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4 CHAPTER 1. INTRODUCTION
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Figure 1.3: Components of a computer-controlled system. The upper dashed box represents
the process dynamics, which include the sensors and actuators in addition to the dynamical
system being controlled. Noise and external disturbances can perturb the dynamics of the
process. The controller is shown in the lower dashed box. It consists of a filter and analog-to-
digital (A/D) and digital-to-analog (D/A) converters, as well as a computer that implements
the control algorithm. A system clock controls the operation of the controller, synchronizing
the A/D, D/A and computing processes. The operator input is also fed to the computer as an
external input.

A modern controller senses the operation of a system, compares it against the
desired behavior, computes corrective actions based on a model of the system’s
response to external inputs and actuates the system to effect the desired change.
This basic feedback loop of sensing, computation and actuation is the central con-
cept in control. The key issues in designing control logic are ensuring that the
dynamics of the closed loop system are stable (bounded disturbances give bounded
errors) and that they have additional desired behavior (good disturbance attenua-
tion, fast responsiveness to changes in operating point, etc). These properties are
established using a variety of modeling and analysis techniques that capture the
essential dynamics of the system and permit the exploration of possible behaviors
in the presence of uncertainty, noise and component failure.

A typical example of a control system is shown in Figure 1.3. The basic elements
of sensing, computation and actuation are clearly seen. In modern control systems,
computation is typically implemented on a digital computer, requiring the use of
analog-to-digital (A/D) and digital-to-analog (D/A) converters. Uncertainty enters
the system through noise in sensing and actuation subsystems, external disturbances
that affect the underlying system operation and uncertain dynamics in the system
(parameter errors, unmodeled effects, etc). The algorithm that computes the control
action as a function of the sensor values is often called a control law. The system
can be influenced externally by an operator who introduces command signals to
the system.
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Figure 1.11: Supply chain dynamics (after Forrester [75]). Products flow from the producer
to the customer through distributors and retailers as indicated by the solid lines. There are
typically many factories and warehouses and even more distributors and retailers. Multiple
feedback loops are present as each agent tries to maintain the proper inventory level.

many different products, there may be different factories that are geographically
distributed and the factories may require raw material or subassemblies.

Control of supply chains was proposed by Forrester in 1961 [75] and is now
growing in importance. Considerable economic benefits can be obtained by using
models to minimize inventories. Their use accelerated dramatically when infor-
mation technology was applied to predict sales, keep track of products and enable
just-in-time manufacturing. Supply chain management has contributed significantly
to the growing success of global distributors.

Advertising on the Internet is an emerging application of control. With network-
based advertising it is easy to measure the effect of different marketing strategies
quickly. The response of customers can then be modeled, and feedback strategies
can be developed.

Feedback in Nature

Many problems in the natural sciences involve understanding aggregate behavior
in complex large-scale systems. This behavior emerges from the interaction of a
multitude of simpler systems with intricate patterns of information flow. Repre-
sentative examples can be found in fields ranging from embryology to seismology.
Researchers who specialize in the study of specific complex systems often develop
an intuitive emphasis on analyzing the role of feedback (or interconnection) in
facilitating and stabilizing aggregate behavior.

While sophisticated theories have been developed by domain experts for the
analysis of various complex systems, the development of a rigorous methodology
that can discover and exploit common features and essential mathematical structure
is just beginning to emerge. Advances in science and technology are creating a new
understanding of the underlying dynamics and the importance of feedback in a wide
variety of natural and technological systems. We briefly highlight three application
areas here.

Biological Systems. A major theme currently of interest to the biology commu-
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Figure 1.14: Aircraft autopilot system. The Sperry autopilot (left) contained a set of four
gyros coupled to a set of air valves that controlled the wing surfaces. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able to maintain level
flight as a mechanic walked on the wing (right) [105].

weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of sufficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the
age of flying will have arrived, for all other difficulties are of minor
importance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
tried to build stable airplanes. These would have been easier to fly, but because of
their poor maneuverability they could not be brought up into the air. By using their
insight and skillful experiments the Wright brothers made the first successful flight
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, invented by
Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized pendu-
lum to provide an indication of the vertical. He then arranged a feedback mechanism
that would pull the stick to make the plane go up if it was pointing down, and vice
versa. The Sperry autopilot was the first use of feedback in aeronautical engineer-
ing, and Sperry won a prize in a competition for the safest airplane in Paris in 1914.
Figure 1.14 shows the Curtiss seaplane and the Sperry autopilot. The autopilot is
a good example of how feedback can be used to stabilize an unstable system and
hence “design the dynamics” of the aircraft.
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Figure 1.17: Action of a PID controller. At time t , the proportional term depends on the
instantaneous value of the error. The integral portion of the feedback is based on the integral
of the error up to time t (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of change of the error. Td
represents the approximate amount of time in which the error is projected forward (see text).

1.6 Further Reading

The material in this section draws heavily from the report of the Panel on Future
Directions on Control, Dynamics and Systems [155]. Several additional papers
and reports have highlighted the successes of control [159] and new vistas in con-
trol [45, 130, 204]. The early development of control is described by Mayr [148]
and in the books by Bennett [28, 29], which cover the period 1800–1955. A fas-
cinating examination of some of the early history of control in the United States
has been written by Mindell [152]. A popular book that describes many control
concepts across a wide range of disciplines is Out of Control by Kelly [121]. There
are many textbooks available that describe control systems in the context of spe-
cific disciplines. For engineers, the textbooks by Franklin, Powell and Emami-
Naeini [79], Dorf and Bishop [61], Kuo and Golnaraghi [133] and Seborg, Edgar
and Mellichamp [178] are widely used. More mathematically oriented treatments
of control theory include Sontag [182] and Lewis [136]. The book by Hellerstein
et al. [97] provides a description of the use of feedback control in computing sys-
tems. A number of books look at the role of dynamics and feedback in biological
systems, including Milhorn [151] (now out of print), J. D. Murray [154] and Ell-
ner and Guckenheimer [70]. The book by Fradkov [77] and the tutorial article by
Bechhoefer [25] cover many specific topics of interest to the physics community.

Exercises

1.1 (Eye motion) Perform the following experiment and explain your results: Hold-
ing your head still, move one of your hands left and right in front of your face,
following it with your eyes. Record how quickly you can move your hand before
you begin to lose track of it. Now hold your hand still and shake your head left to
right, once again recording how quickly you can move before losing track of your
hand.
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Figure 2.2: Illustration of a state model. A state model gives the rate of change of the state
as a function of the state. The plot on the left shows the evolution of the state as a function of
time. The plot on the right shows the evolution of the states relative to each other, with the
velocity of the state denoted by arrows.

the left, shows the values of the individual states as a function of time. The phase
portrait, on the right, shows the vector field for the system, which gives the state
velocity (represented as an arrow) at every point in the state space. In addition,
we have superimposed the traces of some of the states from different conditions.
The phase portrait gives a strong intuitive representation of the equation as a vector
field or a flow. While systems of second order (two states) can be represented in
this way, unfortunately it is difficult to visualize equations of higher order using
this approach.

The differential equation (2.1) is called an autonomous system because there
are no external influences. Such a model is natural for use in celestial mechanics
because it is difficult to influence the motion of the planets. In many examples, it
is useful to model the effects of external disturbances or controlled forces on the
system. One way to capture this is to replace equation (2.1) by

mq̈ + c(q̇)+ kq = u, (2.2)

where u represents the effect of external inputs. The model (2.2) is called a forced
or controlled differential equation. It implies that the rate of change of the state
can be influenced by the input u(t). Adding the input makes the model richer and
allows new questions to be posed. For example, we can examine what influence
external disturbances have on the trajectories of a system. Or, in the case where
the input variable is something that can be modulated in a controlled way, we can
analyze whether it is possible to “steer” the system from one point in the state space
to another through proper choice of the input.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineering, where the design
of electronic amplifiers led to a focus on input/output behavior. A system was
considered a device that transforms inputs to outputs, as illustrated in Figure 2.3.
Conceptually an input/output model can be viewed as a giant table of inputs and
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dynamics as first-order differential equations, but we will see that this can capture
the dynamics of higher-order differential equations by appropriate definition of the
state and the maps f and h.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice of u (reachability) and if the measurement y
contains enough information to reconstruct the state (observability). These topics
will be addressed in greater detail in Chapters 6 and 7.

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views of input/output repre-
sentations and state space representations are particularly useful when modeling
uncertainty since state models are convenient to describe a nominal model but un-
certainties are easier to describe using input/output models (often via a frequency
response description). Uncertainty will be a constant theme throughout the text and
will be studied in particular detail in Chapter 12.

An interesting observation in the design of control systems is that feedback
systems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system validation,
where one wishes to verify that the detailed response of the system performs as it
was designed. Because of these different uses of models, it is common to use a
hierarchy of models having different complexity and fidelity.

Multidomain Modeling
�

Modeling is an essential element of many disciplines, but traditions and methods
from individual disciplines can differ from each other, as illustrated by the previous
discussion of mechanical and electrical engineering. A difficulty in systems engi-
neering is that it is frequently necessary to deal with heterogeneous systems from
many different domains, including chemical, electrical, mechanical and informa-
tion systems.

To model such multidomain systems, we start by partitioning a system into
smaller subsystems. Each subsystem is represented by balance equations for mass,
energy and momentum, or by appropriate descriptions of information processing
in the subsystem. The behavior at the interfaces is captured by describing how the
variables of the subsystem behave when the subsystems are interconnected. These
interfaces act by constraining variables within the individual subsystems to be equal
(such as mass, energy or momentum fluxes). The complete model is then obtained
by combining the descriptions of the subsystems and the interfaces.
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Figure 2.16: Vehicle steering dynamics. The left figure shows an overhead view of a vehicle
with four wheels. The wheel base is b and the center of mass at a distance a forward of the
rear wheels. By approximating the motion of the front and rear pairs of wheels by a single
front wheel and a single rear wheel, we obtain an abstraction called the bicycle model, shown
on the right. The steering angle is δ and the velocity at the center of mass has the angle α
relative the length axis of the vehicle. The position of the vehicle is given by (x, y) and the
orientation (heading) by θ .

depends on the steering angle δ. To be specific, consider the velocity v at the center
of mass, a distance a from the rear wheel, and let b be the wheel base, as shown
in Figure 2.16. Let x and y be the coordinates of the center of mass, θ the heading
angle andα the angle between the velocity vector v and the centerline of the vehicle.
Since b = ra tan δ and a = ra tan α, it follows that tan α = (a/b) tan δ and we get
the following relation between α and the steering angle δ:

α(δ) = arctan
(a tan δ

b

)
. (2.23)

Assume that the wheels are rolling without slip and that the velocity of the rear
wheel is v0. The vehicle speed at its center of mass is v = v0/ cosα, and we find
that the motion of this point is given by

dx

dt
= v cos (α + θ) = v0

cos (α + θ)

cosα
,

dy

dt
= v sin (α + θ) = v0

sin (α + θ)

cosα
.

(2.24)

To see how the angle θ is influenced by the steering angle, we observe from Fig-
ure 2.16 that the vehicle rotates with the angular velocity v0/ra around the point
O . Hence

dθ

dt
= v0

ra
= v0

b
tan δ. (2.25)

Equations (2.23)–(2.25) can be used to model an automobile under the assump-
tions that there is no slip between the wheels and the road and that the two front
wheels can be approximated by a single wheel at the center of the car. The as-
sumption of no slip can be relaxed by adding an extra state variable, giving a more
realistic model. Such a model also describes the steering dynamics of ships as well
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Figure 2.17: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) redirects its
engine thrust downward so that it can “hover” above the ground. Some air from the engine
is diverted to the wing tips to be used for maneuvering. As shown in (b), the net thrust on
the aircraft can be decomposed into a horizontal force F1 and a vertical force F2 acting at a
distance r from the center of mass.

as the pitch dynamics of aircraft and missiles. It is also possible to choose coor-
dinates so that the reference point is at the rear wheels (corresponding to setting
α = 0), a model often referred to as the Dubins car [66].

Figure 2.16 represents the situation when the vehicle moves forward and has
front-wheel steering. The case when the vehicle reverses is obtained by changing
the sign of the velocity, which is equivalent to a vehicle with rear-wheel steering.

∇
Example 2.9 Vectored thrust aircraft
Consider the motion of vectored thrust aircraft, such as the Harrier “jump jet”
shown Figure 2.17a. The Harrier is capable of vertical takeoff by redirecting its
thrust downward and through the use of smaller maneuvering thrusters located on
its wings. A simplified model of the Harrier is shown in Figure 2.17b, where we
focus on the motion of the vehicle in a vertical plane through the wings of the
aircraft. We resolve the forces generated by the main downward thruster and the
maneuvering thrusters as a pair of forces F1 and F2 acting at a distance r below the
aircraft (determined by the geometry of the thrusters).

Let (x, y, θ) denote the position and orientation of the center of mass of the
aircraft. Letm be the mass of the vehicle, J the moment of inertia, g the gravitational
constant and c the damping coefficient. Then the equations of motion for the vehicle
are given by

mẍ = F1 cos θ − F2 sin θ − cẋ,

mÿ = F1 sin θ + F2 cos θ − mg − cẏ,

J θ̈ = r F1.

(2.26)

It is convenient to redefine the inputs so that the origin is an equilibrium point of the
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In this problem, we will explore some of the properties of this discrete-time system
as a function of the parameters, the initial conditions and the inputs.

(a) For the case when a12 = 0 and u = 0, give a closed form expression for the
output of the system.

(b) A discrete system is in equilibrium when x[k + 1] = x[k] for all k. Let u = r
be a constant input and compute the resulting equilibrium point for the system.
Show that if |aii | < 1 for all i , all initial conditions give solutions that converge to
the equilibrium point.

(c) Write a computer program to plot the output of the system in response to a unit
step input, u[k] = 1, k ≥ 0. Plot the response of your system with x[0] = 0 and A
given by a11 = 0.5, a12 = 1 and a22 = 0.25.

2.4 (Keynesian economics) Keynes’ simple model for an economy is given by

Y [k] = C[k] + I [k] + G[k],

where Y , C , I and G are gross national product (GNP), consumption, investment
and government expenditure for year k. Consumption and investment are modeled
by difference equations of the form

C[k + 1] = aY [k], I [k + 1] = b(C[k + 1] − C[k]),

where a and b are parameters. The first equation implies that consumption increases
with GNP but that the effect is delayed. The second equation implies that investment
is proportional to the rate of change of consumption.

Show that the equilibrium value of the GNP is given by

Ye = 1

1 − a
(Ie + Ge),

where the parameter 1/(1 − a) is the Keynes multiplier (the gain from I or G to
Y ). With a = 0.25 an increase of government expenditure will result in a fourfold
increase of GNP. Also show that the model can be written as the following discrete-
time state model:⎧⎪⎪⎩C[k + 1]

I [k + 1]

⎫⎪⎪⎭ =
⎧⎪⎪⎩ a a
ab − b ab

⎫⎪⎪⎭ ⎧⎪⎪⎩C[k]
I [k]

⎫⎪⎪⎭ +
⎧⎪⎪⎩ a
ab

⎫⎪⎪⎭G[k],

Y [k] = C[k] + I [k] + G[k].

2.5 (Least squares system identification) Consider a nonlinear differential equation�
that can be written in the form

dx

dt
=

M∑
i=1

αi fi (x),

where fi (x) are known nonlinear functions and αi are unknown, but constant,
parameters. Suppose that we have measurements (or estimates) of the full state x
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at time instants t1, t2, . . . , tN , with N > M . Show that the parameters αi can be
determined by finding the least squares solution to a linear equation of the form

Hα = b,

where α ∈ R
M is the vector of all parameters and H ∈ R

N×M and b ∈ R
N are

appropriately defined.

2.6 (Normalized oscillator dynamics) Consider a damped spring–mass system with
dynamics

mq̈ + cq̇ + kq = F.

Let ω0 = √
k/m be the natural frequency and ζ = c/(2

√
km) be the damping

ratio.

(a) Show that by rescaling the equations, we can write the dynamics in the form

q̈ + 2ζω0q̇ + ω2
0q = ω2

0u, (2.35)

where u = F/k. This form of the dynamics is that of a linear oscillator with natural
frequency ω0 and damping ratio ζ .

(b) Show that the system can be further normalized and written in the form

dz1

dτ
= z2,

dz2

dτ
= −z1 − 2ζ z2 + v. (2.36)

The essential dynamics of the system are governed by a single damping parameter
ζ . The Q-value defined as Q = 1/2ζ is sometimes used instead of ζ .

2.7 (Electric generator) An electric generator connected to a strong power grid can
be modeled by a momentum balance for the rotor of the generator:

J
d2ϕ

dt2
= Pm − Pe = Pm − EV

X
sin ϕ,

where J is the effective moment of inertia of the generator, ϕ the angle of rotation,
Pm the mechanical power that drives the generator, Pe is the active electrical power,
E the generator voltage,V the grid voltage and X the reactance of the line. Assuming
that the line dynamics are much faster than the rotor dynamics, Pe = V I =
(EV/X) sin ϕ, where I is the current component in phase with the voltage E and ϕ
is the phase angle between voltages E and V . Show that the dynamics of the electric
generator has a normalized form that is similar to the dynamics of a pendulum with
forcing at the pivot.

2.8 (Admission control for a queue) Consider the queuing system described in
Example 2.10. The long delays created by temporary overloads can be reduced by
rejecting requests when the queue gets large. This allows requests that are accepted
to be serviced quickly and requests that cannot be accommodated to receive a
rejection quickly so that they can try another server. Consider an admission control
system described by

dx

dt
= λu − μmax

x

x + 1
, u = sat(0,1)(k(r − x)), (2.37)
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where the controller is a simple proportional control with saturation (sat(a,b) is
defined by equation (3.9)) and r is the desired (reference) queue length. Use a
simulation to show that this controller reduces the rush-hour effect and explain
how the choice of r affects the system dynamics.

2.9 (Biological switch) A genetic switch can be formed by connecting two repres-
sors together in a cycle as shown below.

u1

A

B

u2
B

u2

u1

A

Using the models from Example 2.13—assuming that the parameters are the same
for both genes and that the mRNA concentrations reach steady state quickly—show
that the dynamics can be written in normalized coordinates as

dz1

dτ
= μ

1 + zn2
− z1 − v1,

dz2

dτ
= μ

1 + zn1
− z2 − v2, (2.38)

where z1 and z2 are scaled versions of the protein concentrations and the time scale
has also been changed. Show that μ ≈ 200 using the parameters in Example 2.13,
and use simulations to demonstrate the switch-like behavior of the system.

2.10 (Motor drive) Consider a system consisting of a motor driving two masses that
are connected by a torsional spring, as shown in the diagram below.

Motor
I

J1

1

1

J2

ω

ϕ 2ϕ

2ω

This system can represent a motor with a flexible shaft that drives a load. Assuming
that the motor delivers a torque that is proportional to the current, the dynamics of
the system can be described by the equations

J1
d2ϕ1

dt2
+ c

(dϕ1

dt
− dϕ2

dt

)
+ k(ϕ1 − ϕ2) = kI I,

J2
d2ϕ2

dt2
+ c

(dϕ2

dt
− dϕ1

dt

)
+ k(ϕ2 − ϕ1) = Td .

(2.39)

Similar equations are obtained for a robot with flexible arms and for the arms of
DVD and optical disk drives.

Derive a state space model for the system by introducing the (normalized)
state variables x1 = ϕ1, x2 = ϕ2, x3 = ω1/ω0, and x4 = ω2/ω0, where ω0 =√
k(J1 + J2)/(J1 J2) is the undamped natural frequency of the system when the

control signal is zero.
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control dynamics. We can obtain substantial insight by considering a special case
in which we have N identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can be ignored, in which case
the dynamics can be reduced to the form

dwi

dt
= 1

τ
− ρc(2 + w2

i )

2
,

db

dt
=

N∑
i=1

wi

τ
− c, τ = b

c
, (3.19)

wherewi ∈ R, i = 1, . . . , N , are the window sizes for the sources of data, b ∈ R is
the current buffer size of the router, ρ controls the rate at which packets are dropped
and c is the capacity of the link connecting the router to the computers. The variable
τ represents the amount of time required for a packet to be processed by a router,
based on the size of the buffer and the capacity of the link. Substituting τ into the
equations, we write the state space dynamics as

dwi

dt
= c

b
− ρc

(
1 + w2

i

2

)
,

db

dt
=

N∑
i=1

cwi

b
− c. (3.20)

More sophisticated models can be found in [101, 137].
The nominal operating point for the system can be found by setting ẇi = ḃ = 0:

0 = c

b
− ρc

(
1 + w2

i

2

)
, 0 =

N∑
i=1

cwi

b
− c.

Exploiting the fact that all of the source dynamics are identical, it follows that all
of thewi should be the same, and it can be shown that there is a unique equilibrium
satisfying the equations

wi,e = be
N

= cτe
N
,

1

2ρ2N 2
(ρbe)

3 + (ρbe)− 1 = 0. (3.21)

The solution for the second equation is a bit messy but can easily be determined nu-
merically. A plot of its solution as a function of 1/(2ρ2N 2) is shown in Figure 3.12b.
We also note that at equilibrium we have the following additional equalities:

τe = be
c

= Nwe

c
, qe = Npe = Nρbe, re = we

τe
. (3.22)

Figure 3.13 shows a simulation of 60 sources communicating across a single
link, with 20 sources dropping out at t = 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Note that the buffer size and
window sizes automatically adjust to match the capacity of the link.

A comprehensive treatment of computer networks is given in the textbook by
Tannenbaum [189]. A good presentation of the ideas behind the control principles
for the Internet is given by one of its designers, Van Jacobson, in [108]. F. Kelly [120]
presents an early effort on the analysis of the system. The book by Hellerstein et
al. [97] gives many examples of the use of feedback in computer systems.



Examples.tex, v1.120 2008/01/22 04:11:51 (murray)

3.6. DRUG ADMINISTRATION 85

Chemical
inactivation
“fixation”

etc.
Subcutis

etc.

Blood circulation

Tissue boundaries

Dose N0 

k1 k4 k2 k3

k5

Figure 3.17: Abstraction used to compartmentalize the body for the purpose of describing
drug distribution (based on Teorell [190]). The body is abstracted by a number of com-
partments with perfect mixing, and the complex transport processes are approximated by
assuming that the flow is proportional to the concentration differences in the compartments.
The constants ki parameterize the rates of flow between different compartments.

cause undesirable side effects. The control action is quantized, take two pills, and
sampled, every 8 hours. The prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and weight of the patient.

Drug administration is a control problem. To solve it we must understand how
a drug spreads in the body after it is administered. This topic, called pharmacoki-
netics, is now a discipline of its own, and the models used are called compartment
models. They go back to the 1920s when Widmark modeled the propagation of al-
cohol in the body [199]. Compartment models are now important for the screening
of all drugs used by humans. The schematic diagram in Figure 3.17 illustrates the
idea of a compartment model. The body is viewed as a number of compartments
like blood plasma, kidney, liver and tissues that are separated by membranes. It is
assumed that there is perfect mixing so that the drug concentration is constant in
each compartment. The complex transport processes are approximated by assuming
that the flow rates between the compartments are proportional to the concentration
differences in the compartments.

To describe the effect of a drug it is necessary to know both its concentration
and how it influences the body. The relation between concentration c and its effect
e is typically nonlinear. A simple model is

e = c

c0 + c
emax. (3.24)

The effect is linear for low concentrations, and it saturates at high concentrations.
The relation can also be dynamic, and it is then called pharmacodynamics.

Compartment Models

The simplest dynamic model for drug administration is obtained by assuming that
the drug is evenly distributed in a single compartment after it has been administered
and that the drug is removed at a rate proportional to the concentration. The com-
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Figure 3.18: Schematic diagrams of compartment models. (a) A simple two-compartment
model. Each compartment is labeled by its volume, and arrows indicate the flow of chemical
into, out of and between compartments. (b) A system with six compartments used to study the
metabolism of thyroid hormone [85]. The notation ki j denotes the transport from compartment
j to compartment i .

Introducing the variables k0 = q0/V1, k1 = q/V1, k2 = q/V2 and b0 = c0/V1 and
using matrix notation, the model can be written as

dc

dt
=

⎧⎪⎪⎩−k0 − k1 k1

k2 −k2

⎫⎪⎪⎭ c +
⎧⎪⎪⎩b0

0

⎫⎪⎪⎭ u, y =
⎧⎩0 1

⎫⎭ c. (3.27)

Comparing this model with its graphical representation in Figure 3.18a, we find
that the mathematical representation (3.27) can be written by inspection.

It should also be emphasized that simple compartment models such as the one in
equation (3.27) have a limited range of validity. Low-frequency limits exist because
the human body changes with time, and since the compartment model uses average
concentrations, they will not accurately represent rapid changes. There are also
nonlinear effects that influence transportation between the compartments.

Compartment models are widely used in medicine, engineering and environ-
mental science. An interesting property of these systems is that variables like con-
centration and mass are always positive. An essential difficulty in compartment
modeling is deciding how to divide a complex system into compartments. Com-
partment models can also be nonlinear, as illustrated in the next section.

Insulin–glucose Dynamics

It is essential that the blood glucose concentration in the body is kept within a
narrow range (0.7–1.1 g/L). Glucose concentration is influenced by many factors
like food intake, digestion and exercise. A schematic picture of the relevant parts
of the body is shown in Figures 3.19a and b.

There is a sophisticated mechanism that regulates glucose concentration. Glu-
cose concentration is maintained by the pancreas, which secretes the hormones
insulin and glucagon. Glucagon is released into the bloodstream when the glucose
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Figure 3.20:Simulation of the predator–prey system. Thefigure on the left shows a simulation
of the two populations as a function of time. The figure on the right shows the populations
plotted against each other, starting from different values of the population. The oscillation seen
in both figures is an example of a limit cycle. The parameter values used for the simulations
are a = 3.2, b = 0.6, c = 50, d = 0.56, k = 125 and r = 1.6.

Figure 3.20 shows a simulation of the dynamics starting from a set of popu-
lation values near the nonzero equilibrium values. We see that for this choice of
parameters, the simulation predicts an oscillatory population count for each species,
reminiscent of the data shown in Figure 2.6.

Volume I of the two-volume set by J. D. Murray [154] give a broad coverage of
population dynamics.

Exercises

3.1 (Cruise control) Consider the cruise control example described in Section 3.1.
Build a simulation that re-creates the response to a hill shown in Figure 3.3b and
show the effects of increasing and decreasing the mass of the car by 25%. Redesign
the controller (using trial and error is fine) so that it returns to within 1% of the
desired speed within 3 s of encountering the beginning of the hill.

3.2 (Bicycle dynamics) Show that the dynamics of a bicycle frame given by equa-
tion (3.5) can be approximated in state space form as

d

dt

⎧⎪⎪⎩x1

x2

⎫⎪⎪⎭ =
⎧⎪⎪⎩ 0 1
mgh/J 0

⎫⎪⎪⎭⎧⎪⎪⎩x1

x2

⎫⎪⎪⎭ +
⎧⎪⎪⎩ Dv0/(bJ )
mv2

0h/(bJ )

⎫⎪⎪⎭ u,

y =
⎧⎩1 0

⎫⎭ x,

where the input u is the steering angle δ and the output y is the tilt angle ϕ. What
do the states x1 and x2 represent?

3.3 (Bicycle steering) Combine the bicycle model given by equation (3.5) and the
model for steering kinematics in Example 2.8 to obtain a model that describes the
path of the center of mass of the bicycle.
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3.4 (Operational amplifier circuit) Consider the op amp circuit shown below.

−

+
v1 vo

v3

v2

RaR1

R2

C2

C1

Rb

Show that the dynamics can be written in state space form as

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
− 1

R1C1
− 1

RaC1
0

Rb
Ra

1

R2C2
− 1

R2C2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ x +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

R1C1

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ u, y =
⎧⎩0 1

⎫⎭ x,

where u = v1 and y = v3. (Hint: Use v2 and v3 as your state variables.)

3.5 (Operational amplifier oscillator) The op amp circuit shown below is an imple-
mentation of an oscillator.

−

+

−

+

−

+ v1v3v2

R1R3R2

R4C2 C1

Show that the dynamics can be written in state space form as

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0

R4

R1R3C1

− 1

R2C2
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ x,

where the state variables represent the voltages across the capacitors x1 = v1 and
x2 = v2.

3.6 (Congestion control using RED [138]) A number of improvements can be made
to the model for Internet congestion control presented in Section 3.4. To ensure that
the router’s buffer size remains positive, we can modify the buffer dynamics to
satisfy

dbl
dt

=
{
sl − cl bl > 0

sat(0,∞)(sl − cl) bl = 0.

In addition, we can model the drop probability of a packet based on how close we
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Figure 4.1: Response of the damped oscillator to the initial condition x0 = (1, 0). The
solution is unique for the given initial conditions and consists of an oscillatory solution for
each state, with an exponentially decaying magnitude.

We note that this form of the solution holds only for 0 < ζ < 1, corresponding to
an “underdamped” oscillator. ∇

�
Without imposing some mathematical conditions on the function F , the differ-

ential equation (4.2) may not have a solution for all t , and there is no guarantee that
the solution is unique. We illustrate these possibilities with two examples.

Example 4.2 Finite escape time
Let x ∈ R and consider the differential equation

dx

dt
= x2 (4.3)

with the initial condition x(0) = 1. By differentiation we can verify that the function

x(t) = 1

1 − t

satisfies the differential equation and that it also satisfies the initial condition. A
graph of the solution is given in Figure 4.2a; notice that the solution goes to infinity
as t goes to 1. We say that this system has finite escape time. Thus the solution
exists only in the time interval 0 ≤ t < 1. ∇
Example 4.3 Nonunique solution
Let x ∈ R and consider the differential equation

dx

dt
= 2

√
x (4.4)

with initial condition x(0) = 0. We can show that the function

x(t) =
{

0 if 0 ≤ t ≤ a

(t − a)2 if t > a

satisfies the differential equation for all values of the parameter a ≥ 0. To see this,
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Another simple case is when the dynamics are in the block diagonal form

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1 ω1 0 0
−ω1 σ1 0 0

0 0
. . .

...
...

0 0 σm ωm
0 0 −ωm σm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x .

