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4 CHAPTER 1. INTRODUCTION
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Figure 1.3: Components of a computer-controlled system. The upper dashed box represents
the process dynamics, which include the sensors and actuators in addition to the dynamical
system being controlled. Noise and external disturbances can perturb the dynamics of the
process. The controller is shown in the lower dashed box. It consists of a filter and analog-to-
digital (A/D) and digital-to-analog (D/A) converters, as well as a computer that implements
the control algorithm. A system clock controls the operation of the controller, synchronizing
the A/D, D/A and computing processes. The operator input is also fed to the computer as an
external input.

A modern controller senses the operation of a system, compares it against the
desired behavior, computes corrective actions based on a model of the system’s
response to external inputs and actuates the system to effect the desired change.
This basic feedback loop of sensing, computation and actuation is the central con-
cept in control. The key issues in designing control logic are ensuring that the
dynamics of the closed loop system are stable (bounded disturbances give bounded
errors) and that they have additional desired behavior (good disturbance attenua-
tion, fast responsiveness to changes in operating point, etc). These properties are
established using a variety of modeling and analysis techniques that capture the
essential dynamics of the system and permit the exploration of possible behaviors
in the presence of uncertainty, noise and component failure.

A typical example of a control system is shown in Figure 1.3. The basic elements
of sensing, computation and actuation are clearly seen. In modern control systems,
computation is typically implemented on a digital computer, requiring the use of
analog-to-digital (A/D) and digital-to-analog (D/A) converters. Uncertainty enters
the system through noise in sensing and actuation subsystems, external disturbances
that affect the underlying system operation and uncertain dynamics in the system
(parameter errors, unmodeled effects, etc). The algorithm that computes the control
action as a function of the sensor values is often called a control law. The system
can be influenced externally by an operator who introduces command signals to
the system.
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Figure 1.11: Supply chain dynamics (after Forrester [75]). Products flow from the producer
to the customer through distributors and retailers as indicated by the solid lines. There are
typically many factories and warehouses and even more distributors and retailers. Multiple
feedback loops are present as each agent tries to maintain the proper inventory level.

many different products, there may be different factories that are geographically
distributed and the factories may require raw material or subassemblies.

Control of supply chains was proposed by Forrester in 1961 [75] and is now
growing in importance. Considerable economic benefits can be obtained by using
models to minimize inventories. Their use accelerated dramatically when infor-
mation technology was applied to predict sales, keep track of products and enable
just-in-time manufacturing. Supply chain management has contributed significantly
to the growing success of global distributors.

Adpvertising on the Internet is an emerging application of control. With network-
based advertising it is easy to measure the effect of different marketing strategies
quickly. The response of customers can then be modeled, and feedback strategies
can be developed.

Feedback in Nature

Many problems in the natural sciences involve understanding aggregate behavior
in complex large-scale systems. This behavior emerges from the interaction of a
multitude of simpler systems with intricate patterns of information flow. Repre-
sentative examples can be found in fields ranging from embryology to seismology.
Researchers who specialize in the study of specific complex systems often develop
an intuitive emphasis on analyzing the role of feedback (or interconnection) in
facilitating and stabilizing aggregate behavior.

While sophisticated theories have been developed by domain experts for the
analysis of various complex systems, the development of a rigorous methodology
that can discover and exploit common features and essential mathematical structure
is just beginning to emerge. Advances in science and technology are creating a new
understanding of the underlying dynamics and the importance of feedback in a wide
variety of natural and technological systems. We briefly highlight three application
areas here.

Biological Systems. A major theme currently of interest to the biology commu-
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Figure 1.14: Aircraft autopilot system. The Sperry autopilot (left) contained a set of four
gyros coupled to a set of air valves that controlled the wing surfaces. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able to maintain level
flight as a mechanic walked on the wing (right) [105].

weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of sufficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the
age of flying will have arrived, for all other difficulties are of minor
importance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
tried to build stable airplanes. These would have been easier to fly, but because of
their poor maneuverability they could not be brought up into the air. By using their
insight and skillful experiments the Wright brothers made the first successful flight
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, invented by
Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized pendu-
lum to provide an indication of the vertical. He then arranged a feedback mechanism
that would pull the stick to make the plane go up if it was pointing down, and vice
versa. The Sperry autopilot was the first use of feedback in aeronautical engineer-
ing, and Sperry won a prize in a competition for the safest airplane in Paris in 1914.
Figure 1.14 shows the Curtiss seaplane and the Sperry autopilot. The autopilot is
a good example of how feedback can be used to stabilize an unstable system and
hence “design the dynamics” of the aircraft.
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Figure 1.17: Action of a PID controller. At time ¢, the proportional term depends on the
instantaneous value of the error. The integral portion of the feedback is based on the integral
of the error up to time ¢ (shaded portion). The derivative term provides an estimate of the
growth or decay of the error over time by looking at the rate of change of the error. 7,
represents the approximate amount of time in which the error is projected forward (see text).

1.6 Further Reading

The material in this section draws heavily from the report of the Panel on Future
Directions on Control, Dynamics and Systems [155]. Several additional papers
and reports have highlighted the successes of control [159] and new vistas in con-
trol [45, 130, 204]. The early development of control is described by Mayr [148]
and in the books by Bennett [28, 29], which cover the period 1800-1955. A fas-
cinating examination of some of the early history of control in the United States
has been written by Mindell [152]. A popular book that describes many control
concepts across a wide range of disciplines is Out of Control by Kelly [121]. There
are many textbooks available that describe control systems in the context of spe-
cific disciplines. For engineers, the textbooks by Franklin, Powell and Emami-
Naeini [79], Dorf and Bishop [61], Kuo and Golnaraghi [133] and Seborg, Edgar
and Mellichamp [178] are widely used. More mathematically oriented treatments
of control theory include Sontag [182] and Lewis [136]. The book by Hellerstein
et al. [97] provides a description of the use of feedback control in computing sys-
tems. A number of books look at the role of dynamics and feedback in biological
systems, including Milhorn [151] (now out of print), J. D. Murray [154] and ElI-
ner and Guckenheimer [70]. The book by Fradkov [77] and the tutorial article by
Bechhoefer [25] cover many specific topics of interest to the physics community.

Exercises

1.1 (Eye motion) Perform the following experiment and explain your results: Hold-
ing your head still, move one of your hands left and right in front of your face,
following it with your eyes. Record how quickly you can move your hand before
you begin to lose track of it. Now hold your hand still and shake your head left to
right, once again recording how quickly you can move before losing track of your
hand.
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dynamics as first-order differential equations, but we will see that this can capture
the dynamics of higher-order differential equations by appropriate definition of the
state and the maps f and h.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice of u (reachability) and if the measurement y
contains enough information to reconstruct the state (observability). These topics
will be addressed in greater detail in Chapters 6 and 7.

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views of input/output repre-
sentations and state space representations are particularly useful when modeling
uncertainty since state models are convenient to describe a nominal model but un-
certainties are easier to describe using input/output models (often via a frequency
response description). Uncertainty will be a constant theme throughout the text and
will be studied in particular detail in Chapter 12.

An interesting observation in the design of control systems is that feedback
systems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system validation,
where one wishes to verify that the detailed response of the system performs as it
was designed. Because of these different uses of models, it is common to use a
hierarchy of models having different complexity and fidelity.

Multidomain Modeling

Modeling is an essential element of many disciplines, but traditions and methods
from individual disciplines can differ from each other, as illustrated by the previous
discussion of mechanical and electrical engineering. A difficulty in systems engi-
neering is that it is frequently necessary to deal with heterogeneous systems from
many different domains, including chemical, electrical, mechanical and informa-
tion systems.

To model such multidomain systems, we start by partitioning a system into
smaller subsystems. Each subsystem is represented by balance equations for mass,
energy and momentum, or by appropriate descriptions of information processing
in the subsystem. The behavior at the interfaces is captured by describing how the
variables of the subsystem behave when the subsystems are interconnected. These
interfaces act by constraining variables within the individual subsystems to be equal
(such as mass, energy or momentum fluxes). The complete model is then obtained
by combining the descriptions of the subsystems and the interfaces.
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In this problem, we will explore some of the properties of this discrete-time system
as a function of the parameters, the initial conditions and the inputs.

(a) For the case when a;; = 0 and u = 0, give a closed form expression for the
output of the system.

(b) A discrete system is in equilibrium when x[k + 1] = x[k] for all k. Letu =r
be a constant input and compute the resulting equilibrium point for the system.
Show that if |a;;| < 1 for all i, all initial conditions give solutions that converge to
the equilibrium point.

(c) Write a computer program to plot the output of the system in response to a unit
step input, u[k] = 1,k > 0. Plot the response of your system with x[0] = 0 and A
given by a;; =0.5,a;, = 1 and ap, = 0.25.

2.4 (Keynesian economics) Keynes’ simple model for an economy is given by
Y[k] = Clk] + I[k] + G[k],

where Y, C, I and G are gross national product (GNP), consumption, investment
and government expenditure for year k. Consumption and investment are modeled
by difference equations of the form

Clk + 1] = aY[k], Ik + 11 =b(Clk + 1] — C[k]),

where a and b are parameters. The first equation implies that consumption increases
with GNP but that the effect is delayed. The second equation implies that investment
is proportional to the rate of change of consumption.

Show that the equilibrium value of the GNP is given by

1

Y, = l—(le + GE):
—a

where the parameter 1/(1 — a) is the Keynes multiplier (the gain from / or G to

Y). With a = 0.25 an increase of government expenditure will result in a fourfold

increase of GNP. Also show that the model can be written as the following discrete-
time state model:

Clk +1] Clk] GIk]
I[k+1] ab b ab I1k] ’

= Clk] + I[k] + Glk].

2.5 (Least squares system identification) Consider a nonlinear differential equation
that can be written in the form

G S
- = i Jilx),
dt P

where f;(x) are known nonlinear functions and a; are unknown, but constant,
parameters. Suppose that we have measurements (or estimates) of the full state x
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at time instants f1, fp, ..., ty, with N > M. Show that the parameters a; can be

determined by finding the least squares solution to a linear equation of the form
Ho =b,

where a € R is the vector of all parameters and H € R¥*M and b € R" are
appropriately defined.

2.6 (Normalized oscillator dynamics) Consider a damped spring—mass system with
dynamics
mg +cq+kqg=F.

Let wy = +/k/m be the natural frequency and ¢ = c¢/(2+/km) be the damping
ratio.

(a) Show that by rescaling the equations, we can write the dynamics in the form
q + 2¢woq + wéq = a)(%u, (2.35)

where u = F/ k. This form of the dynamics is that of a linear oscillator with natural
frequency wy and damping ratio (.

(b) Show that the system can be further normalized and written in the form

d d
K, e —2%m o (2.36)
dr dt

The essential dynamics of the system are governed by a single damping parameter
¢ . The Q-value defined as Q = 1/2¢ is sometimes used instead of (.

2.7 (Electric generator) An electric generator connected to a strong power grid can
be modeled by a momentum balance for the rotor of the generator:
d*p EV .
JF—Pm_Pe—Pm_TSIHCD,

where J is the effective moment of inertia of the generator, ¢ the angle of rotation,
P,, the mechanical power that drives the generator, P, is the active electrical power,
E the generator voltage, V the grid voltage and X the reactance of the line. Assuming
that the line dynamics are much faster than the rotor dynamics, P, = VI =
(EV/X)sin ¢, where [ is the current component in phase with the voltage E and ¢
is the phase angle between voltages E and V. Show that the dynamics of the electric
generator have a normalized form that is similar to the dynamics of a pendulum
with forcing at the pivot.

2.8 (Admission control for a queue) Consider the queuing system described in
Example 2.10. The long delays created by temporary overloads can be reduced by
rejecting requests when the queue gets large. This allows requests that are accepted
to be serviced quickly and requests that cannot be accommodated to receive a
rejection quickly so that they can try another server. Consider an admission control
system described by

dx X

E = Au — ﬂmaxm, U= sat(o,l)(k(r — X)), (2.37)



Modeling.tex, v1.170 2008/11/28 22:19:27 (murray)

64 CHAPTER 2. SYSTEM MODELING

where the controller is a simple proportional control with saturation (sat, ;) defined
by equation (3.9)) and r is the desired (reference) queue length. Use a simulation
to show that this controller reduces the rush-hour effect and explain how the choice
of r affects the system dynamics.

2.9 (Biological switch) A genetic switch can be formed by connecting two repres-
sors together in a cycle as shown below.

u.%</ />th ﬁ -

Luz

Using the models from Example 2.13 —assuming that the parameters are the same
for both genes and that the mRNA concentrations reach steady state quickly —show
that the dynamics can be written in normalized coordinates as

dz U dzp U

— = ST, —— = .

dt 1+25 dt 1+ 2]
where z; and z; are scaled versions of the protein concentrations and the time scale

has also been changed. Show that x4 & 200 using the parameters in Example 2.13,
and use simulations to demonstrate the switch-like behavior of the system.

