombe metric for Examples 12.2 and 12.3
For the systems in Example 12.2 we have

14+k?>—¢?
1-s2 °
1+Kk?+2ST+ (T? —1)s? — 28°T — s*T?
(1-5?)(142sT +s°T?)

The function f; has one zero in the right half-plane. A numerical calcufafar
k = 100 andT = 0.025 shows that the functiof, has the roots 46.3, -86.3,
—20.0+60.0i. Both functions have one zero in the right half-plane, aill@ws to
compute the norm (12.4). Fdr = 0.025 this gives), (P;, P,) = 0.98, which is a
quite large value. To have reasonable robustness Vinniesgdommended values
less than 1/3.

For the system in Example 12.3 we have

1+k?-¢2 1—k2—2s+4¢?
2 14+ Py (s)Pi(-95) =
e + P2(s)Pi(—9) ST 12

These functions have the same number of zeros in the righpladt ifk > 1.
In this particular case the Vinnicombe metricdiéP;, P>) = 2k/(1 + k?) (Exer-
cise 12.4) and wittkk = 100 we get, (P, P,) = 0.02. Figure 12.4 shows the
Nyquist curves and their projections floe= 2. Notice thad(Py, P») is very small
for smallk even though the closed loop systems are very different.thtesefore
essential to consider the conditioh,, P,) € C, as discussed in Exercise 12.4/

f1(S) = 1+ Pi(S)P1(—S) =

fa(s) = 14 Pa(s)Pi(—s) =

14+ Pu(9)Pi(—9) =

12.2 Stability in the Presence of Uncertainty

Having discussed how to describe uncertainty and the giiyilaetween two sys-

tems, we now consider the problem of robust stability: Whan we show that

the stability of a system is robust with respect to procesgtians? This is an

important question since the potential for instability reemf the main drawbacks
of feedback. Hence we want to ensure that even if we have smaaituracies in

our model, we can still guarantee stability and performance

Robust Stability Using Nyquist’s Criterion

The Nyquist criterion provides a powerful and elegant wayttag the effects
of uncertainty for linear systems. A simple criterion istthi@ Nyquist curve be
sufficiently far from the critical point-1. Recall that the shortest distance from
the Nyquist curve to the critical point &, = 1/Ms, whereMs is the maximum
of the sensitivity function and,, is the stability margin introduced in Section 9.3.
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Figure 12.5:Robust stability using the Nyquist criterion. (a) This plot shows that theesto
distance to the critical poirs, is a robustness measure. (b) This plot shows the Nyquist curve
of a nominal loop transfer function and its uncertainty caused by adgitaeess variations

A.

The maximum sensitivitivs or the stability margirs,, is thus a good robustness
measure, as illustrated in Figure 12.5a.

We will now derive explicit conditions for permissible pexs uncertainties.
Consider a stable feedback system with a prod@snd a controlleiC. If the
process is changed frolto P + A, the loop transfer function changes fraC
to PC 4+ CA, as illustrated in Figure 12.5b. If we have a bound on the size o
A (represented by the dashed circle in the figure), then themsystmains stable
as long as the process variations never overlap-thgoint, since this leaves the
number of encirclements 6f1 unchanged.

Some additional assumptions are required for the analydielth Most im-
portantly, we require that the process perturbatianse stable so that we do not
introduce any new right half-plane poles that would reqadtditional encirclements
in the Nyquist criterion.

We will now compute an analytical bound on the allowable pssdisturbances.
The distance from the critical poirtl to the loop transfer functioh is |1 + L]|.
This means that the perturbed Nyquist curve will not reachctitecal point —1
provided tha{CA| < |1+ L|, which implies
1+ PC 1

C ‘ IT|

This condition must be valid for all points on the Nyquist ceirize, pointwise
for all frequencies. The condition for robust stability cang be written as

15(i )| = ‘ Ale))
Plw) IT(lw)|
Notice that the condition is conservative because it foldvom Figure 12.5 that
the critical perturbation is in the direction toward thetical point —1. Larger

perturbations can be permitted in the other directions.
The condition in equation (12.6) allows us to reason abou¢tiamty without

IA] < ) or 6| = ‘%‘ < (12.5)

forall w > 0. (12.6)
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exact knowledge of the process perturbations. Namely, weverfy stability for
anyuncertaintyA that satisfies the given bound. From an analysis perspedtige, t
gives us a measure of the robustness for a given design. Gehydf we require
robustness of a given level, we can attempt to choose ouratlemiC such that the
desired level of robustness is available (by askingTha¢ small) in the appropriate
frequency bands.

Equation (12.6) is one of the reasons why feedback systems seowell in
practice. The mathematical models used to design contr@rsgsare often simpli-
fied, and the properties of a process may change during oper&iguation (12.6)
implies that the closed loop system will at least be stablsdbstantial variations
in the process dynamics.

It follows from equation (12.6) that the variations can beyéafor those fre-
quencies wher@ is small and that smaller variations are allowed for freques
whereT is large. A conservative estimate of permissible procesiatians that
will not cause instability is given by

Al w)
P(i

whereM; is the largest value of the complementary sensitivity

0(i0)] = | 5

Mc = SUpIT (je)| = H (12.7)

i pcl.
The value ofM; is influenced by the design of the controller. For example, it
is shown in Exercise 12.5 that M; = 2 then pure gain variations of 50% or
pure phase variations of 3@re permitted without making the closed loop system
unstable.

Example 12.5 Cruise control
Consider the cruise control system discussed in SectiorTBelmodel of the car
in fourth gear at speed 25 m/s is

1.38
P(s) = — >
® = 5700142

and the controller is a PI controller with gaikg = 0.72 andk, = 0.18. Fig-
ure 12.6 plots the allowable size of the process uncertaisiyg the bound in
equation (12.6). At low frequencie$,(0) = 1 and so the perturbations can be as
large as the original procesp|(= |A/P| < 1). The complementary sensitivity
has its maximumM; = 1.14 atwy, = 0.35, and hence this gives the minimum
allowable process uncertainty, with| < 0.87 or |A| < 3.47. Finally, at high
frequencies] — 0 and hence the relative error can get very large. For example
atow = 5 we havgT (iw)| = 0.195, which means that the stability requirement is
|6] < 5.1. The analysis clearly indicates that the system has goagtoéss and
that the high-frequency properties of the transmissiotesysre not important for
the design of the cruise controller.