In this case, the eigenvalues can be shown to be λ j = σ j ± iω j . We once again can
separate the state trajectories into independent solutions for each pair of states, and
the solutions are of the form

x2 j−1(t) = eσ j t
(
x2 j−1(0) cosω j t + x2 j (0) sinω j t

)
,

x2 j (t) = eσ j t
(−x2 j−1(0) sinω j t + x2 j (0) cosω j t

)
,

where j = 1, 2, . . . ,m. We see that this system is asymptotically stable if and only
if σ j = Re λ j < 0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some systems
can be transformed into these forms via coordinate transformations. One such class
of systems is those for which the dynamics matrix has distinct (nonrepeating)
eigenvalues. In this case there is a matrix T ∈ R

n×n such that the matrix T AT−1

is in (block) diagonal form, with the block diagonal elements corresponding to
the eigenvalues of the original matrix A (see Exercise 4.14). If we choose new
coordinates z = T x , then

dz

dt
= T ẋ = T Ax = T AT−1z

and the linear system has a (block) diagonal dynamics matrix. Furthermore, the
eigenvalues of the transformed system are the same as the original system since
if v is an eigenvector of A, then w = T v can be shown to be an eigenvector of
T AT−1. We can reason about the stability of the original system by noting that
x(t) = T−1z(t), and so if the transformed system is stable (or asymptotically
stable), then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the stability
of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we make use of the
following theorem, proved in the next chapter:

Theorem 4.1 (Stability of a linear system). The system

dx

dt
= Ax

is asymptotically stable if and only if all eigenvalues of A all have a strictly negative
real part and is unstable if any eigenvalue of A has a strictly positive real part.

Example 4.6 Compartment model
Consider the two-compartment module for drug delivery introduced in Section 3.6.
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Using concentrations as state variables and denoting the state vector by x , the system
dynamics are given by

dx

dt
=

⎧⎪⎪⎩−k0 − k1 k1

k2 −k2

⎫⎪⎪⎭ x +
⎧⎪⎪⎩b0

0

⎫⎪⎪⎭ u, y =
⎧⎩0 1

⎫⎭ x,

where the input u is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measured output y. We wish to
design a feedback control law that maintains a constant output given by y = yd .

We choose an output feedback control law of the form

u = −k(y − yd)+ ud,

where ud is the rate of injection required to maintain the desired concentration and
k is a feedback gain that should be chosen such that the closed loop system is stable.
Substituting the control law into the system, we obtain

dx

dt
=

⎧⎪⎪⎩−k0 − k1 k1 − b0k
k2 −k2

⎫⎪⎪⎭ x +
⎧⎪⎪⎩b0

0

⎫⎪⎪⎭ (ud + kyd) =: Ax + Bue,

y =
⎧⎩0 1

⎫⎭ x =: Cx .

The equilibrium concentration xe ∈ R
2 is given by xe = −A−1Bue and

ye = −CA−1Bue = b0k2

k0k2 + b0k2k
(ud + kyd).

Choosing ud such that ye = yd provides the constant rate of injection required to
maintain the desired output. We can now shift coordinates to place the equilibrium
point at the origin, which yields (after some algebra)

dz

dt
=

⎧⎪⎪⎩−k0 − k1 k1 − b0k
k2 −k2

⎫⎪⎪⎭ z,

where z = x − xe. We can now apply the results of Theorem 4.1 to determine the
stability of the system. The eigenvalues of the system are given by the roots of the
characteristic polynomial

λ(s) = s2 + (k0 + k1 + k2)s + (k0k2 + b0k2k).

While the specific form of the roots is messy, it can be shown that the roots are posi-
tive as long as the linear term and the constant term are both positive (Exercise 4.16).
Hence the system is stable for any k > 0. ∇

Stability Analysis via Linear Approximation

An important feature of differential equations is that it is often possible to determine
the local stability of an equilibrium point by approximating the system by a linear
system. The following example illustrates the basic idea.
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Example 4.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dynamics are given by

dx

dt
=

⎧⎪⎪⎩ x2

sin x1 − γ x2

⎫⎪⎪⎭ ,
where we have defined the state as x = (θ, θ̇). We first consider the equilibrium
point at x = (0, 0), corresponding to the straight-up position. If we assume that the
angle θ = x1 remains small, then we can replace sin x1 with x1 and cos x1 with 1,
which gives the approximate system

dx

dt
=

⎧⎪⎪⎩ x2

x1 − γ x2

⎫⎪⎪⎭ =
⎧⎪⎪⎩0 1

1 −γ
⎫⎪⎪⎭ x . (4.9)

Intuitively, this system should behave similarly to the more complicated model
as long as x1 is small. In particular, it can be verified that the equilibrium point
(0, 0) is unstable by plotting the phase portrait or computing the eigenvalues of the
dynamics matrix in equation (4.9)

We can also approximate the system around the stable equilibrium point at
x = (π, 0). In this case we have to expand sin x1 and cos x1 around x1 = π ,
according to the expansions

sin(π + θ) = − sin θ ≈ −θ, cos(π + θ) = − cos(θ) ≈ −1.

If we define z1 = x1 − π and z2 = x2, the resulting approximate dynamics are
given by

dz

dt
=

⎧⎪⎪⎩ z2

−z1 − γ z2

⎫⎪⎪⎭ =
⎧⎪⎪⎩ 0 1

−1 −γ
⎫⎪⎪⎭ z. (4.10)

Note that z = (0, 0) is the equilibrium point for this system and that it has the same
basic form as the dynamics shown in Figure 4.8. Figure 4.11 shows the phase por-
traits for the original system and the approximate system around the corresponding
equilibrium points. Note that they are very similar, although not exactly the same.
It can be shown that if a linear approximation has either asymptotically stable or
unstable equilibrium points, then the local stability of the original system must be
the same (Theorem 4.3). ∇

More generally, suppose that we have a nonlinear system

dx

dt
= F(x)

that has an equilibrium point at xe. Computing the Taylor series expansion of the
vector field, we can write

dx

dt
= F(xe)+ ∂F

∂x

∣∣∣∣
xe

(x − xe)+ higher-order terms in (x − xe).

Since F(xe) = 0, we can approximate the system by choosing a new state variable



DynamicBehavior.tex, v1.161 2009/10/19 04:05:00 (murray)

110 CHAPTER 4. DYNAMIC BEHAVIOR

Differentiation gives the following linear equations for ṙ and ϕ̇:

ẋ1 = ṙ cos ϕ − r ϕ̇ sin ϕ, ẋ2 = ṙ sin ϕ + r ϕ̇ cos ϕ.

Solving this linear system for ṙ and ϕ̇ gives, after some calculation,

dr

dt
= r(1 − r2),

dϕ

dt
= −1.

Notice that the equations are decoupled; hence we can analyze the stability of each
state separately.

The equation for r has three equilibria: r = 0, r = 1 and r = −1 (not realiz-
able since r must be positive). We can analyze the stability of these equilibria by
linearizing the radial dynamics with F(r) = r(1 − r2). The corresponding linear
dynamics are given by

dr

dt
= ∂F

∂r

∣∣∣∣
re

r = (1 − 3r2
e )r, re = 0, 1,

where we have abused notation and used r to represent the deviation from the
equilibrium point. It follows from the sign of (1 − 3r2

e ) that the equilibrium r = 0
is unstable and the equilibrium r = 1 is asymptotically stable. Thus for any initial
condition r > 0 the solution goes to r = 1 as time goes to infinity, but if the system
starts with r = 0, it will remain at the equilibrium for all times. This implies that
all solutions to the original system that do not start at x1 = x2 = 0 will approach
the circle x2

1 + x2
2 = 1 as time increases.

To show the stability of the full solution (4.12), we must investigate the behavior
of neighboring solutions with different initial conditions. We have already shown
that the radius r will approach that of the solution (4.12) as long as r(0) > 0. The
equation for the angle ϕ can be integrated analytically to give ϕ(t) = −t + ϕ(0),
which shows that solutions starting at different angles ϕ will neither converge nor
diverge. Thus, the unit circle is attracting, but the solution (4.12) is only stable, not
asymptotically stable. The behavior of the system is illustrated by the simulation
in Figure 4.12. Notice that the solutions approach the circle rapidly, but that there
is a constant phase shift between the solutions. ∇

4.4 Lyapunov Stability Analysis�

We now return to the study of the full nonlinear system

dx

dt
= F(x), x ∈ R

n. (4.13)

Having defined when a solution for a nonlinear dynamical system is stable, we
can now ask how to prove that a given solution is stable, asymptotically stable
or unstable. For physical systems, one can often argue about stability based on
dissipation of energy. The generalization of that technique to arbitrary dynamical
systems is based on the use of Lyapunov functions in place of energy.
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dx
dt

∂V
∂x

V (x) = c2
V (x) = c1 < c2

Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov function V (x) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system will always cause V (x)
to decrease along the trajectory.

R
n and let V̇ represent the time derivative of V along trajectories of the system

dynamics (4.13):

V̇ = ∂V

∂x

dx

dt
= ∂V

∂x
F(x).

Let Br = Br (0) be a ball of radius r around the origin. If there exists r > 0 such
that V is positive definite and V̇ is negative semidefinite for all x ∈ Br , then x = 0
is locally stable in the sense of Lyapunov. If V is positive definite and V̇ is negative
definite in Br , then x = 0 is locally asymptotically stable.

If V satisfies one of the conditions above, we say that V is a (local) Lyapunov
function for the system. These results have a nice geometric interpretation. The
level curves for a positive definite function are the curves defined by V (x) = c,
c > 0, and for each c this gives a closed contour, as shown in Figure 4.13. The
condition that V̇ (x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories move to smaller and smaller
values of V and if V̇ is negative definite then x must approach 0.

Example 4.9 Scalar nonlinear system
Consider the scalar nonlinear system

dx

dt
= 2

1 + x
− x .

This system has equilibrium points at x = 1 and x = −2. We consider the equilib-
rium point at x = 1 and rewrite the dynamics using z = x − 1:

dz

dt
= 2

2 + z
− z − 1,

which has an equilibrium point at z = 0. Now consider the candidate Lyapunov
function

V (z) = 1

2
z2,
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Figure 4.14: Stability of a genetic switch. The circuit diagram in (a) represents two proteins
that are each repressing the production of the other. The inputs u1 and u2 interfere with this
repression, allowing the circuit dynamics to be modified. The equilibrium points for this
circuit can be determined by the intersection of the two curves shown in (b).

parameters that describe the interconnection between the genes and we have set the
external inputs u1 and u2 to zero.

The equilibrium points for the system are found by equating the time derivatives
to zero. We define

f (u) = μ

1 + un
, f ′(u) = d f

du
= −μnun−1

(1 + un)2
,

and the equilibrium points are defined as the solutions of the equations

z1 = f (z2), z2 = f (z1).

If we plot the curves (z1, f (z1)) and ( f (z2), z2) on a graph, then these equations
will have a solution when the curves intersect, as shown in Figure 4.14b. Because
of the shape of the curves, it can be shown that there will always be three solutions:
one at z1e = z2e, one with z1e < z2e and one with z1e > z2e. If μ 
 1, then we can
show that the solutions are given approximately by

z1e ≈ μ, z2e ≈ 1

μn−1
; z1e = z2e; z1e ≈ 1

μn−1
, z2e ≈ μ. (4.17)

To check the stability of the system, we write f (u) in terms of its Taylor series
expansion about ue:

f (u) = f (ue)+ f ′(ue) · (u − ue)+ 1

2
f ′′(ue) · (u − ue)

2 + higher-order terms,

where f ′ represents the first derivative of the function, and f ′′ the second. Using
these approximations, the dynamics can then be written as

dw

dt
=

⎧⎪⎪⎩ −1 f ′(z2e)
f ′(z1e) −1

⎫⎪⎪⎭w + F̃(w),
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wherew = z−ze is the shifted state and F̃(w) represents quadratic and higher-order
terms.

We now use equation (4.14) to search for a Lyapunov function. Choosing Q = I
and letting P ∈ R

2×2 have elements pi j , we search for a solution of the equation⎧⎪⎪⎩−1 f ′
2

f ′
1 −1

⎫⎪⎪⎭ ⎧⎪⎪⎩p11 p12

p12 p22

⎫⎪⎪⎭ +
⎧⎪⎪⎩p11 p12

p12 p22

⎫⎪⎪⎭⎧⎪⎪⎩−1 f ′
1

f ′
2 −1

⎫⎪⎪⎭ =
⎧⎪⎪⎩−1 0

0 −1

⎫⎪⎪⎭ ,
where f ′

1 = f ′(z1e) and f ′
2 = f ′(z2e). Note that we have set p21 = p12 to force P

to be symmetric. Multiplying out the matrices, we obtain⎧⎪⎪⎩ −2p11 + 2 f ′
2 p12 p11 f ′

1 − 2p12 + p22 f ′
2

p11 f ′
1 − 2p12 + p22 f ′

2 −2p22 + 2 f ′
1 p12

⎫⎪⎪⎭ =
⎧⎪⎪⎩−1 0

0 −1

⎫⎪⎪⎭ ,
which is a set of linear equations for the unknowns pi j . We can solve these linear
equations to obtain

p11 = − f ′
1

2 − f ′
2 f

′
1 + 2

4( f ′
1 f

′
2 − 1)

, p12 = − f ′
1 + f ′

2

4( f ′
1 f

′
2 − 1)

, p22 = − f ′
2

2 − f ′
1 f

′
2 + 2

4( f ′
1 f

′
2 − 1)

.

To check that V (w) = wT Pw is a Lyapunov function, we must verify that V (w) is
positive definite function or equivalently that P > 0. Since P is a 2 × 2 symmetric
matrix, it has two real eigenvalues λ1 and λ2 that satisfy

λ1 + λ2 = trace(P), λ1 · λ2 = det(P).

In order for P to be positive definite we must have that λ1 and λ2 are positive, and
we thus require that

trace(P) = f ′
1

2−2 f ′
2 f

′
1+ f ′

2
2 + 4

4−4 f ′
1 f

′
2

> 0, det(P) = f ′
1

2−2 f ′
2 f

′
1+ f ′

2
2+4

16 − 16 f ′
1 f

′
2

> 0.

We see that trace(P) = 4 det(P) and the numerator of the expressions is just
( f1 − f2)2 + 4 > 0, so it suffices to check the sign of 1 − f ′

1 f
′
2. In particular, for

P to be positive definite, we require that

f ′(z1e) f
′(z2e) < 1.

We can now make use of the expressions for f ′ defined earlier and evaluate at
the approximate locations of the equilibrium points derived in equation (4.17). For
the equilibrium points where z1e �= z2e, we can show that

f ′(z1e) f
′(z2e) ≈ f ′(μ) f ′(

1

μn−1
) = −μnμn−1

(1 + μn)2
·
−μnμ−(n−1)2

1 + μ−n(n−1)
≈ n2μ−n2+n.

Using n = 2 and μ ≈ 200 from Exercise 2.9, we see that f ′(z1e) f ′(z2e) � 1 and
hence P is a positive definite. This implies that V is a positive definite function and
hence a potential Lyapunov function for the system.

To determine if the system (4.16) is stable, we now compute V̇ at the equilibrium
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Figure 4.15:Dynamics of a genetic switch. The phase portrait on the left shows that the switch
has three equilibrium points, corresponding to protein A having a concentration greater than,
equal to or less than protein B. The equilibrium point with equal protein concentrations is
unstable, but the other equilibrium points are stable. The simulation on the right shows the
time response of the system starting from two different initial conditions. The initial portion of
the curve corresponds to initial concentrations z(0) = (1, 5) and converges to the equilibrium
where z1e < z2e. At time t = 10, the concentrations are perturbed by +2 in z1 and −2 in z2,
moving the state into the region of the state space whose solutions converge to the equilibrium
point where z2e < z1e.

point. By construction,

V̇ = wT(PA + ATP)w + F̃ T(w)Pw + wTP F̃(w)

= −wTw + F̃ T(w)Pw + wTP F̃(w).

Since all terms in F̃ are quadratic or higher order in w, it follows that F̃ T(w)Pw
and wTP F̃(w) consist of terms that are at least third order in w. Therefore if w
is sufficiently close to zero, then the cubic and higher-order terms will be smaller
than the quadratic terms. Hence, sufficiently close tow = 0, V̇ is negative definite,
allowing us to conclude that these equilibrium points are both stable.

Figure 4.15 shows the phase portrait and time traces for a system with μ = 4,
illustrating the bistable nature of the system. When the initial condition starts with
a concentration of protein B greater than that of A, the solution converges to the
equilibrium point at (approximately) (1/μn−1, μ). If A is greater than B, then it
goes to (μ, 1/μn−1). The equilibrium point with z1e = z2e is unstable. ∇

More generally, we can investigate what the linear approximation tells about
the stability of a solution to a nonlinear equation. The following theorem gives a
partial answer for the case of stability of an equilibrium point.

Theorem 4.3. Consider the dynamical system (4.15) with F(0) = 0 and F̃ such
that lim ‖F̃(x)‖/‖x‖ → 0 as ‖x‖ → 0. If the real parts of all eigenvalues of A are
strictly less than zero, then xe = 0 is a locally asymptotically stable equilibrium
point of equation (4.15).

This theorem implies that asymptotic stability of the linear approximation im-
plies local asymptotic stability of the original nonlinear system. The theorem is very



DynamicBehavior.tex, v1.161 2009/10/19 04:05:00 (murray)

118 CHAPTER 4. DYNAMIC BEHAVIOR

important for control because it implies that stabilization of a linear approximation
of a nonlinear system results in a stable equilibrium for the nonlinear system. The
proof of this theorem follows the technique used in Example 4.11. A formal proof
can be found in [123].

Krasovski–Lasalle Invariance Principle
��

For general nonlinear systems, especially those in symbolic form, it can be difficult
to find a positive definite function V whose derivative is strictly negative definite.
The Krasovski–Lasalle theorem enables us to conclude the asymptotic stability of
an equilibrium point under less restrictive conditions, namely, in the case where V̇
is negative semidefinite, which is often easier to construct. However, it applies only
to time-invariant or periodic systems. This section makes use of some additional
concepts from dynamical systems; see Hahn [94] or Khalil [123] for a more detailed
description.

We will deal with the time-invariant case and begin by introducing a few more
definitions. We denote the solution trajectories of the time-invariant system

dx

dt
= F(x) (4.18)

as x(t ; a), which is the solution of equation (4.18) at time t starting from a at t0 = 0.
The ω limit set of a trajectory x(t ; a) is the set of all points z ∈ R

n such that there
exists a strictly increasing sequence of times tn such that x(tn; a) → z as n → ∞.
A set M ⊂ R

n is said to be an invariant set if for all b ∈ M , we have x(t ; b) ∈ M
for all t ≥ 0. It can be proved that the ω limit set of every trajectory is closed and
invariant. We may now state the Krasovski–Lasalle principle.

Theorem 4.4 (Krasovski–Lasalle principle). Let V : R
n → R be a locally positive

definite function such that on the compact set �r = {x ∈ R
n : V (x) ≤ r} we have

V̇ (x) ≤ 0. Define
S = {x ∈ �r : V̇ (x) = 0}.

As t → ∞, the trajectory tends to the largest invariant set inside S; i.e., its ω limit
set is contained inside the largest invariant set in S. In particular, if S contains no
invariant sets other than x = 0, then 0 is asymptotically stable.

Proofs are given in [128] and [135].
Lyapunov functions can often be used to design stabilizing controllers, as is

illustrated by the following example, which also illustrates how the Krasovski–
Lasalle principle can be applied.

Example 4.12 Inverted pendulum
Following the analysis in Example 2.7, an inverted pendulum can be described by
the following normalized model:

dx1

dt
= x2,

dx2

dt
= sin x1 + u cos x1, (4.19)



DynamicBehavior.tex, v1.161 2009/10/19 04:05:00 (murray)

4.5. PARAMETRIC AND NONLOCAL BEHAVIOR 121

and suppose that V̇ (x) ≤ 0 for all x ∈ �r , with equality only at the equilibrium
point x0. Then �r is inside the region of attraction of the equilibrium point. Since
this approximation depends on the Lyapunov function and the choice of Lyapunov
function is not unique, it can sometimes be a very conservative estimate.

It is sometimes the case that we can find a Lyapunov function V such that V is
positive definite and V̇ is negative (semi-) definite for all x ∈ R

n . In many instances
it can then be shown that the region of attraction for the equilibrium point is the
entire state space, and the equilibrium point is said to be globally stable.

Example 4.13 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Example 4.12. The Lyapunov
function for the system was

V (x) = (cos x1 − 1)+ a(1 − cos2 x1)+ 1

2
x2

2 ,

and V̇ was negative semidefinite for all x and nonzero when x1 �= ±π/2. Hence
for any x such that |x2| < π/2, V (x) > 0 will be inside the invariant set defined
by the level curves of V (x). One of these level sets is shown in Figure 4.16b. ∇

Bifurcations

Another important property of nonlinear systems is how their behavior changes as
the parameters governing the dynamics change. We can study this in the context
of models by exploring how the location of equilibrium points, their stability, their
regions of attraction and other dynamic phenomena, such as limit cycles, vary based
on the values of the parameters in the model.

Consider a differential equation of the form

dx

dt
= F(x, μ), x ∈ R

n , μ ∈ R
k , (4.20)

where x is the state andμ is a set of parameters that describe the family of equations.
The equilibrium solutions satisfy

F(x, μ) = 0,

and as μ is varied, the corresponding solutions xe(μ) can also vary. We say that the
system (4.20) has a bifurcation at μ = μ∗ if the behavior of the system changes
qualitatively at μ∗. This can occur either because of a change in stability type or a
change in the number of solutions at a given value of μ.

Example 4.14 Predator–prey
Consider the predator–prey system described in Section 3.7. The dynamics of the
system are given by

dH

dt
= r H

(
1 − H

k

)
− aHL

c + H
,

dL

dt
= b

aHL

c + H
− dL , (4.21)
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Figure 4.20: Simulation of noise cancellation. The top left figure shows the headphone signal
without noise cancellation, and the bottom leftfigure shows the signal with noise cancellation.
The right figures show the parameters a and b of the filter.

4.6 Further Reading

The field of dynamical systems has a rich literature that characterizes the possi-
ble features of dynamical systems and describes how parametric changes in the
dynamics can lead to topological changes in behavior. Readable introductions to
dynamical systems are given by Strogatz [188] and the highly illustrated text by
Abraham and Shaw [2]. More technical treatments include Andronov, Vitt and
Khaikin [8], Guckenheimer and Holmes [91] and Wiggins [201]. For students with
a strong interest in mechanics, the texts by Arnold [13] and Marsden and Ratiu [147]
provide an elegant approach using tools from differential geometry. Finally, good
treatments of dynamical systems methods in biology are given by Wilson [203]
and Ellner and Guckenheimer [70]. There is a large literature on Lyapunov stability
theory, including the classic texts by Malkin [144], Hahn [94] and Krasovski [128].
We highly recommend the comprehensive treatment by Khalil [123].

Exercises

4.1 (Time-invariant systems) Show that if we have a solution of the differential
equation (4.1) given by x(t)with initial condition x(t0) = x0, then x̃(τ ) = x(t− t0)
is a solution of the differential equation

dx̃

dτ
= F(x̃)

with initial condition x̃(0) = x0, where τ = t − t0.

4.2 (Flow in a tank) A cylindrical tank has cross section A m2, effective outlet
area a m2 and inflow qin m3/s. An energy balance shows that the outlet velocity is
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v = √
2gh m/s, where g m/s2 is the acceleration of gravity and h is the distance

between the outlet and the water level in the tank (in meters). Show that the system
can be modeled by

dh

dt
= − a

A

√
2gh − 1

A
qin, qout = a

√
2gh.

Use the parameters A = 0.2, a = 0.01. Simulate the system when the inflow is zero
and the initial level is h = 0.2. Do you expect any difficulties in the simulation?

4.3 (Cruise control) Consider the cruise control system described in Section 3.1.
Generate a phase portrait for the closed loop system on flat ground (θ = 0), in third
gear, using a PI controller (with kp = 0.5 and ki = 0.1), m = 1000 kg and desired
speed 20 m/s. Your system model should include the effects of saturating the input
between 0 and 1.

4.4 (Lyapunov functions) Consider the second-order system

dx1

dt
= −ax1,

dx2

dt
= −bx1 − cx2,

where a, b, c > 0. Investigate whether the functions

V1(x) = 1

2
x2

1 + 1

2
x2

2 , V2(x) = 1

2
x2

1 + 1

2
(x2 + b

c − a
x1)

2

are Lyapunov functions for the system and give any conditions that must hold.

4.5 (Damped spring–mass system) Consider a damped spring–mass system with �
dynamics

mq̈ + cq̇ + kq = 0.

A natural candidate for a Lyapunov function is the total energy of the system, given
by

V = 1

2
mq̇2 + 1

2
kq2.

Use the Krasovski–Lasalle theorem to show that the system is asymptotically stable.

4.6 (Electric generator) The following simple model for an electric generator con-
nected to a strong power grid was given in Exercise 2.7:

J
d2ϕ

dt2
= Pm − Pe = Pm − EV

X
sin ϕ.

The parameter

a = Pmax

Pm
= EV

X Pm
(4.25)

is the ratio between the maximum deliverable power Pmax = EV/X and the me-
chanical power Pm .

(a) Consider a as a bifurcation parameter and discuss how the equilibria depend
on a.
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(b) For a > 1, show that there is a center at ϕ0 = arcsin(1/a) and a saddle at
ϕ = π − ϕ0.

(c) Show that if Pm/J = 1 there is a solution through the saddle that satisfies

1

2

(dϕ
dt

)2 − ϕ + ϕ0 − a cos ϕ −
√
a2 − 1 = 0. (4.26)

Use simulation to show that the stability region is the interior of the area enclosed
by this solution. Investigate what happens if the system is in equilibrium with a
value of a that is slightly larger than 1 and a suddenly decreases, corresponding to
the reactance of the line suddenly increasing.

4.7 (Lyapunov equation) Show that Lyapunov equation (4.14) always has a solution
if all of the eigenvalues of A are in the left half-plane. (Hint: Use the fact that the
Lyapunov equation is linear in P and start with the case where A has distinct
eigenvalues.)

4.8 (Congestion control) Consider the congestion control problem described in Sec-
tion 3.4. Confirm that the equilibrium point for the system is given by equation (3.21)
and compute the stability of this equilibrium point using a linear approximation.

4.9 (Swinging up a pendulum) Consider the inverted pendulum, discussed in Ex-
ample 4.4, that is described by

θ̈ = sin θ + u cos θ,

where θ is the angle between the pendulum and the vertical and the control signal
u is the acceleration of the pivot. Using the energy function

V (θ, θ̇ ) = cos θ − 1 + 1

2
θ̇2,

show that the state feedback u = k(V0 − V )θ̇ cos θ causes the pendulum to “swing
up” to the upright position.

4.10 (Root locus diagram) Consider the linear system

dx

dt
=

⎧⎪⎪⎩0 1
0 −3

⎫⎪⎪⎭ x +
⎧⎪⎪⎩−1

4

⎫⎪⎪⎭ u, y =
⎧⎩1 0

⎫⎭ x,

with the feedback u = −ky. Plot the location of the eigenvalues as a function the
parameter k.

4.11 (Discrete-time Lyapunov function) Consider a nonlinear discrete-time system�
with dynamics x[k + 1] = f (x[k]) and equilibrium point xe = 0. Suppose there
exists a smooth, positive definite functionV : R

n → R such thatV ( f (x))−V (x) <
0 for x �= 0 and V(0) = 0. Show that xe = 0 is (locally) asymptotically stable.

4.12 (Operational amplifier oscillator) An op amp circuit for an oscillator was
shown in Exercise 3.5. The oscillatory solution for that linear circuit was stable
but not asymptotically stable. A schematic of a modified circuit that has nonlinear
elements is shown in the figure below.
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The modification is obtained by making a feedback around each operational am-
plifier that has capacitors using multipliers. The signal ae = v2

1 + v2
2 − v2

0 is the
amplitude error. Show that the system is modeled by

dv1

dt
= R4

R1R3C1
v2 + 1

R11C1
v1(v

2
0 − v2

1 − v2
2),

dv2

dt
= − 1

R2C2
v1 + 1

R22C2
v2(v

2
0 − v2

1 − v2
2).

Show that the circuit gives an oscillation with a stable limit cycle with amplitude
v0. (Hint: Use the results of Example 4.8.)

4.13 (Self-activating genetic circuit) Consider the dynamics of a genetic circuit that
implements self-activation: the protein produced by the gene is an activator for the
protein, thus stimulating its own production through positive feedback. Using the
models presented in Example 2.13, the dynamics for the system can be written as

dm

dt
= αp2

1 + kp2
+ α0 − γm,

dp

dt
= βm − δp, (4.27)

for p,m ≥ 0. Find the equilibrium points for the system and analyze the local
stability of each using Lyapunov analysis.

4.14 (Diagonal systems) Let A ∈ R
n×n be a square matrix with real eigenvalues

λ1, . . . , λn and corresponding eigenvectors v1, . . . , vn .

(a) Show that if the eigenvalues are distinct (λi �= λ j for i �= j), then vi �= v j for
i �= j .

(b) Show that the eigenvectors form a basis for R
n so that any vector x can be

written as x = ∑
αivi for αi ∈ R.

(c) Let T =
⎧⎩v1 v2 . . . vn

⎫⎭ and show that T−1AT is a diagonal matrix of

the form (4.8).
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Chapter Five
Linear Systems

Few physical elements display truly linear characteristics. For example the relation between
force on a spring and displacement of the spring is always nonlinear to some degree. The
relation between current through a resistor and voltage drop across it also deviates from a
straight-line relation. However, if in each case the relation is reasonably linear, then it will
be found that the system behavior will be very close to that obtained by assuming an ideal,
linear physical element, and the analytical simplification is so enormous that we make linear
assumptions wherever we can possibly do so in good conscience.

Robert H. Cannon, Dynamics of Physical Systems, 1967 [49].

In Chapters 2–4 we considered the construction and analysis of differential
equation models for dynamical systems. In this chapter we specialize our results to
the case of linear, time-invariant input/output systems. Two central concepts are the
matrix exponential and the convolution equation, through which we can completely
characterize the behavior of a linear system. We also describe some properties of
the input/output response and show how to approximate a nonlinear system by a
linear one.

