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Preface

This book provides an introduction to the basic principles and tools for the design
and analysis of feedback systems. It is intended to serve a diverse audience of
scientists and engineers who are interested in understanding and utilizing feedback
in physical, biological, information and social systems. We have attempted to keep
the mathematical prerequisites to a minimum while being careful not to sacrifice
rigor in the process. We have also attempted to make use of examples from a variety
of disciplines, illustrating the generality of many of the tools while at the same time
showing how they can be applied in specific application domains.

A major goal of this book is to present a concise and insightful view of the
current knowledge in feedback and control systems. The field of control started
by teaching everything that was known at the time and, as new knowledge was
acquired, additional courses were developed to cover new techniques. A conse-
quence of this evolution is that introductory courses have remained the same for
many years, and it is often necessary to take many individual courses in order to
obtain a good perspective on the field. In developing this book, we have attempted
to condense the current knowledge by emphasizing fundamental concepts. We be-
lieve that it is important to understand why feedback is useful, to know the language
and basic mathematics of control and to grasp the key paradigms that have been
developed over the past half century. It is also important to be able to solve simple
feedback problems using back-of-the-envelope techniques, to recognize fundamen-
tal limitations and difficult control problems and to have a feel for available design
methods.

This book was originally developed for use in an experimental course at Caltech
involving students from a wide set of backgrounds. The course was offered to
undergraduates at the junior and senior levels in traditional engineering disciplines,
as well as first- and second-year graduate students in engineering and science. This
latter group included graduate students in biology, computer science and physics.
Over the course of several years, the text has been classroom tested at Caltech and
at Lund University, and the feedback from many students and colleagues has been
incorporated to help improve the readability and accessibility of the material.

Because of its intended audience, this book is organized in a slightly unusual
fashion compared to many other books on feedback and control. In particular, we
introduce a number of concepts in the text that are normally reserved for second-
year courses on control and hence often not available to students who are not
control systems majors. This has been done at the expense of certain traditional
topics, which we felt that the astute student could learn independently and are often
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explored through the exercises. Examples of topics that we have included are non-
linear dynamics, Lyapunov stability analysis, the matrix exponential, reachability
and observability, and fundamental limits of performance and robustness. Topics
that we have deemphasized include root locus techniques, lead/lag compensation
and detailed rules for generating Bode and Nyquist plots by hand.

Several features of the book are designed to facilitate its dual function as a basic
engineering text and as an introduction for researchers in natural, information and
social sciences. The bulk of the material is intended to be used regardless of the
audience and covers the core principles and tools in the analysis and design of
feedback systems. Advanced sections, marked by the “dangerous bend” symbol
shown here, contain material that requires a slightly more technical background,
of the sort that would be expected of senior undergraduates in engineering. A few
sections are marked by two dangerous bend symbols and are intended for readers
with more specialized backgrounds, identified at the beginning of the section. To
limit the length of the text, several standard results and extensions are given in the
exercises, with appropriate hints toward their solutions.

To further augment the printed material contained here, a companion web site
has been developed and is available from the publisher’s web page:

http://press.princeton.edu/titles/8701.html

The web site contains a database of frequently asked questions, supplemental exam-
ples and exercises, and lecture material for courses based on this text. The material is
organized by chapter and includes a summary of the major points in the text as well
as links to external resources. The web site also contains the source code for many
examples in the book, as well as utilities to implement the techniques described in
the text. Most of the code was originally written using MATLAB M-files but was
also tested with LabView MathScript to ensure compatibility with both packages.
Many files can also be run using other scripting languages such as Octave, Scil.ab,
SysQuake and Xmath.

The first half of the book focuses almost exclusively on state space control
systems. We begin in Chapter 2 with a description of modeling of physical, biolog-
ical and information systems using ordinary differential equations and difference
equations. Chapter 3 presents a number of examples in some detail, primarily as a
reference for problems that will be used throughout the text. Following this, Chap-
ter 4 looks at the dynamic behavior of models, including definitions of stability
and more complicated nonlinear behavior. We provide advanced sections in this
chapter on Lyapunov stability analysis because we find that it is useful in a broad
array of applications and is frequently a topic that is not introduced until later in
one’s studies.

The remaining three chapters of the first half of the book focus on linear systems,
beginning with a description of input/output behavior in Chapter 5. In Chapter 6,
we formally introduce feedback systems by demonstrating how state space control
laws can be designed. This is followed in Chapter 7 by material on output feed-
back and estimators. Chapters 6 and 7 introduce the key concepts of reachability
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and observability, which give tremendous insight into the choice of actuators and
sensors, whether for engineered or natural systems.

The second half of the book presents material that is often considered to be
from the field of “classical control.” This includes the transfer function, introduced
in Chapter 8, which is a fundamental tool for understanding feedback systems.
Using transfer functions, one can begin to analyze the stability of feedback systems
using frequency domain analysis, including the ability to reason about the closed
loop behavior of a system from its open loop characteristics. This is the subject of
Chapter 9, which revolves around the Nyquist stability criterion.

In Chapters 10 and 11, we again look at the design problem, focusing first
on proportional-integral-derivative (PID) controllers and then on the more general
process of loop shaping. PID control is by far the most common design technique
in control systems and a useful tool for any student. The chapter on frequency
domain design introduces many of the ideas of modern control theory, including
the sensitivity function. In Chapter 12, we combine the results from the second half
of the book to analyze some of the fundamental trade-offs between robustness and
performance. This is also a key chapter illustrating the power of the techniques that
have been developed and serving as an introduction for more advanced studies.

The book is designed for use in a 10- to 15-week course in feedback systems
that provides many of the key concepts needed in a variety of disciplines. For a
10-week course, Chapters 1-2,4—6 and 8—11 can each be covered in a week’s time,
with the omission of some topics from the final chapters. A more leisurely course,
spread out over 14—15 weeks, could cover the entire book, with 2 weeks on modeling
(Chapters 2 and 3) —particularly for students without much background in ordinary
differential equations—and 2 weeks on robust performance (Chapter 12).

The mathematical prerequisites for the book are modest and in keeping with
our goal of providing an introduction that serves a broad audience. We assume
familiarity with the basic tools of linear algebra, including matrices, vectors and
eigenvalues. These are typically covered in a sophomore-level course on the sub-
ject, and the textbooks by Apostol [10], Arnold [13] and Strang [187] can serve as
good references. Similarly, we assume basic knowledge of differential equations,
including the concepts of homogeneous and particular solutions for linear ordinary
differential equations in one variable. Apostol [10] and Boyce and DiPrima [42]
cover this material well. Finally, we also make use of complex numbers and func-
tions and, in some of the advanced sections, more detailed concepts in complex
variables that are typically covered in a junior-level engineering or physics course
in mathematical methods. Apostol [9] or Stewart [186] can be used for the basic
material, with Ahlfors [6], Marsden and Hoffman [146] or Saff and Snider [172]
being good references for the more advanced material. We have chosen not to in-
clude appendices summarizing these various topics since there are a number of
good books available.

One additional choice that we felt was important was the decision not to rely
on a knowledge of Laplace transforms in the book. While their use is by far the
most common approach to teaching feedback systems in engineering, many stu-
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dents in the natural and information sciences may lack the necessary mathematical
background. Since Laplace transforms are not required in any essential way, we
have included them only in an advanced section intended to tie things together
for students with that background. Of course, we make tremendous use of transfer
functions, which we introduce through the notion of response to exponential inputs,
an approach we feel is more accessible to a broad array of scientists and engineers.
For classes in which students have already had Laplace transforms, it should be
quite natural to build on this background in the appropriate sections of the text.
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Chapter One

Introduction

Feedback is a central feature of life. The process of feedback governs how we grow, respond
to stress and challenge, and regulate factors such as body temperature, blood pressure and
cholesterol level. The mechanisms operate at every level, from the interaction of proteins in
cells to the interaction of organisms in complex ecologies.

M. B. Hoagland and B. Dodson, The Way Life Works, 1995 [99].

In this chapter we provide an introduction to the basic concept of feedback and
the related engineering discipline of control. We focus on both historical and current
examples, with the intention of providing the context for current tools in feedback
and control. Much of the material in this chapter is adapted from [155], and the
authors gratefully acknowledge the contributions of Roger Brockett and Gunter
Stein to portions of this chapter.

1.1 What Is Feedback?

A dynamical system is a system whose behavior changes over time, often in response
to external stimulation or forcing. The term feedback refers to a situation in which
two (or more) dynamical systems are connected together such that each system
influences the other and their dynamics are thus strongly coupled. Simple causal
reasoning about a feedback system is difficult because the first system influences
the second and the second system influences the first, leading to a circular argument.
This makes reasoning based on cause and effect tricky, and it is necessary to analyze
the system as a whole. A consequence of this is that the behavior of feedback systems
is often counterintuitive, and it is therefore necessary to resort to formal methods
to understand them.

Figure 1.1 illustrates in block diagram form the idea of feedback. We often use

'
/

System 1 »| System 2 - —{ System 1 System 2 —»

(a) Closed loop (b) Open loop

Figure 1.1: Open and closed loop systems. (a) The output of system 1 is used as the input of
system 2, and the output of system 2 becomes the input of system 1, creating a closed loop
system. (b) The interconnection between system 2 and system 1 is removed, and the system
is said to be open loop.
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Figure 1.2: The centrifugal governor and the steam engine. The centrifugal governor on the
left consists of a set of flyballs that spread apart as the speed of the engine increases. The
steam engine on the right uses a centrifugal governor (above and to the left of the flywheel)
to regulate its speed. (Credit: Machine a Vapeur Horizontale de Philip Taylor [1828].)

the terms open loop and closed loop when referring to such systems. A system
is said to be a closed loop system if the systems are interconnected in a cycle, as
shown in Figure 1.1a. If we break the interconnection, we refer to the configuration
as an open loop system, as shown in Figure 1.1b.

As the quote at the beginning of this chapter illustrates, a major source of exam-
ples of feedback systems is biology. Biological systems make use of feedback in an
extraordinary number of ways, on scales ranging from molecules to cells to organ-
isms to ecosystems. One example is the regulation of glucose in the bloodstream
through the production of insulin and glucagon by the pancreas. The body attempts
to maintain a constant concentration of glucose, which is used by the body’s cells
to produce energy. When glucose levels rise (after eating a meal, for example), the
hormone insulin is released and causes the body to store excess glucose in the liver.
When glucose levels are low, the pancreas secretes the hormone glucagon, which
has the opposite effect. Referring to Figure 1.1, we can view the liver as system 1
and the pancreas as system 2. The output from the liver is the glucose concentration
in the blood, and the output from the pancreas is the amount of insulin or glucagon
produced. The interplay between insulin and glucagon secretions throughout the
day helps to keep the blood-glucose concentration constant, at about 90 mg per
100 mL of blood.

An early engineering example of a feedback system is a centrifugal governor,
in which the shaft of a steam engine is connected to a flyball mechanism that is
itself connected to the throttle of the steam engine, as illustrated in Figure 1.2. The
system is designed so that as the speed of the engine increases (perhaps because of a
lessening of the load on the engine), the flyballs spread apart and a linkage causes the
throttle on the steam engine to be closed. This in turn slows down the engine, which
causes the flyballs to come back together. We can model this system as a closed
loop system by taking system 1 as the steam engine and system 2 as the governor.



Introduction.tex, v1.138 2008/01/30 07:21:04 (murray)

1.2. WHAT IS CONTROL? 3

When properly designed, the flyball governor maintains a constant speed of the
engine, roughly independent of the loading conditions. The centrifugal governor
was an enabler of the successful Watt steam engine, which fueled the industrial
revolution.

Feedback has many interesting properties that can be exploited in designing
systems. As in the case of glucose regulation or the flyball governor, feedback can
make a system resilient toward external influences. It can also be used to create linear
behavior out of nonlinear components, a common approach in electronics. More
generally, feedback allows a system to be insensitive both to external disturbances
and to variations in its individual elements.

Feedback has potential disadvantages as well. It can create dynamic instabilities
in a system, causing oscillations or even runaway behavior. Another drawback,
especially in engineering systems, is that feedback can introduce unwanted sensor
noise into the system, requiring careful filtering of signals. It is for these reasons
that a substantial portion of the study of feedback systems is devoted to developing
an understanding of dynamics and a mastery of techniques in dynamical systems.

Feedback systems are ubiquitous in both natural and engineered systems. Con-
trol systems maintain the environment, lighting and power in our buildings and
factories; they regulate the operation of our cars, consumer electronics and manu-
facturing processes; they enable our transportation and communications systems;
and they are critical elements in our military and space systems. For the most part
they are hidden from view, buried within the code of embedded microprocessors,
executing their functions accurately and reliably. Feedback has also made it pos-
sible to increase dramatically the precision of instruments such as atomic force
microscopes (AFMs) and telescopes.

In nature, homeostasis in biological systems maintains thermal, chemical and
biological conditions through feedback. At the other end of the size scale, global
climate dynamics depend on the feedback interactions between the atmosphere, the
oceans, the land and the sun. Ecosystems are filled with examples of feedback due
to the complex interactions between animal and plant life. Even the dynamics of
economies are based on the feedback between individuals and corporations through
markets and the exchange of goods and services.

1.2 What Is Control?

The term control has many meanings and often varies between communities. In
this book, we define control to be the use of algorithms and feedback in engineered
systems. Thus, control includes such examples as feedback loops in electronic am-
plifiers, setpoint controllers in chemical and materials processing, “fly-by-wire”
systems on aircraft and even router protocols that control traffic flow on the Inter-
net. Emerging applications include high-confidence software systems, autonomous
vehicles and robots, real-time resource management systems and biologically en-
gineered systems. At its core, control is an information science and includes the
use of information in both analog and digital representations.
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Figure 1.3: Components of a computer-controlled system. The upper dashed box represents
the process dynamics, which include the sensors and actuators in addition to the dynamical
system being controlled. Noise and external disturbances can perturb the dynamics of the
process. The controller is shown in the lower dashed box. It consists of a filter and analog-to-
digital (A/D) and digital-to-analog (D/A) converters, as well as a computer that implements
the control algorithm. A system clock controls the operation of the controller, synchronizing
the A/D, D/A and computing processes. The operator input is also fed to the computer as an
external input.

A modern controller senses the operation of a system, compares it against the
desired behavior, computes corrective actions based on a model of the system’s
response to external inputs and actuates the system to effect the desired change.
This basic feedback loop of sensing, computation and actuation is the central con-
cept in control. The key issues in designing control logic are ensuring that the
dynamics of the closed loop system are stable (bounded disturbances give bounded
errors) and that they have additional desired behavior (good disturbance attenua-
tion, fast responsiveness to changes in operating point, etc). These properties are
established using a variety of modeling and analysis techniques that capture the
essential dynamics of the system and permit the exploration of possible behaviors
in the presence of uncertainty, noise and component failure.

A typical example of a control system is shown in Figure 1.3. The basic elements
of sensing, computation and actuation are clearly seen. In modern control systems,
computation is typically implemented on a digital computer, requiring the use of
analog-to-digital (A/D) and digital-to-analog (D/A) converters. Uncertainty enters
the system through noise in sensing and actuation subsystems, external disturbances
that affect the underlying system operation and uncertain dynamics in the system
(parameter errors, unmodeled effects, etc). The algorithm that computes the control
action as a function of the sensor values is often called a control law. The system
can be influenced externally by an operator who introduces command signals to
the system.
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Control engineering relies on and shares tools from physics (dynamics and
modeling), computer science (information and software) and operations research
(optimization, probability theory and game theory), but it is also different from
these subjects in both insights and approach.

Perhaps the strongest area of overlap between control and other disciplines is in
the modeling of physical systems, which is common across all areas of engineering
and science. One of the fundamental differences between control-oriented mod-
eling and modeling in other disciplines is the way in which interactions between
subsystems are represented. Control relies on a type of input/output modeling that
allows many new insights into the behavior of systems, such as disturbance attenu-
ation and stable interconnection. Model reduction, where a simpler (lower-fidelity)
description of the dynamics is derived from a high-fidelity model, is also naturally
described in an input/output framework. Perhaps most importantly, modeling in a
control context allows the design of robust interconnections between subsystems,
a feature that is crucial in the operation of all large engineered systems.

Control is also closely associated with computer science since virtually all mod-
ern control algorithms for engineering systems are implemented in software. How-
ever, control algorithms and software can be very different from traditional com-
puter software because of the central role of the dynamics of the system and the
real-time nature of the implementation.

1.3 Feedback Examples

Feedback has many interesting and useful properties. It makes it possible to design
precise systems from imprecise components and to make relevant quantities in a
system change in a prescribed fashion. An unstable system can be stabilized using
feedback, and the effects of external disturbances can be reduced. Feedback also
offers new degrees of freedom to a designer by exploiting sensing, actuation and
computation. In this section we survey some of the important applications and
trends for feedback in the world around us.

Early Technological Examples

The proliferation of control in engineered systems occurred primarily in the latter
half of the 20th century. There are some important exceptions, such as the centrifugal
governor described earlier and the thermostat (Figure 1.4a), designed at the turn of
the century to regulate the temperature of buildings.

The thermostat, in particular, is a simple example of feedback control that every-
one is familiar with. The device measures the temperature in a building, compares
that temperature to a desired setpoint and uses the feedback error between the two
to operate the heating plant, e.g., to turn heat on when the temperature is too low
and to turn it off when the temperature is too high. This explanation captures the
essence of feedback, but it is a bit too simple even for a basic device such as the
thermostat. Because lags and delays exist in the heating plant and sensor, a good
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(a) Honeywell thermostat, 1953 (b) Chrysler cruise control, 1958

Figure 1.4: Early control devices. (a) Honeywell T87 thermostat originally introduced in
1953. The thermostat controls whether a heater is turned on by comparing the current tem-
perature in a room to a desired value that is set using a dial. (b) Chrysler cruise control system
introduced in the 1958 Chrysler Imperial [170]. A centrifugal governor is used to detect the
speed of the vehicle and actuate the throttle. The reference speed is specified through an
adjustment spring. (Left figure courtesy of Honeywell International, Inc.)

thermostat does a bit of anticipation, turning the heater off before the error actually
changes sign. This avoids excessive temperature swings and cycling of the heating
plant. This interplay between the dynamics of the process and the operation of the
controller is a key element in modern control systems design.

There are many other control system examples that have developed over the
years with progressively increasing levels of sophistication. An early system with
broad public exposure was the cruise control option introduced on automobiles in
1958 (see Figure 1.4b). Cruise control illustrates the dynamic behavior of closed
loop feedback systems in action— the slowdown error as the system climbs a grade,
the gradual reduction of that error due to integral action in the controller, the small
overshoot at the top of the climb, etc. Later control systems on automobiles such
as emission controls and fuel-metering systems have achieved major reductions of
pollutants and increases in fuel economy.

Power Generation and Transmission

Access to electrical power has been one of the major drivers of technological
progress in modern society. Much of the early development of control was driven
by the generation and distribution of electrical power. Control is mission critical
for power systems, and there are many control loops in individual power stations.
Control is also important for the operation of the whole power network since it
is difficult to store energy and it is thus necessary to match production to con-
sumption. Power management is a straightforward regulation problem for a system
with one generator and one power consumer, but it is more difficult in a highly
distributed system with many generators and long distances between consumption
and generation. Power demand can change rapidly in an unpredictable manner and
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Figure 1.5: A small portion of the European power network. By 2008 European power
suppliers will operate a single interconnected network covering a region from the Arctic to
the Mediterranean and from the Atlantic to the Urals. In 2004 the installed power was more
than 700 GW (7 x 10'" W). (Source: UCTE [www.ucte.org])
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combining generators and consumers into large networks makes it possible to share
loads among many suppliers and to average consumption among many customers.
Large transcontinental and transnational power systems have therefore been built,
such as the one show in Figure 1.5.

Most electricity is distributed by alternating current (AC) because the transmis-
sion voltage can be changed with small power losses using transformers. Alternating
current generators can deliver power only if the generators are synchronized to the
voltage variations in the network. This means that the rotors of all generators in a
network must be synchronized. To achieve this with local decentralized controllers
and a small amount of interaction is a challenging problem. Sporadic low-frequency
oscillations between distant regions have been observed when regional power grids
have been interconnected [134].

Safety and reliability are major concerns in power systems. There may be dis-
turbances due to trees falling down on power lines, lightning or equipment failures.
There are sophisticated control systems that attempt to keep the system operating
even when there are large disturbances. The control actions can be to reduce volt-
age, to break up the net into subnets or to switch off lines and power users. These
safety systems are an essential element of power distribution systems, but in spite
of all precautions there are occasionally failures in large power systems. The power
system is thus a nice example of a complicated distributed system where control is
executed on many levels and in many different ways.
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(a) F/A-18 “Hornet” (b) X-45 UCAV

Figure 1.6: Military aerospace systems. (a) The F/A-18 aircraft is one of the first production
military fighters to use “fly-by-wire” technology. (b) The X-45 (UCAV) unmanned aerial
vehicle is capable of autonomous flight, using inertial measurement sensors and the global
positioning system (GPS) to monitor its position relative to a desired trajectory. (Photographs
courtesy of NASA Dryden Flight Research Center.)

Aerospace and Transportation

In aerospace, control has been a key technological capability tracing back to the
beginning of the 20th century. Indeed, the Wright brothers are correctly famous
not for demonstrating simply powered flight but controlled powered flight. Their
early Wright Flyer incorporated moving control surfaces (vertical fins and canards)
and warpable wings that allowed the pilot to regulate the aircraft’s flight. In fact,
the aircraft itself was not stable, so continuous pilot corrections were mandatory.
This early example of controlled flight was followed by a fascinating success story
of continuous improvements in flight control technology, culminating in the high-
performance, highly reliable automatic flight control systems we see in modern
commercial and military aircraft today (Figure 1.6).

Similar success stories for control technology have occurred in many other
application areas. Early World War II bombsights and fire control servo systems
have evolved into today’s highly accurate radar-guided guns and precision-guided
weapons. Early failure-prone space missions have evolved into routine launch oper-
ations, manned landings on the moon, permanently manned space stations, robotic
vehicles roving Mars, orbiting vehicles at the outer planets and a host of commer-
cial and military satellites serving various surveillance, communication, navigation
and earth observation needs. Cars have advanced from manually tuned mechani-
cal/pneumatic technology to computer-controlled operation of all major functions,
including fuel injection, emission control, cruise control, braking and cabin com-
fort.

Current research in aerospace and transportation systems is investigating the
application of feedback to higher levels of decision making, including logical regu-
lation of operating modes, vehicle configurations, payload configurations and health
status. These have historically been performed by human operators, but today that
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Figure 1.7: Materials processing. Modern materials are processed under carefully controlled
conditions, using reactors such as the metal organic chemical vapor deposition (MOCVD)
reactor shown on the left, which was for manufacturing superconducting thin films. Using
lithography, chemical etching, vapor deposition and other techniques, complex devices can
be built, such as the IBM cell processor shown on the right. (MOCVD image courtesy of Bob
Kee. IBM cell processor photograph courtesy Tom Way, IBM Corporation; unauthorized use
not permitted.)

boundary is moving and control systems are increasingly taking on these functions.
Another dramatic trend on the horizon is the use of large collections of distributed
entities with local computation, global communication connections, little regularity
imposed by the laws of physics and no possibility of imposing centralized control
actions. Examples of this trend include the national airspace management problem,
automated highway and traffic management and command and control for future
battlefields.

Materials and Processing

The chemical industry is responsible for the remarkable progress in developing
new materials that are key to our modern society. In addition to the continuing need
to improve product quality, several other factors in the process control industry
are drivers for the use of control. Environmental statutes continue to place stricter
limitations on the production of pollutants, forcing the use of sophisticated pollution
control devices. Environmental safety considerations have led to the design of
smaller storage capacities to diminish the risk of major chemical leakage, requiring
tighter control on upstream processes and, in some cases, supply chains. And large
increases in energy costs have encouraged engineers to design plants that are highly
integrated, coupling many processes that used to operate independently. All of these
trends increase the complexity of these processes and the performance requirements
for the control systems, making control system design increasingly challenging.
Some examples of materials-processing technology are shown in Figure 1.7.

As in many other application areas, new sensor technology is creating new
opportunities for control. Online sensors—including laser backscattering, video
microscopy and ultraviolet, infrared and Raman spectroscopy —are becoming more
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Figure 1.8: The voltage clamp method for measuring ion currents in cells using feedback. A
pipet is used to place an electrode in a cell (left and middle) and maintain the potential of the
cell at a fixed level. The internal voltage in the cell is v;, and the voltage of the external fluid
is v,. The feedback system (right) controls the current / into the cell so that the voltage drop
across the cell membrane Av = v; — v, is equal to its reference value Ao, . The current / is
then equal to the ion current.

robust and less expensive and are appearing in more manufacturing processes. Many
of these sensors are already being used by current process control systems, but
more sophisticated signal-processing and control techniques are needed to use more
effectively the real-time information provided by these sensors. Control engineers
also contribute to the design of even better sensors, which are still needed, for
example, in the microelectronics industry. As elsewhere, the challenge is making
use of the large amounts of data provided by these new sensors in an effective
manner. In addition, a control-oriented approach to modeling the essential physics
of the underlying processes is required to understand the fundamental limits on
observability of the internal state through sensor data.

Instrumentation

The measurement of physical variables is of prime interest in science and engineer-
ing. Consider, for example, an accelerometer, where early instruments consisted of
a mass suspended on a spring with a deflection sensor. The precision of such an
instrument depends critically on accurate calibration of the spring and the sensor.
There is also a design compromise because a weak spring gives high sensitivity but
low bandwidth.

A different way of measuring acceleration is to use force feedback. The spring
is replaced by a voice coil that is controlled so that the mass remains at a constant
position. The acceleration is proportional to the current through the voice coil. In
such an instrument, the precision depends entirely on the calibration of the voice coil
and does not depend on the sensor, which is used only as the feedback signal. The
sensitivity/bandwidth compromise is also avoided. This way of using feedback has
been applied to many different engineering fields and has resulted in instruments
with dramatically improved performance. Force feedback is also used in haptic
devices for manual control.

Another important application of feedback is in instrumentation for biological
systems. Feedback is widely used to measure ion currents in cells using a device
called a voltage clamp, which is illustrated in Figure 1.8. Hodgkin and Huxley used
the voltage clamp to investigate propagation of action potentials in the axon of the
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giant squid. In 1963 they shared the Nobel Prize in Medicine with Eccles for “their
discoveries concerning the ionic mechanisms involved in excitation and inhibition
in the peripheral and central portions of the nerve cell membrane.” A refinement of
the voltage clamp called a patch clamp made it possible to measure exactly when a
single ion channel is opened or closed. This was developed by Neher and Sakmann,
who received the 1991 Nobel Prize in Medicine “for their discoveries concerning
the function of single ion channels in cells.”

There are many other interesting and useful applications of feedback in scien-
tific instruments. The development of the mass spectrometer is an early example.
In a 1935 paper, Nier observed that the deflection of ions depends on both the
magnetic and the electric fields [158]. Instead of keeping both fields constant, Nier
let the magnetic field fluctuate and the electric field was controlled to keep the
ratio between the fields constant. Feedback was implemented using vacuum tube
amplifiers. This scheme was crucial for the development of mass spectroscopy.

The Dutch engineer van der Meer invented a clever way to use feedback to
maintain a good-quality high-density beam in a particle accelerator [153]. The
idea is to sense particle displacement at one point in the accelerator and apply
a correcting signal at another point. This scheme, called stochastic cooling, was
awarded the Nobel Prize in Physics in 1984. The method was essential for the
successful experiments at CERN where the existence of the particles W and Z
associated with the weak force was first demonstrated.

The 1986 Nobel Prize in Physics—awarded to Binnig and Rohrer for their
design of the scanning tunneling microscope —is another example of an innovative
use of feedback. The key idea is to move a narrow tip on a cantilever beam across a
surface and to register the forces on the tip [34]. The deflection of the tip is measured
using tunneling. The tunneling current is used by a feedback system to control the
position of the cantilever base so that the tunneling current is constant, an example
of force feedback. The accuracy is so high that individual atoms can be registered.
A map of the atoms is obtained by moving the base of the cantilever horizontally.
The performance of the control system is directly reflected in the image quality and
scanning speed. This example is described in additional detail in Chapter 3.

Robotics and Intelligent Machines

The goal of cybernetic engineering, already articulated in the 1940s and even before,
has been to implement systems capable of exhibiting highly flexible or “intelligent”
responses to changing circumstances. In 1948 the MIT mathematician Norbert
Wiener gave a widely read account of cybernetics [200]. A more mathematical
treatment of the elements of engineering cybernetics was presented by H. S. Tsien
in 1954, driven by problems related to the control of missiles [195]. Together, these
works and others of that time form much of the intellectual basis for modern work
in robotics and control.

Two accomplishments that demonstrate the successes of the field are the Mars
Exploratory Rovers and entertainment robots such as the Sony AIBO, shown in
Figure 1.9. The two Mars Exploratory Rovers, launched by the Jet Propulsion
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Figure 1.9: Robotic systems. (a) Spirit, one of the two Mars Exploratory Rovers that landed on
Mars in January 2004. (b) The Sony AIBO Entertainment Robot, one of the first entertainment
robots to be mass-marketed. Both robots make use of feedback between sensors, actuators and
computation to function in unknown environments. (Photographs courtesy of Jet Propulsion
Laboratory and Sony Electronics, Inc.)

Laboratory (JPL), maneuvered on the surface of Mars for more than 4 years starting
in January 2004 and sent back pictures and measurements of their environment. The
Sony AIBO robot debuted in June 1999 and was the first “entertainment” robot to be
mass-marketed by a major international corporation. It was particularly noteworthy
because of its use of artificial intelligence (Al) technologies that allowed it to act in
response to external stimulation and its own judgment. This higher level of feedback
is a key element in robotics, where issues such as obstacle avoidance, goal seeking,
learning and autonomy are prevalent.

Despite the enormous progress in robotics over the last half-century, in many
ways the field is still in its infancy. Today’s robots still exhibit simple behaviors
compared with humans, and their ability to locomote, interpret complex sensory
inputs, perform higher-level reasoning and cooperate together in teams is limited.
Indeed, much of Wiener’s vision for robotics and intelligent machines remains
unrealized. While advances are needed in many fields to achieve this vision—
including advances in sensing, actuation and energy storage —the opportunity to
combine the advances of the Al community in planning, adaptation and learning
with the techniques in the control community for modeling, analysis and design of
feedback systems presents a renewed path for progress.

Networks and Computing Systems

Control of networks is a large research area spanning many topics, including con-
gestion control, routing, data caching and power management. Several features of
these control problems make them very challenging. The dominant feature is the
extremely large scale of the system; the Internet is probably the largest feedback
control system humans have ever built. Another is the decentralized nature of the
control problem: decisions must be made quickly and based only on local informa-
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Figure 1.10: A multitier system for services on the Internet. In the complete system shown
schematically in (a), users request information from a set of computers (tier 1), which in turn
collect information from other computers (tiers 2 and 3). The individual server shown in (b)
has a set of reference parameters set by a (human) system operator, with feedback used to
maintain the operation of the system in the presence of uncertainty. (Based on Hellerstein et
al. [97].)

tion. Stability is complicated by the presence of varying time lags, as information
about the network state can be observed or relayed to controllers only after a delay,
and the effect of a local control action can be felt throughout the network only after
substantial delay. Uncertainty and variation in the network, through network topol-
ogy, transmission channel characteristics, traffic demand and available resources,
may change constantly and unpredictably. Other complicating issues are the diverse
traffic characteristics—in terms of arrival statistics at both the packet and flow time
scales—and the different requirements for quality of service that the network must
support.

Related to the control of networks is control of the servers that sit on these net-
works. Computers are key components of the systems of routers, web servers and
database servers used for communication, electronic commerce, advertising and
information storage. While hardware costs for computing have decreased dramati-
cally, the cost of operating these systems has increased because of the difficulty in
managing and maintaining these complex interconnected systems. The situation is
similar to the early phases of process control when feedback was first introduced to
control industrial processes. As in process control, there are interesting possibili-
ties for increasing performance and decreasing costs by applying feedback. Several
promising uses of feedback in the operation of computer systems are described in
the book by Hellerstein et al. [97].

A typical example of a multilayer system for e-commerce is shown in Fig-
ure 1.10a. The system has several tiers of servers. The edge server accepts incom-
ing requests and routes them to the HTTP server tier where they are parsed and
distributed to the application servers. The processing for different requests can vary
widely, and the application servers may also access external servers managed by
other organizations.

Control of an individual server in a layer is illustrated in Figure 1.10b. A quan-
tity representing the quality of service or cost of operation —such as response time,
throughput, service rate or memory usage —is measured in the computer. The con-
trol variables might represent incoming messages accepted, priorities in the oper-
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ating system or memory allocation. The feedback loop then attempts to maintain
quality-of-service variables within a target range of values.

Economics

The economy is a large, dynamical system with many actors: governments, orga-
nizations, companies and individuals. Governments control the economy through
laws and taxes, the central banks by setting interest rates and companies by setting
prices and making investments. Individuals control the economy through purchases,
savings and investments. Many efforts have been made to model the system both
at the macro level and at the micro level, but this modeling is difficult because the
system is strongly influenced by the behaviors of the different actors in the system.

Keynes [122] developed a simple model to understand relations among gross na-
tional product, investment, consumption and government spending. One of Keynes’
observations was that under certain conditions, e.g., during the 1930s depression,
an increase in the investment of government spending could lead to a larger increase
in the gross national product. This idea was used by several governments to try to
alleviate the depression. Keynes’ ideas can be captured by a simple model that is
discussed in Exercise 2 4.

A perspective on the modeling and control of economic systems can be obtained
from the work of some economists who have received the Sveriges Riksbank Prize
in Economics in Memory of Alfred Nobel, popularly called the Nobel Prize in
Economics. Paul A. Samuelson received the prize in 1970 for “the scientific work
through which he has developed static and dynamic economic theory and actively
contributed to raising the level of analysis in economic science.” Lawrence Klein
received the prize in 1980 for the development of large dynamical models with
many parameters that were fitted to historical data [126], e.g., a model of the U.S.
economy in the period 1929-1952. Other researchers have modeled other countries
and other periods. In 1997 Myron Scholes shared the prize with Robert Merton
for a new method to determine the value of derivatives. A key ingredient was a
dynamic model of the variation of stock prices that is widely used by banks and
investment companies. In 2004 Finn E. Kydland and Edward C. Prestcott shared
the economics prize “for their contributions to dynamic macroeconomics: the time
consistency of economic policy and the driving forces behind business cycles,” a
topic that is clearly related to dynamics and control.

One of the reasons why it is difficult to model economic systems is that there
are no conservation laws. A typical example is that the value of a company as
expressed by its stock can change rapidly and erratically. There are, however, some
areas with conservation laws that permit accurate modeling. One example is the
flow of products from a manufacturer to a retailer as illustrated in Figure 1.11. The
products are physical quantities that obey a conservation law, and the system can be
modeled by accounting for the number of products in the different inventories. There
are considerable economic benefits in controlling supply chains so that products
are available to customers while minimizing products that are in storage. The real
problems are more complicated than indicated in the figure because there may be



Introduction.tex, v1.138 2008/01/30 07:21:04 (murray)

1.3. FEEDBACK EXAMPLES 15

Factory Warehouse Distributors Retailers

~

advertisement ~~ = (o O OHOHOHOHCY

Consumers

Figure 1.11: Supply chain dynamics (after Forrester [75]). Products flow from the producer
to the customer through distributors and retailers as indicated by the solid lines. There are
typically many factories and warehouses and even more distributors and retailers. The dashed
lines show the upward flow of orders. The numbers in the circles represent the delays in the
flow of information or materials. Multiple feedback loops are present as each agent tries to
maintain the proper inventory level.

many different products, there may be different factories that are geographically
distributed and the factories may require raw material or subassemblies.

Control of supply chains was proposed by Forrester in 1961 [75] and is now
growing in importance. Considerable economic benefits can be obtained by using
models to minimize inventories. Their use accelerated dramatically when infor-
mation technology was applied to predict sales, keep track of products and enable
just-in-time manufacturing. Supply chain management has contributed significantly
to the growing success of global distributors.

Advertising on the Internet is an emerging application of control. With network-
based advertising it is easy to measure the effect of different marketing strategies
quickly. The response of customers can then be modeled, and feedback strategies
can be developed.

Feedback in Nature

Many problems in the natural sciences involve understanding aggregate behavior
in complex large-scale systems. This behavior emerges from the interaction of a
multitude of simpler systems with intricate patterns of information flow. Repre-
sentative examples can be found in fields ranging from embryology to seismology.
Researchers who specialize in the study of specific complex systems often develop
an intuitive emphasis on analyzing the role of feedback (or interconnection) in
facilitating and stabilizing aggregate behavior.

While sophisticated theories have been developed by domain experts for the
analysis of various complex systems, the development of a rigorous methodology
that can discover and exploit common features and essential mathematical structure
is just beginning to emerge. Advances in science and technology are creating a new
understanding of the underlying dynamics and the importance of feedback in a wide
variety of natural and technological systems. We briefly highlight three application
areas here.

Biological Systems. A major theme currently of interest to the biology commu-
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Figure 1.12: The wiring diagram of the growth-signaling circuitry of the mammalian cell [95].
The major pathways that are thought to play a role in cancer are indicated in the diagram.
Lines represent interactions between genes and proteins in the cell. Lines ending in arrowheads
indicate activation of the given gene or pathway; lines ending in a T-shaped head indicate
repression. (Used with permission of Elsevier Ltd. and the authors.)

nity is the science of reverse (and eventually forward) engineering of biological
control networks such as the one shown in Figure 1.12. There are a wide variety
of biological phenomena that provide a rich source of examples of control, includ-
ing gene regulation and signal transduction; hormonal, immunological and cardio-
vascular feedback mechanisms; muscular control and locomotion; active sensing,
vision and proprioception; attention and consciousness; and population dynamics
and epidemics. Each of these (and many more) provide opportunities to figure out
what works, how it works, and what we can do to affect it.

One interesting feature of biological systems is the frequent use of positive feed-
back to shape the dynamics of the system. Positive feedback can be used to create
switchlike behavior through autoregulation of a gene, and to create oscillations such
as those present in the cell cycle, central pattern generators or circadian rhythm.

Ecosystems. In contrast to individual cells and organisms, emergent properties
of aggregations and ecosystems inherently reflect selection mechanisms that act on
multiple levels, and primarily on scales well below that of the system as a whole.
Because ecosystems are complex, multiscale dynamical systems, they provide a
broad range of new challenges for the modeling and analysis of feedback systems.
Recent experience in applying tools from control and dynamical systems to bacterial
networks suggests that much of the complexity of these networks is due to the
presence of multiple layers of feedback loops that provide robust functionality
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to the individual cell. Yet in other instances, events at the cell level benefit the
colony at the expense of the individual. Systems level analysis can be applied to
ecosystems with the goal of understanding the robustness of such systems and the
extent to which decisions and events affecting individual species contribute to the
robustness and/or fragility of the ecosystem as a whole.

Environmental Science. It is now indisputable that human activities have altered
the environment on a global scale. Problems of enormous complexity challenge
researchers in this area, and first among these is to understand the feedback sys-
tems that operate on the global scale. One of the challenges in developing such an
understanding is the multiscale nature of the problem, with detailed understanding
of the dynamics of microscale phenomena such as microbiological organisms be-
ing a necessary component of understanding global phenomena, such as the carbon
cycle.

1.4 Feedback Properties

Feedback is a powerful idea which, as we have seen, is used extensively in natural
and technological systems. The principle of feedback is simple: base correcting
actions on the difference between desired and actual performance. In engineering,
feedback has been rediscovered and patented many times in many different contexts.
The use of feedback has often resulted in vast improvements in system capability,
and these improvements have sometimes been revolutionary, as discussed above.
The reason for this is that feedback has some truly remarkable properties. In this
section we will discuss some of the properties of feedback that can be understood
intuitively. This intuition will be formalized in subsequent chapters.

Robustness to Uncertainty

One of the key uses of feedback is to provide robustness to uncertainty. By mea-
suring the difference between the sensed value of a regulated signal and its desired
value, we can supply a corrective action. If the system undergoes some change that
affects the regulated signal, then we sense this change and try to force the system
back to the desired operating point. This is precisely the effect that Watt exploited
in his use of the centrifugal governor on steam engines.

As an example of this principle, consider the simple feedback system shown in
Figure 1.13. In this system, the speed of a vehicle is controlled by adjusting the
amount of gas flowing to the engine. Simple proportional-integral (PI) feedback
is used to make the amount of gas depend on both the error between the current
and the desired speed and the integral of that error. The plot on the right shows
the results of this feedback for a step change in the desired speed and a variety of
different masses for the car, which might result from having a different number of
passengers or towing a trailer. Notice that independent of the mass (which varies by
a factor of 3!), the steady-state speed of the vehicle always approaches the desired
speed and achieves that speed within approximately 5 s. Thus the performance of
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Figure 1.13: A feedback system for controlling the speed of a vehicle. In the block diagram
on the left, the speed of the vehicle is measured and compared to the desired speed within the
“Compute” block. Based on the difference in the actual and desired speeds, the throttle (or
brake) is used to modify the force applied to the vehicle by the engine, drivetrain and wheels.
The figure on the right shows the response of the control system to a commanded change in
speed from 25 m/s to 30 m/s. The three different curves correspond to differing masses of the
vehicle, between 1000 and 3000 kg, demonstrating the robustness of the closed loop system
to a very large change in the vehicle characteristics.

the system is robust with respect to this uncertainty.

Another early example of the use of feedback to provide robustness is the nega-
tive feedback amplifier. When telephone communications were developed, ampli-
fiers were used to compensate for signal attenuation in long lines. A vacuum tube
was a component that could be used to build amplifiers. Distortion caused by the
nonlinear characteristics of the tube amplifier together with amplifier drift were
obstacles that prevented the development of line amplifiers for a long time. A ma-
jor breakthrough was the invention of the feedback amplifier in 1927 by Harold S.
Black, an electrical engineer at Bell Telephone Laboratories. Black used negative
feedback, which reduces the gain but makes the amplifier insensitive to variations
in tube characteristics. This invention made it possible to build stable amplifiers
with linear characteristics despite the nonlinearities of the vacuum tube amplifier.

Design of Dynamics

Another use of feedback is to change the dynamics of a system. Through feed-
back, we can alter the behavior of a system to meet the needs of an application:
systems that are unstable can be stabilized, systems that are sluggish can be made
responsive and systems that have drifting operating points can be held constant.
Control theory provides a rich collection of techniques to analyze the stability and
dynamic response of complex systems and to place bounds on the behavior of such
systems by analyzing the gains of linear and nonlinear operators that describe their
components.

An example of the use of control in the design of dynamics comes from the area
of flight control. The following quote, from a lecture presented by Wilbur Wright
to the Western Society of Engineers in 1901 [149], illustrates the role of control in
the development of the airplane:

Men already know how to construct wings or airplanes, which when
driven through the air at sufficient speed, will not only sustain the
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Figure 1.14: Aircraft autopilot system. The Sperry autopilot (left) contained a set of four
gyros coupled to a set of air valves that controlled the wing surfaces. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able to maintain level
flight as a mechanic walked on the wing (right) [105].

weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of sufficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the
age of flying will have arrived, for all other difficulties are of minor
importance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
tried to build stable airplanes. These would have been easier to fly, but because of
their poor maneuverability they could not be brought up into the air. By using their
insight and skillful experiments the Wright brothers made the first successful flight
at Kitty Hawk in 1905.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, invented by
Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized pendu-
lum to provide an indication of the vertical. He then arranged a feedback mechanism
that would pull the stick to make the plane go up if it was pointing down, and vice
versa. The Sperry autopilot was the first use of feedback in aeronautical engineer-
ing, and Sperry won a prize in a competition for the safest airplane in Paris in 1914.
Figure 1.14 shows the Curtiss seaplane and the Sperry autopilot. The autopilot is
a good example of how feedback can be used to stabilize an unstable system and
hence “design the dynamics” of the aircraft.
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One of the other advantages of designing the dynamics of a device is that it
allows for increased modularity in the overall system design. By using feedback
to create a system whose response matches a desired profile, we can hide the
complexity and variability that may be present inside a subsystem. This allows us
to create more complex systems by not having to simultaneously tune the responses
of a large number of interacting components. This was one of the advantages of
Black’s use of negative feedback in vacuum tube amplifiers: the resulting device
had a well-defined linear input/output response that did not depend on the individual
characteristics of the vacuum tubes being used.

Higher Levels of Automation

A major trend in the use of feedback is its application to higher levels of situational
awareness and decision making. This includes not only traditional logical branch-
ing based on system conditions but also optimization, adaptation, learning and even
higher levels of abstract reasoning. These problems are in the domain of the arti-
ficial intelligence community, with an increasing role of dynamics, robustness and
interconnection in many applications.

One of the interesting areas of research in higher levels of decision is autonomous
control of cars. Early experiments with autonomous driving were performed by
Ernst Dickmanns, who in the 1980s equipped cars with cameras and other sen-
sors [60]. In 1994 his group demonstrated autonomous driving with human super-
vision on a highway near Paris and in 1995 one of his cars drove autonomously (with
human supervision) from Munich to Copenhagen at speeds of up to 175 km/hour.
The car was able to overtake other vehicles and change lanes automatically.

This application area has been recently explored through the DARPA Grand
Challenge, a series of competitions sponsored by the U.S. government to build ve-
hicles that can autonomously drive themselves in desert and urban environments.
Caltech competed in the 2005 and 2007 Grand Challenges using a modified Ford E-
350 offroad van nicknamed “Alice.” It was fully automated, including electronically
controlled steering, throttle, brakes, transmission and ignition. Its sensing systems
included multiple video cameras scanning at 10—30 Hz, several laser ranging units
scanning at 10 Hz and an inertial navigation package capable of providing position
and orientation estimates at 5 ms temporal resolution. Computational resources in-
cluded 12 high-speed servers connected together through a 1-Gb/s Ethernet switch.
The vehicle is shown in Figure 1.15, along with a block diagram of its control
architecture.

The software and hardware infrastructure that was developed enabled the ve-
hicle to traverse long distances at substantial speeds. In testing, Alice drove itself
more than 500 km in the Mojave Desert of California, with the ability to follow dirt
roads and trails (if present) and avoid obstacles along the path. Speeds of more than
50 km/h were obtained in the fully autonomous mode. Substantial tuning of the al-
gorithms was done during desert testing, in part because of the lack of systems-level
design tools for systems of this level of complexity. Other competitors in the race
(including Stanford, which won the 2005 competition) used algorithms for adaptive
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Figure 1.15: DARPA Grand Challenge. “Alice,” Team Caltech’s entry in the 2005 and 2007
competitions and its networked control architecture [54]. The feedback system fuses data from
terrain sensors (cameras and laser range finders) to determine a digital elevation map. This
map is used to compute the vehicle’s potential speed over the terrain, and an optimization-
based path planner then commands a trajectory for the vehicle to follow. A supervisory control
module performs higher-level tasks such as handling sensor and actuator failures.

control and learning, increasing the capabilities of their systems in unknown en-
vironments. Together, the competitors in the Grand Challenge demonstrated some
of the capabilities of the next generation of control systems and highlighted many
research directions in control at higher levels of decision making.

Drawbacks of Feedback

While feedback has many advantages, it also has some drawbacks. Chief among
these is the possibility of instability if the system is not designed properly. We
are all familiar with the effects of positive feedback when the amplification on
a microphone is turned up too high in a room. This is an example of feedback
instability, something that we obviously want to avoid. This is tricky because we
must design the system not only to be stable under nominal conditions but also to
remain stable under all possible perturbations of the dynamics.

In addition to the potential for instability, feedback inherently couples different
parts of a system. One common problem is that feedback often injects measurement
noise into the system. Measurements must be carefully filtered so that the actuation
and process dynamics do not respond to them, while at the same time ensuring that
the measurement signal from the sensor is properly coupled into the closed loop
dynamics (so that the proper levels of performance are achieved).

Another potential drawback of control is the complexity of embedding a control
system in a product. While the cost of sensing, computation and actuation has de-
creased dramatically in the past few decades, the fact remains that control systems
are often complicated, and hence one must carefully balance the costs and benefits.
An early engineering example of this is the use of microprocessor-based feedback
systems in automobiles.The use of microprocessors in automotive applications be-
gan in the early 1970s and was driven by increasingly strict emissions standards,
which could be met only through electronic controls. Early systems were expensive
and failed more often than desired, leading to frequent customer dissatisfaction. It
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was only through aggressive improvements in technology that the performance,
reliability and cost of these systems allowed them to be used in a transparent fash-
ion. Even today, the complexity of these systems is such that it is difficult for an
individual car owner to fix problems.

Feedforward

Feedback is reactive: there must be an error before corrective actions are taken.
However, in some circumstances it is possible to measure a disturbance before it
enters the system, and this information can then be used to take corrective action
before the disturbance has influenced the system. The effect of the disturbance is
thus reduced by measuring it and generating a control signal that counteracts it.
This way of controlling a system is called feedforward. Feedforward is particularly
useful in shaping the response to command signals because command signals are
always available. Since feedforward attempts to match two signals, it requires good
process models; otherwise the corrections may have the wrong size or may be badly
timed.

The ideas of feedback and feedforward are very general and appear in many dif-
ferent fields. In economics, feedback and feedforward are analogous to a market-
based economy versus a planned economy. In business, a feedforward strategy
corresponds to running a company based on extensive strategic planning, while a
feedback strategy corresponds to a reactive approach. In biology, feedforward has
been suggested as an essential element for motion control in humans that is tuned
during training. Experience indicates that it is often advantageous to combine feed-
back and feedforward, and the correct balance requires insight and understanding
of their respective properties.

Positive Feedback

In most of this text, we will consider the role of negative feedback, in which we
attempt to regulate the system by reacting to disturbances in a way that decreases
the effect of those disturbances. In some systems, particularly biological systems,
positive feedback can play an important role. In a system with positive feedback,
the increase in some variable or signal leads to a situation in which that quantity
is further increased through its dynamics. This has a destabilizing effect and is
usually accompanied by a saturation that limits the growth of the quantity. Although
often considered undesirable, this behavior is used in biological (and engineering)
systems to obtain a very fast response to a condition or signal.

One example of the use of positive feedback is to create switching behavior,
in which a system maintains a given state until some input crosses a threshold.
Hysteresis is often present so that noisy inputs near the threshold do not cause the
system to jitter. This type of behavior is called bistability and is often associated
with memory devices.
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Figure 1.16: Input/output characteristics of on-off controllers. Each plot shows the input on
the horizontal axis and the corresponding output on the vertical axis. Ideal on-off control is
shown in (a), with modifications for a dead zone (b) or hysteresis (c). Note that for on-off
control with hysteresis, the output depends on the value of past inputs.

1.5 Simple Forms of Feedback

The idea of feedback to make corrective actions based on the difference between
the desired and the actual values of a quantity can be implemented in many different
ways. The benefits of feedback can be obtained by very simple feedback laws such
as on-off control, proportional control and proportional-integral-derivative control.
In this section we provide a brief preview of some of the topics that will be studied
more formally in the remainder of the text.

On-Off Control

A simple feedback mechanism can be described as follows:

"y Umax %fe>0 (1.1)
Umin 1fe <0,
where the control error e = r — y is the difference between the reference signal (or
command signal) r and the output of the system y and u is the actuation command.
Figure 1.16a shows the relation between error and control. This control law implies
that maximum corrective action is always used.

The feedback in equation (1.1) is called on-off control. One of its chief advan-
tages is that it is simple and there are no parameters to choose. On-off control often
succeeds in keeping the process variable close to the reference, such as the use of
a simple thermostat to maintain the temperature of a room. It typically results in
a system where the controlled variables oscillate, which is often acceptable if the
oscillation is sufficiently small.

Notice that in equation (1.1) the control variable is not defined when the error
is zero. It is common to make modifications by introducing either a dead zone or
hysteresis (see Figure 1.16b and 1.16c).

PID Control

The reason why on-off control often gives rise to oscillations is that the system
overreacts since a small change in the error makes the actuated variable change over
the full range. This effect is avoided in proportional control, where the characteristic
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of the controller is proportional to the control error for small errors. This can be
achieved with the control law

Umax 1f € > emax
u=kpe ifeynn <e < emax (1.2)

Umin 1f € < emin,

where k), is the controller gain, eyin = Umin/k, and emax = Umax/ k. The interval
(emin» emax) 1s called the proportional band because the behavior of the controller
is linear when the error is in this interval:

u==k,r—y)=kpe ifeny <e < ema. (1.3)

While a vast improvement over on-off control, proportional control has the draw-
back that the process variable often deviates from its reference value. In particular,
if some level of control signal is required for the system to maintain a desired value,
then we must have e #£ 0 in order to generate the requisite input.

This can be avoided by making the control action proportional to the integral of
the error:

u(t) =k; /Ot e(t)dr. (1.4)

This control form is called integral control, and k; is the integral gain. It can be
shown through simple arguments that a controller with integral action has zero
steady-state error (Exercise 1.5). The catch is that there may not always be a steady
state because the system may be oscillating.

