
Chapter Twelve
Robust Performance

However, by building an amplifier whose gain is deliberately made, say 40 decibels higher
than necessary (10000 fold excess on energy basis), and then feeding the output back on the
input in such a way as to throw away that excess gain, it has been found possible to effect
extraordinary improvement in constancy of amplification and freedom from non-linearity.
Harold S. Black, “Stabilized Feedback Amplifiers,” 1934 [Bla34].

This chapter focuses on the analysis of robustness of feedback systems, a vast
topic for which we provide only an introduction to some of the key concepts. We
consider the stability and performance of systems whose process dynamics are
uncertain and derive fundamental limits for robust stability and performance. To
do this we develop ways to describe uncertainty, both in the form of parameter
variations and in the form of neglected dynamics. We also briefly mention some
methods for designing controllers to achieve robust performance.

12.1 Modeling Uncertainty
Harold Black’s quote above illustrates that one of the key uses of feedback is to
provide robustness to uncertainty (“constancy of amplification”). It is one of the
most useful properties of feedback and is what makes it possible to design feedback
systems based on strongly simplified models.
One form of uncertainty in dynamical systems is parametric uncertainty in

which the parameters describing the system are unknown. A typical example is the
variation of the mass of a car, which changes with the number of passengers and the
weight of the baggage. When linearizing a nonlinear system, the parameters of the
linearizedmodel also depend on the operating conditions. It is straightforward to in-
vestigate the effects of parametric uncertainty simply by evaluating the performance
criteria for a range of parameters. Such a calculation reveals the consequences of
parameter variations. We illustrate by a simple example.

Example 12.1 Cruise control
The cruise control problem was described in Section 3.1, and a PI controller was
designed in Example 10.3. To investigate the effect of parameter variations, we will
choose a controller designed for a nominal operating condition corresponding to
mass m = 1600 kg, fourth gear (α = 12) and speed ve = 25 m/s; the controller
gains are kp = 0.72 and ki = 0.18. Figure 12.1a shows the velocity v and the
throttle u when encountering a hill with a 3◦ slope with masses in the range 1600 <
m < 2000 kg, gear ratios 3–5 (α = 10, 12 and 16) and velocity 10 ≤ v ≤ 40 m/s.

Feedback Systems by Astrom and Murray, v2.10d
http://www.cds.caltech.edu/~murray/FBSwiki
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Figure 12.1: Responses of the cruise control system to a slope increase of 3◦ (a) and the
eigenvalues of the closed loop system (b). Model parameters are swept over a wide range.

The simulations were done using models that were linearized around the different
operating conditions. The figure shows that there are variations in the response
but that they are quite reasonable. The largest velocity error is in the range of
0.2–0.6 m/s, and the settling time is about 15 s. The control signal is marginally
larger than 1 in some cases, which implies that the throttle is fully open. A full
nonlinear simulation using a controller with windup protection is required if we
want to explore these cases in more detail. Figure 12.1b shows the eigenvalues of
the closed loop system for the different operating conditions. The figure shows that
the closed loop system is well damped in all cases. ∇

This example indicates that at least as far as parametric variations are concerned,
the design based on a simple nominal model will give satisfactory control. The
example also indicates that a controller with fixed parameters can be used in all
cases. Notice that we have not considered operating conditions in low gear and at
low speed, but cruise controllers are not typically used in these cases.

Unmodeled Dynamics
It is generally easy to investigate the effects of parametric variations. However,
there are other uncertainties that also are important, as discussed at the end of Sec-
tion 2.3. The simple model of the cruise control system captures only the dynamics
of the forward motion of the vehicle and the torque characteristics of the engine
and transmission. It does not, for example, include a detailed model of the engine
dynamics (whose combustion processes are extremely complex) or the slight delays
that can occur in modern electronically controlled engines (as a result of the pro-
cessing time of the embedded computers). These neglected mechanisms are called
unmodeled dynamics.
Unmodeled dynamics can be accounted for by developing a more complex

model. Suchmodels are commonly used for controller development, but substantial
effort is required to develop them. An alternative is to investigate if the closed loop
system is sensitive to generic forms of unmodeled dynamics. The basic idea is to
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Figure 12.2: Unmodeled dynamics in linear systems. Uncertainty can be represented using
additive perturbations (left), multiplicative perturbations (middle) or feedback perturbations
(right). The nominal system is P , and$, δ = $/P and$fb represent unmodeled dynamics.

describe the unmodeled dynamics by including a transfer function in the system
description whose frequency response is bounded but otherwise unspecified. For
example, we might model the engine dynamics in the cruise control example as
a system that quickly provides the torque that is requested through the throttle,
giving a small deviation from the simplified model, which assumed the torque
response was instantaneous. This technique can also be used in many instances
to model parameter variations, allowing a quite general approach to uncertainty
management.
In particular, we wish to explore if additional linear dynamics may cause dif-

ficulties. A simple way is to assume that the transfer function of the process is
P(s)+$, where P(s) is the nominal simplified transfer function and$ represents
the unmodeled dynamics in terms of additive uncertainty. Different representations
of uncertainty are shown in Figure 12.2.

When Are Two Systems Similar? The Vinnicombe Metric
!

A fundamental issue in describing robustness is to determine when two systems are
close. Given such a characterization, we can then attempt to describe robustness
according to how close the actual system must be to the model in order to still
achieve the desired levels of performance. This seemingly innocent problem is
not as simple as it may appear. A naive approach is to say that two systems are
close if their open loop responses are close. Even if this appears natural, there are
complications, as illustrated by the following examples.

Example 12.2 Similar in open loop but large differences in closed loop
The systems with the transfer functions

P1(s) =
k

s + 1
, P2(s) =

k
(s + 1)(sT + 1)2

(12.1)

have very similar open loop responses for small values of T , as illustrated in the top
plot in Figure 12.3a, which is plotted for T = 0.025 and k = 100. The differences
between the step responses are barely noticeable in the figure. The step responses
with unit gain error feedback are shown in the bottom plot in Figure 12.3a. Notice
that one closed loop system is stable and the other one is unstable. ∇

Example 12.3 Different in open loop but similar in closed loop
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Figure 12.3:Determining when two systems are close. The plots in (a) show a situation when
the open loop responses are almost identical, but the closed loop responses are very different.
The processes are given by equation (12.1) with k = 100 and T = 0.025. The plots in (b)
show the opposite situation: the systems are different in open loop but similar in closed loop.
The processes are given by equation (12.2) with k = 100.

Consider the systems

P1(s) =
k

s + 1
, P2(s) =

k
s − 1

. (12.2)

The open loop responses are very different because P1 is stable and P2 is unstable,
as shown in the top plot in Figure 12.3b. Closing a feedback loop with unit gain
around the systems, we find that the closed loop transfer functions are

T1(s) =
k

s + k + 1
, T2(s) =

k
s + k − 1

,

which are very close for large k, as shown in Figure 12.3b. ∇

These examples show that if our goal is to close a feedback loop, it may be very
misleading to compare the open loop responses of the system.
Inspired by these examples we introduce the Vinnicombe metric, which is a

distance measure that is appropriate for closed loop systems. Consider two systems
with the transfer functions P1 and P2, and define

d(P1, P2) = sup
ω

|P1(iω) − P2(iω)|
√

(1+ |P1(iω)|2)(1+ |P2(iω)|2)
, (12.3)

which is a metric with the property 0 ≤ d(P1, P2) ≤ 1. The number d(P1, P2) can
be interpreted as the difference between the complementary sensitivity functions
for the closed loop systems that are obtained with unit feedback around P1 and P2;
see Exercise 12.3. The metric also has a nice geometric interpretation, as shown in
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Figure 12.4: Geometric interpretation of d(P1, P2). At each frequency, the points on the
Nyquist curve for P1 (solid) and P2 (dashed) are projected onto a sphere of radius 1 sitting
at the origin of the complex plane. The projection of the point 1− i is shown. The distance
between the two systems is defined as the maximum distance between the projections of
P1(iω) and P2(iω) over all frequencies ω. The figure is plotted for the transfer functions
P1(s) = 2/(s + 1) and P2(s) = 2/(s − 1). (Diagram courtesy G. Vinnicombe.)