Another illustration of the robustness of the system ismginehe right diagram
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Figure 12.6:Robustness for a cruise controller. On the left the maximum relative 10|
(solid) and the absolute errpP|/|T| (dashed) for the process uncertairity The Nyquist
curve is shown on the right as a solid line. The dashed circles show péshaiperturbations
in the process dynamicgA| = |P|/|T]|, at the frequencies = 0, 0.0142 and 0.05.

in Figure 12.6, which shows the Nyquist curve of the transtarcfion of the
process and the uncertainty bountls= |P|/|T| for a few frequencies. Note that
the controller can tolerate large amounts of uncertaintysditl maintain stability
of the closed loop. \%

The situation illustrated in the previous example is typafamnany processes:
moderately small uncertainties are required only arouad#in crossover frequen-
cies, but large uncertainties can be permitted at higheld@mer frequencies. A
consequence of this is that a simple model that describgsticess dynamics well
around the crossover frequency is often sufficient for dessystems with many
resonant peaks are an exception to this rule because thesgrtsansfer function
for such systems may have large gains for higher frequeat$es as shown for
instance in Example 9.9.

The robustness condition given by equation (12.6) can bengivether inter-
pretation by using the small gain theorem (Theorem 9.4). Toyaghe theorem
we start with block diagrams of a closed loop system with #&ypleed process and
make a sequence of transformations of the block diagramigbktte the block
representing the uncertainty, as shown in Figure 12.7. Thatieghe two-block
interconnection shown in Figure 12.7c, which has the loapsfier function

L — PC A
1+PCP
Equation (12.6) implies that the largest loop gain is less fhand hence the system
is stable via the small gain theorem.
The small gain theorem can be used to check robust stabitityrfcertainty in
a variety of other situations. Table 12.1 summarizes a feth@tommon cases;
the proofs (all via the small gain theorem) are left as eseti
The following example illustrates that it is possible to dessystems that are
robust to parameter variations.

T4.
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Figure 12.7: lllustration of robustness to process perturbations. A system with additive
certainty (left) can be manipulated via block diagram algebra to one with mudtijiéc
uncertaintys = A /P (center). Additional manipulations isolate the uncertainty in a manner
that allows application of the small gain theorem (right)

ol>

Example 12.6 Bode's ideal loop transfer function

A major problem in the design of electronic amplifiers is toaiibta closed loop
system that is insensitive to changes in the gain of the releict components.
Bode found that the loop transfer functitris) = ks™", with 1 < n < 5/3, was
an ideal loop transfer function. The gain curve of the Bodé gl@ straight line
with slope—n and the phase is constant &rfw) = —nz /2. The phase margin
is thusgm = 90(2 — n)° for all values of the gairk and the stability margin is
sm = sinz (1 — n/2). This exact transfer function cannot be realized with phajsic
components, butit can be approximated over a given frequange with a rational
function (Exercise 12.7). An operational amplifier circudtias the approximate
transfer functiorG(s) = k/(s+a) is a realization of Bode's ideal transfer function
with n = 1, as described in Example 8.3. Designers of operationaliienpigo to
great efforts to make the approximation valid over a widgdency range. V

Youla Parameterization

Since stability is such an essential property, itis usefahtaracterize all controllers
that stabilize a given process. Such a representation, vidicailled aYoula pa-
rameterizationis very useful when solving design problems because it mke
possible to search over all stabilizing controllers withthe need to test stability
explicitly.

We will first derive Youla’s parameterization for a stableqass with a rational
transfer functionP. A system with the complementary sensitivity functibrcan
be obtained by feedforward control with the stable tranfsfiectionQif T = P Q.

Table 12.1:Conditions for robust stability for different types of uncertainty

Process Uncertainty Type  Robust Stability
P+A Additive ICSAlle <1
P+ 9) Multiplicative [Tolleo <1

P/(1+ Aw-P) Feedback IPSAplle <1
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Figure 12.8: Youla parameterization. Block diagrams of Youla parameterizationsdiatde
system (@) and an unstable system (b). Notice that the sigealero in steady state.

Notice thatT must have the same right half-plane zerosPasince Q is stable.
Now assume that we want to implement the complementaryfeafusictionT by
using unit feedback with the controll€. SinceT = PC/(1+ PC) = PQ, it
follows that the controller transfer function is

C= (12.8)

1-PQ
A straightforward calculation gives
S=1-PQ, PS=P1-PQ), CS=Q, T=PQ

These transfer functions are all stabl®ifindQ are stable and the controller given
by equation (12.8) is thus stabilizing. Indeed, it can beashthat all stabilizing
controllers are in the form given by equation (12.8) for sarheice of Q. The
parameterization is illustrated by the block diagrams iruFegl2.8a.

A similar characterization can be obtained for unstable¢esys. Consider a
process with a rational transfer functiéh(s) = a(s)/b(s), wherea(s) andb(s)
are polynomials. By introducing a stable polynonuéd), we can write

_as)  A©)
~b(s) B
whereA(s) = a(s)/c(s) andB(s) = b(s)/c(s) are stable rational functions. Simi-

larly we introduce the controllegZq(s) = Fo(S)/ Go(S), whereFy(s) andGy(s) are
stable rational functions. We have

P(s)

ARy BFR
= - P = -
S0 ARy + BGO, ® ARy + BGO’
AG BG
CoS=—2 p=—— 9
ARy + BGq AR+ BGq

The controlleiCy is stabilizing if and only if the rational functioAF, + B Gy does
not have any zeros in the right half plane. I@te a stable rational function and
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Figure 12.9:Block diagram of a basic feedback loop. The external signals areférenee
signalr, the load disturbance and the measurement noiseThe process output i, and

the control signal is1. The proces$ may include unmodeled dynamics, such as additive
perturbations.

consider the controller
. Go + QA

C=——-.
Fo— QB

(12.9)

The Gang of Four foP andC is
_AR-QB . B(Fo—QB)

~ AR+ BGp’ ~ ARy + BGp’
Cs— A(Go+ QA T - B(Go+ QA)
T AR+ BGy’ ~ AR+ BGy

All these transfer functions are stable if the rational tiort AR + BGp does
not have any zeros in the right half plane and the contr@lgiven by (12.9) is
therefore stabilizing for any stabl@. A block diagram of the closed loop system
with the controllerC is shown in Figure 12.8b. Notice that the transfer function
appears affinely in the expressions for the Gang of Four, wkieary useful if we
want to determine the transfer functi@hto obtain specific properties.