5.1 Basic Definitions

We have seen several instances of linear differential equations in the examples in the
previous chapters, including the spring–mass system (damped oscillator) and the
operational amplifier in the presence of small (nonsaturating) input signals. More
generally, many dynamical systems can be modeled accurately by linear differential
equations. Electrical circuits are one example of a broad class of systems for which
linear models can be used effectively. Linear models are also broadly applicable in
mechanical engineering, for example, as models of small deviations from equilibria
in solid and fluid mechanics. Signal-processing systems, including digital filters of
the sort used in CD and MP3 players, are another source of good examples, although
these are often best modeled in discrete time (as described in more detail in the
exercises).

In many cases, we create systems with a linear input/output response through
the use of feedback. Indeed, it was the desire for linear behavior that led Harold
S. Black to the invention of the negative feedback amplifier. Almost all modern
signal processing systems, whether analog or digital, use feedback to produce linear
or near-linear input/output characteristics. For these systems, it is often useful to
represent the input/output characteristics as linear, ignoring the internal details
required to get that linear response.
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Figure 5.2: Response to piecewise constant inputs. A piecewise constant signal can be rep-
resented as a sum of step signals (a), and the resulting output is the sum of the individual
outputs (b).

posing the responses to a combination of step inputs. Let H(t) be the response to
a unit step applied at time 0. The response to the first step is then H(t − t0)u(t0),
the response to the second step is H(t − t1)

(
u(t1) − u(t0)

)
, and we find that the

complete response is given by

y(t) = H(t − t0)u(t0)+ H(t − t1)
(
u(t1)− u(t0)

) + · · ·
= (

H(t − t0)− H(t − t1)
)
u(t0)+ (

H(t − t1)− H(t − t2)
)
u(t1)+ · · ·

=
tn<t∑
n=0

∞(
H(t − tn)− H(t − tn+1)

)
u(tn)

=
tn<t∑
n=0

H(t − tn)− H(t − tn+1)

tn+1 − tn
u(tn)

(
tn+1 − tn

)
.

An example of this computation is shown in Figure 5.2b.
The response to a continuous input signal is obtained by taking the limit as

tn+1 − tn → 0, which gives

y(t) =
∫ t

0
H ′(t − τ)u(τ )dτ, (5.5)

where H ′ is the derivative of the step response, also called the impulse response.
The response of a linear time-invariant system to any input can thus be computed
from the step response. Notice that the output depends only on the input since we
assumed the system was initially at rest, x(0) = 0. We will derive equation (5.5)
in a slightly different way in the Section 5.3.
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λ = σ ± iω and v = u ± iw, which implies that

u = v + v∗

2
, w = v − v∗

2i
.

Making use of the matrix exponential, we have

eAtv = eλt(u + iw) = eσ t
(
(u cosωt − w sinωt)+ i(u sinωt + w cosωt)

)
,

from which it follows that

eAtu = 1

2

(
eAtv + eAtv∗

)
= ueσ t cosωt − weσ t sinωt,

eAtw = 1

2i

(
eAtv − eAtv∗

)
= ueσ t sinωt + weσ t cosωt .

A solution with initial conditions in the subspace spanned by the real part u and
imaginary partw of the eigenvector will thus remain in that subspace. The solution
will be a logarithmic spiral characterized by σ and ω. We again call the solution
corresponding to λ a mode of the system, and v the mode shape.

If a matrix A has n distinct eigenvalues λ1, . . . , λn , then the initial condition
response can be written as a linear combination of the modes. To see this, suppose
for simplicity that we have all real eigenvalues with corresponding unit eigenvectors
v1, . . . , vn . From linear algebra, these eigenvectors are linearly independent, and
we can write the initial condition x(0) as

x(0) = α1v1 + α2v2 + · · · + αnvn.

Using linearity, the initial condition response can be written as

x(t) = α1e
λ1tv1 + α2e

λ2tv2 + · · · + αne
λn tvn.

Thus, the response is a linear combination of the modes of the system, with the
amplitude of the individual modes growing or decaying as eλi t . The case for distinct
complex eigenvalues follows similarly (the case for nondistinct eigenvalues is more
subtle and requires making use of the Jordan form discussed in the previous section).

Example 5.5 Coupled spring–mass system
Consider the spring–mass system shown in Figure 5.4, but with the addition of
dampers on each mass. The equations of motion of the system are

mq̈1 = −2kq1 − cq̇1 + kq2, mq̈2 = kq1 − 2kq2 − cq̇2.

In state space form, we define the state to be x = (q1, q2, q̇1, q̇2), and we can rewrite
the equations as

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1 0
0 0 0 1

−2k

m

k

m
− c

m
0

k

m
−2k

m
0 − c

m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x .
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We now define a transformation z = T x that puts this system into a simpler form.
Let z1 = 1

2 (q1 + q2), z2 = ż1, z3 = 1
2 (q1 − q2) and z4 = ż3, so that

z = T x = 1

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ x .

In the new coordinates, the dynamics become

dz

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 0

− k

m
− c

m
0 0

0 0 0 1

0 0 −3k

m
− c

m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
z,

and we see that the system is in block diagonal (or modal) form.
In the z coordinates, the states z1 and z2 parameterize one mode with eigen-

values λ ≈ c/(2
√
km) ± i

√
k/m, and the states z3 and z4 another mode with

λ ≈ c/(2
√

3km) ± i
√

3k/m. From the form of the transformation T we see that
these modes correspond exactly to the modes in Figure 5.4, in which q1 and q2 move
either toward or against each other. The real and imaginary parts of the eigenvalues
give the decay rates σ and frequencies ω for each mode. ∇
5.3 Input/Output Response

In the previous section we saw how to compute the initial condition response using
the matrix exponential. In this section we derive the convolution equation, which
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (5.3), repeated here:

dx

dt
= Ax + Bu, y = Cx + Du. (5.13)

Using the matrix exponential, the solution to equation (5.13) can be written as
follows.

Theorem 5.4. The solution to the linear differential equation (5.13) is given by

x(t) = eAt x(0)+
∫ t

0
eA(t−τ)Bu(τ )dτ. (5.14)

Proof. To prove this, we differentiate both sides and use the property (5.8) of the
matrix exponential. This gives

dx

dt
= AeAt x(0)+

∫ t

0
AeA(t−τ)Bu(τ )dτ + Bu(t) = Ax + Bu,
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Figure 5.6: Pulse response and impulse response. (a) The rectangles show pulses of width
5, 2.5 and 0.8, each with total area equal to 1. The arrow denotes an impulse δ(t) defined
by equation (5.17). The corresponding pulse responses for a linear system with eigenvalues
λ = {−0.08,−0.62} are shown in (b) as dashed lines. The solid line is the true impulse
response, which is well approximated by a pulse of duration 0.8.

which proves the result. Notice that the calculation is essentially the same as for
proving the result for a first-order equation.

It follows from equations (5.13) and (5.14) that the input/output relation for a
linear system is given by

y(t) = CeAt x(0)+
∫ t

0
CeA(t−τ)Bu(τ )dτ + Du(t). (5.15)

It is easy to see from this equation that the output is jointly linear in both the
initial conditions and the input, which follows from the linearity of matrix/vector
multiplication and integration.

Equation (5.15) is called the convolution equation, and it represents the general
form of the solution of a system of coupled linear differential equations. We see
immediately that the dynamics of the system, as characterized by the matrix A, play
a critical role in both the stability and performance of the system. Indeed, the matrix
exponential describes bothwhat happens when we perturb the initial condition and
how the system responds to inputs.

Another interpretation of the convolution equation can be given using the concept�
of the impulse response of a system. Consider the application of an input signal
u(t) given by the following equation:

u(t) = pε(t) =

⎧⎪⎨
⎪⎩

0 t < 0

1/ε 0 ≤ t < ε

0 t ≥ ε.

(5.16)

This signal is a pulse of duration ε and amplitude 1/ε, as illustrated in Figure 5.6a.
We define an impulse δ(t) to be the limit of this signal as ε → 0:

δ(t) = lim
ε→0

pε(t). (5.17)
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Figure 5.7:Coupled spring mass system. Each mass is connected to two springs with stiffness
k and a viscous damper with damping coefficient c. The mass on the right is drive through a
spring connected to a sinusoidally varying attachment.

Introduce new coordinates z by the transformation z = T x , where T is an
invertible matrix. It follows from equation (5.3) that

dz

dt
= T (Ax + Bu) = T AT−1z + T Bu =: Ãz + B̃u,

y = Cx + Du = CT−1z + Du =: C̃z + Du.

The transformed system has the same form as equation (5.3), but the matrices A,
B and C are different:

Ã = T AT−1, B̃ = T B, C̃ = CT−1. (5.20)

There are often special choices of coordinate systems that allow us to see a particular
property of the system, hence coordinate transformations can be used to gain new
insight into the dynamics.

We can also compare the solution of the system in transformed coordinates to
that in the original state coordinates. We make use of an important property of the
exponential map,

eT ST
−1 = T eST−1,

which can be verified by substitution in the definition of the matrix exponential.
Using this property, it is easy to show that

x(t) = T−1z(t) = T−1eÃt T x(0)+ T−1
∫ t

0
eÃ(t−τ) B̃u(τ ) dτ.

From this form of the equation, we see that if it is possible to transform A into
a form Ã for which the matrix exponential is easy to compute, we can use that
computation to solve the general convolution equation for the untransformed state
x by simple matrix multiplications. This technique is illustrated in the following
example.

Example 5.6 Coupled spring–mass system
Consider the coupled spring–mass system shown in Figure 5.7. The input to this
system is the sinusoidal motion of the end of the rightmost spring, and the output
is the position of each mass, q1 and q2. The equations of motion are given by

mq̈1 = −2kq1 − cq̇1 + kq2, mq̈2 = kq1 − 2kq2 − cq̇2 + ku.
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In state space form, we define the state to be x = (q1, q2, q̇1, q̇2), and we can rewrite
the equations as

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1 0
0 0 0 1

−2k

m

k

m
− c

m
0

k

m
−2k

m
0 − c

m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0

0

k

m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
u.

This is a coupled set of four differential equations and is quite complicated to solve
in analytical form.

The dynamics matrix is the same as in Example 5.5, and we can use the coor-
dinate transformation defined there to put the system in modal form:

dz

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 0

− k

m
− c

m
0 0

0 0 0 1

0 0 −3k

m
− c

m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
z +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
k

2m
0

− k

2m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
u.

Note that the resulting matrix equations are block diagonal and hence decoupled.
We can solve for the solutions by computing the solutions of two sets of second-
order systems represented by the states (z1, z2) and (z3, z4). Indeed, the functional
form of each set of equations is identical to that of a single spring–mass system.
(The explicit solution is derived in Section 6.3.)

Once we have solved the two sets of independent second-order equations, we
can recover the dynamics in the original coordinates by inverting the state transfor-
mation and writing x = T−1z. We can also determine the stability of the system
by looking at the stability of the independent second-order systems. ∇

Steady-State Response

Given a linear input/output system

dx

dt
= Ax + Bu, y = Cx + Du, (5.21)

the general form of the solution to equation (5.21) is given by the convolution
equation:

y(t) = CeAt x(0)+
∫ t

0
CeA(t−τ)Bu(τ )dτ + Du(t).

We see from the form of this equation that the solution consists of an initial condition
response and an input response.

The input response, corresponding to the last two terms in the equation above,
itself consists of two components—the transient response and the steady-state
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(c) Pulse input

Figure 5.10:Response of a compartment model to a constant drug infusion. A simple diagram
of the system is shown in (a). The step response (b) shows the rate of concentration buildup
in compartment 2. In (c) a pulse of initial concentration is used to speed up the response.

responses (Exercise 5.3). ∇
Another common input signal to a linear system is a sinusoid (or a combination

of sinusoids). The frequency responseof an input/output system measures the way in
which the system responds to a sinusoidal excitation on one of its inputs. As we have
already seen for scalar systems, the particular solution associated with a sinusoidal
excitation is itself a sinusoid at the same frequency. Hence we can compare the
magnitude and phase of the output sinusoid to the input. More generally, if a system
has a sinusoidal output response at the same frequency as the input forcing, we can
speak of the frequency response of the system.

To see this in more detail, we must evaluate the convolution equation (5.15) for
u = cosωt . This turns out to be a very messy calculation, but we can make use of
the fact that the system is linear to simplify the derivation. In particular, we note
that

cosωt = 1

2

(
eiωt + e−iωt

)
.

Since the system is linear, it suffices to compute the response of the system to the
complex input u(t) = est and we can then reconstruct the input to a sinusoid by
averaging the responses corresponding to s = iω and s = −iω.

Applying the convolution equation to the input u = est we have

y(t) = CeAt x(0)+
∫ t

0
CeA(t−τ)Besτdτ + Dest

= CeAt x(0)+ CeAt
∫ t

0
e(s I−A)τ Bdτ + Dest .

If we assume that none of the eigenvalues of A are equal to s = ±iω, then the
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Figure 5.11: Response of a linear system to a sinusoid. (a) A sinusoidal input of magnitude
Au (dashed) gives a sinusoidal output of magnitude Ay (solid), delayed by �T seconds. (b)
Frequency response, showing gain and phase. The gain is given by the ratio of the output
amplitude to the input amplitude, M = Ay/Au . The phase lag is given by θ = −2π�T/T ;
it is negative for the case shown because the output lags the input.

A convenient way to view the frequency response is to plot how the gain and
phase in equation (5.24) depend on ω (through s = iω). Figure 5.11b shows an
example of this type of representation.

Example 5.8 Active band-pass filter
Consider the op amp circuit shown in Figure 5.12a. We can derive the dynamics of
the system by writing the nodal equations, which state that the sum of the currents
at any node must be zero. Assuming that v− = v+ = 0, as we did in Section 3.3,
we have

0 = v1 − v2

R1
− C1

dv2

dt
, 0 = C1

dv2

dt
+ v3

R2
+ C2

dv3

dt
.

Choosing v2 and v3 as our states and using these equations, we obtain

dv2

dt
= v1 − v2

R1C1
,

dv3

dt
= −v3

R2C2
− v1 − v2

R1C2
.

Rewriting these in linear state space form, we obtain

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
− 1

R1C1
0

1

R1C2
− 1

R2C2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ x +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

R1C1

−1

R1C2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ u, y =
⎧⎩0 1

⎫⎭ x, (5.25)

where x = (v2, v3), u = v1 and y = v3.
The frequency response for the system can be computed using equation (5.24):

Me jθ = C(s I − A)−1B + D = − R2

R1

R1C1s

(1 + R1C1s)(1 + R2C2s)
, s = iω.

The magnitude and phase are plotted in Figure 5.12b for R1 = 100 �, R2 = 5 k�
and C1 = C2 = 100 μF. We see that the circuit passes through signals with
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Figure 5.12: Active band-pass filter. The circuit diagram (a) shows an op amp with two RC
filters arranged to provide a band-pass filter. The plot in (b) shows the gain and phase of the
filter as a function of frequency. Note that the phase starts at -90◦ due to the negative gain of
the operational amplifier.

frequencies at about 10 rad/s, but attenuates frequencies below 5 rad/s and above
50 rad/s. At 0.1 rad/s the input signal is attenuated by 20× (0.05). This type of
circuit is called a band-pass filter since it passes through signals in the band of
frequencies between 5 and 50 rad/s. ∇

As in the case of the step response, a number of standard properties are defined
for frequency responses. The gain of a system at ω = 0 is called the zero frequency
gain and corresponds to the ratio between a constant input and the steady output:

M0 = −CA−1B + D.

The zero frequency gain is well defined only if A is invertible (and, in particular, if
it does not have eigenvalues at 0). It is also important to note that the zero frequency
gain is a relevant quantity only when a system is stable about the corresponding
equilibrium point. So, if we apply a constant input u = r , then the corresponding
equilibrium point xe = −A−1Br must be stable in order to talk about the zero
frequency gain. (In electrical engineering, the zero frequency gain is often called
the DC gain. DC stands for direct current and reflects the common separation of
signals in electrical engineering into a direct current (zero frequency) term and an
alternating current (AC) term.)

The bandwidth ωb of a system is the frequency range over which the gain has
decreased by no more than a factor of 1/

√
2 from its reference value. For systems

with nonzero, finite zero frequency gain, the bandwidth is the frequency where
the gain has decreased by 1/

√
2 from the zero frequency gain. For systems that

attenuate low frequencies but pass through high frequencies, the reference gain
is taken as the high-frequency gain. For a system such as the band-pass filter in
Example 5.8, bandwidth is defined as the range of frequencies where the gain is
larger than 1/

√
2 of the gain at the center of the band. (For Example 5.8 this would

give a bandwidth of approximately 50 rad/s.)
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Figure 5.13: AFM frequency response. (a) A block diagram for the vertical dynamics of an
atomic force microscope in contact mode. The plot in (b) shows the gain and phase for the
piezo stack. The response contains two frequency peaks at resonances of the system, along
with an antiresonance at ω = 268 krad/s. The combination of a resonant peak followed by
an antiresonance is common for systems with multiple lightly damped modes.

Another important property of the frequency response is the resonant peak
Mr , the largest value of the frequency response, and the peak frequency ωmr , the
frequency where the maximum occurs. These two properties describe the frequency
of the sinusoidal input that produces the largest possible output and the gain at the
frequency.

Example 5.9 Atomic force microscope in contact mode
Consider the model for the vertical dynamics of the atomic force microscope in
contact mode, discussed in Section 3.5. The basic dynamics are given by equa-
tion (3.23). The piezo stack can be modeled by a second-order system with un-
damped natural frequency ω3 and damping ratio ζ3. The dynamics are then de-
scribed by the linear system

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0 0

−k2/(m1 + m2) −c2/(m1 + m2) 1/m2 0
0 0 0 ω3

0 0 −ω3 −2ζ3ω3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ x +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0
0
0
ω3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ u,

y = m2

m1 + m2

⎧⎪⎩ m1k2

m1 + m2

m1c2

m1 + m2
1 0

⎫⎪⎭ x,

where the input signal is the drive signal to the amplifier and the output is the elon-
gation of the piezo. The frequency response of the system is shown in Figure 5.13b.
The zero frequency gain of the system is M0 = 1. There are two resonant poles with
peaks Mr1 = 2.12 at ωmr1 = 238 krad/s and Mr2 = 4.29 at ωmr2 = 746 krad/s.
The bandwidth of the system, defined as the lowest frequency where the gain is√

2 less than the zero frequency gain, is ωb = 292 krad/s. There is also a dip in
the gain Md = 0.556 for ωmd = 268 krad/s. This dip, called an antiresonance, is
associated with a dip in the phase and limits the performance when the system is
controlled by simple controllers, as we will see in Chapter 10. ∇
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Sampling

It is often convenient to use both differential and difference equations in modeling
and control. For linear systems it is straightforward to transform from one to the
other. Consider the general linear system described by equation (5.13) and assume
that the control signal is constant over a sampling interval of constant length h. It
follows from equation (5.14) of Theorem 5.4 that

x(t + h) = eAhx(t)+
∫ t+h

t
eA(t+h−τ)Bu(k) dτ = �x(t)+ �u(t), (5.26)

where we have assumed that the discontinuous control signal is continuous from
the right. The behavior of the system at the sampling times t = kh is described by
the difference equation

x[k + 1] = �x[k] + �u[k], y[k] = Cx[k] + Du[k]. (5.27)

Notice that the difference equation (5.27) is an exact representation of the behavior
of the system at the sampling instants. Similar expressions can also be obtained if
the control signal is linear over the sampling interval.

The transformation from (5.26) to (5.27) is called sampling. The relations be-
tween the system matrices in the continuous and sampled representations are as
follows:

� = eAh, � =
(∫ h

0
eAs ds

)
B; A = 1

h
log�, B =

(∫ h

0
eAs ds

)−1
�.

(5.28)
Notice that if A is invertible, we have

� = A−1
(
eAh − I

)
B.

All continuous-time systems can be sampled to obtain a discrete-time version,
but there are discrete-time systems that do not have a continuous-time equivalent.
The precise condition is that the matrix � cannot have real eigenvalues on the
negative real axis.

Example 5.10 IBM Lotus server
In Example 2.4 we described how the dynamics of an IBM Lotus server were
obtained as the discrete-time system

y[k + 1] = ay[k] + bu[k],

where a = 0.43, b = 0.47 and the sampling period is h = 60 s. A differential
equation model is needed if we would like to design control systems based on
continuous-time theory. Such a model is obtained by applying equation (5.28);
hence

A = log a

h
= −0.0141, B =

(∫ h

0
eAt dt

)−1
b = 0.0116,

and we find that the difference equation can be interpreted as a sampled version of
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described in Gardner and Barnes [81]. Use of the matrix exponential started with
developments of control theory in the 1960s, strongly stimulated by a textbook by
Zadeh and Desoer [207]. Use of matrix techniques expanded rapidly when the pow-
erful methods of numeric linear algebra were packaged in programs like LabVIEW,
MATLAB and Mathematica.

Exercises

5.1 (Response to the derivative of a signal) Show that if y(t) is the output of a
linear system corresponding to input u(t), then the output corresponding to an
input u̇(t) is given by ẏ(t). (Hint: Use the definition of the derivative: ẏ(t) =
limε→0

(
y(t + ε)− y(t)

)
/ε.)

5.2 (Impulse response and convolution) Show that a signal u(t) can be decomposed�
in terms of the impulse function δ(t) as

u(t) =
∫ t

0
δ(t − τ)u(τ ) dτ

and use this decomposition plus the principle of superposition to show that the
response of a linear system to an input u(t) (assuming a zero initial condition) can
be written as

y(t) =
∫ t

0
h(t − τ)u(τ ) dτ,

where h(t) is the impulse response of the system.

5.3 (Pulse response for a compartment model) Consider the compartment model
given in Example 5.7. Compute the step response for the system and compare it
with Figure 5.10b. Use the principle of superposition to compute the response to
the 5 s pulse input shown in Figure 5.10c. Use the parameter values k0 = 0.1,
k1 = 0.1, k2 = 0.5 and b0 = 1.5.

5.4 (Matrix exponential for second-order system) Assume that ζ < 1 and let ωd =
ω0

√
1 − ζ 2. Show that

exp

⎧⎪⎪⎩−ζω0 ωd
−ωd −ζω0

⎫⎪⎪⎭ t =
⎧⎪⎪⎩ e−ζω0t cosωd t e−ζω0t sinωd t

−e−ζω0t sinωd t e−ζω0t cosωd t

⎫⎪⎪⎭ .
5.5 (Lyapunov function for a linear system) Consider a linear system ẋ = Ax with
Re λ j < 0 for all eigenvalues λ j of the matrix A. Show that the matrix

P =
∫ ∞

0
eA

T τQeAτ dτ

defines a Lyapunov function of the form V (x) = xT Px .

5.6 (Nondiagonal Jordan form) Consider a linear system with a Jordan form that is
non-diagonal.
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(a) Prove Proposition 5.3 by showing that if the system contains a real eigenvalue
λ = 0 with a nontrivial Jordan block, then there exists an initial condition with a
solution that grows in time.

(b) Extend this argument to the case of complex eigenvalues with Re λ = 0 by �
using the block Jordan form

Ji =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 ω 1 0

−ω 0 0 1
0 0 0 ω
0 0 −ω 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ .

5.7 (Rise time for a first-order system) Consider a first-order system of the form

τ
dx

dt
= −x + u, y = x .

We say that the parameter τ is the time constant for the system since the zero input
system approaches the origin as e−t/τ . For a first-order system of this form, show
that the rise time for a step response of the system is approximately 2τ , and that
1%, 2%, and 5% settling times approximately corresponds to 4.6τ , 4τ and 3τ .

5.8 (Discrete-time systems) Consider a linear discrete-time system of the form

x[k + 1] = Ax[k] + Bu[k], y[k] = Cx[k] + Du[k].

(a) Show that the general form of the output of a discrete-time linear system is
given by the discrete-time convolution equation:

y[k] = CAkx[0] +
k−1∑
j=0

CAk− j−1Bu[ j] + Du[k].

(b) Show that a discrete-time linear system is asymptotically stable if and only if
all the eigenvalues of A have a magnitude strictly less than 1.

(c) Let u[k] = sin(ωk) represent an oscillatory input with frequency ω < π (to
avoid “aliasing”). Show that the steady-state component of the response has gain
M and phase θ , where

Meiθ = C(eiω I − A)−1B + D.

(d) Show that if we have a nonlinear discrete-time system

x[k] = f (x[k], u[k]), x[k] ∈ R
n, u ∈ R,

y[k] = h(x[k], u[k]), y ∈ R,

then we can linearize the system around an equilibrium point (xe, ue) by defining
the matrices A, B, C and D as in equation (5.34).
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5.9 (Keynesian economics) Consider the following simple Keynesian macroeco-
nomic model in the form of a linear discrete-time system discussed in Exercise 5.8:⎧⎪⎪⎩C[t + 1]

I [t + 1]

⎫⎪⎪⎭ =
⎧⎪⎪⎩ a a
ab − b ab

⎫⎪⎪⎭ ⎧⎪⎪⎩C[t]
I [t]

⎫⎪⎪⎭ +
⎧⎪⎪⎩ a
ab

⎫⎪⎪⎭G[t],

Y [t] = C[t] + I [t] + G[t].

Determine the eigenvalues of the dynamics matrix. When are the magnitudes of
the eigenvalues less than 1? Assume that the system is in equilibrium with constant
values capital spending C , investment I and government expenditure G. Explore
what happens when government expenditure increases by 10%. Use the values
a = 0.25 and b = 0.5.

5.10 Consider a scalar system

dx

dt
= 1 − x3 + u.

Compute the equilibrium points for the unforced system (u = 0) and use a Taylor
series expansion around the equilibrium point to compute the linearization. Verify
that this agrees with the linearization in equation (5.33).

5.11 (Transcriptional regulation) Consider the dynamics of a genetic circuit that im-
plements self-repression: the protein produced by a gene is a repressor for that gene,
thus restricting its own production. Using the models presented in Example 2.13,
the dynamics for the system can be written as

dm

dt
= α

1 + kp2
+ α0 − γm − u,

dp

dt
= βm − δp, (5.40)

where u is a disturbance term that affects RNA transcription and m, p ≥ 0. Find
the equilibrium points for the system and use the linearized dynamics around each
equilibrium point to determine the local stability of the equilibrium point and the
step response of the system to a disturbance.
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x(T )

x0 R(x0,≤ T )

(a) Reachable set

E

(b) Reachability through control

Figure 6.1: The reachable set for a control system. The set R(x0,≤ T ) shown in (a) is the set
of points reachable from x0 in time less than T . The phase portrait in (b) shows the dynamics
for a double integrator, with the natural dynamics drawn as horizontal arrows and the control
inputs drawn as vertical arrows. The set of achievable equilibrium points is the x axis. By
setting the control inputs as a function of the state, it is possible to steer the system to the
origin, as shown on the sample path.

The definition of reachability addresses whether it is possible to reach all points
in the state space in a transient fashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibrium points of the system
(since we can remain at those points once we get there). The set of all possible
equilibria for constant controls is given by

E = {xe : Axe + Bue = 0 for some ue ∈ R}.
This means that possible equilibria lie in a one- (or possibly higher) dimensional
subspace. If the matrix A is invertible, this subspace is spanned by A−1B.

The following example provides some insight into the possibilities.

Example 6.1 Double integrator
Consider a linear system consisting of a double integrator whose dynamics are
given by

dx1

dt
= x2,

dx2

dt
= u.

Figure 6.1b shows a phase portrait of the system. The open loop dynamics (u = 0)
are shown as horizontal arrows pointed to the right for x2 > 0 and to the left for
x2 < 0. The control input is represented by a double-headed arrow in the vertical
direction, corresponding to our ability to set the value of ẋ2. The set of equilibrium
points E corresponds to the x1 axis, with ue = 0.

Suppose first that we wish to reach the origin from an initial condition (a, 0).
We can directly move the state up and down in the phase plane, but we must rely
on the natural dynamics to control the motion to the left and right. If a > 0, we
can move the origin by first setting u < 0, which will cause x2 to become negative.
Once x2 < 0, the value of x1 will begin to decrease and we will move to the left.
After a while, we can set u2 to be positive, moving x2 back toward zero and slowing
the motion in the x1 direction. If we bring x2 > 0, we can move the system state in
the opposite direction.
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Figure 6.1b shows a sample trajectory bringing the system to the origin. Note
that if we steer the system to an equilibrium point, it is possible to remain there
indefinitely (since ẋ1 = 0 when x2 = 0), but if we go to any other point in the state
space, we can pass through the point only in a transient fashion. ∇

To find general conditions under which a linear system is reachable, we will
first give a heuristic argument based on formal calculations with impulse functions.
We note that if we can reach all points in the state space through some choice of
input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system to an input u(t) is given
by

x(t) =
∫ t

0
eA(t−τ)Bu(τ ) dτ. (6.2)

If we choose the input to be a impulse function δ(t) as defined in Section 5.3, the
state becomes

xδ =
∫ t

0
eA(t−τ)Bδ(τ ) dτ = dxS

dt
= eAt B.

(Note that the state changes instantaneously in response to the impulse.) We can
find the response to the derivative of an impulse function by taking the derivative
of the impulse response (Exercise 5.1):

xδ̇ = dxδ
dt

= AeAt B.

Continuing this process and using the linearity of the system, the input

u(t) = α1δ(t)+ α2δ̇(t)+ α3δ̈(t)+ · · · + αnδ
(n−1)(t)

gives the state

x(t) = α1e
At B + α2Ae

At B + α3A
2eAt B + · · · + αn A

n−1eAt B.

Taking the limit as t goes to zero through positive values, we get

lim
t→0+ x(t) = α1B + α2AB + α3A

2B + · · · + αn A
n−1B.

On the right is a linear combination of the columns of the matrix

Wr =
⎧⎩B AB · · · An−1B

⎫⎭ . (6.3)

To reach an arbitrary point in the state space, we thus require that there are n linear
independent columns of the matrix Wr . The matrix Wr is called the reachability
matrix.