Figure 12.4, where the Nyquist plots of P1 and P2 are projected onto a sphere with
radius 1 at the origin of the complex plane (called the Riemann sphere). Points in
the complex plane are projected onto the sphere by a line through the point and
the north pole (Figure 12.4). The distance d(P1, P2) is the longest chordal distance
between the projections of P1(iω) and P2(iω). The distance is small when P1 and
P2 are small or large, but it emphasizes the behavior around the gain crossover
frequency.
The distance d(P1, P2) has one drawback for the purpose of comparing the

behavior of systems under feedback. If P2 is perturbed continuously from P1 to P2,
there can be intermediate transfer functions P where d(P1, P) is 1 even if d(P1, P2)
is small (see Exercise 12.4). To explore when this could happen, we observe that

1− d2(P1, P) =
(1+ P(iω)P1(−iω))(1+ P(−iω)P1(iω))

(1+ |P1(iω)|2)(1+ |P(iω)|2)
.

The right-hand side is zero, and hence d(P1, P) = 1 if 1 + P(iω)P1(−iω) = 0
for some ω. To explore when this could occur, we investigate the behavior of the
function1+P(s)P1(−s)when P is perturbed from P1 to P2. If the functions f1(s) =
1+P1(s)P1(−s) and f2(s) = 1+P2(s)P1(−s)donot have the samenumber of zeros
in the right half-plane, there is an intermediate P such that 1+ P(iω)P1(−iω) = 0
for some ω. To exclude this case we introduce the set C as all pairs (P1, P2) such
that the functions f1 = 1+ P1(s)P1(−s) and f2 = 1+ P2(s)P1(−s) have the same
number of zeros in the right half-plane.
The Vinnicombe metric or ν-gap metric is defined as

δν(P1, P2) =

{
d(P1, P2), if (P1, P2) ∈ C

1, otherwise.
(12.4)

Vinnicombe [Vin01] showed that δν(P1, P2) is a metric, he gave strong robustness
results based on the metric and he developed the theory for systems with many
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inputs and many outputs. We illustrate its use by computing the metric for the
systems in the previous examples.

Example 12.4 Vinnicombe metric for Examples 12.2 and 12.3
For the systems in Example 12.2 we have

f1(s) = 1+ P1(s)P1(−s) =
1+ k2 − s2

1− s2
,

f2(s) = 1+ P2(s)P1(−s) =
1+ k2 + 2sT + (T 2 − 1)s2 − 2s3T − s4T 2

(1− s2)(1+ 2sT + s2T 2)
.

The function f1 has one zero in the right half-plane. A numerical calculation for
k = 100 and T = 0.025 shows that the function f2 has the roots 46.3, -86.3,
−20.0± 60.0i . Both functions have one zero in the right half-plane, allowing us to
compute the norm (12.4). For T = 0.025 this gives δν(P1, P2) = 0.98, which is a
quite large value. To have reasonable robustness Vinnicombe recommended values
less than 1/3.
For the system in Example 12.3 we have

1+ P1(s)P1(−s) =
1+ k2 − s2

1− s2
, 1+ P2(s)P1(−s) =

1− k2 − 2s + s2

(s + 1)2

These functions have the same number of zeros in the right half-plane if k > 1.
In this particular case the Vinnicombe metric is d(P1, P2) = 2k/(1 + k2) (Exer-
cise 12.4) and with k = 100 we get δν(P1, P2) = 0.02. Figure 12.4 shows the
Nyquist curves and their projections for k = 2. Notice that d(P1, P2) is very small
for small k even though the closed loop systems are very different. It is therefore
essential to consider the condition (P1, P2) ∈ C, as discussed in Exercise 12.4. ∇

12.2 Stability in the Presence of Uncertainty
Having discussed how to describe uncertainty and the similarity between two sys-
tems, we now consider the problem of robust stability: When can we show that
the stability of a system is robust with respect to process variations? This is an
important question since the potential for instability is one of the main drawbacks
of feedback. Hence we want to ensure that even if we have small inaccuracies in
our model, we can still guarantee stability and performance.

Robust Stability Using Nyquist’s Criterion
The Nyquist criterion provides a powerful and elegant way to study the effects
of uncertainty for linear systems. A simple criterion is that the Nyquist curve be
sufficiently far from the critical point −1. Recall that the shortest distance from
the Nyquist curve to the critical point is sm = 1/Ms , where Ms is the maximum
of the sensitivity function and sm is the stability margin introduced in Section 9.3.
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Figure 12.5:Robust stability using the Nyquist criterion. (a) This plot shows that the shortest
distance to the critical point sm is a robustness measure. (b) This plot shows the Nyquist curve
of a nominal loop transfer function and its uncertainty caused by additive process variations
$.

The maximum sensitivity Ms or the stability margin sm is thus a good robustness
measure, as illustrated in Figure 12.5a.
We will now derive explicit conditions for permissible process uncertainties.

Consider a stable feedback system with a process P and a controller C . If the
process is changed from P to P + $, the loop transfer function changes from PC
to PC + C$, as illustrated in Figure 12.5b. If we have a bound on the size of
$ (represented by the dashed circle in the figure), then the system remains stable
as long as the process variations never overlap the −1 point, since this leaves the
number of encirclements of −1 unchanged.
Some additional assumptions are required for the analysis to hold. Most im-

portantly, we require that the process perturbations $ be stable so that we do not
introduce anynew right half-plane poles thatwould require additional encirclements
in the Nyquist criterion.
Wewill nowcompute an analytical bound on the allowable process disturbances.

The distance from the critical point −1 to the loop transfer function L is |1 + L|.
This means that the perturbed Nyquist curve will not reach the critical point −1
provided that |C$| < |1+ L|, which implies

|$| <
∣∣∣
1+ PC

C

∣∣∣ or |δ| =
∣∣∣
$

P

∣∣∣ <
1

|T |
. (12.5)

This condition must be valid for all points on the Nyquist curve, i.e, pointwise
for all frequencies. The condition for robust stability can thus be written as

|δ(iω)| =
∣∣∣
$(iω)

P(iω)

∣∣∣ <
1

|T (iω)|
for all ω ≥ 0. (12.6)

Notice that the condition is conservative because it follows from Figure 12.5 that
the critical perturbation is in the direction toward the critical point −1. Larger
perturbations can be permitted in the other directions.
The condition in equation (12.6) allows us to reason about uncertainty without
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exact knowledge of the process perturbations. Namely, we can verify stability for
any uncertainty$ that satisfies the given bound. From an analysis perspective, this
gives us a measure of the robustness for a given design. Conversely, if we require
robustness of a given level, we can attempt to choose our controller C such that the
desired level of robustness is available (by asking that T be small) in the appropriate
frequency bands.
Equation (12.6) is one of the reasons why feedback systems work so well in

practice. The mathematical models used to design control systems are often simpli-
fied, and the properties of a process may change during operation. Equation (12.6)
implies that the closed loop system will at least be stable for substantial variations
in the process dynamics.
It follows from equation (12.6) that the variations can be large for those fre-

quencies where T is small and that smaller variations are allowed for frequencies
where T is large. A conservative estimate of permissible process variations that
will not cause instability is given by

|δ(iω)| =
∣∣∣
$(iω)

P(iω)

∣∣∣ <
1
Mt

,

where Mt is the largest value of the complementary sensitivity

Mt = sup
ω

|T (iω)| =
∥∥∥

PC
1+ PC

∥∥∥
∞

. (12.7)

The value of Mt is influenced by the design of the controller. For example, it
is shown in Exercise 12.5 that if Mt = 2 then pure gain variations of 50% or
pure phase variations of 30◦ are permitted without making the closed loop system
unstable.