12.3 Performance in the Presence of Uncertainty

So far we have investigated the risk for instability and rabess to process un-
certainty. We will now explore how responses to load disindes, measurement
noise and reference signals are influenced by process vasaifio do this we will
analyze the system in Figure 12.9, which is identical to th&dbfeedback loop
analyzed in Chapter 11.

Disturbance Attenuation

The sensitivity functiorss gives a rough characterization of the effect of feedback
on disturbances, as was discussed in Section 11.3. A moiikedetharacterization
is given by the transfer function from load disturbancesrtxpss output:

p
14+ PC

Gyg = - PS (12.10)
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Load disturbances typically have low frequencies, and ftésgfore important that
the transfer function be small for low frequencies. For pases with constant
low-frequency gain and a controller with integral actioneeGyq ~ s/k. The
integral gairk; is thus a simple measure of the attenuation of load distadzsn

To find out how the transfer functio@q is influenced by small variations in
the process transfer function we differentiate (12.10hwétspect td® yielding

dP ~ 1+PC2  PA+PC) " P’
and it follows that
P
dGya _ (4P (12.11)

The response to load disturbances is thus insensitive t@gso@riations for fre-
guencies wher¢S(i w)| is small, i.e., for frequencies where load disturbances are
important.

A drawback with feedback is that the controller feeds mezasent noise into
the system. In addition to the load disturbance rejecttastiius also important that
the control actions generated by measurement noise a@xiatge. It follows from
Figure 12.9 that the transfer functi@y,, from measurement noise to controller
output is given by

C T

——. (12.12)

G = - =
T 14 PC P

Since measurement noise typically has high frequenciesighsfer functiorG,,
should not be too large for high frequencies. The loop trarfsfiection PC is
typically small for high frequencies, which implies that,, ~ C for large s. To
avoid injecting too much measurement noise it is thereforgortant thatC(s)
be small for larges. This property is calledhigh-frequency roll-off An example
is filtering of the measured signal in a PID controller to redtiee injection of
measurement noise; see Section 10.5.

To determine how the transfer functi@, is influenced by small variations in
the process transfer, we differentiate equation (12.12):

dG,y d C _ C co Gun
dP dP\ 1+PC/) @+PC2 P’
Rearranging the terms gives
dGyn dpP
=T—. 12.13
Gun 5 ( )

Since the complementary sensitivity function is also snualhfgh frequencies, we
find that process uncertainty has little influence on the tearfsinctionG,, for
frequencies where measurements are important.
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Figure 12.10:Operational amplifier with uncertain dynamics. The circuit on the left is-mod
eled using the transfer functida(s) to capture its dynamic properties and it has a load at
the output. The block diagram on the right shows the input/output relationshe load is
represented as a disturbarttapplied at the output d&(s).

Reference Signal Tracking

The transfer function from reference to output is given by
PCF

YT 14PCT

which contains the complementary sensitivity functions&e how variations i

affect the performance of the system, we differentiate gopué12.14) with respect
to the process transfer function:

dGy,  CF PCFC CF Gyr

dP ~ 1+PC (1+PC2 (1+PC2Z " P’
and it follows that

TF, (12.14)

dGy, dpP
Gy S X (12.15)
The relative error in the closed loop transfer function thgsads the product of
the sensitivity function and the relative error in the pigscdn particular, it follows
from equation (12.15) that the relative error in the closmmpltransfer function is
small when the sensitivity is small. This is one of the usefaperties of feedback.
As in the last section, there are some mathematical assomsptihat are re-
quired for the analysis presented here to hold. As alreaatedt we require that
the perturbationd be small (as indicated by writin)P). Second, we require that
the perturbations be stable, so that we do not introduce awyright half-plane
poles that would require additional encirclements in theNgt criterion. Also, as
before, this condition is conservative: it allows for anytpgbation that satisfies
the given bounds, while in practice the perturbations mambee restricted.

Example 12.7 Operational amplifier circuit
To illustrate the use of these tools, consider the perfooaarf an op amp-based
amplifier, as shown in Figure 12.10. We wish to analyze the paidace of the
amplifier in the presence of uncertainty in the dynamic respaf the op amp and
changes in the loading on the output. We model the systerg tisérblock diagram
in Figure 12.10b, which is based on the derivation in Examgdle 9.

Consider first the effect of unknown dynamics for the operati@amplifier. If
we model the dynamics of the op ampuas= —G(s)v, then the transfer function
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for the overall circuit is given by
. __R G(s)
T RIG(S)+ Ro/Ri+ 1

We see that if5(s) is large over the desired frequency range, then the closgd lo
system is very close to the ideal response R,/ R;. AssumingG(s) = b/(s+a),
wherebis the gain-bandwidth product of the amplifier, as discusséckample 8.3,
the sensitivity function and the complementary sensitifuhction become
s+a ob
= T=—"\
s+a+ab s+a+ab
The sensitivity function around the nominal values tellsamg the tracking response
response varies as a function of process perturbations:
dGy _ (dP
Gyr P

We see that for low frequencies, whe3és small, variations in the bandwidéor
the gain-bandwidth produdt will have relatively little effect on the performance
of the amplifier (under the assumption ttas sufficiently large.

To model the effects of an unknown load, we consider the modaf a dis-
turbance at the output of the system, as shown in Figure 12Tk0b disturbance
represents changes in the output voltage due to loadingteffEhe transfer func-
tion Gyqg = Sgives the response of the output to the load disturbancewarske
thatif Sis small, then we are able to reject such disturbances. Tiséiséy of Gyq
to perturbations in the process dynamics can be computeakingtthe derivative
of Gyq4 with respect toP:

dGyq —C T dGyqg dP
= =—-—=G —= =-T—.
P~ (@+PCR P T Gy P
Thus we see that the relative changes in the disturbanceiogiece roughly the
same as the process perturbations at low frequency (Whisrapproximately 1)
and drop off at higher frequencies. However, it is importanmemember thaBGq

itself is small at low frequency, and so these variationgiative performance may
not be an issue in many applications. \Y%