— 22— 0, (2.38)

2.10 (Motor drive) Consider a system consisting of a motor driving two masses that
are connected by a torsional spring, as shown in the diagram below.

?1 b2

—_— Motor

@ @2
Jy Ja
This system can represent a motor with a flexible shaft that drives a load. Assuming

that the motor delivers a torque that is proportional to the current, the dynamics of
the system can be described by the equations

d? d d
91 (ﬂ _ ﬂ) k(pr — 92) = ki1,

175

‘f;z ‘C’; CC’; (2.39)
(%) ( P2 (01) k _ T

25 o ) TR =Ta

Similar equations are obtained for a robot with flexible arms and for the arms of
DVD and optical disk drives.

Derive a state space model for the system by introducing the (normalized)
state variables x; = @1, X, = @2, X3 = w;/wy, and x4 = w,/wy, Where wy =
Vk(J1 + J2)/(J1J2) is the undamped natural frequency of the system when the
control signal is zero.
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control dynamics. We can obtain substantial insight by considering a special case
in which we have N identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can be ignored, in which case
the dynamics can be reduced to the form

dw; 1 pc+ w?) db w; b
- _ i R - —c, = -, 3.19
dt T 2 dt lz_l: T ‘ c ( )
where w; € R,i = 1,..., N, are the window sizes for the sources of data,b € R is

the current buffer size of the router, p controls the rate at which packets are dropped
and c is the capacity of the link connecting the router to the computers. The variable
7 represents the amount of time required for a packet to be processed by a router,
based on the size of the buffer and the capacity of the link. Substituting 7 into the
equations, we write the state space dynamics as

2

dw; c 1+ w; db Z cw; (3.20)
—=-—pc —4 — = —c. .
a b 7 2 )

More sophisticated models can be found in [101, 137]. '
The nominal operating point for the system can be found by setting w; = b = 0:

C U)2 NCU),'
O=E—pc(l+7’), = — —c.

i=1
Exploiting the fact that all of the source dynamics are identical, it follows that all
of the w; should be the same, and it can be shown that there is a unique equilibrium
satisfying the equations
b, ct. 1 3
Wie =+ = 70 W(Pbe) + (pb.) — 1 =0. (3.21)
The solution for the second equation is a bit messy but can easily be determined nu-
merically. A plot of its solution as a function of 1 /(2 pzN 2) is shown in Figure 3.12b.
We also note that at equilibrium we have the following additional equalities:
b. Nuw, W,

Te = — = ) ge = Np. = Npb,, Fe = —. (3:22)
c c Te

Figure 3.13 shows a simulation of 60 sources communicating across a single
link, with 20 sources dropping out at # = 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Note that the buffer size and
window sizes automatically adjust to match the capacity of the link.

A comprehensive treatment of computer networks is given in the textbook by
Tannenbaum [189]. A good presentation of the ideas behind the control principles
for the Internet is given by one of its designers, Van Jacobson,in [108]. F. Kelly [120]
presents an early effort on the analysis of the system. The book by Hellerstein et
al. [97] gives many examples of the use of feedback in computer systems.
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Figure 3.20: Simulation of the predator—prey system. The figure on the left shows a simulation
of the two populations as a function of time. The figure on the right shows the populations
plotted against each other, starting from different values of the population. The oscillation seen
in both figures is an example of a limit cycle. The parameter values used for the simulations
area=3.2,b=0.6,c=50,d =056,k =125andr = 1.6.

Figure 3.20 shows a simulation of the dynamics starting from a set of popu-
lation values near the nonzero equilibrium values. We see that for this choice of
parameters, the simulation predicts an oscillatory population count for each species,
reminiscent of the data shown in Figure 2.6.

Volume I of the two-volume set by J. D. Murray [154] give a broad coverage of
population dynamics.

Exercises

3.1 (Cruise control) Consider the cruise control example described in Section 3.1.
Build a simulation that re-creates the response to a hill shown in Figure 3.3b and
show the effects of increasing and decreasing the mass of the car by 25%. Redesign
the controller (using trial and error is fine) so that it returns to within 1% of the
desired speed within 3 s of encountering the beginning of the hill.

3.2 (Bicycle dynamics) Show that the dynamics of a bicycle frame given by equa-
tion (3.5) can be approximated in state space form as

d [x] _ 0 1 X1 Doy /(bJ)
ar x| = mgnys o | x| T | mognson) | ™
y

:[1 O]x,

where the input u is the steering angle ¢ and the output y is the tilt angle ¢. What
do the states x; and x, represent?

3.3 (Bicycle steering) Combine the bicycle model given by equation (3.5) and the
model for steering kinematics in Example 2.8 to obtain a model that describes the
path of the center of mass of the bicycle.
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3.4 (Operational amplifier circuit) Consider the op amp circuit shown below.

V2
O—AM—T—AM A
R R, Ry

Ry
v G=F VAA/V—AL_O
o
(653 —|— V3
O O

Show that the dynamics can be written in state space form as

1 1 1
— — 0 _
dx RiCi  R.Cy R:C,
Tl R, 1 | x4+ . u, y _[O I]x,
R, R,C R,C»

where u = v; and y = v3. (Hint: Use v, and v3 as your state variables.)

3.5 (Operational amplifier oscillator) The op amp circuit shown below is an imple-
mentation of an oscillator.

(&) Ry C
H " H

Ry = R3 > Ry >
AV AW
+ V2 + V3 + Vi

Show that the dynamics can be written in state space form as

R4
0
dx R R3Cy
= . ,
dt 0

" R,C,

where the state variables represent the voltages across the capacitors x; = v and
X2 = D).

3.6 (Congestion control using RED [138]) A number of improvements can be made
to the model for Internet congestion control presented in Section 3.4. To ensure that
the router’s buffer size remains positive, we can modify the buffer dynamics to
satisfy

@_ISI—CI b1>0

dt sat(o,oo)(sl —c) b =0.

In addition, we can model the drop probability of a packet based on how close we



DynamicBehavior.tex, v1.159 2008/11/28 22:23:00 (murray)

106 CHAPTER 4. DYNAMIC BEHAVIOR

Another simple case is when the dynamics are in the block diagonal form

01 1 0 0
—w] 0] 0 0
dx B ) ] ]
a9 o0 : N L
0 0 On  Op
0 0 —Wy  Op

In this case, the eigenvalues can be shown to be 4; = ¢; & iw;. We once again can
separate the state trajectories into independent solutions for each pair of states, and
the solutions are of the form

)Czj_l(t) = ¢! (x2j_1(0) cosw;t + ij(O) sina)jt),
x2j (1) = €7 (—x2j-1(0) sinw;t + x2;(0) cos w;1),

where j = 1,2, ..., m. We see that this system is asymptotically stable if and only
if 6; = Re 4; < 0.1t is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some systems
can be transformed into these forms via coordinate transformations. One such class
of systems is those for which the dynamics matrix has distinct (nonrepeating)
eigenvalues. In this case there is a matrix T € R"*" such that the matrix T AT ~!
is in (block) diagonal form, with the block diagonal elements corresponding to
the eigenvalues of the original matrix A (see Exercise 4.14). If we choose new
coordinates z = T x, then

dZ . -1
— =Tx=TAx=TAT 'z
dt

and the linear system has a (block) diagonal dynamics matrix. Furthermore, the
eigenvalues of the transformed system are the same as the original system since
if v is an eigenvector of A, then w = Tv can be shown to be an eigenvector of
T AT~'. We can reason about the stability of the original system by noting that
x(t) = T7'z(¢), and so if the transformed system is stable (or asymptotically
stable), then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the stability
of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we make use of the
following theorem, proved in the next chapter:

Theorem 4.1 (Stability of a linear system). The system
dx
dr

is asymptotically stable if and only if all eigenvalues of A all have a strictly negative

real part and is unstable if any eigenvalue of A has a strictly positive real part.

= Ax

Example 4.6 Compartment model
Consider the two-compartment module for drug delivery introduced in Section 3.6.
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Using concentrations as state variables and denoting the state vector by x, the system
dynamics are given by

dx —ko — k1 ki bo [

— = X u, =10 l] X,

dr [ ko k)T o y
where the input u is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measured output y. We wish to

design a feedback control law that maintains a constant output given by y = yj.
We choose an output feedback control law of the form

u=—k(y—yq) +ua,

where u, is the rate of injection required to maintain the desired concentration and
k is a feedback gain that should be chosen such that the closed loop system is stable.
Substituting the control law into the system, we obtain
d_x_ —ko — ki ki — bok
dt ka —k>

y= [0 1]x=:Cx.

]x—l— [%0] ug =: Ax + Buy,

The equilibrium concentration x, € R? is given by x, = —A~!Bu, and
bok

koka + bokak -

Choosing u, such that y, = y,; provides the constant rate of injection required to

maintain the desired output. We can now shift coordinates to place the equilibrium

point at the origin, which yields

dz —ko — ki ki — bok

dr [ ka —ky @

where z = x — x,. We can now apply the results of Theorem 4.1 to determine the

stability of the system. The eigenvalues of the system are given by the roots of the
characteristic polynomial

A(s) = 5% + (ko + ki + ka)s + (koks + bokok).

While the specific form of the roots is messy, it can be shown that the roots are posi-
tive as long as the linear term and the constant term are both positive (Exercise 4.16).
Hence the system is stable for any £ > 0. \%

ye = —CA 'Buy = 4

Stability Analysis via Linear Approximation

An important feature of differential equations is that it is often possible to determine
the local stability of an equilibrium point by approximating the system by a linear
system. The following example illustrates the basic idea.
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Example 4.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dynamics are given by

dr sinx; —yxy |’

where we have defined the state as x = (8, §). We first consider the equilibrium
point at x = (0, 0), corresponding to the straight-up position. If we assume that the
angle # = x; remains small, then we can replace sin x; with x; and cos x; with 1,
which gives the approximate system

dx ) 0 1
= — = . 49
dt [Xl—szl [1 —V]x 9

Intuitively, this system should behave similarly to the more complicated model
as long as x; is small. In particular, it can be verified that the equilibrium point
(0, 0) is unstable by plotting the phase portrait or computing the eigenvalues of the
dynamics matrix in equation (4.9)

We can also approximate the system around the stable equilibrium point at
x = (7,0). In this case we have to expand sinx; and cosx; around x; = =,
according to the expansions

sin(r +60) = —sinf =~ -0, cos(xr +60) = —cos(d) =~ —1.

If we define z; = x; — 7 and z = x», the resulting approximate dynamics are

given by
dz 22 0 1
A = ) 4.10
dt [_ZI_V Zz] [—1 —y]z “-10)

Note that z = (0, 0) is the equilibrium point for this system and that it has the same
basic form as the dynamics shown in Figure 4.8. Figure 4.11 shows the phase por-
traits for the original system and the approximate system around the corresponding
equilibrium points. Note that they are very similar, although not exactly the same.
It can be shown that if a linear approximation has either asymptotically stable or
unstable equilibrium points, then the local stability of the original system must be
the same (Theorem 4.3). \%

More generally, suppose that we have a nonlinear system

dx
— = F(x
T (x)
that has an equilibrium point at x,. Computing the Taylor series expansion of the

vector field, we can write
dx

oF
T F(x,)+ = (x — x.) + higher-order terms in (x — x,).
X

Xe

Since F'(x,) = 0, we can approximate the system by choosing a new state variable
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Differentiation gives the following linear equations for 7 and ¢:
X] =Fcosp —resing, Xy =7 sing +rgcose.
Solving this linear system for 7 and ¢ gives, after some calculation,

d

dt dt
Notice that the equations are decoupled; hence we can analyze the stability of each
state separately.

The equation for r has three equilibria: r = 0,r = 1 and r = —1 (not realiz-
able since r must be positive). We can analyze the stability of these equilibria by
linearizing the radial dynamics with F(r) = r(1 — r?). The corresponding linear
dynamics are given by

dr OF )
= o r=0-=3r)r, r.=0,1,

Te

:I"(]—I"z),

where we have abused notation and used r to represent the deviation from the
equilibrium point. It follows from the sign of (1 — 3r?2) that the equilibrium r = 0
is unstable and the equilibrium r = 1 is asymptotically stable. Thus for any initial
condition » > 0 the solution goes to» = 1 as time goes to infinity, but if the system
starts with r = 0, it will remain at the equilibrium for all times. This implies that
all solutions to the original system that do not start at x; = x, = 0 will approach
the circle x? + x3 = 1 as time increases.