Example 12.5 Cruise control
Consider the cruise control system discussed in Section 3.1. The model of the car
in fourth gear at speed 25 m/s is

P(s) =
1.38

s + 0.0142
,

and the controller is a PI controller with gains kp = 0.72 and ki = 0.18. Fig-
ure 12.6 plots the allowable size of the process uncertainty using the bound in
equation (12.6). At low frequencies, T (0) = 1 and so the perturbations can be as
large as the original process (|δ| = |$/P| < 1). The complementary sensitivity
has its maximum Mt = 1.14 at ωmt = 0.35, and hence this gives the minimum
allowable process uncertainty, with |δ| < 0.87 or |$| < 3.47. Finally, at high
frequencies, T → 0 and hence the relative error can get very large. For example,
at ω = 5 we have |T (iω)| = 0.195, which means that the stability requirement is
|δ| < 5.1. The analysis clearly indicates that the system has good robustness and
that the high-frequency properties of the transmission system are not important for
the design of the cruise controller.
Another illustration of the robustness of the system is given in the right diagram
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Figure 12.6: Robustness for a cruise controller. On the left the maximum relative error 1/|T |
(solid) and the absolute error |P|/|T | (dashed) for the process uncertainty $. The Nyquist
curve is shown on the right as a solid line. The dashed circles show permissible perturbations
in the process dynamics, |$| = |P|/|T |, at the frequencies ω = 0, 0.0142 and 0.05.

in Figure 12.6, which shows the Nyquist curve of the transfer function of the
process and the uncertainty bounds $ = |P|/|T | for a few frequencies. Note that
the controller can tolerate large amounts of uncertainty and still maintain stability
of the closed loop. ∇

The situation illustrated in the previous example is typical of many processes:
moderately small uncertainties are required only around the gain crossover frequen-
cies, but large uncertainties can be permitted at higher and lower frequencies. A
consequence of this is that a simple model that describes the process dynamics well
around the crossover frequency is often sufficient for design. Systems with many
resonant peaks are an exception to this rule because the process transfer function
for such systems may have large gains for higher frequencies also, as shown for
instance in Example 9.9.

The robustness condition given by equation (12.6) can be given another inter-
pretation by using the small gain theorem (Theorem 9.4). To apply the theorem
we start with block diagrams of a closed loop system with a perturbed process and
make a sequence of transformations of the block diagram that isolate the block
representing the uncertainty, as shown in Figure 12.7. The result is the two-block
interconnection shown in Figure 12.7c, which has the loop transfer function

L =
PC

1+ PC
$

P
= T δ.

Equation (12.6) implies that the largest loop gain is less than 1 and hence the system
is stable via the small gain theorem.
The small gain theorem can be used to check robust stability for uncertainty in

a variety of other situations. Table 12.1 summarizes a few of the common cases;
the proofs (all via the small gain theorem) are left as exercises.
The following example illustrates that it is possible to design systems that are

robust to parameter variations.
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Figure 12.7: Illustration of robustness to process perturbations. A system with additive un-
certainty (left) can be manipulated via block diagram algebra to one with multiplicative
uncertainty δ = $/P (center). Additional manipulations isolate the uncertainty in a manner
that allows application of the small gain theorem (right)

Example 12.6 Bode’s ideal loop transfer function
A major problem in the design of electronic amplifiers is to obtain a closed loop
system that is insensitive to changes in the gain of the electronic components.
Bode found that the loop transfer function L(s) = ks−n , with 1 ≤ n ≤ 5/3, was
an ideal loop transfer function. The gain curve of the Bode plot is a straight line
with slope −n and the phase is constant arg L(iω) = −nπ/2. The phase margin
is thus ϕm = 90(2− n)◦ for all values of the gain k and the stability margin is
sm = sin π(1− n/2). This exact transfer function cannot be realized with physical
components, but it can be approximated over a given frequency rangewith a rational
function (Exercise 12.7). An operational amplifier circuit that has the approximate
transfer functionG(s) = k/(s+a) is a realization of Bode’s ideal transfer function
with n = 1, as described in Example 8.3. Designers of operational amplifiers go to
great efforts to make the approximation valid over a wide frequency range. ∇

Youla Parameterization
!

Since stability is such an essential property, it is useful to characterize all controllers
that stabilize a given process. Such a representation, which is called a Youla pa-
rameterization, is very useful when solving design problems because it makes it
possible to search over all stabilizing controllers without the need to test stability
explicitly.
We will first derive Youla’s parameterization for a stable process with a rational

transfer function P . A system with the complementary sensitivity function T can
be obtained by feedforward control with the stable transfer function Q if T = PQ.

Table 12.1: Conditions for robust stability for different types of uncertainty

Process Uncertainty Type Robust Stability

P + $ Additive ‖CS$‖∞ < 1
P(1+ δ) Multiplicative ‖T δ‖∞ < 1
P/(1+ $fb · P) Feedback ‖PS$fb‖∞ < 1
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Figure 12.8:Youla parameterization. Block diagrams of Youla parameterizations for a stable
system (a) and an unstable system (b). Notice that the signal v is zero in steady state.

Notice that T must have the same right half-plane zeros as P since Q is stable.
Now assume that we want to implement the complementary transfer function T by
using unit feedback with the controller C . Since T = PC/(1 + PC) = PQ, it
follows that the controller transfer function is

C =
Q

1− PQ
. (12.8)

A straightforward calculation gives

S = 1− PQ, PS = P(1− PQ), CS = Q, T = PQ.

These transfer functions are all stable if P and Q are stable and the controller given
by equation (12.8) is thus stabilizing. Indeed, it can be shown that all stabilizing
controllers are in the form given by equation (12.8) for some choice of Q. The
parameterization is illustrated by the block diagrams in Figure 12.8a.
A similar characterization can be obtained for unstable systems. Consider a

process with a rational transfer function P(s) = a(s)/b(s), where a(s) and b(s)
are polynomials. By introducing a stable polynomial c(s), we can write

P(s) =
b(s)
a(s)

=
B(s)
A(s)

,

where A(s) = a(s)/c(s) and B(s) = b(s)/c(s) are stable rational functions. Simi-
larly we introduce the controller C0(s) = G0(s)/F0(s), where F0(s) and G0(s) are
stable rational functions. We have

S0 =
AF0

AF0 + BG0
, PS0 =

BF0
AF0 + BG0

,

C0S0 =
AG0

AF0 + BG0
, T0 =

BG0

AF0 + BG0
.

The controller C0 is stabilizing if and only if the rational function AF0+ BG0 does
not have any zeros in the right half plane. Let Q be a stable rational function and
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Figure 12.9: Block diagram of a basic feedback loop. The external signals are the reference
signal r , the load disturbance d and the measurement noise n. The process output is y, and
the control signal is u. The process P may include unmodeled dynamics, such as additive
perturbations.

consider the controller
C =

G0 + QA
F0 − QB

. (12.9)

The Gang of Four for P and C is

S =
A(F0 − QB)

AF0 + BG0
, PS =

B(F0 − QB)

AF0 + BG0
,

CS =
A(G0 + QA)

AF0 + BG0
, T =

B(G0 + QA)

AF0 + BG0
.

All these transfer functions are stable if the rational function AF0 + BG0 does
not have any zeros in the right half plane and the controller C given by (12.9) is
therefore stabilizing for any stable Q. A block diagram of the closed loop system
with the controller C is shown in Figure 12.8b. Notice that the transfer function Q
appears affinely in the expressions for the Gang of Four, which is very useful if we
want to determine the transfer function Q to obtain specific properties.