12.4 Robust Pole Placement

In Chapters 6 and 7 we saw how to design controllers by setiedocations of
the eigenvalues of the closed loop system. If we analyzesthdting system in the
frequency domain, the closed loop eigenvalues correspuathé poles of the closed
loop transfer function and hence these methods are ofterreefto as design by
pole placement

State space design methods, like many methods developedrfopksystem
design, do not explicitly take robustness into accountutthsases it is essential to
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Figure 12.11:Observer-based control of steering. The Nyquist plot (left) andeBdat (right)
of the loop transfer function for vehicle steering with a controller basesdtate feedback
and an observer. The controller provides stable operation, but wighHawrgain and phase
margin.

always investigate the robustness because there are ggngiasonable designs
that give controllers with poor robustness. We illustrate by analyzing controllers
designed by state feedback and observers. The closed loep gah be assigned
to arbitrary locations if the system is observable and rableh However, if we
want to have a robust closed loop system, the poles and Zetws@rocess impose
severe restrictions on the location of the closed loop p&8eme examples are first
given; based on the analysis of these examples we then prssgn rules for
robust pole (eigenvalue) placement.

Slow Stable Process Zeros

We will first explore the effects of slow stable zeros, and weilhevith a simple
example.

Example 12.8 Vehicle steering
Consider the linearized model for vehicle steering in Exan@6, which has the
transfer function

A controller based on state feedback was designed in Examplaitd state feed-
back was combined with an observer in Example 7.4. The systemlaied in
Figure 7.8 has closed loop poles specifieddy= 0.3, ;¢ = 0.707,w, = 7 and

o = 9. Assume that we want a faster closed loop system and chqose 10,

e = 0.707,00, = 20 and;, = 0.707. Using the state representation in Example 7.3,
a pole placement design gives state feedback dains100 anck, = —35.86 and
observer gaink, = 28.28 andl, = 400. The controller transfer function is

—11516 4 40000
s? + 42.4s+ 66579
Figure 12.11 shows Nyquist and Bode plots of the loop tran@fection. The

C(s) =
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Nyquist plot indicates that the robustness is poor sincéiyetransfer function is
very close to the critical point1. The phase margin is And the stability margin
is sy = 0.077. The poor robustness shows up in the Bode plot, where the ga
curve hovers around the value 1 and the phase curve is cles&8@ for a wide
frequency range. More insight is obtained by analyzing #essivity functions,
shown by solid lines in Figure 12.12. The maximum sensitigiiieeMs = 13 and
M; = 12, indicating that the system has poor robustness.

At first sight it is surprising that a controller where the noaliclosed system
has well damped poles and zeros is so sensitive to procdativas. \We have an
indication that something is unusual because the controtle a zero as¢ = 3.5
in the right half-plane. To understand what happens, weimi#stigate the reason
for the peaks of the sensitivity functions.

Let the transfer functions of the process and the controller b

_ Np(S) _ Ne(s)
dp(s)’ d.(s)’

wheren,(s), n¢(s), dy(s) andd.(s) are the numerator and denominator polynomi-
als. The complementary sensitivity function is

PC Np(S)nc(s)
1+ PC  dp(S)de(S) + Np(s)Np(s)’

The poles ofT (s) are the poles of the closed loop system and the zeros are given
by the zeros of the process and controller. Sketching theayeire of the comple-
mentary sensitivity function we find thai(s) = 1 for low frequencies and that
|T (iw)| starts to increase at its first zero, which is the process zesc=a 2. It
increases further at the controller zersat 3.4, and it does not start to decrease
until the closed loop poles appearaat= 10 andw, = 20. We can thus conclude
that there will be a peak in the complementary sensitivitction. The magnitude
of the peak depends on the ratio of the zeros and the poles tfahsfer function.
The peak of the complementary sensitivity function can bédebby assigning
a closed loop pole close to the slow process zero. We canvadtiis by choosing
wc = 10 and;. = 2.6, which gives closed loop polesst= —2 ands = —50. The
controller transfer function then becomes

Cie = 3628+ 40000 s+1102
~ 2+ 80285+ 15656 (S+2)(s+ 7828

The sensitivity functions are shown by dashed lines in Fig@r&ZL The controller
gives the maximum sensitivitiels = 1.34 andM; = 1.41, which give much
better robustness. Notice that the controller has a pae-at-2 that cancels the
slow process zero. The design can also be done simply by dagted slow stable
process zero and designing the controller for the simplifjestiesn. \Y%

P(s)

C(s)

TS =

One lesson from the example is that it is necessary to chdosed:loop poles
that are equal to or close to slow stable process zeros. Ant@sson is that slow
unstable process zeros impose limitations on the achieveidwidth, as already
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Figure 12.12:Sensitivity functions for observer-based control of vehicle steeflihg.com-
plementary sensitivity function (left) and the sensitivity function (right)tfe original con-
troller with w; = 10, ¢ = 0.707,w, = 20, , = 0.707 (solid) and the improved controller
with o, = 10, = 2.6 (dashed).

noted in Section 11.5.

Fast Stable Process Poles

The next example shows the effect of fast stable poles.

Example 12.9 Fast system poles
Consider a Pl controller for afirst-order system, where thegssand the controller
have the transfer functionB(s) = b/(s + a) andC(s) = k, + ki/s. The loop
transfer function is Lo bkys + ki)
~ s(s+a) ’

and the closed loop characteristic polynomial is.

s(s+a) + b(kps + ki) = s? + (a+ bky)s + kib
If we specify the desired closed loop poles shouldHy® and— p,, we find that
the controller parameters are given by

P+ pP2—a P1p2
kp = — 5 ki = b
The sensitivity functions are then
S(s) = s(s+a) T(s) = (P14 P2 —&)S+ p1p2

(s+p)(s+p)’ (s+ p1)(s+ p2)

Assume that the process paéas much larger than the closed loop pol@sand

P2, say,p1 < P2 < a. Notice that the proportional gain is negative and that the
controller has a zero in the right half-planeaif> p; + p,, an indication that the
system has bad properties.

Next consider the sensitivity function, which is 1 for higeduencies. Moving
from high to low frequencies, we find that the sensitivity gases at the process
poles = a. The sensitivity does not decrease until the closed loos@okereached,
resulting in a large sensitivity peak that is approximately,. The magnitude of
the sensitivity function is shown in Figure 12.13 for=b = 1, p; = 0.05 and
p> = 0.2. Notice the high-sensitivity peak. For comparison we alsow the gain
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Figure 12.13: Gain curves for Bode plots of the sensitivity functi@for designs with
p1 < p2 < a(left)anda < p; < p, (right). The solid lines are the true sensitivities, and the
dashed lines are the asymptotes.

curve for the case when the closed loop poles=£ 5, p, = 20) are faster than the
process poled = 1).