To show the stability of the full solution (4.12), we must investigate the behavior
of neighboring solutions with different initial conditions. We have already shown
that the radius r will approach that of the solution (4.12) as long as r(0) > 0. The
equation for the angle ¢ can be integrated analytically to give ¢ () = —t + ¢(0),
which shows that solutions starting at different angles ¢ will neither converge nor
diverge. Thus, the unit circle is attracting, but the solution (4.12) is only stable, not
asymptotically stable. The behavior of the system is illustrated by the simulation
in Figure 4.12. Notice that the solutions approach the circle rapidly, but that there
is a constant phase shift between the solutions. \%

4.4 Lyapunov Stability Analysis

We now return to the study of the full nonlinear system

D F(), xeR (4.13)
— =F(), x . .
di

Having defined when a solution for a nonlinear dynamical system is stable, we
can now ask how to prove that a given solution is stable, asymptotically stable
or unstable. For physical systems, one can often argue about stability based on
dissipation of energy. The generalization of that technique to arbitrary dynamical
systems is based on the use of Lyapunov functions in place of energy.
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Vx)=c <cj

Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov function V (x) = c. If dx /dt points inward to these
sets at all points along the contour, then the trajectories of the system will always cause V (x)
to decrease along the trajectory.

R" and let V represent the time derivative of V along trajectories of the system
dynamics (4.13):

Let B, = B,(0) be a ball of radius r around the origin. If there exists r > 0 such
that V is positive definite and V is negative semidefinite for all x € B,, then x =0
is locally stable in the sense of Lyapunov. If V is positive definite and V is negative
definite in B,, then x = 0 is locally asymptotically stable.

If V satisfies one of the conditions above, we say that V is a (local) Lyapunov
function for the system. These results have a nice geometric interpretation. The
level curves for a positive definite function are the curves defined by V(x) = ¢,
¢ > 0, and for each c this gives a closed contour, as shown in Figure 4.13. The
condition that V (x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories move to smaller and smaller
values of V and if V is negative definite then x must approach 0.

Example 4.9 Scalar nonlinear system
Consider the scalar nonlinear system

dx 2
dt — 1+x
This system has equilibrium points at x = 1 and x = —2. We consider the equilib-
rium point at x = 1 and rewrite the dynamics using z = x — 1:
dz 2
_ = -2z — 1’
dt 24z

which has an equilibrium point at z = 0. Now consider the candidate Lyapunov
function

1
Vi(z) = Ezz,
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Figure 4.15: Dynamics of a genetic switch. The phase portrait on the left shows that the switch
has three equilibrium points, corresponding to protein A having a concentration greater than,
equal to or less than protein B. The equilibrium point with equal protein concentrations is
unstable, but the other equilibrium points are stable. The simulation on the right shows the
time response of the system starting from two different initial conditions. The initial portion of
the curve corresponds to initial concentrations z(0) = (1, 5) and converges to the equilibrium
where z;, < z.. At time ¢t = 10, the concentrations are perturbed by 42 in z; and —2 in z;,
moving the state into the region of the state space whose solutions converge to the equilibrium
point where z,, < zj,.

point. By construction,
V=w'(PA+ ATP)w + FT(w)Pw + w'PF (w)
=—w'w+ F'(w)Pw + w'PF (0).

Since all terms in F are quadratic or higher order in w, it follows that F7(w)Pw
and w'PF (w) consist of terms that are at least third order in w. Therefore if w
is sufficiently close to zero, then the cubic and higher-order terms will be smaller
than the quadratic terms. Hence, sufficiently close to w = 0, V is negative definite,
allowing us to conclude that these equilibrium points are both stable.

Figure 4.15 shows the phase portrait and time traces for a system with ¢ = 4,
illustrating the bistable nature of the system. When the initial condition starts with
a concentration of protein B greater than that of A, the solution converges to the
equilibrium point at (approximately) (1/u4"~!, u). If A is greater than B, then it
goes to (¢, 1/u"~1). The equilibrium point with z;, = z5, is unstable. \%

More generally, we can investigate what the linear approximation tells about
the stability of a solution to a nonlinear equation. The following theorem gives a
partial answer for the case of stability of an equilibrium point.

Theorem 4.3. Consider the dynamical system (4.15) with F(0) = 0 and F such
that lim || F(x) I/llx]l = Oas ||x|| = O.Ifthe real parts of all eigenvalues of A are
strictly less than zero, then x, = 0 is a locally asymptotically stable equilibrium
point of equation (4.15).

This theorem implies that asymptotic stability of the linear approximation im-
plies local asymptotic stability of the original nonlinear system. The theorem is very



DynamicBehavior.tex, v1.159 2008/11/28 22:23:00 (murray)

126 CHAPTER 4. DYNAMIC BEHAVIOR
= 0
S 5
=
o) a
g o -05
S
ZO -5
-1
0 50 100 150 200 0 50 100 150 200
1
g
=
3 0 0.5
g
O -5
0
0 50 100 150 200 0 50 100 150 200
Time ¢ [s] Time ¢ [s]

Figure 4.20: Simulation of noise cancellation. The top left figure shows the headphone signal
without noise cancellation, and the bottom left figure shows the signal with noise cancellation.
The right figures show the parameters a and b of the filter.

4.6 Further Reading

The field of dynamical systems has a rich literature that characterizes the possi-
ble features of dynamical systems and describes how parametric changes in the
dynamics can lead to topological changes in behavior. Readable introductions to
dynamical systems are given by Strogatz [188] and the highly illustrated text by
Abraham and Shaw [2]. More technical treatments include Andronov, Vitt and
Khaikin [8], Guckenheimer and Holmes [91] and Wiggins [201]. For students with
a strong interest in mechanics, the texts by Arnold [13] and Marsden and Ratiu [147]
provide an elegant approach using tools from differential geometry. Finally, good
treatments of dynamical systems methods in biology are given by Wilson [203]
and Ellner and Guckenheimer [70]. There is a large literature on Lyapunov stability
theory, including the classic texts by Malkin [144], Hahn [94] and Krasovski [128].
We highly recommend the comprehensive treatment by Khalil [123].

Exercises

4.1 (Time-invariant systems) Show that if we have a solution of the differential
equation (4.1) given by x (¢) with initial condition x (¢y) = xo,then X(7) = x(t —1y)
is a solution of the differential equation

dx

T =F®

with initial condition X (0) = x¢, where t =t — 1.

4.2 (Flow in a tank) A cylindrical tank has cross section A m?, effective outlet
area a m” and inflow g;, m?/s. An energy balance shows that the outlet velocity is
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v = +/2gh m/s, where g m/s? is the acceleration of gravity and # is the distance
between the outlet and the water level in the tank (in meters). Show that the system
can be modeled by

dh

1
-V = _%\/E - qua qour = a@‘

dt

Use the parameters A = 0.2,a = 0.01. Simulate the system when the inflow is zero
and the initial level is # = 0.2. Do you expect any difficulties in the simulation?

4.3 (Cruise control) Consider the cruise control system described in Section 3.1.
Generate a phase portrait for the closed loop system on flat ground (6 = 0), in third
gear, using a PI controller (with k, = 0.5 and k; = 0.1), m = 1000 kg and desired
speed 20 m/s. Your system model should include the effects of saturating the input
between O and 1.

4.4 (Lyapunov functions) Consider the second-order system

dx; dx,
I = —axy, T = —bx| — cxy,
where a, b, ¢ > 0. Investigate whether the functions
Vix) = le + lx%, Va(x) = lx% + l(xz + x1)?
2 2 2 2 c—a

are Lyapunov functions for the system and give any conditions that must hold.

4.5 (Damped spring—mass system) Consider a damped spring—mass system with
dynamics
mg +cq + kg = 0.

A natural candidate for a Lyapunov function is the total energy of the system, given
by

1 1
V =-mg*+ ~kq’.
™Ma T gk
Use the Krasovski—Lasalle theorem to show that the system is asymptotically stable.

4.6 (Electric generator) The following simple model for an electric generator con-
nected to a strong power grid was given in Exercise 2.7:

1L b B
dr? m = Fe = dm T Ty SR
The parameter
a= FPoax _ EV (4.25)
P, XP,

is the ratio between the maximum deliverable power Py, = EV /X and the me-
chanical power P,,.

(a) Consider a as a bifurcation parameter and discuss how the equilibria depend
ona.
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(b) For a > 1, show that there is a center at ¢y = arcsin(l/a) and a saddle at
=7 —¢@o.
(c) Show that if P, /J = 1 there is a solution through the saddle that satisfies

2
%@_(f) o+ go—acosp —va:—1=0. (4.26)

Use simulation to show that the stability region is the interior of the area enclosed
by this solution. Investigate what happens if the system is in equilibrium with a
value of a that is slightly larger than 1 and a suddenly decreases, corresponding to
the reactance of the line suddenly increasing.

4.7 (Lyapunov equation) Show that Lyapunov equation (4.14) always has a solution
if all of the eigenvalues of A are in the left half-plane. (Hint: Use the fact that the
Lyapunov equation is linear in P and start with the case where A has distinct
eigenvalues.)

4.8 (Congestion control) Consider the congestion control problem described in Sec-
tion 3.4. Confirm that the equilibrium point for the system is given by equation (3.21)
and compute the stability of this equilibrium point using a linear approximation.

4.9 (Swinging up a pendulum) Consider the inverted pendulum, discussed in Ex-
ample 4.4, that is described by

6 = sin@ + ucosb,
where 6 is the angle between the pendulum and the vertical and the control signal
u is the acceleration of the pivot. Using the energy function
. 1.
V(0,6)=cosd —1+ 592,
show that the state feedback u = k(Vy — V)6 cos 6 causes the pendulum to “swing
up” to the upright position.

4.10 (Root locus diagram) Consider the linear system

de_fo 1 | = [1 0]

a o =3|" I Y= *
with the feedback u = —ky. Plot the location of the eigenvalues as a function the
parameter k.

4.11 (Discrete-time Lyapunov function) Consider a nonlinear discrete-time system
with dynamics x[k 4+ 1] = f(x[k]) and equilibrium point x, = 0. Suppose there
exists a smooth, positive definite function V : R” — Rsuchthat V(f(x))—V(x) <
0 for x # 0 and V(0) = 0. Show that x, = 0 is (locally) asymptotically stable.

4.12 (Operational amplifier oscillator) An op amp circuit for an oscillator was
shown in Exercise 3.5. The oscillatory solution for that linear circuit was stable
but not asymptotically stable. A schematic of a modified circuit that has nonlinear
elements is shown in the figure below.
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a, a,

Ry ﬁz Ry Ry Cll
\ I I ANV \ I I
Ry V2 Ry V3 R, + Vi

The modification is obtained by making a feedback around each operational am-
plifier that has capacitors using multipliers. The signal a, = v? + v3 — vg is the
amplitude error. Show that the system is modeled by

dl)1 R4 1

- = vy + v1(vg — v —3),
dt R1R3C1 Rllcl

dl)2 1 1 2 2 2
—_— == v + v2(vy — 07 — 05).
dt R2C2 ! R22C2 2( 0 ! 2)

Show that the circuit gives an oscillation with a stable limit cycle with amplitude
vg. (Hint: Use the results of Example 4.8.)

4.13 (Self-activating genetic circuit) Consider the dynamics of a genetic circuit that
implements self-activation: the protein produced by the gene is an activator for the
protein, thus stimulating its own production through positive feedback. Using the
models presented in Example 2.13, the dynamics for the system can be written as

dm ap® dp

—_— = —ym, — = — op, 427

7 1—|—kp2+a0 ym 7 pm —dp (4.27)
for p,m > 0. Find the equilibrium points for the system and analyze the local
stability of each using Lyapunov analysis.

4.14 (Diagonal systems) Let A € R"*" be a square matrix with real eigenvalues
A1y ..., A, and corresponding eigenvectors vy, . .., U,.

(a) Show that if the eigenvalues are distinct (1; # A; fori # j), then v; # v; for
i #j.

(b) Show that the eigenvectors form a basis for R” so that any vector x can be
written as x = »_ a;v; for a; € R.

(c) Let T = [v . Dy ... v,,] and show that T~'AT is a diagonal matrix of
the form (4.8).
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Chapter Five

Linear Systems

Few physical elements display truly linear characteristics. For example the relation between
force on a spring and displacement of the spring is always nonlinear to some degree. The
relation between current through a resistor and voltage drop across it also deviates from a
straight-line relation. However, if in each case the relation is reasonably linear, then it will
be found that the system behavior will be very close to that obtained by assuming an ideal,
linear physical element, and the analytical simplification is so enormous that we make linear
assumptions wherever we can possibly do so in good conscience.

Robert H. Cannon, Dynamics of Physical Systems, 1967 [49].