12.3 Performance in the Presence of Uncertainty
So far we have investigated the risk for instability and robustness to process un-
certainty. We will now explore how responses to load disturbances, measurement
noise and reference signals are influenced by process variations. To do this we will
analyze the system in Figure 12.9, which is identical to the basic feedback loop
analyzed in Chapter 11.

Disturbance Attenuation
The sensitivity function S gives a rough characterization of the effect of feedback
on disturbances, as was discussed in Section 11.3. Amore detailed characterization
is given by the transfer function from load disturbances to process output:

Gyd =
P

1+ PC
= PS. (12.10)



12.3. PERFORMANCE IN THE PRESENCE OF UNCERTAINTY 359

Load disturbances typically have low frequencies, and it is therefore important that
the transfer function be small for low frequencies. For processes with constant
low-frequency gain and a controller with integral action we have Gyd ≈ s/ki . The
integral gain ki is thus a simple measure of the attenuation of load disturbances.
To find out how the transfer function Gyd is influenced by small variations in

the process transfer function we differentiate (12.10) with respect to P yielding

dGyd

d P
=

1
(1+ PC)2

=
SP

P(1+ PC)
= S

Gyd

P
,

and it follows that
dGyd

Gyd
= S

dP
P

. (12.11)

The response to load disturbances is thus insensitive to process variations for fre-
quencies where |S(iω)| is small, i.e., for frequencies where load disturbances are
important.
A drawback with feedback is that the controller feeds measurement noise into

the system. In addition to the load disturbance rejection, it is thus also important that
the control actions generated bymeasurement noise are not too large. It follows from
Figure 12.9 that the transfer function Gun from measurement noise to controller
output is given by

Gun = −
C

1+ PC
= −

T
P

. (12.12)

Since measurement noise typically has high frequencies, the transfer function Gun
should not be too large for high frequencies. The loop transfer function PC is
typically small for high frequencies, which implies that Gun ≈ C for large s. To
avoid injecting too much measurement noise it is therefore important that C(s)
be small for large s. This property is called high-frequency roll-off. An example
is filtering of the measured signal in a PID controller to reduce the injection of
measurement noise; see Section 10.5.
To determine how the transfer function Gun is influenced by small variations in

the process transfer, we differentiate equation (12.12):

dGun

d P
=

d
dP

(
−

C
1+ PC

)
=

C
(1+ PC)2

C = T
Gun

P
.

Rearranging the terms gives
dGun

Gun
= T

dP
P

. (12.13)

Since the complementary sensitivity function is also small for high frequencies, we
find that process uncertainty has little influence on the transfer function Gun for
frequencies where measurements are important.
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Figure 12.10: Operational amplifier with uncertain dynamics. The circuit on the left is mod-
eled using the transfer function G(s) to capture its dynamic properties and it has a load at
the output. The block diagram on the right shows the input/output relationships. The load is
represented as a disturbance d applied at the output of G(s).

Reference Signal Tracking
The transfer function from reference to output is given by

Gyr =
PCF
1+ PC

= T F, (12.14)

which contains the complementary sensitivity function. To see how variations in P
affect the performance of the system, we differentiate equation (12.14) with respect
to the process transfer function:

dGyr

d P
=

CF
1+ PC

−
PCFC

(1+ PC)2
=

CF
(1+ PC)2

= S
Gyr

P
,

and it follows that dGyr

Gyr
= S

dP
P

. (12.15)

The relative error in the closed loop transfer function thus equals the product of
the sensitivity function and the relative error in the process. In particular, it follows
from equation (12.15) that the relative error in the closed loop transfer function is
small when the sensitivity is small. This is one of the useful properties of feedback.
As in the last section, there are some mathematical assumptions that are re-

quired for the analysis presented here to hold. As already stated, we require that
the perturbations$ be small (as indicated by writing dP). Second, we require that
the perturbations be stable, so that we do not introduce any new right half-plane
poles that would require additional encirclements in the Nyquist criterion. Also, as
before, this condition is conservative: it allows for any perturbation that satisfies
the given bounds, while in practice the perturbations may be more restricted.

Example 12.7 Operational amplifier circuit
To illustrate the use of these tools, consider the performance of an op amp-based
amplifier, as shown in Figure 12.10. We wish to analyze the performance of the
amplifier in the presence of uncertainty in the dynamic response of the op amp and
changes in the loading on the output. We model the system using the block diagram
in Figure 12.10b, which is based on the derivation in Example 9.1.
Consider first the effect of unknown dynamics for the operational amplifier. If

we model the dynamics of the op amp as v2 = −G(s)v , then the transfer function
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for the overall circuit is given by

Gv2v1 = −
R2
R1

G(s)
G(s) + R2/R1 + 1

.

We see that if G(s) is large over the desired frequency range, then the closed loop
system is very close to the ideal response α = R2/R1. AssumingG(s) = b/(s+a),
where b is the gain-bandwidth product of the amplifier, as discussed in Example 8.3,
the sensitivity function and the complementary sensitivity function become

S =
s + a

s + a + αb
, T =

αb
s + a + αb

.

The sensitivity function around thenominal values tells us how the tracking response
response varies as a function of process perturbations:

dGyr

Gyr
= S

dP
P

.

We see that for low frequencies, where S is small, variations in the bandwidth a or
the gain-bandwidth product b will have relatively little effect on the performance
of the amplifier (under the assumption that b is sufficiently large).
To model the effects of an unknown load, we consider the addition of a dis-

turbance at the output of the system, as shown in Figure 12.10b. This disturbance
represents changes in the output voltage due to loading effects. The transfer func-
tion Gyd = S gives the response of the output to the load disturbance, and we see
that if S is small, then we are able to reject such disturbances. The sensitivity ofGyd
to perturbations in the process dynamics can be computed by taking the derivative
of Gyd with respect to P:

dGyd

d P
=

−C
(1+ PC)2

= −
T
P
Gyd =⇒

dGyd

Gyd
= −T

dP
P

.

Thus we see that the relative changes in the disturbance rejection are roughly the
same as the process perturbations at low frequency (when T is approximately 1)
and drop off at higher frequencies. However, it is important to remember that Gyd
itself is small at low frequency, and so these variations in relative performance may
not be an issue in many applications. ∇

12.4 Robust Pole Placement
In Chapters 6 and 7 we saw how to design controllers by setting the locations of
the eigenvalues of the closed loop system. If we analyze the resulting system in the
frequency domain, the closed loop eigenvalues correspond to the poles of the closed
loop transfer function and hence these methods are often referred to as design by
pole placement.
State space design methods, like many methods developed for control system

design, do not explicitly take robustness into account. In such cases it is essential to
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Figure 12.11:Observer-based control of steering. TheNyquist plot (left) andBode plot (right)
of the loop transfer function for vehicle steering with a controller based on state feedback
and an observer. The controller provides stable operation, but with very low gain and phase
margin.

always investigate the robustness because there are seemingly reasonable designs
that give controllerswith poor robustness.We illustrate this by analyzing controllers
designed by state feedback and observers. The closed loop poles can be assigned
to arbitrary locations if the system is observable and reachable. However, if we
want to have a robust closed loop system, the poles and zeros of the process impose
severe restrictions on the location of the closed loop poles. Some examples are first
given; based on the analysis of these examples we then present design rules for
robust pole (eigenvalue) placement.

Slow Stable Process Zeros
We will first explore the effects of slow stable zeros, and we begin with a simple
example.

Example 12.8 Vehicle steering
Consider the linearized model for vehicle steering in Example 8.6, which has the
transfer function

P(s) =
0.5s + 1

s2
.