An additional refinement is to provide the controller with an anticipative abil-
ity by using a prediction of the error. A simple prediction is given by the linear
extrapolation
de(t)

dr ’
which predicts the error 7; time units ahead. Combining proportional, integral and
derivative control, we obtain a controller that can be expressed mathematically as

u(t) = k() + k; /te(t)dt 4,20 (15)
0

et +Ty) ~e(t)+ Ty

dt

The control action is thus a sum of three terms: the past as represented by the
integral of the error, the present as represented by the proportional term and the
future as represented by a linear extrapolation of the error (the derivative term).
This form of feedback is called a proportional-integral-derivative (PID) controller
and its action is illustrated in Figure 1.17.

A PID controller is very useful and is capable of solving a wide range of control
problems. More than 95% of all industrial control problems are solved by PID
control, although many of these controllers are actually proportional-integral (P1)
controllers because derivative action is often not included [58]. There are also more
advanced controllers, which differ from PID controllers by using more sophisticated
methods for prediction.
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Figure 1.17: Action of a PID controller. At time ¢, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedback is based on the integral
of the error up to time ¢ (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of change of the error. 7,
represents the approximate amount of time in which the error is projected forward (see text).

1.6 Further Reading

The material in this section draws heavily from the report of the Panel on Future
Directions on Control, Dynamics and Systems [155]. Several additional papers
and reports have highlighted the successes of control [159] and new vistas in con-
trol [45, 130, 204]. The early development of control is described by Mayr [148]
and in the books by Bennett [28, 29], which cover the period 1800-1955. A fas-
cinating examination of some of the early history of control in the United States
has been written by Mindell [152]. A popular book that describes many control
concepts across a wide range of disciplines is Out of Control by Kelly [121]. There
are many textbooks available that describe control systems in the context of spe-
cific disciplines. For engineers, the textbooks by Franklin, Powell and Emami-
Naeini [79], Dorf and Bishop [61], Kuo and Golnaraghi [133] and Seborg, Edgar
and Mellichamp [178] are widely used. More mathematically oriented treatments
of control theory include Sontag [182] and Lewis [136]. The book by Hellerstein
et al. [97] provides a description of the use of feedback control in computing sys-
tems. A number of books look at the role of dynamics and feedback in biological
systems, including Milhorn [151] (now out of print), J. D. Murray [154] and ElI-
ner and Guckenheimer [70]. The book by Fradkov [77] and the tutorial article by
Bechhoefer [25] cover many specific topics of interest to the physics community.

Exercises

1.1 (Eye motion) Perform the following experiment and explain your results: Hold-
ing your head still, move one of your hands left and right in front of your face,
following it with your eyes. Record how quickly you can move your hand before
you begin to lose track of it. Now hold your hand still and shake your head left to
right, once again recording how quickly you can move before loosing track.
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1.2 Identify five feedback systems that you encounter in your everyday environ-
ment. For each system, identify the sensing mechanism, actuation mechanism and
control law. Describe the uncertainty with respect to which the feedback system
provides robustness and/or the dynamics that are changed through the use of feed-
back.

1.3 (Balance systems) Balance yourself on one foot with your eyes closed for 15 s.
Using Figure 1.3 as a guide, describe the control system responsible for keeping you
from falling down. Note that the “controller” will differ from that in the diagram
(unless you are an android reading this in the far future).

1.4 (Cruise control) Download the MATLAB code used to produce simulations for
the cruise control system in Figure 1.13 from the companion web site. Using trial
and error, change the parameters of the control law so that the overshoot in speed
is not more than 1 m/s for a vehicle with mass m = 1000 kg.

1.5 (Integral action) We say that a system with a constant input reaches steady state
if the output of the system approaches a constant value as time increases. Show that
a controller with integral action, such as those given in equations (1.4) and (1.5),
gives zero error if the closed loop system reaches steady state.

1.6 Search the web and pick an article in the popular press about a feedback and
control system. Describe the feedback system using the terminology given in the
article. In particular, identify the control system and describe (a) the underlying
process or system being controlled, along with the (b) sensor, (c) actuator and (d)
computational element. If the some of the information is not available in the article,
indicate this and take a guess at what might have been used.
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Chapter Two
System Modeling

... I asked Fermi whether he was not impressed by the agreement between our calculated
numbers and his measured numbers. He replied, “How many arbitrary parameters did you use
for your calculations?” I thought for a moment about our cut-off procedures and said, “Four.”
He said, “I remember my friend Johnny von Neumann used to say, with four parameters I can
fit an elephant, and with five I can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for meson-proton scattering to
Enrico Fermi in 1953 [67].

A model is a precise representation of a system’s dynamics used to answer ques-
tions via analysis and simulation. The model we choose depends on the questions
we wish to answer, and so there may be multiple models for a single dynamical sys-
tem, with different levels of fidelity depending on the phenomena of interest. In this
chapter we provide an introduction to the concept of modeling and present some
basic material on two specific methods commonly used in feedback and control
systems: differential equations and difference equations.

2.1 Modeling Concepts

A model is a mathematical representation of a physical, biological or information
system. Models allow us to reason about a system and make predictions about
how a system will behave. In this text, we will mainly be interested in models of
dynamical systems describing the input/output behavior of systems, and we will
often work in “state space” form.

Roughly speaking, a dynamical system is one in which the effects of actions
do not occur immediately. For example, the velocity of a car does not change
immediately when the gas pedal is pushed nor does the temperature in a room rise
instantaneously when a heater is switched on. Similarly, a headache does not vanish
right after an aspirin is taken, requiring time for it to take effect. In business systems,
increased funding for a development project does not increase revenues in the short
term, although it may do so in the long term (if it was a good investment). All
of these are examples of dynamical systems, in which the behavior of the system
evolves with time.

In the remainder of this section we provide an overview of some of the key
concepts in modeling. The mathematical details introduced here are explored more
fully in the remainder of the chapter.
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Figure 2.1: Spring—mass system with nonlinear damping. The position of the mass is denoted
by ¢, with ¢ = 0 corresponding to the rest position of the spring. The forces on the mass are
generated by a linear spring with spring constant k£ and a damper with force dependent on the
velocity g.

The Heritage of Mechanics

The study of dynamics originated in attempts to describe planetary motion. The
basis was detailed observations of the planets by Tycho Brahe and the results of
Kepler, who found empirically that the orbits of the planets could be well described
by ellipses. Newton embarked on an ambitious program to try to explain why the
planets move in ellipses, and he found that the motion could be explained by his
law of gravitation and the formula stating that force equals mass times acceleration.
In the process he also invented calculus and differential equations.

One of the triumphs of Newton’s mechanics was the observation that the motion
of the planets could be predicted based on the current positions and velocities of
all planets. It was not necessary to know the past motion. The state of a dynamical
system is a collection of variables that completely characterizes the motion of a
system for the purpose of predicting future motion. For a system of planets the
state is simply the positions and the velocities of the planets. We call the set of all
possible states the state space.

A common class of mathematical models for dynamical systems is ordinary
differential equations (ODEs). In mechanics, one of the simplest such differential
equations is that of a spring—mass system with damping:

mq + c(q) + kg =0. 2.1

This system is illustrated in Figure 2.1. The variable g € R represents the position
of the mass m with respect to its rest position. We use the notation ¢ to denote the
derivative of ¢ with respect to time (i.e., the velocity of the mass) and ¢ to represent
the second derivative (acceleration). The spring is assumed to satisfy Hooke’s law,
which says that the force is proportional to the displacement. The friction element
(damper) is taken as a nonlinear function c¢(q), which can model effects such as
stiction and viscous drag. The position g and velocity g represent the instantaneous
state of the system. We say that this system is a second-order system since the
dynamics depend on the first two derivatives of g.

The evolution of the position and velocity can be described using either a time
plot or a phase portrait, both of which are shown in Figure 2.2. The time plot, on
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Figure 2.2: Illustration of a state model. A state model gives the rate of change of the state
as a function of the state. The plot on the left shows the evolution of the state as a function of
time. The plot on the right shows the evolution of the states relative to each other, with the
velocity of the state denoted by arrows.

the left, shows the values of the individual states as a function of time. The phase
portrait, on the right, shows the vector field for the system, which gives the state
velocity (represented as an arrow) at every point in the state space. In addition,
we have superimposed the traces of some of the states from different conditions.
The phase portrait gives a strong intuitive representation of the equation as a vector
field or a flow. While systems of second order (two states) can be represented in
this way, unfortunately it is difficult to visualize equations of higher order using
this approach.

The differential equation (2.1) is called an autonomous system because there
are no external influences. Such a model is natural for use in celestial mechanics
because it is difficult to influence the motion of the planets. In many examples, it
is useful to model the effects of external disturbances or controlled forces on the
system. One way to capture this is to replace equation (2.1) by

mg +c(q) +kqg =u, 2.2)

where u represents the effect of external inputs. The model (2.2) is called a forced
or controlled differential equation It implies that the rate of change of the state can
be influenced by the input u(¢). Adding the input makes the model richer and allows
new questions to be posed. For example, we can examine what influence external
disturbances have on the trajectories of a system. Or, in the case where the input
variable is something that can be modulated in a controlled way, we can analyze
whether it is possible to “steer” the system from one point in the state space to
another through proper choice of the input.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineering, where the design
of electronic amplifiers led to a focus on input/output behavior. A system was
considered a device that transforms inputs to outputs, as illustrated in Figure 2.3.
Conceptually an input/output model can be viewed as a giant table of inputs and
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Figure 2.3: Illustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the one on the right is its
representation as a block diagram.

outputs. Given an input signal u(¢) over some interval of time, the model should
produce the resulting output y (7).

The input/output framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio
or a television and break it down into manageable pieces such as the receiver,
demodulator, amplifier and speakers. Each of these pieces has a set of inputs and
outputs and, through proper design, these components can be interconnected to
form the entire system.

The input/output view is particularly useful for the special class of linear time-
invariant systems. This term will be defined more carefully later in this chapter, but
roughly speaking a system is linear if the superposition (addition) of two inputs
yields an output that is the sum of the outputs that would correspond to individual
inputs being applied separately. A system is time-invariant if the output response
for a given input does not depend on when that input is applied.

Many electrical engineering systems can be modeled by linear time-invariant
systems, and hence a large number of tools have been developed to analyze them.
One such tool is the step response, which describes the relationship between an
input that changes from zero to a constant value abruptly (a step input) and the
corresponding output. As we shall see later in the text, the step response is very
useful in characterizing the performance of a dynamical system, and it is often used
to specify the desired dynamics. A sample step response is shown in Figure 2.4a.

Another way to describe a linear time-invariant system is to represent it by its
response to sinusoidal input signals. This is called the frequency response, and a
rich, powerful theory with many concepts and strong, useful results has emerged.
The results are based on the theory of complex variables and Laplace transforms.
The basic idea behind frequency response is that we can completely characterize
the behavior of a system by its steady-state response to sinusoidal inputs. Roughly
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Figure 2.4: Input/output response of a linear system. The step response (a) shows the output
of the system due to an input that changes from O to 1 at time ¢+ = 5 s. The frequency
response (b) shows the amplitude gain and phase change due to a sinusoidal input at different
frequencies.

speaking, this is done by decomposing any arbitrary signal into a linear combi-
nation of sinusoids (e.g., by using the Fourier transform) and then using linearity
to compute the output by combining the response to the individual frequencies. A
sample frequency response is shown in Figure 2.4b.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.

The Control View

When control theory emerged as a discipline in the 1940s, the approach to dy-
namics was strongly influenced by the electrical engineering (input/output) view.
A second wave of developments in control, starting in the late 1950s, was inspired
by mechanics, where the state space perspective was used. The emergence of space
flight is a typical example, where precise control of the orbit of a spacecraft is
essential. These two points of view gradually merged into what is today the state
space representation of input/output systems.

The development of state space models involved modifying the models from
mechanics to include external actuators and sensors and utilizing more general
forms of equations. In control, the model given by equation (2.2) was replaced by

x = f(x,u), y = h(x,u), (2.3)

dt
where x is a vector of state variables, u is a vector of control signals and y is a
vector of measurements. The term dx /dt represents the derivative of x with respect
to time, now considered a vector, and f and /4 are (possibly nonlinear) mappings of
their arguments to vectors of the appropriate dimension. For mechanical systems,
the state consists of the position and velocity of the system, so that x = (g, ¢) in the
case of adamped spring—mass system. Note that in the control formulation we model



Modeling.tex, v1.169 2008/01/22 02:35:38 (murray)

32 CHAPTER 2. SYSTEM MODELING

dynamics as first-order differential equations, but we will see that this can capture
the dynamics of higher-order differential equations by appropriate definition of the
state and the maps f and h.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice of u (reachability) and if the measurement y
contains enough information to reconstruct the state (observability). These topics
will be addressed in greater detail in Chapters 6 and 7.

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals can be predicted precisely. A more realistic approach
is to model disturbances as random signals. This viewpoint gives a natural connec-
tion between prediction and control. The dual views of input/output representations
and state space representations are particularly useful when modeling uncertainty
since state models are convenient to describe a nominal model but uncertainties
are easier to describe using input/output models (often via a frequency response
description). Uncertainty will be a constant theme throughout the text and will be
studied in particular detail in Chapter 12.

An interesting observation in the design of control systems is that feedback
systems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system validation,
where one wishes to verify that the detailed response of the system performs as it
was designed. Because of these different uses of models, it is common to use a
hierarchy of models having different complexity and fidelity.

Multidomain Modeling

Modeling is an essential element of many disciplines, but traditions and methods
from individual disciplines can differ from each other, as illustrated by the previous
discussion of mechanical and electrical engineering. A difficulty in systems engi-
neering is that it is frequently necessary to deal with heterogeneous systems from
many different domains, including chemical, electrical, mechanical and informa-
tion systems.

To model such multidomain systems, we start by partitioning a system into
smaller subsystems. Each subsystem is represented by balance equations for mass,
energy and momentum, or by appropriate descriptions of information processing
in the subsystem. The behavior at the interfaces is captured by describing how the
variables of the subsystem behave when the subsystems are interconnected. These
interfaces act by constraining variables within the individual subsystems to be equal
(such as mass, energy or momentum fluxes). The complete model is then obtained
by combining the descriptions of the subsystems and the interfaces.
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Using this methodology it is possible to build up libraries of subsystems that
correspond to physical, chemical and informational components. The procedure
mimics the engineering approach where systems are built from subsystems that are
themselves built from smaller components. As experience is gained, the components
and their interfaces can be standardized and collected in model libraries. In practice,
it takes several iterations to obtain a good library that can be reused for many
applications.

State models or ordinary differential equations are not suitable for component-
based modeling of this form because states may disappear when components are
connected. This implies that the internal description of a component may change
when it is connected to other components. As an illustration we consider two ca-
pacitors in an electrical circuit. Each capacitor has a state corresponding to the
voltage across the capacitors, but one of the states will disappear if the capacitors
are connected in parallel. A similar situation happens with two rotating inertias,
each of which is individually modeled using the angle of rotation and the angular
velocity. Two states will disappear when the inertias are joined by a rigid shaft.

This difficulty can be avoided by replacing differential equations by differential
algebraic equations, which have the form

F(z,2) =0,
where z € R". A simple special case is

x=f(x,y), gk,y)=0, 24

where z = (x,y) and F = (x — f(x,y), g(x, y)). The key property is that the
derivative z is not given explicitly and there may be pure algebraic relations between
the components of the vector z.

The model (2.4) captures the examples of the parallel capacitors and the linked
rotating inertias. For example, when two capacitors are connected, we simply add
the algebraic equation expressing that the voltages across the capacitors are the
same.

Modelica is a language that has been developed to support component-based
modeling. Differential algebraic equations are used as the basic description, and
object-oriented programming is used to structure the models. Modelica is used to
model the dynamics of technical systems in domains such as mechanical, electri-
cal, thermal, hydraulic, thermofluid and control subsystems. Modelica is intended
to serve as a standard format so that models arising in different domains can be
exchanged between tools and users. A large set of free and commercial Modelica
component libraries are available and are used by a growing number of people
in industry, research and academia. For further information about Modelica, see
http://www.modelica.org or Tiller [192].
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2.2 State Space Models

In this section we introduce the two primary forms of models that we use in this
text: differential equations and difference equations. Both make use of the notions
of state, inputs, outputs and dynamics to describe the behavior of a system.

Ordinary Differential Equations

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a physical system the state is
composed of the variables required to account for storage of mass, momentum and
energy. A key issue in modeling is to decide how accurately this storage has to be
represented. The state variables are gathered in a vector x € R” called the state
vector. The control variables are represented by another vector # € R”, and the
measured signal by the vector y € RY. A system can then be represented by the
differential equation

C o few, =), 25)

where f : R"” x R? —» R" and & : R" x R? — R? are smooth mappings. We call
a model of this form a state space model.

The dimension of the state vector is called the order of the system. The sys-
tem (2.5) is called time-invariant because the functions f and 2 do not depend
explicitly on time ¢; there are more general time-varying systems where the func-
tions do depend on time. The model consists of two functions: the function f gives
the rate of change of the state vector as a function of state x and control u, and the
function & gives the measured values as functions of state x and control u.

A system is called a linear state space system if the functions f and & are linear
in x and u. A linear state space system can thus be represented by

d
d_’; — Ax + Bu, y =Cx + Du, (2.6)

where A, B, C and D are constant matrices. Such a system is said to be linear and
time-invariant, or LTI for short. The matrix A is called the dynamics matrix, the
matrix B is called the control matrix, the matrix C is called the sensor matrix and
the matrix D is called the direct term. Frequently systems will not have a direct
term, indicating that the control signal does not influence the output directly.

A different form of linear differential equations, generalizing the second-order
dynamics from mechanics, is an equation of the form

n n—1
d"y ta d _y

drr dr=1
where ¢ is the independent (time) variable, y(#) is the dependent (output) variable
and u(t) is the input. The notation d¥y/dt* is used to denote the kth derivative
of y with respect to ¢, sometimes also written as y®). The controlled differential
equation (2.7) is said to be an nth-order system. This system can be converted into

Feday=u, .7
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state space form by defining

xi ] (d"'y/de)
X5 dn—2y/dtn—2
X = : = . )
Xn—1 dy/dt
Xn J . y

and the state space equations become

X1 —a)X)p — T ApXy
X2 X1
d . . + .
- : = : : y
dt ’
Xn—1 Xp—2
Xn Xn—1

With the appropriate definitions of A, B, C and D, this equation is in linear state
space form.

An even more general system is obtained by letting the output be a linear com-
bination of the states of the system, i.e.,

o =

Xp.

S O

y=bix; +byxo+ -+ byx, +du.

This system can be modeled in state space as

X1 [(—a; —a» —a,_1 —ay, 1
X 10 0 0 0
Ao 1 0 0 [.y]o]a
a : 2.8)
X, 0 0 1 0 0
y= 'bl by, ... bn]x—i—du.

This particular form of a linear state space system is called reachable canonical
Jform and will be studied in more detail in later chapters.

Example 2.1 Balance systems

An example of a type of system that can be modeled using ordinary differential
equations is the class of balance systems. A balance system is a mechanical system
in which the center of mass is balanced above a pivot point. Some common examples
of balance systems are shown in Figure 2.5. The Segway® Personal Transporter
(Figure 2.5a) uses a motorized platform to stabilize a person standing on top of
it. When the rider leans forward, the transportation device propels itself along the
ground but maintains its upright position. Another example is arocket (Figure 2.5b),
in which a gimbaled nozzle at the bottom of the rocket is used to stabilize the body
of the rocket above it. Other examples of balance systems include humans or other
animals standing upright or a person balancing a stick on their hand.
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(a) Segway (b) Saturn rocket (c) Cart—pendulum system

Figure 2.5: Balance systems. (a) Segway Personal Transporter, (b) Saturn rocket and (c)
inverted pendulum on a cart. Each of these examples uses forces at the bottom of the system
to keep it upright.

Balance systems are a generalization of the spring—mass system we saw earlier.
We can write the dynamics for a mechanical system in the general form

M(q)g +C(q,q) + K(q) = B(q)u,

where M (q) is the inertia matrix for the system, C (g, ¢) represents the Coriolis
forces as well as the damping, K (¢) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into the dynamics. The
specific form of the equations can be derived using Newtonian mechanics. Note
that each of the terms depends on the configuration of the system ¢ and that these
terms are often nonlinear in the configuration variables.

Figure 2.5c shows a simplified diagram for a balance system consisting of an
inverted pendulum on a cart. To model this system, we choose state variables that
represent the position and velocity of the base of the system, p and p, and the angle
and angular rate of the structure above the base, & and 6. We let F represent the
force applied at the base of the system, assumed to be in the horizontal direction
(aligned with p), and choose the position and angle of the system as outputs. With
this set of definitions, the dynamics of the system can be computed using Newtonian
mechanics and have the form

(M +m) —mlcosé p + cp + mlsin @ 62 _|F 2.9
—mlcos® (J+mi*)| |6 y0 —mglsing | — | 0] ’

where M is the mass of the base, m and J are the mass and moment of inertia of the
system to be balanced, / is the distance from the base to the center of mass of the
balanced body, ¢ and y are coefficients of viscous friction and g is the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space form by defining the
state as x = (p, 0, p, 0), the input as u = F and the output as y = (p, 0). If we
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define the total mass and total inertia as
M, =M+ m, J, = J +ml?,

the equations of motion then become

p
p . 4 .
d |o —mlsg0? + mg(mi*/ J,)socy — cp — yImcyl + u
i |p| ~ M, — m(mi?/J))c; ’
0

—ml%spcg0* + M,glsy — clcyp — y (M, /m)6 + lcou
Ji(M;/m) — m(lcy)>

5]
where we have used the shorthand ¢y = cosé and sy = sin 6.

In many cases, the angle 6 will be very close to 0, and hence we can use the
approximations sin@ ~ 6 and cos@ = 1. Furthermore, if 6 is small, we can
ignore quadratic and higher terms in #. Substituting these approximations into our
equations, we see that we are left with a linear state space equation

[0 0 1 0 » 0
d lo 0 0 0 1 0 0
a |p| = o meru —chiw =y aimp| o T gsu |
01 o Mmgl/u —clm/u  —yMi/p ) LO) Lim/u
[t o000
YZlo 10 o0]™
where 1 = M,J, — m?I>. \Y

Example 2.2 Inverted pendulum

A variation of the previous example is one in which the location of the base p does
not need to be controlled. This happens, for example, if we are interested only in
stabilizing a rocket’s upright orientation without worrying about the location of
base of the rocket. The dynamics of this simplified system are given by

d [6] mgl yg [ l 0 (2.10)
., o = : 0 5 y =0, .
0 ——sinf — —0 + — cos 0
a AR A
where 7 is the coefficient of rotational friction, J; = J + mi* and u is the force
applied at the base. This system is referred to as an inverted pendulum. \%

Difference Equations

In some circumstances, it is more natural to describe the evolution of a system at
discrete instants of time rather than continuously in time. If we refer to each of



Modeling.tex, v1.169 2008/01/22 02:35:38 (murray)

38 CHAPTER 2. SYSTEM MODELING

these times by an integer k = 0,1, 2, ..., then we can ask how the state of the
system changes for each k. Just as in the case of differential equations, we define
the state to be those sets of variables that summarize the past of the system for the
purpose of predicting its future. Systems described in this manner are referred to
as discrete-time systems.

The evolution of a discrete-time system can be written in the form

x[k + 11 = f(x[k], ulk]), ylk] = h(x[k], ulk]), (2.11)

where x[k] € R” is the state of the system at time k (an integer), u[k] € R” is
the input and y[k] € R? is the output. As before, f and & are smooth mappings of
the appropriate dimension. We call equation (2.11) a difference equation since it
tells us how x[k + 1] differs from x[k]. The state x[k] can be either a scalar- or a
vector-valued quantity; in the case of the latter we write x ;[k] for the value of the
Jjth state at time k.

Just as in the case of differential equations, it is often the case that the equations
are linear in the state and input, in which case we can describe the system by

x[k + 1] = Ax[k] + Bulk], y[k] = Cx[k] 4+ Du[k].

Asbefore, we refer to the matrices A, B,C and D as the dynamics matrix, the control
matrix, the sensor matrix and the direct term. The solution of a linear difference

equation with initial condition x[0] and input u[0], ..., u[T] is given by
k—1
xlk] = Ao + D AT Bl 1,
/=0 k>0 (2.12)

k—1
yIkl = CA*xo + > C A~ Bu[ j1+ Dulk],
j=0

Difference equations are also useful as an approximation of differential equa-
tions, as we will show later.

Example 2.3 Predator—prey

As an example of a discrete-time system, consider a simple model for a predator—
prey system. The predator—prey problem refers to an ecological system in which
we have two species, one of which feeds on the other. This type of system has
been studied for decades and is known to exhibit interesting dynamics. Figure 2.6
shows a historical record taken over 90 years for a population of lynxes versus a
population of hares [142]. As can been seen from the graph, the annual records of
the populations of each species are oscillatory in nature.

A simple model for this situation can be constructed using a discrete-time model
by keeping track of the rate of births and deaths of each species. Letting H represent
the population of hares and L represent the population of lynxes, we can describe
the state in terms of the populations at discrete periods of time. Letting k be the
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Figure 2.6: Predator versus prey. The photograph on the left shows a Canadian lynx and
a snowshoe hare, the lynx’s primary prey. The graph on the right shows the populations of
hares and lynxes between 1845 and 1935 in a section of the Canadian Rockies [142]. The

data were collected on an annual basis over a period of 90 years. (Photograph copyright Tom
and Pat Leeson.)

discrete-time index (e.g., the month number), we can write

Hlk + 1] = H[k] + b, (u)H[k] — aL[k]H[k],

2.13)
Lk + 1] = L[k] + cL[k]H[k] — d;L[k],

where b, (1) is the hare birth rate per unit period and as a function of the food
supply u, dy is the lynx mortality rate and a and c are the interaction coefficients.
The interaction term aL[k]H [k] models the rate of predation, which is assumed
to be proportional to the rate at which predators and prey meet and is hence given
by the product of the population sizes. The interaction term cL[k]H[k] in the
lynx dynamics has a similar form and represents the rate of growth of the lynx
population. This model makes many simplifying assumptions—such as the fact
that hares decrease in number only through predation by lynxes—but it often is
sufficient to answer basic questions about the system.

To illustrate the use of this system, we can compute the number of lynxes and
hares at each time point from some initial population. This is done by starting with
x[0] = (Hy, Lo) and then using equation (2.13) to compute the populations in
the following period. By iterating this procedure, we can generate the population
over time. The output of this process for a specific choice of parameters and initial
conditions is shown in Figure 2.7. While the details of the simulation are different
from the experimental data (to be expected given the simplicity of our assumptions),
we see qualitatively similar trends and hence we can use the model to help explore
the dynamics of the system. \Y%

Example 2.4 E-mail server
The IBM Lotus server is an collaborative software system that administers users’
e-mail, documents and notes. Client machines interact with end users to provide
access to data and applications. The server also handles other administrative tasks.
In the early development of the system it was observed that the performance was
poor when the central processing unit (CPU) was overloaded because of too many
service requests, and mechanisms to control the load were therefore introduced.
The interaction between the client and the server is in the form of remote pro-
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Figure 2.7: Discrete-time simulation of the predator—prey model (2.13). Using the parameters
a=c¢=0.014,b,(u) = 0.6 and d = 0.7 in equation (2.13), the period and magnitude of the
lynx and hare population cycles approximately match the data in Figure 2.6.

cedure calls (RPCs). The server maintains a log of statistics of completed requests.
The total number of requests being served, called RIS (RPCs in server), is also
measured. The load on the server is controlled by a parameter called MaxUsers,
which sets the total number of client connections to the server. This parameter is
controlled by the system administrator. The server can be regarded as a dynami-
cal system with MaxUsers as the input and RIS as the output. The relationship
between input and output was first investigated by exploring the steady-state per-
formance and was found to be linear.

In [97] a dynamic model in the form of a first-order difference equation is
used to capture the dynamic behavior of this system. Using system identification
techniques, they construct a model of the form

ylk + 1] = ay[k] + bu[k],

where ¥ = MaxUsers — MaxUsers and y = RIS — RIS. The parameters
a = 0.43 and b = 0.47 are parameters that describe the dynamics of the system
around the operating point, and MaxUsers = 165 and RIS = 135 represent the
nominal operating point of the system. The number of requests was averaged over
a sampling period of 60 s. \

Simulation and Analysis

State space models can be used to answer many questions. One of the most common,
as we have seen in the previous examples, involves predicting the evolution of the
system state from a given initial condition. While for simple models this can be
done in closed form, more often it is accomplished through computer simulation.
One can also use state space models to analyze the overall behavior of the system
without making direct use of simulation.

Consider again the damped spring—mass system from Section 2.1, but this time
with an external force applied, as shown in Figure 2.8. We wish to predict the
motion of the system for a periodic forcing function, with a given initial condition,
and determine the amplitude, frequency and decay rate of the resulting motion.
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Figure 2.8: A driven spring—mass system with damping. Here we use a linear damping
element with coefficient of viscous friction c. The mass is driven with a sinusoidal force of
amplitude A.

We choose to model the system with a linear ordinary differential equation.
Using Hooke’s law to model the spring and assuming that the damper exerts a force
that is proportional to the velocity of the system, we have

mqg +cq +kq = u, (2.14)

where m is the mass, ¢ is the displacement of the mass, ¢ is the coefficient of
viscous friction, k is the spring constant and u is the applied force. In state space
form, using x = (g, ¢) as the state and choosing y = ¢ as the output, we have

X
dx 2
- = C k u 5 y =X
dt ——Xy — —X|+ —
m m m

We see that this is a linear second-order differential equation with one input u and
one output y.

We now wish to compute the response of the system to an input of the form
u = Asinwt. Although it is possible to solve for the response analytically, we
instead make use of a computational approach that does not rely on the specific
form of this system. Consider the general state space system

= rew.

Given the state x at time ¢, we can approximate the value of the state at a short
time & > 0 later by assuming that the rate of change of f(x, u) is constant over the
interval ¢ to ¢ + h. This gives

x(t+h)=x@)+hf(x@),u®)). (2.15)

Iterating this equation, we can thus solve for x as a function of time. This approxi-
mation is known as Euler integration and is in fact a difference equation if we let &
represent the time increment and write x[k] = x (kh). Although modern simulation
tools such as MATLAB and Mathematica use more accurate methods than Euler
integration, they still have some of the same basic trade-offs.

Returning to our specific example, Figure 2.9 shows the results of computing
x(t) using equation (2.15), along with the analytical computation. We see that as
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Figure 2.9: Simulation of the forced spring—mass system with different simulation time
constants. The dashed line represents the analytical solution. The solid lines represent the
approximate solution via the method of Euler integration, using decreasing step sizes.

h gets smaller, the computed solution converges to the exact solution. The form
of the solution is also worth noticing: after an initial transient, the system settles
into a periodic motion. The portion of the response after the transient is called the
steady-state response to the input.

In addition to generating simulations, models can also be used to answer other
types of questions. Two that are central to the methods described in this text concern
the stability of an equilibrium point and the input/output frequency response. We
illustrate these two computations through the examples below and return to the
general computations in later chapters.

Returning to the damped spring—mass system, the equations of motion with no
input forcing are given by

X2
dx _ . '

dt ——Xy — —X]
m m

(2.16)

2

where x; is the position of the mass (relative to the rest position) and x, is its
velocity. We wish to show that if the initial state of the system is away from the
rest position, the system will return to the rest position eventually (we will later
define this situation to mean that the rest position is asymptotically stable). While
we could heuristically show this by simulating many, many initial conditions, we
seek instead to prove that this is true for any initial condition.

To do so, we construct a function V : R” — R that maps the system state to a
positive real number. For mechanical systems, a convenient choice is the energy of
the system,

1 1
V(x) = Ekxf + me; (2.17)
If we look at the time derivative of the energy function, we see that
dVv . . c k )
— = kx1X; + mxpxy = kx1x2 + mxy(——x3 — —x1) = —cx;,
dt m m

which is always either negative or zero. Hence V (x(¢)) is never increasing and,
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using a bit of analysis that we will see formally later, the individual states must
remain bounded.

If we wish to show that the states eventually return to the origin, we must use
a slightly more detailed analysis. Intuitively, we can reason as follows: suppose
that for some period of time, V (x(¢)) stops decreasing. Then it must be true that
V(x(t)) = 0, which in turn implies that x,(r) = 0 for that same period. In that
case, xo(t) = 0, and we can substitute into the second line of equation (2.16) to

obtain
c k k

0 ZXQ = ——X2 — —X| = —X].
m m m

Thus we must have that x; also equals zero, and so the only time that V (x(¢)) can
stop decreasing is if the state is at the origin (and hence this system is at its rest
position). Since we know that V (x(z)) is never increasing (because V < 0), we
therefore conclude that the origin is stable (for any initial condition).

This type of analysis, called Lyapunov stability analysis, is considered in detail
in Chapter 4. It shows some of the power of using models for the analysis of system
properties.

Another type of analysis that we can perform with models is to compute the
output of a system to a sinusoidal input. We again consider the spring—mass system,
but this time keeping the input and leaving the system in its original form:

mg +cq +kq =u. (2.18)
We wish to understand how the system responds to a sinusoidal input of the form
u(t) = Asinwt.

We will see how to do this analytically in Chapter 6, but for now we make use of
simulations to compute the answer.

We first begin with the observation that if ¢ (¢) is the solution to equation (2.18)
with input u(¢), then applying an input 2u(¢) will give a solution 2¢ (¢) (this is easily
verified by substitution). Hence it suffices to look at an input with unit magnitude,
A = 1. A second observation, which we will prove in Chapter 5, is that the long-
term response of the system to a sinusoidal input is itself a sinusoid at the same
frequency, and so the output has the form

q(t) = g(w) sin(wt + ¢(w)),

where g(w) is called the gain of the system and ¢ (w) is called the phase (or phase
offset).

To compute the frequency response numerically, we can simulate the system
at a set of frequencies w1, ..., wy and plot the gain and phase at each of these
frequencies. An example of this type of computation is shown in Figure 2.10.
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Figure 2.10: A frequency response (gain only) computed by measuring the response of
individual sinusoids. The figure on the left shows the response of the system as a function of
time to a number of different unit magnitude inputs (at different frequencies). The figure on
the right shows this same data in a different way, with the magnitude of the response plotted
as a function of the input frequency. The filled circles correspond to the particular frequencies
shown in the time responses.

2.3 Modeling Methodology

To deal with large, complex systems, it is useful to have different representations
of the system that capture the essential features and hide irrelevant details. In all
branches of science and engineering it is common practice to use some graphical
description of systems, called schematic diagrams. They can range from stylistic
pictures to drastically simplified standard symbols. These pictures make it possible
to get an overall view of the system and to identify the individual components.
Examples of such diagrams are shown in Figure 2.11. Schematic diagrams are useful
because they give an overall picture of a system, showing different subprocesses and
their interconnection and indicating variables that can be manipulated and signals
that can be measured.

Block Diagrams

A special graphical representation called a block diagram has been developed in
control engineering. The purpose of a block diagram is to emphasize the information
flow and to hide details of the system. In a block diagram, different process elements
are shown as boxes, and each box has inputs denoted by lines with arrows pointing
toward the box and outputs denoted by lines with arrows going out of the box.
The inputs denote the variables that influence a process, and the outputs denote
the signals that we are interested in or signals that influence other subsystems.
Block diagrams can also be organized in hierarchies, where individual blocks may
themselves contain more detailed block diagrams.

Figure 2.12 shows some of the notation that we use for block diagrams. Signals
are represented as lines, with arrows to indicate inputs and outputs. The first diagram
is the representation for a summation of two signals. An input/output response is
represented as a rectangle with the system name (or mathematical description) in
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Figure 2.11: Schematic diagrams for different disciplines. Each diagram is used to illustrate
the dynamics of a feedback system: (a) electrical schematics for a power system [132], (b)
a biological circuit diagram for a synthetic clock circuit [21], (c) a process diagram for a
distillation column [178] and (d) a Petri net description of a communication protocol.
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Figure 2.12: Standard block diagram elements. The arrows indicate the the inputs and outputs
of each element, with the mathematical operation corresponding to the blocked labeled at the
output. The system block (f) represents the full input/output response of a dynamical system.
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Figure 2.13: A block diagram representation of the flight control system for an insect flying
against the wind. The mechanical portion of the model consists of the rigid-body dynamics
of the fly, the drag due to flying through the air and the forces generated by the wings. The
motion of the body causes the visual environment of the fly to change, and this information
is then used to control the motion of the wings (through the sensory motor system), closing
the loop.

the block. Two special cases are a proportional gain, which scales the input by
a multiplicative factor, and an integrator, which outputs the integral of the input
signal.

Figure 2.13 illustrates the use of a block diagram, in this case for modeling the
flight response of a fly. The flight dynamics of an insect are incredibly intricate,
involving careful coordination of the muscles within the fly to maintain stable flight
in response to external stimuli. One known characteristic of flies is their ability to
fly upwind by making use of the optical flow in their compound eyes as a feedback
mechanism. Roughly speaking, the fly controls its orientation so that the point of
contraction of the visual field is centered in its visual field.

To understand this complex behavior, we can decompose the overall dynamics
of the system into a series of interconnected subsystems (or blocks). Referring to
Figure 2.13, we can model the insect navigation system through an interconnection
of five blocks. The sensory motor system (a) takes the information from the visual
system (e) and generates muscle commands that attempt to steer the fly so that the
point of contraction is centered. These muscle commands are converted into forces
through the flapping of the wings (b) and the resulting aerodynamic forces that are
produced. The forces from the wings are combined with the drag on the fly (d) to
produce a net force on the body of the fly. The wind velocity enters through the
drag aerodynamics. Finally, the body dynamics (c) describe how the fly translates
and rotates as a function of the net forces that are applied to it. The insect position,
speed and orientation are fed back to the drag aerodynamics and vision system
blocks as inputs.

Each of the blocks in the diagram can itself be a complicated subsystem. For
example, the visual system of a fruit fly consists of two complicated compound eyes
(with about 700 elements per eye), and the sensory motor system has about 200,000
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neurons that are used to process information. A more detailed block diagram of
the insect flight control system would show the interconnections between these
elements, but here we have used one block to represent how the motion of the fly
affects the output of the visual system, and a second block to represent how the visual
field is processed by the fly’s brain to generate muscle commands. The choice of the
level of detail of the blocks and what elements to separate into different blocks often
depends on experience and the questions that one wants to answer using the model.
One of the powerful features of block diagrams is their ability to hide information
about the details of a system that may not be needed to gain an understanding of
the essential dynamics of the system.

Modeling from Experiments

Since control systems are provided with sensors and actuators, it is also possible to
obtain models of system dynamics from experiments on the process. The models
are restricted to input/output models since only these signals are accessible to
experiments, but modeling from experiments can also be combined with modeling
from physics through the use of feedback and interconnection.

A simple way to determine a system’s dynamics is to observe the response to a
step change in the control signal. Such an experiment begins by setting the control
signal to a constant value; then when steady state is established, the control signal is
changed quickly to a new level and the output is observed. The experiment gives the
step response of the system, and the shape of the response gives useful information
about the dynamics. It immediately gives an indication of the response time, and it
tells if the system is oscillatory or if the response is monotone.

Example 2.5 Spring—mass system
Consider the spring—mass system from Section 2.1, whose dynamics are given by

mqg +cq +kq = u. (2.19)

We wish to determine the constants m, ¢ and k by measuring the response of the
system to a step input of magnitude Fyj.

We will show in Chapter 6 that when ¢?> < 4km, the step response for this
system from the rest configuration is given by

adkm — ¢?
Fy ct Wa = 2 ’

t)=— (1 —exp(——) sin(wyt + , m
q(t) k( p(=3,-) sin( co))

¢ = tan™! (\/ dkm — cz) .

From the form of the solution, we see that the form of the response is determined
by the parameters of the system. Hence, by measuring certain features of the step
response we can determine the parameter values.

Figure 2.14 shows the response of the system to a step of magnitude Fy = 20
N, along with some measurements. We start by noting that the steady-state position
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Figure 2.14: Step response for a spring—mass system. The magnitude of the step input is
Fy = 20 N. The period of oscillation 7 is determined by looking at the time between two
subsequent local maxima in the response. The period combined with the steady-state value
¢ (o0) and the relative decrease between local maxima can be used to estimate the parameters
in a model of the system.

of the mass (after the oscillations die down) is a function of the spring constant k:

F
q(c0) = 70 (2.20)

where Fj is the magnitude of the applied force (£ = 1 for a unit step input). The
parameter 1/k is called the gain of the system. The period of the oscillation can be
measured between two peaks and must satisfy

2r  dkm — ¢?

= 2.21
T 2m ( )

Finally, the rate of decay of the oscillations is given by the exponential factor in the
solution. Measuring the amount of decay between two peaks, we have

F F
tog(qn) = 22) —log(q(e) = ) =5 =n). @22

Using this set of three equations, we can solve for the parameters and determine
that for the step response in Figure 2.14 we have m =~ 250 kg, ¢ &~ 60 N s/m and
k ~ 40 N/m. \

Modeling from experiments can also be done using many other signals. Si-
nusoidal signals are commonly used (particularly for systems with fast dynamics)
and precise measurements can be obtained by exploiting correlation techniques. An
indication of nonlinearities can be obtained by repeating experiments with input
signals having different amplitudes.

Normalization and Scaling

Having obtained a model, it is often useful to scale the variables by introducing
dimension-free variables. Such a procedure can often simplify the equations for a
system by reducing the number of parameters and reveal interesting properties of
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the model. Scaling can also improve the numerical conditioning of the model to
allow faster and more accurate simulations.

The procedure of scaling is straightforward: choose units for each indepen-
dent variable and introduce new variables by dividing the variables by the chosen
normalization unit. We illustrate the procedure with two examples.

Example 2.6 Spring—mass system
Consider again the spring—mass system introduced earlier. Neglecting the damping,
the system is described by

mq + kq = u.

The model has two parameters m and k. To normalize the model we introduce
dimension-free variables x = ¢/l and © = wyt, where wg = /k/m and [ is the
chosen length scale. We scale force by mlw] and introduce v = u/(mlw}). The
scaled equation then becomes

d’x d*q)l 1

_— = —k = — ,

dt?  d(wot)? mla)%( g +u) rtv
which is the normalized undamped spring—mass system. Notice that the normalized
model has no parameters, while the original model had two parameters m and k.
Introducing the scaled, dimension-free state variables z; = x = ¢// and z, =
dx/dt = q/(lwp), the model can be written as

i 2] =15 o) (2] L)

This simple linear equation describes the dynamics of any spring—mass system,
independent of the particular parameters, and hence gives us insight into the fun-
damental dynamics of this oscillatory system. To recover the physical frequency of
oscillation or its magnitude, we must invert the scaling we have applied. \%

Example 2.7 Balance system
Consider the balance system described in Section 2.1. Neglecting damping by
putting ¢ = 0 and y = 0 in equation (2.9), the model can be written as

d? d*0 d
(M + m)d—;zl - mlcoseﬁ +ml sina9(d—j)2 =F,
d? d*0
—mlcosO—L + (J + mi) = = mglsinf = 0.

dr?

Letwg = /mgl/(J + mi?), choose the length scale as [, let the time scale be 1 /awy,
choose the force scale as (M + m)lw} and introduce the scaled variables 7 = wyt,
x=gq/landu = F/((M + m)l]). The equations then become
d*x d?*o do\2 d*x  d*0
— —oacost— sin@(—) =u, —pfcosd——+ — —sinfd =0,
a2~ ® dz? to dt ! b dr? +d12
where o = m /(M +m) and B = ml?/(J +ml?). Notice that the original model has
five parameters m, M, J,[ and g but the normalized model has only two parameters
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Figure 2.15: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a), where the solid line indicates the nominal input/output relationship and the
dashed lines indicate the range of possible uncertainty. The uncertainty lemon [83] in (b)
is one way to capture uncertainty in dynamical systems emphasizing that a model is valid
only in some amplitude and frequency ranges. In (c) a model is represented by a nominal
model M and another model A representing the uncertainty analogous to the representation
of parameter uncertainty.

o and B.1f M > m and mI*> > J,we get o ~ 0 and f ~ 1 and the model can be
approximated by

d’x d?o

— =u, —— —sinf = ucosé.

dz? dz?
The model can be interpreted as a mass combined with an inverted pendulum driven
by the same input. \%

Model Uncertainty

Reducing uncertainty is one of the main reasons for using feedback, and it is there-
fore important to characterize uncertainty. When making measurements, there is a
good tradition to assign both a nominal value and a measure of uncertainty. It is
useful to apply the same principle to modeling, but unfortunately it is often difficult
to express the uncertainty of a model quantitatively.

For a static system whose input/output relation can be characterized by a func-
tion, uncertainty can be expressed by an uncertainty band as illustrated in Fig-
ure 2.15a. At low signal levels there are uncertainties due to sensor resolution,
friction and quantization. Some models for queuing systems or cells are based on
averages that exhibit significant variations for small populations. At large signal
levels there are saturations or even system failures. The signal ranges where a model
is reasonably accurate vary dramatically between applications, but it is rare to find
models that are accurate for signal ranges larger than 10%.

Characterization of the uncertainty of a dynamic model is much more difficult.
We can try to capture uncertainties by assigning uncertainties to parameters of
the model, but this is often not sufficient. There may be errors due to phenomena
that have been neglected, e.g., small time delays. In control the ultimate test is
how well a control system based on the model performs, and time delays can be
important. There is also a frequency aspect. There are slow phenomena, such as
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aging, that can cause changes or drift in the systems. There are also high-frequency
effects: a resistor will no longer be a pure resistance at very high frequencies, and
a beam has stiffness and will exhibit additional dynamics when subject to high-
frequency excitation. The uncertainty lemon [83] shown in Figure 2.15b is one way
to conceptualize the uncertainty of a system. It illustrates that a model is valid only
in certain amplitude and frequency ranges.

We will introduce some formal tools for representing uncertainty in Chapter 12
using figures such as Figure 2.15c. These tools make use of the concept of a transfer
function, which describes the frequency response of an input/output system. For
now, we simply note that one should always be careful to recognize the limits of
a model and not to make use of models outside their range of applicability. For
example, one can describe the uncertainty lemon and then check to make sure that
signals remain in this region. In early analog computing, a system was simulated
using operational amplifiers, and it was customary to give alarms when certain
signal levels were exceeded. Similar features can be included in digital simulation.

2.4 Modeling Examples

In this section we introduce additional examples that illustrate some of the different
types of systems for which one can develop differential equation and difference
equation models. These examples are specifically chosen from a range of different
fields to highlight the broad variety of systems to which feedback and control
concepts can be applied. A more detailed set of applications that serve as running
examples throughout the text are given in the next chapter.

Motion Control Systems

Motion control systems involve the use of computation and feedback to control the
movement of a mechanical system. Motion control systems range from nanopo-
sitioning systems (atomic force microscopes, adaptive optics), to control systems
for the read/write heads in a disk drive of a CD player, to manufacturing systems
(transfer machines and industrial robots), to automotive control systems (antilock
brakes, suspension control, traction control), to air and space flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 2.8 Vehicle steering—the bicycle model
A common problem in motion control is to control the trajectory of a vehicle
through an actuator that causes a change in the orientation. A steering wheel on an
automobile and the front wheel of a bicycle are two examples, but similar dynamics
occur in the steering of ships or control of the pitch dynamics of an aircraft. In many
cases, we can understand the basic behavior of these systems through the use of a
simple model that captures the basic kinematics of the system.

Consider a vehicle with two wheels as shown in Figure 2.16. For the purpose of
steering we are interested in a model that describes how the velocity of the vehicle
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Figure 2.16: Vehicle steering dynamics. The left figure shows an overhead view of a vehicle
with four wheels. The wheel base is b and the center of mass at a distance a forward of the
rear wheels. By approximating the motion of the front and rear pairs of wheels by a single
front wheel and a single rear wheel, we obtain an abstraction called the bicycle model, shown
on the right. The steering angle is ¢ and the velocity at the center of mass has the angle a
relative the length axis of the vehicle. The position of the vehicle is given by (x, y) and the
orientation (heading) by 6.

depends on the steering angle ¢. To be specific, consider the velocity v at the center
of mass, a distance a from the rear wheel, and let b be the wheel base, as shown
in Figure 2.16. Let x and y be the coordinates of the center of mass, 6 the heading
angle and a the angle between the velocity vector v and the centerline of the vehicle.
Since b = r,tand and a = r, tan a, it follows that tan o = (a/b) tan  and we get
the following relation between o and the steering angle o:

atané)‘

o(0) = arctan( (2.23)

Assume that the wheels are rolling without slip and that the velocity of the rear
wheel is vg. The vehicle speed at its center of mass is v = vy/ cos a, and we find
that the motion of this point is given by

d 6
d—); =vcos(a+060)= DOM,

cosd (2.24)
dy sin (a + 0)

T vsin (o +60) = vy —

To see how the angle 4 is influenced by the steering angle, we observe from Fig-
ure 2.16 that the vehicle rotates with the angular velocity vg/r, around the point
O. Hence 40 vo v
i tan o. (2.25)
Equations (2.23)—(2.25) can be used to model an automobile under the assump-
tions that there is no slip between the wheels and the road and that the two front
wheels can be approximated by a single wheel at the center of the car. The as-
sumption of no slip can be relaxed by adding an extra state variable, giving a more
realistic model. Such a model also describes the steering dynamics of ships as well
as the pitch dynamics of aircraft and missiles. It is also possible to choose coor-



Modeling.tex, v1.169 2008/01/22 02:35:38 (murray)

2.4. MODELING EXAMPLES 53

y
F !
\ 2
N\ /
N / =
\&’/v’/
X Fl

(a) Harrier “jump jet” (b) Simplified model

—

—=

Figure 2.17: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) redirects its
engine thrust downward so that it can “hover” above the ground. Some air from the engine
is diverted to the wing tips to be used for maneuvering. As shown in (b), the net thrust on
the aircraft can be decomposed into a horizontal force F; and a vertical force F; acting at a
distance r from the center of mass.

dinates so that the reference point is at the rear wheels (corresponding to setting
o = 0), a model often referred to as the Dubins car [66].

Figure 2.16 represents the situation when the vehicle moves forward and has
front-wheel steering. The case when the vehicle reverses is obtained by changing
the sign of the velocity, which is equivalent to a vehicle with rear-wheel steering.

\%

Example 2.9 Vectored thrust aircraft

Consider the motion of vectored thrust aircraft, such as the Harrier “jump jet”
shown Figure 2.17a. The Harrier is capable of vertical takeoff by redirecting its
thrust downward and through the use of smaller maneuvering thrusters located on
its wings. A simplified model of the Harrier is shown in Figure 2.17b, where we
focus on the motion of the vehicle in a vertical plane through the wings of the
aircraft. We resolve the forces generated by the main downward thruster and the
maneuvering thrusters as a pair of forces F| and F; acting at a distance r below the
aircraft (determined by the geometry of the thrusters).

Let (x, y, 8) denote the position and orientation of the center of mass of the
aircraft. Let m be the mass of the vehicle, J the moment of inertia, g the gravitational
constant and ¢ the damping coefficient. Then the equations of motion for the vehicle
are given by

mx = Fycosd — F,sin0 — cx,
my = Fysin@ + F,cos —mg — cy, (2.26)

JéZI’Fl.

It is convenient to redefine the inputs so that the origin is an equilibrium point of the
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Figure 2.18: Schematic diagram of a queuing system. Messages arrive at rate A and are stored
in a queue. Messages are processed and removed from the queue at rate 4. The average size
of the queue is given by x € R.

system with zero input. Letting u; = F; and u, = F, — mg, the equations become

mxX = —mgsinf — cx + uy cos — u sinb,
my =mg(cos@ — 1) —cy + uy siné + u, cosb, (2.27)
J(9 =ru.

These equations describe the motion of the vehicle as a set of three coupled second-
order differential equations. \%

Information Systems

Information systems range from communication systems like the Internet to soft-
ware systems that manipulate data or manage enterprisewide resources. Feedback
is present in all these systems, and designing strategies for routing, flow control and
buffer management is a typical problem. Many results in queuing theory emerged
from design of telecommunication systems and later from development of the Inter-
net and computer communication systems [32, 127, 177]. Management of queues
to avoid congestion is a central problem and we will therefore start by discussing
the modeling of queuing systems.

Example 2.10 Queuing systems

A schematic picture of a simple queue is shown in Figure 2.18. Requests arrive
and are then queued and processed. There can be large variations in arrival rates
and service rates, and the queue length builds up when the arrival rate is larger
than the service rate. When the queue becomes too large, service is denied using
an admission control policy.

The system can be modeled in many different ways. One way is to model each
incoming request, which leads to an event-based model where the state is an integer
that represents the queue length. The queue changes when a request arrives or a
request is serviced. The statistics of arrival and servicing are typically modeled as
random processes. In many cases it is possible to determine statistics of quantities
like queue length and service time, but the computations can be quite complicated.

A significant simplification can be obtained by using a flow model. Instead
of keeping track of each request we instead view service and requests as flows,
similar to what is done when replacing molecules by a continuum when analyzing
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Figure 2.19: Queuing dynamics. (a) The steady-state queue length as a function of 4/t .
(b) The behavior of the queue length when there is a temporary overload in the system. The
solid line shows a realization of an event-based simulation, and the dashed line shows the
behavior of the flow model (2.29).

fluids. Assuming that the average queue length x is a continuous variable and that
arrivals and services are flows with rates 4 and x, the system can be modeled by
the first-order differential equation

dx

dt
where pmax is the maximum service rate and f(x) is a number between 0 and 1
that describes the effective service rate as a function of the queue length.