An input consisting of a sum of impulse functions and their derivatives is a very
violent signal. To see that an arbitrary point can be reached with smoother signals



StateFeedback.tex, v1.150 2009/06/24 04:40:26 (murray)

6.1. REACHABILITY 171

(a) Segway
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F

p

θ
m

l

(b) Cart-pendulum system

Figure 6.2: Balance system. The Segway Personal Transporter shown in (a) is an example of
a balance system that uses torque applied to the wheels to keep the rider upright. A simplified
diagram for a balance system is shown in (b). The system consists of a mass m on a rod of
length l connected by a pivot to a cart with mass M .

where μ = Mt Jt − m2l2, Mt = M+m and Jt = J +ml2. The reachability matrix
is

Wr =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 Jt/μ 0 gl3m3/μ2

0 lm/μ 0 gl2m2(m + M)/μ2

Jt/μ 0 gl3m3/μ2 0

lm/μ 0 gl2m2(m + M)/μ2 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ . (6.5)

The determinant of this matrix is

det(Wr ) = g2l4m4

(μ)4
�= 0,

and we can conclude that the system is reachable. This implies that we can move
the system from any initial state to any final state and, in particular, that we can
always find an input to bring the system from an initial state to an equilibrium point.

∇
It is useful to have an intuitive understanding of the mechanisms that make a

system unreachable. An example of such a system is given in Figure 6.3. The
system consists of two identical systems with the same input. Clearly, we cannot
separately cause the first and the second systems to do something different since
they have the same input. Hence we cannot reach arbitrary states, and so the system
is not reachable (Exercise 6.3).

More subtle mechanisms for nonreachability can also occur. For example, if
there is a linear combination of states that always remains constant, then the system
is not reachable. To see this, suppose that there exists a row vector H such that

0 = d

dt
Hx = H(Ax + Bu), for all u.
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Transforming each element individually, we have

Ã B̃ = T AT−1T B = T AB,

Ã2 B̃ = (T AT−1)2T B = T AT−1T AT−1T B = T A2B,
...

Ãn B̃ = T AnB,

and hence the reachability matrix for the transformed system is

W̃r = T
⎧⎩B AB · · · An−1B

⎫⎭ = TWr . (6.8)

Since Wr is invertible, we can thus solve for the transformation T that takes the
system into reachable canonical form:

T = W̃rW
−1
r .

The following example illustrates the approach.

Example 6.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

dx

dt
=

⎧⎪⎪⎩ α ω
−ω α

⎫⎪⎪⎭ x +
⎧⎪⎪⎩0

1

⎫⎪⎪⎭ u.

We wish to find the transformation that converts the system into reachable canonical
form:

Ã =
⎧⎪⎪⎩−a1 −a2

1 0

⎫⎪⎪⎭ , B̃ =
⎧⎪⎪⎩1

0

⎫⎪⎪⎭ .
The coefficients a1 and a2 can be determined from the characteristic polynomial
for the original system:

λ(s) = det(s I − A) = s2 − 2αs + (α2 + ω2) =⇒ a1 = −2α,

a2 = α2 + ω2.

The reachability matrix for each system is

Wr =
⎧⎪⎪⎩0 ω

1 α

⎫⎪⎪⎭ , W̃r =
⎧⎪⎪⎩1 −a1

0 1

⎫⎪⎪⎭ .
The transformation T becomes

T = W̃rW
−1
r =

⎧⎪⎪⎩−(a1 + α)/ω 1

1/ω 0

⎫⎪⎪⎭ =
⎧⎪⎪⎩α/ω 1

1/ω 0

⎫⎪⎪⎭ ,
and hence the coordinates⎧⎪⎪⎩z1

z2

⎫⎪⎪⎭ = T x =
⎧⎪⎪⎩αx1/ω + x2

x1/ω

⎫⎪⎪⎭
put the system in reachable canonical form. ∇

We summarize the results of this section in the following theorem.
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(b) Step response for varying ζc

Figure 6.6: State feedback control of a steering system. Step responses obtained with con-
trollers designed with ζc = 0.7 and ωc = 0.5, 1 and 2 [rad/s] are shown in (a). Notice that
response speed increases with increasing ωc, but that large ωc also give large initial control
actions. Step responses obtained with a controller designed with ωc = 1 and ζc = 0.5, 0.7
and 1 are shown in (b).

The step responses for the closed loop system for different values of the design
parameters are shown in Figure 6.6. The effect ofωc is shown in Figure 6.6a, which
shows that the response speed increases with increasing ωc. The responses for
ωc = 0.5 and 1 have reasonable overshoot. The settling time is about 15 car lengths
for ωc = 0.5 (beyond the end of the plot) and decreases to about 6 car lengths for
ωc = 1. The control signal δ is large initially and goes to zero as time increases
because the closed loop dynamics have an integrator. The initial value of the control
signal is u(0) = kr = ω2

cr , and thus the achievable response time is limited by the
available actuator signal. Notice in particular the dramatic increase in control signal
whenωc changes from 1 to 2. The effect of ζc is shown in Figure 6.6b. The response
speed and the overshoot increase with decreasing damping. Using these plots, we
conclude that reasonable values of the design parameters are to haveωc in the range
of 0.5 to 1 and ζc ≈ 0.7. ∇

The example of the vehicle steering system illustrates how state feedback can
be used to set the eigenvalues of a closed loop system to arbitrary values.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the parameters of the system are
the coefficients of the characteristic polynomial. It is therefore natural to consider
systems in this form when solving the eigenvalue assignment problem.
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Consider a system in reachable canonical form, i.e,

dz

dt
= Ãz + B̃u =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a1 −a2 −a3 . . . −an
1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

...
0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
z +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
0
...
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
u

y = C̃z =
⎧⎩b1 b2 · · · bn

⎫⎭ z.

(6.15)

It follows from(6.7) that the open loop system has the characteristic polynomial

det(s I − A) = sn + a1s
n−1 + · · · + an−1s + an.

Before making a formal analysis we can gain some insight by investigating the
block diagram of the system shown in Figure 6.4. The characteristic polynomial is
given by the parameters ak in thefigure. Notice that the parameter ak can be changed
by feedback from state zk to the input u. It is thus straightforward to change the
coefficients of the characteristic polynomial by state feedback.

Returning to equations, introducing the control law

u = −K̃ z + krr = −k̃1z1 − k̃2z2 − · · · − k̃nzn + krr, (6.16)

the closed loop system becomes

dz

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a1 − k̃1 −a2 − k̃2 −a3 − k̃3 . . . −an − k̃n
1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

...
0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
z +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kr
0
0
...
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
r,

y =
⎧⎩bn · · · b2 b1

⎫⎭ z.

(6.17)
The feedback changes the elements of the first row of the A matrix, which corre-
sponds to the parameters of the characteristic polynomial. The closed loop system
thus has the characteristic polynomial

sn + (al + k̃1)s
n−1 + (a2 + k̃2)s

n−2 + · · · + (an−1 + k̃n−1)s + an + k̃n.

Requiring this polynomial to be equal to the desired closed loop polynomial

p(s) = sn + p1s
n−1 + · · · + pn−1s + pn,

we find that the controller gains should be chosen as

k̃1 = p1 − a1, k̃2 = p2 − a2, . . . k̃n = pn − an.

This feedback simply replaces the parameters ai in the system (6.15) by pi . The
feedback gain for a system in reachable canonical form is thus

K̃ =
⎧⎩p1 − a1 p2 − a2 · · · pn − an

⎫⎭ . (6.18)
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To have zero frequency gain equal to unity, the parameter kr should be chosen
as

kr = an + k̃n
bn

= pn
bn
. (6.19)

Notice that it is essential to know the precise values of parameters an and bn in order
to obtain the correct zero frequency gain. The zero frequency gain is thus obtained
by precise calibration. This is very different from obtaining the correct steady-state
value by integral action, which we shall see in later sections.

Eigenvalue Assignment

We have seen through the examples how feedback can be used to design the dy-
namics of a system through assignment of its eigenvalues. To solve the problem in
the general case, we simply change coordinates so that the system is in reachable
canonical form. Consider the system

dx

dt
= Ax + Bu, y = Cx + Du. (6.20)

We can change the coordinates by a linear transformation z = T x so that the
transformed system is in reachable canonical form (6.15). For such a system the
feedback is given by equation (6.16), where the coefficients are given by equa-
tion (6.18). Transforming back to the original coordinates gives the feedback

u = −K̃ z + krr = −K̃ T x + krr.

The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedback). Consider the system
given by equation (6.20), with one input and one output. Let λ(s) = sn + a1sn−1 +
· · · + an−1s + an be the characteristic polynomial of A. If the system is reachable,
then there exists a feedback

u = −Kx + krr

that gives a closed loop system with the characteristic polynomial

p(s) = sn + p1s
n−1 + · · · + pn−1s + pn

and unity zero frequency gain between r and y. The feedback gain is given by

K = K̃ T =
⎧⎩p1 − a1 p2 − a2 · · · pn − an

⎫⎭ W̃rW
−1
r , (6.21)

where ai are the coefficients of the characteristic polynomial of the matrix A and
the matrices Wr and W̃r are given by
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Wr =
⎧⎩B AB · · · An−1B

⎫⎭ , W̃r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 a1 a2 · · · an−1

0 1 a1 · · · an−2
...

. . .
. . .

...
0 0 · · · 1 a1

0 0 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−1

.

The reference gain is given by

kr = −1/
(
C(A − BK )−1B

)
.

For simple problems, the eigenvalue assignment problem can be solved by
introducing the elements ki of K as unknown variables. We then compute the
characteristic polynomial

λ(s) = det(s I − A + BK )

and equate coefficients of equal powers of s to the coefficients of the desired char-
acteristic polynomial

p(s) = sn + p1s
n−1 + · · · + pn−1s + pn.

This gives a system of linear equations to determine ki . The equations can always
be solved if the system is reachable, exactly as we did in Example 6.4.

Equation (6.21), which is called Ackermann’s formula [3, 4], can be used for
numeric computations. It is implemented in the MATLAB function acker. The
MATLAB function place is preferable for systems of high order because it is
better conditioned numerically.

Example 6.5 Predator–prey
Consider the problem of regulating the population of an ecosystem by modulating
the food supply. We use the predator–prey model introduced in Section 3.7. The
dynamics for the system are given by

dH

dt
= (r + u)H

(
1 − H

k

)
− aHL

c + H
, H ≥ 0,

dL

dt
= b

aHL

c + H
− dL , L ≥ 0.

We choose the following nominal parameters for the system, which correspond to
the values used in previous simulations:

a = 3.2, b = 0.6, c = 50,

d = 0.56, k = 125 r = 1.6.

We take the parameter r , corresponding to the growth rate for hares, as the input to
the system, which we might modulate by controlling a food source for the hares.
This is reflected in our model by the term (r + u) in the first equation. We choose
the number of lynxes as the output of our system.

To control this system, we first linearize the system around the equilibrium
point of the system (He, Le), which can be determined numerically to be xe ≈
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Figure 6.7: Simulation results for the controlled predator–prey system. The population of
lynxes and hares as a function of time is shown in (a), and a phase portrait for the controlled
system is shown in (b). Feedback is used to make the population stable at He = 20.6 and
Le = 20.

6.3 State Feedback Design

The location of the eigenvalues determines the behavior of the closed loop dynam-
ics, and hence where we place the eigenvalues is the main design decision to be
made. As with all other feedback design problems, there are trade-offs among the
magnitude of the control inputs, the robustness of the system to perturbations and
the closed loop performance of the system. In this section we examine some of
these trade-offs starting with the special case of second-order systems.

Second-Order Systems

One class of systems that occurs frequently in the analysis and design of feedback
systems is second-order linear differential equations. Because of their ubiquitous
nature, it is useful to apply the concepts of this chapter to that specific class of
systems and build more intuition about the relationship between stability and per-
formance.

The canonical second-order system is a differential equation of the form

q̈ + 2ζω0q̇ + ω2
0q = kω2

0u, y = q. (6.22)

In state space form, this system can be represented as

dx

dt
=

⎧⎪⎪⎩ 0 ω0

−ω0 −2ζω0

⎫⎪⎪⎭ x +
⎧⎪⎪⎩ 0
kω0

⎫⎪⎪⎭ u, y =
⎧⎩1 0

⎫⎭ x . (6.23)

The eigenvalues of this system are given by

λ = −ζω0 ±
√
ω2

0(ζ
2 − 1),

and we see that the origin is a stable equilibrium point if ω0 > 0 and ζ > 0. Note
that the eigenvalues are complex if ζ < 1 and real otherwise. Equations (6.22)
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and (6.23) can be used to describe many second-order systems, including damped
oscillators, active filters and flexible structures, as shown in the examples below.

The form of the solution depends on the value of ζ , which is referred to as the
damping ratio for the system. If ζ > 1, we say that the system is overdamped, and
the natural response (u = 0) of the system is given by

y(t) = βx10 + x20

β − α
e−αt − αx10 + x20

β − α
e−βt ,

where α = ω0(ζ + √
ζ 2 − 1) and β = ω0(ζ − √

ζ 2 − 1). We see that the response
consists of the sum of two exponentially decaying signals. If ζ = 1, then the system
is critically damped and solution becomes

y(t) = e−ζω0t
(
x10 + (x20 + ζω0x10)t

)
.

Note that this is still asymptotically stable as long as ω0 > 0, although the second
term in the solution is increasing with time (but more slowly than the decaying
exponential that is multiplying it).

Finally, if 0 < ζ < 1, then the solution is oscillatory and equation (6.22) is said
to be underdamped. The parameter ω0 is referred to as the natural frequency of the
system, stemming from the fact that for small ζ , the eigenvalues of the system are
approximately λ = −ζω0 ± jω0. The natural response of the system is given by

y(t) = e−ζω0t

(
x10 cosωd t +

(ζω0

ωd
x10 + 1

ωd
x20

)
sinωd t

)
,

where ωd = ω0

√
1 − ζ 2 is called the damped frequency. For ζ � 1, ωd ≈ ω0

defines the oscillation frequency of the solution and ζ gives the damping rate relative
to ω0.

Because of the simple form of a second-order system, it is possible to solve
for the step and frequency responses in analytical form. The solution for the step
response depends on the magnitude of ζ :

y(t) = k

(
1 − e−ζω0t cosωd t − ζ√

1 − ζ 2
e−ζω0t sinωd t

)
, ζ < 1;

y(t) = k
(
1 − e−ω0t(1 + ω0t)

)
, ζ = 1;

y(t) = k

(
1 − 1

2

(
ζ√
ζ 2−1

+ 1
)
e−ω0t (ζ−

√
ζ 2−1)

+1

2

(
ζ√
ζ 2−1

− 1
)
e−ω0t (ζ+

√
ζ 2−1)

)
, ζ > 1,

(6.24)

where we have taken x(0) = 0. Note that for the lightly damped case (ζ < 1) we
have an oscillatory solution at frequency ωd .

Step responses of systems with k = 1 and different values of ζ are shown in
Figure 6.8. The shape of the response is determined by ζ , and the speed of the
response is determined by ω0 (included in the time axis scaling): the response is
faster if ω0 is larger.
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Figure 6.8: Step response for a second-order system. Normalized step responses h for the
system (6.23) for ζ = 0, 0.4, 0.7, 1 and 1.2. As the damping ratio is increased, the rise time
of the system gets longer, but there is less overshoot. The horizontal axis is in scaled units
ω0t ; higher values of ω0 result in a faster response (rise time and settling time).

In addition to the explicit form of the solution, we can also compute the properties
of the step response that were defined in Section 5.3. For example, to compute the
maximum overshoot for an underdamped system, we rewrite the output as

y(t) = k

(
1 − 1√

1 − ζ 2
e−ζω0t sin(ωd t + ϕ)

)
, (6.25)

where ϕ = arccos ζ . The maximum overshoot will occur at the first time in which
the derivative of y is zero, which can be shown to be

Mp = e−πζ/
√

1−ζ 2
.

Similar computations can be done for the other characteristics of a step response.
Table 6.1 summarizes the calculations.

The frequency response for a second-order system can also be computed ex-

Table 6.1: Properties of the step response for a second-order system with 0 < ζ < 1.

Property Value ζ = 0.5 ζ = 1/
√

2 ζ = 1

Steady-state value k k k k

Rise time Tr = 1/ω0 · eϕ/ tan ϕ 1.8/ω0 2.2/ω0 2.7/ω0

Overshoot Mp = e−πζ/
√

1−ζ 2 16% 4% 0%

Settling time (2%) Ts ≈ 4/ζω0 8.0/ω0 5.9/ω0 5.8/ω0
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for a complex eigenvalue λ to be

ζ = −Re λ

|λ| .

We say that a complex conjugate pair of eigenvalues λ, λ∗ is a dominant pair if it
has the lowest damping ratio compared with all other eigenvalues of the system.

Assuming that a system is stable, the dominant pair of eigenvalues tends to be
the most important element of the response. To see this, assume that we have a
system in Jordan form with a simple Jordan block corresponding to the dominant
pair of eigenvalues:

dz

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
λ∗

J2
. . .

Jk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
z + Bu, y = Cz.

(Note that the state z may be complex because of the Jordan transformation.) The
response of the system will be a linear combination of the responses from each
of the individual Jordan subsystems. As we see from Figure 6.8, for ζ < 1 the
subsystem with the slowest response is precisely the one with the smallest damping
ratio. Hence, when we add the responses from each of the individual subsystems,
it is the dominant pair of eigenvalues that will be the primary factor after the initial
transients due to the other terms in the solution die out. While this simple analysis
does not always hold (e.g., if some nondominant terms have larger coefficients
because of the particular form of the system), it is often the case that the dominant
eigenvalues determine the (step) response of the system.

The only formal requirement for eigenvalue assignment is that the system be
reachable. In practice there are many other constraints because the selection of
eigenvalues has a strong effect on the magnitude and rate of change of the control
signal. Large eigenvalues will in general require large control signals as well as
fast changes of the signals. The capability of the actuators will therefore impose
constraints on the possible location of closed loop eigenvalues. These issues will
be discussed in depth in Chapters 11 and 12.

We illustrate some of the main ideas using the balance system as an example.

Example 6.7 Balance system
Consider the problem of stabilizing a balance system, whose dynamics were given
in Example 6.2. The dynamics are given by

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 1 0
0 0 0 1

0 m2l2g/μ −cJt/μ −γ Jtlm/μ
0 Mtmgl/μ −clm/μ −γMt/μ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0
0

Jt/μ

lm/μ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ ,

where Mt = M + m, Jt = J + ml2, μ = Mt Jt − m2l2 and we have left c and γ
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nonzero. We use the following parameters for the system (corresponding roughly
to a human being balanced on a stabilizing cart):

M = 10 kg, m = 80 kg, c = 0.1 N s/m,

J = 100 kg m2/s2, l = 1 m, γ = 0.01 N m s,
g = 9.8 m/s2.

The eigenvalues of the open loop dynamics are given byλ ≈ 0, 4.7,−1.9±2.7i .
We have verified already in Example 6.2 that the system is reachable, and hence
we can use state feedback to stabilize the system and provide a desired level of
performance.

To decide where to place the closed loop eigenvalues, we note that the closed
loop dynamics will roughly consist of two components: a set of fast dynamics
that stabilize the pendulum in the inverted position and a set of slower dynamics
that control the position of the cart. For the fast dynamics, we look to the natural
period of the pendulum (in the hanging-down position), which is given by ω0 =√
mgl/(J + ml2) ≈ 2.1 rad/s. To provide a fast response we choose a damping ratio

of ζ = 0.5 and try to place the first pair of eigenvalues at λ1,2 ≈ −ζω0 ± ω0 ≈
−1 ± 2i , where we have used the approximation that

√
1 − ζ 2 ≈ 1. For the slow

dynamics, we choose the damping ratio to be 0.7 to provide a small overshoot and
choose the natural frequency to be 0.5 to give a rise time of approximately 5 s. This
gives eigenvalues λ3,4 = −0.35 ± 0.35i .

The controller consists of a feedback on the state and a feedforward gain for the
reference input. The feedback gain is given by

K =
⎧⎩−15.6 1730 −50.1 443

⎫⎭ ,
which can be computed using Theorem 6.3 or using the MATLAB place com-
mand. The feedforward gain is kr = −1/(C(A − BK )−1B) = −15.5. The step
response for the resulting controller (applied to the linearized system) is given in
Figure 6.11a. While the step response gives the desired characteristics, the input
required (bottom left) is excessively large, almost three times the force of gravity
at its peak.

To provide a more realistic response, we can redesign the controller to have
slower dynamics. We see that the peak of the input force occurs on the fast time scale,
and hence we choose to slow this down by a factor of 3, leaving the damping ratio
unchanged. We also slow down the second set of eigenvalues, with the intuition that
we should move the position of the cart more slowly than we stabilize the pendulum
dynamics. Leaving the damping ratio for the slow dynamics unchanged at 0.7 and
changing the frequency to 1 (corresponding to a rise time of approximately 10 s),
the desired eigenvalues become

λ = {−0.33 ± 0.66i, −0.18 ± 0.18i}.
The performance of the resulting controller is shown in Figure 6.11b. ∇

As we see from this example, it can be difficult to determine where to place
the eigenvalues using state feedback. This is one of the principal limitations of this
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Figure 6.15:Velocity and throttle for a car with cruise control based on proportional (dashed)
and PI control (solid). The PI controller is able to adjust the throttle to compensate for the
effect of the hill and maintain the speed at the reference value of vr = 20 m/s.

The resulting controller stabilizes the system and hence brings ż = y − vr to zero,
resulting in perfect tracking. Notice that even if we have a small error in the values
of the parameters defining the system, as long as the closed loop eigenvalues are
still stable, then the tracking error will approach zero. Thus the exact calibration
required in our previous approach (using kr ) is not needed here. Indeed, we can
even choose kr = 0 and let the feedback controller do all of the work.

Integral feedback can also be used to compensate for constant disturbances.
Figure 6.15 shows the results of a simulation in which the car encounters a hill
with angle θ = 4◦ at t = 8 s. The stability of the system is not affected by this
external disturbance, and so we once again see that the car’s velocity converges
to the reference speed. This ability to handle constant disturbances is a general
property of controllers with integral feedback (see Exercise 6.4). ∇

6.5 Further Reading

The importance of state models and state feedback was discussed in the seminal
paper by Kalman [113], where the state feedback gain was obtained by solving
an optimization problem that minimized a quadratic loss function. The notions
of reachability and observability (Chapter 7) are also due to Kalman [115] (see
also [82, 118]). Kalman defines controllability and reachability as the ability to reach
the origin and an arbitrary state, respectively [117]. We note that in most textbooks
the term “controllability” is used instead of “reachability,” but we prefer the latter
term because it is more descriptive of the fundamental property of being able to reach
arbitrary states. Most undergraduate textbooks on control contain material on state
space systems, including, for example, Franklin, Powell and Emami-Naeini [79] and
Ogata [162]. Friedland’s textbook [80] covers the material in the previous, current
and next chapter in considerable detail, including the topic of optimal control.

Exercises

6.1 (Double integrator) Consider the double integrator. Find a piecewise constant
control strategy that drives the system from the origin to the state x = (1, 1).
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6.2 (Reachability from nonzero initial state) Extend the argument in Section 6.1 to
show that if a system is reachable from an initial state of zero, it is reachable from
a nonzero initial state.

6.3 (Unreachable systems) Consider the system shown in Figure 6.3. Write the
dynamics of the two systems as

dx

dt
= Ax + Bu,

dz

dt
= Az + Bu.

If x and z have the same initial condition, they will always have the same state
regardless of the input that is applied. Show that this violates the definition of
reachability and further show that the reachability matrix Wr is not full rank.

6.4 (Integral feedback for rejecting constant disturbances) Consider a linear system
of the form

dx

dt
= Ax + Bu + Fd, y = Cx

where u is a scalar and d is a disturbance that enters the system through a disturbance
vector F ∈ R

n . Assume that the matrix A is invertible and the zero frequency gain
CA−1B is nonzero. Show that integral feedback can be used to compensate for a
constant disturbance by giving zero steady-state output error even when d �= 0.

6.5 (Rear-steered bicycle) A simple model for a bicycle was given by equation (3.5)
in Section 3.2. A model for a bicycle with rear-wheel steering is obtained by re-
versing the sign of the velocity in the model. Determine the conditions under which
this systems is reachable and explain any situations in which the system is not
reachable.

6.6 (Characteristic polynomial for reachable canonical form) Show that the char-
acteristic polynomial for a system in reachable canonical form is given by equa-
tion (6.7) and that

dnzk
dtn

+ a1
dn−1zk
dtn−1

+ · · · + an−1
dzk
dt

+ anzk = dn−ku
dtn−k

,

where zk is the kth state.

6.7 (Reachability matrix for reachable canonical form) Consider a system in reach-
able canonical form. Show that the inverse of the reachability matrix is given by

W̃−1
r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 a1 a2 · · · an
0 1 a1 · · · an−1

0 0 1
. . .

...
...

. . . a1

0 0 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.
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6.8 (Non-maintainable equilibria) Consider the normalized model of a pendulum
on a cart

d2x

dt2
= u,

d2θ

dt2
= −θ + u,

where x is cart position and θ is pendulum angle. Can the angle θ = θ0 for θ0 �= 0
be maintained?

6.9 (Eigenvalue assignment for unreachable system) Consider the system

dx

dt
=

⎧⎪⎪⎩0 1
0 0

⎫⎪⎪⎭ x +
⎧⎪⎪⎩1

0

⎫⎪⎪⎭ u, y =
⎧⎩1 0

⎫⎭ x,

with the control law
u = −k1x1 − k2x2 + krr.

Show that eigenvalues of the system cannot be assigned to arbitrary values.

6.10 (Cayley–Hamilton theorem) Let A ∈ R
n×n be a matrix with characteristic

polynomial λ(s) = det(s I − A) = sn + a1sn−1 + · · · + an−1s + an . Assume that
the matrix A can be diagonalized and show that it satisfies

λ(A) = An + a1A
n−1 + · · · + an−1A + an I = 0,

Use the result to show that Ak , k ≥ n, can be rewritten in terms of powers of A of
order less than n.

6.11 (Motor drive) Consider the normalized model of the motor drive in Exer-
cise 2.10. Using the following normalized parameters,

J1 = 10/9, J2 = 10, c = 0.1, k = 1, kI = 1,

verify that the eigenvalues of the open loop system are 0, 0,−0.05 ± i . Design a
state feedback that gives a closed loop system with eigenvalues −2, −1 and −1± i .
This choice implies that the oscillatory eigenvalues will be well damped and that
the eigenvalues at the origin are replaced by eigenvalues on the negative real axis.
Simulate the responses of the closed loop system to step changes in the command
signal for θ2 and a step change in a disturbance torque on the second rotor.

6.12 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (3.7) in Section 3.2. Using the parameters from the companion web site, the
model is unstable at the velocity v = 5 m/s and the open loop eigenvalues are -1.84,
-14.29 and 1.30 ± 4.60i . Find the gains of a controller that stabilizes the bicycle
and gives closed loop eigenvalues at -2, -10 and −1 ± i . Simulate the response of
the system to a step change in the steering reference of 0.002 rad.

6.13 (Atomic force microscope) Consider the model of an AFM in contact mode
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given in Example 5.9:

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0 0

−k2/(m1 + m2) −c2/(m1 + m2) 1/m2 0
0 0 0 ω3

0 0 −ω3 −2ζ3ω3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ x +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0
0
0
ω3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ u,

y = m2

m1 + m2

⎧⎪⎩ m1k2

m1 + m2

m1c2

m1 + m2
1 0

⎫⎪⎭ x .

Use the MATLAB script afm_data.m from the companion web site to generate the
system matrices.

(a) Compute the reachability matrix of the system and numerically determine its
rank. Scale the model by using milliseconds instead of seconds as time units. Repeat
the calculation of the reachability matrix and its rank.

(b) Find a state feedback controller that gives a closed loop system with complex
poles having damping ratio 0.707. Use the scaled model for the computations.

(c) Compute state feedback gains using linear quadratic control. Experiment by
using different weights. Compute the gains for q1 = q2 = 0, q3 = q4 = 1 and
ρ1 = 0.1 and explain the result. Choose q1 = q2 = q3 = q4 = 1 and explore what
happens to the feedback gains and closed loop eigenvalues when you change ρ1.
Use the scaled system for this computation.

6.14 Consider the second-order system

d2y

dt2
+ 0.5

dy

dt
+ y = a

du

dt
+ u.

Let the initial conditions be zero.

(a) Show that the initial slope of the unit step response is a. Discuss what it means
when a < 0.

(b) Show that there are points on the unit step response that are invariant with a.
Discuss qualitatively the effect of the parameter a on the solution.

(c) Simulate the system and explore the effect of a on the rise time and overshoot.

6.15 (Bryson’s rule) Bryson and Ho [47] have suggested the following method for
choosing the matrices Qx and Qu in equation (6.26). Start by choosing Qx and Qu

as diagonal matrices whose elements are the inverses of the squares of the maxima
of the corresponding variables. Then modify the elements to obtain a compromise
among response time, damping and control effort. Apply this method to the motor
drive in Exercise 6.11. Assume that the largest values of the ϕ1 and ϕ2 are 1, the
largest values of ϕ̇1 and ϕ̇2 are 2 and the largest control signal is 10. Simulate the
closed loop system for ϕ2(0) = 1 and all other states are initialized to 0. Explore
the effects of different values of the diagonal elements for Qx and Qu .
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a system in observable canonical form, which is given by

Wo =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 . . . 0
−a1 1 0 . . . 0

−a2
1 − a1a2 −a1 1 0
...

...
. . .

...
∗ ∗ . . . 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

where * represents an entry whose exact value is not important. The rows of this
matrix are linearly independent (since it is lower triangular), and hence Wo is
full rank. A straightforward but tedious calculation shows that the inverse of the
observability matrix has a simple form given by

W−1
o =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 · · · 0
a1 1 0 · · · 0
a2 a1 1 · · · 0
...

...
. . .

...
an−1 an−2 an−3 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

As in the case of reachability, it turns out that if a system is observable then there
always exists a transformation T that converts the system into observable canonical
form. This is useful for proofs since it lets us assume that a system is in observable
canonical form without any loss of generality. The observable canonical form may
be poorly conditioned numerically.

7.2 State Estimation

Having defined the concept of observability, we now return to the question of
how to construct an observer for a system. We will look for observers that can be
represented as a linear dynamical system that takes the inputs and outputs of the
system we are observing and produces an estimate of the system’s state. That is,
we wish to construct a dynamical system of the form

dx̂

dt
= Fx̂ + Gu + Hy,

where u and y are the input and output of the original system and x̂ ∈ R
n is an

estimate of the state with the property that x̂(t) → x(t) as t → ∞.