A controller based on state feedback was designed in Example 6.4, and state feed-
back was combined with an observer in Example 7.4. The system simulated in
Figure 7.8 has closed loop poles specified by ωc = 0.3, ζc = 0.707, ωo = 7 and
ζo = 9. Assume that we want a faster closed loop system and choose ωc = 10,
ζc = 0.707,ωo = 20 and ζo = 0.707.Using the state representation in Example 7.3,
a pole placement design gives state feedback gains k1 = 100 and k2 = −35.86 and
observer gains l1 = 28.28 and l2 = 400. The controller transfer function is

C(s) =
−11516s + 40000
s2 + 42.4s + 6657.9

.

Figure 12.11 shows Nyquist and Bode plots of the loop transfer function. The
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Nyquist plot indicates that the robustness is poor since the loop transfer function is
very close to the critical point −1. The phase margin is 7◦ and the stability margin
is sm = 0.077. The poor robustness shows up in the Bode plot, where the gain
curve hovers around the value 1 and the phase curve is close to −180◦ for a wide
frequency range. More insight is obtained by analyzing the sensitivity functions,
shown by solid lines in Figure 12.12. The maximum sensitivities are Ms = 13 and
Mt = 12, indicating that the system has poor robustness.
At first sight it is surprising that a controller where the nominal closed system

has well damped poles and zeros is so sensitive to process variations. We have an
indication that something is unusual because the controller has a zero at s = 3.5
in the right half-plane. To understand what happens, we will investigate the reason
for the peaks of the sensitivity functions.
Let the transfer functions of the process and the controller be

P(s) =
np(s)
dp(s)

, C(s) =
nc(s)
dc(s)

,

where np(s), nc(s), dp(s) and dc(s) are the numerator and denominator polynomi-
als. The complementary sensitivity function is

T (s) =
PC

1+ PC
=

np(s)nc(s)
dp(s)dc(s) + np(s)np(s)

.

The poles of T (s) are the poles of the closed loop system and the zeros are given
by the zeros of the process and controller. Sketching the gain curve of the comple-
mentary sensitivity function we find that T (s) = 1 for low frequencies and that
|T (iω)| starts to increase at its first zero, which is the process zero at s = −2. It
increases further at the controller zero at s = 3.5, and it does not start to decrease
until the closed loop poles appear at ωc = 10 and ωo = 20. We can thus conclude
that there will be a peak in the complementary sensitivity function. The magnitude
of the peak depends on the ratio of the zeros and the poles of the transfer function.
The peak of the complementary sensitivity function can be avoided by assigning

a closed loop pole close to the slow process zero. We can achieve this by choosing
ωc = 10 and ζc = 2.6, which gives closed loop poles at s = −2 and s = −50. The
controller transfer function then becomes

C(s) =
3628s + 40000

s2 + 80.28s + 156.56
= 3628

s + 11.02
(s + 2)(s + 78.28)

.

The sensitivity functions are shown by dashed lines in Figure 12.12. The controller
gives the maximum sensitivities Ms = 1.34 and Mt = 1.41, which give much
better robustness. Notice that the controller has a pole at s = −2 that cancels the
slow process zero. The design can also be done simply by canceling the slow stable
process zero and designing the controller for the simplified system. ∇

One lesson from the example is that it is necessary to choose closed loop poles
that are equal to or close to slow stable process zeros. Another lesson is that slow
unstable process zeros impose limitations on the achievable bandwidth, as already



364 CHAPTER 12. ROBUST PERFORMANCE

100 102

10−2

100

 

 

100 102

10−2

100

Original
Improved

|S
(i

ω
)|

|T
(i

ω
)|

Frequency ω [rad/s]Frequency ω [rad/s]

Figure 12.12: Sensitivity functions for observer-based control of vehicle steering. The com-
plementary sensitivity function (left) and the sensitivity function (right) for the original con-
troller with ωc = 10, ζc = 0.707, ωo = 20, ζo = 0.707 (solid) and the improved controller
with ωc = 10, ζc = 2.6 (dashed).

noted in Section 11.5.

Fast Stable Process Poles
The next example shows the effect of fast stable poles.

Example 12.9 Fast system poles
Consider a PI controller for a first-order system,where the process and the controller
have the transfer functions P(s) = b/(s + a) and C(s) = kp + ki/s. The loop
transfer function is

L(s) =
b(kps + ki )
s(s + a)

,

and the closed loop characteristic polynomial is.

s(s + a) + b(kps + ki ) = s2 + (a + bkp)s + kib

If we specify the desired closed loop poles should be −p1 and −p2, we find that
the controller parameters are given by

kp =
p1 + p2 − a

b
, ki =

p1 p2
b

.

The sensitivity functions are then

S(s) =
s(s + a)

(s + p1)(s + p2)
, T (s) =

(p1 + p2 − a)s + p1 p2
(s + p1)(s + p2)

.

Assume that the process pole−a is much more negative than the closed loop poles
−p1 and−p2, say, p1 < p2 , a. Notice that the proportional gain is negative and
that the controller has a zero in the right half-plane if a > p1 + p2, an indication
that the system has bad properties.
Next consider the sensitivity function, which is 1 for high frequencies. Moving

fromhigh to low frequencies,wefind that the sensitivity increases at the process pole
s = −a. The sensitivity does not decrease until the closed loop poles are reached,
resulting in a large sensitivity peak that is approximately a/p2. The magnitude of
the sensitivity function is shown in Figure 12.13 for a = b = 1, p1 = 0.05 and
p2 = 0.2. Notice the high-sensitivity peak. For comparison we also show the gain
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Figure 12.13: Gain curves for Bode plots of the sensitivity function S for designs with
p1 < p2 < a (left) and a < p1 < p2 (right). The solid lines are the true sensitivities, and the
dashed lines are the asymptotes.

curve for the case when the closed loop poles (p1 = 5, p2 = 20) are faster than the
process pole (a = 1).
The problem with poor robustness can be avoided by choosing one closed loop

pole equal to the process pole, i.e., p2 = a. The controller gains then become

kp =
p1
b

, ki =
ap1
l

,

which means that the fast process pole is canceled by a controller zero. The loop
transfer function and the sensitivity functions are

L(s) =
bkp
s

, S(s) =
s

s + bkp
, T (s) =

bkp
s + bkp

.

The maximum sensitivities are now less than 1 for all frequencies. Notice that this
is possible because the process transfer function goes to zero as s−1. ∇

Design Rules for Pole Placement
Based on the insight gained from the examples, it is now possible to obtain design
rules that give designs with good robustness. Consider the expression (12.7) for
maximum complementary sensitivity, repeated here:

Mt = sup
ω

|T (iω)| =
∥∥∥

PC
1+ PC

∥∥∥
∞

.

Let ωgc be the desired gain crossover frequency. Assume that the process has zeros
that are slower than ωgc. The complementary sensitivity function is 1 for low fre-
quencies, and it increases for frequencies close to the process zeros unless there is a
closed loop pole in the neighborhood. To avoid large values of the complementary
sensitivity function we find that the closed loop system should therefore have poles
close to or equal to the slow stable zeros. This means that slow stable zeros should
be canceled by controller poles. Since unstable zeros cannot be canceled, the pres-
ence of slow unstable zeros means that achievable gain crossover frequency must
be smaller than the slowest unstable process zero.
Now consider process poles that are faster than the desired gain crossover fre-
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quency. Consider the expression for the maximum of the sensitivity function:

Ms = sup
ω

|S(iω)| =
∥∥∥

1
1+ PC

∥∥∥
∞

.

The sensitivity function is 1 for high frequencies. Moving from high to low fre-
quencies, the sensitivity function increases at the fast process poles. Large peaks
can result unless there are closed loop poles close to the fast process poles. To avoid
large peaks in the sensitivity the closed loop system should therefore have poles
that match the fast process poles. This means that the controller should cancel the
fast process poles by controller zeros. Since unstable modes cannot be canceled,
the presence of a fast unstable pole implies that the gain crossover frequency must
be sufficiently large.
To summarize, we obtain the following simple rule for choosing closed loop

poles: slow stable process zeros should be matched by slow closed loop poles, and
fast stable process poles should bematched by fast closed loop poles. Slow unstable
process zeros and fast unstable process poles impose severe limitations.