The problem with poor robustness can be avoided by choosiaglosed loop
pole equal to the process pole, i.pz,= a. The controller gains then become

P _am

b b - I b

which means that the fast process pole is canceled by a tlentzero. The loop
transfer function and the sensitivity functions are

bk s bk
L(s)= —, S(§)=——, T(S)= P
(8=~ © =k T shok,
The maximum sensitivities are now less than 1 for all freqiemnd\otice that this
is possible because the process transfer function goesa@gs . \Y%

Design Rules for Pole Placement

Based on the insight gained from the examples, it is now plesgd obtain design
rules that give designs with good robustness. Considerxpeession (12.8) for
maximum complementary sensitivity, repeated here:

PC H
1+ PCllw

Let wgc be the desired gain crossover frequency. Assume that teeggdas zeros
that are slower thamy.. The complementary sensitivity function is 1 for low fre-
guencies, and itincreases for frequencies close to thegsaeros unless there is a
closed loop pole in the neighborhood. To avoid large valdidéseocomplementary
sensitivity function we find that the closed loop system stitluérefore have poles
close to or equal to the slow stable zeros. This means thatstédsle zeros should
be canceled by controller poles. Since unstable zeros caertanceled, the pres-
ence of slow unstable zeros means that achievable gairerrssequency must
be smaller than the slowest unstable process zero.

Now consider process poles that are faster than the desareatigpssover fre-

M = scl:plT(iw)I = H
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guency. Consider the expression for the maximum of the sétsfunction:
=
1+ PCllso

The sensitivity function is 1 for high frequencies. Movingrn high to low fre-
guencies, the sensitivity function increases at the fastgss poles. Large peaks
can result unless there are closed loop poles close to theréaess poles. To avoid
large peaks in the sensitivity the closed loop system shihdcefore have poles
that match the fast process poles. This means that the denshbuld cancel the
fast process poles by controller zeros. Since unstable nmuatewt be canceled,
the presence of a fast unstable pole implies that the gagsover frequency must
be sufficiently large.

To summarize, we obtain the following simple rule for chogsclosed loop
poles: slow stable process zeros should be matched by steedloop poles, and
fast stable process poles should be matched by fast closegtdes. Slow unstable
process zeros and fast unstable process poles impose bevergons.

Ms = supl (i) = H

Example 12.10 Nanopositioning system for an atomic force microspe
A simple nanopositioner was explored in Example 9.9, wheveai shown that
the system could be controlled using an integral controliee performance of
the closed loop was poor because the gain crossover fregueae limited to
wge = 20 wo(1 — sy). It can be shown that little improvement is obtained by using
a PI controller. To achieve improved performance, we willr¢fere apply PID
control. For a modest performance increase, we will use ¢is@d rule derived in
Example 12.9 that fast stable process poles should be cdrnetontroller zeros.
The controller transfer function should thus be chosen as
kas? + kps+ ki ki s+ 2rs+ a2
s s a2 ’
which givesk, = 2¢k;/a andky = k; /a2.

Figure 12.14 shows the gain curves for the Gang of Four for@sydesigned
withk; = 0.5. Acomparison with Figure 9.12 shows that the bandwidthoseiased
significantly fromwge = 0.01 towyc = ki = 0.5. Since the process pole is canceled,
the system will, however, still be very sensitive to loadulisances with frequencies
close to the resonant frequency. The gain curv€ 8fthas a dip or a notch at the
resonant frequency, which implies that the controller gawery low for frequencies
around the resonance. The gain curve also shows that thersigstery sensitive
to high-frequency noise. The system will likely be unusaldeduse the gain goes
to infinity for high frequencies.

The sensitivity to high frequency noise can be remedied byifiyiad the con-
troller to be

C(s) = (12.16)

K s? 4+ 2ras+ a?
s a2(1+sT; + (sTf)2/2)’

which has high-frequency roll-off. Selection of the constan for the filter is a
compromise between attenuation of high-frequency measamrenoise and ro-

C(s) = (12.17)
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Figure 12.14: Nanopositioning system control via cancellation of the fast process pole.
Gain plots for the Gang of Four for PID control with second-order filger{h2.17) are
shown by solid lines, and the dashed lines show results for an ideal Ritolter without
filtering (12.16).

bustness. A large value % reduces the effects of sensor noise significantly, but
it also reduces the stability margin. Since the gain crogsfregquency without
filtering isk;, a reasonable choiceTs = 0.2/T¢, as shown by the solid curves in
Figure 12.14. The plots 9 S(i w)| and|S(i w)| show that the sensitivity to high-
frequency measurement noise is reduced dramatically atdseof a marginal
increase of sensitivity. Notice that the poor attenuatibdisturbances with fre-
guencies close to the resonance is not visible in the seihsitinction because of
the exact cancellation of poles and zeros.

The designs thus far have the drawback that load disturbavittefequencies
close tothe resonance are not attenuated. We will now cernsidesign that actively
attenuates the poorly damped modes. We start with an ideat&iDoller where
the design can be done analytically, and we add high-freqyueil-off. The loop
transfer function obtained with this controller is

2 :
L(s) = M8+k§+hl
S(s? + 2cas+ a?)
The closed loop system is of third order, and its characiepstynomial is

(12.18)

$* + (kgd® + 2ra)s? + (kp + 1)a’s + ka2, (12.19)
A general third-order polynomial can be parameterized as
S% + (a0 + 20)w0S* + (1 4 2000)w3s + aow. (12.20)

The parametergy and¢ give the relative configuration of the poles, and the pa-
rameterwg gives their magnitudes, and therefore also the bandwidtiecgystem.
The identification of coefficients of equal powerssah with equation (12.19)
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Figure 12.15: Nanopositioner control using active damping. Gain curves for the &&ng
Four for PID control of the nanopositioner designeddgr= a (dash-dotted), 2 (dashed),
and 4 (solid). The controller has high-frequency roll-off and has beerngdes to give
active damping of the oscillatory mode. The different curves coardpo different choices
of magnitudes of the poles, parameterizeddgyn equation (12.19).

gives a linear equation for the controller parameters, lwhis the solution

aoa)g

1+2 2
a

a2
To obtain a design with active damping, it is necessary tmattosed loop band-
width be at least as fast as the oscillatory modes. Adding-frigquency roll-off,
the controller becomes

_ (a0 + 20)wo

= —a. (12.21)

ka

Kp

kas? + kps + k
s(1+sTs + (sTf)2/2)

The valueT; = T4/10 = 0.1Kky/k is a good value for the filtering time constant.