In Chapters 2—4 we considered the construction and analysis of differential
equation models for dynamical systems. In this chapter we specialize our results to
the case of linear, time-invariant input/output systems. Two central concepts are the
matrix exponential and the convolution equation, through which we can completely
characterize the behavior of a linear system. We also describe some properties of
the input/output response and show how to approximate a nonlinear system by a
linear one.

5.1 Basic Definitions

We have seen several instances of linear differential equations in the examples in the
previous chapters, including the spring—mass system (damped oscillator) and the
operational amplifier in the presence of small (nonsaturating) input signals. More
generally, many dynamical systems can be modeled accurately by linear differential
equations. Electrical circuits are one example of a broad class of systems for which
linear models can be used effectively. Linear models are also broadly applicable in
mechanical engineering, for example, as models of small deviations from equilibria
in solid and fluid mechanics. Signal-processing systems, including digital filters of
the sort used in CD and MP3 players, are another source of good examples, although
these are often best modeled in discrete time (as described in more detail in the
exercises).

In many cases, we create systems with a linear input/output response through
the use of feedback. Indeed, it was the desire for linear behavior that led Harold
S. Black to the invention of the negative feedback amplifier. Almost all modern
signal processing systems, whether analog or digital, use feedback to produce linear
or near-linear input/output characteristics. For these systems, it is often useful to
represent the input/output characteristics as linear, ignoring the internal details
required to get that linear response.
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Figure 5.2: Response to piecewise constant inputs. A piecewise constant signal can be rep-
resented as a sum of step signals (a), and the resulting output is the sum of the individual
outputs (b).

posing the responses to a combination of step inputs. Let H (z) be the response to
a unit step applied at time 0. The response to the first step is then H (r — t)u(t),
the response to the second step is H (t — t;)(u(t;) — u(f)), and we find that the
complete response is given by

y(t) = H(t — to)ulto) + H(t — 1)) (u(t)) — u(t0)) + - --
=(H@—1)—HE—n))ul)+ (Ht—1) — H@ —0))u(t) + -

1, <t
= > 0o(H(t = ty) = H(t — t41))u(ty)
n=0
1, <t
— H(t —1t,)— H({t —t,11)
= Z - o u(tn)(tn+1 - tn)-
=0 tn—i—l — 1

An example of this computation is shown in Figure 5.2b.
The response to a continuous input signal is obtained by taking the limit as
th+1 — t, = 0, which gives

y(t) = /0[ H'(t — t)u(zr)dr, (5.5)

where H' is the derivative of the step response, also called the impulse response.
The response of a linear time-invariant system to any input can thus be computed
from the step response. Notice that the output depends only on the input since we
assumed the system was initially at rest, x(0) = 0. We will derive equation (5.5)
in a slightly different way in the Section 5.3.
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A =0 fiwand v = u % iw, which implies that
v+0* v—0"
= > w = —
2 2i
Making use of the matrix exponential, we have

u

eMv = e (u+iw) = ' ((ucoswt — wsinwt) + i (usinwt + w cos ot)),

from which it follows that

1 .
eMy = E(eA’v + eA’v*) = ue’ coswt — we’" sin wt,

eMw = 211( Aty — eA’v*) = ue’’ sinwt + we’’ cos wt.

A solution with initial conditions in the subspace spanned by the real part # and
imaginary part w of the eigenvector will thus remain in that subspace. The solution
will be a logarithmic spiral characterized by ¢ and . We again call the solution
corresponding to 4 a mode of the system, and v the mode shape.

If a matrix A has n distinct eigenvalues 44, ..., 4,, then the initial condition
response can be written as a linear combination of the modes. To see this, suppose
for simplicity that we have all real eigenvalues with corresponding unit eigenvectors
vy, ...,0,. From linear algebra, these eigenvectors are linearly independent, and
we can write the initial condition x (0) as

x(0) = a1v1 + a20z + - - + 0,0,
Using linearity, the initial condition response can be written as
)C(t) = aleiltvl + Otzeiztl)z 4.4 aneintvn‘

Thus, the response is a linear combination of the modes of the system, with the
amplitude of the individual modes growing or decaying as e*’. The case for distinct
complex eigenvalues follows similarly (the case for nondistinct eigenvalues is more
subtle and requires making use of the Jordan form discussed in the previous section).

Example 5.5 Coupled spring—mass system
Consider the spring—mass system shown in Figure 5.4, but with the addition of
dampers on each mass. The equations of motion of the system are

migy = —2kq1 — c¢q1 + kqa, maqy = kqi — 2kqa — cqa.

In state space form, we define the state tobe x = (g1, ¢2, ¢1, §2),and we can rewrite
the equations as

0 0 1 0
0 0 0 1

d

dt m m m
k 2k c
- 0 ==
m m mJ
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We now define a transformation z = 7'x that puts this system into a simpler form.
Let z1 = 3(q1 4+ 92), 22 = 21,23 = 3(q1 — ¢2) and z4 = Z3, so that

1 1 0 O
rfjo o 1 1
c=Tx=511 10 o
0O 0 1 -1
In the new coordinates, the dynamics become
0 1 0
k c 0 0
dz _ m m
a—|lo o o 1]°
3k c
0 o -— —
L m m P

and we see that the system is in block diagonal (or modal) form.

In the z coordinates, the states z; and z, parameterize one mode with eigen-
values 2 &~ ¢/(2vkm) % i/k/m, and the states z3 and z4 another mode with
A = ¢/(2+/3km) £ i /3k/m. From the form of the transformation 7" we see that
these modes correspond exactly to the modes in Figure 5.4, in which ¢, and g, move
either toward or against each other. The real and imaginary parts of the eigenvalues
give the decay rates o and frequencies w for each mode. \%

5.3 Input/Output Response

In the previous section we saw how to compute the initial condition response using
the matrix exponential. In this section we derive the convolution equation, which
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (5.3), repeated here:

d
d—: = Ax + Bu, y =Cx + Du. (5.13)

Using the matrix exponential, the solution to equation (5.13) can be written as
follows.

Theorem 5.4. The solution to the linear differential equation (5.13) is given by
t
x(1) = eMx(0) + / e Bu(r)dr. (5.14)
0

Proof. To prove this, we differentiate both sides and use the property (5.8) of the
matrix exponential. This gives
dx

13
o= Ae?x(0) +/ A" Bu(t)dr + Bu(t) = Ax + Bu,
0
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Figure 5.6: Pulse response and impulse response. (a) The rectangles show pulses of width
5, 2.5 and 0.8, each with total area equal to 1. The arrow denotes an impulse () defined
by equation (5.17). The corresponding pulse responses for a linear system with eigenvalues
A = {—0.08, —0.62} are shown in (b) as dashed lines. The solid line is the true impulse
response, which is well approximated by a pulse of duration 0.8.

which proves the result. Notice that the calculation is essentially the same as for
proving the result for a first-order equation. O

It follows from equations (5.13) and (5.14) that the input/output relation for a
linear system is given by

y(t) = Ce™x(0) + /I Ce™' =" Bu(r)dt + Du(r). (5.15)
0

It is easy to see from this equation that the output is jointly linear in both the
initial conditions and the input, which follows from the linearity of matrix/vector
multiplication and integration.

Equation (5.15) is called the convolution equation, and it represents the general
form of the solution of a system of coupled linear differential equations. We see
immediately that the dynamics of the system, as characterized by the matrix A, play
acritical role in both the stability and performance of the system. Indeed, the matrix
exponential describes both what happens when we perturb the initial condition and
how the system responds to inputs.

Another interpretation of the convolution equation can be given using the concept
of the impulse response of a system. Consider the application of an input signal
u(t) given by the following equation:

0 t <0
u(t) =p(t)y=11/e 0<t<e (5.16)
0 t>e.

This signal is a pulse of duration € and amplitude 1/¢, as illustrated in Figure 5.6a.
We define an impulse 6(t) to be the limit of this signal as € — 0:

3(1) = lim p(1). (5.17)
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In state space form, we define the state tobe x = (¢q1, ¢2, 41, ¢2),and we can rewrite
the equations as

0

0 0 0 1 8
dx 2k k c
—=|-— - —— 0 |x+]10]u
dt m m m

ko 2% c k

B ¢ N m

L m m m

This is a coupled set of four differential equations and is quite complicated to solve
in analytical form.

The dynamics matrix is the same as in Example 5.5, and we can use the coor-
dinate transformation defined there to put the system in modal form:

[ 0 1 0 0 ) 0
k
ke o k.
dz_ m m 2m
a“=lo o o 1 |*T| o |
3k c k
0 0O -—— —— -
m m 2m

Note that the resulting matrix equations are block diagonal and hence decoupled.
We can solve for the solutions by computing the solutions of two sets of second-
order systems represented by the states (z;, z2) and (z3, z4). Indeed, the functional
form of each set of equations is identical to that of a single spring—mass system.
(The explicit solution is derived in Section 6.3.)

Once we have solved the two sets of independent second-order equations, we
can recover the dynamics in the original coordinates by inverting the state transfor-
mation and writing x = 7~'z. We can also determine the stability of the system
by looking at the stability of the independent second-order systems. \%

Steady-State Response

Given a linear input/output system

d
d_’;:Ax+Bu, y =Cx + Du, (5.21)

the general form of the solution to equation (5.21) is given by the convolution
equation:

t
y(t) = Cex(0) +/ Ce "= Bu(r)dt + Du(r).
0

We see from the form of this equation that the solution consists of an initial condition
response and an input response.

The input response, corresponding to the last two terms in the equation above,
itself consists of two components—the transient response and the steady-state
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Figure 5.11: Response of a linear system to a sinusoid. (a) A sinusoidal input of magnitude
A, (dashed) gives a sinusoidal output of magnitude A, (solid), delayed by AT seconds. (b)
Frequency response, showing gain and phase. The gain is given by the ratio of the output
amplitude to the input amplitude, M = A, /A, . The phase lag is given by 0 = —27 AT/T;
it is negative for the case shown because the output lags the input.

A convenient way to view the frequency response is to plot how the gain and
phase in equation (5.24) depend on @ (through s = iw). Figure 5.11b shows an
example of this type of representation.

Example 5.8 Active band-pass filter
Consider the op amp circuit shown in Figure 5.12a. We can derive the dynamics of
the system by writing the nodal equations, which state that the sum of the currents

at any node must be zero. Assuming that o_ = v, = 0, as we did in Section 3.3,
we have 0_1)1—1)2 Cd1)2 O_Cd02+v3+cdv3
TR Vdr TV TR T

Choosing v, and v3 as our states and using these equations, we obtain
dv, v —02 dos —03 V] — U

dt ~ RC,  dt R.C» RC,

Rewriting these in linear state space form, we obtain

1 1
dx " R,.C 0 R,C
. 1€ 1Cy _
—= B it E [0 1] X, (525)
RC R,C» R,C,

where x = (v, v3),u = vy and y = v3.
The frequency response for the system can be computed using equation (5.24):
R2 R1 C1 N
" Ri (14 RiC15)(1 + RyCas)’
The magnitude and phase are plotted in Figure 5.12b for Ry = 100 Q, R, = 5 kQ
and C; = C, = 100 uF. We see that the circuit passes through signals with

s =1iw.

M/’ =C(sI — A 'B+D =
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Figure 5.12: Active band-pass filter. The circuit diagram (a) shows an op amp with two RC
filters arranged to provide a band-pass filter. The plot in (b) shows the gain and phase of the
filter as a function of frequency. Note that the phase starts at -90° due to the negative gain of
the operational amplifier.

frequencies at about 10 rad/s, but attenuates frequencies below 5 rad/s and above
50 rad/s. At 0.1 rad/s the input signal is attenuated by 20x (0.05). This type of
circuit is called a band-pass filter since it passes through signals in the band of
frequencies between 5 and 50 rad/s. \%

As in the case of the step response, a number of standard properties are defined
for frequency responses. The gain of a system at w = 0 is called the zero frequency
gain and corresponds to the ratio between a constant input and the steady output:

My=—-CA™'B+ D.

The zero frequency gain is well defined only if A is invertible (and, in particular, if
it does not have eigenvalues at 0). It is also important to note that the zero frequency
gain is a relevant quantity only when a system is stable about the corresponding
equilibrium point. So, if we apply a constant input # = r, then the corresponding
equilibrium point x, = —A~!Br must be stable in order to talk about the zero
frequency gain. (In electrical engineering, the zero frequency gain is often called
the DC gain. DC stands for direct current and reflects the common separation of
signals in electrical engineering into a direct current (zero frequency) term and an
alternating current (AC) term.)