Example 12.10 Nanopositioning system for an atomic force microscope
A simple nanopositioner was explored in Example 9.9, where it was shown that
the system could be controlled using an integral controller. The performance of
the closed loop was poor because the gain crossover frequency was limited to
ωgc = 2ζω0(1− sm). It can be shown that little improvement is obtained by using
a PI controller. To achieve improved performance, we will therefore apply PID
control. For a modest performance increase, we will use the design rule derived in
Example 12.9 that fast stable process poles should be canceled by controller zeros.
The controller transfer function should thus be chosen as

C(s) =
kds2 + kps + ki

s
=
ki
s
s2 + 2ζ s + a2

a2
, (12.16)

which gives kp = 2ζki/a and kd = ki/a2.
Figure 12.14 shows the gain curves for the Gang of Four for a system designed

with ki = 0.5.A comparisonwith Figure 9.12 shows that the bandwidth is increased
significantly fromωgc = 0.01 toωgc = ki = 0.5. Since the process pole is canceled,
the systemwill, however, still be very sensitive to load disturbanceswith frequencies
close to the resonant frequency. The gain curve of CS has a dip or a notch at the
resonant frequency,which implies that the controller gain is very low for frequencies
around the resonance. The gain curve also shows that the system is very sensitive
to high-frequency noise. The system will likely be unusable because the gain goes
to infinity for high frequencies.
The sensitivity to high frequency noise can be remedied by modifying the con-

troller to be
C(s) =

ki
s

s2 + 2ζas + a2

a2(1+ sT f + (sT f )2/2)
, (12.17)

which has high-frequency roll-off. Selection of the constant T f for the filter is a
compromise between attenuation of high-frequency measurement noise and ro-
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Figure 12.14: Nanopositioning system control via cancellation of the fast process pole.
Gain plots for the Gang of Four for PID control with second-order filtering (12.17) are
shown by solid lines, and the dashed lines show results for an ideal PID controller without
filtering (12.16).

bustness. A large value of T f reduces the effects of sensor noise significantly, but
it also reduces the stability margin. Since the gain crossover frequency without
filtering is ki , a reasonable choice is TF = 0.2/T f , as shown by the solid curves in
Figure 12.14. The plots of |CS(iω)| and |S(iω)| show that the sensitivity to high-
frequency measurement noise is reduced dramatically at the cost of a marginal
increase of sensitivity. Notice that the poor attenuation of disturbances with fre-
quencies close to the resonance is not visible in the sensitivity function because of
the exact cancellation of poles and zeros.
The designs thus far have the drawback that load disturbances with frequencies

close to the resonance are not attenuated.Wewill now consider a design that actively
attenuates the poorly damped modes. We start with an ideal PID controller where
the design can be done analytically, and we add high-frequency roll-off. The loop
transfer function obtained with this controller is

L(s) =
kds2 + kps + ki
s(s2 + 2ζas + a2)

. (12.18)

The closed loop system is of third order, and its characteristic polynomial is

s3 + (kda2 + 2ζa)s2 + (kp + 1)a2s + kia2. (12.19)

A general third-order polynomial can be parameterized as

s3 + (α0 + 2ζ )ω0s2 + (1+ 2α0ζ )ω20s + α0ω
3
0. (12.20)

The parameters α0 and ζ give the relative configuration of the poles, and the pa-
rameter ω0 gives their magnitudes, and therefore also the bandwidth of the system.
The identification of coefficients of equal powers of s with equation (12.19)
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Figure 12.15: Nanopositioner control using active damping. Gain curves for the Gang of
Four for PID control of the nanopositioner designed for ω0 = a (dash-dotted), 2a (dashed),
and 4a (solid). The controller has high-frequency roll-off and has been designed to give
active damping of the oscillatory mode. The different curves correspond to different choices
of magnitudes of the poles, parameterized by ω0 in equation (12.19).

gives a linear equation for the controller parameters, which has the solution

kp =
(1+ 2α0ζ )ω20

a2
− 1, ki =

α0ω
3
0

a2
, kd =

(α0 + 2ζ )ω0
a2

− 2ζa. (12.21)

To obtain a design with active damping, it is necessary that the closed loop band-
width be at least as fast as the oscillatory modes. Adding high-frequency roll-off,
the controller becomes

C(s) =
kds2 + kps + k

s(1+ sT f + (sT f )2/2)
. (12.22)

The value T f = Td/10 = 0.1 kd/k is a good value for the filtering time constant.
Figure 12.15 shows the gain curves of the Gang of Four for designs with ζ =

0.707, α0 = 1 and ω0 = a, 2a and 4a. The figure shows that the largest values of
the sensitivity function and the complementary sensitivity function are small. The
gain curve for PS shows that the load disturbances are now well attenuated over
the whole frequency range, and attenuation increases with increasing ω0. The gain
curve forCS shows that large control signals are required to provide active damping.
The high gain of CS for high frequencies also shows that low-noise sensors and
actuators with a wide range are required. The largest gains for CS are 19, 103
and 434 for ω0 = a, 2a and 4a, respectively. There is clearly a trade-off between
disturbance attenuation and controller gain. A comparison of Figures 12.14 and
12.15 illustrates the trade-offs between control action and disturbance attenuation
for the designs with cancellation of the fast process pole and active damping. ∇



12.5. DESIGN FOR ROBUST PERFORMANCE 369

12.5 Design for Robust Performance !

Control design is a rich problem where many factors have to be taken into account.
Typical requirements are that load disturbances should be attenuated, the controller
should inject only a moderate amount of measurement noise, the output should
follow variations in the command signal well and the closed loop system should be
insensitive to process variations. For the system in Figure 12.9 these requirements
can be captured by specifications on the sensitivity functions S and T and the
transfer functions Gyd , Gun , Gyr and Gur . Notice that it is necessary to consider
at least six transfer functions, as discussed Section 11.1. The requirements are
mutually conflicting, and it is necessary to make trade-offs. The attenuation of load
disturbances will be improved if the bandwidth is increased, but so will the noise
injection.
It is highly desirable to have design methods that can guarantee robust perfor-

mance. Such design methods did not appear until the late 1980s. Many of these
design methods result in controllers having the same structure as the controller
based on state feedback and an observer. In this section we provide a brief review
of some of the techniques as a preview for those interested in more specialized
study.

Quantitative Feedback Theory
Quantitative feedback theory (QFT) is a graphical design method for robust loop
shaping that was developed by I.M.Horowitz [Hor91]. The idea is to first determine
a controller that gives a complementary sensitivity that is robust to process variations
and then to shape the response to reference signals by feedforward. The idea is
illustrated in Figure 12.16a, which shows the level curves of the complementary
sensitivity function T on aNyquist plot. The complementary sensitivity function has
unit gain on the line Re L(iω) = −0.5. In the neighborhood of this line, significant
variations in process dynamics only give moderate changes in the complementary
transfer function. The shaded part of the figure corresponds to the region 0.9 <
|T (iω)| < 1.1. To use the design method, we represent the uncertainty for each
frequency by a region and attempt to shape the loop transfer function so that the
variation in T is as small as possible. The design is often performed using the
Nichols chart shown in Figure 12.16b.

