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4 CHAPTER 1. INTRODUCTION
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Figure 1.3: Components of a computer-controlled system. The upper dashed box represents
the process dynamics, which include the sensors and actuators in addition to the dynamical
system being controlled. Noise and external disturbances can perturb the dynamics of the
process. The controller is shown in the lower dashed box. It consists of a filter and analog-to-
digital (A/D) and digital-to-analog (D/A) converters, as well as a computer that implements
the control algorithm. A system clock controls the operation of the controller, synchronizing
the A/D, D/A and computing processes. The operator input is also fed to the computer as an
external input.

A modern controller senses the operation of a system, compares it against the
desired behavior, computes corrective actions based on a model of the system’s
response to external inputs and actuates the system to effect the desired change.
This basic feedback loop of sensing, computation and actuation is the central con-
cept in control. The key issues in designing control logic are ensuring that the
dynamics of the closed loop system are stable (bounded disturbances give bounded
errors) and that they have additional desired behavior (good disturbance attenua-
tion, fast responsiveness to changes in operating point, etc). These properties are
established using a variety of modeling and analysis techniques that capture the
essential dynamics of the system and permit the exploration of possible behaviors
in the presence of uncertainty, noise and component failure.

A typical example of a control system is shown in Figure 1.3. The basic elements
of sensing, computation and actuation are clearly seen. In modern control systems,
computation is typically implemented on a digital computer, requiring the use of
analog-to-digital (A/D) and digital-to-analog (D/A) converters. Uncertainty enters
the system through noise in sensing and actuation subsystems, external disturbances
that affect the underlying system operation and uncertain dynamics in the system
(parameter errors, unmodeled effects, etc). The algorithm that computes the control
action as a function of the sensor values is often called a control law. The system
can be influenced externally by an operator who introduces command signals to
the system.
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Figure 1.11: Supply chain dynamics (after Forrester [75]). Products flow from the producer
to the customer through distributors and retailers as indicated by the solid lines. There are
typically many factories and warehouses and even more distributors and retailers. Multiple
feedback loops are present as each agent tries to maintain the proper inventory level.

many different products, there may be different factories that are geographically
distributed and the factories may require raw material or subassemblies.

Control of supply chains was proposed by Forrester in 1961 [75] and is now
growing in importance. Considerable economic benefits can be obtained by using
models to minimize inventories. Their use accelerated dramatically when infor-
mation technology was applied to predict sales, keep track of products and enable
just-in-time manufacturing. Supply chain management has contributed significantly
to the growing success of global distributors.

Advertising on the Internet is an emerging application of control. With network-
based advertising it is easy to measure the effect of different marketing strategies
quickly. The response of customers can then be modeled, and feedback strategies
can be developed.

Feedback in Nature

Many problems in the natural sciences involve understanding aggregate behavior
in complex large-scale systems. This behavior emerges from the interaction of a
multitude of simpler systems with intricate patterns of information flow. Repre-
sentative examples can be found in fields ranging from embryology to seismology.
Researchers who specialize in the study of specific complex systems often develop
an intuitive emphasis on analyzing the role of feedback (or interconnection) in
facilitating and stabilizing aggregate behavior.

While sophisticated theories have been developed by domain experts for the
analysis of various complex systems, the development of a rigorous methodology
that can discover and exploit common features and essential mathematical structure
is just beginning to emerge. Advances in science and technology are creating a new
understanding of the underlying dynamics and the importance of feedback in a wide
variety of natural and technological systems. We briefly highlight three application
areas here.

Biological Systems. A major theme currently of interest to the biology commu-
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Figure 1.14: Aircraft autopilot system. The Sperry autopilot (left) contained a set of four
gyros coupled to a set of air valves that controlled the wing surfaces. The 1912 Curtiss used
an autopilot to stabilize the roll, pitch and yaw of the aircraft and was able to maintain level
flight as a mechanic walked on the wing (right) [105].

weight of the wings themselves, but also that of the engine, and of
the engineer as well. Men also know how to build engines and screws
of sufficient lightness and power to drive these planes at sustaining
speed ... Inability to balance and steer still confronts students of the
flying problem ... When this one feature has been worked out, the
age of flying will have arrived, for all other difficulties are of minor
importance.