Figure 12.15 shows the gain curves of the Gang of Four for desigth¢ =
0.707,a0 = 1 andwo = a, 2a and 4. The figure shows that the largest values of
the sensitivity function and the complementary sensitifuinction are small. The
gain curve forP Sshows that the load disturbances are now well attenuated ove
the whole frequency range, and attenuation increases matkasingng. The gain
curve forC Sshows that large control signals are required to provideeadamping.
The high gain ofC Sfor high frequencies also shows that low-noise sensors and
actuators with a wide range are required. The largest gain€ fare 19, 103
and 434 forwg = a, 2a and 4, respectively. There is clearly a trade-off between
disturbance attenuation and controller gain. A comparisoRigures 12.14 and
12.15 illustrates the trade-offs between control actioth disturbance attenuation
for the designs with cancellation of the fast process potkamtive damping. V

C(s) = (12.22)
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12.5 Design for Robust Performance @

Control design is a rich problem where many factors have taken into account.
Typical requirements are that load disturbances shoulttéewmated, the controller
should inject only a moderate amount of measurement ndisegutput should
follow variations in the command signal well and the clossapl system should be
insensitive to process variations. For the system in Figare these requirements
can be captured by specifications on the sensitivity funst®mand T and the
transfer functionGyq4, Gun, Gyr andGy,. Notice that it is necessary to consider
at least six transfer functions, as discussed Section 114 .r&tuirements are
mutually conflicting, and it is necessary to make trade-Gife attenuation of load
disturbances will be improved if the bandwidth is increased so will the noise
injection.

It is highly desirable to have design methods that can gteeaiobust perfor-
mance. Such design methods did not appear until the late 1880/ of these
design methods result in controllers having the same strei@s the controller
based on state feedback and an observer. In this sectionowiel@ia brief review
of some of the techniques as a preview for those interestedoie specialized
study.

Quantitative Feedback Theory

Quantitative feedback theo(FT) is a graphical design method for robust loop
shaping that was developed by |. M. Horowitz [Hor91]. The idda first determine
acontrollerthat gives a complementary sensitivity thailgist to process variations
and then to shape the response to reference signals by feadfio The idea is
illustrated in Figure 12.16a, which shows the level curvethefcomplementary
sensitivity functioril on a Nyquist plot. The complementary sensitivity functioa ha
unit gain on the line Ré (iw) = —0.5. In the neighborhood of this line, significant
variations in process dynamics only give moderate chamgisicomplementary
transfer function. The dashed part of the figure correspondsetoegion ® <
IT({w)| < 1.1. To use the design method, we represent the uncertaingafur
frequency by a region and attempt to shape the loop transfietibn so that the
variation inT is as small as possible. The design is often performed usiag th
Nichols chart shown in Figure 12.16b.

Linear Quadratic Control

One way to make the trade-off between the attenuation of distdrbances and
the injection of measurement noise is to design a contrilrminimizes the loss
function

1 T
I== /0 (V) + pu(t)) dt,

wherep is a weighting parameter as discussed in Section 6.3. Thifuostion
gives a compromise between load disturbance attenuatemligturbance injec-
tion because it balances control actions against devitiothe output. If all state
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Figure 12.16: Hall and Nichols charts. The Hall chart is a Nyquist plot with curves for
constant gain and phase of the complementary sensitivity fundtiofhe Nichols chart

is the conformal map of the Hall chart under the transformahios: log L (with the scale
flipped). The dashed curve is the line whglréi )| = 1, and the shaded region corresponding
to loop transfer functions whose complementary sensitivity changes byone thant10%

is shaded.

variables are measured, the controller is a state feedback-K x and it has the
same form as the controller obtained by eigenvalue assign(pele placement)

in Section 6.2. However, the controller gain is obtained byiseg an optimiza-
tion problem. It has been shown that this controller is vetyust. It has a phase
margin of at least 60and an infinite gain margin. The controller is callelirear
quadratic controbr LQ controlbecause the process modelis linear and the criterion
is quadratic.

When all state variables are not measured, the state carcdsteucted using
an observer, as discussed in Section 7.3. It is also possililgroduce process
disturbances and measurement noise explicitly in the madélto reconstruct
the states using a Kalman filter, as discussed briefly in SecténThe Kalman
filter has the same structure as the observer designed byaigerassignment in
Section 7.3, but the observer gainsre now obtained by solving an optimization
problem. The control law obtained by combining linear quddreontrol with a
Kalman filter is calledinear quadratic Gaussian contradr LQG control The
Kalman filter is optimal when the models for load disturbarmed measurement
noise are Gaussian.

Itis interesting that the solution to the optimization piesh leads to a controller
having the structure of a state feedback and an observer.tateefsedback gains
depend on the parameter and the filter gains depend on the parameters in the
model that characterize process noise and measuremeat (seis Section 7.4).
There are efficient programs to compute these feedback andvebgains.

The nice robustness properties of state feedback are unébely lost when the
observer is added. Itis possible to choose parametersitleatigsed loop systems
with poor robustness, similar to Example 12.8. We can thuslade that there is a
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Figure 12.17:H,, robust control formulation. The left figure shows a general regmigion

of a control problem used in robust control. The inpuépresents the control signal, the input
w represents the external influences on the system, the aLifthie generalized error and the
outputy is the measured signal. The right figure shows the special case ofsieddrdback
loop in Figure 12.9 where the reference signal is zero. In this caseaweah= (n, d) and
z=(y, —u).

fundamental difference between using sensors for allstatd reconstructing the
states using an observer.