The Observer

We consider the system in equation (7.1) with D set to zero to simplify the expo-
sition:

dx

dt
= Ax + Bu, y = Cx . (7.6)
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Figure 7.4:Observer for a two compartment system. A two compartment model is shown on
the left. The observer measures the input concentration u and output concentration y = c1 to
determine the compartment concentrations, shown on the right. The true concentrations are
shown by solid lines and the estimates generated by the observer by dashed lines.

Let the desired characteristic polynomial of the observer be s2 + p1s + p2, and
equation (7.11) gives the observer gain

L =
⎧⎪⎪⎩ 1 0

−k0 − k1 k1

⎫⎪⎪⎭−1 ⎧⎪⎪⎩ 1 0
k0 + k1 + k2 1

⎫⎪⎪⎭−1 ⎧⎪⎪⎩p1 − k0 − k1 − k2

p2 − k0k2

⎫⎪⎪⎭
=

⎧⎪⎪⎩ p1 − k0 − k1 − k2

(p2 − p1k2 + k1k2 + k2
2)/k1

⎫⎪⎪⎭ .
Notice that the observability condition k1 �= 0 is essential. The behavior of the
observer is illustrated by the simulation in Figure 7.4b. Notice how the observed
concentrations approach the true concentrations. ∇

The observer is a dynamical system whose inputs are the process input u and the
process output y. The rate of change of the estimate is composed of two terms. One
term, Ax̂ + Bu, is the rate of change computed from the model with x̂ substituted
for x . The other term, L(y− ŷ), is proportional to the difference e = y− ŷ between
measured output y and its estimate ŷ = Cx̂ . The observer gain L is a matrix that
tells how the error e is weighted and distributed among the states. The observer thus
combines measurements with a dynamical model of the system. A block diagram
of the observer is shown in Figure 7.5.

Computing the Observer Gain

For simple low-order problems it is convenient to introduce the elements of the
observer gain L as unknown parameters and solve for the values required to give
the desired characteristic polynomial, as illustrated in the following example.

Example 7.3 Vehicle steering
The normalized linear model for vehicle steering derived in Examples 5.12 and 6.4
gives the following state space model dynamics relating lateral path deviation y to
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Figure 7.8: Simulation of a vehicle driving on a curvy road with a controller based on
state feedback and an observer. The left plot shows the lane boundaries (dotted), the vehicle
position (solid) and its estimate (dashed), the upper right plot shows the velocity (solid) and
its estimate (dashed), and the lower right plot shows the control signal using state feedback
(solid) and the control signal using the estimated state (dashed).

troller contains a dynamical model of the plant. This is called the internal model
principle: the controller contains a model of the process being controlled.

Example 7.4 Vehicle steering
Consider again the normalized linear model for vehicle steering in Example 6.4.
The dynamics relating the steering angle u to the lateral path deviation y is given by
the state space model (7.12). Combining the state feedback derived in Example 6.4
with the observer determined in Example 7.3, we find that the controller is given
by

dx̂

dt
= Ax̂ + Bu + L(y − Cx̂) =

⎧⎪⎪⎩0 1
0 0

⎫⎪⎪⎭ x̂ +
⎧⎪⎪⎩γ1

⎫⎪⎪⎭ u +
⎧⎪⎪⎩l1l2

⎫⎪⎪⎭ (y − x̂1),

u = −K x̂ + krr = k1(r − x̂1)− k2 x̂2.

Elimination of the variable u gives

dx̂

dt
= (A − BK − LC)x̂ + Ly + Bkrr

=
⎧⎪⎪⎩−l1 − γ k1 1 − γ k2

−k1 − l2 −k2

⎫⎪⎪⎭ x̂ +
⎧⎪⎪⎩l1l2

⎫⎪⎪⎭ y +
⎧⎪⎪⎩γ1

⎫⎪⎪⎭ k1r.

The controller is a dynamical system of second order, with two inputs y and r and
one output u. Figure 7.8 shows a simulation of the system when the vehicle is driven
along a curvy road. Since we are using a normalized model, the length unit is the
vehicle length and the time unit is the time it takes to travel one vehicle length. The
estimator is initialized with all states equal to zero but the real system has an initial
velocity of 0.5. The figures show that the estimates converge quickly to their true
values. The vehicle tracks the desired path, which is in the middle of the road, but
there are errors because the road is irregular. The tracking error can be improved
by introducing feedforward (Section 7.5). ∇
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P[k] = E{(x[k]− x̂[k])(x[k]− x̂[k])T } at time k, we can compute how the estimate
and error change. Thus we do not need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estimate x̂[k] and the error covariance
P[k], so we can see how reliable the estimate is. It can also be shown that the
Kalman filter extracts the maximum possible information about output data. If we
form the residual between the measured output and the estimated output,

e[k] = y[k] − Cx̂[k],

we can show that for the Kalman filter the correlation matrix is

Re( j, k) = E{e[ j]eT [k]} = W [k]δ jk, δ jk =
{

1 j = k

0 j �= k.

In other words, the error is a white noise process, so there is no remaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used even if the process,
noise or disturbances are nonstationary. When the system is stationary and if P[k]
converges, then the observer gain is constant:

L = APCT (Rw + CPCT ),

where P satisfies

P = APAT + FRvF
T − APCT

(
Rw + CPCT

)−1
CPAT .

We see that the optimal gain depends on both the process noise and the measurement
noise, but in a nontrivial way. Like the use of LQR to choose state feedback gains,
the Kalman filter permits a systematic derivation of the observer gains given a
description of the noise processes. The solution for the constant gain case is solved
by the dlqe command in MATLAB.

Proof of theorem. We wish to minimize the mean square of the error E{(x[k] −
x̂[k])(x[k] − x̂[k])T }. We will define this quantity as P[k] and then show that it
satisfies the recursion given in equation (7.22). By definition,

P[k + 1] = E{(x[k + 1] − x̂[k + 1])(x[k + 1] − x̂[k + 1])T }
= (A − LC)P[k](A − LC)T + FRvF

T + LRwL
T

= AP[k]AT + FRvF
T − AP[k]CT LT − LCP[k]AT

+ L(Rw + CP[k]CT )LT .

Letting Rε = (Rw + CP[k]CT ), we have

P[k + 1] = AP[k]AT + FRvF
T − AP[k]CT LT − LCP[k]AT + LRεL

T

= AP[k]AT + FRvF
T + (

L−AP[k]CT R−1
ε

)
Rε

(
L−AP[k]CT R−1

ε

)T
− AP[k]CT R−1

ε CPT [k]AT .

To minimize this expression, we choose L = AP[k]CT R−1
ε , and the theorem is

proved.
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to command signals and disturbances are decoupled. Disturbance responses are
governed by the observer and the state feedback, while the response to command
signals is governed by the trajectory generator (feedforward).

For an analytic description we start with the full nonlinear dynamics of the
process

dx

dt
= f (x, u), y = h(x, u). (7.23)

Assume that the trajectory generator is able to compute a desired trajectory (xd, uff)
that satisfies the dynamics (7.23) and satisfies r = h(xd, uff). To design the con-
troller, we construct the error system. Let z = x − xd and v = u− uff and compute
the dynamics for the error:

ż = ẋ − ẋd = f (x, u)− f (xd, uff)

= f (z + xd, v + uff)− f (xd, uff) =: F(z, v, xd(t), uff(t)).

In general, this system is time-varying. Note that z = −e in Figure 7.10 due to the
convention of using negative feedback in the block diagram.

For trajectory tracking, we can assume that e is small (if our controller is doing
a good job), and so we can linearize around z = 0:

dz

dt
≈ A(t)z + B(t)v, A(t) = ∂F

∂z

∣∣∣∣
(xd (t),uff(t))

, B(t) = ∂F

∂v

∣∣∣∣
(xd (t),uff(t)

.

It is often the case that A(t) and B(t) depend only on xd , in which case it is
convenient to write A(t) = A(xd) and B(t) = B(xd).

Assume now that xd and uff are either constant or slowly varying (with respect
to the performance criterion). This allows us to consider just the (constant) linear
system given by (A(xd), B(xd)). If we design a state feedback controller K (xd) for
each xd , then we can regulate the system using the feedback

v = −K (xd)z.
Substituting back the definitions of e and v , our controller becomes

u = −K (xd)(x − xd)+ uff.

This form of controller is called a gain scheduled linear controller with feedforward
uff.

Finally, we consider the observer. The full nonlinear dynamics can be used for
the prediction portion of the observer and the linearized system for the correction
term:

dx̂

dt
= f (x̂, u)+ L(x̂)(y − h(x̂, u)),

where L(x̂) is the observer gain obtained by linearizing the system around the
currently estimated state. This form of the observer is known as an extendedKalman
filter and has proved to be a very effective means of estimating the state of a nonlinear
system.
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Figure 7.11: Trajectory generation for changing lanes. We wish to change from the left lane
to the right lane over a distance of 30 m in 4 s. The planned trajectory in the xy plane is shown
in (a) and the lateral position y and the steering angle δ over the maneuver time interval are
shown in (b).

.

There are many ways to generate the feedforward signal, and there are also many
different ways to compute the feedback gain K and the observer gain L . Note that
once again the internal model principle applies: the controller contains a model of
the system to be controlled through the observer.

Example 7.6 Vehicle steering
To illustrate how we can use a two degree-of-freedom design to improve the per-
formance of the system, consider the problem of steering a car to change lanes on
a road, as illustrated in Figure 7.11a.

We use the non-normalized form of the dynamics, where were derived in Exam-
ple 2.8. Using the center of the rear wheels as the reference (α = 0), the dynamics
can be written as

dx

dt
= cos θv,

dy

dt
= sin θv,

dθ

dt
= v

b
tan δ,

where v is the forward velocity of the vehicle and δ is the steering angle. To generate
a trajectory for the system, we note that we can solve for the states and inputs of
the system given x , y by solving the following sets of equations:

ẋ = v cos θ, ẍ = v̇ cos θ − vθ̇ sin θ,

ẏ = v sin θ, ÿ = v̇ sin θ + vθ̇ cos θ,

θ̇ = (v/b) tan δ.

(7.24)

This set of five equations has five unknowns (θ , θ̇ , v , v̇ and δ) that can be solved
using trigonometry and linear algebra. It follows that we can compute a feasible
trajectory for the system given any path x(t), y(t). (This special property of a system
is known as differential flatness [73, 74].)

To find a trajectory from an initial state (x0, y0, θ0) to a final state (x f , y f , θ f )
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at a time T , we look for a path x(t), y(t) that satisfies

x(0) = x0, x(T ) = x f ,

y(0) = y0, y(T ) = y f ,

ẋ(0) sin θ0 − ẏ(0) cos θ0 = 0, ẋ(T ) sin θ f − ẏ(T ) cos θ f = 0,

ẏ(0) sin θ0 + ẋ(0) cos θ0 = v0, ẏ(T ) sin θ f + ẋ(T ) cos θ f = v f .

(7.25)

One such trajectory can be found by choosing x(t) and y(t) to have the form

xd(t) = α0 + α1t + α2t
2 + α3t

3, yd(t) = β0 + β1t + β2t
2 + β3t

3.

Substituting these equations into equation (7.25), we are left with a set of linear
equations that can be solved for αi , βi , i = 0, 1, 2, 3. This gives a feasible trajectory
for the system by using equation (7.24) to solve for θd , vd and δd .

Figure 7.11b shows a sample trajectory generated by a set of higher-order equa-
tions that also set the initial and final steering angle to zero. Notice that the feedfor-
ward input is quite different from 0, allowing the controller to command a steering
angle that executes the turn in the absence of errors. ∇

Kalman’s Decomposition of a Linear System
�

In this chapter and the previous one we have seen that two fundamental properties
of a linear input/output system are reachability and observability. It turns out that
these two properties can be used to classify the dynamics of a system. The key
result is Kalman’s decomposition theorem, which says that a linear system can be
divided into four subsystems:�ro which is reachable and observable,�r ō which is
reachable but not observable,�r̄o which is not reachable but is observable and�r̄ ō

which is neither reachable nor observable.
We will first consider this in the special case of systems where the matrix A has

distinct eigenvalues. In this case we can find a set of coordinates such that the A
matrix is diagonal and, with some additional reordering of the states, the system
can be written as

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Aro 0 0 0
0 Arō 0 0
0 0 Ar̄o 0
0 0 0 Ar̄ō

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ x +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Bro
Brō
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ u,

y =
⎧⎩Cro 0 Cr̄o 0

⎫⎭ x + Du.

(7.26)

All states xk such that Bk �= 0 are reachable, and all states such that Ck �= 0 are
observable. If we set the initial state to zero (or equivalently look at the steady-state
response if A is stable), the states given by xr̄o and xr̄ ō will be zero and xrō does
not affect the output. Hence the output y can be determined from the system

dxro
dt

= Aroxro + Brou, y = Croxro + Du.
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Theorem 7.3:

dx̂

dt
= Ax̂ + Bu + L(y − Cx̂), u = −K x̂ + krr.

Introducing the states x and x̃ = x − x̂ , the closed loop system can be written as

d

dt

⎧⎪⎪⎩xx̃
⎫⎪⎪⎭ =

⎧⎪⎪⎩A − BK BK
0 A − LC

⎫⎪⎪⎭⎧⎪⎪⎩xx̃
⎫⎪⎪⎭ +

⎧⎪⎪⎩Bkr
0

⎫⎪⎪⎭ r, y =
⎧⎩C 0

⎫⎭ x,

which is a Kalman decomposition like the one shown in Figure 7.12b with only
two subsystems �ro and �r̄o. The subsystem �ro, with state x , is reachable and
observable, and the subsystem �r̄o, with state x̃ , is not reachable but observable.
It is natural that the state x̃ is not reachable from the reference signal r because it
would not make sense to design a system where changes in the command signal
could generate observer errors. The relationship between the reference r and the
output y is given by

dx

dt
= (A − BK )x + Bkrr, y = Cx,

which is the same relationship as for a system with full state feedback. ∇

Computer Implementation

The controllers obtained so far have been described by ordinary differential equa-
tions. They can be implemented directly using analog components, whether elec-
tronic circuits, hydraulic valves or other physical devices. Since in modern engi-
neering applications most controllers are implemented using computers, we will
briefly discuss how this can be done.

A computer-controlled system typically operates periodically: every cycle, sig-
nals from the sensors are sampled and converted to digital form by the A/D converter,
the control signal is computed and the resulting output is converted to analog form
for the actuators, as shown in Figure 7.13. To illustrate the main principles of how
to implement feedback in this environment, we consider the controller described
by equations (7.14) and (7.15), i.e.,

dx̂

dt
= Ax̂ + Bu + L(y − Cx̂), u = −K x̂ + krr.

The second equation consists only of additions and multiplications and can thus
be implemented directly on a computer. The first equation can be implemented by
approximating the derivative by a difference

dx̂

dt
≈ x̂(tk+1)− x̂(tk)

h
= Ax̂(tk)+ Bu(tk)+ L

(
y(tk)− Cx̂(tk)

)
,

where tk are the sampling instants andh = tk+1−tk is the sampling period. Rewriting
the equation to isolate x̂(tk+1), we get the difference equation

x̂(tk+1) = x̂(tk)+ h
(
Ax̂(tk)+ Bu(tk)+ L

(
y(tk)− Cx̂(tk)

))
. (7.29)
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7.10 (Observer design for motor drive) Consider the normalized model of the motor
drive in Exercise 2.10 where the open loop system has the eigenvalues 0, 0,−0.05±
i . A state feedback that gave a closed loop system with eigenvalues in −2, −1 and
−1 ± i was designed in Exercise 6.11. Design an observer for the system that has
eigenvalues −4, −2 and −2 ± 2i . Combine the observer with the state feedback
from Exercise 6.11 to obtain an output feedback and simulate the complete system.

7.11 (Feedforward design for motor drive) Consider the normalized model of the
motor drive in Exercise 2.10. Design the dynamics of the block labeled “trajectory
generation” in Figure 7.10 so that the dynamics relating the output η to the reference
signal r has the dynamics

d3ym
dt3

+ am1
d2ym
dt2

+ am2
dym
dt

+ am3ym = am3r, (7.30)

with parametersam1 = 2.5ωm ,am2 = 2.5ω2
m andam3 = ω3

m . Discuss how the largest
value of the feedforward signal for a unit step in the command signal depends on
ωm .

7.12 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (3.7) in Section 3.2. A state feedback for the system was designed in Exer-
cise 6.12. Design an observer and an output feedback for the system.

7.13 (Discrete-time random walk) Suppose that we wish to estimate the position�
of a particle that is undergoing a random walk in one dimension (i.e., along a line).
We model the position of the particle as

x[k + 1] = x[k] + u[k],

where x is the position of the particle andu is a white noise processes with E{u[i]} =
0 and E{u[i] u[ j]} = Ruδ(i − j). We assume that we can measure x subject to
additive, zero-mean, Gaussian white noise with covariance 1.

(a) Compute the expected value and covariance of the particle as a function of k.

(b) Construct a Kalman filter to estimate the position of the particle given the
noisy measurements of its position. Compute the steady-state expected value and
covariance of the error of your estimate.

(c) Suppose that E{u[0]} = μ �= 0 but is otherwise unchanged. How would your
answers to parts (a) and (b) change?

7.14 (Kalman decomposition) Consider a linear system characterized by the matri-
ces

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
−2 1 −1 2
1 −3 0 2
1 1 −4 2
0 1 −1 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2
2
2
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , C =
⎧⎩0 1 −1 0

⎫⎭ , D = 0.

Construct a Kalman decomposition for the system. (Hint: Try to diagonalize.)
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We can now write G(iω) in terms of its magnitude and phase,

G(iω) = kω2
0

s2 + 2ζω0s + ω2
0

= Meiθ ,

where the magnitude (or gain) M and phase θ are given by

M = kω2
0√

(ω2
0 − ω2)2 + (2ζω0ω)2

,
sin θ

cos θ
= −2ζω0ω

ω2
0 − ω2

.

We can also make use of the fact that G(−iω) is given by its complex conjugate
G∗(iω), and it follows that G(−iω) = Me−iθ . Substituting these expressions into
our output equation, we obtain

y = 1

2

(
i(Me−iθ )e−iωt − i(Meiθ )eiωt

)
= M ·

1

2

(
ie−i(ωt+θ) − iei(ωt+θ)

) = M sin(ωt + θ).

The responses to other signals can be computed by writing the input as an appro-
priate combination of exponential responses and using linearity. ∇

Coordinate Changes

The matrices A, B and C in equation (8.2) depend on the choice of coordinate
system for the states. Since the transfer function relates input to outputs, it should
be invariant to coordinate changes in the state space. To show this, consider the
model (8.2) and introduce new coordinates z by the transformation z = T x , where
T is a nonsingular matrix. The system is then described by

dz

dt
= T (Ax + Bu) = T AT−1z + T Bu =: Ãz + B̃u,

y = Cx + Du = CT−1z + Du =: C̃z + Du.

This system has the same form as equation (8.2), but the matrices A, B and C are
different:

Ã = T AT−1, B̃ = T B, C̃ = CT−1. (8.7)

Computing the transfer function of the transformed model, we get

G̃(s) = C̃(s I − Ã)−1 B̃ + D̃ = CT−1(s I − T AT−1)−1T B + D

= C
(
T−1(s I − T AT−1)T

)−1
B + D = C(s I − A)−1B + D = G(s),

which is identical to the transfer function (8.4) computed from the system descrip-
tion (8.2). The transfer function is thus invariant to changes of the coordinates in
the state space.

Another property of the transfer function is that it corresponds to the portion of the�
state space dynamics that is both reachable and observable. In particular, if we make



TransferFunctions.tex, v1.148 2010/02/21 19:55:55 (murray)

8.2. DERIVATION OF THE TRANSFER FUNCTION 237

−

+
v1

v2

R1 R2

10
0

10
2

10
4

10
6

10
8

10
0

10
2

10
4

10
6

G
ai

n

Frequency ω [rad/s]

Figure 8.3: Stable amplifier based on negative feedback around an operational amplifier. The
block diagram on the left shows a typical amplifier with low-frequency gain R2/R1. If we
model the dynamic response of the op amp as G(s) = ak/(s + a), then the gain falls off at
frequency ω = aR1k/R2, as shown in the gain curves on the right. The frequency response
is computed for k = 107, a = 10 rad/s, R2 =106 �, and R1 = 1, 102, 104 and 106 �.

and a similar analysis gives a transfer function from current to voltage of Z(s) =
1/(Cs). Using transfer functions, complex electrical circuits can be analyzed alge-
braically by using the complex impedance Z(s) just as one would use the resistance
value in a resistor network. ∇
Example 8.3 Operational amplifier circuit
To further illustrate the use of exponential signals, we consider the operational
amplifier circuit introduced in Section 3.3 and reproduced in Figure 8.3a. The
model introduced in Section 3.3 is a simplification because the linear behavior of the
amplifier was modeled as a constant gain. In reality there are significant dynamics
in the amplifier, and the static model vout = −kv (equation (3.10)) should therefore
be replaced by a dynamic model. In the linear range of the amplifier, we can model
the operational amplifier as having a steady-state frequency response

vout

v
= − ak

s + a
=: −G(s). (8.13)

This response corresponds to a first-order system with time constant 1/a. The
parameter k is called the open loop gain, and the product ak is called the gain-
bandwidth product; typical values for these parameters are k = 107 and ak = 107–
109 rad/s.

Since all of the elements of the circuit are modeled as being linear, if we drive
the input v1 with an exponential signal est , then in steady state all signals will be
exponentials of the same form. This allows us to manipulate the equations describing
the system in an algebraic fashion. Hence we can write

v1 − v

R1
= v − v2

R2
and v2 = −G(s)v, (8.14)

using the fact that the current into the amplifier is very small, as we did in Section 3.3.
Eliminating v between these equations gives the following transfer function of the
system

v2

v1
= −R2G(s)

R1 + R2 + R1G(s)
= −R2ak

R1ak + (R1 + R2)(s + a)
.
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The low-frequency gain is obtained by setting s = 0, hence

Gv2v1(0) = −kR2

(k + 1)R1 + R2
≈ − R2

R1
,

which is the result given by (3.11) in Section 3.3. The bandwidth of the amplifier
circuit is

ωb = a
R1(k + 1)+ R2

R1 + R2
≈ a

R1k

R2
,

where the approximation holds for R2/R1 
 1. The gain of the closed loop system
drops off at high frequencies as R2k/(ω(R1 + R2)). The frequency response of the
transfer function is shown in Figure 8.3b for k = 107, a = 10 rad/s, R2 = 106 �
and R1 = 1, 102, 104 and 106 �.

Note that in solving this example, we bypassed explicitly writing the signals as
v = v0est and instead worked directly with v , assuming it was an exponential. This
shortcut is handy in solving problems of this sort and when manipulating block
diagrams. A comparison with Section 3.3, where we made the same calculation
when G(s) was a constant, shows analysis of systems using transfer functions is
as easy as using static systems. The calculations are the same if the resistances R1

and R2 are replaced by impedances, as discussed in Example 8.2. ∇

Although we have focused thus far on ordinary differential equations, transfer func-�
tions can also be used for other types of linear systems. We illustrate this via an
example of a transfer function for a partial differential equation.

Example 8.4 Heat propagation
Consider the problem of one-dimensional heat propagation in a semi-infinite metal
rod. Assume that the input is the temperature at one end and that the output is the
temperature at a point along the rod. Let θ(x, t) be the temperature at position x
and time t . With a proper choice of length scales and units, heat propagation is
described by the partial differential equation

∂θ

∂t
= ∂2θ

∂2x
, (8.15)

and the point of interest can be assumed to have x = 1. The boundary condition
for the partial differential equation is

θ(0, t) = u(t).

To determine the transfer function we choose the input as u(t) = est . Assume that
there is a solution to the partial differential equation of the form θ(x, t) = ψ(x)est

and insert this into equation (8.15) to obtain

sψ(x) = d2ψ

dx2
,

with boundary condition ψ(0) = est . This ordinary differential equation (with



TransferFunctions.tex, v1.148 2010/02/21 19:55:55 (murray)

240 CHAPTER 8. TRANSFER FUNCTIONS

−6 −4 −2  2

−2

2

Re

Im

Figure 8.4: A pole zero diagram for a transfer function with zeros at −5 and −1 and poles at
−3 and −2±2 j . The circles represent the locations of the zeros, and the crosses the locations
of the poles. A complete characterization requires we also specify the gain of the system.

model. One easy way to see this is to notice that the value of G(s) is unbounded
when s is an eigenvalue of a system since this is precisely the set of points where
the characteristic polynomial λ(s) = det(s I − A) = 0 (and hence s I − A is
noninvertible). It follows that the poles of a state space system depend only on the
matrix A, which represents the intrinsic dynamics of the system. We say that a
transfer function is stable if all of its poles have negative real part.

To find the zeros of a state space system, we observe that the zeros are complex
numbers s such that the input u(t) = u0est gives zero output. Inserting the pure
exponential response x(t) = x0est and y(t) = 0 in equation (8.2) gives

sest x0 = Ax0e
st + Bu0e

st 0 = Cest x0 + Destu0,

which can be written as ⎧⎪⎪⎩A − s I B
C D

⎫⎪⎪⎭⎧⎪⎪⎩x0

u0

⎫⎪⎪⎭ est = 0.

This equation has a solution with nonzero x0, u0 only if the matrix on the left does
not have full rank. The zeros are thus the values s such that the matrix⎧⎪⎪⎩A − s I B

C D

⎫⎪⎪⎭ (8.17)

loses rank.
Since the zeros depend on A, B, C and D, they therefore depend on how the

inputs and outputs are coupled to the states. Notice in particular that if the matrix
B has full row rank, then the matrix in equation (8.17) has n linearly independent
rows for all values of s. Similarly there are n linearly independent columns if the
matrix C has full column rank. This implies that systems where the matrix B or C
is square and full rank do not have zeros. In particular it means that a system has
no zeros if it is fully actuated (each state can be controlled independently) or if the
full state is measured.

A convenient way to view the poles and zeros of a transfer function is through
a pole zero diagram, as shown in Figure 8.4. In this diagram, each pole is marked
with a cross, and each zero with a circle. If there are multiple poles or zeros at a
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(c) Pole zero diagram for HpF

Figure 8.5: Poles and zeros for a balance system. The balance system (a) can be modeled
around its vertical equilibrium point by a fourth order linear system. The poles and zeros for
the transfer functions HθF and HpF are shown in (b) and (c), respectively.

fixed location, these are often indicated with overlapping crosses or circles (or other
annotations). Poles in the left half-plane correspond to stable modes of the system,
and poles in the right half-plane correspond to unstable modes. We thus call a pole
in the left-half plane a stable pole and a pole in the right-half plane an unstable
pole. A similar terminology is used for zeros, even though the zeros do not directly
related to stability or instability of the system. Notice that the gain must also be
given to have a complete description of the transfer function.

Example 8.5 Balance system
Consider the dynamics for a balance system, shown in Figure 8.5. The transfer func-
tion for a balance system can be derived directly from the second-order equations,
given in Example 2.1:

Mt
d2 p

dt2
− ml

d2θ

dt2
cos θ + c

dp

dt
+ ml sin θ

(dθ
dt

)2 = F,

−ml cos θ
d2 p

dt2
+ Jt

d2θ

dt2
− mgl sin θ + γ θ̇ = 0.

If we assume that θ and θ̇ are small, we can approximate this nonlinear system by
a set of linear second-order differential equations,

Mt
d2 p

dt2
− ml

d2θ

dt2
+ c

dp

dt
= F,

−ml d
2 p

dt2
+ Jt

d2θ

dt2
+ γ

dθ

dt
− mglθ = 0.
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and

Gur (s) = kr
1 + KGx̂u(s)

= k1(s2 + l1s + l2)

s2 + s(γ k1 + k2 + l1)+ k1 + l2 + k2l1 − γ k2l2
,

where k1 and k2 are the controller gains.
Finally, we compute the full closed loop dynamics. We begin by deriving the

transfer function for the process P(s). We can compute this directly from the state
space description of the dynamics, which was given in Example 5.12. Using that
description, we have

P(s) = Gyu(s) = C(s I − A)−1B+ D =
⎧⎩1 0

⎫⎭⎧⎪⎪⎩s −1
0 s

⎫⎪⎪⎭−1 ⎧⎪⎪⎩γ1
⎫⎪⎪⎭ = γ s + 1

s2
.

The transfer function for the full closed loop system between the input r and the
output y is then given by

Gyr = kr P(s)

1 + P(s)Guy(s)
= k1(γ s + 1)

s2 + (k1γ + k2)s + k1
.

Note that the observer gains l1 and l2 do not appear in this equation. This is because
we are considering steady-state analysis and, in steady state, the estimated state
exactly tracks the state of the system assuming perfect models. We will return to
this example in Chapter 12 to study the robustness of this particular approach. ∇

Pole/Zero Cancellations

Because transfer functions are often polynomials in s, it can sometimes happen
that the numerator and denominator have a common factor, which can be canceled.
Sometimes these cancellations are simply algebraic simplifications, but in other
situations they can mask potential fragilities in the model. In particular, if a pole/zero
cancellation occurs because terms in separate blocks that just happen to coincide,
the cancellation may not occur if one of the systems is slightly perturbed. In some
situations this can result in severe differences between the expected behavior and
the actual behavior.

To illustrate when we can have pole/zero cancellations, consider the block dia-
gram in Figure 8.7 with F = 1 (no feedforward compensation) and C and P given
by

C(s) = nc(s)

dc(s)
, P(s) = np(s)

dp(s)
.

The transfer function from r to e is then given by

Ger (s) = 1

1 + PC
= dc(s)dp(s)

dc(s)dp(s)+ nc(s)np(s)
.

If there are common factors in the numerator and denominator polynomials, then
these terms can be factored out and eliminated from both the numerator and de-
nominator. For example, if the controller has a zero at s = −a and the process has
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a pole at s = −a, then we will have

Ger (s) = (s + a)dc(s)d ′
p(s)

(s + a)dc(s)d ′
p(s)+ (s + a)n′

c(s)np(s)
= dc(s)d ′

p(s)

dc(s)d ′
p(s)+ n′

c(s)np(s)
,

where n′
c(s) and d ′

p(s) represent the relevant polynomials with the term s + a
factored out. In the case when a < 0 (so that the zero or pole is in the right
half-plane), we see that there is no impact on the transfer function Ger .