The Wright brothers thus realized that control was a key issue to enable flight.
They resolved the compromise between stability and maneuverability by building
an airplane, the Wright Flyer, that was unstable but maneuverable. The Flyer had
a rudder in the front of the airplane, which made the plane very maneuverable. A
disadvantage was the necessity for the pilot to keep adjusting the rudder to fly the
plane: if the pilot let go of the stick, the plane would crash. Other early aviators
tried to build stable airplanes. These would have been easier to fly, but because of
their poor maneuverability they could not be brought up into the air. By using their
insight and skillful experiments the Wright brothers made the first successful flight
at Kitty Hawk in 1903.

Since it was quite tiresome to fly an unstable aircraft, there was strong motiva-
tion to find a mechanism that would stabilize an aircraft. Such a device, invented by
Sperry, was based on the concept of feedback. Sperry used a gyro-stabilized pendu-
lum to provide an indication of the vertical. He then arranged a feedback mechanism
that would pull the stick to make the plane go up if it was pointing down, and vice
versa. The Sperry autopilot was the first use of feedback in aeronautical engineer-
ing, and Sperry won a prize in a competition for the safest airplane in Paris in 1914.
Figure 1.14 shows the Curtiss seaplane and the Sperry autopilot. The autopilot is
a good example of how feedback can be used to stabilize an unstable system and
hence “design the dynamics” of the aircraft.
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dynamics as first-order differential equations, but we will see that this can capture
the dynamics of higher-order differential equations by appropriate definition of the
state and the maps f and h.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice of u (reachability) and if the measurement y
contains enough information to reconstruct the state (observability). These topics
will be addressed in greater detail in Chapters 6 and 7.

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views of input/output repre-
sentations and state space representations are particularly useful when modeling
uncertainty since state models are convenient to describe a nominal model but un-
certainties are easier to describe using input/output models (often via a frequency
response description). Uncertainty will be a constant theme throughout the text and
will be studied in particular detail in Chapter 12.

An interesting observation in the design of control systems is that feedback
systems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system validation,
where one wishes to verify that the detailed response of the system performs as it
was designed. Because of these different uses of models, it is common to use a
hierarchy of models having different complexity and fidelity.

Multidomain Modeling
�

Modeling is an essential element of many disciplines, but traditions and methods
from individual disciplines can differ from each other, as illustrated by the previous
discussion of mechanical and electrical engineering. A difficulty in systems engi-
neering is that it is frequently necessary to deal with heterogeneous systems from
many different domains, including chemical, electrical, mechanical and informa-
tion systems.

To model such multidomain systems, we start by partitioning a system into
smaller subsystems. Each subsystem is represented by balance equations for mass,
energy and momentum, or by appropriate descriptions of information processing
in the subsystem. The behavior at the interfaces is captured by describing how the
variables of the subsystem behave when the subsystems are interconnected. These
interfaces act by constraining variables within the individual subsystems to be equal
(such as mass, energy or momentum fluxes). The complete model is then obtained
by combining the descriptions of the subsystems and the interfaces.
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In this problem, we will explore some of the properties of this discrete-time system
as a function of the parameters, the initial conditions and the inputs.

(a) For the case when a12 = 0 and u = 0, give a closed form expression for the
output of the system.

(b) A discrete system is in equilibrium when x[k + 1] = x[k] for all k. Let u = r
be a constant input and compute the resulting equilibrium point for the system.
Show that if |aii | < 1 for all i , all initial conditions give solutions that converge to
the equilibrium point.

(c) Write a computer program to plot the output of the system in response to a unit
step input, u[k] = 1, k ≥ 0. Plot the response of your system with x[0] = 0 and A
given by a11 = 0.5, a12 = 1 and a22 = 0.25.

2.4 (Keynesian economics) Keynes’ simple model for an economy is given by

Y [k] = C[k] + I [k] + G[k],

where Y , C , I and G are gross national product (GNP), consumption, investment
and government expenditure for year k. Consumption and investment are modeled
by difference equations of the form

C[k + 1] = aY [k], I [k + 1] = b(C[k + 1] − C[k]),

where a and b are parameters. The first equation implies that consumption increases
with GNP but that the effect is delayed. The second equation implies that investment
is proportional to the rate of change of consumption.