It is natural to assume that the effective service rate depends on the queue length
because larger queues require more resources. In steady state we have f(x) =
A/ tmax » and we assume that the queue length goes to zero when 4/t max goes to zero
and that it goes to infinity when A/t max goes to 1. This implies that f(0) = 0 and
that f(oco) = 1.In addition, if we assume that the effective service rate deteriorates
monotonically with queue length, then the function f(x) is monotone and concave.
A simple function that satisfies the basic requirements is f(x) = x/(1 + x), which
gives the model

A—p =2~ pmxf(x), x =0, (2.28)

dx X

7 =4 Hmax 2 (2.29)
This model was proposed by Agnew [5]. It can be shown that if arrival and ser-
vice processes are Poisson processes, the average queue length is given by equa-
tion (2.29) and that equation (2.29) is a good approximation even for short queue
lengths; see Tipper [193].

To explore the properties of the model (2.29) we will first investigate the equi-
librium value of the queue length when the arrival rate 4 is constant. Setting the
derivative dx /dt to zero in equation (2.29) and solving for x, we find that the queue
length x approaches the steady-state value

y)
Xe = ———.
‘ Mmax — A
Figure 2.19a shows the steady-state queue length as a function of A/ yax, the
effective service rate excess. Notice that the queue length increases rapidly as 4

(2.30)
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Figure 2.20: Illustration of feedback in the virtual memory system of the IBM/370. (a)
The effect of feedback on execution times in a simulation, following [43]. Results with no
feedback are shown with o, and results with feedback with x. Notice the dramatic decrease
in execution time for the system with feedback. (b) How the three states are obtained based
on process measurements.

approaches i max. To have a queue length less than 20 requires 4/ max < 0.95. The
average time to service arequestis 7y = (x + 1)/t max, and it increases dramatically
as A approaches #max-

Figure 2.19b illustrates the behavior of the server in a typical overload situation.
The maximum service rate is fmax = 1, and the arrival rate starts at A = 0.5. The
arrival rate is increased to A = 4 at time 20, and it returns to 4 = 0.5 at time 25.
The figure shows that the queue builds up quickly and clears very slowly. Since the
response time is proportional to queue length, it means that the quality of service
is poor for a long period after an overload. This behavior is called the rush-hour
effect and has been observed in web servers and many other queuing systems such
as automobile traffic.

The dashed line in Figure 2.19b shows the behavior of the flow model, which
describes the average queue length. The simple model captures behavior qualita-
tively, but there are variations from sample to sample when the queue length is
short. \%

Many complex systems use discrete control actions. Such systems can be mod-
eled by characterizing the situations that correspond to each control action, as
illustrated in the following example.

Example 2.11 Virtual memory paging control

An early example of the use of feedback in computer systems was applied in the
operating system OS/VS for the IBM 370 [43,55]. The system used virtual memory,
which allows programs to address more memory than is physically available as fast
memory. Data in current fast memory (random access memory, RAM) is accessed
directly, but data that resides in slower memory (disk) is automatically loaded
into fast memory. The system is implemented in such a way that it appears to
the programmer as a single large section of memory. The system performed very
well in many situations, but very long execution times were encountered in overload
situations, as shown by the open circles in Figure 2.20a. The difficulty was resolved
with a simple discrete feedback system. The load of the central processing unit
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Figure 2.21: Consensus protocols for sensor networks. (a) A simple sensor network with
five nodes. In this network, node 1 communicates with node 2 and node 2 communicates
with nodes 1, 3,4, 5, etc. (b) A simulation demonstrating the convergence of the consensus
protocol (2.31) to the average value of the initial conditions.

(CPU) was measured together with the number of page swaps between fast memory
and slow memory. The operating region was classified as being in one of three
states: normal, underload or overload. The normal state is characterized by high
CPU activity, the underload state is characterized by low CPU activity and few
page replacements, the overload state has moderate to low CPU load but many
page replacements; see Figure 2.20b. The boundaries between the regions and the
time for measuring the load were determined from simulations using typical loads.
The control strategy was to do nothing in the normal load condition, to exclude a
process from memory in the overload condition and to allow a new process or a
previously excluded process in the underload condition. The crosses in Figure 2.20a
show the effectiveness of the simple feedback system in simulated loads. Similar
principles are used in many other situations, e.g., in fast, on-chip cache memory.

\%

Example 2.12 Consensus protocols in sensor networks

Sensor networks are used in a variety of applications where we want to collect
and aggregate information over a region of space using multiple sensors that are
connected together via a communications network. Examples include monitoring
environmental conditions in a geographical area (or inside a building), monitoring
the movement of animals or vehicles and monitoring the resource loading across
a group of computers. In many sensor networks the computational resources are
distributed along with the sensors, and it can be important for the set of distributed
agents to reach a consensus about a certain property, such as the average temperature
in a region or the average computational load among a set of computers.

We model the connectivity of the sensor network using a graph, with nodes
corresponding to the sensors and edges corresponding to the existence of a direct
communications link between two nodes. We use the notation \; to represent the
set of neighbors of a node i. For example, in the network shown in Figure 2.21a
N, ={1,3,4,5}and N3 = {2, 4}.

To solve the consensus problem, let x; be the state of the ith sensor, correspond-
ing to that sensor’s estimate of the average value that we are trying to compute. We
initialize the state to the value of the quantity measured by the individual sensor.
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The consensus protocol (algorithm) can now be realized as a local update law

xilk 4+ 1= xikl +y D (xjlk] = xi[k]). (2.31)
jeN;

This protocol attempts to compute the average by updating the local state of each
agent based on the value of its neighbors. The combined dynamics of all agents can
be written in the form

x[k + 1] = x[k] — y (D — A)x[k], (2.32)

where A is the adjacency matrix and D is a diagonal matrix with entries corre-
sponding to the number of neighbors of each node. The constant y describes the
rate at which the estimate of the average is updated based on information from
neighboring nodes. The matrix L := D — A is called the Laplacian of the graph.
The equilibrium points of equation (2.32) are the set of states such that x,[k +
1] = x.[k]. It can be shown that x, = (a, a, ..., @) is an equilibrium state for the
system, corresponding to each sensor having an identical estimate o for the average.
Furthermore, we can show that a is indeed the average value of the initial states.
Since there can be cycles in the graph, it is possible that the state of the system
could enter into an infinite loop and never converge to the desired consensus state.
A formal analysis requires tools that will be introduced later in the text, but it can
be shown that for any connected graph we can always find a y such that the states
of the individual agents converge to the average. A simulation demonstrating this
property is shown in Figure 2.21b. \%

Biological Systems

Biological systems provide perhaps the richest source of feedback and control ex-
amples. The basic problem of homeostasis, in which a quantity such as temperature
or blood sugar level is regulated to a fixed value, is but one of the many types of com-
plex feedback interactions that can occur in molecular machines, cells, organisms
and ecosystems.

Example 2.13 Transcriptional regulation

Transcription is the process by which messenger RNA (mRNA) is generated from a
segment of DNA. The promoter region of a gene allows transcription to be controlled
by the presence of other proteins, which bind to the promoter region and either
repress or activate RNA polymerase, the enzyme that produces an mRNA transcript
from DNA. The mRNA is then translated into a protein according to its nucleotide
sequence. This process is illustrated in Figure 2.22.

A simple model of the transcriptional regulation process is through the use of a
Hill function [56, 154]. Consider the regulation of a protein A with a concentration
given by p, and a corresponding mRNA concentration m,. Let B be a second
protein with concentration pj that represses the production of protein A through
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RNA
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Figure 2.22: Biological circuitry. The cell on the left is a bovine pulmonary cell, stained so
that the nucleus, actin and chromatin are visible. The figure on the right gives an overview
of the process by which proteins in the cell are made. RNA is transcribed from DNA by an
RNA polymerase enzyme. The RNA is then translated into a protein by an organelle called
a ribosome.

transcriptional regulation. The resulting dynamics of p, and m, can be written as

dma Qgb dpa
= a0 — Jalta, = PaMg — 5a as 2.33
dt 1+kabp’;’“’+a0 Vall dt Pam P (2.33)

where a5, + 0,49 is the unregulated transcription rate, y, represents the rate of degra-
dation of mRNA, a,;,, k,» and n,;, are parameters that describe how B represses A,
P represents the rate of production of the protein from its corresponding mRNA
and 0, represents the rate of degradation of the protein A. The parameter a9 de-
scribes the “leakiness” of the promoter, and n,;, is called the Hill coefficient and
relates to the cooperativity of the promoter.

A similar model can be used when a protein activates the production of another
protein rather than repressing it. In this case, the equations have the form

dm, . aabkabpzab dpa

- a0 — Jalta, = Pa a—Csa as 2.34
dt 1+ka;,p,’,‘“”+a0 Valll dt Pam P (2.34)

where the variables are the same as described previously. Note that in the case of
the activator, if pj, is zero, then the production rate is a,o (versus o, + a4 for the
repressor). As p; gets large, the first term in the expression for m, approaches 1
and the transcription rate becomes o, + a,0 (versus o, for the repressor). Thus
we see that the activator and repressor act in opposite fashion from each other.

As an example of how these models can be used, we consider the model of a
“repressilator,” originally due to Elowitz and Leibler [71]. The repressilator is a
synthetic circuit in which three proteins each repress another in a cycle. This is
shown schematically in Figure 2.23a, where the three proteins are TetR, 4 cl and
Lacl. The basic idea of the repressilator is that if TetR is present, then it represses
the production of Acl. If Acl is absent, then Lacl is produced (at the unregulated
transcription rate), which in turn represses TetR. Once TetR is repressed, then A cl is
no longer repressed, and so on. If the dynamics of the circuit are designed properly,
the resulting protein concentrations will oscillate.

We can model this system using three copies of equation (2.33), with A and
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Figure 2.23: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simple model for the repressilator, showing
the oscillation of the individual protein concentrations. (Figure courtesy M. Elowitz.)

B replaced by the appropriate combination of TetR, cI and Lacl. The state of the
system is then given by x = (MTer, PTeR> Mcl> Pels Miacl> PLacl). Figure 2.23b
shows the traces of the three protein concentrations for parametersn = 2,a = 0.5,
k=625x10"*"0p=5x10"%y =58 x 1073, =0.12and 6 = 1.2 x 1073
with initial conditions x(0) = (1, 0, 0, 200, 0, 0) (following [71]). \%

Example 2.14 Wave propagation in neuronal networks
The dynamics of the membrane potential in a cell are a fundamental mechanism
in understanding signaling in cells, particularly in neurons and muscle cells. The
Hodgkin—Huxley equations give a simple model for studying propagation waves in
networks of neurons. The model for a single neuron has the form

dv

CE = —Ina — Ix — lieak + Iinput,

where V is the membrane potential, C is the capacitance, In, and Ik are the current
caused by the transport of sodium and potassium across the cell membrane, /jeqx
is a leakage current and Iipp is the external stimulation of the cell. Each current

obeys Ohm’s law, i.e.,
I =g(V—-E),

where g is the conductance and E is the equilibrium voltage. The equilibrium
voltage is given by Nernst’s law,

where R is Boltzmann’s constant, 7" is the absolute temperature, F' is Faraday’s con-
stant, n is the charge (or valence) of the ion and ¢; and ¢, are the ion concentrations
inside the cell and in the external fluid. At 20 °C we have RT /F = 20 mV.

The Hodgkin—Huxley model was originally developed as a means to predict the
quantitative behavior of the squid giant axon [100]. Hodgkin and Huxley shared
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the 1963 Nobel Prize in Physiology (along with J. C. Eccles) for analysis of the
electrical and chemical events in nerve cell discharges. The voltage clamp described
in Section 1.3 was a key element in Hodgkin and Huxley’s experiments. \%

2.5 Further Reading

Modeling is ubiquitous in engineering and science and has a long history in applied
mathematics. For example, the Fourier series was introduced by Fourier when he
modeled heat conduction in solids [76]. Models of dynamics have been developed
in many different fields, including mechanics [12, 86], heat conduction [50], flu-
ids [37], vehicles [1,38,69],robotics [156, 183], circuits [92], power systems [132],
acoustics [30] and micromechanical systems [179]. Control theory requires mod-
eling from many different domains, and most control theory texts contain several
chapters on modeling using ordinary differential equations and difference equations
(see, for example, [79]). A classic book on the modeling of physical systems, espe-
cially mechanical, electrical and thermofluid systems, is Cannon [49]. The book by
Aris [11] is highly original and has a detailed discussion of the use of dimension-
free variables. Two of the authors’ favorite books on modeling of biological systems
are J. D. Murray [154] and Wilson [203].

Exercises
2.1 (Chain of integrators form) Consider the linear ordinary differential equa-
tion (2.7). Show that by choosing a state space representation with x; = y, the
dynamics can be written as
0 1 0 0
- . 0
A=| 0 - 0 =], c=[1 ... 00].
0 e 0 1 :
—a, —da,_| —a 1

This canonical form is called the chain of integrators form.

2.2 (Inverted pendulum) Use the equations of motion for a balance system to derive
a dynamic model for the inverted pendulum described in Example 2.2 and verify
that for small 6 the dynamics are approximated by equation (2.10).

2.3 (Disrete-time dynamics) Consider the following discrete-time system
xlk + 1] = Ax[k] + Bulk], ylk] = Cxlk],

where

c= |5 A= @ g |9, c:[loy
X2 0 an 1
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In this problem, we will explore some of the properties of this discrete-time system
as a function of the parameters, the initial conditions and the inputs.

(a) For the case when a;; = 0 and u = 0, give a closed form expression for the
output of the system.

(b) A discrete system is in equilibrium when x[k + 1] = x[k] for all k. Letu =r
be a constant input and compute the resulting equilibrium point for the system.
Show that if |a;;| < 1 for all i, all initial conditions give solutions that converge to
the equilibrium point.

(c) Write a computer program to plot the output of the system in response to a unit
step input, u[k] = 1,k > 0. Plot the response of your system with x[0] = 0 and A
givenby a;; =0.5,a;; =1 and a = 0.25.

2.4 (Keynesian economics) Keynes’ simple model for an economy is given by
Y[k] = Clk]l + I[k] + Glk],

where Y, C, I and G are gross national product (GNP), consumption, investment
and government expenditure for year k. Consumption and investment are modeled
by difference equations of the form

Clk+ 1l =aYl[k]l, Ilk+1]=>b(Clk+ 1] - C[k]),

where a and b are parameters. The first equation implies that consumption increases
with GNP but that the effect is delayed. The second equation implies that investment
is proportional to the rate of change of consumption.

Show that the equilibrium value of the GNP is given by

1
Y, = 1T(I +G,),
where the parameter 1/(1 — a) is the Keynes multiplier (the gain from 7 or G to
Y). With a = 0.25 an increase of government expenditure will result in a fourfold

increase of GNP. Also show that the model can be written as the following discrete-
time state model:

Clk+1 Clk]
(] = Lo ) ] =[] om
Y[kl = C[k] + I[k] + GIK].

2.5 (Least squares system identification) Consider a nonlinear differential equation
that can be written in the form

LS o)
t_l.zlal i(X),

where f;(x) are known nonlinear functions and a; are unknown, but constant,
parameters. Suppose that we have measurements (or estimates) of the full state x
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at time instants f1, fp, ..., ty, with N > M. Show that the parameters a; can be

determined by finding the least squares solution to a linear equation of the form
Ho =b,

where o € R is the vector of all parameters and H € RY*M and b € R are
appropriately defined.

2.6 (Normalized oscillator dynamics) Consider a damped spring—mass system with
dynamics
mg +cq+kqg =F.

Let wy = +/k/m be the natural frequency and ¢ = ¢/(2+/km) be the damping
ratio.

(a) Show that by rescaling the equations, we can write the dynamics in the form
§ + 20 eng + wjq = wju, (2.35)

where u = F/ k. This form of the dynamics is that of a linear oscillator with natural
frequency wy and damping ratio (.

(b) Show that the system can be further normalized and written in the form

dZ] dZZ

= =12, =7 =2 ) 2.36

PR P 21— 202+ (2.36)
The essential dynamics of the system are governed by a single damping parameter
¢.The Q-value defined as Q = 1/2¢ is sometimes used instead of (.

2.7 (Electric generator) An electric generator connected to a strong power grid can
be modeled by a momentum balance for the rotor of the generator:
d*e EV .
JW =P,— P, =P, — 751n¢,

where J is the effective moment of inertia of the generator, ¢ the angle of rotation,
P,, the mechanical power that drives the generator, P, is the active electrical power,
E the generator voltage, V the grid voltage and X the reactance of the line. Assuming
that the line dynamics are much faster than the rotor dynamics, P, = VI =
(EV/X)sin @, where [ is the current component in phase with the voltage E and
@ is the phase angle between voltages E and V. Show that the dynamics of the
electric generator have a normalized form that is similar to the inverted pendulum
in Example 2.2 with no damping.

2.8 (Admission control for a queue) The long delays created by temporary overloads
can be reduced by rejecting requests when the queue gets large. This allows requests
that are accepted to be serviced quickly and requests that cannot be accommodated
to receive a rejection quickly so that they can try another server. Consider a simple
proportional control with saturation, described by

u= Sat(o,l)(k(l’ — X)), (2.37)
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where sat(, ;) is defined in equation (3.9) and r is the desired (reference) queue
length. Use a simulation to show that this controller reduces the rush-hour effect
and explain how the choice of r affects the system dynamics.

2.9 (Biological switch) A genetic switch can be formed by connecting two repres-
sors together in a cycle as shown below.

u.%g '/)Fuz ﬁ -

Luz

Using the models from Example 2.13 —assuming that the parameters are the same
for both genes and that the mRNA concentrations reach steady state quickly —show
that the dynamics can be written in normalized coordinates as

Ky, Yk
dr_l—i-zg : b d1_1+z’11

— 22—y, (2.38)

where z; and z; are scaled versions of the protein concentrations and the time scale
has also been changed. Show that x4 =~ 200 using the parameters in Example 2.13,
and use simulations to demonstrate the switch-like behavior of the system.

2.10 (Motor drive) Consider a system consisting of a motor driving two masses that
are connected by a torsional spring, as shown in the diagram below.

?1 ®2

— Motor

(OJ] 2]
Ji J>
This system can represent a motor with a flexible shaft that drives a load. Assuming

that the motor delivers a torque that is proportional to the current, the dynamics of
the system can be described by the equations

d? d d
1 P —I—c( P1 ¢2) F k(g1 — ) = k1,
dt? dt dt
P J J (2.39)
#2 P2 ag
-z L= k(p, — =T,
22 +C( 7 dt)+ (2 — 1) =Ta.

Similar equations are obtained for a robot with flexible arms and for the arms of
DVD and optical disk drives.

Derive a state space model for the system by introducing the (normalized)
state variables x; = @1, X, = @2, X3 = w;/wy, and x4 = w,/wy, where wy =
Vk(J1 + J»)/(J1J2) is the undamped natural frequency of the system when the
control signal is zero.
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Chapter Three

Examples

... Don’t apply any model until you understand the simplifying assumptions on which it is
based, and you can test their validity. Catch phrase: use only as directed. Don’t limit yourself
to a single model: More than one model may be useful for understanding different aspects of
the same phenomenon. Catch phrase: legalize polygamy.”

Saul Golomb, “Mathematical Models— Uses and Limitations,” 1970 [87].

In this chapter we present a collection of examples spanning many different
fields of science and engineering. These examples will be used throughout the
text and in exercises to illustrate different concepts. First-time readers may wish to
focus on only a few examples with which they have had the most prior experience or
insight to understand the concepts of state, input, output and dynamics in a familiar
setting.

3.1 Cruise Control

The cruise control system of a car is a common feedback system encountered in
everyday life. The system attempts to maintain a constant velocity in the presence
of disturbances primarily caused by changes in the slope of a road. The controller
compensates for these unknowns by measuring the speed of the car and adjusting
the throttle appropriately.

To model the system we start with the block diagram in Figure 3.1. Let v be
the speed of the car and v, the desired (reference) speed. The controller, which
typically is of the proportional-integral (PI) type described briefly in Chapter 1,
receives the signals » and v, and generates a control signal u that is sent to an
actuator that controls the throttle position. The throttle in turn controls the torque
T delivered by the engine, which is transmitted through the gears and the wheels,
generating a force F that moves the car. There are disturbance forces F; due to
variations in the slope of the road, the rolling resistance and aerodynamic forces.
The cruise controller also has a human—machine interface that allows the driver
to set and modify the desired speed. There are also functions that disconnect the
cruise control when the brake is touched.

The system has many individual components —actuator, engine, transmission,
wheels and car body —and a detailed model can be very complicated. In spite of
this, the model required to design the cruise controller can be quite simple.

To develop a mathematical model we start with a force balance for the car body.
Let v be the speed of the car, m the total mass (including passengers), F' the force
generated by the contact of the wheels with the road, and F; the disturbance force
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Figure 3.1: Block diagram of a cruise control system for an automobile. The throttle-
controlled engine generates a torque 7" that is transmitted to the ground through the gearbox
and wheels. Combined with the external forces from the environment, such as aerodynamic
drag and gravitational forces on hills, the net force causes the car to move. The velocity
of the car v is measured by a control system that adjusts the throttle through an actuation
mechanism. A driver interface allows the system to be turned on and off and the reference
speed v, to be established.

due to gravity, friction and aerodynamic drag. The equation of motion of the car is
simply

—=F—F,. 3.1
m— d (3.1)

The force F is generated by the engine, whose torque is proportional to the rate
of fuel injection, which is itself proportional to a control signal 0 < u < 1 that
controls the throttle position. The torque also depends on engine speed w. A simple
representation of the torque at full throttle is given by the torque curve

2
T(w) =T, 1—ﬂ(3— 1) , (3.2)
where the maximum torque 7}, is obtained at engine speed w,, . Typical parameters
are 7,, = 190 Nm, w,, = 420 rad/s (about 4000 RPM) and f = 0.4. Let n be
the gear ratio and r the wheel radius. The engine speed is related to the velocity

through the expression
n
®= -0 =:ay,
r

and the driving force can be written as
F= ﬂT(a)) = o,uT (a,v).
r

Typical values of a,, for gears 1 through 5 are a; = 40,0, = 25,03 = 16, a4 = 12
and a5 = 10. The inverse of a,, has a physical interpretation as the effective wheel
radius. Figure 3.2 shows the torque as a function of engine speed and vehicle speed.
The figure shows that the effect of the gear is to “flatten” the torque curve so that
an almost full torque can be obtained almost over the whole speed range.

The disturbance force F; has three major components: F,, the forces due to
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Figure 3.2: Torque curves for typical car engine. The graph on the left shows the torque
generated by the engine as a function of the angular velocity of the engine, while the curve
on the right shows torque as a function of car speed for different gears.

gravity; F,,the forces due to rolling friction; and F,, the aerodynamic drag. Letting
the slope of the road be @, gravity gives the force F; = mgsin@, as illustrated in
Figure 3.3a, where g = 9.8 m/s” is the gravitational constant. A simple model of
rolling friction is

F, = mgC, sgn(v),

where C, is the coefficient of rolling friction and sgn(v) is the sign of v (£1) or
zero if o = 0. A typical value for the coefficient of rolling friction is C, = 0.01.
Finally, the aerodynamic drag is proportional to the square of the speed:

1 2
Fa = EpCdAU ,

where p is the density of air, C, is the shape-dependent aerodynamic drag coefficient
and A is the frontal area of the car. Typical parameters are p = 1.3 kg/m*,Cy = 0.32
and A =24 m’.

Summarizing, we find that the car can be modeled by
dv 1 2 .
mE = o,uT (a,v) —mgC, sgn(v) — EpCdAv —mgsind, (3.3)

where the function 7 is given by equation (3.2). The model (3.3) is a dynamical
system of first order. The state is the car velocity v, which is also the output. The
input is the signal u that controls the throttle position, and the disturbance is the
force F,, which depends on the slope of the road. The system is nonlinear because
of the torque curve, the gravity term and the nonlinear character of rolling friction
and aerodynamic drag. There can also be variations in the parameters; e.g., the mass
of the car depends on the number of passengers and the load being carried in the
car.

We add to this model a feedback controller that attempts to regulate the speed
of the car in the presence of disturbances. We shall use a proportional-integral
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Figure 3.3: Car with cruise control encountering a sloping road. A schematic diagram is
shown in (a), and (b) shows the response in speed and throttle when a slope of 4° is encoun-
tered. The hill is modeled as a net change of 4° in hill angle €, with a linear change in the
angle between t = 5 and 1 = 6. The PI controller has proportional gain is k, = 0.5, and the
integral gain is k; = 0.1.

controller, which has the form

u(t) =kpe(t) + k; /[ e(r)dr.
0

This controller can itself be realized as an input/output dynamical system by defin-
ing a controller state z and implementing the differential equation

dz

dr
where v, is the desired (reference) speed. As discussed briefly in Section 1.5, the
integrator (represented by the state z) ensures that in steady state the error will be
driven to zero, even when there are disturbances or modeling errors. (The design of
PI controllers is the subject of Chapter 10.) Figure 3.3b shows the response of the
closed loop system, consisting of equations (3.3) and (3.4), when it encounters a
hill. The figure shows that even if the hill is so steep that the throttle changes from
0.17 to almost full throttle, the largest speed error is less than 1 m/s, and the desired
velocity is recovered after 20 s.

Many approximations were made when deriving the model (3.3). It may seem
surprising that such a seemingly complicated system can be described by the simple
model (3.3). It is important to make sure that we restrict our use of the model to
the uncertainty lemon conceptualized in Figure 2.15b. The model is not valid for
very rapid changes of the throttle because we have ignored the details of the engine
dynamics, neither is it valid for very slow changes because the properties of the
engine will change over the years. Nevertheless the model is very useful for the
design of a cruise control system. As we shall see in later chapters, the reason for
this is the inherent robustness of feedback systems: even if the model is not perfectly
accurate, we can use it to design a controller and make use of the feedback in the

v, — 0, u=k,v, —v)+kz, 34
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Figure 3.4: Finite state machine for cruise control system. The figure on the left shows
some typical buttons used to control the system. The controller can be in one of four modes,
corresponding to the nodes in the diagram on the right. Transition between the modes is
controlled by pressing one of the five buttons on the cruise control interface: on, off, set,
resume or cancel.

controller to manage the uncertainty in the system.

The cruise control system also has a human—machine interface that allows the
driver to communicate with the system. There are many different ways to implement
this system; one version is illustrated in Figure 3.4. The system has four buttons:
on-off, set/decelerate, resume/accelerate and cancel. The operation of the system
is governed by a finite state machine that controls the modes of the PI controller
and the reference generator. Implementation of controllers and reference generators
will be discussed more fully in Chapter 10.

The use of control in automotive systems goes well beyond the simple cruise
control system described here. Applications include emissions control, traction
control, power control (especially in hybrid vehicles) and adaptive cruise control.
Many automotive applications are discussed in detail in the book by Kiencke and
Nielsen [124] and in the survey papers by Powers et al. [22, 166].

3.2 Bicycle Dynamics

The bicycle is an interesting dynamical system with the feature that one of its key
properties is due to a feedback mechanism that is created by the design of the front
fork. A detailed model of a bicycle is complex because the system has many degrees
of freedom and the geometry is complicated. However, a great deal of insight can
be obtained from simple models.

To derive the equations of motion we assume that the bicycle rolls on the hor-
izontal xy plane. Introduce a coordinate system that is fixed to the bicycle with
the £-axis through the contact points of the wheels with the ground, the #-axis
horizontal and the (-axis vertical, as shown in Figure 3.5. Let vy be the velocity of
the bicycle at the rear wheel, b the wheel base, ¢ the tilt angle and J the steering
angle. The coordinate system rotates around the point O with the angular veloc-
ity @ = vod/b, and an observer fixed to the bicycle experiences forces due to the
motion of the coordinate system.

The tilting motion of the bicycle is similar to an inverted pendulum, as shown in
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Figure 3.5: Schematic views of a bicycle. The steering angle is ¢, and the roll angle is ¢ . The
center of mass has height / and distance a from a vertical through the contact point P; of the
rear wheel. The wheel base is b, and the trail is c.

the rear view in Figure 3.5b. To model the tilt, consider the rigid body obtained when
the wheels, the rider and the front fork assembly are fixed to the bicycle frame. Let
m be the total mass of the system, J the moment of inertia of this body with respect
to the &-axis and D the product of inertia with respect to the £¢ axes. Furthermore,
let the ¢ and ¢ coordinates of the center of mass with respect to the rear wheel
contact point, Py, be a and h, respectively. We have J ~ mh?* and D = mah. The
torques acting on the system are due to gravity and centripetal action. Assuming
that the steering angle J is small, the equation of motion becomes

ngo Doy do . mvgh

0. 3.5)

The term mgh sin ¢ is the torque generated by gravity. The terms containing ¢ and
its derivative are the torques generated by steering, with the term (Dvg/b) do/dt
due to inertial forces and the term (mvgh /b) d due to centripetal forces.

The steering angle is influenced by the torque the rider applies to the handle
bar. Because of the tilt of the steering axis and the shape of the front fork, the
contact point of the front wheel with the road P; is behind the axis of rotation of the
front wheel assembly, as shown in Figure 3.5c. The distance ¢ between the contact
point of the front wheel P, and the projection of the axis of rotation of the front
fork assembly Ps is called the trail. The steering properties of a bicycle depend
critically on the trail. A large trail increases stability but makes the steering less
agile.

A consequence of the design of the front fork is that the steering angle J is
influenced both by steering torque 7 and by the tilt of the frame ¢. This means
that a bicycle with a front fork is a feedback system as illustrated by the block
diagram in Figure 3.6. The steering angle J influences the tilt angle ¢, and the
tilt angle influences the steering angle, giving rise to the circular causality that is
characteristic of reasoning about feedback. For a front fork with a positive trail, the
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Figure 3.6: Block diagram of a bicycle with a front fork. The steering torque applied to the
handlebars is T, the roll angle is ¢ and the steering angle is J. Notice that the front fork
creates a feedback from the roll angle ¢ to the steering angle ¢ that under certain conditions
can stabilize the system.

bicycle will steer into the lean, creating a centrifugal force that attempts to diminish
the lean. Under certain conditions, the feedback can actually stabilize the bicycle.
A crude empirical model is obtained by assuming that the block B can be modeled

as the static system
o0=kT —kyp. (3.6)

This model neglects the dynamics of the front fork, the tire—road interaction and
the fact that the parameters depend on the velocity. A more accurate model, called
the Whipple model, is obtained using the rigid-body dynamics of the front fork and
the frame. Assuming small angles, this model becomes

i) senfi] g [} o

where the elements of the 2 x 2 matrices M, C, K, and K, depend on the geometry
and the mass distribution of the bicycle. Note that this has a form somewhat similar
to that of the spring—mass system introduced in Chapter 2 and the balance system in
Example 2.1. Even this more complex model is inaccurate because the interaction
between the tire and the road is neglected; taking this into account requires two
additional state variables. Again, the uncertainty lemon in Figure 2.15b provides a
framework for understanding the validity of the model under these assumptions.

Interesting presentations on the development of the bicycle are given in the
books by D. Wilson [202] and Herlihy [98]. The model (3.7) was presented in a
paper by Whipple in 1899 [197]. More details on bicycle modeling are given in the
paper [17], which has many references.

3.3 Operational Amplifier Circuits

An operational amplifier (op amp) is a modern implementation of Black’s feedback
amplifier. It is a universal component that is widely used for instrumentation, con-
trol and communication. It is also a key element in analog computing. Schematic
diagrams of the operational amplifier are shown in Figure 3.7. The amplifier has one
inverting input (v_), one noninverting input (v4) and one output (voy). There are
also connections for the supply voltages, e_ and e, and a zero adjustment (offset
null). A simple model is obtained by assuming that the input currents i_ and i are
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Figure 3.7: An operational amplifier and two schematic diagrams. (a) The amplifier pin
connections on an integrated circuit chip. (b) A schematic with all connections. (c) Only the
signal connections.

zero and that the output is given by the static relation

Vout = $al(y o) (K04 —v2)), (3.8)
where sat denotes the saturation function
a ifx <a
satp)(x) = 1x ifa<x<b 3.9
b ifx > b.
We assume that the gain & is large, in the range of 10°~10%, and the voltages v,

and v,y satisfy
€— < Umin < Omax < €4

and hence are in the range of the supply voltages. More accurate models are obtained
by replacing the saturation function with a smooth function as shown in Figure 3.8.
For small input signals the amplifier characteristic (3.8) is linear:

Vout = k(vy —v_) =: —kv. (3.10)

Since the open loop gain k is very large, the range of input signals where the system
is linear is very small.

Dout

Umax

vy —U_

Umin

Figure 3.8: Input/output characteristics of an operational amplifier. The differential input is
given by vy — v_. The output voltage is a linear function of the input in a small range around
0, with saturation at v,,;;, and v, . In the linear regime the op amp has high gain.
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Figure 3.9: Stable amplifier using an op amp. The circuit (a) uses negative feedback around
an operational amplifier and has a corresponding block diagram (b). The resistors R, and R,
determine the gain of the amplifier.

A simple amplifier is obtained by arranging feedback around the basic opera-
tional amplifier as shown in Figure 3.9a. To model the feedback amplifier in the
linear range, we assume that the current ip = i_ + iy is zero and that the gain of
the amplifier is so large that the voltage v = v_ — v, is also zero. It follows from
Ohm'’s law that the currents through resistors R; and R, are given by

[} . [}
R~ R
and hence the closed loop gain of the amplifier is
02 Ry
— = —kq, where kg = —. (3.11)
0y R,

A more accurate model is obtained by continuing to neglect the current iy but
assuming that the voltage v is small but not negligible. The current balance is then
D1 — 0 i L — V)

R Ry

Assuming that the amplifier operates in the linear range and using equation (3.10),

the gain of the closed loop system becomes
kg = _ Ry kR (3.13)

V1 R Ri+ Ry + kR,

If the open loop gain k of the operational amplifier is large, the closed loop gain
k) is the same as in the simple model given by equation (3.11). Notice that the
closed loop gain depends only on the passive components and that variations in k
have only a marginal effect on the closed loop gain. For example if k = 10° and
R>/R; = 100, a variation of k by 100% gives only a variation of 0.01% in the
closed loop gain. The drastic reduction in sensitivity is a nice illustration of how
feedback can be used to make precise systems from uncertain components. In this
particular case, feedback is used to trade high gain and low robustness for low gain
and high robustness. Equation (3.13) was the formula that inspired Black when he
invented the feedback amplifier [35] (see the quote at the beginning of Chapter 12).
It is instructive to develop a block diagram for the feedback amplifier in Fig-
ure 3.9a. To do this we will represent the pure amplifier with input v and output v,

(3.12)
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Figure 3.10: Circuit diagram of a PI controller obtained by feedback around an operational
amplifier. The capacitor C is used to store charge and represents the integral of the input.

as one block. To complete the block diagram, we must describe how v depends on
vy and v,. Solving equation (3.12) for v gives

R, R, R, (RZ )

v = 0] + Uy = —0v1+0
RI+R R1+R22 Ri+ R, \R, ' ?

and we obtain the block diagram shown in Figure 3.9b. The diagram clearly shows
that the system has feedback and that the gain from v, to v is R;/(R; + R»), which
can also be read from the circuit diagram in Figure 3.9a. If the loop is stable and
the gain of the amplifier is large, it follows that the error e is small, and we find that
vy = —(R2/R1)v;. Notice that the resistor R; appears in two blocks in the block
diagram. This situation is typical in electrical circuits, and it is one reason why
block diagrams are not always well suited for some types of physical modeling.
The simple model of the amplifier given by equation (3.10) provides qualitative
insight, but it neglects the fact that the amplifier is a dynamical system. A more

realistic model is
dvoy

dt

The parameter b that has dimensions of frequency and is called the gain-bandwidth
product of the amplifier. Whether a more complicated model is used depends on
the questions to be answered and the required size of the uncertainty lemon. The
model (3.14) is still not valid for very high or very low frequencies since drift
causes deviations at low frequencies and there are additional dynamics that appear
at frequencies close to b. The model is also not valid for large signals—an upper
limit is given by the voltage of the power supply, typically in the range of 5-10 V—
neither is it valid for very low signals because of electrical noise. These effects can
be added, if needed, but increase the complexity of the analysis.

The operational amplifier is very versatile, and many different systems can be
built by combining it with resistors and capacitors. In fact, any linear system can
be implemented by combining operational amplifiers with resistors and capacitors.
Exercise 3.5 shows how a second-order oscillator is implemented, and Figure 3.10
shows the circuit diagram for an analog proportional-integral controller. To develop
a simple model for the circuit we assume that the current iy is zero and that the open
loop gain k is so large that the input voltage v is negligible. The current i through
the capacitor is i = Cdv./dt, where v, is the voltage across the capacitor. Since

= —avgyy — bv. (3.14)
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the same current goes through the resistor R;, we get

(23] dl)c
| = — = .
R dt
which implies that

1 1 !
Dc(t) = E/l(f)dl = Rl_C/(; l)](‘L’)dT.

The output voltage is thus given by

t

R, 1
t)=—Ryi —v, = ——0,(t) — — dr,
02(t) 2l — O, Rlvl() R.C ), vi(r)de

which is the input/output relation for a PI controller.

The development of operational amplifiers was pioneered by Philbrick [139,
165], and their usage is described in many textbooks (e.g., [53]). Good information
is also available from suppliers [112, 145].

3.4 Computing Systems and Networks

The application of feedback to computing systems follows the same principles as
the control of physical systems, but the types of measurements and control inputs
that can be used are somewhat different. Measurements (sensors) are typically
related to resource utilization in the computing system or network and can include
quantities such as the processor load, memory usage or network bandwidth. Control
variables (actuators) typically involve setting limits on the resources available to a
process. This might be done by controlling the amount of memory, disk space or
time that a process can consume, turning on or off processing, delaying availability
of a resource or rejecting incoming requests to a server process. Process modeling
for networked computing systems is also challenging, and empirical models based
on measurements are often used when a first-principles model is not available.

Web Server Control

Web servers respond to requests from the Internet and provide information in the
form of web pages. Modern web servers start multiple processes to respond to
requests, with each process assigned to a single source until no further requests are
received from that source for a predefined period of time. Processes that are idle
become part of a pool that can be used to respond to new requests. To provide a
fast response to web requests, it is important that the web server processes do not
overload the server’s computational capabilities or exhaust its memory. Since other
processes may be running on the server, the amount of available processing power
and memory is uncertain, and feedback can be used to provide good performance
in the presence of this uncertainty.
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Figure 3.11: Feedback control of a web server. Connection requests arrive on an input queue,
where they are sent to a server process. A finite state machine keeps track of the state of the
individual server processes and responds to requests. A control algorithm can modify the
server’s operation by controlling parameters that affect its behavior, such as the maximum
number of requests that can be serviced at a single time (MaxClients) or the amount of
time that a connection can remain idle before it is dropped (KeepAlive).

Figure 3.11 illustrates the use of feedback to modulate the operation of an
Apache web server. The web server operates by placing incoming connection re-
quests on a queue and then starting a subprocess to handle requests for each accepted
connection. This subprocess responds to requests from a given connection as they
come in, alternating between a Busy state and a Wait state. (Keeping the sub-
process active between requests is known as the persistence of the connection and
provides a substantial reduction in latency to requests for multiple pieces of infor-
mation from a single site.) If no requests are received for a sufficiently long period
of time, controlled by the KeepAlive parameter, then the connection is dropped
and the subprocess enters an Id1le state, where it can be assigned another connec-
tion. A maximum of MaxClients simultaneous requests will be served, with the
remainder remaining on the incoming request queue.

The parameters that control the server represent a trade-off between perfor-
mance (how quickly requests receive a response) and resource usage (the amount
of processing power and memory used by the server). Increasing the MaxClients
parameter allows connection requests to be pulled off of the queue more quickly
but increases the amount of processing power and memory usage that is required.
Increasing the KeepAlive timeout means that individual connections can remain
idle for a longer period of time, which decreases the processing load on the machine
but increases the size of the queue (and hence the amount of time required for a user
to initiate a connection). Successful operation of a busy server requires a proper
choice of these parameters, often based on trial and error.

To model the dynamics of this system in more detail, we create a discrete-time
model with states given by the average processor load x.p, and the percentage
memory usage Xmem. 1he inputs to the system are taken as the maximum number
of clients un,. and the keep-alive time uy,. If we assume a linear model around the
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equilibrium point, the dynamics can be written as

Xepulk + 1] Ay A Xepulk] B Bz Ugalk] (3.15)
Xmemlk + 1] Ay Axp Xmemlk] By By Umclk]l ]’ '

where the coefficients of the A and B matrices can be determined based on empirical
measurements or detailed modeling of the web server’s processing and memory
usage. Using system identification, Diao et al. [59, 97] identified the linearized
dynamics as

[ 054 -0l _[-85 44 .
A= [—0.026 0.63 ] » B= [—2.5 2.8] x 107,

where the system was linearized about the equilibrium point
Xepu = 0.58, Ugg = 11 s, Xmem = 0.55, Ume = 600.

This model shows the basic characteristics that were described above. Looking
first at the B matrix, we see that increasing the KeepAlive timeout (first column
of the B matrix) decreases both the processor usage and the memory usage since
there is more persistence in connections and hence the server spends a longer time
waiting for a connection to close rather than taking on a new active connection. The
MaxClients connectionincreases both the processing and memory requirements.
Note that the largest effect on the processor load is the KeepAlive timeout.
The A matrix tells us how the processor and memory usage evolve in a region of
the state space near the equilibrium point. The diagonal terms describe how the
individual resources return to equilibrium after a transient increase or decrease.
The off-diagonal terms show that there is coupling between the two resources, so
that a change in one could cause a later change in the other.

Although this model is very simple, we will see in later examples that it can
be used to modify the parameters controlling the server in real time and provide
robustness with respect to uncertainties in the load on the machine. Similar types of
mechanisms have been used for other types of servers. It is important to remember
the assumptions on the model and their role in determining when the model is valid.
In particular, since we have chosen to use average quantities over a given sample
time, the model will not provide an accurate representation for high-frequency
phenomena.

Congestion Control

The Internet was created to obtain a large, highly decentralized, efficient and ex-
pandable communication system. The system consists of a large number of inter-
connected gateways. A message is split into several packets which are transmitted
over different paths in the network, and the packages are rejoined to recover the
message at the receiver. An acknowledgment (“‘ack™) message is sent back to the
sender when a packet is received. The operation of the system is governed by a
simple but powerful decentralized control structure that has evolved over time.
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Figure 3.12: Internet congestion control. (a) Source computers send information to routers,
which forward the information to other routers that eventually connect to the receiving com-
puter. When a packet is received, an acknowledgment packet is sent back through the routers
(not shown). The routers buffer information received from the sources and send the data
across the outgoing link. (b) The equilibrium buffer size b, for a set of N identical computers
sending packets through a single router with drop probability p.

The system has two control mechanisms called protocols: the Transmission
Control Protocol (TCP) for end-to-end network communication and the Internet
Protocol (IP) for routing packets and for host-to-gateway or gateway-to-gateway
communication. The current protocols evolved after some spectacular congestion
collapses occurred in the mid 1980s, when throughput unexpectedly could drop by
a factor of 1000 [108]. The control mechanism in TCP is based on conserving the
number of packets in the loop from the sender to the receiver and back to the sender.
The sending rate is increased exponentially when there is no congestion, and it is
dropped to a low level when there is congestion.

To derive an overall model for congestion control, we model three separate
elements of the system: the rate at which packets are sent by individual sources
(computers), the dynamics of the queues in the links (routers) and the admission
control mechanism for the queues. Figure 3.12a is a block diagram of the system.

The current source control mechanism on the Internet is a protocol known as
TCP/Reno [137]. This protocol operates by sending packets to areceiver and waiting
to receive an acknowledgment from the receiver that the packet has arrived. If no
acknowledgment is sent within a certain timeout period, the packet is retransmitted.
To avoid waiting for the acknowledgment before sending the next packet, Reno
transmits multiple packets up to a fixed window around the latest packet that has been
acknowledged. If the window length is chosen properly, packets at the beginning of
the window will be acknowledged before the source transmits packets at the end of
the window, allowing the computer to continuously stream packets at a high rate.

To determine the size of the window to use, TCP/Reno uses a feedback mech-
anism in which (roughly speaking) the window size is increased by 1 every time a
packet is acknowledged and the window size is cut in half when packets are lost.
This mechanism allows a dynamic adjustment of the window size in which each
computer acts in a greedy fashion as long as packets are being delivered but backs
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off quickly when congestion occurs.

A model for the behavior of the source can be developed by describing the
dynamics of the window size. Suppose we have N computers and let w; be the
current window size (measured in number of packets) for the ith computer. Let
q; represent the end-to-end probability that a packet will be dropped someplace
between the source and the receiver. We can model the dynamics of the window
size by the differential equation

Wi L=y, = @i

dt w; 2 T;
where 7; is the end-to-end transmission time for a packet to reach is destination and
the acknowledgment to be sent back and r; is the resulting rate at which packets
are cleared from the list of packets that have been received. The first term in the
dynamics represents the increase in window size when a packet is received, and the
second term represents the decrease in window size when a packet is lost. Notice
that r; is evaluated at time 7 — 7;, representing the time required to receive additional
acknowledgments.

The link dynamics are controlled by the dynamics of the router queue and the
admission control mechanism for the queue. Assume that we have L links in the
network and use / to index the individual links. We model the queue in terms of the
current number of packets in the router’s buffer 5; and assume that the router can
contain a maximum of b; .« packets and transmits packets at a rate ¢;, equal to the
capacity of the link. The buffer dynamics can then be written as

dby f
T = D =, (3.17)
{i: leL;}

where L; is the set of links that are being used by source 7, Tl{ is the time it takes a
packet from source i to reach link / and s; is the total rate at which packets arrive
at link /.

The admission control mechanism determines whether a given packet is ac-
cepted by a router. Since our model is based on the average quantities in the network
and not the individual packets, one simple model is to assume that the probability
that a packet is dropped depends on how full the buffer is: p; = m;(b;, bmay)- For
simplicity, we will assume for now that p; = p;b; (see Exercise 3.6 for a more
detailed model). The probability that a packet is dropped at a given link can be used
to determine the end-to-end probability that a packet is lost in transmission:

gi=1-[]0=p)~>D pt—1p), (3.18)

/EL,‘ lEL,‘

where T,ll’. is the backward delay from link / to source i and the approximation is
valid as long as the individual drop probabilities are small. We use the backward
delay since this represents the time required for the acknowledgment packet to be
received by the source.

Together, equations (3.16), (3.17) and (3.18) represent a model of congestion
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control dynamics. We can obtain substantial insight by considering a special case
in which we have N identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can be ignored, in which case
the dynamics can be reduced to the form

N
dw; 1 pb2+ w?) db w;

_ - _ i = - —c, = -, 3.19

T 2 d Z‘ c 0T G149

where w; € R,i = 1,..., N, are the window sizes for the sources of data,b € R is

the current buffer size of the router, p controls the rate at which packets are dropped
and c is the capacity of the link connecting the router to the computers. The variable
7 represents the amount of time required for a packet to be processed by a router,
based on the size of the buffer and the capacity of the link. Substituting 7 into the
equations, we write the state space dynamics as

2

dw; c 1+ w; db Z cw; (3.20)
—=-—pc —4 — = —c. .
a b 7 2 )

More sophisticated models can be found in [101, 137]. '
The nominal operating point for the system can be found by setting w; = b = 0:

C U)2 NCU),'
O=E—pc(l+7’), = — —c.

i=1
Exploiting the fact that all of the source dynamics are identical, it follows that all
of the w; should be the same, and it can be shown that there is a unique equilibrium
satisfying the equations
b, ct. 1 3
Wie =+ = 70 W(Pbe) + (pb.) — 1 =0. (3.21)
The solution for the second equation is a bit messy but can easily be determined nu-
merically. A plot of its solution as a function of 1 /(2 pzN 2) is shown in Figure 3.12b.
We also note that at equilibrium we have the following additional equalities:
b. Nuw, W,

Te = — = ) ge = Np. = Npb,, Fe = —. (3:22)
c c Te

Figure 3.13 shows a simulation of 60 sources communicating across a single
link, with 20 sources dropping out at # = 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Note that the buffer size and
window sizes automatically adjust to match the capacity of the link.

A comprehensive treatment of computer networks is given in the textbook by
Tannenbaum [189]. A good presentation of the ideas behind the control principles
for the Internet is given by one of its designers, Van Jacobson,in [108]. F. Kelly [120]
presents an early effort on the analysis of the system. The book by Hellerstein et
al. [97] gives many examples of the use of feedback in computer systems.
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Figure 3.13: Internet congestion control for N identical sources across a single link. As shown
on the left, multiple sources attempt to communicate through a router across a single link. An
“ack” packet sent by the receiver acknowledges that the message was received; otherwise the
message packet is resent and the sending rate is slowed down at the source. The simulation
on the right is for 60 sources starting random rates, with 20 sources dropping out at = 500
ms. The buffer size is shown at the top, and the individual source rates for 6 of the sources
are shown at the bottom.

3.5 Atomic Force Microscopy

The 1986 Nobel Prize in Physics was shared by Gerd Binnig and Heinrich Rohrer
for their design of the scanning tunneling microscope. The idea of the instrument
is to bring an atomically sharp tip so close to a conducting surface that tunneling
occurs. An image is obtained by traversing the tip across the sample and measuring
the tunneling current as a function of tip position. This invention has stimulated
the development of a family of instruments that permit visualization of surface
structure at the nanometer scale, including the atomic force microscope (AFM),
where a sample is probed by a tip on a cantilever. An AFM can operate in two
modes. In fapping mode the cantilever is vibrated, and the amplitude of vibration
is controlled by feedback. In contact mode the cantilever is in contact with the
sample, and its bending is controlled by feedback. In both cases control is actuated
by a piezo element that controls the vertical position of the cantilever base (or the
sample). The control system has a direct influence on picture quality and scanning
rate.

A schematic picture of an atomic force microscope is shown in Figure 3.14a. A
microcantilever with a tip having a radius of the order of 10 nm is placed close to
the sample. The tip can be moved vertically and horizontally using a piezoelectric
scanner. It is clamped to the sample surface by attractive van der Waals forces and
repulsive Pauli forces. The cantilever tilt depends on the topography of the surface
and the position of the cantilever base, which is controlled by the piezo element.
The tilt is measured by sensing the deflection of the laser beam using a photodiode.
The signal from the photodiode is amplified and sent to a controller that drives
the amplifier for the vertical position of the cantilever. By controlling the piezo
element so that the deflection of the cantilever is constant, the signal driving the
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Figure 3.14: Atomic force microscope. (a) A schematic diagram of an atomic force micro-
scope, consisting of a piezo drive that scans the sample under the AFM tip. A laser reflects off
of the cantilever and is used to measure the detection of the tip through a feedback controller.
(b) An AFM image of strands of DNA. (Image courtesy Veeco Instruments.)

vertical deflection of the piezo element is a measure of the atomic forces between
the cantilever tip and the atoms of the sample. An image of the surface is obtained
by scanning the cantilever along the sample. The resolution makes it possible to
see the structure of the sample on the atomic scale, as illustrated in Figure 3.14b,
which shows an AFM image of DNA.

The horizontal motion of an AFM is typically modeled as a spring—mass system
with low damping. The vertical motion is more complicated. To model the system,
we start with the block diagram shown in Figure 3.15. Signals that are easily acces-
sible are the input voltage u to the power amplifier that drives the piezo element,
the voltage v applied to the piezo element and the output voltage y of the signal
amplifier for the photodiode. The controller is a PI controller implemented by a
computer, which is connected to the system by analog-to-digital (A/D) and digital-
to-analog (D/A) converters. The deflection of the cantilever ¢ is also shown in the
figure. The desired reference value for the deflection is an input to the computer.

Sample topography

Piezo ? | Laser&

z i - .
element - Cantilever photodiode

Deflection reference

'

Power | “ |D Al Y Signal

amplifier [ |A Computer | (= amplifier

Figure 3.15: Block diagram of the system for vertical positioning of the cantilever for an
atomic force microscope in contact mode. The control system attempts to keep the can-
tilever deflection equal to its reference value. Cantilever deflection is measured, amplified
and converted to a digital signal, then compared with its reference value. A correcting signal is
generated by the computer, converted to analog form, amplified and sent to the piezo element.
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Figure 3.16: Modeling of an atomic force microscope. (a) A measured step response. The
top curve shows the voltage u applied to the drive amplifier (50 mV/div), the middle curve
is the output V,, of the power amplifier (500 mV/div) and the bottom curve is the output y
of the signal amplifier (500 mV/div). The time scale is 25 us/div. Data have been supplied
by Georg Schitter. (b) A simple mechanical model for the vertical positioner and the piezo
crystal.

There are several different configurations that have different dynamics. Here
we will discuss a high-performance system from [176] where the cantilever base
is positioned vertically using a piezo stack. We begin the modeling with a simple
experiment on the system. Figure 3.16a shows a step response of a scanner from the
input voltage u to the power amplifier to the output voltage y of the signal amplifier
for the photodiode. This experiment captures the dynamics of the chain of blocks
from u to y in the block diagram in Figure 3.15. Figure 3.16a shows that the system
responds quickly but that there is a poorly damped oscillatory mode with a period
of about 35 ps. A primary task of the modeling is to understand the origin of the
oscillatory behavior. To do so we will explore the system in more detail.