Suppose instead that we compute the transfer function from d to e, which repre-
sents the effect of a disturbance on the error between the reference and the output.
This transfer function is given by

Ged(s) = − dc(s)np(s)

(s + a)dc(s)d ′
p(s)+ (s + a)n′

c(s)np(s)
.

Notice that if a < 0, then the pole is in the right half-plane and the transfer function
Ged is unstable. Hence, even though the transfer function from r to e appears to be
okay (assuming a perfect pole/zero cancellation), the transfer function from d to e
can exhibit unbounded behavior. This unwanted behavior is typical of an unstable
pole/zero cancellation.

It turns out that the cancellation of a pole with a zero can also be understood in
terms of the state space representation of the systems. Reachability or observability
is lost when there are cancellations of poles and zeros (Exercise 8.11). A conse-
quence is that the transfer function represents the dynamics only in the reachable
and observable subspace of a system (see Section 7.5).

Example 8.7 Cruise control
The input/output response from throttle to velocity for the linearized model for a
car has the transfer functionG(s) = b/(s−a), a < 0. A simple (but not necessarily
good) way to design a PI controller is to choose the parameters of the PI controller
so that the controller zero at s = −ki/kp cancels the process pole at s = a. The
transfer function from reference to velocity isGvr (s) = bkp/(s+bkp), and control
design is simply a matter of choosing the gain kp. The closed loop system dynamics
are of first order with the time constant 1/bkp.

Figure 8.10 shows the velocity error when the car encounters an increase in the
road slope. A comparison with the controller used in Figure 3.3b (reproduced in
dashed curves) shows that the controller based on pole/zero cancellation has very
poor performance. The velocity error is larger, and it takes a long time to settle.

Notice that the control signal remains practically constant after t = 15 even if
the error is large after that time. To understand what happens we will analyze the
system. The parameters of the system are a = −0.0101 and b = 1.32, and the
controller parameters are kp = 0.5 and ki = 0.0051. The closed loop time constant
is 1/(bkp) = 2.5 s, and we would expect that the error would settle in about 10 s
(4 time constants). The transfer functions from road slope to velocity and control
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Figure 8.10: Car with PI cruise control encountering a sloping road. The velocity error is
shown on the left and the throttle is shown on the right. Results with a PI controller with
kp = 0.5 and ki = 0.0051, where the process pole s = −0.0101, is shown by solid lines, and
a controller with kp = 0.5 and ki = 0.5 is shown by dashed lines. Compare with Figure 3.3b.

signals are

Gv θ (s) = bgkps

(s − a)(s + bkp)
, Gu θ (s) = bkp

s + bkp
.

Notice that the canceled mode s = a = −0.0101 appears in Gvθ but not in Guθ .
The reason why the control signal remains constant is that the controller has a zero
at s = −0.0101, which cancels the slowly decaying process mode. Notice that the
error would diverge if the canceled pole was unstable. ∇

The lesson we can learn from this example is that it is a bad idea to try to
cancel unstable or slow process poles. A more detailed discussion of pole/zero
cancellations is given in Section 12.4.

Algebraic Loops

When analyzing or simulating a system described by a block diagram, it is necessary
to form the differential equations that describe the complete system. In many cases
the equations can be obtained by combining the differential equations that describe
each subsystem and substituting variables. This simple procedure cannot be used
when there are closed loops of subsystems that all have a direct connection between
inputs and outputs, known as an algebraic loop.

To see what can happen, consider a system with two blocks, a first-order non-
linear system,

dx

dt
= f (x, u), y = h(x), (8.21)

and a proportional controller described by u = −ky. There is no direct term since
the function h does not depend on u. In that case we can obtain the equation for the
closed loop system simply by replacing u by −ky in (8.21) to give

dx

dt
= f (x,−ky), y = h(x).

Such a procedure can easily be automated using simple formula manipulation.
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The situation is more complicated if there is a direct term. If y = h(x, u), then
replacing u by −ky gives

dx

dt
= f (x,−ky), y = h(x,−ky).

To obtain a differential equation for x , the algebraic equation y = h(x,−ky) must
be solved to give y = α(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to solve algebraic equations
to obtain the differential equations for the complete system. Resolving algebraic
loops is a nontrivial problem because it requires the symbolic solution of algebraic
equations. Most block diagram-oriented modeling languages cannot handle alge-
braic loops, and they simply give a diagnosis that such loops are present. In the era
of analog computing, algebraic loops were eliminated by introducing fast dynamics
between the loops. This created differential equations with fast and slow modes that
are difficult to solve numerically. Advanced modeling languages like Modelica use
several sophisticated methods to resolve algebraic loops.

8.4 The Bode Plot

The frequency response of a linear system can be computed from its transfer func-
tion by setting s = iω, corresponding to a complex exponential

u(t) = eiωt = cos(ωt)+ i sin(ωt).

The resulting output has the form

y(t) = G(iω)eiωt = Mei(ωt+ϕ) = M cos(ωt + ϕ)+ iM sin(ωt + ϕ),

where M and ϕ are the gain and phase of G:

M = |G(iω)|, ϕ = arctan
ImG(iω)

ReG(iω)
.

The phase of G is also called the argument of G, a term that comes from the theory
of complex variables.

It follows from linearity that the response to a single sinusoid (sin or cos) is
amplified by M and phase-shifted by ϕ. Note that −π < ϕ ≤ π , so the arctangent
must be taken respecting the signs of the numerator and denominator. It will often
be convenient to represent the phase in degrees rather than radians. We will use the
notation ∠G(iω) for the phase in degrees and argG(iω) for the phase in radians. In
addition, while we always take argG(iω) to be in the range (−π, π ], we will take
∠G(iω) to be continuous, so that it can take on values outside the range of −180◦
to 180◦.

The frequency response G(iω) can thus be represented by two curves: the gain
curve and the phase curve. The gain curve gives |G(iω)| as a function of frequency
ω, and the phase curve gives ∠G(iω). One particularly useful way of drawing these
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Figure 8.13:Bode plots forfirst- and second-order systems. (a) Thefirst-order systemG(s) =
a/(s + a) can be approximated by asymptotic curves (dashed) in both the gain and the
frequency, with the breakpoint in the gain curve at ω = a and the phase decreasing by 90◦

over a factor of 100 in frequency. (b) The second-order systemG(s) = ω2
0/(s

2 +2ζω0s+ω2
0)

has a peak at frequency a and then a slope of −2 beyond the peak; the phase decreases from
0◦ to −180◦. The height of the peak and the rate of change of phase depending on the damping
ratio ζ (ζ = 0.02, 0.1, 0.2, 0.5 and 1.0 shown).

the following straight lines

log |G(iω)| ≈
{

0 if ω < a

log a − logω if ω > a,

∠G(iω) ≈

⎧⎪⎨
⎪⎩

0 if ω < a/10

−45 − 45(logω − log a) a/10 < ω < 10a

−90 if ω > 10a.

The approximate gain curve consists of a horizontal line up to frequency ω = a,
called the breakpoint or corner frequency, after which the curve is a line of slope
−1 (on a log-log scale). The phase curve is zero up to frequency a/10 and then
decreases linearly by 45◦/decade up to frequency 10a, at which point it remains
constant at 90◦. Notice that a first-order system behaves like a constant for low
frequencies and like an integrator for high frequencies; compare with the Bode plot
in Figure 8.12.

Finally, consider the transfer function for a second-order system,

G(s) = ω2
0

s2 + 2ω0ζ s + ω2
0

,
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for which we have

log |G(iω)| = 2 logω0 − 1

2
log

(
ω4 + 2ω2

0ω
2(2ζ 2 − 1)+ ω4

0

)
,

∠G(iω) = −180

π
arctan

2ζω0ω

ω2
0 − ω2

.

The gain curve has an asymptote with zero slope for ω � ω0. For large val-
ues of ω the gain curve has an asymptote with slope −2. The largest gain Q =
maxω |G(iω)| ≈ 1/(2ζ ), called the Q-value, is obtained for ω ≈ ω0. The phase
is zero for low frequencies and approaches 180◦ for large frequencies. The curves
can be approximated with the following piecewise linear expressions

log |G(iω)| ≈
{

0 if ω � ω0

2 logω0 − 2 logω if ω 
 ω0,

∠G(iω) ≈
{

0 if ω � ω0

−180 if ω 
 ω0.

The Bode plot is shown in Figure 8.13b. Note that the asymptotic approximation is
poor near ω = ω0 and that the Bode plot depends strongly on ζ near this frequency.

Given the Bode plots of the basic functions, we can now sketch the frequency
response for a more general system. The following example illustrates the basic
idea.

Example 8.8 Asymptotic approximation for a transfer function
Consider the transfer function given by

G(s) = k(s + b)

(s + a)(s2 + 2ζω0s + ω2
0)
, a � b � ω0.

The Bode plot for this transfer function appears in Figure 8.14, with the complete
transfer function shown as a solid line and the asymptotic approximation shown as
a dashed line.

We begin with the gain curve. At low frequency, the magnitude is given by

G(0) = kb

aω2
0

.

When we reach ω = a, the effect of the pole begins and the gain decreases with
slope −1. At ω = b, the zero comes into play and we increase the slope by 1,
leaving the asymptote with net slope 0. This slope is used until the effect of the
second-order pole is seen at ω = ω0, at which point the asymptote changes to slope
−2. We see that the gain curve is fairly accurate except in the region of the peak
due to the second-order pole (since for this case ζ is reasonably small).

The phase curve is more complicated since the effect of the phase stretches
out much further. The effect of the pole begins at ω = a/10, at which point we
change from phase 0 to a slope of −45◦/decade. The zero begins to affect the
phase at ω = b/10, producing a flat section in the phase. At ω = 10a the phase
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Figure 8.14: Asymptotic approximation to a Bode plot. The thin line is the Bode plot for the
transfer function G(s) = k(s + b)/(s + a)(s2 + 2ζω0s + ω2

0), where a � b � ω0. Each
segment in the gain and phase curves represents a separate portion of the approximation,
where either a pole or a zero begins to have effect. Each segment of the approximation is a
straight line between these points at a slope given by the rules for computing the effects of
poles and zeros.

contributions from the pole end, and we are left with a slope of +45◦/decade (from
the zero). At the location of the second-order pole, s ≈ iω0, we get a jump in phase
of −180◦. Finally, at ω = 10b the phase contributions of the zero end, and we are
left with a phase of −180 degrees. We see that the straight-line approximation for
the phase is not as accurate as it was for the gain curve, but it does capture the basic
features of the phase changes as a function of frequency. ∇

The Bode plot gives a quick overview of a system. Since any signal can be
decomposed into a sum of sinusoids, it is possible to visualize the behavior of a
system for different frequency ranges. The system can be viewed as a filter that can
change the amplitude (and phase) of the input signals according to the frequency
response. For example, if there are frequency ranges where the gain curve has
constant slope and the phase is close to zero, the action of the system for signals
with these frequencies can be interpreted as a pure gain. Similarly, for frequencies
where the slope is +1 and the phase close to 90◦, the action of the system can be
interpreted as a differentiator, as shown in Figure 8.12.

Three common types of frequency responses are shown in Figure 8.15. The
system in Figure 8.15a is called a low-pass filter because the gain is constant for
low frequencies and drops for high frequencies. Notice that the phase is zero for
low frequencies and −180◦ for high frequencies. The systems in Figure 8.15b and
c are called a band-pass filter and high-pass filter for similar reasons.

To illustrate how different system behaviors can be read from the Bode plots
we consider the band-pass filter in Figure 8.15b. For frequencies around ω = ω0,
the signal is passed through with no change in gain. However, for frequencies well
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Figure 8.15: Bode plots for low-pass, band-pass and high-pass filters. The top plots are the
gain curves and the bottom plots are the phase curves. Each system passes frequencies in a
different range and attenuates frequencies outside of that range.

below or well above ω0, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For frequencies below ω0/100
there is a phase lead of 90◦, and for frequencies above 100ω0 there is a phase lag
of 90◦. These actions correspond to differentiation and integration of the signal in
these frequency ranges.

Example 8.9 Transcriptional regulation
Consider a genetic circuit consisting of a single gene. We wish to study the response
of the protein concentration to fluctuations in the mRNA dynamics. We consider
two cases: a constitutive promoter (no regulation) and self-repression (negative
feedback), illustrated in Figure 8.16. The dynamics of the system are given by

dm

dt
= α(p)− γm − u,

dp

dt
= βm − δp,

where u is a disturbance term that affects mRNA transcription.
For the case of no feedback we have α(p) = α0, and the system has an equi-

librium point at me = α0/γ , pe = βα0/(δγ ). The transfer function from v to p is
given by

Gol
pv (s) = −β

(s + γ )(s + δ)
.

For the case of negative regulation, we have

α(p) = α1

1 + kpn
+ α0,

and the equilibrium points satisfy

me = δ

β
pe,

α

1 + kpne
+ α0 = γme = γ δ

β
pe.
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Figure 8.16: Noise attenuation in a genetic circuit. The open loop system (a) consists of a
constitutive promoter, while the closed loop circuit (b) is self-regulated with negative feedback
(repressor). The frequency response for each circuit is shown in (c).

The resulting transfer function is given by

Gcl
pv (s) = β

(s + γ )(s + δ)+ βσ
, σ = nα1kpn−1

e

(1 + kpne )
2
.

Figure 8.16c shows the frequency response for the two circuits. We see that the
feedback circuit attenuates the response of the system to disturbances with low-
frequency content but slightly amplifies disturbances at high frequency (compared
to the open loop system). Notice that these curves are very similar to the frequency
response curves for the op amp shown in Figure 8.3b. ∇

Transfer Functions from Experiments

The transfer function of a system provides a summary of the input/output response
and is very useful for analysis and design. However, modeling from first principles
can be difficult and time-consuming. Fortunately, we can often build an input/output
model for a given application by directly measuring the frequency response and
fitting a transfer function to it. To do so, we perturb the input to the system using a
sinusoidal signal at a fixed frequency. When steady state is reached, the amplitude
ratio and the phase lag give the frequency response for the excitation frequency. The
complete frequency response is obtained by sweeping over a range of frequencies.

By using correlation techniques it is possible to determine the frequency re-
sponse very accurately, and an analytic transfer function can be obtained from the
frequency response by curve fitting. The success of this approach has led to in-
struments and software that automate this process, called spectrum analyzers. We
illustrate the basic concept through two examples.

Example 8.10 Atomic force microscope
To illustrate the utility of spectrum analysis, we consider the dynamics of the atomic
force microscope, introduced in Section 3.5. Experimental determination of the
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(c) Sketch the Bode plot for the transfer function in part (b) using straight line
approximations and compare this to the exact plot of the transfer function (using
MATLAB). Make sure to label the important features in your plot.

8.6 (Transfer function for state space system) Consider the linear state space system

dx

dt
= Ax + Bu, y = Cx .

Show that the transfer function is

G(s) = b1sn−1 + b2sn−2 + · · · + bn
sn + a1sn−1 + · · · + an

,

where

b1 =CB, b2 =CAB+a1CB, . . . , bn=CAn−1B+a1CA
n−1B+· · ·+an−1CB

and λ(s) = sn + a1sn−1 + · · · + an is the characteristic polynomial for A.

8.7 (Kalman decomposition) Show that the transfer function of a system depends�
only on the dynamics in the reachable and observable subspace of the Kalman
decomposition. (Hint: Consider the representation given by equation (7.27).)

8.8 Using block diagram algebra, show that the transfer functions from d to y and
n to y in Figure 8.7 are given by

Gyd = P

1 + PC
Gyn = 1

1 + PC
.

8.9 (Bode plot for a simple zero) Show that the Bode plot for transfer function
G(s) = (s + a)/a can be approximated by

log |G(iω)| ≈
{

0 if ω < a

logω − log a if ω > a,

∠G(iω) ≈

⎧⎪⎨
⎪⎩

0 if ω < a/10

45 + 45(logω − log a) a/10 < ω < 10a

90 if ω > 10a.

8.10 (Vectored thrust aircraft) Consider the lateral dynamics of a vectored thrust
aircraft as described in Example 2.9. Show that the dynamics can be described
using the following block diagram:

1

ms2 + cs

θ
−mg �

ν
u1

r

Js2
x

Use this block diagram to compute the transfer functions from u1 to θ and x and
show that they satisfy

Hθu1 = r

Js2
, Hxu1 = Js2 − mgr

Js2(ms2 + cs)
.
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Figure 9.4: Nyquist plot for a third-order transfer function. The Nyquist plot consists of a
trace of the loop transfer function L(s) = 1/(s + a)3. The solid line represents the portion
of the transfer function along the positive imaginary axis, and the dashed line the negative
imaginary axis. The outer arc of the D contour maps to the origin.

Nyquist D contour. This arc has the form s = Reiθ for R → ∞. This gives

L(Reiθ ) = 1

(Reiθ + a)3
→ 0 as R → ∞.

Thus the outer arc of the D contour maps to the origin on the Nyquist plot. ∇
An alternative to computing the Nyquist plot explicitly is to determine the plot

from the frequency response (Bode plot), which gives the Nyquist curve for s = iω,
ω > 0. We start by plotting G(iω) from ω = 0 to ω = ∞, which can be read off
from the magnitude and phase of the transfer function. We then plot G(Reiθ ) with
θ ∈ [−π/2, π/2] and R → ∞, which almost always maps to zero. The remaining
parts of the plot can be determined by taking the mirror image of the curve thus far
(normally plotted using a dashed line). The plot can then be labeled with arrows
corresponding to a clockwise traversal around the D contour (the same direction in
which the first portion of the curve was plotted).

Example 9.3 Third-order system with a pole at the origin
Consider the transfer function

L(s) = k

s(s + 1)2
,

where the gain has the nominal value k = 1. The Bode plot is shown in Figure 9.5a.
The system has a single pole at s = 0 and a double pole at s = −1. The gain curve
of the Bode plot thus has the slope −1 for low frequencies, and at the double pole
s = 1 the slope changes to −3. For small s we have L ≈ k/s, which means that the
low-frequency asymptote intersects the unit gain line at ω = k. The phase curve
starts at −90◦ for low frequencies, it is −180◦ at the breakpoint ω = 1 and it is
−270◦ at high frequencies.

Having obtained the Bode plot, we can now sketch the Nyquist plot, shown
in Figure 9.5b. It starts with a phase of −90◦ for low frequencies, intersects the
negative real axis at the breakpoint ω = 1 where L(i) = 0.5 and goes to zero along



LoopAnalysis.tex, v1.120 2009/06/24 04:45:43 (murray)

276 CHAPTER 9. FREQUENCY DOMAIN ANALYSIS

General Nyquist Criterion

Theorem 9.1 requires that L(s) have no poles in the closed right half-plane. In
some situations this is not the case and a more general result is required. Nyquist
originally considered this general case, which we summarize as a theorem.

Theorem 9.2 (Nyquist’s stability theorem). Consider a closed loop systemwith the
loop transfer function L(s) that has P poles in the region enclosed by the Nyquist
contour. Let N be the net number of clockwise encirclements of−1 by L(s) when s
encircles the Nyquist contour � in the clockwise direction. The closed loop system
then has Z = N + P poles in the right half-plane.

The full Nyquist criterion states that if L(s) has P poles in the right half-plane,
then the Nyquist curve for L(s) should have P counterclockwise encirclements of
−1 (so that N = −P). In particular, this requires that |L(iωc)| > 1 for some ωc
corresponding to a crossing of the negative real axis. Care has to be taken to get the
right sign of the encirclements. The Nyquist contour has to be traversed clockwise,
which means that ω moves from −∞ to ∞ and N is positive if the Nyquist curve
winds clockwise. If the Nyquist curve winds counterclockwise, then N will be
negative (the desired case if P �= 0).

As in the case of the simplified Nyquist criterion, we use small semicircles of
radius r to avoid any poles on the imaginary axis. By letting r → 0, we can use
Theorem 9.2 to reason about stability. Note that the image of the small semicircles
generates a section of the Nyquist curve whose magnitude approaches infinity,
requiring care in computing the winding number. When plotting Nyquist curves on
the computer, one must be careful to see that such poles are properly handled, and
often one must sketch those portions of the Nyquist plot by hand, being careful to
loop the right way around the poles.

Example 9.6 Stabilized inverted pendulum
The linearized dynamics of a normalized inverted pendulum can be represented by
the transfer function P(s) = 1/(s2 −1), where the input is acceleration of the pivot
and the output is the pendulum angle θ , as shown in Figure 9.8 (Exercise 8.3). We
attempt to stabilize the pendulum with a proportional-derivative (PD) controller
having the transfer function C(s) = k(s + 2). The loop transfer function is

L(s) = k(s + 2)

s2 − 1
.

The Nyquist plot of the loop transfer function is shown in Figure 9.8b. We have
L(0) = −2k and L(∞) = 0. If k > 0.5, the Nyquist curve encircles the critical
point s = −1 in the counterclockwise direction when the Nyquist contour γ is
encircled in the clockwise direction. The number of encirclements is thus N = −1.
Since the loop transfer function has one pole in the right half-plane (P = 1), we
find that Z = N+ P = 0 and the system is thus stable for k > 0.5. If k < 0.5, there
is no encirclement and the closed loop will have one pole in the right half-plane.

∇
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(a) Inverted pendulum

−1

Re L(iω)

Im L(iω)

(b) Nyquist plot

Figure 9.8: PD control of an inverted pendulum. (a) The system consists of a mass that is
balanced by applying a force at the pivot point. A proportional-derivative controller with
transfer function C(s) = k(s + 2) is used to command u based on θ . (b) A Nyquist plot of
the loop transfer function for gain k = 1. There is one counterclockwise encirclement of the
critical point, giving N = −1 clockwise encirclements.

Derivation of Nyquist’s Stability Theorem
�

We will now prove the Nyquist stability theorem for a general loop transfer func-
tion L(s). This requires some results from the theory of complex variables, for
which the reader can consult Ahlfors [6]. Since some precision is needed in stating
Nyquist’s criterion properly, we will use a more mathematical style of presenta-
tion. We also follow the mathematical convention of counting encirclements in the
counterclockwise direction for the remainder of this section. The key result is the
following theorem about functions of complex variables.

Theorem 9.3 (Principle of variation of the argument). Let D be a closed region
in the complex plane and let � be the boundary of the region. Assume the function
f : C → C is analytic in D and on �, except at a finite number of poles and zeros.
Then the winding number wn is given by

wn = 1

2π
�� arg f (z) = 1

2π i

∫
�

f ′(z)
f (z)

dz = Z − P,

where �� is the net variation in the angle when z traverses the contour � in the
counterclockwise direction, Z is the number of zeros in D and P is the number of
poles in D. Poles and zeros of multiplicity m are counted m times.

Proof. Assume that z = a is a zero of multiplicitym. In the neighborhood of z = a
we have

f (z) = (z − a)mg(z),

where the function g is analytic and different from zero. The ratio of the derivative
of f to itself is then given by

f ′(z)
f (z)

= m

z − a
+ g′(z)

g(z)
,

and the second term is analytic at z = a. The function f ′/ f thus has a single pole
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at z = a with the residue m. The sum of the residues at the zeros of the function is
Z . Similarly, we find that the sum of the residues for the poles is −P , and hence

Z − P = 1

2π i

∫
�

f ′(z)
f (z)

dz = 1

2π i

∫
�

d

dz
log f (z) dz = 1

2π i
�� log f (z),

where �� again denotes the variation along the contour �. We have

log f (z) = log | f (z)| + i arg f (z),

and since the variation of | f (z)| around a closed contour is zero it follows that

�� log f (z) = i�� arg f (z),

and the theorem is proved.

This theorem is useful in determining the number of poles and zeros of a function
of complex variables in a given region. By choosing an appropriate closed region
D with boundary �, we can determine the difference between the number of poles
and zeros through computation of the winding number.

Theorem 9.3 can be used to prove Nyquist’s stability theorem by choosing � as
the Nyquist contour shown in Figure 9.3a, which encloses the right half-plane. To
construct the contour, we start with part of the imaginary axis − j R ≤ s ≤ j R and
a semicircle to the right with radius R. If the function f has poles on the imaginary
axis, we introduce small semicircles with radii r to the right of the poles as shown
in the figure. The Nyquist contour is obtained by letting R → ∞ and r → 0.
Note that � has orientation opposite that shown in Figure 9.3a. (The convention in
engineering is to traverse the Nyquist contour in the clockwise direction since this
corresponds to moving upwards along the imaginary axis, which makes it easy to
sketch the Nyquist contour from a Bode plot.)

To see how we use the principle of variation of the argument to compute stability,
consider a closed loop system with the loop transfer function L(s). The closed loop
poles of the system are the zeros of the function f (s) = 1+L(s). Tofind the number
of zeros in the right half-plane, we investigate the winding number of the function
f (s) = 1 + L(s) as s moves along the Nyquist contour � in the counterclockwise
direction. The winding number can conveniently be determined from the Nyquist
plot. A direct application of Theorem 9.3 gives the Nyquist criterion, taking care
to flip the orientation. Since the image of 1 + L(s) is a shifted version of L(s),
we usually state the Nyquist criterion as net encirclements of the −1 point by the
image of L(s).

9.3 Stability Margins

In practice it is not enough that a system is stable. There must also be some margins
of stability that describe how stable the system is and its robustness to perturbations.
There are many ways to express this, but one of the most common is the use of gain
and phase margins, inspired by Nyquist’s stability criterion. The key idea is that it
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(b) RHP zero
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Figure 9.13:Bode plots of systems that are not minimum phase. (a) Time delayG(s) = e−sT ,
(b) system with a right half-plane (RHP) zero G(s) = (a − s)/(a + s) and (c) system with
right half-plane pole. The corresponding minimum phase system has the transfer function
G(s) = 1 in all cases, the phase curves for that system are shown as dashed lines.

system and they do not depend on sensors and actuators, the zeros depend on how
inputs and outputs of a system are coupled to the states. Zeros can thus be changed
by moving sensors and actuators or by introducing new sensors and actuators.
Nonminimum phase systems are unfortunately quite common in practice.

The following example gives a system theoretic interpretation of the common
experience that it is more difficult to drive in reverse gear and illustrates some of
the properties of transfer functions in terms of their poles and zeros.

Example 9.10 Vehicle steering
The nonnormalized transfer function from steering angle to lateral velocity for the
simple vehicle model is

G(s) = av0s + v2
0

bs
,

where v0 is the velocity of the vehicle and a, b > 0 (see Example 5.12). The
transfer function has a zero at s = v0/a. In normal driving this zero is in the left
half-plane, but it is in the right half-plane when driving in reverse, v0 < 0. The unit
step response is

y(t) = av0

b
+ v2

0 t

b
.

The lateral velocity thus responds immediately to a steering command. For reverse
steering v0 is negative and the initial response is in the wrong direction, a behavior
that is representative for nonminimum phase systems (called an inverse response).

Figure 9.14 shows the step response for forward and reverse driving. In this
simulation we have added an extra pole with the time constant T to approximately
account for the dynamics in the steering system. The parameters are a = b = 1,
T = 0.1, v0 = 1 for forward driving and v0 = −1 for reverse driving. Notice that
for t > t0 = a/v0, where t0 is the time required to drive the distance a, the step
response for reverse driving is that of forward driving with the time delay t0. The
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L(s)

−N ( · )

AB

(a) Block diagram

Re

Im

−1/N (a)

G(iω)

(b) Nyquist plot

Figure 9.16: Describing function analysis. A feedback connection between a static nonlin-
earity and a linear system is shown in (a). The linear system is characterized by its transfer
function L(s), which depends on frequency, and the nonlinearity by its describing function
N (a), which depends on the amplitude a of its input. The Nyquist plot of L(iω) and the plot
of the −1/N (a) are shown in (b). The intersection of the curves represents a possible limit
cycle.

Systems where the phase between inputs and outputs is 90◦ or less for all inputs are
called passive systems. It follows from the Nyquist stability theorem that a closed
loop linear system is stable if the phase of the loop transfer function is between
−π and π . This result can be extended to nonlinear systems as well. It is called the
passivity theorem and is closely related to the small gain theorem. See Khalil [123]
for a more detailed description.

Additional applications of the small gain theorem and its application to robust
stability are given in Chapter 12.

Describing Functions
�

For special nonlinear systems like the one shown in Figure 9.16a, which consists
of a feedback connection between a linear system and a static nonlinearity, it is
possible to obtain a generalization of Nyquist’s stability criterion based on the idea
of describing functions. Following the approach of the Nyquist stability condition,
we will investigate the conditions for maintaining an oscillation in the system. If
the linear subsystem has low-pass character, its output is approximately sinusoidal
even if its input is highly irregular. The condition for oscillation can then be found
by exploring the propagation of a sinusoid that corresponds to the first harmonic.

To carry out this analysis, we have to analyze how a sinusoidal signal propa-
gates through a static nonlinear system. In particular we investigate how the first
harmonic of the output of the nonlinearity is related to its (sinusoidal) input. Letting
F represent the nonlinear function, we expand F(eiωt) in terms of its harmonics:

F(aeiωt) =
∞∑
n=0

Mn(a)e
i(nωt+ϕn(a)),

where Mn(a) and ϕn(a) represent the gain and phase of the nth harmonic, which
depend on the input amplitude since the function F is nonlinear. We define the
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where the inverse is obtained after simple calculations. Figure 9.17b shows the
response of the relay to a sinusoidal input with the first harmonic of the output
shown as a dashed line. Describing function analysis is illustrated in Figure 9.17c,
which shows the Nyquist plot of the transfer function L(s) = 2/(s + 1)4 (dashed
line) and the negative inverse describing function of a relay with b = 1 and c = 0.5.
The curves intersect for a = 1 and ω = 0.77 rad/s, indicating the amplitude and
frequency for a possible oscillation if the process and the relay are connected in a
a feedback loop. ∇

9.6 Further Reading

Nyquist’s original paper giving his now famous stability criterion was published
in the Bell Systems Technical Journal in 1932 [160]. More accessible versions are
found in the book [27], which also includes other interesting early papers on control.
Nyquist’s paper is also reprinted in an IEEE collection of seminal papers on control
[23]. Nyquist used +1 as the critical point, but Bode changed it to −1, which is
now the standard notation. Interesting perspectives on early developments are given
by Black [36], Bode [41] and Bennett [29]. Nyquist did a direct calculation based
on his insight into the propagation of sinusoidal signals through systems; he did
not use results from the theory of complex functions. The idea that a short proof
can be given by using the principle of variation of the argument is presented in the
delightful book by MacColl [140]. Bode made extensive use of complex function
theory in his book [40], which laid the foundation for frequency response analysis
where the notion of minimum phase was treated in detail. A good source for complex
function theory is the classic by Ahlfors [6]. Frequency response analysis was a key
element in the emergence of control theory as described in the early texts by James
et al. [110], Brown and Campbell [46] and Oldenburger [163], and it became one of
the cornerstones of early control theory. Frequency response methods underwent
a resurgence when robust control emerged in the 1980s, as will be discussed in
Chapter 12.