Show that the equilibrium value of the GNP is given by

Ye = 1

1 − a
(Ie + Ge),

where the parameter 1/(1 − a) is the Keynes multiplier (the gain from I or G to
Y ). With a = 0.25 an increase of government expenditure will result in a fourfold
increase of GNP. Also show that the model can be written as the following discrete-
time state model:⎧⎪⎪⎩C[k + 1]

I [k + 1]

⎫⎪⎪⎭ =
⎧⎪⎪⎩ a a
ab − b ab

⎫⎪⎪⎭ ⎧⎪⎪⎩C[k]
I [k]

⎫⎪⎪⎭ +
⎧⎪⎪⎩ a
ab

⎫⎪⎪⎭G[k],

Y [k] = C[k] + I [k] + G[k].

2.5 (Least squares system identification) Consider a nonlinear differential equation�
that can be written in the form

dx

dt
=

M∑
i=1

αi fi (x),

where fi (x) are known nonlinear functions and αi are unknown, but constant,
parameters. Suppose that we have measurements (or estimates) of the full state x
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at time instants t1, t2, . . . , tN , with N > M . Show that the parameters αi can be
determined by finding the least squares solution to a linear equation of the form

Hα = b,

where α ∈ R
M is the vector of all parameters and H ∈ R

N×M and b ∈ R
N are

appropriately defined.

2.6 (Normalized oscillator dynamics) Consider a damped spring–mass system with
dynamics

mq̈ + cq̇ + kq = F.

Let ω0 = √
k/m be the natural frequency and ζ = c/(2

√
km) be the damping

ratio.

(a) Show that by rescaling the equations, we can write the dynamics in the form

q̈ + 2ζω0q̇ + ω2
0q = ω2

0u, (2.35)

where u = F/k. This form of the dynamics is that of a linear oscillator with natural
frequency ω0 and damping ratio ζ .

(b) Show that the system can be further normalized and written in the form

dz1

dτ
= z2,

dz2

dτ
= −z1 − 2ζ z2 + v. (2.36)

The essential dynamics of the system are governed by a single damping parameter
ζ . The Q-value defined as Q = 1/2ζ is sometimes used instead of ζ .

2.7 (Electric generator) An electric generator connected to a strong power grid can
be modeled by a momentum balance for the rotor of the generator:

J
d2ϕ

dt2
= Pm − Pe = Pm − EV

X
sin ϕ,

where J is the effective moment of inertia of the generator, ϕ the angle of rotation,
Pm the mechanical power that drives the generator, Pe is the active electrical power,
E the generator voltage,V the grid voltage and X the reactance of the line. Assuming
that the line dynamics are much faster than the rotor dynamics, Pe = V I =
(EV/X) sin ϕ, where I is the current component in phase with the voltage E and ϕ
is the phase angle between voltages E and V . Show that the dynamics of the electric
generator have a normalized form that is similar to the dynamics of a pendulum
with forcing at the pivot.

2.8 (Admission control for a queue) Consider the queuing system described in
Example 2.10. The long delays created by temporary overloads can be reduced by
rejecting requests when the queue gets large. This allows requests that are accepted
to be serviced quickly and requests that cannot be accommodated to receive a
rejection quickly so that they can try another server. Consider an admission control
system described by

dx

dt
= λu − μmax

x

x + 1
, u = sat(0,1)(k(r − x)), (2.37)
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where the controller is a simple proportional control with saturation (sat(a,b) defined
by equation (3.9)) and r is the desired (reference) queue length. Use a simulation
to show that this controller reduces the rush-hour effect and explain how the choice
of r affects the system dynamics.

2.9 (Biological switch) A genetic switch can be formed by connecting two repres-
sors together in a cycle as shown below.

u1

A

B

u2
B

u2

u1

A

Using the models from Example 2.13—assuming that the parameters are the same
for both genes and that the mRNA concentrations reach steady state quickly—show
that the dynamics can be written in normalized coordinates as

dz1

dτ
= μ

1 + zn2
− z1 − v1,

dz2

dτ
= μ

1 + zn1
− z2 − v2, (2.38)

where z1 and z2 are scaled versions of the protein concentrations and the time scale
has also been changed. Show that μ ≈ 200 using the parameters in Example 2.13,
and use simulations to demonstrate the switch-like behavior of the system.