The bandwidth wy, of a system is the frequency range over which the gain has
decreased by no more than a factor of 1/+/2 from its reference value. For systems
with nonzero, finite zero frequency gain, the bandwidth is the frequency where
the gain has decreased by 1/+/2 from the zero frequency gain. For systems that
attenuate low frequencies but pass through high frequencies, the reference gain
is taken as the high-frequency gain. For a system such as the band-pass filter in
Example 5.8, bandwidth is defined as the range of frequencies where the gain is
larger than 1/+/2 of the gain at the center of the band. (For Example 5.8 this would
give a bandwidth of approximately 50 rad/s.)
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(a) AFM block diagram (b) Frequency response

Figure 5.13: AFM frequency response. (a) A block diagram for the vertical dynamics of an
atomic force microscope in contact mode. The plot in (b) shows the gain and phase for the
piezo stack. The response contains two frequency peaks at resonances of the system, along
with an antiresonance at @ = 268 krad/s. The combination of a resonant peak followed by
an antiresonance is common for systems with multiple lightly damped modes.

Another important property of the frequency response is the resonant peak
M, , the largest value of the frequency response, and the peak frequency w,,, , the
frequency where the maximum occurs. These two properties describe the frequency
of the sinusoidal input that produces the largest possible output and the gain at the
frequency.

Example 5.9 Atomic force microscope in contact mode

Consider the model for the vertical dynamics of the atomic force microscope in
contact mode, discussed in Section 3.5. The basic dynamics are given by equa-
tion (3.23). The piezo stack can be modeled by a second-order system with un-
damped natural frequency ws and damping ratio (3. The dynamics are then de-
scribed by the linear system

0 1 0 0 0
dx | =ka/(mi+my) —ca/(mi+my) 1/my 0 i+ 0
dt - 0 0 0 w3 0
0 0 —3 —2(3603 w3
o miks micy
y= 1 O] X,
my+my Umy+my my+mp

where the input signal is the drive signal to the amplifier and the output is the elon-
gation of the piezo. The frequency response of the system is shown in Figure 5.13b.
The zero frequency gain of the system is My = 1. There are two resonant poles with
peaks M,; = 2.12 at w,,,; = 238 krad/s and M,, = 4.29 at w,,,» = 746 krad/s.
The bandwidth of the system, defined as the lowest frequency where the gain is
V/2 less than the zero frequency gain, is w, = 292 krad/s. There is also a dip in
the gain M, = 0.556 for w,,; = 268 krad/s. This dip, called an antiresonance, is
associated with a dip in the phase and limits the performance when the system is
controlled by simple controllers, as we will see in Chapter 10. \%
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Sampling

It is often convenient to use both differential and difference equations in modeling
and control. For linear systems it is straightforward to transform from one to the
other. Consider the general linear system described by equation (5.13) and assume
that the control signal is constant over a sampling interval of constant length 4. It
follows from equation (5.14) of Theorem 5.4 that

t+h
x(t +h) =eMx(@t) + / A= By (k) dt = Ox(t) + Tu(t), (5.26)

where we have assumed that the discontinuous control signal is continuous from
the right. The behavior of the system at the sampling times ¢ = k#/ is described by
the difference equation

xlk + 1] = Ox[k] + Tulk], ylk] = Cx[k] 4+ Dulk]. (5.27)

Notice that the difference equation (5.27) is an exact representation of the behavior
of the system at the sampling instants. Similar expressions can also be obtained if
the control signal is linear over the sampling interval.

The transformation from (5.26) to (5.27) is called sampling. The relations be-
tween the system matrices in the continuous and sampled representations are as
follows:

h h
1 -1
D = M, r:(/ eASds)B; A= log®, B=(/ eA’dt) r.
0 0

(5.28)
Notice that if A is invertible, we have

I=A"(e—-1).

All continuous-time systems can be sampled to obtain a discrete-time version,
but there are discrete-time systems that do not have a continuous-time equivalent.
The precise condition is that the matrix ® cannot have real eigenvalues on the
negative real axis.

Example 5.10 IBM Lotus server
In Example 2.4 we described how the dynamics of an IBM Lotus server were
obtained as the discrete-time system

ylk + 1] = ay[k] + bulk],

where a = 0.43, b = 0.47 and the sampling period is 4 = 60 s. A differential
equation model is needed if we would like to design control systems based on
continuous-time theory. Such a model is obtained by applying equation (5.28);

hence | N 1
A= Oia — 00141, B= (/ o dt) b =0.0116,
0

and we find that the difference equation can be interpreted as a sampled version of
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described in Gardner and Barnes [81]. Use of the matrix exponential started with
developments of control theory in the 1960s, strongly stimulated by a textbook by
Zadeh and Desoer [207]. Use of matrix techniques expanded rapidly when the pow-
erful methods of numeric linear algebra were packaged in programs like LabVIEW,
MATLAB and Mathematica.

Exercises

5.1 (Response to the derivative of a signal) Show that if y(¢) is the output of a
linear system corresponding to input u(#), then the output corresponding to an
input u(z) is given by y(¢). (Hint: Use the definition of the derivative: y(¢) =
limeo (y(t +€) = y(0)) /€.)

5.2 (Impulse response and convolution) Show that a signal u(7) can be decomposed
in terms of the impulse function d(¢) as

u(t) = /Ot ot —t)u(r)dr

and use this decomposition plus the principle of superposition to show that the
response of a linear system to an input u(¢) (assuming a zero initial condition) can
be written as

t
Y0 = [ he = ouydr,
0
where h(t) is the impulse response of the system.

5.3 (Pulse response for a compartment model) Consider the compartment model
given in Example 5.7. Compute the step response for the system and compare it
with Figure 5.10b. Use the principle of superposition to compute the response to
the 5 s pulse input shown in Figure 5.10c. Use the parameter values ky = 0.1,
ki =0.1,k;, =0.5and by = 1.5.

5.4 (Matrix exponential for second-order system) Assume that ¢ < 1 and let w; =
wo+/1 — 2. Show that

—Cwy oy ] B [e‘f‘”o’coswdt e~ gin wyt

ex _ . . )
P —wg —(wo —e ¢ sinyt e ¢ cos wyt

5.5 (Lyapunov function for a linear system) Consider a linear system x = Ax with
Re 4; < O for all eigenvalues 4 ; of the matrix A. Show that the matrix

© T
P=/ et T Qe dt
0

defines a Lyapunov function of the form V (x) = x Px.

5.6 (Nondiagonal Jordan form) Consider a linear system with a Jordan form that is
non-diagonal.
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(a) Prove Proposition 5.3 by showing that if the system contains a real eigenvalue
A = 0 with a nontrivial Jordan block, then there exists an initial condition with a
solution that grows in time.

(b) Extend this argument to the case of complex eigenvalues with Re 4 = 0 by @
using the block Jordan form

0 w 1 0
- 0 0 1
=10 0 0 o
0 0 —w 0

5.7 (Rise time for a first-order system) Consider a first-order system of the form

dx n
7T — = —X u, = X.
di Y

We say that the parameter 7 is the time constant for the system since the zero input
system approaches the origin as e~/ . For a first-order system of this form, show
that the rise time for a step response of the system is approximately 27, and that
1%, 2%, and 5% settling times approximately corresponds to 4.67, 47 and 37.

5.8 (Discrete-time systems) Consider a linear discrete-time system of the form

x[k 4+ 1] = Ax[k] + Bul[k], y[k] = Cx[k] 4+ Dulk].

(a) Show that the general form of the output of a discrete-time linear system is
given by the discrete-time convolution equation:

k—1
ylk] = CA*x[0] 4+ D" CA*/~'Bu[j] + Dulk].

j=0
(b) Show that a discrete-time linear system is asymptotically stable if and only if
all the eigenvalues of A have a magnitude strictly less than 1.

(c) Let u[k] = sin(wk) represent an oscillatory input with frequency @ < 7 (to
avoid “aliasing”). Show that the steady-state component of the response has gain
M and phase 6, where

Me'"’ = C(“I — A)~'B+ D.

(d) Show that if we have a nonlinear discrete-time system
x[k] = f(x[k],ulk]), x[k]eR", u eR,
ylk] = h(x[k], ulk]), yeR,

then we can linearize the system around an equilibrium point (x,, u,) by defining
the matrices A, B, C and D as in equation (5.34).
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5.9 (Keynesian economics) Consider the following simple Keynesian macroeco-
nomic model in the form of a linear discrete-time system discussed in Exercise 5.8:

Clt+ 1] Clr] Gl
It +1] ab b ab 1[¢] ab 1
Y[t] = C[t] + I[t] + G[1].

Determine the eigenvalues of the dynamics matrix. When are the magnitudes of
the eigenvalues less than 1? Assume that the system is in equilibrium with constant
values capital spending C, investment / and government expenditure G. Explore
what happens when government expenditure increases by 10%. Use the values
a=025and b =0.5.

5.10 Consider a scalar system

dx i s
— =1—-x"+u.
dt

Compute the equilibrium points for the unforced system (v = 0) and use a Taylor
series expansion around the equilibrium point to compute the linearization. Verify
that this agrees with the linearization in equation (5.33).

5.11 (Transcriptional regulation) Consider the dynamics of a genetic circuit that im-
plements self-repression: the protein produced by a gene is a repressor for that gene,
thus restricting its own production. Using the models presented in Example 2.13,
the dynamics for the system can be written as

dm o p

—_— = — = pm —op, 540

dt 1+ kp? dt b P (540)
where u is a disturbance term that affects RNA transcription and m, p > 0. Find
the equilibrium points for the system and use the linearized dynamics around each
equilibrium point to determine the local stability of the equilibrium point and the
step response of the system to a disturbance.

+oo—ym—u,
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Figure 6.1b shows a sample trajectory bringing the system to the origin. Note
that if we steer the system to an equilibrium point, it is possible to remain there
indefinitely (since x; = 0 when x, = 0), but if we go to any other point in the state
space, we can pass through the point only in a transient fashion. \%

To find general conditions under which a linear system is reachable, we will
first give a heuristic argument based on formal calculations with impulse functions.
We note that if we can reach all points in the state space through some choice of
input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system to an input u(z) is given
by

x(1) = / eI Bu(t) dr. (6.2)
0

If we choose the input to be a impulse function d(¢) as defined in Section 5.3, the

state becomes

! d
xs= [ e*“"DBi(r)dr = s _ pap,
d
0 t

(Note that the state changes instantaneously in response to the impulse.) We can
find the response to the derivative of an impulse function by taking the derivative
of the impulse response (Exercise 5.1):

. dX5

X5 = E = A€AtB.

Continuing this process and using the linearity of the system, the input
u(t) = a10(t) + 028(t) + 030(t) + - - - + 0,0 V()
gives the state
x(t) = 01" B + a2 Ae™ B + a3 A’ B+ - - - + a, A" e’ B.
Taking the limit as ¢t goes to zero through positive values, we get

lim x(¢r) = a;B + a2 AB + a3 A*B + - - + a, A" ' B.
t—0+
On the right is a linear combination of the columns of the matrix
W, = [B AB ... A"—IB]. (6.3)

To reach an arbitrary point in the state space, we thus require that there are n linear
independent columns of the matrix W,. The matrix W, is called the reachability
matrix.

An input consisting of a sum of impulse functions and their derivatives is a very
violent signal. To see that an arbitrary point can be reached with smoother signals
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Figure 6.6: State feedback control of a steering system. Step responses obtained with con-
trollers designed with ¢, = 0.7 and w. = 0.5, 1 and 2 [rad/s] are shown in (a). Notice that
response speed increases with increasing w,, but that large w, also give large initial control
actions. Step responses obtained with a controller designed with v, = 1 and ¢, = 0.5,0.7
and 1 are shown in (b).

The step responses for the closed loop system for different values of the design
parameters are shown in Figure 6.6. The effect of w, is shown in Figure 6.6a, which
shows that the response speed increases with increasing w.. The responses for
w. = 0.5 and 1 have reasonable overshoot. The settling time is about 15 car lengths
for w. = 0.5 (beyond the end of the plot) and decreases to about 6 car lengths for
w. = 1. The control signal ¢ is large initially and goes to zero as time increases
because the closed loop dynamics have an integrator. The initial value of the control
signal is #(0) = k, = w?r, and thus the achievable response time is limited by the
available actuator signal. Notice in particular the dramatic increase in control signal
when @, changes from 1 to 2. The effect of ¢ is shown in Figure 6.6b. The response
speed and the overshoot increase with decreasing damping. Using these plots, we
conclude that reasonable values of the design parameters are to have o, in the range
of 0.5to 1 and ¢, = 0.7. \%

The example of the vehicle steering system illustrates how state feedback can
be used to set the eigenvalues of a closed loop system to arbitrary values.

State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the parameters of the system are
the coefficients of the characteristic polynomial. It is therefore natural to consider
systems in this form when solving the eigenvalue assignment problem.
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To have zero frequency gain equal to unity, the parameter k, should be chosen

as
_aptky Pn
b, b,

k (6.19)
Notice that it is essential to know the precise values of parameters a, and b, in order
to obtain the correct zero frequency gain. The zero frequency gain is thus obtained
by precise calibration. This is very different from obtaining the correct steady-state
value by integral action, which we shall see in later sections.