Linear Quadratic Control
One way to make the trade-off between the attenuation of load disturbances and
the injection of measurement noise is to design a controller that minimizes the loss
function

J =
1
T

∫ T

0

(
y2(t) + ρu2(t)

)
dt,

where ρ is a weighting parameter as discussed in Section 6.3. This loss function
gives a compromise between load disturbance attenuation and disturbance injec-
tion because it balances control actions against deviations in the output. If all state



370 CHAPTER 12. ROBUST PERFORMANCE

−5 0 5

−4

−2

0

2

4

Re L(iω)

Im
L(
iω

)

(a) Hall chart

−4 −3 −2 −1 0
−1

0

1

2

3

arg L(iω) [rad]

lo
g|
L(
iω

)|

(b) Nichols chart

Figure 12.16: Hall and Nichols charts. The Hall chart is a Nyquist plot with curves for
constant gain and phase of the complementary sensitivity function T . The Nichols chart
is the conformal map of the Hall chart under the transformation N = log L (with the scale
flipped). The dashed curve is the linewhere |T (iω)| = 1, and the shaded region corresponding
to loop transfer functions whose complementary sensitivity changes by no more than ±10%
is shaded.

variables are measured, the controller is a state feedback u = −Kx and it has the
same form as the controller obtained by eigenvalue assignment (pole placement)
in Section 6.2. However, the controller gain is obtained by solving an optimiza-
tion problem. It has been shown that this controller is very robust. It has a phase
margin of at least 60◦ and an infinite gain margin. The controller is called a linear
quadratic control or LQ control because the processmodel is linear and the criterion
is quadratic.
When all state variables are not measured, the state can be reconstructed using

an observer, as discussed in Section 7.3. It is also possible to introduce process
disturbances and measurement noise explicitly in the model and to reconstruct
the states using a Kalman filter, as discussed briefly in Section 7.4. The Kalman
filter has the same structure as the observer designed by eigenvalue assignment in
Section 7.3, but the observer gains L are now obtained by solving an optimization
problem. The control law obtained by combining linear quadratic control with a
Kalman filter is called linear quadratic Gaussian control or LQG control. The
Kalman filter is optimal when the models for load disturbances and measurement
noise are Gaussian.
It is interesting that the solution to the optimization problem leads to a controller

having the structure of a state feedback and an observer. The state feedback gains
depend on the parameter ρ, and the filter gains depend on the parameters in the
model that characterize process noise and measurement noise (see Section 7.4).
There are efficient programs to compute these feedback and observer gains.
The nice robustness properties of state feedback are unfortunately lost when the

observer is added. It is possible to choose parameters that give closed loop systems
with poor robustness, similar to Example 12.8. We can thus conclude that there is a
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loop in Figure 12.9 where the reference signal is zero. In this case we have w = (n, d) and
z = (y,−u).

fundamental difference between using sensors for all states and reconstructing the
states using an observer.

H∞ Control
!

Robust control design is often called H∞ control for reasons that will be explained
shortly. The basic ideas are simple, but the details are complicated and we will
therefore just give the flavor of the results. A key idea is illustrated in Figure 12.17,
where the closed loop system is represented by two blocks, the process P and
the controller C as discussed in Section 11.1. The process P has two inputs, the
control signal u, which can be manipulated by the controller, and the generalized
disturbance w, which represents all external influences, e.g., command signals and
disturbances. The process has two outputs, the generalized error z, which is a vector
of error signals representing the deviation of signals from their desired values, and
the measured signal y, which can be used by the controller to compute u. For a
linear system and a linear controller the closed loop system can be represented by
the linear system

z = H(P(s),C(s))w, (12.23)

which tells how the generalized error z depends on the generalized disturbances
w. The control design problem is to find a controller C such that the gain of the
transfer function H is small evenwhen the process has uncertainties. There aremany
different ways to specify uncertainty and gain, giving rise to different designs. The
names H2 and H∞ control correspond to the norms ‖H‖2 and ‖H‖∞.
To illustrate the ideas we will consider a regulation problem for a system where

the reference signal is assumed to be zero and the external signals are the load
disturbance d and the measurement noise n, as shown in Figure 12.17 (right). The
generalized input is w = (−n, d). (The negative sign of n is not essential but is
chosen to obtain somewhat nicer equations.) The generalized error is chosen as
z = (η, ν), where η is the process output and ν is the part of the load disturbance
that is not compensated by the controller. The closed loop system is thus modeled
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by

z =

 y

−u


 =




1
1+ PC

P
1+ PC

C
1+ PC

PC
1+ PC





nd


 = H(P,C)


nd


 , (12.24)

which is the same as equation (12.23). A straightforward calculation shows that

‖H(P,C))‖∞ = sup
ω

√
(1+ |P(iω)|2)(1+ |C(iω)|2)

|1+ P(iω)C(iω)|
. (12.25)

There are numerical methods for finding a controller such that ‖H(P,C)‖∞ <
γ , if such a controller exists. The best controller can then be found by iterating on
γ . The calculations can be made by solving algebraic Riccati equations, e.g., by
using the command hinfsyn in MATLAB. The controller has the same order as
the process and the same structure as the controller based on state feedback and an
observer; see Figure 7.7 and Theorem 7.3.
Notice that if we minimize ‖H(P,C)‖∞, we make sure that the transfer func-

tionsGyd = P/(1+ PC), representing the transmission of load disturbances to the
output, and Gun = −C/(1 + PC), representing how measurement noise is trans-
mitted to the control signal, are small. Since the sensitivity and the complementary
sensitivity functions are also elements of H(P,C), we have also guaranteed that
the sensitivities are less than γ . The design methods thus balance performance and
robustness.
There are strong robustness results associated with the H∞ controller. It follows

from equations (12.4) and (12.25) that

‖H(P,C)‖∞ =
1

δν(P, −1/C)
. (12.26)

The inverse of‖H(P,C)‖∞ is thus equal to theVinnicombedistance between P and
−1/C and can therefore be interpreted as a generalized stability margin. Compare
this with sm , which we defined as the shortest distance between the Nyquist curve
of the loop transfer function and the critical point −1. It also follows that if we
find a controller C with ‖H(P,C)‖∞ < γ , then this controller will stabilize any
process P∗ such that δν(P, P∗) < 1/γ .

Disturbance Weighting
Minimizing the gain ‖H(P,C)‖∞ means that the gains of all individual signal
transmissions from disturbances to outputs are less than γ for all frequencies of
the input signals. The assumption that the disturbances are equally important and
that all frequencies are also equally important is not very realistic; recall that load
disturbances typically have low frequencies and measurement noise is typically
dominated by high frequencies. It is straightforward to modify the problem so that
disturbances of different frequencies are given different emphasis, by introducing
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Figure12.18:Blockdiagramsof a systemwith disturbanceweighting.The left figure provides
a frequency weight on processes disturbances. Through block diagrammanipulation, this can
be converted to the standard problem on the right.

a weighting filter on the load disturbance as shown in Figure 12.18. For example,
low-frequency load disturbances will be enhanced by choosing W as a low-pass
filter because the actual load disturbance is Wd̄ .
By using block diagram manipulation as shown in Figure 12.18, we find that

the system with frequency weighting is equivalent to the system with no frequency
weighting in Figure 12.18 and the signals are related through

z̄ =

y
ū







1
1+ .P .C

.P
1+ .P .C

.C
1+ .P .C

.P .C
1+ .P .C






n
d̄


 = H(.P, .C)w̄, (12.27)

where .P = PW and .C = W−1C . The problem of finding a controller .C that
minimizes the gain of H(.P, .C) is thus equivalent to the problem without distur-
bance weighting; having obtained .C , the controller for the original system is then
C = W.C . Notice that if we introduce the frequency weighting W = k/s, we will
automatically get a controller with integral action.