2.10 (Motor drive) Consider a system consisting of a motor driving two masses that
are connected by a torsional spring, as shown in the diagram below.

Motor
I

J1

1

1

J2

ω

ϕ 2ϕ

2ω

This system can represent a motor with a flexible shaft that drives a load. Assuming
that the motor delivers a torque that is proportional to the current, the dynamics of
the system can be described by the equations

J1
d2ϕ1

dt2
+ c

(dϕ1

dt
− dϕ2

dt

)
+ k(ϕ1 − ϕ2) = kI I,

J2
d2ϕ2

dt2
+ c

(dϕ2

dt
− dϕ1

dt

)
+ k(ϕ2 − ϕ1) = Td .

(2.39)

Similar equations are obtained for a robot with flexible arms and for the arms of
DVD and optical disk drives.

Derive a state space model for the system by introducing the (normalized)
state variables x1 = ϕ1, x2 = ϕ2, x3 = ω1/ω0, and x4 = ω2/ω0, where ω0 =√
k(J1 + J2)/(J1 J2) is the undamped natural frequency of the system when the

control signal is zero.
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control dynamics. We can obtain substantial insight by considering a special case
in which we have N identical sources and 1 link. In addition, we assume for the
moment that the forward and backward time delays can be ignored, in which case
the dynamics can be reduced to the form

dwi

dt
= 1

τ
− ρc(2 + w2

i )

2
,

db

dt
=

N∑
i=1

wi

τ
− c, τ = b

c
, (3.19)

where wi ∈ R, i = 1, . . . , N , are the window sizes for the sources of data, b ∈ R is
the current buffer size of the router, ρ controls the rate at which packets are dropped
and c is the capacity of the link connecting the router to the computers. The variable
τ represents the amount of time required for a packet to be processed by a router,
based on the size of the buffer and the capacity of the link. Substituting τ into the
equations, we write the state space dynamics as

dwi

dt
= c

b
− ρc

(
1 + w2

i

2

)
,

db

dt
=

N∑
i=1

cwi

b
− c. (3.20)

More sophisticated models can be found in [101, 137].
The nominal operating point for the system can be found by setting ẇi = ḃ = 0:

0 = c

b
− ρc

(
1 + w2

i

2

)
, 0 =

N∑
i=1

cwi

b
− c.

Exploiting the fact that all of the source dynamics are identical, it follows that all
of the wi should be the same, and it can be shown that there is a unique equilibrium
satisfying the equations

wi,e = be
N

= cτe
N

,
1

2ρ2N 2
(ρbe)

3 + (ρbe) − 1 = 0. (3.21)

The solution for the second equation is a bit messy but can easily be determined nu-
merically. A plot of its solution as a function of 1/(2ρ2N 2) is shown in Figure 3.12b.
We also note that at equilibrium we have the following additional equalities:

τe = be
c

= Nwe

c
, qe = Npe = Nρbe, re = we

τe
. (3.22)

Figure 3.13 shows a simulation of 60 sources communicating across a single
link, with 20 sources dropping out at t = 500 ms and the remaining sources in-
creasing their rates (window sizes) to compensate. Note that the buffer size and
window sizes automatically adjust to match the capacity of the link.

A comprehensive treatment of computer networks is given in the textbook by
Tannenbaum [189]. A good presentation of the ideas behind the control principles
for the Internet is given by one of its designers, Van Jacobson, in [108]. F. Kelly [120]
presents an early effort on the analysis of the system. The book by Hellerstein et
al. [97] gives many examples of the use of feedback in computer systems.
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Figure 3.20:Simulation of the predator–prey system. Thefigure on the left shows a simulation
of the two populations as a function of time. The figure on the right shows the populations
plotted against each other, starting from different values of the population. The oscillation seen
in both figures is an example of a limit cycle. The parameter values used for the simulations
are a = 3.2, b = 0.6, c = 50, d = 0.56, k = 125 and r = 1.6.

Figure 3.20 shows a simulation of the dynamics starting from a set of popu-
lation values near the nonzero equilibrium values. We see that for this choice of
parameters, the simulation predicts an oscillatory population count for each species,
reminiscent of the data shown in Figure 2.6.

Volume I of the two-volume set by J. D. Murray [154] give a broad coverage of
population dynamics.