Eigenvalue Assignment

We have seen through the examples how feedback can be used to design the dy-
namics of a system through assignment of its eigenvalues. To solve the problem in
the general case, we simply change coordinates so that the system is in reachable
canonical form. Consider the system

dx

i Ax + Bu, y=Cx + Du. (6.20)
We can change the coordinates by a linear transformation z = Tx so that the
transformed system is in reachable canonical form (6.15). For such a system the
feedback is given by equation (6.16), where the coefficients are given by equa-
tion (6.18). Transforming back to the original coordinates gives the feedback

u=—-Kz+kr=—KTx+kr.
The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedback). Consider the system
given by equation (6.20), with one input and one output. Let A(s) = s" +a;s"~' +
<-4 ay,_18 + a, be the characteristic polynomial of A. If the system is reachable,
then there exists a feedback

u=—Kx+kr
that gives a closed loop system with the characteristic polynomial
ps)=s"+pis" 4 4 pais + pa
and unity zero frequency gain between r and y. The feedback gain is given by
K=KRT=[p-a m-a - pi=a)| MW", 621

where a; are the coefficients of the characteristic polynomial of the matrix A and
the matrices W, and W, are given by
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I a a - ap -
O 1 a - ay_
W, = [B AB - A"—‘B], W, =
0 O 1 a
0O 0 O 1

The reference gain is given by
kr =—1/(C(A—BK) 'B).

For simple problems, the eigenvalue assignment problem can be solved by
introducing the elements k; of K as unknown variables. We then compute the
characteristic polynomial

A(s) =det(s] — A+ BK)

and equate coefficients of equal powers of s to the coefficients of the desired char-
acteristic polynomial

p)=s"4+pis" N+ pais + pa

This gives a system of linear equations to determine ;. The equations can always
be solved if the system is reachable, exactly as we did in Example 6.4.

Equation (6.21), which is called Ackermann’s formula [3, 4], can be used for
numeric computations. It is implemented in the MATLAB function acker. The
MATLAB function place is preferable for systems of high order because it is
better conditioned numerically.

Example 6.5 Predator—prey

Consider the problem of regulating the population of an ecosystem by modulating
the food supply. We use the predator—prey model introduced in Section 3.7. The
dynamics for the system are given by

dH H aHL
—=r+uwH(|l-—)— H >0,

dt k c+H’ -
dL aHL

—=5b —dL, L >0.

dt c+H

We choose the following nominal parameters for the system, which correspond to
the values used in previous simulations:

a=32, b=0.6, =350,
d=056, k=125 r=1.6.

We take the parameter r, corresponding to the growth rate for hares, as the input to
the system, which we might modulate by controlling a food source for the hares.
This is reflected in our model by the term (r + ) in the first equation. We choose
the number of lynxes as the output of our system.

To control this system, we first linearize the system around the equilibrium
point of the system (H,, L,), which can be determined numerically to be x, &~
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Figure 6.7: Simulation results for the controlled predator—prey system. The population of
lynxes and hares as a function of time is shown in (a), and a phase portrait for the controlled
system is shown in (b). Feedback is used to make the population stable at H, = 20.6 and
L, =20.

6.3 State Feedback Design

The location of the eigenvalues determines the behavior of the closed loop dynam-
ics, and hence where we place the eigenvalues is the main design decision to be
made. As with all other feedback design problems, there are trade-offs among the
magnitude of the control inputs, the robustness of the system to perturbations and
the closed loop performance of the system. In this section we examine some of
these trade-offs starting with the special case of second-order systems.

Second-Order Systems

One class of systems that occurs frequently in the analysis and design of feedback
systems is second-order linear differential equations. Because of their ubiquitous
nature, it is useful to apply the concepts of this chapter to that specific class of
systems and build more intuition about the relationship between stability and per-
formance.

The canonical second-order system is a differential equation of the form

G +20o0g +wiq = kogu, ¥ =q. (6.22)
In state space form, this system can be represented as
dx 0 o 0
== [_wo _2Cw0]x+ [kw()]u, y = [1 O]x. (6.23)

The eigenvalues of this system are given by

A= —{ o + \ a)(z)(é:2 - 1)9

and we see that the origin is a stable equilibrium point if wy > 0 and ¢ > 0. Note
that the eigenvalues are complex if ¢ < 1 and real otherwise. Equations (6.22)
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and (6.23) can be used to describe many second-order systems, including damped
oscillators, active filters and flexible structures, as shown in the examples below.

The form of the solution depends on the value of ¢, which is referred to as the
damping ratio for the system. If ¢ > 1, we say that the system is overdamped, and
the natural response (# = 0) of the system is given by

Bxio+x20 _,, _0X0 +xzoe_/;t
p—a p—a ’
where a = wo(C ++/¢? — 1) and f = wo(¢ — /%> — 1). We see that the response

consists of the sum of two exponentially decaying signals. If & = 1, then the system
is critically damped and solution becomes

y(t) = ™" (x10 + (x20 + Cwox10)1).

Note that this is still asymptotically stable as long as wy > 0, although the second
term in the solution is increasing with time (but more slowly than the decaying
exponential that is multiplying it).

Finally,if O < ¢ < 1, then the solution is oscillatory and equation (6.22) is said
to be underdamped. The parameter wy is referred to as the natural frequency of the
system, stemming from the fact that for small ¢, the eigenvalues of the system are
approximately 4 = —¢wy £ jwp. The natural response of the system is given by

y(t) =

y(t) = e ¢! (xw cos wyt + (@xlo + szo) sin a)dt) ,
(OF] (00%]

where w; = wo+/1 — ¢? is called the damped frequency. For ¢ < 1, wg =~ wy
defines the oscillation frequency of the solution and ¢ gives the damping rate relative
to wy.

Because of the simple form of a second-order system, it is possible to solve
for the step and frequency responses in analytical form. The solution for the step
response depends on the magnitude of ¢:

y(t) = k(l — e <" cos wyt — c<1;

C —wot
— sinwgt |,
V1=72 )
y&) =k(1—e ™1 +wr)), ¢=1;

1 2
N=kl1-= _( { 1) —aot ((—A/P=1)
y(1) ( 7= +1)e

1 _ /72—
151 bv=tal) RN ”) > >
where we have taken x(0) = 0. Note that for the lightly damped case (¢ < 1) we
have an oscillatory solution at frequency ;.

Step responses of systems with k£ = 1 and different values of ¢ are shown in
Figure 6.8. The shape of the response is determined by ¢, and the speed of the
response is determined by @y (included in the time axis scaling): the response is
faster if wy is larger.

(6.24)
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Figure 6.8: Step response for a second-order system. Normalized step responses 4 for the
system (6.23) for ¢ =0,0.4,0.7, 1 and 1.2. As the damping ratio is increased, the rise time
of the system gets longer, but there is less overshoot. The horizontal axis is in scaled units
wot; higher values of @y result in a faster response (rise time and settling time).

In addition to the explicit form of the solution, we can also compute the properties
of the step response that were defined in Section 5.3. For example, to compute the
maximum overshoot for an underdamped system, we rewrite the output as

1
YO =k\ 1= e sin(at +o) ). (6.25)
—¢

where ¢ = arccos . The maximum overshoot will occur at the first time in which
the derivative of y is zero, which can be shown to be

M, = e /N 1=,

Similar computations can be done for the other characteristics of a step response.
Table 6.1 summarizes the calculations.
The frequency response for a second-order system can also be computed ex-

Table 6.1: Properties of the step response for a second-order system with 0 < ¢ < 1.

Property Value =05 ¢=1//2 ¢=1
Steady-state value & k k k

Rise time T, =1/wy -e?”’ ¢ 1.8/ 2.2/wy 2.7/wo
Overshoot M, =7 N=E 169 4% 0%

Settling time 2%) T, ~ 4/¢ay 8.0/wy 5.9/ 5.8/
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for a complex eigenvalue 4 to be

B —Re 4
|4]

We say that a complex conjugate pair of eigenvalues 4, A* is a dominant pair if it
has the lowest damping ratio compared with all other eigenvalues of the system.

Assuming that a system is stable, the dominant pair of eigenvalues tends to be
the most important element of the response. To see this, assume that we have a
system in Jordan form with a simple Jordan block corresponding to the dominant
pair of eigenvalues:

%_ J

Bu, =Cz.
I Z+ Bu y Z

Jk

(Note that the state z may be complex because of the Jordan transformation.) The
response of the system will be a linear combination of the responses from each
of the individual Jordan subsystems. As we see from Figure 6.8, for ¢ < 1 the
subsystem with the slowest response is precisely the one with the smallest damping
ratio. Hence, when we add the responses from each of the individual subsystems,
it is the dominant pair of eigenvalues that will be the primary factor after the initial
transients due to the other terms in the solution die out. While this simple analysis
does not always hold (e.g., if some nondominant terms have larger coefficients
because of the particular form of the system), it is often the case that the dominant
eigenvalues determine the (step) response of the system.

The only formal requirement for eigenvalue assignment is that the system be
reachable. In practice there are many other constraints because the selection of
eigenvalues has a strong effect on the magnitude and rate of change of the control
signal. Large eigenvalues will in general require large control signals as well as
fast changes of the signals. The capability of the actuators will therefore impose
constraints on the possible location of closed loop eigenvalues. These issues will
be discussed in depth in Chapters 11 and 12.

We illustrate some of the main ideas using the balance system as an example.

Example 6.7 Balance system
Consider the problem of stabilizing a balance system, whose dynamics were given
in Example 6.2. The dynamics are given by

0 0 1 0
B 0 0 0 1
|0 mPg/u —chi/u =y ddm/u |’ Jt/,“ ’
0 Mmgl/u —clm/p  —yM/p Im/u

where M, = M 4+ m, J, = J +ml*, u = M,J, — m?I* and we have left ¢ and y
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nonzero. We use the following parameters for the system (corresponding roughly
to a human being balanced on a stabilizing cart):

M =10 kg, m = 80 kg, ¢ =0.1 Ns/m,

- g = 9.8 m/s>.
J =100 kg m~/s", [=1m, y =001 Nms,

The eigenvalues of the open loop dynamics are givenby A ~ 0,4.7, —1.94+2.7i.
We have verified already in Example 6.2 that the system is reachable, and hence
we can use state feedback to stabilize the system and provide a desired level of
performance.

To decide where to place the closed loop eigenvalues, we note that the closed
loop dynamics will roughly consist of two components: a set of fast dynamics
that stabilize the pendulum in the inverted position and a set of slower dynamics
that control the position of the cart. For the fast dynamics, we look to the natural
period of the pendulum (in the hanging-down position), which is given by wy =
Vmgl/(J + ml?) =~ 2.1 rad/s. To provide a fast response we choose a damping ratio
of ¢ = 0.5 and try to place the first pair of eigenvalues at 11, ~ —{wy £ wy ~
—1 4 2i, where we have used the approximation that /1 — ¢2 & 1. For the slow
dynamics, we choose the damping ratio to be 0.7 to provide a small overshoot and
choose the natural frequency to be 0.5 to give a rise time of approximately 5 s. This
gives eigenvalues A3 4 = —0.35 £ 0.35:.

The controller consists of a feedback on the state and a feedforward gain for the
reference input. The feedback gain is given by

K = [—15.6 1730 —50.1 443],

which can be computed using Theorem 6.3 or using the MATLAB place com-
mand. The feedforward gain is k, = —1/(C(A — BK)™'B) = —15.5. The step
response for the resulting controller (applied to the linearized system) is given in
Figure 6.11a. While the step response gives the desired characteristics, the input
required (bottom left) is excessively large, almost three times the force of gravity
at its peak.

To provide a more realistic response, we can redesign the controller to have
slower dynamics. We see that the peak of the input force occurs on the fast time scale,
and hence we choose to slow this down by a factor of 3, leaving the damping ratio
unchanged. We also slow down the second set of eigenvalues, with the intuition that
we should move the position of the cart more slowly than we stabilize the pendulum
dynamics. Leaving the damping ratio for the slow dynamics unchanged at 0.7 and
changing the frequency to 1 (corresponding to a rise time of approximately 10 s),
the desired eigenvalues become

A ={—-0.33 +£0.66i, —0.18 £ 0.18i}.

The performance of the resulting controller is shown in Figure 6.11b. \Y%

As we see from this example, it can be difficult to determine where to place
the eigenvalues using state feedback. This is one of the principal limitations of this
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6.2 (Reachability from nonzero initial state) Extend the argument in Section 6.1 to
show that if a system is reachable from an initial state of zero, it is reachable from
a nonzero initial state.