Limits of Robust Design
There is a limit to what can be achieved by robust design. In spite of the nice
properties of feedback, there are situations where the process variations are so
large that it is not possible to find a linear controller that gives a robust system
with good performance. It is then necessary to use other types of controllers. In
some cases it is possible to measure a variable that is well correlated with the
process variations. Controllers for different parameter values can then be designed
and the corresponding controller can be chosen based on the measured signal.
This type of control design is called gain scheduling. The cruise controller is a
typical examplewhere themeasured signal could be gear position and velocity.Gain
scheduling is the common solution for high-performance aircraft where scheduling
is done based onMach number and dynamic pressure.When using gain scheduling,
it is important to make sure that switches between the controllers do not create
undesirable transients (often referred to as bumpless transfer).
If it is not possible to measure variables related to the parameters, automatic

tuning and adaptive control can be used. In automatic tuning the process dynamics
are measured by perturbing the system, and a controller is then designed automat-
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ically. Automatic tuning requires that parameters remain constant, and it has been
widely applied for PID control. It is a reasonable guess that in the future many
controllers will have features for automatic tuning. If parameters are changing, it
is possible to use adaptive methods where process dynamics are measured online.

12.6 Further Reading
The topic of robust control is a large one, with many articles and textbooks devoted
to the subject. Robustness was a central issue in classical control as described in
Bode’s classical book [Bod45]. Robustness was deemphasized in the euphoria of
the development of design methods based on optimization. The strong robustness
of controllers based on state feedback, shown by Anderson and Moore [AM90],
contributed to the optimism. The poor robustness of output feedback was pointed
out by Rosenbrock [RM71], Horowitz [Hor75] and Doyle [Doy78] and resulted
in a renewed interest in robustness. A major step forward was the development of
design methods where robustness was explicitly taken into account, such as the
seminal work of Zames [Zam81]. Robust control was originally developed using
powerful results from the theory of complex variables, which gave controllers of
high order. A major breakthrough was made by Doyle, Glover, Khargonekar and
Francis [DGKF89], who showed that the solution to the problem could be obtained
using Riccati equations and that a controller of low order could be found. This paper
led to an extensive treatment of H∞ control, including books by Francis [Fra87],
McFarlane and Glover [MG90], Doyle, Francis and Tannenbaum [DFT92], Green
andLimebeer [GL95], Zhou,Doyle andGlover [ZDG96], Skogestand and Postleth-
waite [SP05] and Vinnicombe [Vin01]. A major advantage of the theory is that it
combines much of the intuition from servomechanism theory with sound numerical
algorithms based on numerical linear algebra and optimization. The results have
been extended to nonlinear systems by treating the design problem as a gamewhere
the disturbances are generated by an adversary, as described in the book by Basar
and Bernhard [BB91]. Gain scheduling and adaptation are discussed in the book
by Åström and Wittenmark [ÅW08].

Exercises
12.1 Consider systems with the transfer functions P1 = 1/(s + 1) and P2 =
1/(s + a). Show that P1 can be changed continuously to P2 with bounded additive
andmultiplicative uncertainty ifa > 0 but not ifa < 0.Also show that no restriction
on a is required for feedback uncertainty.

12.2 Consider systems with the transfer functions P1 = (s + 1)/(s + 1)2 and
P2 = (s + a)/(s + 1)2. Show that P1 can be changed continuously to P2 with
bounded feedback uncertainty if a > 0 but not if a < 0. Also show that no
restriction on a is required for additive and multiplicative uncertainties.
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12.3 (Difference in sensitivity functions) Let T (P,C) be the complementary sen-
sitivity function for a system with process P and controller C . Show that

T (P1,C) − T (P2,C) =
(P1 − P2)C

(1+ P1C)(1+ P2C)
,

and derive a similar formula for the sensitivity function.

12.4 (The Riemann sphere) Consider systems with the transfer functions P1 = !
k/(s + 1) and P2 = k/(s − 1). Show that

d(P1, P2) =
2k

1+ k2
, δν(P1, P2) =






1, if k < 1
2k

1+ k2
otherwise.

Use the Riemann sphere to show geometrically that δν(P1, P2) = 1 if k < 1. (Hint:
It is sufficient to evaluate the transfer function for ω = 0.)

12.5 (Stability margins) Consider a feedback loop with a process and a controller
having transfer functions P andC . Assume that themaximum sensitivity isMs = 2.
Show that the phase margin is at least 30◦ and that the closed loop system will be
stable if the gain is changed by 50%.

12.6 (Bode’s ideal loop transfer function) Make Bode and Nyquist plots of Bode’s
ideal loop transfer function. Show that the phase margin is ϕm =180◦–90◦n and
that the stability margin is sm = arcsin π(1− n/2).

12.7 Consider a process with the transfer function P(s) = k/(s(s+ 1)), where the
gain can vary between 0.1 and 10. A controller that is robust to these gain variations
can be obtained by finding a controller that gives the loop transfer function L(s) =
1/(s

√
s). Suggest how the transfer function can be implemented by approximating

it by a rational function.

12.8 (Smith predictor) The Smith predictor, a controller for systems with time
delays, is a special version of Figure 12.8a with P(s) = e−sτ P0(s) and C(s) =
C0(s)/(1+C0(s)P(s)). The controllerC0(s) is designed to give good performance
for the process P0(s). Show that the sensitivity functions are

S(s) =
1+ (1− e−sτ )P0(s)C0(s)

1+ P0(s)C0(s)
, T (s) =

P0(s)C0(s)
1+ P0(s)C0(s)

e−sτ .

12.9 (Ideal delay compensator) Consider a process whose dynamics are a pure
time delay with transfer function P(s) = e−s . The ideal delay compensator is a
controller with the transfer function C(s) = 1/(1− e−s). Show that the sensitivity
functions are T (s) = e−s and S(s) = 1− e−s and that the closed loop system will
be unstable for arbitrarily small changes in the delay.

12.10 (Vehicle steering) Consider the Nyquist curve in Figure 12.11. Explain why
part of the curve is approximately a circle. Derive a formula for the center and the
radius and compare with the actual Nyquist curve.
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12.11 Consider a process with the transfer function

P(s) =
(3+ 3)(s + 200)

(s + 1)(s2 + 10s + 40)(s + 40)
.

Discuss suitable choices of closed loop poles for a design that gives dominant poles
with undamped natural frequency 1 and 10.

12.12 (AFM nanopositioning system) Consider the design in Example 12.10 and
explore the effects of changing parameters α0 and ζ0.

12.13 (H∞ control) Consider the matrix H(P,C) in equation (12.24). Show that
it has the singular values

σ1 = 0, σ2 = σ̄ = sup
ω

√
(1+ |P(iω)|2)(1+ |C(iω)|2)

|1+ P(iω)C(iω)|
= ‖H(P,C))‖∞.

Also show that σ̄ = 1/dν(P, −1/C), which implies that 1/σ̄ is a generalization of
the closest distance of the Nyquist plot to the critical point.

12.14 Show that

δv (P, −1/C) = inf
ω

|P(iω) + 1/C(iω)|
√

(1+ |P(iω)|2)(1+ 1/|C(iω)|2)
=

1
‖H(P,C))‖∞

.

12.15 Consider the system
dx
dt

= Ax + Bu =

−1 0
1 0


 x +


a − 1

1


 u, y = Cx =


0 1


 y.

Design a state feedback that gives det(s I−BK ) = s2+2ζcωcs+ω2c , and an observer
with det(s I − LC) = s2 + 2ζoωos + ω2o and combine them using the separation
principle to get an output feedback. Choose the numerical values a = 1.5, ωc = 5,
ζc = 0.6 and ωo = 10, ζo = 0.6. Compute the eigenvalues of the perturbed system
when the process gain is increased by 2%. Also compute the loop transfer function
and the sensitivity functions. Is there a way to know beforehand that the system
will be highly sensitive?

12.16 (Robustness using the Nyquist criterion) Another view of robust performance
can be obtained through appeal to the Nyquist criterion. Let Smax(iω) represent a
desired upper bound on our sensitivity function. Show that the system provides this
level of performance subject to additive uncertainty $ if the following inequality
is satisfied:

|1+ L̃| = |1+ L + C$| >
1

|Smax(iω)|
for all ω ≥ 0. (12.28)

Describe how to check this condition using a Nyquist plot.