Exercises

9.1 (Operational amplifier) Consider an op amp circuit with Z1 = Z2 that gives
a closed loop system with nominally unit gain. Let the transfer function of the
operational amplifier be

G(s) = ka1a2

(s + a)(s + a1)(s + a2)
,

where a1, a2 
 a. Show that the condition for oscillation is k < a1 + a2 and
compute the gain margin of the system. Hint: Assume a = 0.

9.2 (Atomic force microscope) The dynamics of the tapping mode of an atomic
force microscope are dominated by the damping of the cantilever vibrations and
the system that averages the vibrations. Modeling the cantilever as a spring–mass
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transfer function C(s) = kds + kp, where the gains are kd = 2ζω0 and kp = ω2
0.

Calculate and plot the gain, phase and stability margins as a function ζ .

9.7 (Congestion control in overload conditions) A strongly simplified flow model
of a TCP loop under overload conditions is given by the loop transfer function

L(s) = k

s
e−sτ ,

where the queuing dynamics are modeled by an integrator, the TCP window control
is a time delay τ and the controller is simply a proportional controller. A major
difficulty is that the time delay may change significantly during the operation of
the system. Show that if we can measure the time delay, it is possible to choose a
gain that gives a stability margin of sn ≥ 0.6 for all time delays τ .

9.8 (Bode’s formula) Consider Bode’s formula (9.8) for the relation between gain
and phase for a transfer function that has all its singularities in the left half-plane.
Plot the weighting function and make an assessment of the frequencies where the
approximation argG ≈ (π/2)d log |G|/d logω is valid.

9.9 (Padé approximation to a time delay) Consider the transfer functions

G1(s) = e−sτ , G2(s) = e−sτ ≈ 1 − sτ/2

1 + sτ/2
. (9.16)

Show that the minimum phase properties of the transfer functions are similar for
frequencies ω < 1/τ . A long time delay τ is thus equivalent to a small right half-
plane zero. The approximation (9.16) is called a first-order Padé approximation.

9.10 (Inverse response) Consider a system whose input/output response is modeled
by G(s) = 6(−s + 1)/(s2 + 5s + 6), which has a zero in the right half-plane.
Compute the step response for the system, and show that the output goes in the
wrong direction initially, which is also referred to as an inverse response. Compare
the response to a minimum phase system by replacing the zero at s = 1 with a zero
at s = −1.

9.11 (Describing function analysis) . Consider the system with the block diagram
shown on the left below.

−1

�
r e u

P(s)
y

R( · )

y

u

c

b

The block R is a relay with hysteresis whose input/output response is shown on the
right and the process transfer function is P(s) = e−sτ /s. Use describing function
analysis to determine frequency and amplitude of possible limit cycles. Simulate
the system and compare with the results of the describing function analysis.
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(b) Anti-windup

Figure 10.10: Simulation of PI cruise control with windup (a) and anti-windup (b). The figure
shows the speed v and the throttle u for a car that encounters a slope that is so steep that
the throttle saturates. The controller output is a dashed line. The controller parameters are
kp = 0.5 and ki = 0.1. The anti-windup compensator eliminates the overshoot by preventing
the error for building up in the integral term of the controller.

actuator, and forming an error signal es as the difference between the output of
the controller v and the actuator output u. The signal es is fed to the input of the
integrator through gain kt . The signal es is zero when there is no saturation and the
extra feedback loop has no effect on the system. When the actuator saturates, the
signal es is fed back to the integrator in such a way that es goes toward zero. This
implies that controller output is kept close to the saturation limit. The controller
output will then change as soon as the error changes sign and integral windup is
avoided.

The rate at which the controller output is reset is governed by the feedback
gain kt ; a large value of kt gives a short reset time. The parameter kt cannot be too
large because measurement noise can then cause an undesirable reset. A reasonable
choice is to choose kt as a fraction of 1/Ti . We illustrate how integral windup can
be avoided by investigating the cruise control system.

Example 10.6 Cruise control with anti-windup
Figure 10.10b shows what happens when a controller with anti-windup is applied
to the system simulated in Figure 10.10a. Because of the feedback from the actuator
model, the output of the integrator is quickly reset to a value such that the controller
output is at the saturation limit. The behavior is drastically different from that in
Figure 10.10a and the large overshoot is avoided. The tracking gain is kt = 2 in the
simulation. ∇
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Figure 10.11: PID controller with a filtered derivative and anti-windup. The input to the
integrator (1/s) consists of the error term plus a “reset” based on input saturation. If the
actuator is not saturated, then es = u − ν, otherwise es will decrease the integrator input to
prevent windup.

10.5 Implementation

There are many practical issues that have to be considered when implementing PID
controllers. They have been developed over time based on practical experience. In
this section we consider some of the most common. Similar considerations also
apply to other types of controllers.

Filtering the Derivative

A drawback with derivative action is that an ideal derivative has high gain for
high-frequency signals. This means that high-frequency measurement noise will
generate large variations in the control signal. The effect of measurement noise may
be reduced by replacing the term kds by kds/(1 + sT f ), which can be interpreted
as an ideal derivative of a low-pass filtered signal. For small s the transfer function
is approximately kds and for large s it is equal to kd/T f . The approximation acts
as a derivative for low-frequency signals and as a constant gain for high-frequency
signals. The filtering time is chosen as T f = (kd/k)/N , with N in the range 2–20.
Filtering is obtained automatically if the derivative is implemented by taking the
difference between the signal and its filtered version as shown in Figure 10.3b (see
equation (10.5)).

Instead of filtering just the derivative, it is also possible to use an ideal controller
and filter the measured signal. The transfer function of such a controller with a filter
is then

C(s) = kp

(
1 + 1

sTi
+ sTd

)
1

1 + sT f + (sT f )2/2
, (10.13)

where a second-order filter is used.



PID.tex, v1.122 2008/11/28 22:34:23 (murray)

310 CHAPTER 10. PID CONTROL

0 5 10 15
20

20.5

21

0 5 10 15
0

0.2

0.4

0.6

0.8

T
hr

ot
tle

u
Sp

ee
d
v

[m
/s

]

Time t [s]

β

β

(a) Step response

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
−2

10
−1

10
0

Frequency ω [rad/s]

|G
v
r
(i
ω
)|

|G
ur
(i
ω
)|

β

β

(b) Frequency responses

Figure 10.12: Time and frequency responses for PI cruise control with setpoint weighting.
Step responses are shown in (a), and the gain curves of the frequency responses in (b). The
controller gains are kp = 0.74 and ki = 0.19. The setpoint weights are β = 0, 0.5 and 1, and
γ = 0.

and the output voltage u. The impedances are given by

Z1(s) = R1

1 + R1C1s
, Z2(s) = R2 + 1

C2s
,

and wefind the following relation between the input voltage e and the output voltage
u:

u = − Z2

Z1
e = − R2

R1

(1 + R1C1s)(1 + R2C2s)

R2C2s
e.

This is the input/output relation for a PID controller of the form (10.1) with param-
eters

kp = R2

R1
, Ti = R2C1, Td = R1C1.

−

+

R1 R C2 2

e

u

(a) PI controller

−

+

R1 R C2 2

C1

e

u

(b) PID controller

Figure 10.13: Schematic diagrams for PI and PID controllers using op amps. The circuit in
(a) uses a capacitor in the feedback path to store the integral of the error. The circuit in (b)
adds a filter on the input to provide derivative action.
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The corresponding results for a PI controller are obtained by setting C1 = 0 (re-
moving the capacitor).

Computer Implementation

In this section we briefly describe how a PID controller may be implemented using
a computer. The computer typically operates periodically, with signals from the
sensors sampled and converted to digital form by the A/D converter, and the control
signal computed and then converted to analog form for the actuators. The sequence
of operation is as follows:

1. Wait for clock interrupt

2. Read input from sensor

3. Compute control signal

4. Send output to the actuator

5. Update controller variables

6. Repeat

Notice that an output is sent to the actuators as soon as it is available. The time
delay is minimized by making the calculations in step 3 as short as possible and
performing all updates after the output is commanded. This simple way of reducing
the latency is, unfortunately, seldom used in commercial systems.

As an illustration we consider the PID controller in Figure 10.11, which has
a filtered derivative, setpoint weighting and protection against integral windup.
The controller is a continuous-time dynamical system. To implement it using a
computer, the continuous-time system has to be approximated by a discrete-time
system.

A block diagram of a PID controller with anti-windup is shown in Figure 10.11.
The signal v is the sum of the proportional, integral and derivative terms, and the
controller output is u = sat(v), where sat is the saturation function that models the
actuator. The proportional term kp(βr− y) is implemented simply by replacing the
continuous variables with their sampled versions. Hence

P(tk) = kp (βr(tk)− y(tk)) , (10.15)

where {tk} denotes the sampling instants, i.e., the times when the computer reads
its input. We let h represent the sampling time, so that tk+1 = tk + h. The integral
term is obtained by approximating the integral with a sum,

I (tk+1) = I (tk)+ kih e(tk)+ h

Tt

(
sat(v)− v

)
, (10.16)

where Tt = h/kt represents the anti-windup term. The filtered derivative term D
is given by the differential equation

T f
dD

dt
+ D = −kd ẏ.

Approximating the derivative with a backward difference gives

T f
D(tk)− D(tk−1)

h
+ D(tk) = −kd y(tk)− y(tk−1)

h
,
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[205] and in the paper [58] cited in the beginning of this chapter. A comprehen-
sive presentation of PID control is given in [16]. Interactive learning tools for PID
control can be downloaded from http://www.calerga.com/contrib.

Exercises

10.1 (Ideal PID controllers) Consider the systems represented by the block diagrams
in Figure 10.1. Assume that the process has the transfer function P(s) = b/(s+a)
and show that the transfer functions from r to y are

(a) Gyr (s) = bkds2 + bkps + bki
(1 + bkd)s2 + (a + bkp)s + bki

,

(b) Gyr (s) = bki
(1 + bkd)s2 + (a + bkp)s + bki

.

Pick some parameters and compare the step responses of the systems.

10.2 Consider a second-order process with the transfer function

P(s) = b

s2 + a1s + a2
.

The closed loop system with a PI controller is a third-order system. Show that it is
possible to position the closed loop poles as long as the sum of the poles is −a1. Give
equations for the parameters that give the closed loop characteristic polynomial

(s + α0)(s
2 + 2ζ0ω0s + ω2

0).

10.3 Consider a system with the transfer function P(s) = (s + 1)−2. Find an
integral controller that gives a closed loop pole at s = −a and determine the value
of a that maximizes the integral gain. Determine the other poles of the system and
judge if the pole can be considered dominant. Compare with the value of the integral
gain given by equation (10.6).

10.4 (Ziegler–Nichols tuning) Consider a system with transfer function P(s) =
e−s/s. Determine the parameters of P, PI and PID controllers using Ziegler–Nichols
step and frequency response methods. Compare the parameter values obtained by
the different rules and discuss the results.

10.5 (Vehicle steering) Design a proportional-integral controller for the vehicle
steering system that gives the closed loop characteristic polynomial

s3 + 2ω0s
2 + 2ω0s + ω3

0.

10.6 (Congestion control) A simplified flow model for TCP transmission is derived
in [101, 137]. The linearized dynamics are modeled by the transfer function

Gqp(s) = b

(s + a1)(s + a2)
e−sτe ,
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which describes the dynamics relating the expected queue length q to the expected
packet drop p. The parameters are given by a1 = 2N 2/(cτ 2

e ), a2 = 1/τe and
b = c2/(2N ). The parameter c is the bottleneck capacity, N is the number of
sources feeding the link and τe is the round-trip delay time. Use the parameter
values N = 75 sources,C = 1250 packets/s and τe = 0.15 and find the parameters
of a PI controller using one of the Ziegler–Nichols rules and the corresponding
improved rule. Simulate the responses of the closed loop systems obtained with the
PI controllers.

10.7 (Motor drive) Consider the model of the motor drive in Exercise 2.10. Develop
an approximate second-order model of the system and use it to design an ideal PD
controller that gives a closed loop system with eigenvalues in ζω0 ± iω0

√
1 − ζ 2.

Add low-pass filtering as shown in equation (10.13) and explore how large ω0 can
be made while maintaining a good stability margin. Simulate the closed loop system
with the chosen controller and compare the results with the controller based on state
feedback in Exercise 6.11.

10.8 Consider the system in Exercise 10.7 investigate what happens if the second-
order filtering of the derivative is replace by a first-order filter.

10.9 (Tuning rules) Apply the Ziegler–Nichols and the modified tuning rules to
design PI controllers for systems with the transfer functions

P1 = e−s

s
, P2 = e−s

s + 1
, P3 = e−s .

Compute the stability margins and explore any patterns.

10.10 (Windup and anti-windup) Consider a PI controller of the formC(s) = 1+1/s
for a process with input that saturates when |u| > 1, and whose linear dynamics are
given by the transfer function P(s) = 1/s. Simulate the response of the system to
step changes in the reference signal of magnitude 1, 2 and 3. Repeat the simulation
when the windup protection scheme in Figure 10.11 is used.

10.11 (Windup protection by conditional integration) Many methods have been
proposed to avoid integrator windup. One method called conditional integration
is to update the integral only when the error is sufficiently small. To illustrate this
method we consider a system with PI control described by

dx1

dt
= u, u = satu0(kpe + ki x2),

dx2

dt
=

{
e if |e| < e0

0 if |e| ≥ e0,

where e = r − x . Plot the phase portrait of the system for the parameter values
kp = 1, ki = 1, u0 = 1 and e0 = 1 and discuss the properties of the system.
The example illustrates the difficulties of introducing ad hoc nonlinearities without
careful analysis.
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Chapter Eleven
Frequency Domain Design

Sensitivity improvements in one frequency rangemust be paid forwith sensitivity deteriorations
in another frequency range, and the price is higher if the plant is open-loop unstable. This
applies to every controller, no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture, 1989 [185].

In this chapter we continue to explore the use of frequency domain techniques
with a focus on the design of feedback systems. We begin with a more thorough
description of the performance specifications for control systems and then introduce
the concept of “loop shaping” as a mechanism for designing controllers in the
frequency domain. We also introduce some fundamental limitations to performance
for systems with time delays and right half-plane poles and zeros.

11.1 Sensitivity Functions

In the previous chapter, we considered the use of proportional-integral-derivative
(PID) feedback as a mechanism for designing a feedback controller for a given
process. In this chapter we will expand our approach to include a richer repertoire
of tools for shaping the frequency response of the closed loop system.

One of the key ideas in this chapter is that we can design the behavior of the
closed loop system by focusing on the open loop transfer function. This same
approach was used in studying stability using the Nyquist criterion: we plotted the
Nyquist plot for the open loop transfer function to determine the stability of the
closed loop system. From a design perspective, the use of loop analysis tools is very
powerful: since the loop transfer function is L = PC , if we can specify the desired
performance in terms of properties of L , we can directly see the impact of changes
in the controller C . This is much easier, for example, than trying to reason directly
about the tracking response of the closed loop system, whose transfer function is
given by Gyr = PC/(1 + PC).

We will start by investigating some key properties of the feedback loop. A
block diagram of a basic feedback loop is shown in Figure 11.1. The system loop is
composed of two components: the process and the controller. The controller itself
has two blocks: the feedback block C and the feedforward block F . There are two
disturbances acting on the process, the load disturbance d and the measurement
noise n. The load disturbance represents disturbances that drive the process away
from its desired behavior, while the measurement noise represents disturbances that
corrupt information about the process given by the sensors. In the figure, the load
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Figure 11.1: Block diagram of a basic feedback loop with two degrees of freedom. The
controller has a feedback block C and a feedforward block F . The external signals are the
reference signal r , the load disturbance d and the measurement noise n. The process output
is η, and the control signal is u.

disturbance is assumed to act on the process input. This is a simplification since
disturbances often enter the process in many different ways, but it allows us to
streamline the presentation without significant loss of generality.

The process output η is the real variable that we want to control. Control is based
on the measured signal y, where the measurements are corrupted by measurement
noise n. The process is influenced by the controller via the control variable u.
The process is thus a system with three inputs—the control variable u, the load
disturbance d and the measurement noise n—and one output—the measured signal
y. The controller is a system with two inputs and one output. The inputs are the
measured signal y and the reference signal r , and the output is the control signal
u. Note that the control signal u is an input to the process and the output of the
controller, and that the measured signal y is the output of the process and an input
to the controller.

The feedback loop in Figure 11.1 is influenced by three external signals, the
reference r , the load disturbance d and the measurement noise n. Any of the re-
maining signals can be of interest in controller design, depending on the particular
application. Since the system is linear, the relations between the inputs and the in-
teresting signals can be expressed in terms of the transfer functions. The following
relations are obtained from the block diagram in Figure 11.1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
η
ν
u
e

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PCF

1 + PC

P

1 + PC

1

1 + PC
PCF

1 + PC

P

1 + PC

−PC

1 + PC
CF

1 + PC

1

1 + PC

−C
1 + PC

CF

1 + PC

−PC

1 + PC

−C
1 + PC

F

1 + PC

−P

1 + PC

−1

1 + PC

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎩
r
d
n

⎫⎪⎪⎪⎪⎪⎭ . (11.1)

In addition, we can write the transfer function for the error between the reference
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P
zw

C

yu

Figure 11.2: A more general representation of a feedback system. The process input u
represents the control signal, which can be manipulated, and the process input w represents
other signals that influence the process. The process output y is the vector of measured
variables and z are other signals of interest.

The feedforward part F of the controller influences only the response to command
signals.

In Chapter 9 we focused on the loop transfer function, and we found that its
properties gave useful insights into the properties of a system. To make a proper
assessment of a feedback system it is necessary to consider the properties of all the
transfer functions (11.2) in the Gang of Six or the Gang of Four, as illustrated in
the following example.

Example 11.1 The loop transfer function gives only limited insight
Consider a process with the transfer function P(s) = 1/(s − a) controlled by a PI
controller with error feedback having the transfer function C(s) = k(s−a)/s. The
loop transfer function is L = k/s, and the sensitivity functions are

T = PC

1 + PC
= k

s + k
, PS = P

1 + PC
= s

(s − a)(s + k)
,

CS = C

1 + PC
= k(s − a)

s + k
, S = 1

1 + PC
= s

s + k
.

Notice that the factor s − a is canceled when computing the loop transfer function
and that this factor also does not appear in the sensitivity function or the comple-
mentary sensitivity function. However, cancellation of the factor is very serious if
a > 0 since the transfer function PS relating load disturbances to process output is
then unstable. In particular, a small disturbance d can lead to an unbounded output,
which is clearly not desirable. ∇

The system in Figure 11.1 represents a special case because it is assumed that
the load disturbance enters at the process input and that the measured output is the
sum of the process variable and the measurement noise. Disturbances can enter in
many different ways, and the sensors may have dynamics. A more abstract way
to capture the general case is shown in Figure 11.2, which has only two blocks
representing the process (P) and the controller (C). The process has two inputs,
the control signal u and a vector of disturbances w, and two outputs, the measured
signal y and a vector of signals z that is used to specify performance. The system
in Figure 11.1 can be captured by choosing w = (d, n) and z = (η, ν, e, ε). The
process transfer function P is a 4 × 3 matrix, and the controller transfer function C
is a 1 × 2 matrix; compare with Exercise 11.3.
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Figure 11.3: Block diagram of a system with feedforward compensation for improved re-
sponse to reference signals and measured disturbances (2 DOF system). Three feedforward
elements are present: Fm(s) sets the desired output value, Fu(s) generates the feedforward
command ufr and Fd(s) attempts to cancel disturbances.

Processes with multiple inputs and outputs can also be considered by regarding u
and y as vectors. Representations at these higher levels of abstraction are useful for
the development of theory because they make it possible to focus on fundamentals
and to solve general problems with a wide range of applications. However, care
must be exercised to maintain the coupling to the real-world control problems we
intend to solve.

11.2 Feedforward Design

Most of our analysis and design tools up to this point have focused on the role of
feedback and its effect on the dynamics of the system. Feedforward is a simple and
powerful technique that complements feedback. It can be used both to improve the
response to reference signals and to reduce the effect of measurable disturbances.
Feedforward compensation admits perfect elimination of disturbances, but it is
much more sensitive to process variations than feedback compensation. A general
scheme for feedforward was discussed in Section 7.5 using Figure 7.10. A simple
form of feedforward for PID controllers was discussed in Section 10.5. The con-
troller in Figure 11.1 also has a feedforward block to improve response to command
signals. An alternative version of feedforward is shown in Figure 11.3, which we
will use in this section to understand some of the trade-offs between feedforward
and feedback.

Controllers with two degrees of freedom (feedforward and feedback) have the
advantage that the response to reference signals can be designed independently of
the design for disturbance attenuation and robustness. We will first consider the
response to reference signals, and we will therefore initially assume that the load
disturbance d is zero. Let Fm represent the ideal response of the system to reference
signals. The feedforward compensator is characterized by the transfer functions Fu
and Fm . When the reference is changed, the transfer function Fu generates the signal
ufr, which is chosen to give the desired output when applied as input to the process.
Under ideal conditions the output y is then equal to ym , the error signal is zero and
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there will be no feedback action. If there are disturbances or modeling errors, the
signals ym and y will differ. The feedback then attempts to bring the error to zero.

To make a formal analysis, we compute the transfer function from reference
input to process output:

Gyr (s) = P(CFm + Fu)

1 + PC
= Fm + PFu − Fm

1 + PC
, (11.4)

where P = P2P1. Thefirst term represents the desired transfer function. The second
term can be made small in two ways. Feedforward compensation can be used to
make PFu − Fm small, or feedback compensation can be used to make 1 + PC
large. Perfect feedforward compensation is obtained by choosing

Fu = Fm
P
. (11.5)

Design of feedforward using transfer functions is thus a very simple task. Notice
that the feedforward compensator Fu contains an inverse model of the process
dynamics.

Feedback and feedforward have different properties. Feedforward action is ob-
tained by matching two transfer functions, requiring precise knowledge of the pro-
cess dynamics, while feedback attempts to make the error small by dividing it by
a large quantity. For a controller having integral action, the loop gain is large for
low frequencies, and it is thus sufficient to make sure that the condition for ideal
feedforward holds at higher frequencies. This is easier than trying to satisfy the
condition (11.5) for all frequencies.

We will now consider reduction of the effects of the load disturbance d in Fig-
ure 11.3 by feedforward control. We assume that the disturbance signal is measured
and that the disturbance enters the process dynamics in a known way (captured by
P1 and P2). The effect of the disturbance can be reduced by feeding the measured
signal through a dynamical system with the transfer function Fd . Assuming that
the reference r is zero, we can use block diagram algebra to find that the transfer
function from the disturbance to the process output is

Gyd = P2(1 + Fd P1)

1 + PC
, (11.6)

where P = P1P2. The effect of the disturbance can be reduced by making 1+Fd P1

small (feedforward) or by making 1 + PC large (feedback). Perfect compensation
is obtained by choosing

Fd = −P−1
1 , (11.7)

requiring inversion of the transfer function P1.
As in the case of reference tracking, disturbance attenuation can be accomplished

by combining feedback and feedforward control. Since low-frequency disturbances
can be eliminated by feedback, we require the use of feedforward only for high-
frequency disturbances, and the transfer function Fd in equation (11.7) can then be
computed using an approximation of P1 for high frequencies.
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Figure 11.5:Reference signal responses. The responses in process output y and control signal
u to a unit step in the reference signal r are shown in (a), and the gain curves of Gyr and Gur

are shown in (b). Results with PI control with error feedback are shown by solid lines, and
the dashed lines show results for a controller with a feedforward compensator.

response with no overshoot. However, much larger control signals are required to
obtain the fast response. The largest value of the control signal is 8, compared to 1.2
for the regular PI controller. The controller with feedforward has a larger bandwidth
(marked with ◦) and no resonant peak. The transfer function Gur also has higher
gain at high frequencies. ∇

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to compare the output of the closed
loop system in Figure 11.1 with the output of the corresponding open loop system
obtained by setting C = 0. If we let the disturbances for the open and closed loop
systems be identical, the output of the closed loop system is then obtained simply
by passing the open loop output through a system with the transfer function S.
The sensitivity function tells how the variations in the output are influenced by
feedback (Exercise 11.7). Disturbances with frequencies such that |S(iω)| < 1 are
attenuated, but disturbances with frequencies such that |S(iω)| > 1 are amplified
by feedback. The maximum sensitivity Ms , which occurs at the frequency ωms ,
is thus a measure of the largest amplification of the disturbances. The maximum
magnitude of 1/(1 + L) is also the minimum of |1 + L|, which is precisely the
stability margin sm defined in Section 9.3, so that Ms = 1/sm . The maximum
sensitivity is therefore also a robustness measure.

If the sensitivity function is known, the potential improvements by feedback
can be evaluated simply by recording a typical output and filtering it through the
sensitivity function. A plot of the gain curve of the sensitivity function is a good way
to make an assessment of the disturbance attenuation. Since the sensitivity function
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Figure 11.7: Disturbance responses. The time and frequency responses of process output y
to load disturbance d are shown in (a) and the responses of control signal u to measurement
noise n are shown in (b).

properties of the controller.
The effects of measurement noise are captured by the transfer function from the

measurement noise to the control signal,

−Gun = C

1 + PC
= CS = T

P
. (11.10)

The complementary sensitivity function is close to 1 for low frequencies (ω < ωgc),
and Gun can be approximated by −1/P . The sensitivity function is close to 1 for
high frequencies (ω > ωgc), and Gun can be approximated by −C .

Example 11.4 Third-order system
Consider a process with the transfer function P(s) = (s+1)−3 and a proportional-
integral-derivative (PID) controller with gains kp = 0.6, ki = 0.5 and kd = 2.0.
We augment the controller using a second-order noise filter with T f = 0.1, so that
its transfer function is

C(s) = kds2 + kps + ki
s(s2T 2

f /2 + sT f + 1)
.

The system responses are illustrated in Figure 11.7. The response of the output to
a step in the load disturbance in the top part of Figure 11.7a has a peak of 0.28 at
time t = 2.73 s. The frequency response in Figure 11.7a shows that the gain has a
maximum of 0.58 at ω = 0.7 rad/s.

The response of the control signal to a step in measurement noise is shown
in Figure 11.7b. The high-frequency roll-off of the transfer function Gun(iω) is
due to filtering; without it the gain curve in Figure 11.7b would continue to rise
after 20 rad/s. The step response has a peak of 13 at t = 0.08 s. The frequency
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response has its peak 20 at ω = 14 rad/s. Notice that the peak occurs far above
the peak of the response to load disturbances and far above the gain crossover
frequency ωgc = 0.78 rad/s. An approximation derived in Exercise 11.9 gives
max |CS(iω)| ≈ kd/T f = 20, which occurs at ω = √

2/Td = 14.1 rad/s. ∇

11.4 Feedback Design via Loop Shaping

One advantage of the Nyquist stability theorem is that it is based on the loop transfer
function, which is related to the controller transfer function through L = PC . It is
thus easy to see how the controller influences the loop transfer function. To make
an unstable system stable we simply have to bend the Nyquist curve away from the
critical point.

This simple idea is the basis of several different design methods collectively
called loop shaping. These methods are based on choosing a compensator that
gives a loop transfer function with a desired shape. One possibility is to determine
a loop transfer function that gives a closed loop system with the desired properties
and to compute the controller as C = L/P . Another is to start with the process
transfer function, change its gain and then add poles and zeros until the desired
shape is obtained. In this section we will explore different loop-shaping methods
for control law design.

Design Considerations

We will first discuss a suitable shape for the loop transfer function that gives good
performance and good stability margins. Figure 11.8 shows a typical loop transfer
function. Good robustness requires good stability margins (or good gain and phase
margins), which imposes requirements on the loop transfer function around the
crossover frequencies ωpc and ωgc. The gain of L at low frequencies must be large
in order to have good tracking of command signals and good attenuation of low-
frequency disturbances. Since S = 1/(1+ L), it follows that for frequencies where
|L| > 101 disturbances will be attenuated by a factor of 100 and the tracking error is
less than 1%. It is therefore desirable to have a large crossover frequency and a steep
(negative) slope of the gain curve. The gain at low frequencies can be increased by
a controller with integral action, which is also called lag compensation. To avoid
injecting too much measurement noise into the system, the loop transfer function
should have low gain at high frequencies, which is called high-frequency roll-off.
The choice of gain crossover frequency is a compromise among attenuation of load
disturbances, injection of measurement noise and robustness.

Bode’s relations (see Section 9.4) impose restrictions on the shape of the loop
transfer function. Equation (9.8) implies that the slope of the gain curve at gain
crossover cannot be too steep. If the gain curve has a constant slope, we have the
following relation between slope ngc and phase margin ϕm :

ngc = −2 + 2ϕm
π

[rad]. (11.11)
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(a) Simplified model

Symbol Description Value

m Vehicle mass 4.0 kg

J Vehicle inertia, ϕ3 axis 0.0475 kg m2

r Force moment arm 25.0 cm

c Damping coefficient 0.05 kg m/s

g Gravitational constant 9.8 m/s2

(b) Parameter values

Figure 11.11: Roll control of a vectored thrust aircraft. (a) The roll angle θ is controlled by
applying maneuvering thrusters, resulting in a moment generated by Fz . (b) The table lists
the parameter values for a laboratory version of the system.

transfer function of the form
P(s) = r

Js2
,

with the parameters given in Figure 11.11b. We take as our performance specifica-
tion that we would like less than 1% error in steady state and less than 10% tracking
error up to 10 rad/s.