H., Control @

Robust control design is often callétl, control for reasons that will be explained
shortly. The basic ideas are simple, but the details are Goatptl and we will
therefore just give the flavor of the results. A key idea issiitated in Figure 12.17,
where the closed loop system is represented by two blockspitbcessP? and
the controllerC as discussed in Section 11.1. The procBdsas two inputs, the
control signalu, which can be manipulated by the controller, and the geizedhl
disturbancev, which represents all external influences, e.g., commamé&ks@nd
disturbances. The process has two outputs, the generatioed,@vhich is a vector
of error signals representing the deviation of signals ftbeir desired values, and
the measured signgl, which can be used by the controller to computd-or a
linear system and a linear controller the closed loop sysi@mbe represented by
the linear system

z=H(P(s), C(s)w, (12.23)

which tells how the generalized errer depends on the generalized disturbances
w. The control design problem is to find a controli@rsuch that the gain of the
transfer functiorH is small even when the process has uncertainties. There age ma
different ways to specify uncertainty and gain, giving tiselifferent designs. The
namesH, andH,, control correspond to the nornij$l ||> and|| H || .

To illustrate the ideas we will consider a regulation probfer a system where
the reference signal is assumed to be zero and the extegmalsiare the load
disturbancel and the measurement noiseas shown in Figure 12.17b. The gener-
alized input isw = (—n, d). (The negative sign aif is not essential but is chosen
to obtain somewhat nicer equations.) The generalized exatrdsen as = (7, v),
wherey is the process output andis the part of the load disturbance that is not
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compensated by the controller. The closed loop system istiogteled by

1 P
z= [_yu] - 1+CPC 1-||;CPC [3] = H(P,C) [3] (12.24)

1+ PC 1+ PC
which is the same as equation (12.23). A straightforwardutation shows that

VA +[P{o)2)(L+[Clw)?)
|1+ P(iw)C(iw)| ’

IH(P, C))lloc = sup (12.25)

There are numerical methods for finding a controller such|thiatP, C)|ls <
y, if such a controller exists. The best controller can theroo@d by iterating on
y . The calculations can be made by solvaigebraic Riccatiequations, e.g., by
using the commanti nf syn in MATLAB. The controller has the same order as
the process and the same structure as the controller bastaterfieedback and an
observer; see Figure 7.7 and Theorem 7.3.

Notice that if we minimizg|H (P, C)|l«, we make sure that the transfer func-
tionsGyq = P/(1+ PC), representing the transmission of load disturbances to the
output, andG,, = —C/(1 + PC), representing how measurement noise is trans-
mitted to the control signal, are small. Since the sensjtaitd the complementary
sensitivity functions are also elementstd{ P, C), we have also guaranteed that
the sensitivities are less than The design methods thus balance performance and
robustness.

There are strong robustness results associated with theontroller. It follows
from equations (12.4) and (12.25) that

1
6,(P,—1/C)’

Theinverse offH (P, C)| « is thus equal to the Vinnicombe distance betwBemd
—1/C and can therefore be interpreted ageaeralized stability margirCompare
this with s, which we defined as the shortest distance between the Nywjurigs
of the loop transfer function and the critical powatl. It also follows that if we
find a controllerC with ||[H(P, C)|l« < y, then this controller will stabilize any
processP, such thav, (P, P,) < 1/y.

H(P, C)llec = (12.26)

Disturbance Weighting

Minimizing the gain||H(P, C)|l, means that the gains of all individual signal
transmissions from disturbances to outputs are lessthim all frequencies of
the input signals. The assumption that the disturbancesgaialg important and
that all frequencies are also equally important is not vealistic; recall that load
disturbances typically have low frequencies and measurenwse is typically
dominated by high frequencies. It is straightforward to ifyothe problem so that
disturbances of different frequencies are given diffeeamphasis, by introducing
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Figure 12.18:Block diagrams of a system with disturbance weighting. The left figundges
a frequency weight on processes disturbances. Through blodladhaganipulation, this can
be converted to the standard problem on the right.

a weighting filter on the load disturbance as shown in Figur&8.Zor example,
low-frequency load disturbances will be enhanced by chmgpdi as a low-pass
filter because the actual load disturbanceVid.

By using block diagram manipulation as shown in Figure 12wléfind that
the system with frequency weighting is equivalent to theesyiswith no frequency
weighting in Figure 12.18 and the signals are related through

1 P
7= [y] l+PC 1+4PC [”] — H(P,O)a, (12.27)
u C PC d
1+PC 1+PC

whereP = PW andC = W~IC. The problem of finding a controlleC that
minimizes the gain oH (P, C) is thus equivalent to the problem without distur-
bance weighting; having obtain€] the controller for the original system is then
C = WC. Notice that if we introduce the frequency weightig= k/s, we will
automatically get a controller with integral action.

Limits of Robust Design

There is a limit to what can be achieved by robust design. Ite gifi the nice
properties of feedback, there are situations where theepsovariations are so
large that it is not possible to find a linear controller thategi a robust system
with good performance. It is then necessary to use othewstgpeontrollers. In
some cases it is possible to measure a variable that is weblated with the
process variations. Controllers for different paramegdues can then be designed
and the corresponding controller can be chosen based on e¢hsumed signal.
This type of control design is calleghin schedulingThe cruise controller is a
typical example where the measured signal could be gedigroand velocity. Gain
scheduling is the common solution for high-performancerait where scheduling
is done based on Mach number and dynamic pressure. Whergasingcheduling,
it is important to make sure that switches between the clatsodo not create
undesirable transients (often referred tdampless transfer

If it is not possible to measure variables related to the rpatars,automatic
tuningandadaptive controtan be used. In automatic tuning the process dynamics
are measured by perturbing the system, and a controlleeisdbsigned automat-
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ically. Automatic tuning requires that parameters remainstant, and it has been
widely applied for PID control. It is a reasonable guess thahe future many
controllers will have features for automatic tuning. If @areters are changing, it
is possible to use adaptive methods where process dynareioseamsured online.