The natural frequency of the clamped cantilever is typically several hundred
kilohertz, which is much higher than the observed oscillation of about 30 kHz. As
a first approximation we will model it as a static system. Since the deflections are
small, we can assume that the bending ¢ of the cantilever is proportional to the
difference in height between the cantilever tip at the probe and the piezo scanner. A
more accurate model can be obtained by modeling the cantilever as a spring—mass
system of the type discussed in Chapter 2.

Figure 3.16a also shows that the response of the power amplifier is fast. The
photodiode and the signal amplifier also have fast responses and can thus be mod-
eled as static systems. The remaining block is a piezo system with suspension. A
schematic mechanical representation of the vertical motion of the scanner is shown
in Figure 3.16b. We will model the system as two masses separated by an ideal
piezo element. The mass m; is half of the piezo system, and the mass m, is the
other half of the piezo system plus the mass of the support.

A simple model is obtained by assuming that the piezo crystal generates a force
F between the masses and that there is a damping ¢ in the spring. Let the positions
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of the center of the masses be z; and z,. A momentum balance gives the following
model for the system:
2 2
ml%zF, mg%z—cz%—kﬂz—F
Let the elongation of the piezo element [ = z; — z, be the control variable and
the height z; of the cantilever base be the output. Eliminating the variable F in
equations (3.23) and substituting z; — [ for z, gives the model
2 2
(m, +M2)%+C2%+k221 ImQ%-FCQ%-szl. (3.23)

Summarizing, we find that a simple model of the system is obtained by modeling
the piezo by (3.23) and all the other blocks by static models. Introducing the linear
equations / = k3u and y = k4z;, we now have a complete model relating the output
y to the control signal u. A more accurate model can be obtained by introducing the
dynamics of the cantilever and the power amplifier. As in the previous examples,
the concept of the uncertainty lemon in Figure 2.15b provides a framework for
describing the uncertainty: the model will be accurate up to the frequencies of the
fastest modeled modes and over a range of motion in which linearized stiffness
models can be used.

The experimental results in Figure 3.16a can be explained qualitatively as fol-
lows. When a voltage is applied to the piezo, it expands by [y, the mass m| moves
up and the mass m, moves down instantaneously. The system settles after a poorly
damped oscillation.

It is highly desirable to design a control system for the vertical motion so that it
responds quickly with little oscillation. The instrument designer has several choices:
to accept the oscillation and have a slow response time, to design a control system
that can damp the oscillations or to redesign the mechanics to give resonances of
higher frequency. The last two alternatives give a faster response and faster imaging.

Since the dynamic behavior of the system changes with the properties of the
sample, it is necessary to tune the feedback loop. In simple systems this is currently
done manually by adjusting parameters of a PI controller. There are interesting
possibilities for making AFM systems easier to use by introducing automatic tuning
and adaptation.

The book by Sarid [173] gives a broad coverage of atomic force microscopes.
The interaction of atoms close to surfaces is fundamental to solid state physics, see
Kittel [125]. The model discussed in this section is based on Schitter [175].

3.6 Drug Administration

The phrase “Take two pills three times a day” is a recommendation with which we
are all familiar. Behind this recommendation is a solution of an open loop control
problem. The key issue is to make sure that the concentration of a medicine in
a part of the body is sufficiently high to be effective but not so high that it will
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Figure 3.17: Abstraction used to compartmentalize the body for the purpose of describing
drug distribution (based on Teorell [190]). The body is abstracted by a number of com-
partments with perfect mixing, and the complex transport processes are approximated by
assuming that the flow is proportional to the concentration differences in the compartments.
The constants k; parameterize the rates of flow between different compartments.

cause undesirable side effects. The control action is quantized, take two pills, and
sampled, every 8 hours. The prescriptions are based on simple models captured in
empirical tables, and the dose is based on the age and weight of the patient.

Drug administration is a control problem. To solve it we must understand how
a drug spreads in the body after it is administered. This topic, called pharmacoki-
netics, is now a discipline of its own, and the models used are called compartment
models. They go back to the 1920s when Widmark modeled the propagation of al-
cohol in the body [199]. Compartment models are now important for the screening
of all drugs used by humans. The schematic diagram in Figure 3.17 illustrates the
idea of a compartment model. The body is viewed as a number of compartments
like blood plasma, kidney, liver and tissues that are separated by membranes. It is
assumed that there is perfect mixing so that the drug concentration is constant in
each compartment. The complex transport processes are approximated by assuming
that the flow rates between the compartments are proportional to the concentration
differences in the compartments.

To describe the effect of a drug it is necessary to know both its concentration
and how it influences the body. The relation between concentration ¢ and its effect

e is typically nonlinear. A simple model is
Co
e = ——¢ . 324
L (3.24)
The effect is linear for low concentrations, and it saturates at high concentrations.
The relation can also be dynamic, and it is then called pharmacodynamics.

Compartment Models

The simplest dynamic model for drug administration is obtained by assuming that
the drug is evenly distributed in a single compartment after it has been administered
and that the drug is removed at a rate proportional to the concentration. The com-
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partments behave like stirred tanks with perfect mixing. Let ¢ be the concentration,
V the volume and ¢ the outflow rate. Converting the description of the system into
differential equations gives the model

dc

i gc, c¢>0. (3.25)
This equation has the solution c(t) = cpe™9"/V = cye ™, which shows that the
concentration decays exponentially with the time constant 7 = V /g after an injec-
tion. The input is introduced implicitly as an initial condition in the model (3.25).
More generally, the way the input enters the model depends on how the drug is
administered. For example, the input can be represented as a mass flow into the
compartment where the drug is injected. A pill that is dissolved can also be inter-
preted as an input in terms of a mass flow rate.

The model (3.25) is called a a one-compartment model or a single-pool model.
The parameter g/ V is called the elimination rate constant. This simple model is
often used to model the concentration in the blood plasma. By measuring the con-
centration at a few times, the initial concentration can be obtained by extrapolation.
If the total amount of injected substance is known, the volume V can then be de-
termined as V = m/cy; this volume is called the apparent volume of distribution.
This volume is larger than the real volume if the concentration in the plasma is
lower than in other parts of the body. The model (3.25) is very simple, and there
are large individual variations in the parameters. The parameters V and ¢ are often
normalized by dividing by the weight of the person. Typical parameters for aspirin
are V = 0.2 L/kg and ¢ = 0.01 (L/h)/kg. These numbers can be compared with
a blood volume of 0.07 L/kg, a plasma volume of 0.05 L/kg, an intracellular fluid
volume of 0.4 L/kg and an outflow of 0.0015 L/ min /kg.

The simple one-compartment model captures the gross behavior of drug distri-
bution, but it is based on many simplifications. Improved models can be obtained by
considering the body as composed of several compartments. Examples of such sys-
tems are shown in Figure 3.18, where the compartments are represented as circles
and the flows by arrows.

Modeling will be illustrated using the two-compartment model in Figure 3.18a.
We assume that there is perfect mixing in each compartment and that the transport
between the compartments is driven by concentration differences. We further as-
sume that a drug with concentration ¢ is injected in compartment 1 at a volume
flow rate of u and that the concentration in compartment 2 is the output. Let ¢; and
¢, be the concentrations of the drug in the compartments and let V; and V, be the
volumes of the compartments. The mass balances for the compartments are

dC]
Vlzzq(q—c])—qocl + cout, ¢ >0,

dc 3.26
Vzd—t2 =q(ci—c2), >0, (3.26)

y = (.
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Figure 3.18: Schematic diagrams of compartment models. (a) A simple two-compartment
model. Each compartment is labeled by its volume, and arrows indicate the flow of chemical
into, out of and between compartments. (b) A system with six compartments used to study the
metabolism of thyroid hormone [85]. The notation k;; denotes the transport from compartment
J to compartment i.

Introducing the variables kg = qo/ Vi, k1 = ¢q/Vi,k, = q/ V> and by = ¢y/ V) and
using matrix notation, the model can be written as

%: [ kokz ki —kll<2]C+ [%O]u, y = [0 1]x. (327)
Comparing this model with its graphical representation in Figure 3.18a, we find
that the mathematical representation (3.27) can be written by inspection.

It should also be emphasized that simple compartment models such as the one in
equation (3.27) have a limited range of validity. Low-frequency limits exist because
the human body changes with time, and since the compartment model uses average
concentrations, they will not accurately represent rapid changes. There are also
nonlinear effects that influence transportation between the compartments.

Compartment models are widely used in medicine, engineering and environ-
mental science. An interesting property of these systems is that variables like con-
centration and mass are always positive. An essential difficulty in compartment
modeling is deciding how to divide a complex system into compartments. Com-
partment models can also be nonlinear, as illustrated in the next section.

Insulin—-glucose Dynamics

It is essential that the blood glucose concentration in the body is kept within a
narrow range (0.7-1.1 g/L). Glucose concentration is influenced by many factors
like food intake, digestion and exercise. A schematic picture of the relevant parts
of the body is shown in Figures 3.19a and b.

There is a sophisticated mechanism that regulates glucose concentration. Glu-
cose concentration is maintained by the pancreas, which secretes the hormones
insulin and glucagon. Glucagon is released into the bloodstream when the glucose
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Figure 3.19: Insulin—glucose dynamics. (a) Sketch of body parts involved in the control of
glucose. (b) Schematic diagram of the system. (c) Responses of insulin and glucose when
glucose in injected intravenously. From [164].

level is low. It acts on cells in the liver that release glucose. Insulin is secreted when
the glucose level is high, and the glucose level is lowered by causing the liver and
other cells to take up more glucose. In diseases like juvenile diabetes the pancreas
is unable to produce insulin and the patient must inject insulin into the body to
maintain a proper glucose level.

The mechanisms that regulate glucose and insulin are complicated; dynamics
with time scales that range from seconds to hours have been observed. Models of
different complexity have been developed. The models are typically tested with data
from experiments where glucose is injected intravenously and insulin and glucose
concentrations are measured at regular time intervals.

A relatively simple model called the minimal model was developed by Bergman
and coworkers [31]. This models uses two compartments, one representing the con-
centration of glucose in the bloodstream and the other representing the concentration
of insulin in the interstitial fluid. Insulin in the bloodstream is considered an input.
The reaction of glucose to insulin can be modeled by the equations

dx; dx

T —(p1 + x2)x1 + P18es d_t2 = —paxy + p3(u —i.), (3.28)

where g, and i, represent the equilibrium values of glucose and insulin, x; is the
concentration of glucose and x; is proportional to the concentration of interstitial
insulin. Notice the presence of the term x,x; in the first equation. Also notice
that the model does not capture the complete feedback loop because it does not
describe how the pancreas reacts to the glucose. Figure 3.19¢c shows a fit of the
model to a test on a normal person where glucose was injected intravenously at
time + = 0. The glucose concentration rises rapidly, and the pancreas responds
with a rapid spikelike injection of insulin. The glucose and insulin levels then
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gradually approach the equilibrium values.

Models of the type in equation (3.28) and more complicated models having many
compartments have been developed and fitted to experimental data. A difficulty in
modeling is that there are significant variations in model parameters over time and
for different patients. For example, the parameter p; in equation (3.28) has been
reported to vary with an order of magnitude for healthy individuals. The models
have been used for diagnosis and to develop schemes for the treatment of persons
with diseases. Attempts to develop a fully automatic artificial pancreas have been
hampered by the lack of reliable sensors.

The papers by Widmark and Tandberg [199] and Teorell [190] are classics in
pharmacokinetics, which is now an established discipline with many textbooks
[62, 109, 84]. Because of its medical importance, pharmacokinetics is now an
essential component of drug development. The book by Riggs [168] is a good source
for the modeling of physiological systems, and a more mathematical treatment
is given in [119]. Compartment models are discussed in [85]. The problem of
determining rate coefficients from experimental data is discussed in [26] and [85].
There are many publications on the insulin—glucose model. The minimal model is
discussed in [52, 31] and more recent references are [143, 72].

3.7 Population Dynamics

Population growth is a complex dynamic process that involves the interaction of one
or more species with their environment and the larger ecosystem. The dynamics of
population groups are interesting and important in many different areas of social and
environmental policy. There are examples where new species have been introduced
into new habitats, sometimes with disastrous results. There have also been attempts
to control population growth both through incentives and through legislation. In
this section we describe some of the models that can be used to understand how
populations evolve with time and as a function of their environments.

Logistic Growth Model

Let x be the population of a species at time 7. A simple model is to assume that the
birth rates and mortality rates are proportional to the total population. This gives
the linear model

d
d—: =bx—dx=b-dx=rx, x>0, (3.29)

where birth rate b and mortality rate d are parameters. The model gives an expo-
nential increase if b > d or an exponential decrease if b < d. A more realistic
model is to assume that the birth rate decreases when the population is large. The
following modification of the model (3.29) has this property:

=5 >0 (3.30)
dt_rx o 2 =0, )
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where k is the carrying capacity of the environment. The model (3.30) is called the
logistic growth model.

Predator-Prey Models

A more sophisticated model of population dynamics includes the effects of compet-
ing populations, where one species may feed on another. This situation, referred to
as the predator—prey problem, was introduced in Example 2.3, where we developed
a discrete-time model that captured some of the features of historical records of
Iynx and hare populations.

In this section, we replace the difference equation model used there with a more
sophisticated differential equation model. Let H (¢) represent the number of hares
(prey) and let L(t) represent the number of lynxes (predator). The dynamics of the
system are modeled as

dH H\ aHL
— =rH(1-= H >0,

dt k c+ H 331)
dL aHL

—=b —dL, L >0.

dt c+H

In the first equation, r represents the growth rate of the hares, k represents the
maximum population of the hares (in the absence of lynxes), a represents the
interaction term that describes how the hares are diminished as a function of the
lynx population and ¢ controls the prey consumption rate for low hare population.
In the second equation, b represents the growth coefficient of the lynxes and d
represents the mortality rate of the lynxes. Note that the hare dynamics include a
term that resembles the logistic growth model (3.30).

Of particular interest are the values at which the population values remain con-
stant, called equilibrium points. The equilibrium points for this system can be
determined by setting the right-hand side of the above equations to zero. Letting
H, and L, represent the equilibrium state, from the second equation we have

. cd
L,=0 or H = h—d (3.32)
Substituting this into the first equation, we have that for L, = 0 either H, = 0 or
H, = k. For L, # 0, we obtain
. TrH.(c+ H.) (1 B &) _ ber(abk — cd — dk)
¢ aH, k (ab — d)*k

Thus, we have three possible equilibrium points x, = (L., H,):

Xe = 0 Xe = k Xe = H:
e — ol e — ol e — LZ 5

where H; and L} are given in equations (3.32) and (3.33). Note that the equilib-
rium populations may be negative for some parameter values, corresponding to a
nonachievable equilibrium point.

L

(3.33)
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Figure 3.20: Simulation of the predator—prey system. The figure on the left shows a simulation
of the two populations as a function of time. The figure on the right shows the populations
plotted against each other, starting from different values of the population. The oscillation seen
in both figures is an example of a limit cycle. The parameter values used for the simulations
area=3.2,b=0.6,c=50,d =056,k =125andr = 1.6.

Figure 3.20 shows a simulation of the dynamics starting from a set of popu-
lation values near the nonzero equilibrium values. We see that for this choice of
parameters, the simulation predicts an oscillatory population count for each species,
reminiscent of the data shown in Figure 2.6.

Volume I of the two-volume set by J. D. Murray [154] give a broad coverage of
population dynamics.

Exercises

3.1 (Cruise control) Consider the cruise control example described in Section 3.1.
Build a simulation that re-creates the response to a hill shown in Figure 3.3b and
show the effects of increasing and decreasing the mass of the car by 25%. Redesign
the controller (using trial and error is fine) so that it returns to within 10% of the
desired speed within 3 s of encountering the beginning of the hill.

3.2 (Bicycle dynamics) Show that the dynamics of a bicycle frame given by equa-
tion (3.5) can be written in state space form as

d [ x, 0 mgh/J] [x1 1
Em]—[l 0 w| T lo]®
Doy mvéh]x’

bJ bJ

where the input u is the torque applied to the handle bars and the output y is the
title angle ¢. What do the states x; and x, represent?

(3.34)
y =

3.3 (Bicycle steering) Combine the bicycle model given by equation (3.5) and the
model for steering kinematics in Example 2.8 to obtain a model that describes the
path of the center of mass of the bicycle.
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3.4 (Operational amplifier circuit) Consider the op amp circuit shown below.

V2
O—AM—T—AM A
R R, Ry

Ry
v G=F VAA/V—AL_O
o
(653 —|— V3
O O

Show that the dynamics can be written in state space form as

1 1 1
— — 0 _
dx RiCi  R.Cy R:C,
Tl R, 1 | x4+ . u, y _[O I]x,
R, R,C R,C»

where u = v; and y = v3. (Hint: Use v, and v3 as your state variables.)

3.5 (Operational amplifier oscillator) The op amp circuit shown below is an imple-
mentation of an oscillator.

(&) Ry C
H " H

Ry = R3 > Ry >
AV AW
+ V2 + V3 + Vi

Show that the dynamics can be written in state space form as

0 Ry
dx R\ R3Cy
— . ,
dt 0

" R,C,

where the state variables represent the voltages across the capacitors x; = v and
X2 = D).

3.6 (Congestion control using RED [138]) A number of improvements can be made
to the model for Internet congestion control presented in Section 3.4. To ensure that
the router’s buffer size remains positive, we can modify the buffer dynamics to
satisfy

@_ISI—CI b1>0

dt sat(o,oo)(sl —c) b =0.

In addition, we can model the drop probability of a packet based on how close we
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are to the buffer limits, a mechanism known as random early detection (RED):

0 a (l’) < b}ower
oy — PO =P B <) < b
FTRT ) = (1= 26" BIPT < gy (1) < 267
1 a(t) > 25",
dal
— = —ayci(a; — by),
a7 ici(ar — by)

where a;, b,"", b1 and p;"’*" are parameters for the RED protocol.

Using the model above, write a simulation for the system and find a set of
parameter values for which there is a stable equilibrium point and a set for which
the system exhibits oscillatory solutions. The following sets of parameters should
be explored:

N = 20,30, ...,60, bI°¥T =40 pkts, o =0.1,
c=38,9,...,15 pkts/ms, b = 540 pkts, o = 1074,
7 = 55,60, ..., 100 ms.

3.7 (Atomic force microscope with piezo tube) A schematic diagram of an AFM
where the vertical scanner is a piezo tube with preloading is shown below.

fr_m

Vr
ny

ky |- 2

Show that the dynamics can be written as

2

d*z) dz d’l dl
(my + mz)ﬁ + (1 + Cz)z + (ki + k2)z1 = my—o e+ kal.

Are there parameter values that make the dynamics particularly simple?

3.8 (Drug administration) The metabolism of alcohol in the body can be modeled
by the nonlinear compartment model
dcy, C

v ( )+ y, de ( ) +
— =qle—c s — =q(ch — 1) = Guax——— + Gai>
bdt ql\c b Giv ldl’ q\Cp l q aCO+Cl qgi

where V,, = 48 L and V; = 0.6 L are the apparent volumes of distribution of
body water and liver water, ¢;, and ¢; are the concentrations of alcohol in the com-
partments, g;, and g,; are the injection rates for intravenous and gastrointestinal
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intake, ¢ = 1.5 L/min is the total hepatic blood flow, gm.x = 2.75 mmol/min and
co = 0.1 mmol/L. Simulate the system and compute the concentration in the blood
for oral and intravenous doses of 12 g and 40 g of alcohol.

3.9 (Population dynamics) Consider the model for logistic growth given by equa-
tion (3.30). Show that the maximum growth rate occurs when the size of the pop-
ulation is half of the steady-state value.

3.10 (Fisheries management) The dynamics of a commercial fishery can be de-
scribed by the following simple model:

Z—::f(x)—h(x,u), yth(Xau)_C"‘

where x is the total biomass, f(x) = rx(1 —x/k) is the growth rate and h(x, u) =
axu is the harvesting rate. The output y is the rate of revenue, and the parameters a,
b and c are constants representing the price of fish and the cost of fishing. Show that
there is an equilibrium where the steady-state biomass is x, = ¢/(ab). Compare
with the situation when the biomass is regulated to a constant value and find the
maximum sustainable return in that case.
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Chapter Four
Dynamic Behavior

It Don’t Mean a Thing If It Ain’t Got That Swing.
Duke Ellington (1899-1974)

In this chapter we present a broad discussion of the behavior of dynamical sys-
tems focused on systems modeled by nonlinear differential equations. This allows
us to consider equilibrium points, stability, limit cycles and other key concepts in
understanding dynamic behavior. We also introduce some methods for analyzing
the global behavior of solutions.

4.1 Solving Differential Equations

In the last two chapters we saw that one of the methods of modeling dynamical
systems is through the use of ordinary differential equations (ODEs). A state space,
input/output system has the form

S few,  y=henw), @)

where x = (x1,...,x,) € R" is the state, u € R?” is the input and y € R? is
the output. The smooth maps f : R" x R? — R" and & : R" x R? —» R?
represent the dynamics and measurements for the system. In general, they can be
nonlinear functions of their arguments. We will sometimes focus on single-input,
single-output (SISO) systems, for which p = ¢ = 1.

We begin by investigating systems in which the input has been set to a function
of the state, u = a(x). This is one of the simplest types of feedback, in which the
system regulates its own behavior. The differential equations in this case become

Z—); = f(x,ax)) = F(x). 4.2)
To understand the dynamic behavior of this system, we need to analyze the
features of the solutions of equation (4.2). While in some simple situations we can
write down the solutions in analytical form, often we must rely on computational
approaches. We begin by describing the class of solutions for this problem.
We say that x(¢) is a solution of the differential equation (4.2) on the time
interval 7o € Rto ¢y € R if

dx(t)
dt

= F(x(t)) forallfy <t <ty.
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A given differential equation may have many solutions. We will most often be
interested in the initial value problem, where x(t) is prescribed at a given time
to € R and we wish to find a solution valid for all future time t > t,.
We say that x(¢) is a solution of the differential equation (4.2) with initial value
xo € R"atry e Rif
dx(t)

x(t)) = xo and T F(x(t)) forallty <t <ty.

For most differential equations we will encounter, there is a unique solution that is
defined for 7y < t < . The solution may be defined for all time ¢ > f, in which
case we take 7y = 00. Because we will primarily be interested in solutions of the
initial value problem for ODEs, we will usually refer to this simply as the solution
of an ODE.

We will typically assume that £, is equal to 0. In the case when F is independent
of time (as in equation (4.2)), we can do so without loss of generality by choosing
a new independent (time) variable, t = ¢t — 1y (Exercise 4.1).

Example 4.1 Damped oscillator
Consider a damped linear oscillator with dynamics of the form

G +2¢wog + wig =0,

where ¢ is the displacement of the oscillator from its rest position. These dynamics
are equivalent to those of a spring—mass system, as shown in Exercise 2.6. We
assume that ¢ < 1, corresponding to a lightly damped system (the reason for this
particular choice will become clear later). We can rewrite this in state space form
by setting x; = ¢ and x, = ¢ /wy, giving

dxl dXQ 2(

— = WpX?3, — = —WpX| — wpX2.

dt dt
In vector form, the right-hand side can be written as

woX2
F(x) = .
( ) [—a)o)q — 2(6()0)62]

The solution to the initial value problem can be written in a number of different
ways and will be explored in more detail in Chapter 5. Here we simply assert that
the solution can be written as

1 .
x1(t) = e ¢! (xm cos wyt + w—(a)()(xlo + X20) sin wdt) s
d

; 1 .
(1) = e <! (xzo cos wyt — w—(a)gx]o + wo x20) Sinwyt |,
d

where xo = (x19, X20) is the initial condition and w; = wy+/1 — ¢2. This solution
can be verified by substituting it into the differential equation. We see that the
solution is explicitly dependent on the initial condition, and it can be shown that
this solution is unique. A plot of the initial condition response is shown in Figure 4.1.
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Figure 4.1: Response of the damped oscillator to the initial condition xo = (1,0). The
solution is unique for the given initial conditions and consists of an oscillatory solution for
each state, with an exponentially decaying magnitude.

We note that this form of the solution holds only for 0 < ¢ < 1, corresponding to
an “underdamped” oscillator. \%

Without imposing some mathematical conditions on the function F', the differ-
ential equation (4.2) may not have a solution for all 7, and there is no guarantee that
the solution is unique. We illustrate these possibilities with two examples.

Example 4.2 Finite escape time
Let x € R and consider the differential equation

dx
_— = _x2
dt

with the initial condition x (0) = 1. By differentiation we can verify that the function

4.3)

1

satisfies the differential equation and that it also satisfies the initial condition. A
graph of the solution is given in Figure 4.2a; notice that the solution goes to infinity
as t goes to 1. We say that this system has finite escape time. Thus the solution
exists only in the time interval 0 < ¢ < 1. \%

Example 4.3 Nonunique solution
Let x € R and consider the differential equation

dx

A ]

dt v
with initial condition x(0) = 0. We can show that the function
0 if0<t<a
(t—a)® ift>a

x(t) =

satisfies the differential equation for all values of the parameter @ > 0. To see this,
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Figure 4.2: Existence and uniqueness of solutions. Equation (4.3) has a solution only for time
t < 1, at which point the solution goes to co, as shown in (a). Equation (4.4) is an example
of a system with many solutions, as shown in (b). For each value of a, we get a different
solution starting from the same initial condition.

we differentiate x () to obtain

dx_ 0 if0<r<a
dt |20t —a) ift>a,

and hence x = 2,/x for all # > 0 with x(0) = 0. A graph of some of the possible
solutions is given in Figure 4.2b. Notice that in this case there are many solutions
to the differential equation. \%

These simple examples show that there may be difficulties even with simple
differential equations. Existence and uniqueness can be guaranteed by requiring
that the function F have the property that for some fixed ¢ € R,

I1F(x) = FII < cllx =yl forallx, y,

which is called Lipschitz continuity. A sufficient condition for a function to be
Lipschitz is that the Jacobian 0 F'/dx is uniformly bounded for all x. The difficulty
in Example 4.2 is that the derivative 0 F /0x becomes large for large x, and the
difficulty in Example 4.3 is that the derivative 0 F/0x is infinite at the origin.

4.2 Qualitative Analysis

The qualitative behavior of nonlinear systems is important in understanding some of
the key concepts of stability in nonlinear dynamics. We will focus on an important
class of systems known as planar dynamical systems. These systems have two state
variables x € R?, allowing their solutions to be plotted in the (x|, x,) plane. The
basic concepts that we describe hold more generally and can be used to understand
dynamical behavior in higher dimensions.

Phase Portraits

A convenient way to understand the behavior of dynamical systems with state
x € R? is to plot the phase portrait of the system, briefly introduced in Chapter 2.
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Figure 4.3: Phase portraits. (a) This plot shows the vector field for a planar dynamical
system. Each arrow shows the velocity at that point in the state space. (b) This plot includes
the solutions (sometimes called streamlines) from different initial conditions, with the vector

field superimposed.

We start by introducing the concept of a vector field. For a system of ordinary
differential equations

E :F(X),

the right-hand side of the differential equation defines at every x € R" a velocity
F(x) € R". This velocity tells us how x changes and can be represented as a vector
F(x) e R".

For planar dynamical systems, each state corresponds to a point in the plane and
F(x) is a vector representing the velocity of that state. We can plot these vectors
on a grid of points in the plane and obtain a visual image of the dynamics of the
system, as shown in Figure 4.3a. The points where the velocities are zero are of
particular interest since they define stationary points of the flow: if we start at such
a state, we stay at that state.

A phase portrait is constructed by plotting the flow of the vector field corre-
sponding to the planar dynamical system. That is, for a set of initial conditions, we
plot the solution of the differential equation in the plane R?. This corresponds to
following the arrows at each point in the phase plane and drawing the resulting tra-
jectory. By plotting the solutions for several different initial conditions, we obtain
a phase portrait, as show in Figure 4.3b. Phase portraits are also sometimes called
phase plane diagrams.

Phase portraits give insight into the dynamics of the system by showing the
solutions plotted in the (two-dimensional) state space of the system. For example,
we can see whether all trajectories tend to a single point as time increases or whether
there are more complicated behaviors. In the example in Figure 4.3, corresponding
to a damped oscillator, the solutions approach the origin for all initial conditions.
This is consistent with our simulation in Figure 4.1, but it allows us to infer the
behavior for all initial conditions rather than a single initial condition. However,
the phase portrait does not readily tell us the rate of change of the states (although
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Figure 4.4: Equilibrium points for an inverted pendulum. An inverted pendulum is a model
for a class of balance systems in which we wish to keep a system upright, such as a rocket (a).
Using a simplified model of an inverted pendulum (b), we can develop a phase portrait that
shows the dynamics of the system (c). The system has multiple equilibrium points, marked
by the solid dots along the x, = 0 line.

this can be inferred from the lengths of the arrows in the vector field plot).

Equilibrium Points and Limit Cycles

An equilibrium point of a dynamical system represents a stationary condition for
the dynamics. We say that a state x, is an equilibrium point for a dynamical system

dx
T _F
T (x)

if F(x,) = 0.If a dynamical system has an initial condition x (0) = x,, then it will
stay at the equilibrium point: x(¢) = x, for all # > 0, where we have taken 7y = 0.

Equilibrium points are one of the most important features of a dynamical sys-
tem since they define the states corresponding to constant operating conditions. A
dynamical system can have zero, one or more equilibrium points.

Example 4.4 Inverted pendulum
Consider the inverted pendulum in Figure 4.4, which is a part of the balance system
we considered in Chapter 2. The inverted pendulum is a simplified version of the
problem of stabilizing a rocket: by applying forces at the base of the rocket, we
seek to keep the rocket stabilized in the upright position. The state variables are
the angle & = x; and the angular velocity df/dt = x,, the control variable is the
acceleration u of the pivot and the output is the angle 6.

For simplicity we assume that mg//J; = 1 and ml/J, = 1, so that the dynamics
(equation (2.10)) become

dx . _X2
dt sinx; —cxp, +ucosxy |’

This is a nonlinear time-invariant system of second order. This same set of equa-
tions can also be obtained by appropriate normalization of the system dynamics as
illustrated in Example 2.7.

4.5)
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Figure 4.5: Phase portrait and time domain simulation for a system with a limit cycle. The
phase portrait (a) shows the states of the solution plotted for different initial conditions. The
limit cycle corresponds to a closed loop trajectory. The simulation (b) shows a single solution
plotted as a function of time, with the limit cycle corresponding to a steady oscillation of
fixed amplitude.

We consider the open loop dynamics by setting # = 0. The equilibrium points
for the system are given by
= [:i:mr]
e 0 B

wheren =0, 1, 2, . ... The equilibrium points for n even correspond to the pendu-
lum pointing up and those for n odd correspond to the pendulum hanging down. A
phase portrait for this system (without corrective inputs) is shown in Figure 4 .4c.
The phase portrait shows —27 < x; < 2x, so five of the equilibrium points are
shown. \%

Nonlinear systems can exhibit rich behavior. Apart from equilibria they can also
exhibit stationary periodic solutions. This is of great practical value in generating
sinusoidally varying voltages in power systems or in generating periodic signals for
animal locomotion. A simple example is given in Exercise 4.12, which shows the
circuit diagram for an electronic oscillator. A normalized model of the oscillator is
given by the equation

dx 1 d.X2

ke +x1(1 — x} — x3), — = u + x(1 — x} — x3). (4.0)

The phase portrait and time domain solutions are given in Figure 4.5. The figure
shows that the solutions in the phase plane converge to a circular trajectory. In the
time domain this corresponds to an oscillatory solution. Mathematically the circle
is called a limit cycle. More formally, we call an isolated solution x(7) a limit cycle
of period T > 0if x(t + T) = x(¢) for all t € R.

There are methods for determining limit cycles for second-order systems, but for
general higher-order systems we have to resort to computational analysis. Computer
algorithms find limit cycles by searching for periodic trajectories in state space that
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State x

Time ¢

Figure 4.6: Illustration of Lyapunov’s concept of a stable solution. The solution represented
by the solid line is stable if we can guarantee that all solutions remain within a tube of diameter
€ by choosing initial conditions sufficiently close the solution.

satisfy the dynamics of the system. In many situations, stable limit cycles can be
found by simulating the system with different initial conditions.

4.3 Stability

The stability of a solution determines whether or not solutions nearby the solution
remain close, get closer or move further away. We now give a formal definition of
stability and describe tests for determining whether a solution is stable.

Definitions

Let x(¢; @) be a solution to the differential equation with initial condition a. A
solution is stable if other solutions that start near a stay close to x (¢; a). Formally,
we say that the solution x(¢; @) is stable if for all ¢ > 0, there exists a d > 0 such

that
|b—al <0 = |x(t;b)—x(t;a)| <€ forallt > 0.

Note that this definition does not imply that x(¢; ) approaches x(¢; a) as time
increases but just that it stays nearby. Furthermore, the value of 6 may depend on
€, so that if we wish to stay very close to the solution, we may have to start very,
very close (0 < ¢€). This type of stability, which is illustrated in Figure 4.6, is also
called stability in the sense of Lyapunov. If a solution is stable in this sense and the
trajectories do not converge, we say that the solution is neutrally stable.

An important special case is when the solution x(z; a) = x, is an equilibrium
solution. Instead of saying that the solution is stable, we simply say that the equi-
librium point is stable. An example of a neutrally stable equilibrium point is shown
in Figure 4.7. From the phase portrait, we see that if we start near the equilibrium
point, then we stay near the equilibrium point. Indeed, for this example, given any
€ that defines the range of possible initial conditions, we can simply choose d = €
to satisfy the definition of stability since the trajectories are perfect circles.

A solution x (¢; a) is asymptotically stable if it is stable in the sense of Lyapunov
and also x(7; b) — x(¢; a) ast — oo for b sufficiently close to a. This corresponds
to the case where all nearby trajectories converge to the stable solution for large time.
Figure 4.8 shows an example of an asymptotically stable equilibrium point. Note



DynamicBehavior.tex, v1.157 2008/01/30 07:21:03 (murray)

4.3. STABILITY 103
1\
0.5/ )
= 0k
)
051 q =
1 \ L . L / 21 I I I L ]
1 05 0 05 1 0 2 4 6 8 10
X Time ¢

1

Figure 4.7: Phase portrait and time domain simulation for a system with a single stable
equilibrium point. The equilibrium point x, at the origin is stable since all trajectories that
start near x, stay near x,.

from the phase portraits that not only do all trajectories stay near the equilibrium
point at the origin, but that they also all approach the origin as ¢ gets large (the
directions of the arrows on the phase portrait show the direction in which the
trajectories move).

A solution x(¢; a) is unstable if it is not stable. More specifically, we say that
a solution x(#; a) is unstable if given some € > 0, there does not exist a 6 > 0
such that if |b — a|| < J,then ||x(¢; b) — x(¢; a)|| < € for all . An example of an
unstable equilibrium point is shown in Figure 4.9.

The definitions above are given without careful description of their domain of
applicability. More formally, we define a solution to be locally stable (or locally
asymptotically stable) if it is stable for all initial conditions x € B, (a), where

B.(a) ={x:|lx —all <r}

is a ball of radius r around a and r > 0. A system is globally stable if it is stable
for all r > 0. Systems whose equilibrium points are only locally stable can have

)‘Cl = X3
0.5} ' Xy =X — X
\ 1 ;
= or \ ), 1 —% ---%
r ~
0 e
-0.5F 1 - N )
~_7
-1 L -1 L I I I
-1 -0.5 0 0.5 1 0 2 4 6 8 10
X Time ¢

Figure 4.8: Phase portrait and time domain simulation for a system with a single asymptoti-
cally stable equilibrium point. The equilibrium point x, at the origin is asymptotically stable
since the trajectories converge to this point as t — oo.
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Figure 4.9: Phase portrait and time domain simulation for a system with a single unstable
equilibrium point. The equilibrium point x, at the origin is unstable since not all trajectories
that start near x, stay near x,. The sample trajectory on the right shows that the trajectories
very quickly depart from zero.

interesting behavior away from equilibrium points, as we explore in the next section.

For planar dynamical systems, equilibrium points have been assigned names
based on their stability type. An asymptotically stable equilibrium point is called
a sink or sometimes an attractor. An unstable equilibrium point can be either a
source, if all trajectories lead away from the equilibrium point, or a saddle, if
some trajectories lead to the equilibrium point and others move away (this is the
situation pictured in Figure 4.9). Finally, an equilibrium point that is stable but not
asymptotically stable (i.e., neutrally stable, such as the one in Figure 4.7) is called
a center.

Example 4.5 Congestion control
The model for congestion control in a network consisting of NV identical computers
connected to a single router, introduced in Section 3.4, is given by

dw ¢ 1+ w? db N wce
— =-—pc —-), —=N—-c
ar b 7 2 a b
where w is the window size and b is the buffer size of the router. Phase portraits are
shown in Figure 4.10 for two different sets of parameter values. In each case we see
that the system converges to an equilibrium point in which the buffer is below its
full capacity of 500 packets. The equilibrium size of the buffer represents a balance
between the transmission rates for the sources and the capacity of the link. We see
from the phase portraits that the equilibrium points are asymptotically stable since
all initial conditions result in trajectories that converge to these points. \Y

Stability of Linear Systems
A linear dynamical system has the form

= Ax X = X 4.
't ] 0>
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Figure 4.10: Phase portraits for a congestion control protocol running with N = 60 identical
source computers. The equilibrium values correspond to a fixed window at the source, which
results in a steady-state buffer size and corresponding transmission rate. A faster link (b) uses
a smaller buffer size since it can handle packets at a higher rate.

where A € R"*" is a square matrix, corresponding to the dynamics matrix of a
linear control system (2.6). For a linear system, the stability of the equilibrium at
the origin can be determined from the eigenvalues of the matrix A:

A(A) = {s € C: det(s] — A) = 0}.

The polynomial det(sI — A) is the characteristic polynomial and the eigenvalues
are its roots. We use the notation /; for the jth eigenvalue of A,sothat 1; € 1(A).
In general 1 can be complex-valued, although if A is real-valued, then for any
eigenvalue 4, its complex conjugate A* will also be an eigenvalue. The origin is
always an equilibrium for a linear system. Since the stability of a linear system
depends only on the matrix A, we find that stability is a property of the system. For
a linear system we can therefore talk about the stability of the system rather than
the stability of a particular solution or equilibrium point.

The easiest class of linear systems to analyze are those whose system matrices
are in diagonal form. In this case, the dynamics have the form

/11 0
dx A2
i X. (4.8)
0 An
It is easy to see that the state trajectories for this system are independent of each
other, so that we can write the solution in terms of # individual systems x; = 4;x;.
Each of these scalar solutions is of the form

x;(t) = e""x(0).

We see that the equilibrium point x, = 0 is stable if A; < 0 and asymptotically
stable if 4; < 0.
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Another simple case is when the dynamics are in the block diagonal form

01 1 0 0
—w] 0] 0 0
dx B ) ] ]
a9 o0 : N L
0 0 On  Op
0 0 —Wy  Op

In this case, the eigenvalues can be shown to be 4; = ¢; & iw;. We once again can
separate the state trajectories into independent solutions for each pair of states, and
the solutions are of the form

ij_](l) = e”fl(xzj_](O) cosw;t +.X2j(0) sina)jt),
X2j(l‘) = eajt(ij_l(O) sina)jt —XQJ'(O) COSCOJ'Z‘),

where j = 1,2, ..., m. We see that this system is asymptotically stable if and only
if 6; = Re 4; < 0.1t is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some systems
can be transformed into these forms via coordinate transformations. One such class
of systems is those for which the dynamics matrix has distinct (nonrepeating)
eigenvalues. In this case there is a matrix T € R"*" such that the matrix T AT ~!
is in (block) diagonal form, with the block diagonal elements corresponding to
the eigenvalues of the original matrix A (see Exercise 4.14). If we choose new
coordinates z = T x, then

dZ . -1
— =Tx=TAx=TAT 'z
dt

and the linear system has a (block) diagonal dynamics matrix. Furthermore, the
eigenvalues of the transformed system are the same as the original system since
if v is an eigenvector of A, then w = Tv can be shown to be an eigenvector of
T AT~'. We can reason about the stability of the original system by noting that
x(t) = T7'z(¢), and so if the transformed system is stable (or asymptotically
stable), then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the stability
of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we make use of the
following theorem, proved in the next chapter:

Theorem 4.1 (Stability of a linear system). The system
dx
dr

is asymptotically stable if and only if all eigenvalues of A all have a strictly negative

real part and is unstable if any eigenvalue of A has a strictly positive real part.

= Ax

Example 4.6 Compartment model
Consider the two-compartment module for drug delivery introduced in Section 3.6.
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Using concentrations as state variables and denoting the state vector by x, the system
dynamics are given by

dx —ko — k1 ki bo [

— = X u, =10 l] X,

dr [ ko k)T o y
where the input u is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measured output y. We wish to

design a feedback control law that maintains a constant output given by y = yj.
We choose an output feedback control law of the form

u=—k(y—yq) +ua,

where u, is the rate of injection required to maintain the desired concentration and
k is a feedback gain that should be chosen such that the closed loop system is stable.
Substituting the control law into the system, we obtain
d_x . —ko — k1 —klbok
dt ka —k>

y= [0 1]x=:Cx.

]x—l— [%)] ug =: Ax + Buy,

The equilibrium concentration x, € R? is given by x, = —A~!Bu, and
bok

koka + ik + kkikabo

Choosing u, such that y, = y,; provides the constant rate of injection required to

maintain the desired output. We can now shift coordinates to place the equilibrium

point at the origin, which yields

dz —ko — ki —kibok

dr [ ka —ky | ©

where z = x — x,. We can now apply the results of Theorem 4.1 to determine the

stability of the system. The eigenvalues of the system are given by the roots of the
characteristic polynomial

2(s) = 5% + (ko + k1 + ka)s + (ko + ki + kikabok).

While the specific form of the roots is messy, it can be shown that the roots are posi-
tive as long as the linear term and the constant term are both positive (Exercise 4.16).
Hence the system is stable for any £ > 0. \%

Ye = _CA_IBua' = d-

Stability Analysis via Linear Approximation

An important feature of differential equations is that it is often possible to determine
the local stability of an equilibrium point by approximating the system by a linear
system. The following example illustrates the basic idea.
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Example 4.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dynamics are given by

dr sinx; —yxy |’

where we have defined the state as x = (8, §). We first consider the equilibrium
point at x = (0, 0), corresponding to the straight-up position. If we assume that the
angle # = x; remains small, then we can replace sin x; with x; and cos x; with 1,
which gives the approximate system

dx X7 0 1
o P S P S (49)
Intuitively, this system should behave similarly to the more complicated model
as long as x; is small. In particular, it can be verified that the equilibrium point
(0, 0) is unstable by plotting the phase portrait or computing the eigenvalues of the
dynamics matrix in equation (4.9)
We can also approximate the system around the stable equilibrium point at

x = (7,0). In this case we have to expand sinx; and cosx; around x; = =,
according to the expansions

sin(r +60) = —sinf =~ -0, cos(xr +60) = —cos(d) =~ —1.

If we define z; = x; — 7 and z = x», the resulting approximate dynamics are

given by
dz 22 0 1
A = ) 4.10
dt [_ZI_V Zz] [—1 —y]z “-10)

Note that z = (0, 0) is the equilibrium point for this system and that it has the same
basic form as the dynamics shown in Figure 4.8. Figure 4.11 shows the phase por-
traits for the original system and the approximate system around the corresponding
equilibrium points. Note that they are very similar, although not exactly the same.
It can be shown that if a linear approximation has either asymptotically stable or
unstable equilibrium points, then the local stability of the original system must be
the same (Theorem 4.3). \%

More generally, suppose that we have a nonlinear system

dx
— = F(x
T (x)
that has an equilibrium point at x,. Computing the Taylor series expansion of the

vector field, we can write
dx

oF
T F(x,)+ = (x — x.) + higher-order terms in (x — x,).
X

Xe

Since F'(x,) = 0, we can approximate the system by choosing a new state variable
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Figure 4.11: Comparison between the phase portraits for the full nonlinear systems (a) and
its linear approximation around the origin (b). Notice that near the equilibrium point at the
center of the plots, the phase portraits (and hence the dynamics) are almost identical.

7 = x — X, and writing

dz oF
— = Az, h A= —| . 4.11
dt < where ox ( )

Xe

We call the system (4.11) the linear approximation of the original nonlinear system
or the linearization at x,.

The fact that a linear model can be used to study the behavior of a nonlinear
system near an equilibrium point is a powerful one. Indeed, we can take this even
further and use a local linear approximation of a nonlinear system to design a feed-
back law that keeps the system near its equilibrium point (design of dynamics).
Thus, feedback can be used to make sure that solutions remain close to the equi-
librium point, which in turn ensures that the linear approximation used to stabilize
it is valid.

Linear approximations can also be used to understand the stability of nonequi-
librium solutions, as illustrated by the following example.

Example 4.8 Stable limit cycle
Consider the system given by equation (4.6),

dx, dxs
E=x2+x1(1—x12—x22), W:—xl—l—xZ(l—x%—x%),

whose phase portrait is shown in Figure 4.5. The differential equation has a periodic

solution
x1(t) = x1(0) cost + x,(0) sin ¢, (4.12)

with x?(0) + x3(0) = 1.
To explore the stability of this solution, we introduce polar coordinates r and
@, which are related to the state variables x; and x; by

X| =rcosg, Xy =rsing.
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Differentiation gives the following linear equations for 7 and ¢:
X] =Fcosp —resing, Xy =7 sing +rgcose.
Solving this linear system for 7 and ¢ gives, after some calculation,

d

dt dt
Notice that the equations are decoupled; hence we can analyze the stability of each
state separately.

The equation for r has three equilibria: r = 0,r = 1 and r = —1 (not realiz-
able since r must be positive). We can analyze the stability of these equilibria by
linearizing the radial dynamics with F(r) = r(1 — r?). The corresponding linear
dynamics are given by

dr 0OF

prialre r:(1—2r62)r, re=0,1,

Te

:I"(]—I"z),

where we have abused notation and used r to represent the deviation from the
equilibrium point. It follows from the sign of (1 — 2r?2) that the equilibrium r = 0
is unstable and the equilibrium r = 1 is asymptotically stable. Thus for any initial
condition » > 0 the solution goes to » = 1 as time goes to infinity, but if the system
starts with r = 0, it will remain at the equilibrium for all times. This implies that
all solutions to the original system that do not start at x; = x, = 0 will approach
the circle x? + x3 = 1 as time increases.

To show the stability of the full solution (4.12), we must investigate the behavior
of neighboring solutions with different initial conditions. We have already shown
that the radius r will approach that of the solution (4.12) as long as r(0) > 0. The
equation for the angle ¢ can be integrated analytically to give ¢ () = —t + ¢(0),
which shows that solutions starting at different angles ¢ will neither converge nor
diverge. Thus, the unit circle is attracting, but the solution (4.12) is only stable, not
asymptotically stable. The behavior of the system is illustrated by the simulation
in Figure 4.12. Notice that the solutions approach the circle rapidly, but that there
is a constant phase shift between the solutions. \%

4.4 Lyapunov Stability Analysis

We now return to the study of the full nonlinear system

D F(), xeR (4.13)
— =F(), x . .
di

Having defined when a solution for a nonlinear dynamical system is stable, we
can now ask how to prove that a given solution is stable, asymptotically stable
or unstable. For physical systems, one can often argue about stability based on
dissipation of energy. The generalization of that technique to arbitrary dynamical
systems is based on the use of Lyapunov functions in place of energy.
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Figure 4.12: Solution curves for a stable limit cycle. The phase portrait on the left shows that
the trajectory for the system rapidly converges to the stable limit cycle. The starting points
for the trajectories are marked by circles in the phase portrait. The time domain plots on the
right show that the states do not converge to the solution but instead maintain a constant phase
error.

In this section we will describe techniques for determining the stability of so-
lutions for a nonlinear system (4.13). We will generally be interested in stability
of equilibrium points, and it will be convenient to assume that x, = 0 is the equi-
librium point of interest. (If not, rewrite the equations in a new set of coordinates
=X —X,.)

Lyapunov Functions

A Lyapunov function V : R" — R is an energy-like function that can be used to
determine the stability of a system. Roughly speaking, if we can find a nonnegative
function that always decreases along trajectories of the system, we can conclude
that the minimum of the function is a stable equilibrium point (locally).

To describe this more formally, we start with a few definitions. We say that a
continuous function V is positive definite if V (x) > 0 for all x # 0 and V (0) = 0.
Similarly, a function is negative definite if V(x) < 0 for all x ## 0 and V (0) = 0.
We say that a function V' is positive semidefinite if V (x) > 0 for all x, but V (x)
can be zero at points other than just x = 0.

To illustrate the difference between a positive definite function and a positive
semidefinite function, suppose that x € R? and let

Vilx) = x12, Va(x) = xf + x%.

Both V; and V, are always nonnegative. However, it is possible for V; to be zero
even if x # 0. Specifically, if we set x = (0, ¢), where ¢ € R is any nonzero
number, then V;(x) = 0. On the other hand, V,(x) = 0 if and only if x = (0, 0).
Thus V) is positive semidefinite and V; is positive definite.

We can now characterize the stability of an equilibrium point x, = O for the
system (4.13).

Theorem 4.2 (Lyapunov stability theorem). Let V be a nonnegative function on



DynamicBehavior.tex, v1.157 2008/01/30 07:21:03 (murray)

112 CHAPTER 4. DYNAMIC BEHAVIOR

Vx)=c <cj

Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov function V (x) = c. If dx /dt points inward to these
sets at all points along the contour, then the trajectories of the system will always cause V (x)
to decrease along the trajectory.

R" and let V represent the time derivative of V along trajectories of the system
dynamics (4.13):

Let B, = B,(0) be a ball of radius r around the origin. If there exists r > 0 such
that V is positive definite and V is negative semidefinite for all x € B,, then x =0
is locally stable in the sense of Lyapunov. If V is positive definite and V is negative
definite in B,, then x = 0 is locally asymptotically stable.

If V satisfies one of the conditions above, we say that V is a (local) Lyapunov
function for the system. These results have a nice geometric interpretation. The
level curves for a positive definite function are the curves defined by V(x) = ¢,
¢ > 0, and for each c this gives a closed contour, as shown in Figure 4.13. The
condition that V (x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories move to smaller and smaller
values of V and if V is negative definite then x must approach 0.

Example 4.9 Scalar nonlinear system
Consider the scalar nonlinear system

dx 2
dt — 1+x
This system has equilibrium points at x = 1 and x = —2. We consider the equilib-
rium point at x = 1 and rewrite the dynamics using z = x — 1:
dz 2
_ = -2z — 1’
dt 24z

which has an equilibrium point at z = 0. Now consider the candidate Lyapunov
function

1
V(x) = Ezz,
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which is globally positive definite. The derivative of V along trajectories of the

system is given by 5
z

24z
If we restrict our analysis to an interval B,, where r < 2,then 2 + z > 0 and we
can multiply through by 2 + z to obtain
27— (2 +2)Q+2)=-2"-32"=-7*(z+3) <0, zeB,r <2

It follows that V(z) < O for all z € B,, z # 0, and hence the equilibrium point
x. = 1 is locally asymptotically stable. Vv

V(z) =zz = -z -z

A slightly more complicated situation occurs if V is negative semidefinite. In
this case it is possible that V (x) = 0 whenx # 0,and hence x could stop decreasing
in value. The following example illustrates this case.

Example 4.10 Hanging pendulum
A normalized model for a hanging pendulum is

dx dx, .

E:)Q, E:—smxl,
where x; is the angle between the pendulum and the vertical, with positive x;
corresponding to counterclockwise rotation. The equation has an equilibrium x; =
Xy = 0, which corresponds to the pendulum hanging straight down. To explore the
stability of this equilibrium we choose the total energy as a Lyapunov function:

V(x) =1—cosx; + %x% ~ %xlz + %xzz

The Taylor series approximation shows that the function is positive definite for
small x. The time derivative of V (x) is

V = x;sinx; + XXy = xpsinx; — xp sinx; = 0.

Since this function is positive semidefinite, it follows from Lyapunov’s theorem that
the equilibrium is stable but not necessarily asymptotically stable. When perturbed,
the pendulum actually moves in a trajectory that corresponds to constant energy. V

Lyapunov functions are not always easy to find, and they are not unique. In
many cases energy functions can be used as a starting point, as was done in Exam-
ple 4.10. It turns out that Lyapunov functions can always be found for any stable
system (under certain conditions), and hence one knows that if a system is stable,
a Lyapunov function exists (and vice versa). Recent results using sum-of-squares
methods have provided systematic approaches for finding Lyapunov systems [167].
Sum-of-squares techniques can be applied to a broad variety of systems, including
systems whose dynamics are described by polynomial equations, as well as hybrid
systems, which can have different models for different regions of state space.