6.3 (Unreachable systems) Consider the system shown in Figure 6.3. Write the
dynamics of the two systems as

9 _ ar4 B B
— = Ax u, —_— = u.
dt dt ¢

If x and z have the same initial condition, they will always have the same state
regardless of the input that is applied. Show that this violates the definition of
reachability and further show that the reachability matrix W, is not full rank.

6.4 (Integral feedback for rejecting constant disturbances) Consider a linear system
of the form

dx
E:Ax+Bu+Fd, y=Cx

where u is a scalar and d is a disturbance that enters the system through a disturbance
vector F' € R". Assume that the matrix A is invertible and the zero frequency gain
C A~!'B is nonzero. Show that integral feedback can be used to compensate for a
constant disturbance by giving zero steady-state output error even when d # 0.

6.5 (Rear-steered bicycle) A simple model for a bicycle was given by equation (3.5)
in Section 3.2. A model for a bicycle with rear-wheel steering is obtained by re-
versing the sign of the velocity in the model. Determine the conditions under which
this systems is reachable and explain any situations in which the system is not
reachable.

6.6 (Characteristic polynomial for reachable canonical form) Show that the char-
acteristic polynomial for a system in reachable canonical form is given by equa-
tion (6.7) and that

d"zx d" 1z dz d"*u
drm +a1 +"‘+an—l_+anZk:

dtn=1 dt din=k’
where z; is the kth state.

6.7 (Reachability matrix for reachable canonical form) Consider a system in reach-
able canonical form. Show that the inverse of the reachability matrix is given by

(1 ay a -+ a, )
l ap an—1
wl=10 0 1
aj
0O 0 O 1
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6.8 (Non-maintainable equilibria) Consider the normalized model of a pendulum

on a cart

d’x d’*o 0+

— =u, el u,

dr? dr?
where x is cart position and 6 is pendulum angle. Can the angle 8 = 6, for 8, #~ 0
be maintained?

6.9 (Eigenvalue assignment for unreachable system) Consider the system

dx _ [0 1 + [ B [1 0]
ar o ol * T lo|* y= *
with the control law
u = —kixy —kyxo, +k,r.

Show that eigenvalues of the system cannot be assigned to arbitrary values.

6.10 (Cayley—Hamilton theorem) Let A € R"*" be a matrix with characteristic
polynomial A(s) = det(s] — A) = s" +a;s"~' +--- 4+ a,_15 + a,. Assume that
the matrix A can be diagonalized and show that it satisfies

MA) = A"+, A"+ 4 a,_1A+a,l =0,

Use the result to show that AX, k > n, can be rewritten in terms of powers of A of
order less than n.

6.11 (Motor drive) Consider the normalized model of the motor drive in Exer-
cise 2.10. Using the following normalized parameters,

J1 =10/9, J» =10, c=0.1, k=1, kr=1,

verify that the eigenvalues of the open loop system are 0,0, —0.05 & i. Design a
state feedback that gives a closed loop system with eigenvalues —2, —1 and —1 4.
This choice implies that the oscillatory eigenvalues will be well damped and that
the eigenvalues at the origin are replaced by eigenvalues on the negative real axis.
Simulate the responses of the closed loop system to step changes in the command
signal for ¢, and a step change in a disturbance torque on the second rotor.

6.12 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (3.7) in Section 3.2. Using the parameters from the companion web site, the
model is unstable at the velocity v = 5 m/s and the open loop eigenvalues are -1.84,
-14.29 and 1.30 £ 4.60i. Find the gains of a controller that stabilizes the bicycle
and gives closed loop eigenvalues at -2, -10 and —1 = i. Simulate the response of
the system to a step change in the steering reference of 0.002 rad.

6.13 (Atomic force microscope) Consider the model of an AFM in contact mode
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given in Example 5.9:

0 1 0 0 0
dx | =ka/(mi+my) —ca/(mi+my) 1/my 0 i+ 0 u
dt - 0 0 0 w3 0 ’
0 0 —w3  —20Gw; 3
mo miky micy
y= 1 O] X.
my+my Umy+my  my+myp

Use the MATLAB script afm_data.m from the companion web site to generate the
system matrices.

(a) Compute the reachability matrix of the system and numerically determine its
rank. Scale the model by using milliseconds instead of seconds as time units. Repeat
the calculation of the reachability matrix and its rank.

(b) Find a state feedback controller that gives a closed loop system with complex
poles having damping ratio 0.707. Use the scaled model for the computations.

(c) Compute state feedback gains using linear quadratic control. Experiment by
using different weights. Compute the gains for ¢g; = ¢ = 0,93 = g4 = 1 and
p1 = 0.1 and explain the result. Choose ¢; = g2 = g3 = g4 = 1 and explore what
happens to the feedback gains and closed loop eigenvalues when you change p; .
Use the scaled system for this computation.

6.14 Consider the second-order system

Ly o5y
—_ D = dad— u.
dr ar Y T Y

Let the initial conditions be zero.

(a) Show that the initial slope of the unit step response is a. Discuss what it means
whena < 0.

(b) Show that there are points on the unit step response that are invariant with a.
Discuss qualitatively the effect of the parameter a on the solution.

(c) Simulate the system and explore the effect of a on the rise time and overshoot.

6.15 (Bryson’s rule) Bryson and Ho [47] have suggested the following method for
choosing the matrices Q. and Q, in equation (6.26). Start by choosing Q, and Q,
as diagonal matrices whose elements are the inverses of the squares of the maxima
of the corresponding variables. Then modify the elements to obtain a compromise
among response time, damping and control effort. Apply this method to the motor
drive in Exercise 6.11. Assume that the largest values of the ¢; and ¢, are 1, the
largest values of ¢; and ¢, are 2 and the largest control signal is 10. Simulate the
closed loop system for ¢,(0) = 1 and all other states are initialized to 0. Explore
the effects of different values of the diagonal elements for Q, and Q,.
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a system in observable canonical form, which is given by

1 0 O 0
—a, 1 0 0

W, = |—ai —aa —a 1 0 ,
* * AU |

where * represents an entry whose exact value is not important. The rows of this
matrix are linearly independent (since it is lower triangular), and hence W, is
full rank. A straightforward but tedious calculation shows that the inverse of the
observability matrix has a simple form given by

1 0 o --- 0

a 1 0 0

Wo—l — a ai 1 0
ap—1 AQp—2 dp—3 - -- 1

As in the case of reachability, it turns out that if a system is observable then there
always exists a transformation 7 that converts the system into observable canonical
form. This is useful for proofs since it lets us assume that a system is in observable
canonical form without any loss of generality. The observable canonical form may
be poorly conditioned numerically.

7.2 State Estimation

Having defined the concept of observability, we now return to the question of
how to construct an observer for a system. We will look for observers that can be
represented as a linear dynamical system that takes the inputs and outputs of the
system we are observing and produces an estimate of the system’s state. That is,
we wish to construct a dynamical system of the form

di FX+Gu+H

— =Fx u ,

dt Y
where u and y are the input and output of the original system and X € R” is an
estimate of the state with the property that X(¢) — x(¢) ast — oo.

The Observer

We consider the system in equation (7.1) with D set to zero to simplify the expo-
sition:
dx

i Ax + Bu, y=Cx. (7.6)
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Figure 7.4: Observer for a two compartment system. A two compartment model is shown on
the left. The observer measures the input concentration # and output concentration y = ¢; to
determine the compartment concentrations, shown on the right. The true concentrations are
shown by solid lines and the estimates generated by the observer by dashed lines.

Let the desired characteristic polynomial of the observer be s + pys + ps, and
equation (7.11) gives the observer gain

L 1 0] 1 0]~ [p1—ko—ki — ks
ko — ki K ko+ ki +ky 1 D2 — kok
_ p1— ko — ki —k

(p2 — prka +kika +k3) /Ky |

Notice that the observability condition k; # O is essential. The behavior of the
observer is illustrated by the simulation in Figure 7.4b. Notice how the observed
concentrations approach the true concentrations. \%

The observer is a dynamical system whose inputs are the process input # and the
process output y. The rate of change of the estimate is composed of two terms. One
term, AX + Bu, is the rate of change computed from the model with X substituted
for x. The other term, L(y — ), is proportional to the difference e = y — J between
measured output y and its estimate y = Cx. The observer gain L is a matrix that
tells how the error e is weighted and distributed among the states. The observer thus
combines measurements with a dynamical model of the system. A block diagram
of the observer is shown in Figure 7.5.

Computing the Observer Gain

For simple low-order problems it is convenient to introduce the elements of the
observer gain L as unknown parameters and solve for the values required to give
the desired characteristic polynomial, as illustrated in the following example.

Example 7.3 Vehicle steering
The normalized linear model for vehicle steering derived in Examples 5.12 and 6.4
gives the following state space model dynamics relating lateral path deviation y to
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to command signals and disturbances are decoupled. Disturbance responses are
governed by the observer and the state feedback, while the response to command
signals is governed by the trajectory generator (feedforward).

For an analytic description we start with the full nonlinear dynamics of the

process J
X
E = f(xa M), y = h(-x, I/t). (723)

Assume that the trajectory generator is able to compute a desired trajectory (x4, usr)
that satisfies the dynamics (7.23) and satisfies » = h(xy, ug). To design the con-
troller, we construct the error system. Let z = x —x; and v = u — ug and compute
the dynamics for the error:

=X —Xg = f(x,u) — f(xq, ug)
= f(z+x4,0 +ug) — f(xq, usg) =: F(z,0, x4(), ug(t)).

In general, this system is time-varying. Note that z = —e in Figure 7.10 due to the
convention of using negative feedback in the block diagram.

For trajectory tracking, we can assume that e is small (if our controller is doing
a good job), and so we can linearize around z = O:

fl—j ~ A(t)z + B(t)v, AQ) = % , B@) = % .
(xq (1), us (1)) (xa (1),us:(r)
It is often the case that A(r) and B(r) depend only on x,, in which case it is
convenient to write A(#) = A(xy) and B(t) = B(xy).

Assume now that x; and uy are either constant or slowly varying (with respect
to the performance criterion). This allows us to consider just the (constant) linear
system given by (A(x,), B(x,)).If we design a state feedback controller K (x,) for
each x4, then we can regulate the system using the feedback

v =—K(xy)z.
Substituting back the definitions of e and v, our controller becomes
u=—K(xg)(x — xq) + ug.

This form of controller is called a gain scheduled linear controller with feedforward
Uufr.

Finally, we consider the observer. The full nonlinear dynamics can be used for
the prediction portion of the observer and the linearized system for the correction

term: di
X

where L(x) is the observer gain obtained by linearizing the system around the
currently estimated state. This form of the observer is known as an extended Kalman
filter and has proved to be a very effective means of estimating the state of anonlinear
system.
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Theorem 7.3:

dx . N N
E:Ax+Bu+L(y—Cx), u=—Kx+k,r.

Introducing the states x and X = x — X, the closed loop system can be written as

d [x A — BK BK X Bk,

E[i]:[ 0 A—LC][£]+[O]r’ y:[c O]X’
which is a Kalman decomposition like the one shown in Figure 7.12b with only
two subsystems X,, and X;,. The subsystem X,,, with state x, is reachable and
observable, and the subsystem X;,, with state X, is not reachable but observable.
It is natural that the state X is not reachable from the reference signal r because it
would not make sense to design a system where changes in the command signal

could generate observer errors. The relationship between the reference » and the
output y is given by

dx
Z:(A—BK)x+Bkrr, y=Cx,
which is the same relationship as for a system with full state feedback. \%

Computer Implementation

The controllers obtained so far have been described by ordinary differential equa-
tions. They can be implemented directly using analog components, whether elec-
tronic circuits, hydraulic valves or other physical devices. Since in modern engi-
neering applications most controllers are implemented using computers, we will
briefly discuss how this can be done.

A computer-controlled system typically operates periodically: every cycle, sig-
nals from the sensors are sampled and converted to digital form by the A/D converter,
the control signal is computed and the resulting output is converted to analog form
for the actuators, as shown in Figure 7.13. To illustrate the main principles of how
to implement feedback in this environment, we consider the controller described
by equations (7.14) and (7.15),i.e.,

dx

E:Aﬁ—l—Bu—l—L(y—C)E), u=—Kx+kmr.