12.6 Further Reading

The topic of robust control is a large one, with many articles extbooks devoted
to the subject. Robustness was a central issue in classicabtas described in
Bode's classical book [Bod45]. Robustness was deemplthsizbe euphoria of
the development of desigh methods based on optimizationsffbeg robustness
of controllers based on state feedback, shown by Andersdrivienore [AM9Q],
contributed to the optimism. The poor robustness of outpedifack was pointed
out by Rosenbrock [RM71], Horowitz [Hor75] and Doyle [Doy7éhd resulted
in a renewed interest in robustness. A major step forwardthe@sgevelopment of
design methods where robustness was explicitly taken icdoumnt, such as the
seminal work of Zames [Zam81]. Robust control was originalyeloped using
powerful results from the theory of complex variables, vihiiave controllers of
high order. A major breakthrough was made by Doyle, Glovérai§gonekar and
Francis [DGKF89], who showed that the solution to the problema be obtained
using Riccati equations and that a controller of low ordeddbe found. This paper
led to an extensive treatment Bif,, control, including books by Francis [Fra87],
McFarlane and Glover [MG90], Doyle, Francis and TannenbdbRTP2], Green
and Limebeer [GL95], Zhou, Doyle and Glover [ZDG96], SkogestarmtRostleth-
waite [SP05] and Vinnicombe [Vin01]. A major advantage of thedry is that it
combines much of the intuition from servomechanism theatly sound numerical
algorithms based on numerical linear algebra and optimiza@ he results have
been extended to nonlinear systems by treating the desifphepn as a game where
the disturbances are generated by an adversary, as descrie book by Basar
and Bernhard [BB91]. Gain scheduling and adaptation arudged in the book
by Astrém and Wittenmark [AWO08].

Exercises

12.1 Consider systems with the transfer functiods = 1/(s+ 1) and P, =
1/(s+ a). Show thatP; can be changed continuously B with bounded additive
and multiplicative uncertainty & > 0 butnotifa < 0. Also show thatnorestriction
ona is required for feedback uncertainty.

12.2 Consider systems with the transfer functio®s = (s + 1)/(s + 1)? and
P, = (s+ a)/(s + 1)2. Show thatP; can be changed continuously B with

bounded feedback uncertaintyaf > 0 but not ifa < 0. Also show that no
restriction oma is required for additive and multiplicative uncertainties
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12.3(Difference in sensitivity functions) L€k (P, C) be the complementary sen-
sitivity function for a system with proced$3 and controlleiC. Show that

(PL—P)C
1+ P.C)(1+ PC)Y’
and derive a similar formula for the sensitivity function.

12.4(The Riemann sphere) Consider systems with the transfetifunsdP; = @
k/(s+ 1) andP, = k/(s — 1). Show that

T(P,C) —=T(P,C) =

1, if k<1
oy(Pr, P) =1 2Kk

1+ k2

Use the Riemann sphere to show geometricallydh@®,, P,) = 1if k < 1. (Hint:
It is sufficient to evaluate the transfer function fo= 0.)

2
d(Py, Po) = ——, )
(P1, P2) 1+ k2 otherwise

12.5(Stability margins) Consider a feedback loop with a processaacontroller
having transfer function® andC. Assume that the maximum sensitivityNg = 2.
Show that the phase margin is at least 8Ad that the closed loop system will be
stable if the gain is changed by 50%.

12.6(Bode’s ideal loop transfer function) Make Bode and Nyqplsts of Bode’s
ideal loop transfer function. Show that the phase margip,is=180—-90°’n and
that the stability margin isy = arcsinz (1 — n/2).

12.7 Consider a process with the transfer funct®(s) = k/(s(s+ 1)), where the
gain can vary between 0.1 and 10. A controller that is rolmustese gain variations
can be obtained by finding a controller that gives the loopstiearfunctionL (s) =
1/(s/s). Suggest how the transfer function can be implemented byappating
it by a rational function.

12.8 (Smith predictor) TheSmith predictoy a controller for systems with time
delays, is a special version of Figure 12.8a witls) = €73 Py(s) andC(s) =
Co(s)/(L+Co(s)P(s)). The controllelCy(s) is designed to give good performance
for the proces$,(s). Show that the sensitivity functions are

14+ (1—e7*)Po(s)Co(s) Po(s)Co(S)

S(s) = 1+ Py(S)Co(S) - T =7 + Po(s)Co(S)

—ST

12.9 (Ideal delay compensator) Consider a process whose dysaamica pure
time delay with transfer functio®(s) = e~3. The ideal delay compensator is a
controller with the transfer functio@ (s) = 1/(1 — e~%). Show that the sensitivity
functions areT (s) = €% andS(s) = 1 — e~® and that the closed loop system will
be unstable for arbitrarily small changes in the delay.

12.10(Vehicle steering) Consider the Nyquist curve in Figure 12Bxplain why
part of the curve is approximately a circle. Derive a formiolathe center and the
radius and compare with the actual Nyquist curve.
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12.11 Consider a process with the transfer function
P(s) = (3+3)(s+ 200
(sS4 1)(s2 + 10s + 40)(s + 40)°

Discuss suitable choices of closed loop poles for a desagrgities dominant poles
with undamped natural frequency 1 and 10.

12.12(AFM nanopositioning system) Consider the design in Exampléd and
explore the effects of changing parameteggndo.

12.13(H control) Consider the matrik (P, C) in equation (12.24). Show that
it has the singular values

_ VA+[P({w)P)(1+[Cim)?)
-0 — 5 = su = H(P, C))|lco-
01=0, o2=0 wp 1+ P(o)Clo)] IH(P, C)
Also show that = 1/d, (P, —1/C), which implies that 15 is a generalization of
the closest distance of the Nyquist plot to the critical poin

12.14 Show that

| Pio) +1/Clio)| 1
0,(P,—=1/C) = inf = .
O = s PloPar UCiop  IHP. O

12.15 Consider the system

dx -1 0 a—1
E:AX+BUZ[1 O]x+[ 1 ]u, y=Cx= [O 1]y.

Design a state feedback that givesdét- BK) = s?+2;.w:S+®?, and an observer
with det(s| — LC) = s? + 27,005 + »2 and combine them using the separation
principle to get an output feedback. Choose the numeridaésa = 1.5, w. = 5,

e = 0.6 andw, = 10,¢, = 0.6. Compute the eigenvalues of the perturbed system
when the process gain is increased by 2%. Also compute tipetiansfer function
and the sensitivity functions. Is there a way to know befarghthat the system
will be highly sensitive?

12.16(Robustness using the Nyquist criterion) Another view bist performance
can be obtained through appeal to the Nyquist criterion.S:gi(i w) represent a
desired upper bound on our sensitivity function. Show thasifstem provides this
level of performance subject to additive uncertaintyf the following inequality
is satisfied:

1+ L|=]14L+CA|> forall w > 0. (12.28)

1
| Snax(i®)]
Describe how to check this condition using a Nyquist plot.