For a linear dynamical system of the form

dx

—_— = Ax,
dt
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it is possible to construct Lyapunov functions in a systematic manner. To do so, we
consider quadratic functions of the form

V(x) =x!Px,

where P € R"™ " is a symmetric matrix (P = PT). The condition that V be positive
definite is equivalent to the condition that P be a positive definite matrix:

xTPx >0, forallx #0,

which we write as P > 0. It can be shown that if P is symmetric, then P is positive
definite if and only if all of its eigenvalues are real and positive.

Given a candidate Lyapunov function V (x) = x! Px, we can now compute its
derivative along flows of the system:

oV dx
© ox dt
The requirement that V be negative definite (for asymptotic stability) becomes a
condition that the matrix Q be positive definite. Thus, to find a Lyapunov function

for a linear system it is sufficient to choose a Q > 0 and solve the Lyapunov
equation:

=xT(ATP 4+ PA)x =1 —xT Qx.

ATP+ PA=-0. (4.14)

This is a linear equation in the entries of P, and hence it can be solved using
linear algebra. It can be shown that the equation always has a solution if all of the
eigenvalues of the matrix A are in the left half-plane. Moreover, the solution P is
positive definite if Q is positive definite. It is thus always possible to find a quadratic
Lyapunov function for a stable linear system. We will defer a proof of this until
Chapter 5, where more tools for analysis of linear systems will be developed.
Knowing that we have a direct method to find Lyapunov functions for linear

systems, we can now investigate the stability of nonlinear systems. Consider the
system

dx ~

Tl F(x) =: Ax + F(x), (4.15)
where F(0) = 0 and F(x) contains terms that are second order and higher in the
elements of x. The function Ax is an approximation of F (x) near the origin, and we
can determine the Lyapunov function for the linear approximation and investigate if
itis also a Lyapunov function for the full nonlinear system. The following example
illustrates the approach.

Example 4.11 Genetic switch
Consider the dynamics of a set of repressors connected together in a cycle, as
shown in Figure 4.14a. The normalized dynamics for this system were given in
Exercise 2.9:

dz; 2 dz; 2

s — = — 22, 4.16
21 It T+ 22 (4.16)

dr 1+

where z; and z, are scaled versions of the protein concentrations, n and u are
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21, f(z1)
- = —22, f(z2)
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(a) Circuit diagram (b) Equilibrium points

Figure 4.14: Stability of a genetic switch. The circuit diagram in (a) represents two proteins
that are each repressing the production of the other. The inputs u#, and u, interfere with this
repression, allowing the circuit dynamics to be modified. The equilibrium points for this
circuit can be determined by the intersection of the two curves shown in (b).

parameters that describe the interconnection between the genes and we have set the
external inputs u; and u; to zero.

The equilibrium points for the system are found by equating the time derivatives
to zero. We define
Ly = W e
1+ un du (14 um)?

and the equilibrium points are defined as the solutions of the equations

21 = f(z2), z22= f(z1).

If we plot the curves (z;, f(z1)) and (f(z2), z2) on a graph, then these equations
will have a solution when the curves intersect, as shown in Figure 4.14b. Because
of the shape of the curves, it can be shown that there will always be three solutions:
one at z;, = zp.,0ne with z;, < 7z, and one with z;, > z..If © > 1, then we can
show that the solutions are given approximately by

1 1
> Zle = 22es Zle ™

Ju) =

e XU, 227 s 22 TN (417)

n—1 n—1

To check the stability of the system, we write f () in terms of its Taylor series
expansion about u,:

fw) = fu)+ () (u—uy)+ f"(u.) (u — u,)* + higher-order terms,

where f’ represents the first derivative of the function, and f” the second. Using
these approximations, the dynamics can then be written as

dw [ -1 f/@)]
a | f@ -1

where w = z—z, is the shifted state and F (w) represents quadratic and higher-order

w+ F(w),
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terms.
We now use equation (4.14) to search for a Lyapunov function. Choosing Q = 1
and letting P € R2*2 have elements pij» we search for a solution of the equation

=L A [po pe| | P [=0 A 2[00

-1 P12 P P12 P» o1 0 —1}°
where f| = f'(zi.) and f; = f'(z2.). Note that we have set p,; = pi, to force P
to be symmetric. Multiplying out the matrices, we obtain

=2pi +2f3p12 pufi=2po+pnfi| _[-1 0
pufi —2pi+pnf, —2pn +2f{pn 0o -1}

which is a set of linear equations for the unknowns p;;. We can solve these linear
equations to obtain

1’2_f2/f1’+2 D= — fitf; Py = — 2’2_f1/f2’+2
Afifs=1 Afifs =1 4(fif; -1
To check that V (w) = w! Pw is a Lyapunov function, we must verify that V (w) is

positive definite function or equivalently that P > 0. Since P is a2 x 2 symmetric
matrix, it has two real eigenvalues 4, and 4, that satisfy

P =—-

A1 + Ao = trace(P), A1+ Ay = det(P).

In order for P to be positive definite we must have that 1, and A, are positive, and
we thus require that

2 2 2 2
PoUFRIELD | gpy = FET2IIH £+
4-4f1f; 16 — 16 /11,
We see that trace(P) = 4det(P) and the numerator of the expressions is just

(fi — f2)* +4 > 0, so it suffices to check the sign of 1 — £/ f;. In particular, for
P to be positive definite, we require that

(1) f(z2e) < 1.

We can now make use of the expressions for f’ defined earlier and evaluate at
the approximate locations of the equilibrium points derived in equation (4.17). For
the equilibrium points where z;, # 2., we can show that

> 0.

trace(P) =

_ —(n—1)2
—punp" —pnpm Y L

T Ut T e

Using n = 2 and x =~ 200 from Exercise 2.9, we see that f'(z1.) f'(z2.) < 1 and
hence P is a positive definite. This implies that V is a positive definite function and
hence a potential Lyapunov function for the system.

To determine if the system (4.16) is stable, we now compute V at the equilibrium

1
ECOICOEFAMINC=
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Figure 4.15: Dynamics of a genetic switch. The phase portrait on the left shows that the switch
has three equilibrium points, corresponding to protein A having a concentration greater than,
equal to or less than protein B. The concentration with equal protein concentrations is unstable,
but the other equilibrium points are stable. The simulation on the right shows the time response
of the system starting from two different initial conditions. The initial portion of the curve
corresponds to initial concentrations z(0) = (1, 5) and converges to the equilibrium where
Z1e < Z2.. Attime t = 10, the concentrations are perturbed by +2 in z; and —2 in z,, moving
the state into the region of the state space whose solutions converge to the equilibrium point
where 25, < zje.

point. By construction,
V=w'(PA+ ATP)w + FT(w)Pw + w'PF (w)
=—w'w+ F'(w)Pw + w'PF (0).

Since all terms in F are quadratic or higher order in w, it follows that F7(w)Pw
and w”P F (w) consist of terms that are at least third order in w. Therefore if w
is sufficiently close to zero, then the cubic and higher-order terms will be smaller
than the quadratic terms. Hence, sufficiently close to w = 0, Vis negative definite,
allowing us to conclude that these equilibrium points are both stable.

Figure 4.15 shows the phase portrait and time traces for a system with u = 4,
illustrating the bistable nature of the system. When the initial condition starts with
a concentration of protein B greater than that of A, the solution converges to the
equilibrium point at (approximately) (1/u4"~!, u). If A is greater than B, then it
goes to (u, 1/u"~1). The equilibrium point with z;, = 2, is unstable. \

More generally, we can investigate what the linear approximation tells about
the stability of a solution to a nonlinear equation. The following theorem gives a
partial answer for the case of stability of an equilibrium point.

Theorem 4.3. Consider the dynamical system (4.15) with F(0) = 0 and F such
that lim ||F(x) I/llx]l = Oas|x|| = O.Ifthe real parts of all eigenvalues of A are
strictly less than zero, then x, = 0 is a locally asymptotically stable equilibrium
point of equation (4.15).

This theorem implies that asymptotic stability of the linear approximation im-
plies local asymptotic stability of the original nonlinear system. The theorem is very
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important for control because it implies that stabilization of a linear approximation
of a nonlinear system results in a stable equilibrium for the nonlinear system. The
proof of this theorem follows the technique used in Example 4.11. A formal proof
can be found in [123].

Krasovski—Lasalle Invariance Principle

For general nonlinear systems, especially those in symbolic form, it can be difficult
to find a positive definite function V whose derivative is strictly negative definite.
The Krasovski—Lasalle theorem enables us to conclude the asymptotic stability of
an equilibrium point under less restrictive conditions, namely, in the case where V
is negative semidefinite, which is often easier to construct. However, it applies only
to time-invariant or periodic systems. This section makes use of some additional
concepts from dynamical systems; see Hahn [94] or Khalil [123] for a more detailed
description.

We will deal with the time-invariant case and begin by introducing a few more
definitions. We denote the solution trajectories of the time-invariant system

ax _ p 418
7 = F® (4.18)

as x(t : a), which is the solution of equation (4.18) at time ¢ starting from a at
to = 0. The w limit set of a trajectory x(¢; a) is the set of all points z € R” such
that there exists a strictly increasing sequence of times ¢, such that x(¢,; a) = z
asn — o00. A set M C R”" is said to be an invariant set if for all b € M, we have
x(t;b) € M for all ¢+ > 0. It can be proved that the w limit set of every trajectory
is closed and invariant. We may now state the Krasovski—Lasalle principle.

Theorem 4.4 (Krasovski—Lasalle principle). Let V : R" — R be a locally positive
definite function such that on the compact set Q, = {x € R" : V(x) < r} we have
V(x) < 0. Define _

S={xeQ :V(x)=0}L

Ast — 00, the trajectory tends to the largest invariant set inside S, i.e., its w limit
set is contained inside the largest invariant set in S. In particular, if S contains no
invariant sets other than x = 0, then 0 is asymptotically stable.

Proofs are given in [128] and [135].

Lyapunov functions can often be used to design stabilizing controllers, as is
illustrated by the following example, which also illustrates how the Krasovski—
Lasalle principle can be applied.

Example 4.12 Inverted pendulum
Following the analysis in Example 2.7, an inverted pendulum can be described by
the following normalized model:

dx; dx

W = Xy, d_t2 =sinx; + ucosxy, (4.19)
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Figure 4.16: Stabilized inverted pendulum. A control law applies a force u at the bottom
of the pendulum to stabilize the inverted position (a). The phase portrait (b) shows that
the equilibrium point corresponding to the vertical position is stabilized. The shaded region
indicates the set of initial conditions that converge to the origin. The ellipse corresponds to a
level set of a Lyapunov function V (x) for which V (x) > 0 and V (x) < 0 for all points inside
the ellipse. This can be used as an estimate of the region of attraction of the equilibrium point.

The actual dynamics of the system evolve on a manifold (c).

where x; is the angular deviation from the upright position and « is the (scaled)
acceleration of the pivot, as shown in Figure 4.16a. The system has an equilib-
rium at x; = x, = 0, which corresponds to the pendulum standing upright. This

equilibrium is unstable.
To find a stabilizing controller we consider the following candidate for a Lya-

punov function:
V(x) = (cosx; — 1) +a(l —cos” x;) + Ex2 ~ (a — E)xl + Exz'

The Taylor series expansion shows that the function is positive definite near the
origin if a > 0.5. The time derivative of V (x) is

V = —x; sinx; 4 2ax; sin x| cos x| + Xox3 = x2(# + 2a sin x;) cos x;.
Choosing the feedback law
U = —2asinx; — X COS X

gives )
V = —x% cos’ Xi.

It follows from Lyapunov’s theorem that the equilibrium is locally stable. However,

since the function is only negative semidefinite, we cannot conclude asymptotic
stability using Theorem 4.2. However, note that V. = 0 implies that x, = 0 or

xy=rn/2+nr.
If we restrict our analysis to a small neighborhood of the origin Q,,r < 7 /2,

then we can define
S = {(xl,xg) S Qr L Xy = 0}
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and we can compute the largest invariant set inside S. For a trajectory to remain
in this set we must have x, = 0 for all # and hence x,(¢) = 0 as well. Using the
dynamics of the system (4.19), we see that x,(¢) = 0 and X, (¢) = 0 implies x;(¢) =
0 as well. Hence the largest invariant set inside S is (x1, x») = 0, and we can use the
Krasovski-Lasalle principle to conclude that the origin is locally asymptotically
stable. A phase portrait of the closed loop system is shown in Figure 4.16b.

In the analysis and the phase portrait, we have treated the angle of the pendulum
6 = x; as a real number. In fact, § is an angle with & = 2z equivalent to & = 0.
Hence the dynamics of the system actually evolves on a manifold (smooth surface)
as shown in Figure 4.16c. Analysis of nonlinear dynamical systems on manifolds
is more complicated, but uses many of the same basic ideas presented here. \

4.5 Parametric and Nonlocal Behavior

Most of the tools that we have explored are focused on the local behavior of a
fixed system near an equilibrium point. In this section we briefly introduce some
concepts regarding the global behavior of nonlinear systems and the dependence
of a system’s behavior on parameters in the system model.

Regions of Attraction

To get some insight into the behavior of a nonlinear system we can start by finding
the equilibrium points. We can then proceed to analyze the local behavior around
the equilibria. The behavior of a system near an equilibrium point is called the local
behavior of the system.

The solutions of the system can be very different far away from an equilibrium
point. This is seen, for example, in the stabilized pendulum in Example 4.12. The
inverted equilibrium point is stable, with small oscillations that eventually converge
to the origin. But far away from this equilibrium point there are trajectories that
converge to other equilibrium points or even cases in which the pendulum swings
around the top multiple times, giving very long oscillations that are topologically
different from those near the origin.

To better understand the dynamics of the system, we can examine the set of all
initial conditions that converge to a given asymptotically stable equilibrium point.
This set is called the region of attraction for the equilibrium point. An example
is shown by the shaded region of the phase portrait in Figure 4.16b. In general,
computing regions of attraction is difficult. However, even if we cannot determine
the region of attraction, we can often obtain patches around the stable equilibria
that are attracting. This gives partial information about the behavior of the system.

One method for approximating the region of attraction is through the use of
Lyapunov functions. Suppose that V is a local Lyapunov function for a system
around an equilibrium point xj. Let Q, be a set on which V (x) has a value less than
r,

Q =xeR":Vx)<r},
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and suppose that V (x) < 0 for all x € Q,, with equality only at the equilibrium
point xy. Then €, is inside the region of attraction of the equilibrium point. Since
this approximation depends on the Lyapunov function and the choice of Lyapunov
function is not unique, it can sometimes be a very conservative estimate.

It is sometimes the case that we can find a Lyapunov function V such that V is
positive definite and V is negative (semi-) definite for all x € R”. In this case it can
be shown that the region of attraction for the equilibrium point is the entire state
space, and the equilibrium point is said to be globally stable.

Example 4.13 Stabilized inverted pendulum
Consider again the stabilized inverted pendulum from Example 4.12. The Lyapunov
function for the system was

1
V(x) = (cosx; — 1) +a(l — cosle) + zx%,
and V was negative semidefinite for all x and nonzero when x; # =+x /2. Hence
for any x such that |x,| < #/2, V(x) > 0 will be inside the invariant set defined
by the level curves of V (x). One of these level sets is shown in Figure 4.16b. V

Bifurcations

Another important property of nonlinear systems is how their behavior changes as
the parameters governing the dynamics change. We can study this in the context
of models by exploring how the location of equilibrium points, their stability, their
regions of attraction and other dynamic phenomena, such as limit cycles, vary based
on the values of the parameters in the model.

Consider a differential equation of the form

dx " X
Z:F(x,,u), x eR", uelR", (4.20)

where x is the state and y is a set of parameters that describe the family of equations.
The equilibrium solutions satisfy

F(x, ) =0,

and as u is varied, the corresponding solutions x,(x) can also vary. We say that the
system (4.20) has a bifurcation at ¢ = u* if the behavior of the system changes
qualitatively at x*. This can occur either because of a change in stability type or a
change in the number of solutions at a given value of x.

Example 4.14 Predator—prey
Consider the predator—prey system described in Section 3.7. The dynamics of the
system are given by

dH (1 H) aHL dL aHL

k

= rH _ — =) —dL, 421
dt c+ H dt c+H
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Figure 4.17: Bifurcation analysis of the predator—prey system. (a) Parametric stability dia-
gram showing the regions in parameter space for which the system is stable. (b) Bifurcation
diagram showing the location and stability of the equilibrium point as a function of a. The
solid line represents a stable equilibrium point, and the dashed line represents an unstable
equilibrium point. The dashed-dotted lines indicate the upper and lower bounds for the limit
cycle at that parameter value (computed via simulation). The nominal values of the parameters
in the model area =3.2,b =0.6,c =50,d =0.56,k = 125 and r = 1.6.

where H and L are the numbers of hares (prey) and lynxes (predators) and a, b,
¢,d, k and r are parameters that model a given predator—prey system (described
in more detail in Section 3.7). The system has an equilibrium point at H, > 0 and
L, > 0 that can be found numerically.

To explore how the parameters of the model affect the behavior of the system, we
choose to focus on two specific parameters of interest: a, the interaction coefficient
between the populations and ¢, a parameter affecting the prey consumption rate.
Figure 4.17a is a numerically computed parametric stability diagram showing the
regions in the chosen parameter space for which the equilibrium point is stable
(leaving the other parameters at their nominal values). We see from this figure that
for certain combinations of @ and ¢ we get a stable equilibrium point, while at other
values this equilibrium point is unstable.

Figure 4.17b is a numerically computed bifurcation diagram for the system. In
this plot, we choose one parameter to vary (a) and then plot the equilibrium value of
one of the states (H) on the vertical axis. The remaining parameters are set to their
nominal values. A solid line indicates that the equilibrium point is stable; a dashed
line indicates that the equilibrium point is unstable. Note that the stability in the
bifurcation diagram matches that in the parametric stability diagram for ¢ = 50 (the
nominal value) and a varying from 1.35 to 4. For the predator—prey system, when
the equilibrium point is unstable, the solution converges to a stable limit cycle. The
amplitude of this limit cycle is shown by the dashed-dotted line in Figure 4.17b.

\%

A particular form of bifurcation that is very common when controlling linear
systems is that the equilibrium remains fixed but the stability of the equilibrium
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Figure 4.18: Stability plots for a bicycle moving at constant velocity. The plot in (a) shows
the real part of the system eigenvalues as a function of the bicycle velocity v. The system is
stable when all eigenvalues have negative real part (shaded region). The plot in (b) shows the
locus of eigenvalues on the complex plane as the velocity v is varied and gives a different
view of the stability of the system. This type of plot is called a root locus diagram.

changes as the parameters are varied. In such a case it is revealing to plot the eigen-
values of the system as a function of the parameters. Such plots are called root
locus diagrams because they give the locus of the eigenvalues when parameters
change. Bifurcations occur when parameter values are such that there are eigenval-
ues with zero real part. Computing environments such LabVIEW, MATLAB and
Mathematica have tools for plotting root loci.

Example 4.15 Root locus diagram for a bicycle model
Consider the linear bicycle model given by equation (3.7) in Section 3.2. Introducing
the state variables x; = ¢, x, = J, x3 = ¢ and x4 = J and setting the steering
torque T = 0, the equations can be written as

dx 0 1

— = x =: Ax,

dt —M~ (Ko + K20}) —M~'Coy
where [ is a2 x 2 identity matrix and vy is the velocity of the bicycle. Figure 4.18a
shows the real parts of the eigenvalues as a function of velocity. Figure 4.18b
shows the dependence of the eigenvalues of A on the velocity vg. The figures show
that the bicycle is unstable for low velocities because two eigenvalues are in the
right half-plane. As the velocity increases, these eigenvalues move into the left
half-plane, indicating that the bicycle becomes self-stabilizing. As the velocity is
increased further, there is an eigenvalue close to the origin that moves into the right
half-plane, making the bicycle unstable again. However, this eigenvalue is small
and so it can easily be stabilized by a rider. Figure 4.18a shows that the bicycle is
self-stabilizing for velocities between 6 and 10 m/s. \Y%

Parametric stability diagrams and bifurcation diagrams can provide valuable
insights into the dynamics of a nonlinear system. It is usually necessary to carefully
choose the parameters that one plots, including combining the natural parameters
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Figure 4.19: Headphones with noise cancellation. Noise is sensed by the exterior microphone
(a) and sent to a filter in such a way that it cancels the noise that penetrates the head phone
(b). The filter parameters a and b are adjusted by the controller. S represents the input signal
to the headphones.

of the system to eliminate extra parameters when possible. Computer programs
such as AUTO, LOCBIF and XPPAUT provide numerical algorithms for producing
stability and bifurcation diagrams.

Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations to design feedback laws
that stabilize an equilibrium point and provide a desired level of performance.
However, for some classes of problems the feedback controller must be nonlinear to
accomplish its function. By making use of Lyapunov functions we can often design
a nonlinear control law that provides stable behavior, as we saw in Example 4.12.

One way to systematically design a nonlinear controller is to begin with a
candidate Lyapunov function V (x) and a control system x = f(x,u). We say
that V (x) is a control Lyapunov function if for every x there exists a u such that
V(x) = %—Zf(x, u) < 0. In this case, it may be possible to find a function a (x)
such that u = a(x) stabilizes the system. The following example illustrates the
approach.

Example 4.16 Noise cancellation

Noise cancellation is used in consumer electronics and in industrial systems to
reduce the effects of noise and vibrations. The idea is to locally reduce the effect of
noise by generating opposing signals. A pair of headphones with noise cancellation
such as those shown in Figure 4.19a is a typical example. A schematic diagram of
the system is shown in Figure 4.19b. The system has two microphones, one outside
the headphones that picks up exterior noise n and another inside the headphones that
picks up the signal e, which is a combination of the desired signal and the external
noise that penetrates the headphone. The signal from the exterior microphone is
filtered and sent to the headphones in such a way that it cancels the external noise
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that penetrates into the headphones. The parameters of the filter are adjusted by a
feedback mechanism to make the noise signal in the internal microphone as small
as possible. The feedback is inherently nonlinear because it acts by changing the
parameters of the filter.

To analyze the system we assume for simplicity that the propagation of external
noise into the headphones is modeled by a first-order dynamical system described
by

Z—j = apz + bon, 4.22)
where z is the sound level and the parameters ap < 0 and by are not known. Assume
that the filter is a dynamical system of the same type:

w
— =aw + bn.

dt
We wish to find a controller that updates @ and b so that they converge to the
(unknown) parameters ag and by. Introduce x| = ¢ = w — z, x, = a — ap and
x3 = b — by; then
dx1
I =ap(w —2) + (@ — ap)w + (b — bp)n = apx; + x,w + x3n. (4.23)

We will achieve noise cancellation if we can find a feedback law for changing the
parameters a and b so that the error e goes to zero. To do this we choose

1
Vi, 02, x3) = 3 (ax] + 25 + x3)
as a candidate Lyapunov function for (4.23). The derivative of V' is
V = axX1X] + X2X2 + X3X3 = aaoxf + x2 (X + owxy) + x3(x3 + onxy).

Choosing
X2 = —awx; = —awe, X3 = —anx; = —one, (4.24)

we find that V = aapxi < 0,and it follows that the quadratic function will decrease

as long as e = x; = w — z # 0. The nonlinear feedback (4.24) thus attempts to
change the parameters so that the error between the signal and the noise is small.
Notice that feedback law (4.24) does not use the model (4.22) explicitly.

A simulation of the system is shown in Figure 4.20. In the simulation we have
represented the signal as a pure sinusoid and the noise as broad band noise. The
figure shows the dramatic improvement with noise cancellation. The sinusoidal
signal is not visible without noise cancellation. The filter parameters change quickly
from their initial values a = b = 0. Filters of higher order with more coefficients
are used in practice. \%
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Figure 4.20: Simulation of noise cancellation. The top left figure shows the headphone signal
without noise cancellation, and the bottom left figure shows the signal with noise cancellation.
The right figures show the parameters a and b of the filter.

4.6 Further Reading

The field of dynamical systems has a rich literature that characterizes the possi-
ble features of dynamical systems and describes how parametric changes in the
dynamics can lead to topological changes in behavior. Readable introductions to
dynamical systems are given by Strogatz [188] and the highly illustrated text by
Abraham and Shaw [2]. More technical treatments include Andronov, Vitt and
Khaikin [8], Guckenheimer and Holmes [91] and Wiggins [201]. For students with
a strong interest in mechanics, the texts by Arnold [13] and Marsden and Ratiu [147]
provide an elegant approach using tools from differential geometry. Finally, good
treatments of dynamical systems methods in biology are given by Wilson [203]
and Ellner and Guckenheimer [70]. There is a large literature on Lyapunov stability
theory, including the classic texts by Malkin [144], Hahn [94] and Krasovski [128].
We highly recommend the comprehensive treatment by Khalil [123].

Exercises

4.1 (Time-invariant systems) Show that if we have a solution of the differential
equation (4.1) given by x(¢) with initial condition x(#)) = xo, then x(7) = x(t —
fo) — X is a solution of the differential equation

dx

T =F®

with initial condition x (0) = 0.

4.2 (Flow in a tank) A cylindrical tank has cross section A m?, effective outlet area
a m? and the inflow ¢;, m®/s. An energy balance shows that the outlet velocity is
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v = +/2gh m/s, where g m/s is the acceleration of gravity and & m is the distance
between the outlet and the water level in the tank. Show that the system can be

modeled by " |
a
— =——/28h — —qip, out = 2gh.
a1 AV 11 Gour = A~/ 28
Use the parameters A = 0.2, a, = 0.01. Simulate the system when the inflow is
zero and the initial level is 7 = 0.2. Do you expect any difficulties in the simulation?

4.3 (Cruise control) Consider the cruise control system described in Section 3.1.
Generate a phase portrait for the closed loop system on flat ground (8 = 0), in third
gear, using a PI controller (with k, = 0.5 and k; = 0.1), m = 1000 kg and desired
speed 20 m/s. Your system model should include the effects of saturating the input
between 0 and 1.

4.4 (Lyapunov functions) Consider the second-order system

dx; dx; b
— = —daX] — = —DX| — CXp
dt ’ dt ’

where a, b, ¢ > 0. Investigate whether the functions

1 1 1 1 b
Vi) = 5x{ + 5353, Vo) = oxf 4 S0 — ——x)’

are Lyapunov functions for the system and give any conditions that must hold.

4.5 (Damped spring—mass system) Consider a damped spring—mass system with
dynamics
mg +cq + kg = 0.

A natural candidate for a Lyapunov function is the total energy of the system, given
by

1 1
V = -mg* + —kq>.
PRI

Use the Krasovski—Lasalle theorem to show that the system is asymptotically stable.

4.6 (Electric generator) The following simple model for an electric generator con-
nected to a strong power grid was given in Exercise 2.7:

jL0 _p o p, BV
— =P, — P,= P, — —sing.
dr? X i’
The parameter
Prax EV
a= = (4.25)
P, XP,

is the ratio between the maximum deliverable power Py,x = EV /X and the me-
chanical power P,,.

(a) Consider a a bifurcation parameter and discuss how the equilibria depend on
a.

4
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(b) For a > 1, show that there is a center at ¢y = arcsin(l/a) and a saddle at
=7 —¢@o.
(c) Show that there is a solution through the saddle that satisfies

2
sz_(f) o+ go—acosp —va:—1=0. (4.26)

Use simulation to show that the stability region is the interior of the area enclosed
by this solution. Investigate what happens if the system is in equilibrium with a
value of a that is slightly larger than 1 and a suddenly decreases, corresponding to
the reactance of the line suddenly increasing.

4.7 (Lyapunov equation) Show that Lyapunov equation (4.14) always has a solution
if all of the eigenvalues of A are in the left half-plane. (Hint: Use the fact that the
Lyapunov equation is linear in P and start with the case where A has distinct
eigenvalues.)

4.8 (Congestion control) Consider the congestion control problem described in Sec-
tion 3.4. Confirm that the equilibrium point for the system is given by equation (3.21)
and compute the stability of this equilibrium point using a linear approximation.

4.9 (Swinging up a pendulum) Consider the inverted pendulum, discussed in Ex-
ample 4.4, that is described by

6 = sin@ + ucosb,
where 6 is the angle between the pendulum and the vertical and the control signal
u is the acceleration of the pivot. Using the energy function
. 1.
V(0,6)=cosd —1+ 592,
show that the state feedback u = k(Vy — V)6 cos 6 causes the pendulum to “swing
up” to upright position.

4.10 (Root locus diagram) Consider the linear system

de_fo 1 | = [1 0]

a o =3|" I Y= *
with the feedback u = —ky. Plot the location of the eigenvalues as a function the
parameter k.

4.11 (Discrete-time Lyapunov function) Consider a nonlinear discrete-time system
with dynamics x[k 4+ 1] = f(x[k]) and equilibrium point x, = 0. Suppose there
exists a positive definite function V : R” — R” suchthat V (x[k+1])—V (x[k]) < O
for x[k] # 0. Show that x, = 0 is asymptotically stable.

4.12 (Operational amplifier oscillator) An op amp circuit for an oscillator was
shown in Exercise 3.5. The oscillatory solution for that linear circuit was stable
but not asymptotically stable. A schematic of a modified circuit that has nonlinear
elements is shown in the figure below.
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The modification is obtained by making a feedback around each operational am-
plifier that has capacitors using multipliers. The signal a, = v? + v3 — vg is the
amplitude error. Show that the system is modeled by

dl)1 R4 1

- = vy + v1(vg — v —3),
dt R1R3C1 Rllcl

dl)2 1 1 2 2 2
—_— == v + v2(vy — 07 — 05).
dt R2C2 ! R22C2 2( 0 ! 2)

Show that the circuit gives an oscillation with a stable limit cycle with amplitude
vg. (Hint: Use the results of Example 4.8.)

4.13 (Self-activating genetic circuit) Consider the dynamics of a genetic circuit that
implements self-activation: the protein produced by the gene is an activator for the
protein, thus stimulating its own production through positive feedback. Using the
models presented in Example 2.13, the dynamics for the system can be written as

dm ap® dp

—_— = —ym, — = — op, 427

7 1—|—kp2+a0 ym 7 pm —dp (4.27)
for p,m > 0. Find the equilibrium points for the system and analyze the local
stability of each using Lyapunov analysis.

4.14 (Diagonal systems) Let A € R"*" be a square matrix with real eigenvalues
A1y ..., A, and corresponding eigenvectors vy, . .., U,.

(a) Show that if the eigenvalues are distinct (1; # A; fori # j), then v; # v; for
i #j.

(b) Show that the eigenvectors form a basis for R” so that any vector x can be
written as x = »_ a;v; for a; € R.

(c) Let T = [v . Dy ... v,,] and show that TAT ! is a diagonal matrix of
the form (4.8).
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(d) Show that if some of the A; are complex numbers, then A can be written as

Aq 0
A=1o - where A;=1€R or Ai:[a a)]
—w o
0 Ay

in an appropriate set of coordinates.
This form of the dynamics of a linear system is often referred to as modal form.

4.15 (Furuta pendulum) The Furuta pendulum, an inverted pendulum on a rotating
arm, is shown to the left in the figure below.

Pendulum angle 6 /x
=
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I
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I
I
l
I

0 5 10 15 20
Angular velocity

Consider the situation when the pendulum arm is spinning with constant rate. The
system has multiple equilibrium points that depend on the angular velocity w, as
shown in the bifurcation diagram on the right.

The equations of motion for the system are given by

Jpé — Jpa)(z) sin@ cos —m,glsin@ =0,

where J), is the moment of inertia of the pendulum with respect to its pivot, m , is
the pendulum mass, [ is the distance between the pivot and the center of mass of
the pendulum and @y is the the rate of rotation of the arm.

(a) Determine the equilibria for the system and the condition(s) for stability of each
equilibrium point (in terms of w).

(b) Consider the angular velocity as a bifurcation parameter and verify the bifur-
cation diagram given above. This is an example of a pitchfork bifurcation.

4.16 (Routh-Hurwitz criterion) Consider a linear differential equation with the
characteristic polynomial

AMs) = s> +ais + aa, A(s) = s>+ ais* + ars + as.

Show that the system is asymptotically stable if and only if all the coefficients a;
are positive and if aja, > a3. This is a special case of a more general set of criteria
known as the Routh-Hurwitz criterion.
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Chapter Five

Linear Systems

Few physical elements display truly linear characteristics. For example the relation between
force on a spring and displacement of the spring is always nonlinear to some degree. The
relation between current through a resistor and voltage drop across it also deviates from a
straight-line relation. However, if in each case the relation is reasonably linear, then it will
be found that the system behavior will be very close to that obtained by assuming an ideal,
linear physical element, and the analytical simplification is so enormous that we make linear
assumptions wherever we can possibly do so in good conscience.

Robert H. Cannon, Dynamics of Physical Systems, 1967 [49].

In Chapters 2—4 we considered the construction and analysis of differential
equation models for dynamical systems. In this chapter we specialize our results to
the case of linear, time-invariant input/output systems. Two central concepts are the
matrix exponential and the convolution equation, through which we can completely
characterize the behavior of a linear system. We also describe some properties of
the input/output response and show how to approximate a nonlinear system by a
linear one.

5.1 Basic Definitions

We have seen several instances of linear differential equations in the examples in
the previous chapters, including the spring—mass system (damped oscillator) and
the operational amplifier in the presence of small (nonsaturating) input signals.
More generally, many dynamical systems!linear can be modeled accurately by
linear differential equations. Electrical circuits are one example of a broad class of
systems for which linear models can be used effectively. Linear models are also
broadly applicable in mechanical engineering, for example, as models of small
deviations from equilibria in solid and fluid mechanics. Signal-processing systems,
including digital filters of the sort used in CD and MP3 players, are another source of
good examples, although these are often best modeled in discrete time (as described
in more detail in the exercises).

In many cases, we create systems with a linear input/output response through
the use of feedback. Indeed, it was the desire for linear behavior that led Harold
S. Black to the invention of the negative feedback amplifier. Almost all modern
signal processing systems, whether analog or digital, use feedback to produce linear
or near-linear input/output characteristics. For these systems, it is often useful to
represent the input/output characteristics as linear, ignoring the internal details
required to get that linear response.
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For other systems nonlinearities cannot be ignored, especially if one cares about
the global behavior of the system. The predator—prey problem is one example of
this: to capture the oscillatory behavior of the interdependent populations we must
include the nonlinear coupling terms. Other examples include switching behavior
and generating periodic motion for locomotion. However, if we care about what
happens near an equilibrium point, it often suffices to approximate the nonlinear
dynamics by their local linearization, as we already explored briefly in Section 4.3.
The linearization is essentially an approximation of the nonlinear dynamics around
the desired operating point.

Linearity

We now proceed to define linearity of input/output systems more formally. Consider
a state space system of the form

T few,  y=hew), 5.1)

where x € R",u € R” and y € RY. As in the previous chapters, we will usually
restrict ourselves to the single-input, single-output case by taking p =g = 1. We
also assume that all functions are smooth and that for a reasonable class of inputs
(e.g., piecewise continuous functions of time) the solutions of equation (5.1) exist
for all time.

It will be convenient to assume that the origin x = 0, u = 0 is an equilibrium
point for this system (x = 0) and that 4£(0,0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose that (x,, u.) # (0, 0) is an equilibrium point
of the system with output y, = h(x,, u.). Then we can define a new set of states,
inputs and outputs,

X =X — Xe, uUu=u-—U, Y=Y — Ye,

and rewrite the equations of motion in terms of these variables:

%f = f(i +XE,I:Z+ME) = f:(i’ﬁ)’

§=h(E + X, it + 1) — ye = h(F, id).

In the new set of variables, the origin is an equilibrium point with output 0, and
hence we can carry out our analysis in this set of variables. Once we have obtained
our answers in this new set of variables, we simply “translate” them back to the
original coordinates using x = X + x,,u = u +u, andy = y + y,.

Returning to the original equations (5.1), now assuming without loss of gener-
ality that the origin is the equilibrium point of interest, we write the output y(z)
corresponding to the initial condition x (0) = xo and input u(¢) as y(¢; xo, u). Using
this notation, a system is said to be a linear input/output system if the following



LinearSystems.tex, v1.165 2008/01/22 08:46:59 (murray)

5.1. BASIC DEFINITIONS 133
Input u State x;, xp Output y
Z 2 : : 2 : : 2 : :
5]
2
&% 0 0 0
19)
g
S
T -2 ; . -2 ; . -2 ; :
0 20 40 60 0 20 40 60 0 20 40 60
2 2 2
]
=
<
A
) . . ) . . ) . .
0 20 40 60 0 20 40 60 0 20 40 60
2 ; ; 2 ; ; 2 . .
o}
2 /\
E‘ 0 ol 0 \/\/\
3
@]
-2 ; . -2 ; : -2 ; :
0 20 40 60 0 20 40 60 0 20 40 60
Time ¢ [sec] Time ¢ [sec] Time ¢ [sec]

Figure 5.1: Superposition of homogeneous and particular solutions. The first row shows the
input, state and output corresponding to the initial condition response. The second row shows
the same variables corresponding to zero initial condition but nonzero input. The third row
is the complete solution, which is the sum of the two individual solutions.

conditions are satisfied:
@ y@; ax; + fx2,0) = ay(t; x1,0) + fy(t; x2,0),
(i) y(t; axg, ou) = ay(t; xo,0) + oy(¢; 0, u), (5.2)
(i) y(#;0,0ur + yuz) = dy(t; 0, u1) + y y(#; 0, us).

Thus, we define a system to be linear if the outputs are jointly linear in the initial
condition response (# = 0) and the forced response (x(0) = 0). Property (iii) is a
statement of the principle of superposition: the response of a linear system to the
sum of two inputs u; and u; is the sum of the outputs y; and y, corresponding to
the individual inputs.

The general form of a linear state space system is

d
d—):zAx+BLt, y = Cx + Du, (5.3)

where A € R™", B € R™*?, C € R?*" and D € R?*?. In the special case of a
single-input, single-output system, B is a column vector, C is a row vector and D
is scalar. Equation (5.3) is a system of linear first-order differential equations with
input u, state x and output y. It is easy to show that given solutions x; (z) and x,(¢)
for this set of equations, they satisfy the linearity conditions.

We define x;,(¢) to be the solution with zero input (the homogeneous solution)
and the solution x,(¢) to be the solution with zero initial condition (a particular
solution). Figure 5.1 illustrates how these two individual solutions can be superim-
posed to form the complete solution.
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It is also possible to show that if a finite-dimensional dynamical system is
input/output linear in the sense we have described, it can always be represented
by a state space equation of the form (5.3) through an appropriate choice of state
variables. In Section 5.2 we will give an explicit solution of equation (5.3), but we
illustrate the basic form through a simple example.

Example 5.1 Scalar system
Consider the first-order differential equation

— =ax+u, =X,

dt Y

withx (0) = xo.Letu; = Asinwt andu, = B cos w,t. The homogeneous solution
is xp, (1) = e" x¢, and two particular solutions with x(0) = 0 are

—w1e” + w; coswt + a sin w;t

x,(t)=—A
P a? +a)% ’
ae — acoswyt + wy sin wst
sz(l) =B > 3 .
ac+ w;

Suppose that we now choose x(0) = axo and u = u; + uy. Then the resulting
solution is the weighted sum of the individual solutions:

Aa)1 Ba )

+
a2+co]2 a2+a)§

x(t) = e” (axo +
54

Aa)1 cos it + a sin w;t B —a coS wyt + wy sin wot

a’+ o? a’+ w3
To see this, substitute equation (5.4) into the differential equation. Thus, the prop-
erties of a linear system are satisfied. \%

Time Invariance

Time invariance is an important concept that is used to describe a system whose
properties do not change with time. More precisely, for a time-invariant system if
the input u(¢) gives output y(t), then if we shift the time at which the input is applied
by a constant amount a, u(f 4+ a) gives the output y(¢ + a). Systems that are linear
and time-invariant, often called LT systems, have the interesting property that their
response to an arbitrary input is completely characterized by their response to step
inputs or their response to short “impulses.”

To explore the consequences of time invariance, we first compute the response
to a piecewise constant input. Assume that the system is initially at rest and consider
the piecewise constant input shown in Figure 5.2a. The input has jumps at times #,
and its values after the jumps are u(#;). The input can be viewed as a combination
of steps: the first step at time 7 has amplitude u(#), the second step at time #; has
amplitude u(#;) — u(t), etc.

Assuming that the system is initially at an equilibrium point (so that the initial
condition response is zero), the response to the input can be obtained by superim-
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Figure 5.2: Response to piecewise constant inputs. A piecewise constant signal can be rep-
resented as a sum of step signals (a), and the resulting output is the sum of the individual
outputs (b).

posing the responses to a combination of step inputs. Let H (z) be the response to
a unit step applied at time 0. The response to the first step is then H (r — t)u(t),

the response to the second step is H (¢t — tl)(u (1) — u(to)), and we find that the
complete response is given by

y(t) = H(t — to)ulto) + H(t — 1)) (u(t)) — u(t0)) + - -
= (H(t —to) — H(t — t1))ulto) + (H(t — 1) — H(t — t2))u(ty) + - --

=D (H(@t —t,) = H(t — ty1))ulty)

3
Il
S

H(t - tn) - H(t - tn-H)

Iny1 — Iy

I
M8

u(tn)(tn-i-l - tn)‘

3
Il
S

An example of this computation is shown in Figure 5.2b.
The response to a continuous input signal is obtained by taking the limit as
th+1 — t, = 0, which gives

o0
y(1) =/ H'(t — t)u(z)dr, (5.5)
0

where H' is the derivative of the step response, also called the impulse response.
The response of a linear time-invariant system to any input can thus be computed
from the step response. Notice that the output depends only on the input since we
assumed the system was initially at rest, x(0) = 0. We will derive equation (5.5)
in a slightly different way in the Section 5.3.
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5.2 The Matrix Exponential

Equation (5.5) shows that the output of a linear system can be written as an integral
over the inputs u(¢). In this section and the next we derive a more general version
of this formula, which includes nonzero initial conditions. We begin by exploring
the initial condition response using the matrix exponential.

Initial Condition Response

Although we have shown that the solution of a linear set of differential equations
defines a linear input/output system, we have not fully computed the solution of the
system. We begin by considering the homogeneous response corresponding to the
system

ax _ 4 (5.6)
— = Ax. .
dt
For the scalar differential equation
d
—x=ax, xeR, aek,
dt

the solution is given by the exponential
x(t) = e“x(0).

We wish to generalize this to the vector case, where A becomes a matrix. We define
the matrix exponential as the infinite series

1 1 — 1
X _ D R Lok
=T X4 X4 X _Zk!X, (5.7)
k=0
where X € R"*" is a square matrix and / is the n x n identity matrix. We make
use of the notation

xX'=1, X’=XxX, X"=Xx"'X,

which defines what we mean by the “power” of a matrix. Equation (5.7) is easy to
remember since it is just the Taylor series for the scalar exponential, applied to the
matrix X. It can be shown that the series in equation (5.7) converges for any matrix
X e R™" in the same way that the normal exponential is defined for any scalar
aeR.

Replacing X in equation (5.7) by At, where t € R, we find that

1 1 1
At _ 1422 433 2 Ak k
M=+ A+ SAN 4 AN 4 —Zk!At,
k=0
and differentiating this expression with respect to ¢ gives
d 1 — 1
At 2 3.2 kk At
— =A+At+ At o= A —A"t" = Ae™. 5.8
e + A% AN+ > x e (5.8)

k=0



LinearSystems.tex, v1.165 2008/01/22 08:46:59 (murray)

5.2. THE MATRIX EXPONENTIAL 137

Multiplying by x(0) from the right, we find that x(t) = e%’x(0) is the solution
to the differential equation (5.6) with initial condition x(0). We summarize this
important result as a proposition.

Proposition 5.1. The solution to the homogeneous system of differential equa-
tions (5.6) is given by
x(1) = e x(0).

Notice that the form of the solution is exactly the same as for scalar equations,
but we must put the vector x(0) on the right of the matrix e,

The form of the solution immediately allows us to see that the solution is linear
in the initial condition. In particular, if x;;(¢) is the solution to equation (5.6) with
initial condition x(0) = xo; and x;,(¢) with initial condition x (0) = x¢, then the
solution with initial condition x (0) = axg; + fxo, is given by

x(t) = e (axor + Bxon) = (ae™x01 + Be x00) = axp () + Bxia(t).
Similarly, we see that the corresponding output is given by
y(@) = Cx(@) = ayn @) + Byn (1),

where yj1 (1) and y;,»(¢) are the outputs corresponding to x;1(¢) and x;,(¢).
We illustrate computation of the matrix exponential by two examples.

Example 5.2 Double integrator
A very simple linear system that is useful in understanding basic concepts is the
second-order system given by

qg=u, y=q.

This system is called a double integrator because the input u is integrated twice to
determine the output y.
In state space form, we write x = (¢, ¢) and

dx _ o 1] [0
dt—OOXIM.

The dynamics matrix of a double integrator is

0 1
=[5 o)
and we find by direct calculation that A> = 0 and hence
1 t]
At _
“ = [0 1

Thus the homogeneous solution (¢ = 0) for the double integrator is given by
x(t) B 1 ¢ xl(O) . x1(0)+tx2(0)
—]10 1 X2 (0) B X2 (0) ’
y(#) = x1(0) + 7x2(0).
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Example 5.3 Undamped oscillator
A simple model for an oscillator, such as the spring—mass system with zero damping,
is

j+wlqg=u.

Putting the system into state space form, the dynamics matrix for this system can
be written as

0 W, coswyt  sin wot
A= 0 and Y = >0 .
—wy O —sinwyt COS wyt

This expression for e’ can be verified by differentiation:

d 4 [—a)o sinwgt @y cos wyt ]

—e = .
dt —@mq COS Wyt —mg SIN Wyt

o 0 coswpt  sinwyt — A
T |l=wy O —sinwgt coswot | ’

The solution is then given by

x(1) = eMx(0) = [

coswpt  sinwyt x1(0)
—sinwyt cos wpt x0) ]

If the system has damping,
G +2¢w0q + wyq = u,

the solution is more complicated, but the matrix exponential can be shown to be

Celwdt _ Ce_lwdl + ela)dt _|_ e—lwdl ela)dt _ e—lwdt
2 2
e 2/t -1 2 22— 1
e—zwdt _ ela)dl‘ Ce_lwdt _ é‘ela)dl ezwdt _+_ e—za)dt

2/ —1 2/ —1 2

where w; = wy+/{* — 1. Note that @, and /% — 1 can be either real or complex,
but the combinations of terms will always yield a real value for the entries in the
matrix exponential. \%

An important class of linear systems are those that can be converted into diagonal
form. Suppose that we are given a system

dx
— = Ax
dt

such that all the eigenvalues of A are distinct. It can be shown (Exercise 4.14) that
we can find an invertible matrix 7 such that T AT ~! is diagonal. If we choose a set
of coordinates z = T'x, then in the new coordinates the dynamics become

dz dx -1
—=T—=TAx=TAT 'z
dt dt

By construction of 7', this system will be diagonal.
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Now consider a diagonal matrix A and the corresponding kth power of At,
which is also diagonal:

A 0 MKk 0
a=| . . (Anf= & . :
0 | An 0 ' Atk
It follows from the series expansion that the matrix exponential is given by
eMt 0
eAt _ e)'zt
0 ot

A similar expansion can be done in the case where the eigenvalues are complex,
using a block diagonal matrix, similar to what was done in Section 4.3.

Jordan Form @

Some matrices with equal eigenvalues cannot be transformed to diagonal form. They
can, however, be transformed to a closely related form, called the Jordan form, in
which the dynamics matrix has the eigenvalues along the diagonal. When there are
equal eigenvalues, there may be 1’s appearing in the superdiagonal indicating that
there is coupling between the states.

More specifically, we define a matrix to be in Jordan form if it can be written

as
Ji 0 ... 0 O Ao 10 ... 0
0 J O 0 0 0 4 1 0
J=1: . .. |, where Ji=]: e
0 O Jic1 0 0 O Ai 1
0O 0 ... 0 U 0 0 ... 0 4

(59

Each matrix J; is called a Jordan block, and /; for that block corresponds to an
eigenvalue of J. A first-order Jordan block can be represented as a system consisting
of an integrator with feedback 4. A Jordan block of higher order can be represented
as series connections of such systems, as illustrated in Figure 5.3.

Theorem 5.2 (Jordan decomposition). Any matrix A € R"*" can be transformed
into Jordan form with the eigenvalues of A determining 1; in the Jordan form.

Proof. See any standard text on linear algebra, such as Strang [187]. The special
case where the eigenvalues are distinct is examined in Exercise 4.14. O

Converting a matrix into Jordan form can be complicated, although MATLAB
can do this conversion for numerical matrices using the jordan function. The
structure of the resulting Jordan form is particularly interesting since there is no
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Figure 5.3: Representations of linear systems where the dynamics matrices are Jordan blocks.
A first-order Jordan block can be represented as an integrator with feedback 4, as shown on
the left. Second- and third-order Jordan blocks can be represented as series connections of
integrators with feedback, as shown on the right.

requirement that the individual 4;’s be unique, and hence for a given eigenvalue we
can have one or more Jordan blocks of different sizes.

Once a matrix is in Jordan form, the exponential of the matrix can be computed
in terms of the Jordan blocks:

et 0 ... 0
Jo .
el = (_) ¢ . (5.10)
: .0
0 ... 0 e

This follows from the block diagonal form of J. The exponentials of the Jordan
blocks can in turn be written as

2 n—1
1t 5 .. —(n’_l),
n—=2
o 1 ... (ziTz)' 1
et = |- 1o et (5.11)
. ;
0 ... 0 1

When there are multiple eigenvalues, the invariant subspaces associated with
each eigenvalue correspond to the Jordan blocks of the matrix A. Note that A may be
complex, in which case the transformation 7 that converts a matrix into Jordan form
will also be complex. When A has a nonzero imaginary component, the solutions
will have oscillatory components since

e O = ¢! (cos wt + i sin wt).

We can now use these results to prove Theorem 4.1, which states that the equilibrium
p q

point x, = 0 of a linear system is asymptotically stable if and only if Re 4; < 0.

Proof of Theorem 4.1. Let T € C"™" be an invertible matrix that transforms A into
Jordan form, J = TAT!. Using coordinates z = T'x, we can write the solution
z(t) as

2(t) = e’'2(0).
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Since any solution x (¢) can be written in terms of a solution z () with z(0) = Tx(0),
it follows that it is sufficient to prove the theorem in the transformed coordinates.
The solution z () can be written in terms of the elements of the matrix exponen-
tial. From equation (5.11) these elements all decay to zero for arbitrary z(0) if and
only if Re 4; < 0. Furthermore, if any 4; has positive real part, then there exists an
initial condition z(0) such that the corresponding solution increases without bound.
Since we can scale this initial condition to be arbitrarily small, it follows that the
equilibrium point is unstable if any eigenvalue has positive real part. O

The existence of a canonical form allows us to prove many properties of linear
systems by changing to a set of coordinates in which the A matrix is in Jordan form.
We illustrate this in the following proposition, which follows along the same lines
as the proof of Theorem 4.1.

Proposition 5.3. Suppose that the system

dx
dt
has no eigenvalues with strictly positive real part and one or more eigenvalues

with zero real part. Then the system is stable if and only if the Jordan blocks
corresponding to each eigenvalue with zero real part are scalar (1 x 1) blocks.

= Ax

Proof. See Exercise 5.6b. O

The following example illustrates the use of the Jordan form.

Example 5.4 Linear model of a vectored thrust aircraft

Consider the dynamics of a vectored thrust aircraft such as that described in Exam-
ple 2.9. Suppose that we choose u; = u, = 0 so that the dynamics of the system
become

74
<5
dz 26
dr —gsinzz — = z4 ’ (5.12)
—g(coszz — 1) — =~ z5
0

where z = (x,y, 0, %, y,0). The equilibrium points for the system are given by
setting the velocities x, y and # to zero and choosing the remaining variables to
satisfy

—gsinzz, =0

& N = 3. =0, =0.

—g(coszz,—1)=0
This corresponds to the upright orientation for the aircraft. Note that x, and y, are
not specified. This is because we can translate the system to a new (upright) position
and still obtain an equilibrium point.
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Figure 5.4: Modes of vibration for a system consisting of two masses connected by springs.
In (a) the masses move left and right in synchronization in (b) they move toward or against
each other.

To compute the stability of the equilibrium point, we compute the linearization
using equation (4.11):

00 O 1 0 0]

00 O 0 1 0

A— @ _ 10 0 O 0 0 1
oz |,, 00 —g —c/m 0 0
00 O 0 —c/m 0

|0 0 0 0 0 0]

The eigenvalues of the system can be computed as
A(A) =1{0,0,0,0, —c/m, —c/m}.

We see that the linearized system is not asymptotically stable since not all of the
eigenvalues have strictly negative real part.

To determine whether the system is stable in the sense of Lyapunov, we must
make use of the Jordan form. It can be shown that the Jordan form of A is given by

(0[O0 0 O] O 0
0/0 1 0] 0 0
0/0 0 1| 0 0
T=10lo 0 0| o 0
00 0 0|—c/m| O
| 0|0 O O O |—c/m |

Since the second Jordan block has eigenvalue 0 and is not a simple eigenvalue, the
linearization is unstable. \%

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a description of the types of
behavior the system can exhibit. For oscillatory systems, the term mode is often
used to describe the vibration patterns that can occur. Figure 5.4 illustrates the
modes for a system consisting of two masses connected by springs. One pattern is
when both masses oscillate left and right in unison, and another is when the masses
move toward and away from each other.