The second equation consists only of additions and multiplications and can thus
be implemented directly on a computer. The first equation can be implemented by
approximating the derivative by a difference

dx  X(ikg1) — X (@)
dr h
where #; are the sampling instants and 7 = #;4.1 —#; is the sampling period. Rewriting
the equation to isolate X (#;41), we get the difference equation

£(tee1) = £(t) + h(AR(t) + Bu(t) + L(y(t) — Cx(t)))- (7.29)

= AR(t) + Bu(t) + L(y(t) — CE (1)),
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Figure 8.4: A pole zero diagram for a transfer function with zeros at —5 and —1 and poles at
—3and —2£2. The circles represent the locations of the zeros, and the crosses the locations
of the poles. A complete characterization requires we also specify the gain of the system.

model. One easy way to see this is to notice that the value of G(s) is unbounded
when s is an eigenvalue of a system since this is precisely the set of points where
the characteristic polynomial A(s) = det(s/ — A) = 0 (and hence sI — A is
noninvertible). It follows that the poles of a state space system depend only on the
matrix A, which represents the intrinsic dynamics of the system. We say that a
transfer function is stable if all of its poles have negative real part.

To find the zeros of a state space system, we observe that the zeros are complex
numbers s such that the input u(z) = uge’® gives zero output. Inserting the pure
exponential response x(¢) = xge*’ and y(¢) = 0 in equation (8.2) gives

se’’xg = Axpe’ 4+ Buge® 0 = Ce*" xg 4+ De' uy,

A—sl B X0l o
[ Bl )=

This equation has a solution with nonzero xg, uy only if the matrix on the left does
not have full rank. The zeros are thus the values s such that the matrix

A—sI B
[c D] (8.17)

which can be written as

looses rank.

Since the zeros depend on A, B, C and D, they therefore depend on how the
inputs and outputs are coupled to the states. Notice in particular that if the matrix
B has full row rank, then the matrix in equation (8.17) has n linearly independent
rows for all values of s. Similarly there are n linearly independent columns if the
matrix C has full column rank. This implies that systems where the matrix B or C
is square and full rank do not have zeros. In particular it means that a system has
no zeros if it is fully actuated (each state can be controlled independently) or if the
full state is measured.

A convenient way to view the poles and zeros of a transfer function is through
a pole zero diagram, as shown in Figure 8.4. In this diagram, each pole is marked
with a cross, and each zero with a circle. If there are multiple poles or zeros at a
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(a) Cart—pendulum system (c) Pole zero diagram for H ¢

Figure 8.5: Poles and zeros for a balance system. The balance system (a) can be modeled
around its vertical equilibrium point by a fourth order linear system. The poles and zeros for
the transfer functions Hyr and H, are shown in (b) and (c), respectively.

fixed location, these are often indicated with overlapping crosses or circles (or other
annotations). Poles in the left half-plane correspond to stable modes of the system,
and poles in the right half-plane correspond to unstable modes. We thus call a pole
in the left-half plane a stable pole and a pole in the right-half plane an unstable
pole. A similar terminology is used for zeros, even though the zeros do not directly
related to stability or instability of the system. Notice that the gain must also be
given to have a complete description of the transfer function.

Example 8.5 Balance system

Consider the dynamics for a balance system, shown in Figure 8.5. The transfer func-
tion for a balance system can be derived directly from the second-order equations,
given in Example 2.1:

d? d*o d . do
ld_tl; —mlﬁ cosd +cd—1; + ml sm@(z)2 =F,
d? d*o .
—mlcos@d—tf + J,W —mglsing +y0 = 0.

If we assume that # and 6 are small, we can approximate this nonlinear system by
a set of linear second-order differential equations,
d*p d*0 dp

Pl L P
tar M Ty
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and
k, _ ki(s®> +1is + 1)
1+ KGi(s) s*+s(ki+k+0)+ki+b+kl —ykl’
where k; and k; are the controller gains.
Finally, we compute the full closed loop dynamics. We begin by deriving the
transfer function for the process P (s). We can compute this directly from the state

space description of the dynamics, which was given in Example 5.12. Using that
description, we have

Gu(s) =

ys+1
s2

-1
P(s)=Gyu(s)=C(sI—A)'B+D = [1 0] [(S) —sl] [” _

The transfer function for the full closed loop system between the input r and the
output y is then given by
B k. P(s) B ki(ys +1)
1+ P(5)Guy(s) 82+ (kiy +ka)s + ki

Note that the observer gains /; and [, do not appear in this equation. This is because
we are considering steady-state analysis and, in steady state, the estimated state
exactly tracks the state of the system assuming perfect models. We will return to
this example in Chapter 12 to study the robustness of this particular approach. V

Pole/Zero Cancellations

Because transfer functions are often polynomials in s, it can sometimes happen
that the numerator and denominator have a common factor, which can be canceled.
Sometimes these cancellations are simply algebraic simplifications, but in other
situations they can mask potential fragilities in the model. In particular, if a pole/zero
cancellation occurs because terms in separate blocks that just happen to coincide,
the cancellation may not occur if one of the systems is slightly perturbed. In some
situations this can result in severe differences between the expected behavior and
the actual behavior.

To illustrate when we can have pole/zero cancellations, consider the block dia-
gram in Figure 8.7 with F = 1 (no feedforward compensation) and C and P given
by

ne(s) np (s)
C(s) = . Pl)=——.
dc(s) dp(s)
The transfer function from r to e is then given by
d.(s)d
Gor(s) = L)

1+ PC~ de®)dy(s) + ne(®)n,y(s)’

If there are common factors in the numerator and denominator polynomials, then
these terms can be factored out and eliminated from both the numerator and de-
nominator. For example, if the controller has a zero at s = —a and the process has
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apole at s = —a, then we will have
Gor(s) = (s +a)d.(s)d,(s) d;.(s)dp(s)

(s + @)de($)d)(s) + (5 + @ni(Iny(s)  de(s)d)(s) + ni(s)ny(s)’

where n;(s) and d),(s) represent the relevant polynomials with the term s + a
factored out. In the case when @ < 0 (so that the zero or pole is in the right
half-plane), we see that there is no impact on the transfer function G, .

Suppose instead that we compute the transfer function from d to e, which repre-
sents the effect of a disturbance on the error between the reference and the output.
This transfer function is given by

di(s)n(s)
(s + a)dc(s)d),(s) + (s + a)ni(s)np(s)

Ged (S) =

Notice thatif a < 0, then the pole is in the right half-plane and the transfer function
G.q 1s unstable. Hence, even though the transfer function from r to e appears to be
okay (assuming a perfect pole/zero cancellation), the transfer function from d to e
can exhibit unbounded behavior. This unwanted behavior is typical of an unstable
polel/zero cancellation.

It turns out that the cancellation of a pole with a zero can also be understood in
terms of the state space representation of the systems. Reachability or observability
is lost when there are cancellations of poles and zeros (Exercise 8.11). A conse-
quence is that the transfer function represents the dynamics only in the reachable
and observable subspace of a system (see Section 7.5).

Example 8.7 Cruise control

The input/output response from throttle to velocity for the linearized model for a
car has the transfer function G (s) = b/(s —a),a < 0. A simple (but not necessarily
good) way to design a PI controller is to choose the parameters of the PI controller
so that the controller zero at s = —k;/k, cancels the process pole at s = a. The
transfer function from reference to velocity is G, (s) = bk, /(s +bk,), and control
design is simply a matter of choosing the gain k. The closed loop system dynamics
are of first order with the time constant 1/bk,.

Figure 8.10 shows the velocity error when the car encounters an increase in the
road slope. A comparison with the controller used in Figure 3.3b (reproduced in
dashed curves) shows that the controller based on pole/zero cancellation has very
poor performance. The velocity error is larger, and it takes a long time to settle.

Notice that the control signal remains practically constant after t+ = 15 even if
the error is large after that time. To understand what happens we will analyze the
system. The parameters of the system are @ = —0.0101 and b = 1.32, and the
controller parameters are k, = 0.5 and k; = 0.0051. The closed loop time constant
is 1/(bk,) = 2.5 s, and we would expect that the error would settle in about 10 s
(4 time constants). The transfer functions from road slope to velocity and control
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Figure 8.10: Car with PI cruise control encountering a sloping road. The velocity error is
shown on the left and the throttle is shown on the right. Results with a PI controller with
k, = 0.5 and k; = 0.0051, where the process pole s = —0.0101, is shown by solid lines, and
a controller with k, = 0.5 and k; = 0.5 is shown by dashed lines. Compare with Figure 3.3b.

signals are

bek,s
(s —a)(s + bk,)’
Notice that the canceled mode s = a = —0.0101 appears in G, but not in G 9.
The reason why the control signal remains constant is that the controller has a zero

at s = —0.0101, which cancels the slowly decaying process mode. Notice that the
error would diverge if the canceled pole was unstable. A%

bk,
s + bk,

Gv@(s) = Gu(")(s) =

The lesson we can learn from this example is that it is a bad idea to try to
cancel unstable or slow process poles. A more detailed discussion of pole/zero
cancellations is given in Section 12.4.

Algebraic Loops

When analyzing or simulating a system described by a block diagram, it is necessary
to form the differential equations that describe the complete system. In many cases
the equations can be obtained by combining the differential equations that describe
each subsystem and substituting variables. This simple procedure cannot be used
when there are closed loops of subsystems that all have a direct connection between
inputs and outputs, known as an algebraic loop.

To see what can happen, consider a system with two blocks, a first-order non-
linear system,

dx
E :f(-xa I/l), y=h(X), (821)
and a proportional controller described by u = —ky. There is no direct term since

the function / does not depend on u. In that case we can obtain the equation for the
closed loop system simply by replacing u by —ky in (8.21) to give

dx

— = f(x, —ky), = h(x).

gy =S k), y=hx)
Such a procedure can easily be automated using simple formula manipulation.
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The situation is more complicated if there is a direct term. If y = h(x, u), then
replacing u by —ky gives

d

X
= =0 —ky), v =hx, —ky),

To obtain a differential equation for x, the algebraic equation y = h(x, —ky) must
be solved to give y = a(x), which in general is a complicated task.

When algebraic loops are present, it is necessary to solve algebraic equations
to obtain the differential equations for the complete system. Resolving algebraic
loops is a nontrivial problem because it requires the symbolic solution of algebraic
equations. Most block diagram-oriented modeling languages cannot handle alge-
braic loops, and they simply give a diagnosis that such loops are present. In the era
of analog computing, algebraic loops were eliminated by introducing fast dynamics
between the loops. This created differential equations with fast and slow modes that
are difficult to solve numerically. Advanced modeling languages like Modelica use
several sophisticated methods to resolve algebraic loops.

8.4 The Bode Plot

The frequency response of a linear system can be computed from its transfer func-
tion by setting s = i, corresponding to a complex exponential

u(t) = e = cos(wt) + i sin(wt).
The resulting output has the form
y(t) = G(iw)e'™ = Me' @+ = M cos(wt + ¢) + i M sin(wt + @),
where M and ¢ are the gain and phase of G:
Im G(iw)
ReG(iw)’

The phase of G is also called the argument of G, a term that comes from the theory
of complex variables.

It follows from linearity that the response to a single sinusoid (sin or cos) is
amplified by M and phase-shifted by ¢. Note that —z < ¢ < &, so the arctangent
must be taken respecting the signs of the numerator and denominator. It will often
be convenient to represent the phase in degrees rather than radians. We will use the
notation ZG (iw) for the phase in degrees and arg G (i ) for the phase in radians. In
addition, while we always take arg G (iw) to be in the range (—x, 7 ], we will take
/G (iw) to be continuous, so that it can take on values outside the range of —180°
to 180°.

The frequency response G (i) can thus be represented by two curves: the gain
curve and the phase curve. The gain curve gives |G (iw)| as a function of frequency
w, and the phase curve gives /G (iw). One particularly useful way of drawing these

M = |G(iw)|, @ = arctan
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Figure 8.13: Bode plots for first- and second-order systems. (a) The first-order system G (s) =
a/(s + a) can be approximated by asymptotic curves (dashed) in both the gain and the
frequency, with the breakpoint in the gain curve at @ = a and the phase decreasing by 90°
over a factor of 100 in frequency. (b) The second-order system G(s) = w3 /(s> +2¢ wos + ()
has a peak at frequency a and then a slope of —2 beyond the peak; the phase decreases from
0° to —180°. The height of the peak and the rate of change of phase depending on the damping
ratio ¢ (¢ =0.02,0.1,0.2,0.5 and 1.0 shown).

the following straight lines

if
log |G (iw)| ~ cese
loga —logw ifw > a,

0 ifow <a/10
LG(iw) ~ { —45 —45(logw —loga) a/10 < w < 10a
—-90 if o > 10a.

The approximate gain curve consists of a horizontal line up to frequency o = a,
called the breakpoint or corner frequency, after which the curve is a line of slope
—1 (on a log-log scale). The phase curve is zero up to frequency a/10 and then
decreases linearly by 45°/decade up to frequency 10a, at which point it remains
constant at 90°. Notice that a first-order system behaves like a constant for low
frequencies and like an integrator for high frequencies; compare with the Bode plot

in Figure 8.12.
Finally, consider the transfer function for a second-order system,
@4

52+ 2000 + @f

G(s) =
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