The open loop transfer function is shown in Figure 11.12a. To achieve our
performance specification, we would like to have a gain of at least 10 at a frequency
of 10 rad/s, requiring the gain crossover frequency to be at a higher frequency. We
see from the loop shape that in order to achieve the desired performance we cannot
simply increase the gain since this would give a very low phase margin. Instead,
we must increase the phase at the desired crossover frequency.

To accomplish this, we use a lead compensator (11.12) with a = 2 and b = 50.
We then set the gain of the system to provide a large loop gain up to the desired
bandwidth, as shown in Figure 11.12b. We see that this system has a gain of greater
than 10 at all frequencies up to 10 rad/s and that it has more than 60◦ of phase
margin. ∇

The action of a lead compensator is essentially the same as that of the derivative
portion of a PID controller. As described in Section 10.5, we often use a filter for
the derivative action of a PID controller to limit the high-frequency gain. This same
effect is present in a lead compensator through the pole at s = b.

Equation (11.12) is a first-order compensator and can provide up to 90◦ of phase
lead. Larger phase lead can be obtained by using a higher-order lead compensator
(Exercise 11.11):

C(s) = k
(s + a)n

(s + b)n
, a < b.
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The right half-plane zero of the system can be eliminated by changing the output
of the system. For example, if we choose the output to correspond to a position at a
distance r along the pendulum, we have y = p − r sin θ and the transfer function
for the linearized output becomes

Hy,F = HpF − r HθF = (mlr − Jt)s2 + mgl

s2
(−(Mt Jt − m2l2)s2 + mglMt

) .
If we choose r sufficiently large, then mlr − Jt > 0 and we eliminate the right
half-plane zero, obtaining instead two pure imaginary zeros. The gain crossover
frequency inequality is then based just on the right half-plane pole (Example 11.8).
If our admissible phase lag for the nonminimum phase part is ϕl = 45◦, then our
gain crossover must satisfy

ωgc >
p

tan(ϕl/2)
= 6.48 rad/s.

If the actuators have sufficiently high bandwidth, e.g., a factor of 10 above ωgc or
roughly 10 Hz, then we can provide robust tracking up to this frequency. ∇

Bode’s Integral Formula

In addition to providing adequate phase margin for robust stability, a typical control
design will have to satisfy performance conditions on the sensitivity functions (Gang
of Four). In particular, the sensitivity function S = 1/(1 + PC) represents the
disturbance attenuation and also relates the tracking error e to the reference signal:
we usually want the sensitivity to be small over the range of frequencies where we
want small tracking error and good disturbance attenuation. A basic problem is to
investigate if S can be made small over a large frequency range. We will start by
investigating an example.

Example 11.10 System that admits small sensitivities
Consider a closed loop system consisting of a first-order process and a proportional
controller. Let the loop transfer function be

L(s) = PC = k

s + 1
,

where parameter k is the controller gain. The sensitivity function is

S(s) = s + 1

s + 1 + k

and we have

|S(iω)| =
√

1 + ω2

1 + 2k + k2 + ω2
.

This implies that |S(iω)| < 1 for all finite frequencies and that the sensitivity can be
made arbitrarily small for any finite frequency by making k sufficiently large. ∇
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The system in Example 11.10 is unfortunately an exception. The key feature
of the system is that the Nyquist curve of the process is completely contained in
the right half-plane. Such systems are called passive, and their transfer functions
are positive real. For typical control systems there are severe constraints on the
sensitivity function. The following theorem, due to Bode, provides insights into the
limits of performance under feedback.

Theorem 11.1 (Bode’s integral formula). Assume that the loop transfer function
L(s) of a feedback system goes to zero faster than 1/s as s → ∞, and let S(s)
be the sensitivity function. If the loop transfer function has poles pk in the right
half-plane, then the sensitivity function satisfies the following integral:∫ ∞

0
log |S(iω)| dω =

∫ ∞

0
log

1

|1 + L(iω)| dω = π
∑

pk . (11.19)

Equation (11.19) implies that there are fundamental limitations to what can
be achieved by control and that control design can be viewed as a redistribution
of disturbance attenuation over different frequencies. In particular, this equation
shows that if the sensitivity function is made smaller for some frequencies, it must
increase at other frequencies so that the integral of log |S(iω)| remains constant.
This means that if disturbance attenuation is improved in one frequency range, it
will be worse in another, a property sometime referred to as the waterbed effect. It
also follows that systems with open loop poles in the right half-plane have larger
overall sensitivity than stable systems.

Equation (11.19) can be regarded as a conservation law: if the loop transfer
function has no poles in the right half-plane, the equation simplifies to∫ ∞

0
log |S(iω)|dω = 0.

This formula can be given a nice geometric interpretation as illustrated in Fig-
ure 11.14, which shows log |S(iω)| as a function of ω. The area over the horizontal
axis must be equal to the area under the axis when the frequency is plotted on a
linear scale. Thus if we wish to make the sensitivity smaller up to some frequency
ωsc, we must balance this by increased sensitivity aboveωsc. Control system design
can be viewed as trading the disturbance attenuation at some frequencies for distur-
bance amplification at other frequencies. Notice that the system in Example 11.10
violates the condition that lims→∞ sL(s) = 0 and hence the integral formula does
not apply.

There is result analogous to equation (11.19) for the complementary sensitivity
function: ∫ ∞

0

log |T (iω)|
ω2

dω = π
∑ 1

zi
, (11.20)

where the summation is over all right half-plane zeros. Notice that slow right half-
plane zeros are worse than fast ones and that fast right half-plane poles are worse
than slow ones.
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To evaluate the achievable performance, we search for a control law such that
the sensitivity function is small up to the desired bandwidth and not greater than Ms

beyond that frequency. Because of the Bode integral formula, we know that Ms must
be greater than 1 at high frequencies to balance the small sensitivity at low frequency.
We thus ask if we can find a controller that has the shape shown in Figure 11.15b
with the smallest value of Ms . Note that the sensitivity above the frequency ωa
is not specified since we have no actuator authority at that frequency. However,
assuming that the process dynamics fall off at high frequency, the sensitivity at
high frequency will approach 1. Thus, we desire to design a closed loop system
that has low sensitivity at frequencies below ω1 and sensitivity that is not too large
between ω1 and ωa .

From Bode’s integral formula, we know that whatever controller we choose,
equation (11.19) must hold. We will assume that the sensitivity function is given
by

|S(iω)| =
{
ωMs
ω1

ω ≤ ω1

Ms ω1 ≤ ω ≤ ωa,

corresponding to Figure 11.15b. If we further assume that |L(s)| ≤ δ/ω2 for fre-
quencies larger than the actuator bandwidth, Bode’s integral becomes∫ ∞

0
log |S(iω)| dω =

∫ ωa

0
log |S(iω)| dω

=
∫ ω1

0
log

ωMs

ω1
dω + (ωa − ω1) log Ms = πp.

Evaluation of the integral gives −ω1 + ωa log Ms = πp or

Ms = e(πp+ω1)/ωa .

This formula tells us what the achievable value of Ms will be for the given control
specifications. In particular, using p = 6, ω1 = 3 and ωa = 40 rad/s, we find
that Ms = 1.75, which means that in the range of frequencies between ω1 and ωa ,
disturbances at the input to the process dynamics (such as wind) will be amplified
by a factor of 1.75 in terms of their effect on the aircraft.

Another way to view these results is to compute the phase margin that corre-
sponds to the given level of sensitivity. Since the peak sensitivity normally occurs
at or near the crossover frequency, we can compute the phase margin corresponding
to Ms = 1.75. As shown in Exercise 11.14, the maximum achievable phase margin
for this system is approximately 35◦, which is below the usual design limit of 45◦
in aerospace systems. The zero at s = 26 limits the maximum gain crossover the
can be achieved. ∇

Derivation of Bode’s Formula
�

We now derive Bode’s integral formula (Theorem 11.1). This is a technical section
that requires some knowledge of the theory of complex variables, in particular
contour integration. Assume that the loop transfer function has distinct poles at
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11.7 (Disturbance attenuation) Consider the feedback system shown in Figure 11.1.
Assume that the reference signal is constant. Let yol be the measured output when
there is no feedback and ycl be the output with feedback. Show that Ycl(s) =
S(s)Yol(s), where S is the sensitivity function.

11.8 (Disturbance reduction through feedback) Consider a problem in which an
output variable has been measured to estimate the potential for disturbance attenu-
ation by feedback. Suppose an analysis shows that it is possible to design a closed
loop system with the sensitivity function

S(s) = s

s2 + s + 1
.

Estimate the possible disturbance reduction when the measured disturbance is

y(t) = 5 sin (0.1 t)+ 3 sin (0.17 t)+ 0.5 cos (0.9 t)+ 0.1 t.

11.9 Show that the effect of high frequency measurement noise on the control
signal for the system in Example 11.4 can be approximated by

CS ≈ C = kds

(sT f )2 /2 + sT f + 1
,

and that the largest value of |CS(iω)| is kd/T f which occurs for ω = √
2/T f .

11.10 (Attenuation of low-frequency sinusoidal disturbances) Integral action elim-
inates constant disturbances and reduces low-frequency disturbances because the
controller gain is infinite at zero frequency. A similar idea can be used to reduce the
effects of sinusoidal disturbances of known frequency ω0 by using the controller

C(s) = kp + kss

s2 + 2ζω0s + ω2
0

.

This controller has the gainCs(iω) = kp+ks/(2ζ ) for the frequencyω0, which can
be large by choosing a small value of ζ . Assume that the process has the transfer
function P(s) = 1/s. Determine the Bode plot of the loop transfer function and
simulate the system. Compare the results with PI control.

11.11 Consider a lead compensator with the transfer function

Cn(s) =
(s n

√
k + a

s + a

)n
,

which has zero frequency gain C(0) = 1 and high-frequency gain C(∞) = k.
Show that the gain required to give a given phase lead ϕ is

k =
(

1 + 2 tan2(ϕ/n)+ 2 tan(ϕ/n)
√

1 + tan2(ϕ/n)
)n
,

and that lim
n→∞ k = e2ϕ .



RobustPerformance.tex, v1.139 2009/08/05 05:33:42 (murray)

Chapter Twelve
Robust Performance

However, by building an amplifier whose gain is deliberately made, say 40 decibels higher
than necessary (10000 fold excess on energy basis), and then feeding the output back on the
input in such a way as to throw away that excess gain, it has been found possible to effect
extraordinary improvement in constancy of amplification and freedom from non-linearity.

Harold S. Black, “Stabilized Feedback Amplifiers,” 1934 [35].

This chapter focuses on the analysis of robustness of feedback systems, a vast
topic for which we provide only an introduction to some of the key concepts. We
consider the stability and performance of systems whose process dynamics are
uncertain and derive fundamental limits for robust stability and performance. To
do this we develop ways to describe uncertainty, both in the form of parameter
variations and in the form of neglected dynamics. We also briefly mention some
methods for designing controllers to achieve robust performance.

12.1 Modeling Uncertainty

Harold Black’s quote above illustrates that one of the key uses of feedback is to
provide robustness to uncertainty (“constancy of amplification”). It is one of the
most useful properties of feedback and is what makes it possible to design feedback
systems based on strongly simplified models.

One form of uncertainty in dynamical systems is parametric uncertainty in
which the parameters describing the system are unknown. A typical example is the
variation of the mass of a car, which changes with the number of passengers and the
weight of the baggage. When linearizing a nonlinear system, the parameters of the
linearized model also depend on the operating conditions. It is straightforward to in-
vestigate the effects of parametric uncertainty simply by evaluating the performance
criteria for a range of parameters. Such a calculation reveals the consequences of
parameter variations. We illustrate by a simple example.

Example 12.1 Cruise control
The cruise control problem was described in Section 3.1, and a PI controller was
designed in Example 10.3. To investigate the effect of parameter variations, we will
choose a controller designed for a nominal operating condition corresponding to
mass m = 1600 kg, fourth gear (α = 12) and speed ve = 25 m/s; the controller
gains are kp = 0.72 and ki = 0.18. Figure 12.1a shows the velocity v and the
throttle u when encountering a hill with a 3◦ slope with masses in the range 1600 <
m < 2000 kg, gear ratios 3–5 (α = 10, 12 and 16) and velocity 10 ≤ v ≤ 40 m/s.
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Figure 12.4: Geometric interpretation of d(P1, P2). At each frequency, the points on the
Nyquist curve for P1 (solid) and P2 (dashed) are projected onto a sphere of radius 1 sitting
at the origin of the complex plane. The projection of the point 1 − i is shown. The distance
between the two systems is defined as the maximum distance between the projections of
P1(iω) and P2(iω) over all frequencies ω. The figure is plotted for the transfer functions
P1(s) = 2/(s + 1) and P2(s) = 2/(s − 1). (Diagram courtesy G. Vinnicombe.)

Figure 12.4, where the Nyquist plots of P1 and P2 are projected onto a sphere with
radius 1 at the origin of the complex plane (called the Riemann sphere). Points in
the complex plane are projected onto the sphere by a line through the point and
the north pole (Figure 12.4). The distance d(P1, P2) is the longest chordal distance
between the projections of P1(iω) and P2(iω). The distance is small when P1 and
P2 are small or large, but it emphasizes the behavior around the gain crossover
frequency.

The distance d(P1, P2) has one drawback for the purpose of comparing the
behavior of systems under feedback. If P2 is perturbed continuously from P1 to P2,
there can be intermediate transfer functions P where d(P1, P) is 1 even if d(P1, P2)
is small (see Exercise 12.4). To explore when this could happen, we observe that

1 − d2(P1, P) = (1 + P(iω)P1(−iω))(1 + P(−iω)P1(iω))

(1 + |P1(iω)|2)(1 + |P(iω)|2) .

The right-hand side is zero, and hence d(P1, P) = 1 if 1 + P(iω)P1(−iω) = 0
for some ω. To explore when this could occur, we investigate the behavior of the
function 1+P(s)P1(−s)when P is perturbed from P1 to P2. If the functions f1(s) =
1+P1(s)P1(−s) and f2(s) = 1+P2(s)P1(−s)do not have the same number of zeros
in the right half-plane, there is an intermediate P such that 1+ P(iω)P1(−iω) = 0
for some ω. To exclude this case we introduce the set C as all pairs (P1, P2) such
that the functions f1 = 1+ P1(s)P1(−s) and f2 = 1+ P2(s)P1(−s) have the same
number of zeros in the right half-plane.

The Vinnicombe metric or ν-gap metric is defined as

δν(P1, P2) =
{
d(P1, P2), if (P1, P2) ∈ C
1, otherwise.

(12.4)

Vinnicombe [196] showed that δν(P1, P2) is a metric, he gave strong robustness
results based on the metric and he developed the theory for systems with many
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Figure 12.7: Illustration of robustness to process perturbations. A system with additive un-
certainty (left) can be manipulated via block diagram algebra to one with multiplicative
uncertainty δ = �/P (center). Additional manipulations isolate the uncertainty in a manner
that allows application of the small gain theorem (right)

Example 12.6 Bode’s ideal loop transfer function
A major problem in the design of electronic amplifiers is to obtain a closed loop
system that is insensitive to changes in the gain of the electronic components.
Bode found that the loop transfer function L(s) = ks−n , with 1 ≤ n ≤ 5/3, was
an ideal loop transfer function. The gain curve of the Bode plot is a straight line
with slope −n and the phase is constant arg L(iω) = −nπ/2. The phase margin
is thus ϕm = 90(2 − n)◦ for all values of the gain k and the stability margin is
sm = sin π(1 − n/2). This exact transfer function cannot be realized with physical
components, but it can be approximated over a given frequency range with a rational
function (Exercise 12.7). An operational amplifier circuit that has the approximate
transfer function G(s) = k/(s+a) is a realization of Bode’s ideal transfer function
with n = 1, as described in Example 8.3. Designers of operational amplifiers go to
great efforts to make the approximation valid over a wide frequency range. ∇

Youla Parameterization
�

Since stability is such an essential property, it is useful to characterize all controllers
that stabilize a given process. Such a representation, which is called a Youla pa-
rameterization, is very useful when solving design problems because it makes it
possible to search over all stabilizing controllers without the need to test stability
explicitly.

We will first derive Youla’s parameterization for a stable process with a rational
transfer function P . A system with the complementary sensitivity function T can
be obtained by feedforward control with the stable transfer function Q if T = PQ.

Table 12.1: Conditions for robust stability for different types of uncertainty

Process Uncertainty Type Robust Stability

P +� Additive ‖CS�‖∞ < 1

P(1 + δ) Multiplicative ‖T δ‖∞ < 1

P/(1 +�fb · P) Feedback ‖PS�fb‖∞ < 1
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Figure 12.8:Youla parameterization. Block diagrams of Youla parameterizations for a stable
system (a) and an unstable system (b). Notice that the signal v is zero in steady state.

Notice that T must have the same right half-plane zeros as P since Q is stable.
Now assume that we want to implement the complementary transfer function T by
using unit feedback with the controller C . Since T = PC/(1 + PC) = PQ, it
follows that the controller transfer function is

C = Q

1 − PQ
. (12.8)

A straightforward calculation gives

S = 1 − PQ, PS = P(1 − PQ), CS = Q, T = PQ.

These transfer functions are all stable if P and Q are stable and the controller given
by equation (12.8) is thus stabilizing. Indeed, it can be shown that all stabilizing
controllers are in the form given by equation (12.8) for some choice of Q. The
parameterization is illustrated by the block diagrams in Figure 12.8a.

A similar characterization can be obtained for unstable systems. Consider a
process with a rational transfer function P(s) = a(s)/b(s), where a(s) and b(s)
are polynomials. By introducing a stable polynomial c(s), we can write

P(s) = a(s)

b(s)
= A(s)

B(s)
,

where A(s) = a(s)/c(s) and B(s) = b(s)/c(s) are stable rational functions. Simi-
larly we introduce the controller C0(s) = F0(s)/G0(s), where F0(s) and G0(s) are
stable rational functions. We have

S0 = AF0

AF0 + BG0
, PS0 = BF0

AF0 + BG0
,

C0S0 = AG0

AF0 + BG0
, T0 = BG0

AF0 + BG0
.

The controller C0 is stabilizing if and only if the rational function AF0 + BG0 does
not have any zeros in the right half plane. Let Q be a stable rational function and
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Nyquist plot indicates that the robustness is poor since the loop transfer function is
very close to the critical point −1. The phase margin is 7◦ and the stability margin
is sm = 0.077. The poor robustness shows up in the Bode plot, where the gain
curve hovers around the value 1 and the phase curve is close to −180◦ for a wide
frequency range. More insight is obtained by analyzing the sensitivity functions,
shown by solid lines in Figure 12.12. The maximum sensitivities are Ms = 13 and
Mt = 12, indicating that the system has poor robustness.

At first sight it is surprising that a controller where the nominal closed system
has well damped poles and zeros is so sensitive to process variations. We have an
indication that something is unusual because the controller has a zero at s = 3.5
in the right half-plane. To understand what happens, we will investigate the reason
for the peaks of the sensitivity functions.

Let the transfer functions of the process and the controller be

P(s) = np(s)

dp(s)
, C(s) = nc(s)

dc(s)
,

where np(s), nc(s), dp(s) and dc(s) are the numerator and denominator polynomi-
als. The complementary sensitivity function is

T (s) = PC

1 + PC
= np(s)nc(s)

dp(s)dc(s)+ np(s)np(s)
.

The poles of T (s) are the poles of the closed loop system and the zeros are given
by the zeros of the process and controller. Sketching the gain curve of the comple-
mentary sensitivity function we find that T (s) = 1 for low frequencies and that
|T (iω)| starts to increase at its first zero, which is the process zero at s = −2. It
increases further at the controller zero at s = 3.5, and it does not start to decrease
until the closed loop poles appear at ωc = 10 and ωo = 20. We can thus conclude
that there will be a peak in the complementary sensitivity function. The magnitude
of the peak depends on the ratio of the zeros and the poles of the transfer function.

The peak of the complementary sensitivity function can be avoided by assigning
a closed loop pole close to the slow process zero. We can achieve this by choosing
ωc = 10 and ζc = 2.6, which gives closed loop poles at s = −2 and s = −50. The
controller transfer function then becomes

C(s) = 3628s + 40000

s2 + 80.28s + 156.56
= 3628

s + 11.02

(s + 2)(s + 78.28)
.

The sensitivity functions are shown by dashed lines in Figure 12.12. The controller
gives the maximum sensitivities Ms = 1.34 and Mt = 1.41, which give much
better robustness. Notice that the controller has a pole at s = −2 that cancels the
slow process zero. The design can also be done simply by canceling the slow stable
process zero and designing the controller for the simplified system. ∇

One lesson from the example is that it is necessary to choose closed loop poles
that are equal to or close to slow stable process zeros. Another lesson is that slow
unstable process zeros impose limitations on the achievable bandwidth, as already
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Figure 12.12: Sensitivity functions for observer-based control of vehicle steering. The com-
plementary sensitivity function (left) and the sensitivity function (right) for the original con-
troller with ωc = 10, ζc = 0.707, ωo = 20, ζo = 0.707 (solid) and the improved controller
with ωc = 10, ζc = 2.6 (dashed).

noted in Section 11.5.

Fast Stable Process Poles

The next example shows the effect of fast stable poles.

Example 12.9 Fast system poles
Consider a PI controller for afirst-order system, where the process and the controller
have the transfer functions P(s) = b/(s + a) and C(s) = kp + ki/s. The loop
transfer function is

L(s) = b(kps + ki )

s(s + a)
,

and the closed loop characteristic polynomial is.

s(s + a)+ b(kps + ki ) = s2 + (a + bkp)s + kib

If we specify the desired closed loop poles should be −p1 and −p2, we find that
the controller parameters are given by

kp = p1 + p2 − a

b
, ki = p1 p2

b
.

The sensitivity functions are then

S(s) = s(s + a)

(s + p1)(s + p2)
, T (s) = (p1 + p2 − a)s + p1 p2

(s + p1)(s + p2)
.

Assume that the process pole −a is much more negative than the closed loop poles
−p1 and −p2, say, p1 < p2 � a. Notice that the proportional gain is negative and
that the controller has a zero in the right half-plane if a > p1 + p2, an indication
that the system has bad properties.

Next consider the sensitivity function, which is 1 for high frequencies. Moving
from high to low frequencies, wefind that the sensitivity increases at the process pole
s = −a. The sensitivity does not decrease until the closed loop poles are reached,
resulting in a large sensitivity peak that is approximately a/p2. The magnitude of
the sensitivity function is shown in Figure 12.13 for a = b = 1, p1 = 0.05 and
p2 = 0.2. Notice the high-sensitivity peak. For comparison we also show the gain
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Figure 12.14: Nanopositioning system control via cancellation of the fast process pole.
Gain plots for the Gang of Four for PID control with second-order filtering (12.17) are
shown by solid lines, and the dashed lines show results for an ideal PID controller without
filtering (12.16).

bustness. A large value of T f reduces the effects of sensor noise significantly, but
it also reduces the stability margin. Since the gain crossover frequency without
filtering is ki , a reasonable choice is TF = 0.2/T f , as shown by the solid curves in
Figure 12.14. The plots of |CS(iω)| and |S(iω)| show that the sensitivity to high-
frequency measurement noise is reduced dramatically at the cost of a marginal
increase of sensitivity. Notice that the poor attenuation of disturbances with fre-
quencies close to the resonance is not visible in the sensitivity function because of
the exact cancellation of poles and zeros.

The designs thus far have the drawback that load disturbances with frequencies
close to the resonance are not attenuated. We will now consider a design that actively
attenuates the poorly damped modes. We start with an ideal PID controller where
the design can be done analytically, and we add high-frequency roll-off. The loop
transfer function obtained with this controller is

L(s) = kds2 + kps + ki
s(s2 + 2ζas + a2)

. (12.18)

The closed loop system is of third order, and its characteristic polynomial is

s3 + (kda
2 + 2ζa)s2 + (kp + 1)a2s + kia

2. (12.19)

A general third-order polynomial can be parameterized as

s3 + (α0 + 2ζ )ω0s
2 + (1 + 2α0ζ )ω

2
0s + α0ω

3
0. (12.20)

The parameters α0 and ζ give the relative configuration of the poles, and the pa-
rameter ω0 gives their magnitudes, and therefore also the bandwidth of the system.

The identification of coefficients of equal powers of s with equation (12.19)
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12.5 Design for Robust Performance �

Control design is a rich problem where many factors have to be taken into account.
Typical requirements are that load disturbances should be attenuated, the controller
should inject only a moderate amount of measurement noise, the output should
follow variations in the command signal well and the closed loop system should be
insensitive to process variations. For the system in Figure 12.9 these requirements
can be captured by specifications on the sensitivity functions S and T and the
transfer functions Gyd , Gun , Gyr and Gur . Notice that it is necessary to consider
at least six transfer functions, as discussed Section 11.1. The requirements are
mutually conflicting, and it is necessary to make trade-offs. The attenuation of load
disturbances will be improved if the bandwidth is increased, but so will the noise
injection.

It is highly desirable to have design methods that can guarantee robust perfor-
mance. Such design methods did not appear until the late 1980s. Many of these
design methods result in controllers having the same structure as the controller
based on state feedback and an observer. In this section we provide a brief review
of some of the techniques as a preview for those interested in more specialized
study.

Quantitative Feedback Theory

Quantitative feedback theory (QFT) is a graphical design method for robust loop
shaping that was developed by I. M. Horowitz [104]. The idea is to first determine a
controller that gives a complementary sensitivity that is robust to process variations
and then to shape the response to reference signals by feedforward. The idea is
illustrated in Figure 12.16a, which shows the level curves of the complementary
sensitivity function T on a Nyquist plot. The complementary sensitivity function has
unit gain on the line Re L(iω) = −0.5. In the neighborhood of this line, significant
variations in process dynamics only give moderate changes in the complementary
transfer function. The dashed part of the figure corresponds to the region 0.9 <
|T (iω)| < 1.1. To use the design method, we represent the uncertainty for each
frequency by a region and attempt to shape the loop transfer function so that the
variation in T is as small as possible. The design is often performed using the
Nichols chart shown in Figure 12.16b.

Linear Quadratic Control

One way to make the trade-off between the attenuation of load disturbances and
the injection of measurement noise is to design a controller that minimizes the loss
function

J = 1

T

∫ T

0

(
y2(t)+ ρu2(t)

)
dt,

where ρ is a weighting parameter as discussed in Section 6.3. This loss function
gives a compromise between load disturbance attenuation and disturbance injec-
tion because it balances control actions against deviations in the output. If all state
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Figure 12.16: Hall and Nichols charts. The Hall chart is a Nyquist plot with curves for
constant gain and phase of the complementary sensitivity function T . The Nichols chart
is the conformal map of the Hall chart under the transformation N = log L (with the scale
flipped). The dashed curve is the line where |T (iω)| = 1, and the shaded region corresponding
to loop transfer functions whose complementary sensitivity changes by no more than ±10%
is shaded.

variables are measured, the controller is a state feedback u = −Kx and it has the
same form as the controller obtained by eigenvalue assignment (pole placement)
in Section 6.2. However, the controller gain is obtained by solving an optimiza-
tion problem. It has been shown that this controller is very robust. It has a phase
margin of at least 60◦ and an infinite gain margin. The controller is called a linear
quadratic control or LQ control because the process model is linear and the criterion
is quadratic.

When all state variables are not measured, the state can be reconstructed using
an observer, as discussed in Section 7.3. It is also possible to introduce process
disturbances and measurement noise explicitly in the model and to reconstruct
the states using a Kalman filter, as discussed briefly in Section 7.4. The Kalman
filter has the same structure as the observer designed by eigenvalue assignment in
Section 7.3, but the observer gains L are now obtained by solving an optimization
problem. The control law obtained by combining linear quadratic control with a
Kalman filter is called linear quadratic Gaussian control or LQG control. The
Kalman filter is optimal when the models for load disturbances and measurement
noise are Gaussian.

It is interesting that the solution to the optimization problem leads to a controller
having the structure of a state feedback and an observer. The state feedback gains
depend on the parameter ρ, and the filter gains depend on the parameters in the
model that characterize process noise and measurement noise (see Section 7.4).
There are efficient programs to compute these feedback and observer gains.

The nice robustness properties of state feedback are unfortunately lost when the
observer is added. It is possible to choose parameters that give closed loop systems
with poor robustness, similar to Example 12.8. We can thus conclude that there is a
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Figure 12.17: H∞ robust control formulation. The left figure shows a general representation
of a control problem used in robust control. The input u represents the control signal, the input
w represents the external influences on the system, the output z is the generalized error and the
output y is the measured signal. The right figure shows the special case of the basic feedback
loop in Figure 12.9 where the reference signal is zero. In this case we have w = (n, d) and
z = (y,−u).

fundamental difference between using sensors for all states and reconstructing the
states using an observer.

H∞ Control
�

Robust control design is often called H∞ control for reasons that will be explained
shortly. The basic ideas are simple, but the details are complicated and we will
therefore just give the flavor of the results. A key idea is illustrated in Figure 12.17,
where the closed loop system is represented by two blocks, the process P and
the controller C as discussed in Section 11.1. The process P has two inputs, the
control signal u, which can be manipulated by the controller, and the generalized
disturbance w, which represents all external influences, e.g., command signals and
disturbances. The process has two outputs, the generalized error z, which is a vector
of error signals representing the deviation of signals from their desired values, and
the measured signal y, which can be used by the controller to compute u. For a
linear system and a linear controller the closed loop system can be represented by
the linear system

z = H(P(s),C(s))w, (12.23)

which tells how the generalized error z depends on the generalized disturbances
w. The control design problem is to find a controller C such that the gain of the
transfer function H is small even when the process has uncertainties. There are many
different ways to specify uncertainty and gain, giving rise to different designs. The
names H2 and H∞ control correspond to the norms ‖H‖2 and ‖H‖∞.

To illustrate the ideas we will consider a regulation problem for a system where
the reference signal is assumed to be zero and the external signals are the load
disturbance d and the measurement noise n, as shown in Figure 12.17b. The gener-
alized input is w = (−n, d). (The negative sign of n is not essential but is chosen
to obtain somewhat nicer equations.) The generalized error is chosen as z = (η, ν),
where η is the process output and ν is the part of the load disturbance that is not
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