The initial condition response of a linear system can be written in terms of a
matrix exponential involving the dynamics matrix A. The properties of the matrix A
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Figure 5.5: The notion of modes for a second-order system with real eigenvalues. The left
figure shows the phase portrait and the modes corresponding to solutions that start on the
eigenvectors (bold lines). The corresponding time functions are shown on the right.

therefore determine the resulting behavior of the system. Given a matrix A € R"*",
recall that o is an eigenvector of A with eigenvalue 4 if

Av = lv.

In general 1 and v may be complex-valued, although if A is real-valued, then for
any eigenvalue 4 its complex conjugate 4* will also be an eigenvalue (with v* as
the corresponding eigenvector).

Suppose first that 1 and o are a real-valued eigenvalue/eigenvector pair for A.
If we look at the solution of the differential equation for x(0) = v, it follows from
the definition of the matrix exponential that

1 2t2 :

ety = (1+At+§A2t2+-~-)v =v+/1tv+70+~--=e”v.

The solution thus lies in the subspace spanned by the eigenvector. The eigenvalue
A describes how the solution varies in time, and this solution is often called a mode
of the system. (In the literature, the term “mode” is also often used to refer to the
eigenvalue rather than the solution.)

If we look at the individual elements of the vectors x and v, it follows that

xi(1) e’ Y

xj(t)  eto; o)’

and hence the ratios of the components of the state x are constants for a (real) mode.
The eigenvector thus gives the “shape” of the solution and is also called a mode
shape of the system. Figure 5.5 illustrates the modes for a second-order system
consisting of a fast mode and a slow mode. Notice that the state variables have the
same sign for the slow mode and different signs for the fast mode.

The situation is more complicated when the eigenvalues of A are complex. Since
A has real elements, the eigenvalues and the eigenvectors are complex conjugates
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A =0 fiwand v = u % iw, which implies that
v+0* v—0"
= > w = —
2 2i
Making use of the matrix exponential, we have

u

eMv = e (u+iw) = ' ((ucoswt — wsinwt) + i (usinwt + w cos ot)),

from which it follows that

1 .
eMy = E(eA’v + eA’v*) = ue’ coswt — we’" sin wt,

eMw = 211( Aty — eA’v*) = ue’’ sinwt + we’’ cos wt.

A solution with initial conditions in the subspace spanned by the real part # and
imaginary part w of the eigenvector will thus remain in that subspace. The solution
will be a logarithmic spiral characterized by ¢ and . We again call the solution
corresponding to 4 a mode of the system, and v the mode shape.

If a matrix A has n distinct eigenvalues 44, ..., 4,, then the initial condition
response can be written as a linear combination of the modes. To see this, suppose
for simplicity that we have all real eigenvalues with corresponding unit eigenvectors
vy, ...,0,. From linear algebra, these eigenvectors are linearly independent, and
we can write the initial condition x (0) as

x(0) = a1v1 + a20z + - - + 0,0,
Using linearity, the initial condition response can be written as
)C(t) = aleiltvl + Otzeiztl)z 4.4 aneintvn‘

Thus, the response is a linear combination of the modes of the system, with the
amplitude of the individual modes growing or decaying as e*’. The case for distinct
complex eigenvalues follows similarly (the case for nondistinct eigenvalues is more
subtle and requires making use of the Jordan form discussed in the previous section).

Example 5.5 Coupled spring—mass system
Consider the spring—mass system shown in Figure 5.4. The equations of motion of
the system are

miqy = —2kq1 — cq1 + kqa, maga = kq\ — 2kqz — cqa.

In state space form, we define the state tobe x = (g1, ¢2, ¢1, §2),and we can rewrite
the equations as

0 0 1 0
0 0 0 1

d

dt m m m
k 2k c
- 0 ==
m m mJ
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We now define a transformation z = 7'x that puts this system into a simpler form.
Let z1 = 3(q1 4+ 92), 22 = 21,23 = 3(q1 — ¢2) and z4 = Z3, so that

1 1 0 O
rfo o 1 1
=Tx=311 -1 0 o
0O 0 1 -1
In the new coordinates, the dynamics become
0 1 0
k c 0 0
dz _ m m .
dd 10 0 0 I
3k c
0 o -— ——
L m m P

and we see that the system is in block diagonal (or modal) form.

In the z coordinates, the states z; and z, parameterize one mode with eigen-
values 2 &~ ¢/(2vkm) % i/k/m, and the states z3 and z4 another mode with
A = ¢/(2+/3km) £ i /3k/m. From the form of the transformation 7" we see that
these modes correspond exactly to the modes in Figure 5.4, in which ¢, and g, move
either toward or against each other. The real and imaginary parts of the eigenvalues
give the decay rates o and frequencies w for each mode. \%

5.3 Input/Output Response

In the previous section we saw how to compute the initial condition response using
the matrix exponential. In this section we derive the convolution equation, which
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (5.3), repeated here:

d
d—: = Ax + Bu, y =Cx + Du. (5.13)

Using the matrix exponential, the solution to equation (5.13) can be written as
follows.

Theorem 5.4. The solution to the linear differential equation (5.13) is given by
t
x(1) = eMx(0) + / e Bu(r)dr. (5.14)
0

Proof. To prove this, we differentiate both sides and use the property (5.8) of the
matrix exponential. This gives
dx

13
o= Ae?x(0) +/ A" Bu(t)dr + Bu(t) = Ax + Bu,
0
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Figure 5.6: Pulse response and impulse response. (a) The rectangles show pulses of width
5, 2.5 and 0.8, each with total area equal to 1. The arrow denotes an impulse () defined
by equation (5.17). The corresponding pulse responses for a linear system with eigenvalues
A = {—0.08, —0.62} are shown in (b) as dashed lines. The solid line is the true impulse
response, which is well approximated by a pulse of duration 0.8.

which proves the result. Notice that the calculation is essentially the same as for
proving the result for a first-order equation. O

It follows from equations (5.13) and (5.14) that the input/output relation for a
linear system is given by

y(t) = Ce™x(0) + /I Ce™' =" Bu(r)dt + Du(r). (5.15)
0

It is easy to see from this equation that the output is jointly linear in both the
initial conditions and the state, which follows from the linearity of matrix/vector
multiplication and integration.

Equation (5.15) is called the convolution equation, and it represents the general
form of the solution of a system of coupled linear differential equations. We see
immediately that the dynamics of the system, as characterized by the matrix A, play
acritical role in both the stability and performance of the system. Indeed, the matrix
exponential describes both what happens when we perturb the initial condition and
how the system responds to inputs.

Another interpretation of the convolution equation can be given using the concept
of the impulse response of a system. Consider the application of an input signal
u(t) given by the following equation:

0 t <0
u(t) =p(t)y=11/e 0<t<e (5.16)
0 t>e.

This signal is a pulse of duration € and amplitude 1/¢, as illustrated in Figure 5.6a.
We define an impulse 6(t) to be the limit of this signal as € — 0:

3(1) = lim p(1). (5.17)



LinearSystems.tex, v1.165 2008/01/22 08:46:59 (murray)

5.3. INPUT/OUTPUT RESPONSE 147

This signal, sometimes called a delta function, is not physically achievable but
provides a convenient abstraction in understanding the response of a system. Note
that the integral of an impulse is 1:

t t t
/ o(r)dr =/ lim p.(¢)dt = lim/ pe(t)dr
0 0 e—0 e—0 0

€
zlim/ l/edt =1 t>0.
€0 /o
In particular, the integral of an impulse over an arbitrarily short period of time is
identically 1.
We define the impulse response of a system h(t) to be the output corresponding
to having an impulse as its input:

t
h(t) = / Ce?""IBs(r)dtr = Ce™ B, (5.18)
0

where the second equality follows from the fact that d(¢) is zero everywhere except
the origin and its integral is identically 1. We can now write the convolution equation
in terms of the initial condition response, the convolution of the impulse response
and the input signal, and the direct term:

y(t) = Ce*x(0) + /[ h(t — t)u(r)dr + Du(t). (5.19)
0

One interpretation of this equation, explored in Exercise 5.2, is that the response
of the linear system is the superposition of the response to an infinite set of shifted
impulses whose magnitudes are given by the input u(#). This is essentially the
argument used in analyzing Figure 5.2 and deriving equation (5.5). Note that the
second term in equation (5.19) is identical to equation (5.5), and it can be shown that
the impulse response is formally equivalent to the derivative of the step response.

The use of pulses as approximations of the impulse function also provides a
mechanism for identifying the dynamics of a system from data. Figure 5.6b shows
the pulse responses of a system for different pulse widths. Notice that the pulse
responses approach the impulse response as the pulse width goes to zero. As a
general rule, if the fastest eigenvalue of a stable system has real part —o ., then a
pulse of length € will provide a good estimate of the impulse response if €0, < 1.
Note that for Figure 5.6, a pulse width of € = 1 s gives €o,.x = 0.62 and the pulse
response is already close to the impulse response.

Coordinate Invariance

The components of the input vector u and the output vector y are given by the chosen
inputs and outputs of a model, but the state variables depend on the coordinate frame
chosen to represent the state. This choice of coordinates affects the values of the
matrices A, B and C that are used in the model. (The direct term D is not affected
since it maps inputs to outputs.) We now investigate some of the consequences of
changing coordinate systems.
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Figure 5.7: Coupled spring mass system. Each mass is connected to two springs with stiffness
k and a viscous damper with damping coefficient c¢. The mass on the right is drive through a
spring connected to a sinusoidally varying attachment.

Introduce new coordinates z by the transformation z = 7x, where 7" is an
invertible matrix. It follows from equation (5.3) that
dz

o= T(Ax + Bu) = TAT 'z + T Bu =: Az + Bu,

y=Cx+Du=CT'z4 Du=:Cz+ Du.

The transformed system has the same form as equation (5.3), but the matrices A,
B and C are different:

A=TAT™'", B=TB, C=CT™" (5.20)

There are often special choices of coordinate systems that allow us to see a particular
property of the system, hence coordinate transformations can be used to gain new
insight into the dynamics.

We can also compare the solution of the system in transformed coordinates to
that in the original state coordinates. We make use of an important property of the
exponential map,

eTST" — TeST—l,

which can be verified by substitution in the definition of the matrix exponential.
Using this property, it is easy to show that

- t - 5
x()=T7"2(t) =T~ 'eMTx(0) + T‘l/ A Bu(r)dr.
0

From this form of the equation, we see that if it is possible to transform A into
a form A for which the matrix exponential is easy to compute, we can use that
computation to solve the general convolution equation for the untransformed state
x by simple matrix multiplications. This technique is illustrated in the following
example.

Example 5.6 Coupled spring-mass system

Consider the coupled spring—mass system shown in Figure 5.7. The input to this
system is the sinusoidal motion of the end of the rightmost spring, and the output
is the position of each mass, ¢, and g,. The equations of motion are given by

miq, = —2kq) — cq1 + kqa, maqs = kqy — 2kq — cqy + ku.
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In state space form, we define the state tobe x = (¢q1, ¢2, 41, ¢2),and we can rewrite
the equations as

0

0 0 0 1 8
dx 2k k c
—=|-— - —— 0 |x+]10]u
dt m m m

ko 2% c k

B ¢ N m

L m m m

This is a coupled set of four differential equations and is quite complicated to solve
in analytical form.

The dynamics matrix is the same as in Example 5.5, and we can use the coor-
dinate transformation defined there to put the system in modal form:

[ 0 1 0 0 0
ke *
dz m m 2m
ar o o o 111" o
3k c k
o o0 -= -= ——
L m m 2m

Note that the resulting matrix equations are block diagonal and hence decoupled.
We can solve for the solutions by computing the solutions of two sets of second-
order systems represented by the states (z;, z2) and (z3, z4). Indeed, the functional
form of each set of equations is identical to that of a single spring—mass system.
(The explicit solution is derived in Section 6.3.)

Once we have solved the two sets of independent second-order equations, we
can recover the dynamics in the original coordinates by inverting the state transfor-
mation and writing x = 7~'z. We can also determine the stability of the system
by looking at the stability of the independent second-order systems. \%

Steady-State Response

Given a linear input/output system

d
X _ Ax + Bu, (5.21)

dt

the general form of the solution to equation (5.21) is given by the convolution
equation:

y =Cx + Du,

t
y(t) = Cex(0) +/ Ce "= Bu(r)dt + Du(r).
0

We see from the form of this equation that the solution consists of an initial condition
response and an input response.

The input response, corresponding to the last two terms in the equation above,
itself consists of two components—the transient response and the steady-state
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Figure 5.8: Transient versus steady-state response. The input to a linear system is shown in
(a), and the corresponding output with x(0) = 0 is shown in (b). The output signal initially
undergoes a transient before settling into its steady-state behavior.

response. The transient response occurs in the first period of time after the input
is applied and reflects the mismatch between the initial condition and the steady-
state solution. The steady-state response is the portion of the output response that
reflects the long-term behavior of the system under the given inputs. For inputs that
are periodic the steady-state response will often be periodic, and for constant inputs
the response will often be constant. An example of the transient and the steady-state
response for a periodic input is shown in Figure 5.8.

A particularly common form of input is a step input, which represents an abrupt
change in input from one value to another. A unit step (sometimes called the Heav-
iside step function) is defined as

0 +t=0

u:S(t):[I t > 0.

The step response of the system (5.21) is defined as the output y () starting from zero
initial condition (or the appropriate equilibrium point) and given a step input. We
note that the step input is discontinuous and hence is not practically implementable.
However, it is a convenient abstraction that is widely used in studying input/output
systems.

We can compute the step response to a linear system using the convolution
equation. Setting x(0) = 0 and using the definition of the step input above, we
have

1 t
y (1) :/ Ce*""IBu(r)dt + Du(r) = C/ eA"IBdt + D
0 0

t
= c/ ¢*"Bdo +D =C (A”'e* B)|"Z + D
0
=CA'e™B—-CA'B+D.

If A has eigenvalues with negative real part (implying that the origin is a stable
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Figure 5.9: Sample step response. The rise time, overshoot, settling time and steady-state
value give the key performance properties of the signal.

equilibrium point in the absence of any input), then we can rewrite the solution as

y(t)=CA'eB+D—-CA™'B, t>0. (5.22)

transient steady-state

The first term is the transient response and decays to zero as t — o0o. The second
term is the steady-state response and represents the value of the output for large
time.

A sample step response is shown in Figure 5.9. Several terms are used when
referring to a step response. The steady-state value ys of a step response is the
final level of the output, assuming it converges. The rise time T, is the amount of
time required for the signal to go from 10% of its final value to 90% of its final
value. It is possible to define other limits as well, but in this book we shall use these
percentages unless otherwise indicated. The overshoot M, is the percentage of the
final value by which the signal initially rises above the final value. This usually
assumes that future values of the signal do not overshoot the final value by more
than this initial transient, otherwise the term can be ambiguous. Finally, the settling
time Ty is the amount of time required for the signal to stay within 2% of its final
value for all future times. The settling time is also sometimes defined as reaching 1%
or 5% of the final value (see Exercise 5.7). In general these performance measures
can depend on the amplitude of the input step, but for linear systems the last three
quantities defined above are independent of the size of the step.

Example 5.7 Compartment model

Consider the compartment model illustrated in Figure 5.10 and described in more
detail in Section 3.6. Assume that a drug is administered by constant infusion in
compartment V; and that the drug has its effect in compartment V. To assess how
quickly the concentration in the compartment reaches steady state we compute the
step response, which is shown in Figure 5.10b. The step response is quite slow,
with a settling time of 39 min. It is possible to obtain the steady-state concentration
much faster by having a faster injection rate initially, as shown in Figure 5.10c.
The response of the system in this case can be computed by combining two step
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Figure 5.10: Response of a compartment model to a constant drug infusion. A simple diagram
of the system is shown in (a). The step response (b) shows the rate of concentration buildup
in compartment 2. In (c) a pulse of initial concentration is used to speed up the response.

responses (Exercise 5.3). \Y%

Another common input signal to a linear system is a sinusoid (or a combination
of sinusoids). The frequency response of an input/output system measures the way in
which the system responds to a sinusoidal excitation on one of its inputs. As we have
already seen for scalar systems, the particular solution associated with a sinusoidal
excitation is itself a sinusoid at the same frequency. Hence we can compare the
magnitude and phase of the output sinusoid to the input. More generally, if a system
has a sinusoidal output response at the same frequency as the input forcing, we can
speak of the frequency response of the system.

To see this in more detail, we must evaluate the convolution equation (5.15) for
u = cos wt. This turns out to be a very messy calculation, but we can make use of
the fact that the system is linear to simplify the derivation. In particular, we note
that

1/ . .
cos wt = E(e“‘” + e"‘”’).

Since the system is linear, it suffices to compute the response of the system to the
complex input u(¢) = e*' and we can then reconstruct the input to a sinusoid by
averaging the responses corresponding to s = iwt and s = —iot.

Applying the convolution equation to the input u = ' we have

t
y(t) = Ce?'x(0) + / Ce"" Be’"dt + De*'
0

t
= Cex(0) + CeAt/ e$I=YBdr + De*.
0

If we assume that none of the eigenvalues of A are equal to s = Fiw, then the
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matrix s/ — A is invertible, and we can write
y(t) = Cex(0) + Ce™ ((SI - A)_le(SI_A)TB) ‘; + Deé*!
= CeMx(0) + CeM(sI — A)~! (e(”_A)t - I)B + De*'
=CeVx(0) +C(sI — A ' B — Ce(sI — A)™'B + De*,
and we obtain

y(1) = Ce (x(O) — (I — A)‘IB) + (C(sl — A 'B+ D)e” . (523)

transient steady-state

Notice that once again the solution consists of both a transient component and a
steady-state component. The transient component decays to zero if the system is
asymptotically stable and the steady-state component is proportional to the (com-
plex) input u = e*'.
We can simplify the form of the solution slightly further by rewriting the steady-
state response as
yss(t) — Meiﬁest — Me(st—i—i@)’

where .
Me? =C(sI — A~ 'B+D (5.24)

and M and 0 represent the magnitude and phase of the complex number C(s/ —
A)~'B 4+ D. When s = iw, we say that M is the gain and 0 is the phase of the
system at a given forcing frequency . Using linearity and combining the solutions
fors = +iwands = —iw,we can show that if we have aninputu = A, sin(wt+y)
and an output y = A, sin(wt + ¢), then

A,
gain(w) = A_y =M, phase(w)=¢ —y =§6.

u

The steady-state solution for a sinusoid # = cos wt is now given by
Yss(t) = M cos(wt +0).

If the phase @ is positive, we say that the output leads the input, otherwise we say
it lags the input.

A sample sinusoidal response is illustrated in Figure 5.11a. The dashed line
shows the input sinusoid, which has amplitude 1. The output sinusoid is shown as a
solid line and has a different amplitude plus a shifted phase. The gain is the ratio of
the amplitudes of the sinusoids, which can be determined by measuring the height
of the peaks. The phase is determined by comparing the ratio of the time between
zero crossings of the input and output to the overall period of the sinusoid:

AT
0 =2 —.
T
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Figure 5.11: Response of a linear system to a sinusoid. (a) A sinusoidal input of magnitude
A, (dashed) gives a sinusoidal output of magnitude A, (solid), delayed by AT seconds. (b)
Frequency response, showing gain and phase. The gain is given by the ratio of the output
amplitude to the input amplitude, M = A, /A, . The phase lag is given by 0 = —27 AT/T;
it is negative for the case shown because the output lags the input.

A convenient way to view the frequency response is to plot how the gain and
phase in equation (5.24) depend on w (through s = iw). Figure 5.11b shows an
example of this type of representation.

Example 5.8 Active band-pass filter
Consider the op amp circuit shown in Figure 5.12a. We can derive the dynamics of
the system by writing the nodal equations, which state that the sum of the currents

at any node must be zero. Assuming that v_ = v; = 0, as we did in Section 3.3,
we have
— d d d d d
ooiTo2_ o do o dvr v dvs o odos v dos
R, dt dt R; dt dt R, dt
Choosing v, and v3 as our states and using the first and last equations, we obtain
d1)2 . D1 — Dy d1)3 . —03 D1 — D)
dt  RC,  dt RC, RCy’
Rewriting these in linear state space form, we obtain
1 1
dx | R 0 R,C
_ 1€y 101 _
—= 4 ol e y=0 1) 629
RC, R,C, R,C,

where x = (vp,v3),u = vy and y = v3.
The frequency response for the system can be computed using equation (5.24):
R2 Rl C1 N
Ry (1+ RiCis)(1 4 RyCas)’
The magnitude and phase are plotted in Figure 5.12b for Ry = 100 Q, R, = 5 kQ
and C; = C, = 100 uF. We see that the circuit passes through signals with

Me? =C(sI — A)7'B+D = s =iw.
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Figure 5.12: Active band-pass filter. The circuit diagram (a) shows an op amp with two RC
filters arranged to provide a band-pass filter. The plot in (b) shows the gain and phase of the
filter as a function of frequency. Note that the phase starts at -90° due to the negative gain of
the operational amplifier.

frequencies at about 10 rad/s, but attenuates frequencies below 5 rad/s and above
50 rad/s. At 0.1 rad/s the input signal is attenuated by 20x (0.05). This type of
circuit is called a band-pass filter since it passes through signals in the band of
frequencies between 5 and 50 rad/s. \%

As in the case of the step response, a number of standard properties are defined
for frequency responses. The gain of a system at w = 0 is called the zero frequency
gain and corresponds to the ratio between a constant input and the steady output:

My=—-CA™'B+ D.

The zero frequency gain is well defined only if A is invertible (and, in particular, if
it does not have eigenvalues at 0). It is also important to note that the zero frequency
gain is a relevant quantity only when a system is stable about the corresponding
equilibrium point. So, if we apply a constant input # = r, then the corresponding
equilibrium point x, = —A~!Br must be stable in order to talk about the zero
frequency gain. (In electrical engineering, the zero frequency gain is often called
the DC gain. DC stands for direct current and reflects the common separation of
signals in electrical engineering into a direct current (zero frequency) term and an
alternating current (AC) term.)

The bandwidth wy, of a system is the frequency range over which the gain has
decreased by no more than a factor of 1/+/2 from its reference value. For systems
with nonzero, finite zero frequency gain, the bandwidth is the frequency where
the gain has decreased by 1/+/2 from the zero frequency gain. For systems that
attenuate low frequencies but pass through high frequencies, the reference gain
is taken as the high-frequency gain. For a system such as the band-pass filter in
Example 5.8, bandwidth is defined as the range of frequencies where the gain is
larger than 1/+/2 of the gain at the center of the band. (For Example 5.8 this would
give a bandwidth of approximately 50 rad/s.)
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Figure 5.13: AFM frequency response. (a) A block diagram for the vertical dynamics of an
atomic force microscope in contact mode. The plot in (b) shows the gain and phase for the
piezo stack. The response contains two frequency peaks at resonances of the system, along
with an antiresonance at @ = 268 krad/s. The combination of a resonant peak followed by
an antiresonance is common for systems with multiple lightly damped modes.

Another important property of the frequency response is the resonant peak
M, , the largest value of the frequency response, and the peak frequency w,,, , the
frequency where the maximum occurs. These two properties describe the frequency
of the sinusoidal input that produces the largest possible output and the gain at the
frequency.

Example 5.9 Atomic force microscope in contact mode

Consider the model for the vertical dynamics of the atomic force microscope in
contact mode, discussed in Section 3.5. The basic dynamics are given by equa-
tion (3.23). The piezo stack can be modeled by a second-order system with un-
damped natural frequency ws and damping ratio (3. The dynamics are then de-
scribed by the linear system

0 1 0 0 0
dx | =k/(mi+my) —c/(mi+ma) 1/m, 0 4 0
dr 0 0 0 w3 0
0 0 —3 —2(3(1)3 w3
y= my mik mic ! O] ..
my+my Umy+my my+mp

where the input signal is the drive signal to the amplifier and the output is the elon-
gation of the piezo. The frequency response of the system is shown in Figure 5.13b.
The zero frequency gain of the system is My = 1. There are two resonant poles with
peaks M,; = 2.12 at w,,,; = 238 krad/s and M,, = 4.29 at w,,,» = 746 krad/s.
The bandwidth of the system, defined as the lowest frequency where the gain is
V/2 less than the zero frequency gain, is w, = 292 krad/s. There is also a dip in
the gain M, = 0.556 for w,,; = 268 krad/s. This dip, called an antiresonance, is
associated with a dip in the phase and limits the performance when the system is
controlled by simple controllers, as we will see in Chapter 10. \%
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Sampling

It is often convenient to use both differential and difference equations in modeling
and control. For linear systems it is straightforward to transform from one to the
other. Consider the general linear system described by equation (5.13) and assume
that the control signal is constant over a sampling interval of constant length 4. It
follows from equation (5.14) of Theorem 5.4 that

t+h
x(t 4+ h) = e x(1) +/ e Bu(k) dr = Ox (1) + Tu(r), (5.26)

where we have assumed that the discontinuous control signal is continuous from
the right. The behavior of the system at the sampling times ¢ = k#/ is described by
the difference equation

xlk + 1] = Ox[k] + Tulk], ylk] = Cx[k] 4+ Dulk]. (5.27)

Notice that the difference equation (5.27) is an exact representation of the behavior
of the system at the sampling instants. Similar expressions can also be obtained if
the control signal is linear over the sampling interval.

The transformation from (5.26) to (5.27) is called sampling. The relations be-
tween the system matrices in the continuous and sampled representations are as
follows:

h h
1 -1
D = M, r:(/ eASds)B; A= log®, B=(/ eA’dt) r.
0 0

(5.28)
Notice that if A is invertible, we have

I=A"(e—-1).

All continuous-time systems can be sampled to obtain a discrete-time version,
but there are discrete-time systems that do not have a continuous-time equivalent.
The precise condition is that the matrix ® cannot have real eigenvalues on the
negative real axis.

Example 5.10 IBM Lotus server
In Example 2.4 we described how the dynamics of an IBM Lotus server were
obtained as the discrete-time system

ylk + 1] = ay[k] + bulk],

where a = 0.43, b = 0.47 and the sampling period is 4 = 60 s. A differential
equation model is needed if we would like to design control systems based on
continuous-time theory. Such a model is obtained by applying equation (5.28);

hence | N 1
A= Oia — 00141, B= (/ o dt) b =0.0116,
0

and we find that the difference equation can be interpreted as a sampled version of
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the ordinary differential equation

dx
i —0.0141x +0.0116u.

5.4 Linearization

As described at the beginning of the chapter, a common source of linear system
models is through the approximation of a nonlinear system by a linear one. These
approximations are aimed at studying the local behavior of a system, where the
nonlinear effects are expected to be small. In this section we discuss how to locally
approximate a system by its linearization and what can be said about the approxi-
mation in terms of stability. We begin with an illustration of the basic concept using
the cruise control example from Chapter 3.

Example 5.11 Cruise control
The dynamics for the cruise control system were derived in Section 3.1 and have
the form

d 1
md_lt) = a,uT (a,0) —mgC, sgn(v) — E'OC“ADZ — mgsind, (5.29)

where the first term on the right-hand side of the equation is the force generated
by the engine and the remaining three terms are the rolling friction, aerodynamic
drag and gravitational disturbance force. There is an equilibrium (v, u,) when the
force applied by the engine balances the disturbance forces.

To explore the behavior of the system near the equilibrium we will linearize the
system. A Taylor series expansion of equation (5.29) around the equilibrium gives

dw — v, |
(Ddt %) a(v —v,) — bg(0 —0,) + b(u — u,) + higher order terms, (5.30)
where
o= Wl o) = pCodve - g ST sy
m m

Notice that the term corresponding to rolling friction disappears if » # 0. For a car
in fourth gear with v, = 25 m/s, §, = 0 and the numerical values for the car from
Section 3.1, the equilibrium value for the throttle is #, = 0.1687 and the parameters
are a = —0.0101, b = 1.32 and ¢ = 9.8. This linear model describes how small
perturbations in the velocity about the nominal speed evolve in time.

Figure 5.14 shows a simulation of a cruise controller with linear and nonlinear
models; the differences between the linear and nonlinear models are small, and
hence the linearized model provides a reasonable approximation. \
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Figure 5.14: Simulated response of a vehicle with PI cruise control as it climbs a hill with a
slope of 4°. The solid line is the simulation based on a nonlinear model, and the dashed line
shows the corresponding simulation using a linear model. The controller gains are k, = 0.5
and k; =0.1.

Jacobian Linearization Around an Equilibrium Point

To proceed more formally, consider a single-input, single-output nonlinear system

d
d—:zf(x,u), xeR" ueR,
y=h(x,u), yeR,

(5.32)

with an equilibrium point at x = x,., u = u,. Without loss of generality we can
assume that x, = 0 and u, = 0, although initially we will consider the general case
to make the shift of coordinates explicit.

To study the local behavior of the system around the equilibrium point (x,, u.),
we suppose that x — x, and u — u, are both small, so that nonlinear perturbations
around this equilibrium point can be ignored compared with the (lower-order) linear
terms. This is roughly the same type of argument that is used when we do small-
angle approximations, replacing sin # with € and cos § with 1 for 8 near zero.

As we did in Chapter 4, we define a new set of state variables z, as well as inputs
v and outputs w:

T=X—Xe, V=U—U W=Y—h(Xe, Up).

These variables are all close to zero when we are near the equilibrium point, and so
in these variables the nonlinear terms can be thought of as the higher-order terms in
a Taylor series expansion of the relevant vector fields (assuming for now that these
exist).

Formally, the Jacobian linearization of the nonlinear system (5.32) is

d
d_f=A1+Bz), w=Cz+ Do, (5.33)
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where

0 0 oh oh

X [y, ) ou ox ou

(xeue) (Xesue) (xeue)
The system (5.33) approximates the original system (5.32) when we are near the
equilibrium point about which the system was linearized. Using Theorem 4.3, if
the linearization is asymptotically stable, then the equilibrium point x, is locally
asymptotically stable for the full nonlinear system.

It is important to note that we can define the linearization of a system only near
an equilibrium point. To see this, consider a polynomial system

dx

i ap + arx + axx* + azx’® +u,

where ag # 0. A set of equilibrium points for this system is given by (x,, u,) =
(X, —ap — a1 x, — azxe2 — a3x§’) ,and we can linearize around any of them. Suppose
that we try to linearize around the origin of the system x = 0, u = 0. If we drop
the higher-order terms in x, then we get

dx

— =ap+ax+u,
a1 o+ ax +

which is not the Jacobian linearization if ay % 0. The constant term must be kept,
and it is not present in (5.33). Furthermore, even if we kept the constant term in the
approximate model, the system would quickly move away from this point (since it
is “driven” by the constant term ap), and hence the approximation could soon fail
to hold.

Software for modeling and simulation frequently has facilities for performing
linearization symbolically or numerically. The MATLAB command trim finds the
equilibrium, and 1inmod extracts linear state space models from a SIMULINK
system around an operating point.

Example 5.12 Vehicle steering

Consider the vehicle steering system introduced in Example 2.8. The nonlinear
equations of motion for the system are given by equations (2.23)—(2.25) and can
be written as

v cos (a(0) + 6)
I l usm(a(&)+9) L a®) :arctan(atam),
dt b

— tané

where x, y and 0 are the p051tion and orientation of the center of mass of the
vehicle, vy is the velocity of the rear wheel, b is the distance between the front and
rear wheels and J is the angle of the front wheel. The function «(9) is the angle
between the velocity vector and the vehicle’s length axis.

We are interested in the motion of the vehicle about a straight-line path (6 = 6)
with fixed velocity vy # 0. To find the relevant equilibrium point, we first set = 0
and we see that we must have 6 = 0, corresponding to the steering wheel being
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straight. This also yields oo = 0. Looking at the first two equations in the dynamics,
we see that the motion in the xy direction is by definition not at equilibrium since
4= vg # 0. Therefore we cannot formally linearize the full model.

Suppose instead that we are concerned with the lateral deviation of the vehicle
from a straight line. For simplicity, we let 8, = 0, which corresponds to driving
along the x axis. We can then focus on the equations of motion in the y and 6
directions. With some abuse of notation we introduce the state x = (y, #) and
u = J. The system is then in standard form with

v sin (a (1) + x3)

flx,u)= Do , au)= arctan(a
Z tan u

tan u

), h(x,u) = xi.

The equilibrium point of interest is given by x = (0, 0) and # = 0. To compute the
linearized model around this equilibrium point, we make use of the formulas (5.34).
A straightforward calculation yields

Ao g [0 v B_ % _ favo/b
" oxlx=0 |0 O}° " Oulx=0 | vo/b |’
u=0 u=0
oh oh
c=2" =[1 0], p=22  =o,
0X | x=0 ou | x=0
u=0 u=0
and the linearized system
dx
— = Ax + Bu, y=Cx+ Du (5.35)

dt

thus provides an approximation to the original nonlinear dynamics.

The linearized model can be simplified further by introducing normalized vari-
ables, as discussed in Section 2.3. For this system, we choose the wheel base b
as the length unit and the unit as the time required to travel a wheel base. The
normalized state is thus z = (x;/b, x»), and the new time variable is ¢ = vt /b.
The model (5.35) then becomes

dz 2+yu 0 1 y

E—[ w | T Lo of* T 1| % y‘[l O]Z’ (5-36)
where y = a/b. The normalized linear model for vehicle steering with nonslipping
wheels is thus a linear system with only one parameter. \

Feedback Linearization

Another type of linearization is the use of feedback to convert the dynamics of a
nonlinear system into those of a linear one. We illustrate the basic idea with an
example.

Example 5.13 Cruise control
Consider again the cruise control system from Example 5.11, whose dynamics are
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Linearized dynamics

Nonlinear
Process

Linear
Controller

—1 |

Figure 5.15: Feedback linearization. A nonlinear feedback of the form u = a(x, v) is used
to modify the dynamics of a nonlinear process so that the response from the input » to the
output y is linear. A linear controller can then be used to regulate the system’s dynamics.

given in equation (5.29):

d 1
md_lt) = o,uT (a,0) —mgC, sgn(v) — EpCdADZ —mgsin.
If we choose u as a feedback law of the form
1 1
U= m (u’ + mgC, sgn(v) + EpC”ADZ) , (5.37)
then the resulting dynamics become
dv
— =u'+d, 5.38
m—=u'+ (5.38)
where d = —mg sin@ is the disturbance force due the slope of the road. If we

now define a feedback law for u’ (such as a proportional-integral-derivative [PID]
controller), we can use equation (5.37) to compute the final input that should be
commanded.

Equation (5.38) is a linear differential equation. We have essentially “inverted”
the nonlinearity through the use of the feedback law (5.37). This requires that we
have an accurate measurement of the vehicle velocity » as well as an accurate
model of the torque characteristics of the engine, gear ratios, drag and friction
characteristics and mass of the car. While such a model is not generally available
(remembering that the parameter values can change), if we design a good feedback
law for u’, then we can achieve robustness to these uncertainties. \%

More generally, we say that a system of the form

d
—=flw.  y=he),

is feedback linearizable if we can find a control law u = a(x, ») such that the
resulting closed loop system is input/output linear with input » and output y, as
shown in Figure 5.15. To fully characterize such systems is beyond the scope of
this text, but we note that in addition to changes in the input, the general theory also
allows for (nonlinear) changes in the states that are used to describe the system,
keeping only the input and output variables fixed. More details of this process can
be found in the textbooks by Isidori [106] and Khalil [123].
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One case that comes up relatively frequently, and is hence worth special mention,
is the set of mechanical systems of the form

M(q)g + C(q,q) = B(q)u.

Here ¢ € R” is the configuration of the mechanical system, M(g) € R"*" is
the configuration-dependent inertia matrix, C (g, ¢) € R” represents the Coriolis
forces and additional nonlinear forces (such as stiffness and friction) and B(g) €
R™*7 is the input matrix. If p = n, then we have the same number of inputs and
configuration variables, and if we further have that B(g) is an invertible matrix for
all configurations g, then we can choose

u=B"(q)(M(g) - C(q.q)). (539)
The resulting dynamics become
M(g)g =M(gp =  4=v,

which is a linear system. We can now use the tools of linear system theory to
analyze and design control laws for the linearized system, remembering to apply
equation (5.39) to obtain the actual input that will be applied to the system.

This type of control is common in robotics, where it goes by the name of
computed torque, and in aircraft flight control, where it is called dynamic inver-
sion. Some modeling tools like Modelica can generate the code for the inverse
model automatically. One caution is that feedback linearization can often cancel
out beneficial terms in the natural dynamics, and hence it must be used with care.
Extensions that do not require complete cancellation of nonlinearities are discussed
in Khalil [123] and Krsti¢ et al. [129].

5.5 Further Reading

The majority of the material in this chapter is classical and can be found in most
books on dynamics and control theory, including early works on control such as
James, Nichols and Phillips [110] and more recent textbooks such as Dorf and
Bishop [61], Franklin, Powell and Emami-Naeini [79] and Ogata [162]. An excel-
lent presentation of linear systems based on the matrix exponential is given in the
book by Brockett [44], a more comprehensive treatment is given by Rugh [171] and
an elegant mathematical treatment is given in Sontag [182]. Material on feedback
linearization can be found in books on nonlinear control theory such as Isidori [106]
and Khalil [123]. The idea of characterizing dynamics by considering the responses
to step inputs is due to Heaviside, he also introduced an operator calculus to analyze
linear systems. The unit step is therefore also called the Heaviside step function.
Analysis of linear systems was simplified significantly, but Heaviside’s work was
heavily criticized because of lack of mathematical rigor, as described in the biog-
raphy by Nahin [157]. The difficulties were cleared up later by the mathematician
Laurent Schwartz who developed distribution theory in the late 1940s. In engineer-
ing, linear systems have traditionally been analyzed using Laplace transforms as
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described in Gardner and Barnes [81]. Use of the matrix exponential started with
developments of control theory in the 1960s, strongly stimulated by a textbook by
Zadeh and Desoer [207]. Use of matrix techniques expanded rapidly when the pow-
erful methods of numeric linear algebra were packaged in programs like LabVIEW,
MATLAB and Mathematica.

Exercises

5.1 (Response to the derivative of a signal) Show that if y(¢) is the output of a
linear system corresponding to input u(¢), then the output corresponding to an
input u(t) is given by y(¢z). (Hint: Use the definition of the derivative: y(r) =
limeo(y(t +€) = y(1)) /€.)

5.2 (Impulse response and convolution) Show that a signal u(¢) can be decomposed
in terms of the impulse function J(¢) as

u(t) = /Ot ot — t)u(r)dr

and use this decomposition plus the principle of superposition to show that the
response of a linear system to an input #(¢) (assuming a zero initial condition) can
be written as

t
Y0 = [ e = oo,
0
where /4 (t) is the impulse response of the system.

5.3 (Pulse response for a compartment model) Consider the compartment model
given in Example 5.7. Compute the step response for the system and compare it
with Figure 5.10b. Use the principle of superposition to compute the response to
the pulse input shown in Figure 5.10c.

5.4 (Matrix exponential for second-order system) Assume that ¢ < 1 and let w; =
wo+/1 — 2. Show that

—Cwy oy ] P [ e~ coswyt e ™ sin wyt

ex B ; . )
P —wg —{wy —e ¢ sinyt e ¢ cos wyt

5.5 (Lyapunov function for a linear system) Consider a linear system x = Ax with
Re A; < O for all eigenvalues 4; of the matrix A. Show that the matrix

*© T
P:/ eV T Qe dr
0

defines a Lyapunov function of the form V (x) = x” Px.

5.6 (Nondiagonal Jordan form) Consider a linear system with a Jordan form that is
non-diagonal.

(a) Show that there exists a periodic input that does not produce a periodic output.
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(b) Prove Proposition 5.3 by showing that if the system contains a real eigenvalue
A = 0 with a nontrivial Jordan block, then there exists an initial condition with a
solution that grows in time. Extend this argument to the case of complex eigenvalues
with Re 4 = 0 by using the block Jordan form

0O w 1 0
- 0 0 1
=10 0 0 o
0 0 —w 0

5.7 (Rise time for a first-order system) Consider a first-order system of the form

dx n
T — = —X u, = X.
di Y

We say that the parameter 7 is the time constant for the system since the zero input
system approaches the origin as e~"/*. For a first-order system of this form, show
that the rise time for a step response of the system is approximately 27, and that
1%, 2%, and 5% settling times approximately corresponds to 4.67,47 and 27.

5.8 (Discrete-time systems) Consider a linear discrete-time system of the form

x[k + 1] = Ax[k] + Bulk], y[k] = Cx[k] + Dulk].

(a) Show that the general form of the output of a discrete-time linear system is
given by the discrete-time convolution equation:

k—1
Ikl = CA*xo + D CA* /=" Bulj] + Dulk].
Jj=0

(b) Show that a discrete-time linear system is asymptotically stable if and only if
all the eigenvalues of A have a magnitude strictly less than 1.

(c) Let u[k] = Asin(wk) represent an oscillatory input with frequency o < 7 (to
avoid “aliasing”). Show that the steady-state component of the response has gain
M and phase 6, where

Mel? = C (I — A)7'B + D.

(d) Show that if we have a nonlinear discrete-time system
x[k] = f(x[k], ulk]), x[k] e R", u e R,
ylk] = h(x[k], ulk]), yeR,

then we can linearize the system around an equilibrium point (x,, u,) by defining
the matrices A, B, C and D as in equation (5.34).
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5.9 (Keynesian economics) Consider the following simple Keynesian macroeco-
nomic model in the form of a linear discrete-time system discussed in Exercise 5.8:

[ 0] = e ] (S0 =[] om

Y[t] =C[t] + I[t] + G[t].

Determine the eigenvalues of the dynamics matrix. When are the magnitudes of
the eigenvalues less than 1? Assume that the system is in equilibrium with constant
values capital spending C, investment / and government expenditure G. Explore
what happens when government expenditure increases by 10%. Use the values
a=025and b =0.5.

5.10 Consider a scalar system

dx i s
— =1—-x"+u.
dt

Compute the equilibrium points for the unforced system (v = 0) and use a Taylor
series expansion around the equilibrium point to compute the linearization. Verify
that this agrees with the linearization in equation (5.33).

5.11 (Transcriptional regulation) Consider the dynamics of a genetic circuit that im-
plements self-repression: the protein produced by a gene is a repressor for that gene,
thus restricting its own production. Using the models presented in Example 2.13,
the dynamics for the system can be written as

dm o p

—_— = — = pm —op, 540

dt 1+ kp? dt b P (540)
where u is a disturbance term that affects RNA transcription and m, p > 0. Find
the equilibrium points for the system and use the linearized dynamics around each
equilibrium point to determine the local stability of the equilibrium point and the
step response of the system to a disturbance.

+oo—ym—u,
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Chapter Six
State Feedback

Intuitively, the state may be regarded as a kind of information storage or memory or accumula-
tion of past causes. We must, of course, demand that the set of internal states X be sufficiently
rich to carry all information about the past history of X to predict the effect of the past upon
the future. We do not insist, however, that the state is the least such information although this
is often a convenient assumption.

R.E.Kalman, P. L. Falb and M. A. Arbib, Topics in Mathematical System Theory, 1969 [117].

This chapter describes how the feedback of a system’s state can be used to shape
the local behavior of a system. The concept of reachability is introduced and used
to investigate how to design the dynamics of a system through assignment of its
eigenvalues. In particular, it will be shown that under certain conditions it is possible
to assign the system eigenvalues arbitrarily by appropriate feedback of the system
state.

6.1 Reachability

One of the fundamental properties of a control system is what set of points in the
state space can be reached through the choice of a control input. It turns out that the
property of reachability is also fundamental in understanding the extent to which
feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of the system and focusing on
the evolution of the state, given by

a1 B (6.1)
_—= X M, .
dt

where x € R",u € R, Ais ann x n matrix and B a column vector. A fundamental
question is whether it is possible to find control signals so that any point in the state
space can be reached through some choice of input. To study this, we define the
reachable set R(xy, < T') as the set of all points x ; such that there exists an input
u(t),0 <t < T that steers the system from x(0) = xo to x(T') = x, as illustrated
in Figure 6.1a.

Definition 6.1 (Reachability). A linear system is reachable if for any xo, xy € R"
there exists a 7 > 0 and u: [0, 7] — R such that the corresponding solution
satisfies x(0) = xo and x(T') = xy.
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(a) Reachable set (b) Reachability through control

Figure 6.1: The reachable set for a control system. The set R (xy, < T') shown in (a) is the set

of points reachable from x, in time less than 7". The phase portrait in (b) shows the dynamics
for a double integrator, with the natural dynamics drawn as horizontal arrows and the control
inputs drawn as vertical arrows. The set of achievable equilibrium points is the x axis. By
setting the control inputs as a function of the state, it is possible to steer the system to the
origin, as shown on the sample path.

The definition of reachability addresses whether it is possible to reach all points
in the state space in a transient fashion. In many applications, the set of points that
we are most interested in reaching is the set of equilibrium points of the system
(since we can remain at those points once we get there). The set of all possible
equilibria for constant controls is given by

& ={x,: Ax, + bu, = 0 for some u, € R}.

This means that possible equilibria lie in a one- (or possibly higher) dimensional
subspace. If the matrix A is invertible, this subspace is spanned by A~ B.
The following example provides some insight into the possibilities.

Example 6.1 Double integrator
Consider a linear system consisting of a double integrator whose dynamics are

iven b
g Y dx1 d]CZ
— = X7, — =u.

dt dt
Figure 6.1b shows a phase portrait of the system. The open loop dynamics (# = 0)
are shown as horizontal arrows pointed to the right for x, > 0 and to the left for
x3 < 0. The control input is represented by a double-headed arrow in the vertical
direction, corresponding to our ability to set the value of x,. The set of equilibrium
points & corresponds to the x; axis, with u, = 0.

Suppose first that we wish to reach the origin from an initial condition (a, 0).
We can directly move the state up and down in the phase plane, but we must rely
on the natural dynamics to control the motion to the left and right. If a > 0, we
can move the origin by first setting # < 0, which will cause x; to become negative.
Once x; < 0, the value of x; will begin to decrease and we will move to the left.
After a while, we can set u; to be positive, moving x; back toward zero and slowing
the motion in the x; direction. If we bring x, > 0, we can move the system state in
the opposite direction.
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Figure 6.1b shows a sample trajectory bringing the system to the origin. Note
that if we steer the system to an equilibrium point, it is possible to remain there
indefinitely (since x; = 0 when x, = 0), but if we go to any other point in the state
space, we can pass through the point only in a transient fashion. \%

To find general conditions under which a linear system is reachable, we will
first give a heuristic argument based on formal calculations with impulse functions.
We note that if we can reach all points in the state space through some choice of
input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system to an input u(z) is given
by

x(1) = / eI Bu(t) dr. (6.2)
0

If we choose the input to be a impulse function d(¢) as defined in Section 5.3, the

state becomes

! d
xs= [ e*“"DBi(r)dr = s _ pap,
d
0 t

(Note that the state changes instantaneously in response to the impulse.) We can
find the response to the derivative of an impulse function by taking the derivative
of the impulse response (Exercise 5.1):

. dX5

X5 = E = A€AtB.

Continuing this process and using the linearity of the system, the input
u(t) = a10(t) + 028(t) + ad(t) + - - - + 0,6V (1)
gives the state
x(t) = 01" B + a2 Ae™ B + a3 A’ B+ - - - + a, A" e’ B.
Taking the limit as ¢t goes to zero through positive values, we get

lim x(¢r) = a;B + a2 AB + a3 A*B + - - + a, A" ' B.
t—0+
On the right is a linear combination of the columns of the matrix
W, = [B AB ... A"—IB]. (6.3)

To reach an arbitrary point in the state space, we thus require that there are n linear
independent columns of the matrix W,. The matrix W, is called the reachability
matrix.

An input consisting of a sum of impulse functions and their derivatives is a very
violent signal. To see that an arbitrary point can be reached with smoother signals
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we can make use of the convolution equation. Assuming that the initial condition
is zero, the state of a linear system is given by

1 t
X(t)=/ e*"" Bu(r)dz =/ e’ Bu(t — 1)dz.
0

0
It follows from the theory of matrix functions, specifically the Cayley—Hamilton
theorem (see Exercise 6.10), that

e = Tag(r) + Aoy (t) + -+ + A" o, (1),

where a;(7) are scalar functions, and we find that
t t
x(t) = B/ oo(Du(t —t)dr + AB/ o (Du(t —7)dre
0 0

t
+---+A”_IB/ Op_1(Du@ — 1) dr.
0

Again we observe that the right-hand side is a linear combination of the columns
of the reachability matrix W, given by equation (6.3). This basic approach leads to
the following theorem.

Theorem 6.1 (Reachability rank condition). A linear system is reachable if and
only if the reachability matrix W, is invertible.

The formal proof of this theorem is beyond the scope of this text but follows
along the lines of the sketch above and can be found in most books on linear control
theory, such as Callier and Desoer [48] or Lewis [136]. We illustrate the concept
of reachability with the following example.

Example 6.2 Balance system
Consider the balance system introduced in Example 2.1 and shown in Figure 6.2.
Recall that this system is a model for a class of examples in which the center of mass
is balanced above a pivot point. One example is the Segway Personal Transporter
shown in Figure 6.2a, about which a natural question to ask is whether we can move
from one stationary point to another by appropriate application of forces through
the wheels.

The nonlinear equations of motion for the system are given in equation (2.9)
and repeated here:

(M +m)p —mlcos0b = —cp —mlsinf 6%+ F,

N . . ) (64)
(J4+ml)0 —mlcosd p =—yb0 + mglsinf.
For simplicity, we take ¢ = y = 0. Linearizing around the equilibrium point
x. = (p,0,0,0), the dynamics matrix and the control matrix are
0 0 10 0
A 0 0 0 1 0
B R ) e N
0 Mmgl/u 0 O Im/u
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(a) Segway (b) Cart-pendulum system

Figure 6.2: Balance system. The Segway Personal Transporter shown on in (a) is an example
of a balance system that uses torque applied to the wheels to keep the rider upright. A
simplified diagram for a balance system is shown in (b). The system consists of a mass m on
arod of length [ connected by a pivot to a cart with mass M.

where u = M;J, — m*I>, M, = M +m and J, = J 4+ mi?. The reachability matrix
is

0 J/u 0 glm?/u?
0 Im/u 0 gl’m?(m + M)/ u? 65)
T g/ 0 glm? [ u? 0 '
Im/u 0 g2 Pm*(m + M)/ u? 0
The determinant of this matrix is
274 4
g l"m
det(W,) = #0,
(w)*

and we can conclude that the system is reachable. This implies that we can move
the system from any initial state to any final state and, in particular, that we can
always find an input to bring the system from an initial state to an equilibrium point.

\%

It is useful to have an intuitive understanding of the mechanisms that make a
system unreachable. An example of such a system is given in Figure 6.3. The
system consists of two identical systems with the same input. Clearly, we cannot
separately cause the first and the second systems to do something different since
they have the same input. Hence we cannot reach arbitrary states, and so the system
is not reachable (Exercise 6.3).

More subtle mechanisms for nonreachability can also occur. For example, if
there is a linear combination of states that always remains constant, then the system
is not reachable. To see this, suppose that there exists a row vector H such that

d

0= EHX = H(Ax + Bu), forallu.
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Figure 6.3: An unreachable system. The cart—pendulum system shown on the left has a single
input that affects two pendula of equal length and mass. Since the forces affecting the two
pendula are the same and their dynamics are identical, it is not possible to arbitrarily control
the state of the system. The figure on the right is a block diagram representation of this
situation.

Then H is in the left null space of both A and B and it follows that
HW, = H [B AB ... A"—IB] —0.

Hence the reachability matrix is not full rank. In this case, if we have an initial
condition xo and we wish to reach a state x for which Hxq # Hx, then since
H x(t) is constant, no input # can move from xo to x .

Reachable Canonical Form

As we have already seen in previous chapters, it is often convenient to change
coordinates and write the dynamics of the system in the transformed coordinates
z = Tx. One application of a change of coordinates is to convert a system into a
canonical form in which it is easy to perform certain types of analysis.

A linear state space system is in reachable canonical form if its dynamics are
given by

—ay —a —az ... —d, 1

J 1 0 0 0 0

Z

R 0 1 0 0 74 0 u,

a SR ; 6.6)
0 1 0 0

y = 'bl by bz ... b,,] z4+du.

A block diagram for a system in reachable canonical form is shown in Figure 6.4.
We see that the coefficients that appear in the A and B matrices show up directly
in the block diagram. Furthermore, the output of the system is a simple linear
combination of the outputs of the integration blocks.

The characteristic polynomial for a system in reachable canonical form is given
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Figure 6.4: Block diagram for a system in reachable canonical form. The individual states
of the system are represented by a chain of integrators whose input depends on the weighted
values of the states. The output is given by an appropriate combination of the system input
and other states.

by
As)=s"+as" '+ 4 a5 + a,. 6.7)
The reachability matrix also has a relatively simple structure:

1 —a a%—az

0 1 —a
we=[B aB .. oaB =0 ],
0 0 1 =
0 0 0 o1

where * indicates a possibly nonzero term. This matrix is full rank since no col-
umn can be written as a linear combination of the others because of the triangular
structure of the matrix.

We now consider the problem of changing coordinates such that the dynamics
of a system can be written in reachable canonical form. Let A, B represent the
dynamics of a given system and A, B be the dynamics in reachable canonical form.
Suppose that we wish to transform the original system into reachable canonical
form using a coordinate transformation z = Tx. As shown in the last chapter, the
dynamics matrix and the control matrix for the transformed system are

A=TAT™', B=TB.
The reachability matrix for the transformed system then becomes

W,:[é AB ... An—lé].
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Transforming each element individually, we have
AB=TAT 'TB = TAB,
A’B=(TAT ") TB=TAT 'TAT™'TB =T A’B,

A"B =TA"B,
and hence the reachability matrix for the transformed system is
W, =T [B AB ... A”“B] —TW,. (6.8)
Since W, is invertible, we can thus solve for the transformation 7 that takes the
system into reachable canonical form:
T=w,w"
The following example illustrates the approach.

Example 6.3 Transformation to reachable form
Consider a simple two-dimensional system of the form

d_x_oca)+0
il I [ Il

We wish to find the transformation that converts the system into reachable canonical

form: 1
i_|—a —a B
o s RS

The coefficients a; and a, can be determined from the characteristic polynomial
for the original system:

2 2 2 ap = —2a,

A(s) =det(s] — A) =s"—2as + (¢ +0°) = ) )
a =0 +w".

The reachability matrix for each system is

_ 0 w T 1 —daq
L U B e
The transformation 7 becomes

T:WW‘I:[_(a1+a)/w 1]: a/w 1]

1o 0 1o 0

and hence the coordinates

[Z1] Ty — [axl/a)—i-xz‘
22 X2/

put the system in reachable canonical form. \

We summarize the results of this section in the following theorem.
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d
Controller Process
X = Ax + Bu
r —y
y=Cx+ Du

Figure 6.5: A feedback control system with state feedback. The controller uses the system
state x and the reference input r to command the process through its input . We model
disturbances via the additive input d.

Theorem 6.2 (Reachable canonical form). Let A and B be the dynamics and
control matrices for a reachable system. Then there exists a transformation z = T x
such that in the transformed coordinates the dynamics and control matrices are in
reachable canonical form (6.6) and the characteristic polynomial for A is given by

det(s] — A) =s"+a1s" '+ -+ a,_15 + a,.

One important implication of this theorem is that for any reachable system, we
can assume without loss of generality that the coordinates are chosen such that the
system is in reachable canonical form. This is particularly useful for proofs, as we
shall see later in this chapter. However, for high-order systems, small changes in
the coefficients a; can give large changes in the eigenvalues. Hence, the reachable
canonical form is not always well conditioned and must be used with some care.

6.2 Stabilization by State Feedback

The state of a dynamical system is a collection of variables that permits prediction
of the future development of a system. We now explore the idea of designing
the dynamics of a system through feedback of the state. We will assume that the
system to be controlled is described by a linear state model and has a single input
(for simplicity). The feedback control law will be developed step by step using a
single idea: the positioning of closed loop eigenvalues in desired locations.

State Space Controller Structure

Figure 6.5 is a diagram of a typical control system using state feedback. The full
system consists of the process dynamics, which we take to be linear, the controller
elements K and k,, the reference input (or command signal) r and process distur-
bances d. The goal of the feedback controller is to regulate the output of the system
y such that it tracks the reference input in the presence of disturbances and also
uncertainty in the process dynamics.

An important element of the control design is the performance specification.
The simplest performance specification is that of stability: in the absence of any
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disturbances, we would like the equilibrium point of the system to be asymptotically
stable. More sophisticated performance specifications typically involve giving de-
sired properties of the step or frequency response of the system, such as specifying
the desired rise time, overshoot and settling time of the step response. Finally, we
are often concerned with the disturbance attenuation properties of the system: to
what extent can we experience disturbance inputs d and still hold the output y near
the desired value?
Consider a system described by the linear differential equation

d
d—); = Ax + Bu, y = Cx + Du, (6.9)

where we have ignored the disturbance signal d for now. Our goal is to drive the
output y to a given reference value r and hold it there. Notice that it may not be
possible to maintain all equilibria; see Exercise 6.8.

We begin by assuming that all components of the state vector are measured.
Since the state at time ¢ contains all the information necessary to predict the future
behavior of the system, the most general time-invariant control law is a function of
the state and the reference input:

u=o(x,r).
If the feedback is restricted to be linear, it can be written as
u=—Kx+kmr, (6.10)

where r is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in Figure 6.5. The negative
sign is a convention to indicate that negative feedback is the normal situation. The
closed loop system obtained when the feedback (6.10) is applied to the system (6.9)
is given by

dx

= (A= BK)x+Bkr. 6.11)

We attempt to determine the feedback gain K so that the closed loop system has
the characteristic polynomial

p(s) =Sn+P1Sn_] + -+ pp—1S + Pu. (6.12)

This control problem is called the eigenvalue assignment problem or pole placement
problem (we will define poles more formally in Chapter 8).

Note that &, does not affect the stability of the system (which is determined by
the eigenvalues of A — BK) but does affect the steady-state solution. In particular,
the equilibrium point and steady-state output for the closed loop system are given
by

x, = —(A — BK)™'Bk,r, Ye = Cx, + Du,,
hence k, should be chosen such that y, = r (the desired output value). Since &, is
a scalar, we can easily solve to show that if D = 0 (the most common case),

k. =—1/(C(A—BK)™'B). (6.13)
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Notice that k, is exactly the inverse of the zero frequency gain of the closed loop
system. The solution for D ## 0 is left as an exercise.

Using the gains K and &, , we are thus able to design the dynamics of the closed
loop system to satisfy our goal. To illustrate how to construct such a state feedback
control law, we begin with a few examples that provide some basic intuition and
insights.

Example 6.4 Vehicle steering
In Example 5.12 we derived a normalized linear model for vehicle steering. The
dynamics describing the lateral deviation were given by

e f)
C=[1 0], D=0.

The reachability matrix for the system is thus

_ _ |7 1
w.=[8 aB] = [1 o]'
The system is reachable since det W, = —1 # 0.
We now want to design a controller that stabilizes the dynamics and tracks a
given reference value r of the lateral position of the vehicle. To do this we introduce

the feedback
u=—Kx—+kr=—kixi—kx,+kr,

and the closed loop system becomes

dx | =rvk 1=yk vk
E_(A—BK)x+Bkrr—[_k1 —ky x4+ K,

y=Cx+ Du = [1 O]x.

|-
(6.14)

The closed loop system has the characteristic polynomial

s+yk yky—1

det(sI—A+BK)=det[ Ky s+ Ky

] =524 (yky + ko)s + ky.
Suppose that we would like to use feedback to design the dynamics of the system
to have the characteristic polynomial

p(s) = 52 + 20005 + 0.

Comparing this polynomial with the characteristic polynomial of the closed loop
system, we see that the feedback gains should be chosen as

ki = a)z, ky =200 — ycof.
Equation (6.13) gives k, = k; = w?, and the control law can be written as

u=ki(r —x1) — kaxa = 0>(r — x1) — ¢, — y 02)x2.
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Figure 6.6: State feedback control of a steering system. Step responses obtained with con-
trollers designed with ¢, = 0.7 and w. = 0.5, 1 and 2 [rad/s] are shown in (a). Notice that
response speed increases with increasing w,, but that large w, also give large initial control
actions. Step responses obtained with a controller designed with v, = 1 and ¢, = 0.5,0.7
and 1 are shown in (b).

The step responses for the closed loop system for different values of the design
parameters are shown in Figure 6.6. The effect of w, is shown in Figure 6.6a,
which shows that the response speed increases with increasing w,. The responses
for . = 0.5 and 1 have reasonable overshoot. The settling time is about 15 car
lengths for w. = 0.5 (beyond the end of the plot) and decreases to about 6 car
lengths for w. = 1. The control signal ¢ is large initially and goes to zero as time
increases because the closed loop dynamics have an integrator. The initial value of
the control signal is k, = w?r, and thus the achievable response time is limited by
the available actuator signal. Notice in particular the dramatic increase in control
signal when @, changes from 1 to 2. The effect of ¢, is shown in Figure 6.6b. The
response speed and the overshoot increase with decreasing damping. Using these
plots, we conclude that reasonable values of the design parameters are to have @,
in the range of 0.5 to 1 and ¢, &~ 0.7. \%

The example of the vehicle steering system illustrates how state feedback can
be used to set the eigenvalues of a closed loop system to arbitrary values.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the parameters of the system are
the coefficients of the characteristic polynomial. It is therefore natural to consider
systems in this form when solving the eigenvalue assignment problem.
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Consider a system in reachable canonical form, i.e,

—a; —a, —az ... —a, 1
4 1 0 0 0 0
—Z:Az—i—éu: 0 1 o ... 0 4+ | u
dt . . . : 0 (6.15)
0 1 0 0
y:éz:[bl b2 bn]Z-

It follows from(6.7) that the open loop system has the characteristic polynomial
det(s] — A) =s"+a1s" ' 4+ -+ a,_15 + a,.

Before making a formal analysis we can gain some insight by investigating the
block diagram of the system shown in Figure 6.4. The characteristic polynomial is
given by the parameters a; in the figure. Notice that the parameter a; can be changed
by feedback from state z; to the input u. It is thus straightforward to change the
coefficients of the characteristic polynomial by state feedback.

Returning to equations, introducing the control law

MI—]%Z—i-krr:—];]Z] —EzZz—---—EnZn-f-kﬂ", (6.16)
the closed loop system becomes
| —a) — /21 —a; — gz —dasz — ];3 . —a; — én kr
J 1 0 0 . 0 0
Z
g 0 1 0 e 0 z+ 101,
dt . : :
0 1 0 0
= [ b o)
) (6.17)

The feedback changes the elements of the first row of the A matrix, which corre-
sponds to the parameters of the characteristic polynomial. The closed loop system
thus has the characteristic polynomial

s" + (al + lzl)sn_l + (Cl2 + 122)5’1_2 +-+ (an—l + lzn—l)s +a, + lzn
Requiring this polynomial to be equal to the desired closed loop polynomial
p(s)=s"+pis"" 4+ pais + pu,

we find that the controller gains should be chosen as

ki=pi—a, k=p—a, ... k,=p,—a.

This feedback simply replaces the parameters a; in the system (6.17) by p;. The
feedback gain for a system in reachable canonical form is thus

[2=[P1—611 p>—ay --- pn—an]. (6.18)
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To have zero frequency gain equal to unity, the parameter k, should be chosen
as

an+ ki pa
 be by

ky (6.19)
Notice that it is essential to know the precise values of parameters a, and b, in order
to obtain the correct zero frequency gain. The zero frequency gain is thus obtained
by precise calibration. This is very different from obtaining the correct steady-state
value by integral action, which we shall see in later sections.

Eigenvalue Assignment

We have seen through the examples how feedback can be used to design the dy-
namics of a system through assignment of its eigenvalues. To solve the problem in
the general case, we simply change coordinates so that the system is in reachable
canonical form. Consider the system

d
d—’t‘ — Ax+Bu,  y=Cx+Du. (6.20)

We can change the coordinates by a linear transformation z = Tx so that the
transformed system is in reachable canonical form (6.15). For such a system the
feedback is given by equation (6.16), where the coefficients are given by equa-
tion (6.18). Transforming back to the original coordinates gives the feedback

u=—-Kz + k.r = —KTx + k,r.
The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedback). Consider the system
given by equation (6.20), with one input and one output. Let A(s) = s" +a;s"~' +
-+ a,_18 + a, be the characteristic polynomial of A. If the system is reachable,
then there exists a feedback

u=—-Kx+kr
that gives a closed loop system with the characteristic polynomial
p) =s"4pis" "+ + pa1s + pa
and unity zero frequency gain between r and y. The feedback gain is given by
K=[€T=[P1—al pr—a; --- Pn—an] w,wo ok, =&,
o1

where a; are the coefficients of the characteristic polynomial of the matrix A and
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the matrices W, and W, are given by

I a a ap—1

0 1 ap [}
we=[8 a - a'B), W= S

o o0 --- 1 ai

o o0 o --- 1

For simple problems, the eigenvalue assignment problem can be solved by
introducing the elements k; of K as unknown variables. We then compute the
characteristic polynomial

A(s) = det(sI — A+ BK)

and equate coefficients of equal powers of s to the coefficients of the desired char-
acteristic polynomial

p(s) =s"4pis"" + - 4 pai + P

This gives a system of linear equations to determine ;. The equations can always
be solved if the system is reachable, exactly as we did in Example 6.4.

Equation (6.21), which is called Ackermann’s formula [3, 4], can be used for
numeric computations. It is implemented in the MATLAB function acker. The
MATLAB function place is preferable for systems of high order because it is
better conditioned numerically.

Example 6.5 Predator—prey

Consider the problem of regulating the population of an ecosystem by modulating
the food supply. We use the predator—prey model introduced in Section 3.7. The
dynamics for the system are given by

dH H aHL
—=r+u)H(|l-——)— H >0,
c

dt k +H’ -
dL HL

T 4L, Lo

dt c+H

We choose the following nominal parameters for the system, which correspond to
the values used in previous simulations:

a=32, b=0.6, =50,
d=056, k=125 r=1.6.

We take the parameter r, corresponding to the growth rate for hares, as the input to
the system, which we might modulate by controlling a food source for the hares.
This is reflected in our model by the term (r + u) in the first equation. We choose
the number of lynxes as the output of our system.

To control this system, we first linearize the system around the equilibrium
point of the system (H,, L,), which can be determined numerically to be x, =
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(20.6, 29.5). This yields a linear dynamical system

d [z] _ [0.13 —=0.93] [z 17.2 _[o 1 2

dr |=2) 1057 0 o) Tlo|?” w_[]z,2’
where z; = L — L.,z = H — H, and v = u. It is easy to check that the system
is reachable around the equilibrium (z,v) = (0, 0), and hence we can assign the
eigenvalues of the system using state feedback.

Determining the eigenvalues of the closed loop system requires balancing the
ability to modulate the input against the natural dynamics of the system. This can
be done by the process of trial and error or by using some of the more systematic
techniques discussed in the remainder of the text. For now, we simply choose the
desired closed loop eigenvalues to be at A = {—0.1, —0.2}. We can then solve for
the feedback gains using the techniques described earlier, which results in

K — [0.025 —0.052] .

Finally, we solve for the reference gain k,, using equation (6.13) to obtain k, =
0.002.
Putting these steps together, our control law becomes

v=—-Kz+kr.

In order to implement the control law, we must rewrite it using the original coordi-
nates for the system, yielding

u=u,— Kx —x.)+k-(r —y.)

H —20.6

= [0.025 -0.052] [L_29.5

] +0.002 (r —29.5).

This rule tells us how much we should modulate r;, as a function of the current
number of lynxes and hares in the ecosystem. Figure 6.7a shows a simulation of
the resulting closed loop system using the parameters defined above and starting
with an initial population of 15 hares and 20 lynxes. Note that the system quickly
stabilizes the population of lynxes at the reference value (L = 30). A phase portrait
of the system is given in Figure 6.7b, showing how other initial conditions converge
to the stabilized equilibrium population. Notice that the dynamics are very different
from the natural dynamics (shown in Figure 3.20). \

The results of this section show that we can use state feedback to design the
dynamics of a system, under the strong assumption that we can measure all of the
states. We shall address the availability of the states in the next chapter, when we
consider output feedback and state estimation. In addition, Theorem 6.3, which
states that the eigenvalues can be assigned to arbitrary locations, is also highly
idealized and assumes that the dynamics of the process are known to high precision.
The robustness of state feedback combined with state estimators is considered in
Chapter 12 after we have developed the requisite tools.
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Figure 6.7: Simulation results for the controlled predator—prey system. The population of
lynxes and hares as a function of time is shown in (a), and a phase portrait for the controlled
system is shown in (b). Feedback is used to make the population stable at H, = 20.6 and
L, =20.

6.3 State Feedback Design

The location of the eigenvalues determines the behavior of the closed loop dynam-
ics, and hence where we place the eigenvalues is the main design decision to be
made. As with all other feedback design problems, there are trade-offs among the
magnitude of the control inputs, the robustness of the system to perturbations and
the closed loop performance of the system. In this section we examine some of
these trade-offs starting with the special case of second-order systems.

Second-Order Systems

One class of systems that occurs frequently in the analysis and design of feedback
systems is second-order linear differential equations. Because of their ubiquitous
nature, it is useful to apply the concepts of this chapter to that specific class of
systems and build more intuition about the relationship between stability and per-
formance.

The canonical second-order system is a differential equation of the form

G + 20 woq + wiq = kou, y=gq. (6.22)
In state space form, this system can be represented as
dx 0 o 0
== [_wo _2Cw0]x+ [kw()]u, y=[1 0]~ (6.23)

The eigenvalues of this system are given by

A= —{ o + \ a)(z)(é:2 - 1)9

and we see that the origin is a stable equilibrium point if wy > 0 and ¢ > 0. Note
that the eigenvalues are complex if ¢ < 1 and real otherwise. Equations (6.22)
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and (6.23) can be used to describe many second-order systems, including damped
oscillators, active filters and flexible structures, as shown in the examples below.

The form of the solution depends on the value of ¢, which is referred to as the
damping ratio for the system. If ¢ > 1, we say that the system is overdamped, and
the natural response (# = 0) of the system is given by

Bxio+x20 _,, _0X0 +xzoe_/;t
p—a p—a ’
where a = wo(C ++/¢? — 1) and f = wo(¢ — /%> — 1). We see that the response

consists of the sum of two exponentially decaying signals. If & = 1, then the system
is critically damped and solution becomes

y(t) = ™" (x10 + (x20 + Cwox10)1).

Note that this is still asymptotically stable as long as wy > 0, although the second
term in the solution is increasing with time (but more slowly than the decaying
exponential that is multiplying it).

Finally,if O < ¢ < 1, then the solution is oscillatory and equation (6.22) is said
to be underdamped. The parameter wy is referred to as the natural frequency of the
system, stemming from the fact that for small ¢, the eigenvalues of the system are
approximately 4 = —¢wy £ jwp. The natural response of the system is given by

y(t) =

y(t) = e ¢! (xw cos wyt + (@xlo + szo) sin a)dt) ,
(OF] (00%]

where w; = wo+/1 — ¢? is called the damped frequency. For ¢ < 1, wg =~ wy
defines the oscillation frequency of the solution and ¢ gives the damping rate relative
to wy.

Because of the simple form of a second-order system, it is possible to solve
for the step and frequency responses in analytical form. The solution for the step
response depends on the magnitude of ¢:

y(t) = k(l — e ¢ cos wgt + c<1;

Le_“”"t sinwyt |,
V1=72

yO)=k(l—e ™1 +awt), ¢=1;

1 2
N=kl1-= _( { 1) —aot ((—A/P=1)
y(1) ( 7= +1)e

1 _ /72—
151 bv=tal) RN ”) > >
where we have taken x(0) = 0. Note that for the lightly damped case (¢ < 1) we
have an oscillatory solution at frequency ;.

Step responses of systems with k£ = 1 and different values of ¢ are shown in
Figure 6.8. The shape of the response is determined by ¢, and the speed of the
response is determined by @y (included in the time axis scaling): the response is
faster if wy is larger.

(6.24)
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Figure 6.8: Step response for a second-order system. Normalized step responses 4 for the
system (6.23) for ¢ = 0 (dashed), 0.1, 0.2, 0.5, 0.707 (dashed- dotted) and 1, 2, 5 and 10
(dotted). As the damping ratio is increased, the rise time of the system gets longer, but there
is less overshoot. The horizontal axis is in scaled units wy?; higher values of @y result in a
faster response (rise time and settling time).

In addition to the explicit form of the solution, we can also compute the properties
of the step response that were defined in Section 5.3. For example, to compute the
maximum overshoot for an underdamped system, we rewrite the output as

1
y(&) =k 1 — ———e ™" sin(wyt + ) |, (6.25)

Ve

where ¢ = arccos ¢. The maximum overshoot will occur at the first time in which
the derivative of y is zero, which can be shown to be

M, = ™ /VI=E,

Similar computations can be done for the other characteristics of a step response.
Table 6.1 summarizes the calculations.
The frequency response for a second-order system can also be computed ex-

Table 6.1: Properties of the step response for a second-order system with 0 < ¢ < 1.

Property Value c=05 ¢=1//2 ¢=1
Steady-state value & k k k

Rise time T, =1/wy - e 1.8/wy 2.2/ wy 2.7 /g
Overshoot M, =e N1 16% 4% 0%

Settling time 2%) T, ~4/Cwy 8.0/wy 5.9/wy 5.8/wy
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Figure 6.9: Frequency response of a second-order system (6.23). (a) Eigenvalues as a function
of ¢. (b) Frequency response as a function of . The upper curve shows the gain ratio M, and
the lower curve shows the phase shift 8. For small ¢ there is a large peak in the magnitude of
the frequency response and a rapid change in phase centered at @ = @y. As ( is increased,
the magnitude of the peak drops and the phase changes more smoothly between 0° and -180°.

plicitly and is given by

0 ka)(z) ka)(z)
Me’" = = .
(io)? +20m(iw) + @)  ©f —o? + 2ifowow

A graphical illustration of the frequency response is given in Figure 6.9. Notice the
resonant peak that increases with decreasing (. The peak is often characterized by
is Q-value, defined as Q = 1/2¢. The properties of the frequency response for a
second-order system are summarized in Table 6.2.

Example 6.6 Drug administration
To illustrate the use of these formulas, consider the two-compartment model for
drug administration, described in Section 3.6. The dynamics of the system are

dc —ko — ki ki bo

E_[ ky —ky c+ ol y_[O I]x,
where ¢ and ¢, are the concentrations of the drug in each compartment, k;,i =
0,...,2 and by are parameters of the system, u is the flow rate of the drug into

Table 6.2: Properties of the frequency response for a second-order system with 0 < ¢ < 1.

Property Value ¢=0.1 ¢=05 ¢=1/v2
Zero frequency gain M, k k k
Bandwidth N 154wy 127wy  wy

Resonant peak gain M, 1.54k 1.27k

Resonant frequency @, wy 0.707w9 O
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Figure 6.10: Open loop versus closed loop drug administration. Comparison between drug
administration using a sequence of doses versus continuously monitoring the concentrations
and adjusting the dosage continuously. In each case, the concentration is (approximately)
maintained at the desired level, but the closed loop system has substantially less variability
in drug concentration.

compartment 1 and y is the concentration of the drug in compartment 2. We assume
that we can measure the concentrations of the drug in each compartment, and we
would like to design a feedback law to maintain the output at a given reference
value r.

We choose ¢ = 0.9 to minimize the overshoot and choose the rise time to be
T, = 10 min. Using the formulas in Table 6.1, this gives a value for wy = 0.22.
We can now compute the gain to place the eigenvalues at this location. Setting
u = —Kx + k,r, the closed loop eigenvalues for the system satisfy

A(s) = —0.198 £ 0.0959i.

Choosing k; = —0.2027 and k, = 0.2005 gives the desired closed loop behavior.
Equation (6.13) gives the reference gain k, = 0.0645. The response of the con-
troller is shown in Figure 6.10 and compared with an open loop strategy involving
administering periodic doses of the drug. \%

Higher-Order Systems

Our emphasis so far has considered only second-order systems. For higher-order
systems, eigenvalue assignment is considerably more difficult, especially when
trying to account for the many trade-offs that are present in a feedback design.
One of the other reasons why second-order systems play such an important
role in feedback systems is that even for more complicated systems the response is
often characterized by the dominant eigenvalues. To define these more precisely,
consider a system with eigenvalues 4;, j = 1, ..., n. We define the damping ratio
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for a complex eigenvalue 4 to be

B —Re 4
|4]

We say that a complex conjugate pair of eigenvalues 4, A* is a dominant pair if it
has the lowest damping ratio compared with all other eigenvalues of the system.

Assuming that a system is stable, the dominant pair of eigenvalues tends to be
the most important element of the response. To see this, assume that we have a
system in Jordan form with a simple Jordan block corresponding to the dominant
pair of eigenvalues:

%_ J

Bu, =Cz.
I Z+ Bu y Z

Jk

(Note that the state z may be complex because of the Jordan transformation.) The
response of the system will be a linear combination of the responses from each
of the individual Jordan subsystems. As we see from Figure 6.8, for ¢ < 1 the
subsystem with the slowest response is precisely the one with the smallest damping
ratio. Hence, when we add the responses from each of the individual subsystems,
it is the dominant pair of eigenvalues that will be the primary factor after the initial
transients due to the other terms in the solution die out. While this simple analysis
does not always hold (e.g., if some nondominant terms have larger coefficients
because of the particular form of the system), it is often the case that the dominant
eigenvalues determine the (step) response of the system.

The only formal requirement for eigenvalue assignment is that the system be
reachable. In practice there are many other constraints because the selection of
eigenvalues has a strong effect on the magnitude and rate of change of the control
signal. Large eigenvalues will in general require large control signals as well as
fast changes of the signals. The capability of the actuators will therefore impose
constraints on the possible location of closed loop eigenvalues. These issues will
be discussed in depth in Chapters 11 and 12.

We illustrate some of the main ideas using the balance system as an example.

Example 6.7 Balance system
Consider the problem of stabilizing a balance system, whose dynamics were given
in Example 6.2. The dynamics are given by

0 0 1 0
0 0 0 1
A= 272 P 5
0 ml°g/u —cli/u —ylm/u Jt/:u
0 Mmgl/u —clm/p  —yJi/u Im/u

where M, = M 4+ m, J, = J +ml*, u = M,J, — m?I* and we have left ¢ and y
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nonzero. We use the following parameters for the system (corresponding roughly
to a human being balanced on a stabilizing cart):

M =10 kg, m = 80 kg, ¢ =0.1 Ns/m,

- g = 9.8 m/s>.
J =100 kg m~/s", [=1m, y =001 Nms,

The eigenvalues of the open loop dynamics are givenby A ~ 0,4.7, —1.94+2.7i.
We have verified already in Example 6.2 that the system is reachable, and hence
we can use state feedback to stabilize the system and provide a desired level of
performance.

To decide where to place the closed loop eigenvalues, we note that the closed
loop dynamics will roughly consist of two components: a set of fast dynamics
that stabilize the pendulum in the inverted position and a set of slower dynamics
that control the position of the cart. For the fast dynamics, we look to the natural
period of the pendulum (in the hanging-down position), which is given by wy =
Vmgl/(J + ml?) =~ 2.1 rad/s. To provide a fast response we choose a damping ratio
of ¢ = 0.5 and try to place the first pair of eigenvalues at 11, ~ —{wy £ wy ~
—1 4 2i, where we have used the approximation that /1 — ¢2 & 1. For the slow
dynamics, we choose the damping ratio to be 0.7 to provide a small overshoot and
choose the natural frequency to be 0.5 to give a rise time of approximately 5 s. This
gives eigenvalues A3 4 = —0.35 £ 0.35:.

The controller consists of a feedback on the state and a feedforward gain for the
reference input. The feedback gain is given by

K = [—18.8 4500 597 —876],

which can be computed using Theorem 6.3 or using the MATLAB place com-
mand. The feedforward gain is k, = —1/(C(A — BK)™'B) = —15.5. The step
response for the resulting controller (applied to the linearized system) is given in
Figure 6.11a. While the step response gives the desired characteristics, the input
required (bottom left) is excessively large, almost three times the force of gravity
at its peak.

To provide a more realistic response, we can redesign the controller to have
slower dynamics. We see that the peak of the input force occurs on the fast time scale,
and hence we choose to slow this down by a factor of 3, leaving the damping ratio
unchanged. We also slow down the second set of eigenvalues, with the intuition that
we should move the position of the cart more slowly than we stabilize the pendulum
dynamics. Leaving the damping ratio for the slow dynamics unchanged at 0.7 and
changing the frequency to 1 (corresponding to a rise time of approximately 10 s),
the desired eigenvalues become

A ={—-0.33 +£0.66i, —0.18 £ 0.18i}.

The performance of the resulting controller is shown in Figure 6.11b. \Y%

As we see from this example, it can be difficult to determine where to place
the eigenvalues using state feedback. This is one of the principal limitations of this
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Figure 6.11: State feedback control of a balance system. The step response of a controller
designed to give fast performance is shown in (a). Although the response characteristics
(top left) look very good, the input magnitude (bottom left) is very large. A less aggressive
controller is shown in (b). Here the response time is slowed down, but the input magnitude
is much more reasonable. Both step responses are applied to the linearized dynamics.

approach, especially for systems of higher dimension. Optimal control techniques,
such as the linear quadratic regulator problem discussed next, are one approach
that is available. One can also focus on the frequency response for performing the
design, which is the subject of Chapters 8—12.

Linear Quadratic Regulators

As an alternative to selecting the closed loop eigenvalue locations to accomplish a
certain objective, the gains for a state feedback controller can instead be chosen is
by attempting to optimize a cost function. This can be particularly useful in helping
balance the performance of the system with the magnitude of the inputs required
to achieve that level of performance.

The infinite horizon, linear quadratic regulator (LQR) problem is one of the
most common optimal control problems. Given a multi-input linear system

d
d—f:Ax+Bu, xeR", uelR?,

we attempt to minimize the quadratic cost function

J = /Oo (x" Qux +u" Quu) dt, (6.26)
0

where Q, > 0 and Q, > 0 are symmetric, positive (semi-) definite matrices of
the appropriate dimensions. This cost function represents a trade-off between the
distance of the state from the origin and the cost of the control input. By choosing
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the matrices Q, and Q,, we can balance the rate of convergence of the solutions
with the cost of the control.
The solution to the LQR problem is given by a linear control law of the form

u=-0Q;'B"Px,
where P € R"*" is a positive definite, symmetric matrix that satisfies the equation
PA+ATP—-PBQ;'B"P+ 0, =0. (6.27)

Equation (6.27) is called the algebraic Riccati equation and can be solved numer-
ically (e.g., using the 1gr command in MATLAB).

One of the key questions in LQR design is how to choose the weights Q. and
Q.. To guarantee that a solution exists, we must have Q, > 0 and Q, > 0. In
addition, there are certain “observability” conditions on Q, that limit its choice.
Here we assume Q. > 0 to ensure that solutions to the algebraic Riccati equation
always exist.

To choose specific values for the cost function weights Q, and Q,, we must use
our knowledge of the system we are trying to control. A particularly simple choice
is to use diagonal weights

q1 0 Pl 0
Qx = B Qu = ’ .
0 dn 0 Pn

For this choice of Q, and Q,, the individual diagonal elements describe how much
each state and input (squared) should contribute to the overall cost. Hence, we
can take states that should remain small and attach higher weight values to them.
Similarly, we can penalize an input versus the states and other inputs through choice
of the corresponding input weight p.

Example 6.8 Vectored thrust aircraft
Consider the original dynamics of the system (2.26), written in state space form as

24 8
25 0
dz 26 1 .
7= | —gsino— <z, + |, cos0 Fy — --sin0 F,
—gcost — < zs %sin@Fl—i-%cosGFz

(see Example 5.4). The system parameters are m = 4 kg, J = 0.0475 kg m?,
r=025m,g =938 m/s?, ¢ = 0.05 N s/m, which corresponds to a scaled model
of the system. The equilibrium point for the system is given by F; =0, F, = mg
and z, = (x¢, Ye, 0,0,0,0). To derive the linearized model near an equilibrium
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point, we compute the linearization according to equation (5.34):

00 O 1 0 0 0 0 ]
00 O 0 1 0 0 0
00 O 0 0 1 0 0
A= 0 0 —g —c/m 0 0}’ B = I/m 0 |’
00 O 0 —c/m 0 0 1/m
0 0 O 0 0 0] lr/J 0 |
(1 0 0 000 (0 0
€= 0 1.0 00 0)° b= |0 O]'
Letting z = z — z, and © = u — u,, the linearized system is given by
9 A+ B C
— = 0 = Cx.
dt < ’ Y

It can be verified that the system is reachable.
To compute a linear quadratic regulator for the system, we write the cost function
as

J :/ (ZTQZZ‘l_UTvi )dta
0

where z = z — z, and v = u — u, represent the local coordinates around the desired
equilibrium point (z,, u.). We begin with diagonal matrices for the state and input
costs:

(1 0 0 0 0 0]
01 0000
001 0O00O0 1 0
%=1o 00 10 of" QU:[01]'
0 00O0T1O0
(0 0 0 00 1]
This gives a control law of the form v = — Kz, which can then be used to derive

the control law in terms of the original variables:
u=v+u,=—K(@z—2z)+ t.

As computed in Example 5.4, the equilibrium points have u, = (0, mg) and z, =
(X5 ¥e,0,0,0,0). The response of the controller to a step change in the desired
position is shown in Figure 6.12a. The response can be tuned by adjusting the
weights in the LQR cost. Figure 6.12b shows the response in the x direction for
different choices of the weight p. \%

Linear quadratic regulators can also be designed for discrete-time systems, as
illustrated by the following example.

Example 6.9 Web server control

Consider the web server example given in Section 3.4, where a discrete-time model
for the system was given. We wish to design a control law that sets the server
parameters so that the average server processor load is maintained at a desired
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Figure 6.12: Step response for a vectored thrust aircraft. The plot in (a) shows the x and y
positions of the aircraft when it is commanded to move 1 m in each direction. In (b) the x
motion is shown for control weights p = 1, 10%, 10*. A higher weight of the input term in
the cost function causes a more sluggish response.

level. Since other processes may be running on the server, the web server must
adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figure 6.13. We focus on
the special case where we wish to control only the processor load using both the
KeepAlive and MaxClients parameters. We also include a “disturbance” on
the measured load that represents the use of the processing cycles by other processes
running on the server. The system has the same basic structure as the generic control
system in Figure 6.5, with the variation that the disturbance enters after the process
dynamics.

The dynamics of the system are given by a set of difference equations of the
form

x[k + 1] = Ax[k] + Bu[k], ycpu[k] = Ccpux[k] + dcpu[k]a

where X = (Xcpu, Xmem) 18 the state,u = (uya, Umc) is the input, d., is the processing
load from other processes on the computer and ycp, is the total processor load.
We choose our controller to be a state feedback controller of the form

el Pl R

-xmem

Feedback d
Precompensation Controller Server
Fepu e u n y
— k C - P ——

[ I

Figure 6.13: Feedback control of a web server. The controller sets the values of the web
server parameters based on the difference between the nominal parameters (determined by
k,r) and the current load y.,. The disturbance d represents the load due to other processes
running on the server. Note that the measurement is taken after the disturbance so that we
measure the total load on the server.
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where 7, is the desired processor load. Note that we have used the measured
processor load yp, instead of the state to ensure that we adjust the system operation
based on the actual load. (This modification is necessary because of the nonstandard
way in which the disturbance enters the process dynamics.)

The feedback gain matrix K can be chosen by any of the methods described in
this chapter. Here we use a linear quadratic regulator, with the cost function given

by
50 17502 0
Q. = [0 1]’ Q”—[ 0 1/10002]‘

The cost function for the state Q. is chosen so that we place more emphasis on
the processor load versus the memory use. The cost function for the inputs Q,
is chosen so as to normalize the two inputs, with a KeepAlive timeout of 50 s
having the same weight as aMaxClients value of 1000. These values are squared
since the cost associated with the inputs is given by u” Q,u. Using the dynamics
in Section 3.4 and the d1gr command in MATLAB, the resulting gains become

—223 10.1
k= [382.7 77.7] '

As in the case of a continuous-time control system, the reference gain k, is
chosen to yield the desired equilibrium point for the system. Setting x[k + 1] =
x[k] = x., the steady-state equilibrium point and output for a given reference input
r are given by

x. = (A — BK)x, + Bk,r, ye = Cx,.

This is a matrix differential equation in which %, is a column vector that sets the
two inputs values based on the desired reference. If we take the desired output to
be of the form y, = (r, 0), then we must solve

[(1)] = C(A— BK — I)"'Bk,.

Solving this equation for k,, we obtain

kn = ((C(A_BK_I)_IB))_I [(1)] - [54399.35] '

The dynamics of the closed loop system are illustrated in Figure 6.14. We apply
a change in load of d.,, = 0.3 at time t = 10 s, forcing the controller to adjust
the operation of the server to attempt to maintain the desired load at 0.57. Note
that both the KeepAlive and MaxClients parameters are adjusted. Although
the load is decreased, it remains approximately 0.2 above the desired steady state.
(Better results can be obtained using the techniques of the next section.) \%
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Figure 6.14: Web server with LQR control. The plot in (a) shows the state of the system under
a change in external load applied at k = 10 ms. The corresponding web server parameters
(system inputs) are shown in (b). The controller is able to reduce the effect of the disturbance
by approximately 40%.

6.4 Integral Action

Controllers based on state feedback achieve the correct steady-state response to
command signals by careful calibration of the gain k, . However, one of the primary
uses of feedback is to allow good performance in the presence of uncertainty,
and hence requiring that we have an exact model of the process is undesirable. An
alternative to calibration is to make use of integral feedback, in which the controller
uses an integrator to provide zero steady-state error. The basic concept of integral
feedback was given in Section 1.5 and in Section 3.1; here we provide a more
complete description and analysis.

The basic approach in integral feedback is to create a state within the controller
that computes the integral of the error signal, which is then used as a feedback term.
We do this by augmenting the description of the system with a new state z:

d [x Ax + Bu Ax + Bu
S

The state z is seen to be the integral of the difference between the the actual output
y and desired output r . Note that if we find a compensator that stabilizes the system,
then we will necessarily have 7 = 0 in steady state and hence y = r in steady state.

Given the augmented system, we design a state space controller in the usual
fashion, with a control law of the form

u=—Kx—kiz+kmr, (6.29)

where K is the usual state feedback term, k; is the integral term and k, is used to
set the nominal input for the desired steady state. The resulting equilibrium point
for the system is given as

Xe = —(A — BK) " 'B(k,r — kiz,).

Note that the value of z, is not specified but rather will automatically settle to the
value that makes z = y —r = 0, which implies that at equilibrium the output will
equal the reference value. This holds independently of the specific values of A,
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B and K as long as the system is stable (which can be done through appropriate
choice of K and k;).
The final compensator is given by
dz

u=—Kx—kiz+k.r, —=y-r,
iz dt y

where we have now included the dynamics of the integrator as part of the specifica-
tion of the controller. This type of compensator is known as a dynamic compensator
since it has its own internal dynamics. The following example illustrates the basic
approach.

Example 6.10 Cruise control
Consider the cruise control example introduced in Section 3.1 and considered fur-
ther in Example 5.11. The linearized dynamics of the process around an equilibrium
point v,, u, are given by

dx

E:ax—bg6+bw, Yy=0=2X40,,

where x = v —v,,w = u—u,,m is the mass of the car and 8 is the angle of the road.
The constant @ depends on the throttle characteristic and is given in Example 5.11.
If we augment the system with an integrator, the process dynamics become

dx z
E:ax—bg0+bw, Z:y—v,:ve+x—v,,

or, in state space form,

- ) Bl (L)

Note that when the system is at equilibrium, we have that z = 0, which implies
that the vehicle speed v = v, + x should be equal to the desired reference speed
v,. Our controller will be of the form

dz = = —k kiz +k
dt Y P ‘

and the gains k, k; and k, will be chosen to stabilize the system and provide the
correct input for the reference speed.
Assume that we wish to design the closed loop system to have the characteristic

polynomial
A(s) = s> +ais + a.

Setting the disturbance § = 0, the characteristic polynomial of the closed loop
system is given by
det(sI —(A— BK)) =s>+ (bk, — a)s + bk;,

and hence we set
ky = al;’“, k== k=-1/(C(4-BK)"B)

a
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Figure 6.15: Velocity and throttle for a car with cruise control based on proportional (dashed)
and PI control (solid). The PI controller is able to adjust the throttle to compensate for the
effect of the hill and maintain the speed at the reference value of v, = 25 m/s.

The resulting controller stabilizes the system and hence brings z = y — v, to zero,
resulting in perfect tracking. Notice that even if we have a small error in the values
of the parameters defining the system, as long as the closed loop eigenvalues are
still stable, then the tracking error will approach zero. Thus the exact calibration
required in our previous approach (using k,) is not needed here. Indeed, we can
even choose k. = 0 and let the feedback controller do all of the work.

Integral feedback can also be used to compensate for constant disturbances.
Figure 6.15 shows the results of a simulation in which the car encounters a hill
with angle & = 4° at t+ = 8 s. The stability of the system is not affected by this
external disturbance, and so we once again see that the car’s velocity converges
to the reference speed. This ability to handle constant disturbances is a general
property of controllers with integral feedback (see Exercise 6.4). \%

6.5 Further Reading

The importance of state models and state feedback was discussed in the seminal
paper by Kalman [113], where the state feedback gain was obtained by solving
an optimization problem that minimized a quadratic loss function. The notions
of reachability and observability (Chapter 7) are also due to Kalman [115] (see
also[82,118]). Kalman defines controllability and reachability as the ability to reach
the origin and an arbitrary state, respectively [117]. We note that in most textbooks
the term “controllability” is used instead of “reachability,” but we prefer the latter
term because it is more descriptive of the fundamental property of being able to reach
arbitrary states. Most undergraduate textbooks on control contain material on state
space systems, including, for example, Franklin, Powell and Emami-Naeini [79] and
Ogata [162]. Friedland’s textbook [80] covers the material in the previous, current
and next chapter in considerable detail, including the topic of optimal control.

Exercises

6.1 (Double integrator) Consider the double integrator. Find a piecewise constant
control strategy that drives the system from the origin to the state x = (1, 1).
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6.2 (Reachability from nonzero initial state) Extend the argument in Section 6.1 to
show that if a system is reachable from an initial state of zero, it is reachable from
a nonzero initial state.

6.3 (Unreachable systems) Consider the system shown in Figure 6.3. Write the
dynamics of the two systems as

W _ 4B 9 _ 1B
_— = X u, i u.
dr dr - F

If x and z have the same initial condition, they will always have the same state
regardless of the input that is applied. Show that this violates the definition of
reachability and further show that the reachability matrix W, is not full rank.

6.4 (Integral feedback for rejecting constant disturbances) Consider a linear system
of the form dx

— = Ax+ Bu+ Fd,
dt

where d is a disturbance that enters the system through a disturbance vector F' € R".
Show that integral feedback can be used to compensate for a constant disturbance
by giving zero steady-state error even when d # 0.

6.5 (Rear-steered bicycle) A simple model for a bicycle was given by equation (3.5)
in Section 3.2. A model for a bicycle with rear-wheel steering is obtained by re-
versing the sign of the velocity in the model. Determine the conditions under which
this systems is reachable and explain any situations in which the system is not
reachable.

6.6 (Characteristic polynomial for reachable canonical form) Show that the char-
acteristic polynomial for a system in reachable canonical form is given by equa-
tion (6.7) and that
d"zi n d"_lzk n n dzy n d"*y
a et apo — tagzk = ——-,
der e g T gk

where z; is the kth state.

6.7 (Reachability matrix for reachable canonical form) Consider a system in reach-
able canonical form. Show that the inverse of the reachability matrix is given by

(1 ay a -+ a, )

0 1 ay -+ dp—q
wl=10 0 1

: . ap

o 0 0 .- 1

6.8 (Non-maintainable equilibria) Consider the normalized model of a pendulum

on a cart 5 5
d*x d=0

= gl
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where x is cart position and 8 is pendulum angle. Can the equilibrium 8 = 6, for
6o # 0 be maintained?

6.9 (Eigenvalue assignment for unreachable system) Consider the system

dx [0 1 + ! _ [1 O]
dt - O O X O ua y - xﬂ
with the control law
u =—kixy —kyxo, +k,r.

Show that eigenvalues of the system cannot be assigned to arbitrary values.

6.10 (Cayley—Hamilton theorem) Let A € R"*”" be a matrix with characteristic
polynomial A(s) = det(s] — A) = s" +a;s" ' +--- +a,_s + a,. Show that the
matrix satisfies

MA) =A"+a, A"+ 4 a,_1A+a,] =0,

and use this this to show that A, k > n, can be rewritten in terms of powers of A
of order less than .

6.11 (Motor drive) Consider the normalized model of the motor drive in Exer-
cise 2.10. Using the following normalized parameters,

Ji1 =10/9, Jo =10, c=0.1, k=1, ki =1,

verify that the eigenvalues of the open loop system are 0, 0, —0.05 £ i. Design a
state feedback that gives a closed loop system with eigenvalues —2, —1 and —1 4.
This choice implies that the oscillatory eigenvalues will be well damped and that
the eigenvalues at the origin are replaced by eigenvalues on the negative real axis.
Simulate the responses of the closed loop system to step changes in the command
signal and a step change in a disturbance torque on the second rotor.

6.12 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (3.7) in Section 3.2. The model is unstable at the velocity o = 5 m/s and
the open loop eigenvalues are -1.84, -14.29 and 1.30 = 4.60:. Find the gains of a
controller that stabilizes the bicycle and gives closed loop eigenvalues at -2, -10
and —1 £ i. Simulate the response of the system to a step change in the steering
reference of 0.002 rad.

6.13 (Atomic force microscope) Consider the model of an AFM in contact mode
given in Example 5.9:

0 1 0 0 0
d_xz —k/(my +my) —c/(my+my) 1/my 0 p 0 "
dt 0 0 0 w3 0 ’

0 0 —3 —2[3(1)3 w%

y= mo mik mic | O] N
my+my Umy+my my+mp
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Use the MATLAB script afm_data.m from the companion web site to generate
the system matrices.

(a) Compute the reachability matrix of the system and determine its rank. Scale the
model by using milliseconds instead of seconds as time units. Repeat the calculation
of the reachability matrix and its rank.

(b) Find a state feedback controller that gives a closed loop system with complex
poles having damping ratio 0.707. Use the scaled model for the computations.

(c) Compute state feedback gains using linear quadratic control. Experiment by
using different weights. Compute the gains forg; = ¢ =0, g3 =gs =1 R =1
and p = 0.1 and explain the result. Choose g1 = ¢ = q3 = g4 = r; = 1 and
explore what happens to the feedback gains and closed loop eigenvalues when you
change p. Use the scaled system for this computation.

6.14 Consider the second-order system

Let the initial conditions be zero.

(a) Show that the initial slope of the unit step response is a. Discuss what it means
whena < 0.

(b) Show that there are points on the unit step response that are invariant with a.
Discuss qualitatively the effect of the parameter a on the solution.

(c) Simulate the system and explore the effect of a on the rise time and overshoot.

6.15 (Bryson’s rule) Bryson and Ho [47] have suggested the following method for
choosing the matrices Q. and Q, in equation (6.26). Start by choosing Q. and Q,
as diagonal matrices whose elements are the inverses of the squares of the maxima
of the corresponding variables. Then modify the elements to obtain a compromise
among response time, damping and control effort. Apply this method to the motor
drive in Exercise 6.11. Assume that the largest values of the ¢; and ¢, are 1, the
largest values of ¢; and ¢, are 2 and the largest control signal is 10. Simulate the
closed loop system for ¢,(0) = 1 and all other states are initialized to 0. Explore
the effects of different values of the diagonal elements for Q. and Q,.
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Chapter Seven
Output Feedback

One may separate the problem of physical realization into two stages: computation of the
“best approximation” X (t,) of the state from knowledge of y(t) for t < t; and computation of
u(ty) given x ().

R. E. Kalman, “Contributions to the Theory of Optimal Control,” 1960 [113].

In this chapter we show how to use output feedback to modify the dynamics
of the system through the use of observers. We introduce the concept of observ-
ability and show that if a system is observable, it is possible to recover the state
from measurements of the inputs and outputs to the system. We then show how to
design a controller with feedback from the observer state. An important concept is
the separation principle quoted above, which is also proved. The structure of the
controllers derived in this chapter is quite general and is obtained by many other
design methods.

7.1 Observability

In Section 6.2 of the previous chapter it was shown that it is possible to find a
state feedback law that gives desired closed loop eigenvalues provided that the
system is reachable and that all the states are measured. For many situations, it
is highly unrealistic to assume that all the states are measured. In this section we
investigate how the state can be estimated by using a mathematical model and a
few measurements. It will be shown that computation of the states can be carried
out by a dynamical system called an observer.

Definition of Observability

Consider a system described by a set of differential equations

d
d—);:Ax+Bu, y=Cx + Du, 7.1)

where x € R” is the state, u € R” the input and y € R the measured output. We
wish to estimate the state of the system from its inputs and outputs, as illustrated
in Figure 7.1. In some situations we will assume that there is only one measured
signal, i.e., that the signal y is a scalar and that C is a (row) vector. This signal may
be corrupted by noise 7, although we shall start by considering the noise-free case.
We write x for the state estimate given by the observer.
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Process
u X=Ax+Bu| Y X
- Observer —>
y=Cx+ Du

Figure 7.1: Block diagram for an observer. The observer uses the process measurement y
(possibly corrupted by noise n) and the input u to estimate the current state of the process,
denoted x.

Definition 7.1 (Observability). A linear system is observable if for any T > 0 it is
possible to determine the state of the system x(7') through measurements of y(z)
and u(t) on the interval [0, T'].

The definition above holds for nonlinear systems as well, and the results dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many important applications, even
outside feedback systems. If a system is observable, then there are no “hidden” dy-
namics inside it; we can understand everything that is going on through observation
(over time) of the inputs and outputs. As we shall see, the problem of observability
is of significant practical interest because it will determine if a set of sensors is
sufficient for controlling a system. Sensors combined with a mathematical model
can also be viewed as a “virtual sensor” that gives information about variables that
are not measured directly. The process of reconciling signals from many sensors
with mathematical models is also called sensor fusion.

Testing for Observability

When discussing reachability in the last chapter, we neglected the output and fo-
cused on the state. Similarly, it is convenient here to initially neglect the input and
focus on the autonomous system

ax_y C 72

T X, y=Cx. (7.2)
We wish to understand when it is possible to determine the state from observations
of the output.

The output itself gives the projection of the state on vectors that are rows of the
matrix C. The observability problem can immediately be solved if the matrix C is
invertible. If the matrix is not invertible, we can take derivatives of the output to
obtain

From the derivative of the output we thus get the projection of the state on vectors
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that are rows of the matrix C A. Proceeding in this way, we get

y o C

y CA

S I e (73)

[ oD C A1
We thus find that the state can be determined if the observability matrix
C
CA
w,=| CA® (7.4)
can-

has n independent rows. It turns out that we need not consider any derivatives higher
than n — 1 (this is an application of the Cayley—Hamilton theorem [Exercise 6.10]).

The calculation can easily be extended to systems with inputs. The state is then
given by a linear combination of inputs and outputs and their higher derivatives.
The observability criterion is unchanged. We leave this case as an exercise for the
reader.

In practice, differentiation of the output can give large errors when there is
measurement noise, and therefore the method sketched above is not particularly
practical. We will address this issue in more detail in the next section, but for now
we have the following basic result.

Theorem 7.1 (Observability rank condition). A linear system of the form (7.1) is
observable if and only if the observability matrix W, is full rank.

Proof. The sufficiency of the observability rank condition follows from the analysis
above. To prove necessity, suppose that the system is observable but W, is not full
rank. Let o € R", 0 # 0, be a vector in the null space of W,, so that W,» = 0. If
we let x(0) = v be the initial condition for the system and choose u = 0, then the
output is given by y(1) = Ce?'v. Since e”' can be written as a power series in A
and since A" and higher powers can be rewritten in terms of lower powers of A (by
the Cayley—Hamilton theorem), it follows that the output will be identically zero
(the reader should fill in the missing steps if this is not clear). However, if both the
input and output of the system are 0, then a valid estimate of the state is x = O for
all time, which is clearly incorrect since x (0) = » # 0. Hence by contradiction we
must have that W, is full rank if the system is observable. O

Example 7.1 Compartment model
Consider the two-compartment model in Figure 3.18a, but assume that the concen-
tration in the first compartment can be measured. The system is described by the

4
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Figure 7.2: Anunobservable system. Two identical subsystems have outputs that add together
to form the overall system output. The individual states of the subsystem cannot be determined
since the contributions of each to the output are not distinguishable. The circuit diagram on
the right is an example of such a system.

linear system

dc —ko—ki ki bo

— = c+ u, = [1 0] X.

dt [ ka —k> 0 Y
The first compartment represents the drug concentration in the blood plasma, and
the second compartment the drug concentration in the tissue where it is active. To
determine if it is possible to find the concentration in the tissue compartment from

a measurement of blood plasma, we investigate the observability of the system by
forming the observability matrix

C 1 0
Wo = [CA] - [—ko—kl k1] '

The rows are linearly independent if k; # 0, and under this condition it is thus
possible to determine the concentration of the drug in the active compartment from
measurements of the drug concentration in the blood. \%

It is useful to have an understanding of the mechanisms that make a system
unobservable. Such a system is shown in Figure 7.2. The system is composed of
two identical systems whose outputs are added. It seems intuitively clear that it is not
possible to deduce the states from the output since we cannot deduce the individual
output contributions from the sum. This can also be seen formally (Exercise 7.2).

Observable Canonical Form

As in the case of reachability, certain canonical forms will be useful in studying ob-
servability. A linear single-input, single-output state space system is in observable
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22 21

Figure 7.3: Block diagram of a system in observable canonical form. The states of the system
are represented by individual integrators whose inputs are a weighted combination of the next
integrator in the chain, the first state (rightmost integrator) and the system input. The output
is a combination of the first state and the input.

canonical form if its dynamics are given by

—a; 10 0 by
—a 0 1 0 b
dZ 2 . 2
= u
dt ¢ ’
—dp—1 00 1 bn—l
—a, 0 0 --- 0 by
y=[1 00 - 0]z+Du.

The definition can be extended to systems with many inputs; the only difference is
that the vector multiplying u is replaced by a matrix.

Figure 7.3 is a block diagram for a system in observable canonical form. As
in the case of reachable canonical form, we see that the coefficients in the system
description appear directly in the block diagram. The characteristic polynomial for
a system in observable canonical form is

Ms)=s"4+ais" "+ +a,_1s +a,. (7.5)

It is possible to reason about the observability of a system in observable canonical
form by studying the block diagram. If the input # and the output y are available,
the state z; can clearly be computed. Differentiating z;, we obtain the input to the
integrator that generates z;,and we can now obtain z, = z;+a;z; —bu.Proceeding
in this way, we can compute all states. The computation will, however, require that
the signals be differentiated.

To check observability more formally, we compute the observability matrix for
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a system in observable canonical form, which is given by

1 0 O 0
—a, 1 0 0

W, = |—ai —aa —a 1 0 ,
* * AU |

where * represents an entry whose exact value is not important. The rows of this
matrix are linearly independent (since it is lower triangular), and hence W, is
full rank. A straightforward but tedious calculation shows that the inverse of the
observability matrix has a simple form given by

1 0 o --- 0

a 1 0 0

Wo—l — a ai 1 0
ap—1 AQp—2 dp—3 - -- 1

As in the case of reachability, it turns out that if a system is observable then there
always exists a transformation 7 that converts the system into observable canonical
form. This is useful for proofs since it lets us assume that a system is in reachable
canonical form without any loss of generality. The reachable canonical form may
be poorly conditioned numerically.

7.2 State Estimation

Having defined the concept of observability, we now return to the question of
how to construct an observer for a system. We will look for observers that can be
represented as a linear dynamical system that takes the inputs and outputs of the
system we are observing and produces an estimate of the system’s state. That is,
we wish to construct a dynamical system of the form

di FX+Gu+H

— =Fx u ,

dt Y
where u and y are the input and output of the original system and X € R” is an
estimate of the state with the property that X(¢) — x(¢) ast — oo.

The Observer

We consider the system in equation (7.1) with D set to zero to simplify the expo-
sition:
dx

i Ax + Bu, y=Cx. (7.6)
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We can attempt to determine the state simply by simulating the equations with the
correct input. An estimate of the state is then given by
dx AX+ B (7.7)
— = AX u. .
dt
To find the properties of this estimate, introduce the estimation error ¥ = x — x. It
follows from equations (7.6) and (7.7) that
dx .
— = AxX.
dt
If matrix A has all its eigenvalues in the left half-plane, the error X will go to zero,
and hence equation (7.7) is a dynamical system whose output converges to the state
of the system (7.6).

The observer given by equation (7.7) uses only the process input u; the measured
signal does not appear in the equation. We must also require that the system be stable,
and essentially our estimator converges because the state of both the observer and
the estimator are going zero. This is not very useful in a control design context since
we want to have our estimate converge quickly to a nonzero state so that we can
make use of it in our controller. We will therefore attempt to modify the observer
so that the output is used and its convergence properties can be designed to be fast
relative to the system’s dynamics. This version will also work for unstable systems.

Consider the observer

dx

= AR+ Bu+ L(y - C3). (7.8)

This can be considered as a generalization of equation (7.7). Feedback from the
measured output is provided by adding the term L (y —Cx), which is proportional to
the difference between the observed output and the output predicted by the observer.
It follows from equations (7.6) and (7.8) that

dx -

i (A—LC)x.
If the matrix L can be chosen in such a way that the matrix A — LC has eigen-
values with negative real parts, the error X will go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a state feedback and
finding the observer. State feedback design by eigenvalue assignment is equivalent
to finding a matrix K so that A— BK has given eigenvalues. Designing an observer
with prescribed eigenvalues is equivalent to finding a matrix L so that A — LC has
given eigenvalues. Since the eigenvalues of a matrix and its transpose are the same
we can establish the following equivalences:

A A", BoC', KoL, W oW

The observer design problem is the dual of the state feedback design problem. Using
the results of Theorem 6.3, we get the following theorem on observer design.
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Theorem 7.2 (Observer design by eigenvalue assignment). Consider the system
given by
dx
— = Ax+ Bu, y=~Cfx, (7.9)
dt
with one input and one output. Let A(s) = s" + a;s" ' 4+ -+ 4+ a,_s + a, be the
characteristic polynomial for A. If the system is observable, then the dynamical

system

dx R N
i AX 4+ Bu+ L(y — CX) (7.10)
is an observer for the system, with L chosen as
pP1—ai
~ | P2 — a2
L=WWw, , (7.11)
Pn — Ay
and the matrices W, and W, given by
1 0 0 0"
C a; 1 -+ 00
CA ~ ay aq 1 0 O
W, = . 5 W, = . . .
CA! an—2 Au—3 dp—4 1
ldp—1 dp—2 ay-3 ... 4 1 J

The resulting observer error X = x — X is governed by a differential equation
having the characteristic polynomial

ps)=s"+pis" + -+ pa.

The dynamical system (7.10) is called an observer for (the states of) the sys-
tem (7.9) because it will generate an approximation of the states of the system from
its inputs and outputs. This form of an observer is a much more useful form than
the one given by pure differentiation in equation (7.3).

Example 7.2 Compartment model
Consider the compartment model in Example 7.1, which is characterized by the

matrices
_ —k()—kl k] _ bO _
A_[ . —kz]’ B_[O], c=[1 o],

The observability matrix was computed in Example 7.1, where we concluded that
the system was observable if k1 % 0. The dynamics matrix has the characteristic
polynomial

s+ko+ki  —k

/l(s):det[ S stk

] = 5% + (ko + ki + ka)s + koka.
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Figure 7.4: Observer for a two compartment system. A two compartment model is shown on
the left. The observer measures the input concentration # and output concentration y = ¢; to
determine the compartment concentrations, shown on the right. The true concentrations are
shown by solid lines and the estimates generated by the observer by dashed lines.

Let the desired characteristic polynomial of the observer be s + pys + ps, and
equation (7.1) gives the observer gain

L 1 0] 1 0]~ [p1—ko—ki — ks
ko — ki K ko+ ki +ky 1 D2 — kok
_ p1— ko — ki —k

(p2 — prka +kika +k3) /Ky |

Notice that the observability condition k; # O is essential. The behavior of the
observer is illustrated by the simulation in Figure 7.4b. Notice how the observed
concentrations approach the true concentrations. \%

The observer is a dynamical system whose inputs are the process input # and the
process output y. The rate of change of the estimate is composed of two terms. One
term, AX + Bu, is the rate of change computed from the model with X substituted
for x. The other term, L(y — ), is proportional to the difference e = y — J between
measured output y and its estimate y = Cx. The observer gain L is a matrix that
tells how the error e is weighted and distributed among the states. The observer thus
combines measurements with a dynamical model of the system. A block diagram
of the observer is shown in Figure 7.5.

Computing the Observer Gain

For simple low-order problems it is convenient to introduce the elements of the
observer gain L as unknown parameters and solve for the values required to give
the desired characteristic polynomial, as illustrated in the following example.

Example 7.3 Vehicle steering
The normalized linear model for vehicle steering derived in Examples 5.12 and 6.4
gives the following state space model dynamics relating lateral path deviation y to
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Figure 7.5: Block diagram of the observer. The observer takes the signals y and u as inputs
and produces an estimate x. Notice that the observer contains a copy of the process model
that is driven by y — ¥ through the observer gain L.

steering angle u:

dx 0 1 Y

E_[O O]x+[1]u, y—[l O]x. (7.12)
Recall that the state x; represents the lateral path deviation and that x;, represents
the turning rate. We will now derive an observer that uses the system model to

determine the turning rate from the measured path deviation.
The observability matrix is
1 0
WU - [0 1] 5

i.e., the identity matrix. The system is thus observable, and the eigenvalue assign-
ment problem can be solved. We have

(- 1
amre= )],

which has the characteristic polynomial

s+

det(s/ — A+ LC) = det [ I
2

_sl] =s>+lis + .

Assuming that we want to have an observer with the characteristic polynomial
s2+ p1s+ p2 = s? + 20,008 + wg,

the observer gains should be chosen as

[y = D1 :2&)0)(): 12:P2=CU(2)-

The observer is then

dx . . 0 1] . y I .
E_Ax+Bu+L(y—Cx)_[O O]x+[1]u+ll2 (y — x1).
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Figure 7.6: Simulation of an observer for a vehicle driving on a curvy road (left). The observer
has an initial velocity error. The plots on the middle show the lateral deviation x;, the lateral
velocity x, by solid lines and their estimates X; and X, by dashed lines. The plots on the right
show the estimation errors.

A simulation of the observer for a vehicle driving on a curvy road is simulated in
Figure 7.6. The vehicle length is the time unit in the normalized model. The figure
shows that the observer error settles in about 3 vehicle lengths. \%

For systems of high order we have to use numerical calculations. The duality
between the design of a state feedback and the design of an observer means that the
computer algorithms for state feedback can also be used for the observer design;
we simply use the transpose of the dynamics matrix and the output matrix. The
MATLAB command acker, which essentially is a direct implementation of the
calculations given in Theorem 7.2, can be used for systems with one output. The
MATLAB command place can be used for systems with many outputs. It is also
better conditioned numerically.

7.3 Control Using Estimated State

In this section we will consider a state space system of the form

dx
i Ax + Bu, y =Cx. (7.13)

Notice that we have assumed that there is no direct term in the system (D = 0).
This is often a realistic assumption. The presence of a direct term in combination
with a controller having proportional action creates an algebraic loop, which will
be discussed in Section 8.3. The problem can be solved even if there is a direct
term, but the calculations are more complicated.

We wish to design a feedback controller for the system where only the output
is measured. As before, we will assume that # and y are scalars. We also assume
that the system is reachable and observable. In Chapter 6 we found a feedback of

the form
u=—Kx+kr
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for the case that all states could be measured, and in Section 7.2 we developed an
observer that can generate estimates of the state X based on inputs and outputs. In
this section we will combine the ideas of these sections to find a feedback that gives
desired closed loop eigenvalues for systems where only outputs are available for
feedback.

If all states are not measurable, it seems reasonable to try the feedback

u=-—Kx+kmr, (7.14)
where * is the output of an observer of the state, i.e.,

i R
= AR+ But Ly = C3). (7.15)

Since the system (7.13) and the observer (7.15) are both of state dimension #n, the
closed loop system has state dimension 2n with state (x, X). The evolution of the
states is described by equations (7.13)—(7.15). To analyze the closed loop system,
the state variable X is replaced by

X=x—=x. (7.16)
Subtraction of equation (7.15) from equation (7.13) gives

s
d—);=Ax—A)2—L(Cx—C)%):A)E—LC)?:(A—LC))E.

Returning to the process dynamics, introducing u# from equation (7.14) into
equation (7.13) and using equation (7.16) to eliminate X gives

d . ~
d—);:Ax—i—Bu:Ax—BKx—l—Bk,r:Ax—BK(x—x)—i—Bk,r

= (A — BK)x + BKX + Bk,r.

The closed loop system is thus governed by

d [x A — BK BK X Bk,

SE P B ) e
Notice that the state x, representing the observer error, is not affected by the refer-
ence signal 7. This is desirable since we do not want the reference signal to generate
observer errors.

Since the dynamics matrix is block diagonal, we find that the characteristic
polynomial of the closed loop system is

A(s) =det(sI — A+ BK)det(sI — A+ LC).

This polynomial is a product of two terms: the characteristic polynomial of the
closed loop system obtained with state feedback and the characteristic polyno-
mial of the observer error. The feedback (7.14) that was motivated heuristically
thus provides a neat solution to the eigenvalue assignment problem. The result is
summarized as follows.
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dx
— = Ax + Bu,

dt
The controller described by
dx
dt
u=—Kx+kr

y=Cx.

gives a closed loop system with the characteristic polynomial

A(s) = det (sI — A+ BK)det(s] — A+ LC).

= A%+ Bu+L(y—CR) =(A— BK — LC)% + Ly,

Figure 7.7: Block diagram of an observer-based control system. The observer uses the mea-
sured output y and the input u to construct an estimate of the state. This estimate is used
by a state feedback controller to generate the corrective input. The controller consists of the
observer and the state feedback; the observer is identical to that in Figure 7.5.

Theorem 7.3 (Eigenvalue assignment by output feedback). Consider the system

This polynomial can be assigned arbitrary roots if the system is reachable and
observable.

The controller has a strong intuitive appeal: it can be thought of as being com-
posed of two parts, one state feedback and one observer. The dynamics of the
controller are generated by the observer. The feedback gain K can be computed as
if all state variables can be measured, and it depends on only A and B. The observer
gain L depends on only A and C. The property that the eigenvalue assignment for
output feedback can be separated into an eigenvalue assignment for a state feedback
and an observer is called the separation principle.

A block diagram of the controller is shown in Figure 7.7. Notice that the con-
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Figure 7.8: Simulation of a vehicle driving on a curvy road with a controller based on
state feedback and an observer. The left plot shows the lane boundaries (dotted), the vehicle
position (solid) and its estimate (dashed), the upper right plot shows the velocity (solid) and
its estimate (dashed), and the lower right plot shows the control signal using state feedback
(solid) and the control signal using the estimated state (dashed).

troller contains a dynamical model of the plant. This is called the internal model
principle: the controller contains a model of the process being controlled.

Example 7.4 Vehicle steering
Consider again the normalized linear model for vehicle steering in Example 6.4.
The dynamics relating the steering angle u to the lateral path deviation y is given by
the state space model (7.12). Combining the state feedback derived in Example 6.4
with the observer determined in Example 7.3, we find that the controller is given
by
B givpusrio—cn=[0 s [ o=z
P X+ Bu+L(y—Cx) = o ol <t |1l%t I, (y —x1),

u=—Kx+kr=k@r—x))—kuxs.

Elimination of the variable u gives
dx

— =(A=BK = LO)& + Ly + Bl

—li—yki 1T—yk| . l 14
- e ) B
The controller is a dynamical system of second order, with two inputs y and r and
one output u. Figure 7.8 shows a simulation of the system when the vehicle is driven
along a curvy road. Since we are using a normalized model, the length unit is the
vehicle length and the time unit is the time it takes to travel one vehicle length. The
estimator is initialized with all states equal to zero but the real system has an initial
velocity of 0.5. The figures show that the estimates converge quickly to their true
values. The vehicle tracks the desired path, which is in the middle of the road, but
there are errors because the road is irregular. The tracking error can be improved
by introducing feedforward (Section 7.5). \Y
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7.4 Kalman Filtering

One of the principal uses of observers in practice is to estimate the state of a
system in the presence of noisy measurements. We have not yet treated noise in our
analysis, and a full treatment of stochastic dynamical systems is beyond the scope
of this text. In this section, we present a brief introduction to the use of stochastic
systems analysis for constructing observers. We work primarily in discrete time to
avoid some of the complications associated with continuous-time random processes
and to keep the mathematical prerequisites to a minimum. This section assumes
basic knowledge of random variables and stochastic processes; see Kumar and
Varaiya [131] or Astrom [15] for the required material.
Consider a discrete-time linear system with dynamics

x[k + 1] = Ax[k] + Bulk] + Folk], ylk] = Cx[k] + wlk], (7.18)
where v[k] and w[k] are Gaussian white noise processes satisfying
E{v[k]} =0, E{wl[k]} =0,
e O kKFJ v |0 k#FJ
Efolk]o” [j]} = R, k=] E{wlk]lw" [j]} = R, k=] (7.19)

E{o[k]w"[j]} = 0.

E{v[k]} represents the expected value of v[k] and E {v[k]oT[j]} the correlation
matrix. The matrices R, and R, are the covariance matrices for the process dis-
turbance » and measurement noise w. We assume that the initial condition is also
modeled as a Gaussian random variable with

E{x[0]} = xo, E{x[0]x"[0]} = P,. (7.20)

We would like to find an estimate x[k] that minimizes the mean square error
E{(x[k] — X[k])(x[k] — X[k])T} given the measurements {y(7) : 0 < 7 < t}. We
consider an observer in the same basic form as derived previously:

X[k + 1] = AX[k] + Bu[k] + L[k](y[k] — Cx[k]). (7.21)
The following theorem summarizes the main result.
Theorem 7.4 (Kalman, 1961). Consider a random process x[k] with dynamics
given by equation (7.18) and noise processes and initial conditions described by

equations (7.19) and (7.20). The observer gain L that minimizes the mean square

error is given by
L[k] = AP[kICT (R, + C P[k]ICT)~!,
where
Plk+1]=(A—LC)P[kI(A—LC)" + FR,FT + LR, LT 722)
Py = E{x[0]x"[0]}. '

Before we prove this result, we reflect on its form and function. First, note
that the Kalman filter has the form of a recursive filter: given mean square error
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Plk] = E{(x[k]—X[k])(x[k]—X[k])T} at time k, we can compute how the estimate
and error change. Thus we do not need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estimate x[k] and the error covariance
P[k], so we can see how reliable the estimate is. It can also be shown that the
Kalman filter extracts the maximum possible information about output data. If we
form the residual between the measured output and the estimated output,

elk] = ylk] — Cx[k],
we can show that for the Kalman filter the correlation matrix is
1 j=k
0 j#k.

In other words, the error is a white noise process, so there is no remaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used even if the process,
noise or disturbances are nonstationary. When the system is stationary and if P[k]
converges, then the observer gain is constant:

L=APCT(R,+CPCT),

R.(j, k) = Efeljle’ [k]} = W[K]oj,  j = [

where P satisfies
P =APAT + FR,FT — APC" (R, +CPCT)"'CPAT.

We see that the optimal gain depends on both the process noise and the measurement
noise, but in a nontrivial way. Like the use of LQR to choose state feedback gains,
the Kalman filter permits a systematic derivation of the observer gains given a
description of the noise processes. The solution for the constant gain case is solved
by the d1ge command in MATLAB.

Proof of theorem. We wish to minimize the mean square of the error E{(x[k] —
£[k])(x[k] — £[k])T}. We will define this quantity as P[k] and then show that it
satisfies the recursion given in equation (7.22). By definition,

Plk + 1] = E{(x[k + 1] = £[k + 1) (x[k + 1] = X[k + 1])7}
=(A—LC)P[kI(A—-LC)" + FR,FT + LR, L"
= AP[k|AT — AP[KICTLT — LCP[K)AT + L(R, + CP[kICT)LT.
Letting R, = (R,, + CP[k]CT), we have
Plk+ 1] = AP[k]AT — AP[k]CTL" — LCP[k]AT + LR.L"
= AP[k]A" + (L — AP[KIC"R;")R (L — AP[k]CTR;‘)T
— AP[KICTRZ'C P kAT,

To minimize this expression, we choose L = AP[k]C TRE_I, and the theorem is
proved. O
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The Kalman filter can also be applied to continuous-time stochastic processes.
The mathematical derivation of this result requires more sophisticated tools, but
the final form of the estimator is relatively straightforward.

Consider a continuous stochastic system

C;—); = Ax + Bu + Fo, E{o(s)oT (1)} = R, (1)o(t — 5),
y=Cx + w, E{w(s)w! (1)} = R, (1)o(t —5),

where d(7) is the unit impulse function. Assume that the disturbance v and noise
w are zero mean and Gaussian (but not necessarily stationary):

1 LT p—l 1 L T ol
df(l) = 7 2Y R, ”, df(w — e 2 R, w -
patt) V2r/det R, P ) 2w /det R,

We wish to find the estimate X (z) that minimizes the mean square error E{(x(¢) —
(1) (x(r) — %(r))"} given {y(r) : 0 < v < 1}.

Theorem 7.5 (Kalman—Bucy, 1961). The optimal estimator has the form of a linear
observer

A

dx A N
N = AX+ Bu+ L(y — Cx),

where L(t) = P(t)CT R and P(t) = E{(x(1)—%(2))(x(t)—X(t))"} and satisfies

dpP
- = AP+ PAT — PCTR'(t)CP + FR,(t)FT, P[0] = E{x[0]x"[0]}.
As in the discrete case, when the system is stationary and if P (¢) converges, the

observer gain is constant:
L=PC"R;" where AP+ PA" — PC"R,;'CP+ FR,F" =0.
The second equation is the algebraic Riccati equation.

Example 7.5 Vectored thrust aircraft
We consider the lateral dynamics of the system, consisting of the subsystems whose
states are given by z = (x, 6, X, 0). To design a Kalman filter for the system, we
must include a description of the process disturbances and the sensor noise. We
thus augment the system to have the form

dz

E:Az—l—Bu—l—Fv, y=Cz+w,

where F' represents the structure of the disturbances (including the effects of non-
linearities that we have ignored in the linearization), w represents the disturbance
source (modeled as zero mean, Gaussian white noise) and » represents that mea-
surement noise (also zero mean, Gaussian and white).

For this example, we choose F as the identity matrix and choose disturbances v;,
i =1,...,n,tobe independent disturbances with covariance given by R;; = 0.1,
R;; = 0,i # j.The sensor noise is a single random variable which we model as
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Figure 7.9: Kalman filter design for a vectored thrust aircraft. In the first design (a) only
the lateral position of the aircraft is measured. Adding a direct measurement of the roll
angle produces a much better observer (b). The initial condition for both simulations is
(0.1,0.0175,0.01, 0).

having covariance R,, = 10~*. Using the same parameters as before, the resulting
Kalman gain is given by
37.0
—46.9
185
-31.6

L =

The performance of the estimator is shown in Figure 7.9a. We see that while the
estimator converges to the system state, it contains significant overshoot in the state
estimate, which can lead to poor performance in a closed loop setting.

To improve the performance of the estimator, we explore the impact of adding a
new output measurement. Suppose that instead of measuring just the output position
x, we also measure the orientation of the aircraft #. The output becomes

_[r o0 0] fw
Y=1o 10 ol *" |w ]’

and if we assume that w; and w; are independent noise sources each with covariance
R, = 107, then the optimal estimator gain matrix becomes

326  —0.150
L _ | 0150 326
| 27 979

—0.0033  31.6

These gains provide good immunity to noise and high performance, as illustrated
in Figure 7.9b. \4
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Figure 7.10: Block diagram of a controller based on a structure with two degrees of freedom
which combines feedback and feedforward. The controller consists of a trajectory generator,
state feedback and an observer. The trajectory generation subsystem computes a feedforward
command ug along with the desired state x,. The state feedback controller uses the estimated
state and desired state to compute a corrective input ug,.

7.5 A General Controller Structure

State estimators and state feedback are important components of a controller. In
this section, we will add feedforward to arrive at a general controller structure that
appears in many places in control theory and is the heart of most modern control
systems. We will also briefly sketch how computers can be used to implement a
controller based on output feedback.

Feedforward

In this chapter and the previous one we have emphasized feedback as a mechanism
for minimizing tracking error; reference values were introduced simply by adding
them to the state feedback through a gain k,. A more sophisticated way of doing
this is shown by the block diagram in Figure 7.10, where the controller consists of
three parts: an observer that computes estimates of the states based on a model and
measured process inputs and outputs, a state feedback, and a trajectory generator
that generates the desired behavior of all states x; and a feedforward signal uy.
Under the ideal conditions of no disturbances and no modeling errors the signal u
generates the desired behavior x; when applied to the process. The signal x,; can be
generated by a system that gives the desired response of the state. To generate the
the signal ug, we must also have a model of the inverse of the process dynamics.

To get some insight into the behavior of the system, we assume that there are
no disturbances and that the system is in equilibrium with a constant reference
signal and with the observer state X equal to the process state x. When the reference
signal is changed, the signals ug and x,; will change. The observer tracks the state
perfectly because the initial state was correct. The estimated state X is thus equal to
the desired state x,, and the feedback signal ug, = L(x; — X) will also be zero. All
action is thus created by the signals from the trajectory generator. If there are some
disturbances or some modeling errors, the feedback signal will attempt to correct
the situation.

This controller is said to have two degrees of freedom because the responses
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to command signals and disturbances are decoupled. Disturbance responses are
governed by the observer and the state feedback, while the response to command
signals is governed by the trajectory generator (feedforward).

For an analytic description we start with the full nonlinear dynamics of the

process J
X
E = f(xa M), y = h(-x, I/t). (723)

Assume that the trajectory generator is able to compute a desired trajectory (x4, usr)
that satisfies the dynamics (7.23) and satisfies » = h(xy, ug). To design the con-
troller, we construct the error system. Let z = x —x; and v = u — ug and compute
the dynamics for the error:

z=x—Xg= f(x,u) — f(xq,ug)
= f(z+ x4, 0 +ug) — f(xq) = F(z,0, x4(1), ug(t)).

In general, this system is time-varying. Note that z = —e in Figure 7.10 due to the
convention of using negative feedback in the block diagram.

For trajectory tracking, we can assume that e is small (if our controller is doing
a good job), and so we can linearize around z = O:

fl—j ~ A(t)z + B(t)v, AQ) = % , B@) = % .
(xq (1), us (1)) (xa (1),us:(r)
It is often the case that A(r) and B(r) depend only on x,, in which case it is
convenient to write A(#) = A(xy) and B(t) = B(xy).

Assume now that x; and uy are either constant or slowly varying (with respect
to the performance criterion). This allows us to consider just the (constant) linear
system given by (A(x,), B(x,)).If we design a state feedback controller K (x,) for
each x4, then we can regulate the system using the feedback

v = K(xy)z.
Substituting back the definitions of e and v, our controller becomes
u=—K(xg)(x — xq) + ug.

This form of controller is called a gain scheduled linear controller with feedforward
Uufr.

Finally, we consider the observer. The full nonlinear dynamics can be used for
the prediction portion of the observer and the linearized system for the correction

term: di
X

where L(x) is the observer gain obtained by linearizing the system around the
currently estimated state. This form of the observer is known as an extended Kalman
filter and has proved to be a very effective means of estimating the state of anonlinear
system.
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Figure 7.11: Trajectory generation for changing lanes. We wish to change from the left lane
to the right lane over a distance of 30 min 4 s. The planned trajectory in the xy plane is shown
in (a) and the lateral position y and the steering angle J over the maneuver time interval are
shown in (b).

There are many ways to generate the feedforward signal, and there are also many
different ways to compute the feedback gain K and the observer gain L. Note that
once again the internal model principle applies: the controller contains a model of
the system to be controlled through the observer.

Example 7.6 Vehicle steering
To illustrate how we can use a two degree-of-freedom design to improve the per-
formance of the system, consider the problem of steering a car to change lanes on
aroad, as illustrated in Figure 7.11a.

We use the non-normalized form of the dynamics, where were derived in Exam-
ple 2.8. Using the center of the rear wheels as the reference (a« = 0), the dynamics
can be written as

d d do 1
—x=COS(91), —y=sin00, — = — tand,
dt dt dt b

where v is the forward velocity of the vehicle and J is the steering angle. To generate
a trajectory for the system, we note that we can solve for the states and inputs of
the system given x, y by solving the following sets of equations:

X =wvcosb, ¥ =0vcosf —vlsinb,
y =vsinb, j =0 sinf + vé cos b, (7.24)
0 =v/ltand.

This set of five equations has five unknowns (4, 9, v, v and J) that can be solved
using trigonometry and linear algebra. It follows that we can compute a feasible
trajectory for the system given any path x (¢), y(¢). (This special property of a system
is known as differential flatness [73,74].)

To find a trajectory from an initial state (xo, yo, &) to a final state (xz, ys, 0)
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atatime T, we look for a path x(¢), y(¢) that satisfies

x(0) = xo, x(T) = xy,

y(0) = yo, y(T) =yy, (725)
x(0)sinGy + y(0) cos by = 0, x(T)sin6y + y(T) cosbr =0, ’
y(0) sinfy + y(0) cos by =0, y(T)sinO7 + y(T) cos Oy = 0.

One such trajectory can be found by choosing x(¢) and y(¢) to have the form
xa(t) = ag + ont + oot +ast’,  ya(t) = Po+ fit + fat® + it

Substituting these equations into equation (7.25), we are left with a set of linear
equations that can be solved for a;, f;,i = 0, 1, 2, 3. This gives a feasible trajectory
for the system by using equation (7.24) to solve for 6,, v, and J,;.

Figure 7.11b shows a sample trajectory generated by a set of higher-order equa-
tions that also set the initial and final steering angle to zero. Notice that the feedfor-
ward input is quite different from 0, allowing the controller to command a steering
angle that executes the turn in the absence of errors. \%

Kalman’s Decomposition of a Linear System

In this chapter and the previous one we have seen that two fundamental properties
of a linear input/output system are reachability and observability. It turns out that
these two properties can be used to classify the dynamics of a system. The key
result is Kalman’s decomposition theorem, which says that a linear system can be
divided into four subsystems: X,, which is reachable and observable, X,; which is
reachable but not observable, X, which is not reachable but is observable and X;;
which is neither reachable nor observable.

We will first consider this in the special case of systems where the matrix A has
distinct eigenvalues. In this case we can find a set of coordinates such that the A
matrix is diagonal and, with some additional reordering of the states, the system
can be written as

(A, O 0 O B,
d.x 0 Ar{‘) 0 0 Br5
7 1lo o a4, ol*T|o|® T8
0 0 0 A, 0 (7.26)
y=[c., 0 c; O]x+Du.

All states x; such that B, # 0 are reachable, and all states such that C;, # 0 are
observable. If we set the initial state to zero (or equivalently look at the steady-state
response if A is stable), the states given by x;, and x;; will be zero and x,; does
not affect the output. Hence the output y can be determined from the system

dx,,
dt

= AroXro + Brou, y = CroXro + Du.
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Figure 7.12: Kalman’s decomposition of a linear system. The decomposition in (a) is for
a system with distinct eigenvalues and the one in (b) is the general case. The system is
broken into four subsystems, representing the various combinations of reachable and observ-
able states. The input/output relationship only depends on the subset of states that are both
reachable and observable.

Thus from the input/output point of view, it is only the reachable and observable
dynamics that matter. A block diagram of the system illustrating this property is
given in Figure 7.12a.

The general case of the Kalman decomposition is more complicated and re-
quires some additional linear algebra; see the original paper by Kalman, Ho and
Narendra [118]. The key result is that the state space can still be decomposed into
four parts, but there will be additional coupling so that the equations have the form

'Aro 0 * 0 B,
dx * Ar5 ES * Br(-,
ar o 0 A, of*T]o|® 727)
L 0 0 * A;5 0 '
y=[Cw 0 o 0] x,

where * denotes block matrices of appropriate dimensions. The input/output re-
sponse of the system is given by

dxro
dt

which are the dynamics of the reachable and observable subsystem X,,. A block
diagram of the system is shown in Figure 7.12b.
The following example illustrates Kalman’s decomposition.

= AroXro + Brou, y = CyoXo + Du, (7.28)

Example 7.7 System and controller with feedback from observer states

Consider the system
dx
— = Ax B , =Cx.
di Ty

The following controller, based on feedback from the observer state, was given in
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Theorem 7.3:

dx . N N
E:Ax+Bu+L(y—Cx), u=—Kx+k,r.

Introducing the states x and X = x — X, the closed loop system can be written as

d [x A — BK BK X Bk,

E[i]:[ 0 A—LC][£]+[O]r’ y:[c O]X’
which is a Kalman decomposition like the one shown in Figure 7.12b with only
two subsystems X,, and X;,. The subsystem X,,, with state x, is reachable and
observable, and the subsystem X;,, with state X, is not reachable but observable.
It is natural that the state X is not reachable from the reference signal r because it
would not make sense to design a system where changes in the command signal

could generate observer errors. The relationship between the reference » and the
output y is given by

dx
Z:(A—BK)x+Bkrr, y=Cx,
which is the same relationship as for a system with full state feedback. \%

Computer Implementation

The controllers obtained so far have been described by ordinary differential equa-
tions. They can be implemented directly using analog components, whether elec-
tronic circuits, hydraulic valves or other physical devices. Since in modern engi-
neering applications most controllers are implemented using computers, we will
briefly discuss how this can be done.

A computer-controlled system typically operates periodically: every cycle, sig-
nals from the sensors are sampled and converted to digital form by the A/D converter,
the control signal is computed and the resulting output is converted to analog form
for the actuators, as shown in Figure 7.13. To illustrate the main principles of how
to implement feedback in this environment, we consider the controller described
by equations (7.14) and (7.15),i.e.,

dx

E:Aﬁ—l—Bu—l—L(y—C)E), u=—Kx+kmr.

The first equation consists only of additions and multiplications and can thus be
implemented directly on a computer. The second equation can be implemented by
approximating the derivative by a difference

dx  X(ikgr) — X (@)
dr h
where #; are the sampling instants and 7 = #;4.1 —#; is the sampling period. Rewriting
the equation to isolate X (#;41), we get the difference equation

£(tee1) = £(t) + h(AR(t) + Bu(t) + L(y(t) — Cx(t)))- (7.29)

= AR(t) + Bu(t) + L(y(t) — CE (1)),
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Figure 7.13: Components of a computer-controlled system. The controller consists of analog-
to-digital (A/D) and digital-to-analog (D/A) converters, as well as a computer that implements
the control algorithm. A system clock controls the operation of the controller, synchronizing
the A/D, D/A and computing processes. The operator input is also fed to the computer as an
external input.

The calculation of the estimated state at time #;,,; requires only addition and mul-
tiplication and can easily be done by a computer. A section of pseudocode for the
program that performs this calculation is

Control algorithm - main loop
= adin(chl) % read reference
= adin(ch2) % get process output
-K*xhat + kr*r % compute control variable
%
%

(=L S Y
I

daout(chl, u) set analog output
xhat = xhat + h*(A*x+B*u+L* (y-C*x)) update state estimate

The program runs periodically at a fixed rate 4. Notice that the number of
computations between reading the analog input and setting the analog output has
been minimized by updating the state after the analog output has been set. The
program has an array of states xhat that represents the state estimate. The choice
of sampling period requires some care.

There are more sophisticated ways of approximating a differential equation by a
difference equation. If the control signal is constant between the sampling instants,
it is possible to obtain exact equations; see [18].

There are several practical issues that also must be dealt with. For example, it
is necessary to filter measured signals before they are sampled so that the filtered
signal has little frequency content above f;/2, where f; is the sampling frequency.
This avoids a phenomena knows as aliasing. If controllers with integral action are
used, it is also necessary to provide protection so that the integral does not become
too large when the actuator saturates. This issue, called integrator windup,is studied
in more detail in Chapter 10. Care must also be taken so that parameter changes do
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not cause disturbances.

7.6 Further Reading

The notion of observability is due to Kalman [115] and, combined with the dual
notion of reachability, it was a major stepping stone toward establishing state space
control theory beginning in the 1960s. The observer first appeared as the Kalman
filter, in the paper by Kalman [114] on the discrete-time case and Kalman and
Bucy [116] on the continuous-time case. Kalman also conjectured that the controller
for output feedback could be obtained by combining a state feedback with an
observer; see the quote in the beginning of this chapter. This result was formally
proved by Josep and Tou [111] and Gunckel and Franklin [93]. The combined result
is known as the linear quadratic Gaussian control theory; a compact treatment is
given in the books by Anderson and Moore [7] and Astrom [15]. Much later it
was shown that solutions to robust control problems also had a similar structure
but with different ways of computing observer and state feedback gains [65]. The
general controller structure discussed in Section 7.5, which combines feedback
and feedforward, was described by Horowitz in 1963 [102]. The particular form
in Figure 7.10 appeared in [18], which also treats digital implementation of the
controller. The hypothesis that motion control in humans is based on a combination
of feedback and feedforward was proposed by Ito in 1970 [107].

Exercises

7.1 (Coordinate transformations) Consider a system under a coordinate transforma-
tion z = Tx, where T € R"*" is an invertible matrix. Show that the observability
matrix for the transformed system is given by W, = W, T ~! and hence observability
is independent of the choice of coordinates.

7.2 Show that the system depicted in Figure 7.2 is not observable.

7.3 (Observable canonical form) Show that if a system is observable, then there
exists a change of coordinates z = Tx that puts the transformed system into ob-
servable canonical form.

7.4 (Bicycle dynamics) The linearized model for a bicycle is given in equation (3.5),
which has the form

d*’¢  Duvgdé moh
b

where ¢ is the tilt of the bicycle and J is the steering angle. Give conditions under
which the system is observable and explain any special situations where it loses
observability.

J,

7.5 (Integral action) The model (7.1) assumes that the input # = 0 corresponds to
x = 0. In practice, it is very difficult to know the value of the control signal that
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gives a precise value of the state or the output because this would require a perfectly
calibrated system. One way to avoid this assumption is to assume that the model is
given by

dx
EZAx+B(u+uo), y=Cx+ Du,

where uq is an unknown constant that can be modeled as dug/dt = 0. Consider
ug as an additional state variable and derive a controller based on feedback from
the observed state. Show that the controller has integral action and that it does not
require a perfectly calibrated system.

7.6 (Vectored thrust aircraft) The lateral dynamics of the vectored thrust aircraft
example described in Example 6.8 can be obtained by considering the motion
described by the states z = (x, 6, x, 9). Construct an estimator for these dynamics
by setting the eigenvalues of the observer into a Butterworth pattern with Ly, =
—3.83 £9.24i, —-9.24 £ 3.83i. Using this estimator combined with the state space
controller computed in Example 6.8, plot the step response of the closed loop
system.

7.7 (Uniqueness of observers) Show that the design of an observer by eigenvalue
assignment is unique for single-output systems. Construct examples that show that
the problem is not necessarily unique for systems with many outputs.

7.8 (Observers using differentiation) Consider the linear system (7.2), and assume
that the observability matrix W, is invertible. Show that

T
g=w [y v o§ o o)

is an observer. Show that it has the advantage of giving the state instantaneously
but that it also has some severe practical drawbacks.

7.9 (Observer for Teorell’s compartment model) Teorell’s compartment model,
shown in Figure 3.17, has the following state space representation:

k% 0 0 0 0 |
i ki —kr—ki O ks O 0
2 _ 1o ki 0 0  0oflx+|ola
dt 0 ky 0 —ks—ks O 0

0 O 0 ks 0 0

where representative parameters are k; = 0.02,k; = 0.1, k3 = 0.05, k4 = ks =
0.005. The concentration of a drug that is active in compartment 5 is measured in
the bloodstream (compartment 2). Determine the compartments that are observable
from measurement of concentration in the bloodstream and design an estimator
for these concentrations base on eigenvalue assignment. Choose the closed loop
eigenvalues —0.03, —0.05 and —0.1. Simulate the system when the input is a pulse
injection.
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7.10 (Observer design for motor drive) Consider the normalized model of the motor
drive in Exercise 2.10 where the open loop system has the eigenvalues 0, 0, —0.054+
i. A state feedback that gave a closed loop system with eigenvalues in —2, —1 and
—1 &£ i was designed in Exercise 6.11. Design an observer for the system that has
eigenvalues —4, —2 and —2 + 2i. Combine the observer with the state feedback
from Exercise 6.11 to obtain an output feedback and simulate the complete system.

7.11 (Feedforward design for motor drive) Consider the normalized model of the
motor drive in Exercise 2.10. Design the dynamics of the block labeled “trajectory
generation” in Figure 7.10 so that the dynamics relating the output # to the reference
signal r has the dynamics

d3ym dzym dym

+ a1 —— + amo—— + A3V = A3t 7.30

T 1 2 3. 3 (7.30)

with parameters a,,; = 2.50,,, ayy = 2.5a),2n and a,,3 = wfn Discuss how the

largest value of the command signal for a unit step in the command signal depends
on @y, .

7.12 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (3.7) in Section 3.2. A state feedback for the system was designed in Exer-
cise 6.12. Design an observer and an output feedback for the system.

7.13 (Discrete-time random walk) Suppose that we wish to estimate the position
of a particle that is undergoing a random walk in one dimension (i.e., along a line).
We model the position of the particle as

x[k + 11 = x[k] + u[k],

where x is the position of the particle and u is a white noise processes with E{u[i]} =
Oand E{uli]u[j]}R,0(i — j). We assume that we can measure x subject to additive,
zero-mean, Gaussian white noise with covariance 1.

(a) Compute the expected value and covariance of the particle as a function of k.

(b) Construct a Kalman filter to estimate the position of the particle given the
noisy measurements of its position. Compute the steady-state expected value and
covariance of the error of your estimate.

(c) Suppose that E{u[0]} = u # 0 but is otherwise unchanged. How would your
answers to parts (a) and (b) change?

7.14 (Kalman decomposition) Consider a linear system characterized by the matri-

cesS
2 1 -1 2 2
1 =3 0 2 2
a=|, 70 2| 8= 2,c=[01—1 0], D =0.

[u—

0 1 -1 -1

Construct a Kalman decomposition for the system. (Hint: Try to diagonalize.)
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Chapter Eight

Transfer Functions

The typical regulator system can frequently be described, in essentials, by differential equations
of no more than perhaps the second, third or fourth order. ...In contrast, the order of the set
of differential equations describing the typical negative feedback amplifier used in telephony
is likely to be very much greater. As a matter of idle curiosity, I once counted to find out what
the order of the set of equations in an amplifier I had just designed would have been, if I had
worked with the differential equations directly. It turned out to be 55.

Henrik Bode, 1960 [41].

This chapter introduces the concept of the transfer function, which is a compact
description of the input/output relation for a linear system. Combining transfer
functions with block diagrams gives a powerful method for dealing with complex
linear systems. The relationship between transfer functions and other descriptions
of system dynamics is also discussed.

8.1 Frequency Domain Modeling

Figure 8.1 is a block diagram for a typical control system, consisting of a process to
be controlled and a controller that combines feedback and feedforward. We saw in
the previous two chapters how to analyze and design such systems using state space
descriptions of the blocks. As mentioned in Chapter 2, an alternative approach is
to focus on the input/output characteristics of the system. Since it is the inputs and
outputs that are used to connect the systems, one could expect that this point of

|
| Reference Feedback ! d Process n
,  shaping controller ! dynamics
ro e LU v n y
— F C ; P —
w l
w l
| 1
i Controller !

Figure 8.1: A block diagram for a feedback control system. The reference signal r is fed
through a reference shaping block, which produces the signal that will be tracked. The error
between this signal and the output is fed to a controller, which produces the input to the
process. Disturbances and noise are included as external signals at the input and output of
the process dynamics.
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view would allow an understanding of the overall behavior of the system. Transfer
functions are the main tool in implementing this point of view for linear systems.

The basic idea of the transfer function comes from looking at the frequency
response of a system. Suppose that we have an input signal that is periodic. Then
we can decompose this signal into the sum of a set of sines and cosines,

o
u(t) = Z ay sin(kwt) + by cos(kwt),
k=0
where o is the fundamental frequency of the periodic input. Each of the terms in this
input generates a corresponding sinusoidal output (in steady state), with possibly
shifted magnitude and phase. The gain and phase at each frequency are determined
by the frequency response given in equation (5.24):

G(s)=C(sI —A)'B+D, (8.1)

where we set s = i(kw) foreachk = 1,...,00 and i = +/—1. If we know the
steady-state frequency response G(s), we can thus compute the response to any
(periodic) signal using superposition.

The transfer function generalizes this notion to allow a broader class of input
signals besides periodic ones. As we shall see in the next section, the transfer
function represents the response of the system to an exponential input, u = e*'.
It turns out that the form of the transfer function is precisely the same as that of
equation (8.1). This should not be surprising since we derived equation (8.1) by
writing sinusoids as sums of complex exponentials. Formally, the transfer function
is the ratio of the Laplace transforms of output and input, although one does not
have to understand the details of Laplace transforms in order to make use of transfer
functions.

Modeling a system through its response to sinusoidal and exponential signals is
known as frequency domain modeling. This terminology stems from the fact that
we represent the dynamics of the system in terms of the generalized frequency s
rather than the time domain variable ¢. The transfer function provides a complete
representation of a linear system in the frequency domain.

The power of transfer functions is that they provide a particularly convenient
representation in manipulating and analyzing complex linear feedback systems. As
we shall see, there are many graphical representations of transfer functions that
capture interesting properties of the underlying dynamics. Transfer functions also
make it possible to express the changes in a system because of modeling error, which
is essential when considering sensitivity to process variations of the sort discussed
in Chapter 12. More specifically, using transfer functions, it is possible to analyze
what happens when dynamic models are approximated by static models or when
high-order models are approximated by low-order models. One consequence is that
we can introduce concepts that express the degree of stability of a system.

While many of the concepts for state space modeling and analysis apply di-
rectly to nonlinear systems, frequency domain analysis applies primarily to linear
systems. The notions of gain and phase can be generalized to nonlinear systems
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and, in particular, propagation of sinusoidal signals through a nonlinear system
can approximately be captured by an analog of the frequency response called the
describing function. These extensions of frequency response will be discussed in
Section 9.5.

8.2 Derivation of the Transfer Function

As we have seen in previous chapters, the input/output dynamics of a linear sys-
tem have two components: the initial condition response and the forced response.
In addition, we can speak of the transient properties of the system and its steady-
state response to an input. The transfer function focuses on the steady-state forced
response to a given input and provides a mapping between inputs and their corre-
sponding outputs. In this section, we will derive the transfer function in terms of
the exponential response of a linear system.

Transmission of Exponential Signals

To formally compute the transfer function of a system, we will make use of a special
type of signal, called an exponential signal, of the form e*’, where s = o + iw is
a complex number. Exponential signals play an important role in linear systems.
They appear in the solution of differential equations and in the impulse response
of linear systems, and many signals can be represented as exponentials or sums of
exponentials. For example, a constant signal is simply e with ¢ = 0. Damped
sine and cosine signals can be represented by

el HON — 71 ol0f — %1 (cos wt + i sin wt),

where o < 0 determines the decay rate. Figure 8.2 gives examples of signals that
can be represented by complex exponentials; many other signals can be represented
by linear combinations of these signals. As in the case of sinusoidal signals, we will
allow complex-valued signals in the derivation that follows, although in practice
we always add together combinations of signals that result in real-valued functions.

To investigate how a linear system responds to an exponential input u(¢) = e*'
we consider the state space system

d
d—: = Ax + Bu, y=Cx + Du. (8.2)
Let the input signal be u () = ¢*" and assume thats # 1;(A), j =1,...,n, where

4j(A) is the jth eigenvalue of A. The state is then given by

t t
x(t) = e x(0) +/ eI BT dr = M x (0) + eA'/ eI~ B dr.
0 0
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Figure 8.2: Examples of exponential signals. The top row corresponds to exponential signals
with a real exponent, and the bottom row corresponds to those with complex exponents. The
dashed line in the last two cases denotes the bounding envelope for the oscillatory signals. In
each case, if the real part of the exponent is negative then the signal decays, while if the real
part is positive then it grows.

As we saw in Section 5.3, if s # 1(A), the integral can be evaluated and we get
x(1) = eMx(0) + e (sI — A)~! (e(”_A)’ - I)B
— oM (x(O) — (s — A)—lB) +(sI — A)~'Be".
The output of equation (8.2) is thus
y(1) = Cx(t) + Du(r)

— Ce (x(O) — (sl — A)-lB) + (C(sl — A B+ D)e”, (8.3)
a linear combination of the exponential functions ¢*’ and e?’. The first term in
equation (8.3) is the transient response of the system. Recall that e\’ can be written
in terms of the eigenvalues of A (using the Jordan form in the case of repeated
eigenvalues), and hence the transient response is a linear combination of terms of
the form e*/, where 4 ; are eigenvalues of A. If the system is stable, then e’ — 0
as t — oo and this term dies away.

The second term of the output (8.3) is proportional to the input u(z) = . This
term is called the pure exponential response. If the initial state is chosen as

x(0) = (sI — A)"'B,

then the output consists of only the pure exponential response and both the state
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and the output are proportional to the input:

x(t) = (sI — A)"'Be* = (sI — A)~'Bu(r),
y(t) = (C(sI — A)"'B + D) = (C(sI — A)™'B + D)u(r).

This is also the output we see in steady state, when the transients represented by
the first term in equation (8.3) have died out. The map from the input to the output,

Gyu(s)=C(sI — A)7'B+ D, (8.4)

is the transfer function from u to y for the system (8.2), and we can write y(t) =
Gy, (s)u(t) for the case that u(r) = e*’. Compare with the definition of frequency
response given by equation (5.24).

An important point in the derivation of the transfer function is the fact that
we have restricted s so that s # A;(A), the eigenvalues of A. At those values of
s, we see that the response of the system is singular (since s/ — A will fail to
be invertible) Ifs =4, j (A), the response of the system to the exponential input
u = e is y = p(t)e’’, where p(t) is a polynomial of degree less than or equal
to the multiplicity of the eigenvalue 4 (see Exercise 8.2).

Example 8.1 Damped oscillator
Consider the response of a damped linear oscillator, whose state space dynamics
were studied in Section 6.3:

dx 0
== [_wo _2@0] [kw ] y= [1 0] x. (8.5)

This system is stable if ¢ > 0, and so we can look at the steady-state response to
an input u = e*',

Gyu(s) = C(SI - A)_IB - [1 0] [ : s ;ZE)CUO] [ka)O]

1 s
B [1 O] (S2+ZCCO()S+W0 [_w() s+25w0]) [kwo] (50

ke
52+ 20 wos + of

To compute the steady-state response to a step function, we set s = 0 and we see
that
u=1 = y=G,,0)u =k.

If we wish to compute the steady-state response to a sinusoid, we write

u=sinot = - (ie”'" —ie'),

N | =

1 . )
=~ (iGyu(—iw)e ™ —iG,,(iw)e'™).

Y=3
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We can now write G (i) in terms of its magnitude and phase,
ko .
G(iw) = 0 = M,
$2 4+ 20 wos +

where the magnitude (or gain) M and phase 6 are given by

ke sinf —2{wow

b - 2 .
J@ =0+ Cropoyr 80 @y~

M =

We can also make use of the fact that G(—iw) is given by its complex conjugate
G*(iw), and it follows that G(—iw) = Me™"?. Substituting these expressions into
our output equation, we obtain

1 4 . o
y=5 (i(Me™ye™ " — i(Me'")e'™)
1 , .
— M- 3 (,‘e—l(a’“f“") — iel(‘”’+‘9)) = M sin(wt + 0).

The responses to other signals can be computed by writing the input as an appro-
priate combination of exponential responses and using linearity. \%

Coordinate Changes

The matrices A, B and C in equation (8.2) depend on the choice of coordinate
system for the states. Since the transfer function relates input to outputs, it should
be invariant to coordinate changes in the state space. To show this, consider the
model (8.2) and introduce new coordinates z by the transformation z = 7 x, where
T is a nonsingular matrix. The system is then described by

d S
d_f = T(Ax + Bu) = TAT 'z + TBu =: Az + Bu,

y=Cx+ DU =CT 24 Du=:Cz+ Du.

This system has the same form as equation (8.2), but the matrices A, B and C are

different: . _ .
A=TAT™!, B=TB, C=cCcT " (8.7)

Computing the transfer function of the transformed model, we get
Gis)=C(sI—A)'B+D=CT (s —=TAT") 'TB+ D
=C(T™ "I —TAT™)T)'B+D=C(sI — A)"'B+ D =G(s),

which is identical to the transfer function (8.4) computed from the system descrip-
tion (8.2). The transfer function is thus invariant to changes of the coordinates in
the state space.

Another property of the transfer function is that it corresponds to the portion of the
state space dynamics that is both reachable and observable. In particular, if we make
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use of the Kalman decomposition (Section 7.5), then the transfer function depends
only on the dynamics in the reachable and observable subspace X,, (Exercise 8.7).

Transfer Functions for Linear Systems

Consider a linear input/output system described by the controlled differential equa-
tion
dny dn—ly d"u dm—lu
dim T g ey = hogn b
where u is the input and y is the output. This type of description arises in many
applications, as described briefly in Section 2.2; bicycle dynamics and AFM mod-
eling are two specific examples. Note that here we have generalized our previous
system description to allow both the input and its derivatives to appear.
To determine the transfer function of the system (8.8), let the input be u (1) = e*'.
Since the system is linear, there is an output of the system that is also an exponential
function y(7) = ype* . Inserting the signals into equation (8.8), we find

(s" +ais"" 4+ ay)yoe’ = (bos" + bis" -+ by)e™,
and the response of the system can be completely described by two polynomials
a(s) =s"+ais" '+ +a,, b(s) = bos™ + bis™ ' 4+ + b,.
(8.9)

The polynomial a(s) is the characteristic polynomial of the ordinary differential
equation. If a(s) # 0, it follows that

, b
y(t) = yoe' = D) o (8.10)
a(s)
The transfer function of the system (8.8) is thus the rational function
b
G(s) = ﬂ, (8.11)
a(s)

where the polynomials a(s) and b(s) are given by equation (8.9). Notice that the
transfer function for the system (8.8) can be obtained by inspection since the co-
efficients of a(s) and b(s) are precisely the coefficients of the derivatives of u and
y. The order of the transfer function is defined as the order of the denominator
polynomial.

Equations (8.8)—(8.11) can be used to compute the transfer functions of many
simple ordinary differential equations. Table 8.1 gives some of the more com-
mon forms. The first five of these follow directly from the analysis above. For the
proportional-integral-derivative (PID) controller, we make use of the fact that the
integral of 