Exercises

3.1 (Cruise control) Consider the cruise control example described in Section 3.1.
Build a simulation that re-creates the response to a hill shown in Figure 3.3b and
show the effects of increasing and decreasing the mass of the car by 25%. Redesign
the controller (using trial and error is fine) so that it returns to within 1% of the
desired speed within 3 s of encountering the beginning of the hill.

3.2 (Bicycle dynamics) Show that the dynamics of a bicycle frame given by equa-
tion (3.5) can be approximated in state space form as

d

dt

⎧⎪⎪⎩x1

x2

⎫⎪⎪⎭ =
⎧⎪⎪⎩ 0 1
mgh/J 0

⎫⎪⎪⎭⎧⎪⎪⎩x1

x2

⎫⎪⎪⎭ +
⎧⎪⎪⎩ Dv0/(bJ )
mv2

0h/(bJ )

⎫⎪⎪⎭ u,

y =
⎧⎩1 0

⎫⎭ x,

where the input u is the steering angle δ and the output y is the tilt angle ϕ. What
do the states x1 and x2 represent?

3.3 (Bicycle steering) Combine the bicycle model given by equation (3.5) and the
model for steering kinematics in Example 2.8 to obtain a model that describes the
path of the center of mass of the bicycle.
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3.4 (Operational amplifier circuit) Consider the op amp circuit shown below.

−

+
v1 vo

v3

v2

RaR1

R2

C2

C1

Rb

Show that the dynamics can be written in state space form as

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
− 1

R1C1
− 1

RaC1
0

Rb
Ra

1

R2C2
− 1

R2C2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ x +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

R1C1

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ u, y =
⎧⎩0 1

⎫⎭ x,

where u = v1 and y = v3. (Hint: Use v2 and v3 as your state variables.)

3.5 (Operational amplifier oscillator) The op amp circuit shown below is an imple-
mentation of an oscillator.

−

+

−

+

−

+ v1v3v2

R1R3R2

R4C2 C1

Show that the dynamics can be written in state space form as

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0

R4

R1R3C1

− 1

R2C2
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ x,

where the state variables represent the voltages across the capacitors x1 = v1 and
x2 = v2.

3.6 (Congestion control using RED [138]) A number of improvements can be made
to the model for Internet congestion control presented in Section 3.4. To ensure that
the router’s buffer size remains positive, we can modify the buffer dynamics to
satisfy

dbl
dt

=
{
sl − cl bl > 0

sat(0,∞)(sl − cl) bl = 0.

In addition, we can model the drop probability of a packet based on how close we
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Another simple case is when the dynamics are in the block diagonal form

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1 ω1 0 0
−ω1 σ1 0 0

0 0
. . .

...
...

0 0 σm ωm

0 0 −ωm σm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x .

In this case, the eigenvalues can be shown to be λ j = σ j ± iω j . We once again can
separate the state trajectories into independent solutions for each pair of states, and
the solutions are of the form

x2 j−1(t) = eσ j t
(
x2 j−1(0) cos ω j t + x2 j (0) sin ω j t

)
,

x2 j (t) = eσ j t
(−x2 j−1(0) sin ω j t + x2 j (0) cos ω j t

)
,

where j = 1, 2, . . . ,m. We see that this system is asymptotically stable if and only
if σ j = Re λ j < 0. It is also possible to combine real and complex eigenvalues in
(block) diagonal form, resulting in a mixture of solutions of the two types.

Very few systems are in one of the diagonal forms above, but some systems
can be transformed into these forms via coordinate transformations. One such class
of systems is those for which the dynamics matrix has distinct (nonrepeating)
eigenvalues. In this case there is a matrix T ∈ R

n×n such that the matrix T AT−1

is in (block) diagonal form, with the block diagonal elements corresponding to
the eigenvalues of the original matrix A (see Exercise 4.14). If we choose new
coordinates z = T x , then

dz

dt
= T ẋ = T Ax = T AT−1z

and the linear system has a (block) diagonal dynamics matrix. Furthermore, the
eigenvalues of the transformed system are the same as the original system since
if v is an eigenvector of A, then w = T v can be shown to be an eigenvector of
T AT−1. We can reason about the stability of the original system by noting that
x(t) = T−1z(t), and so if the transformed system is stable (or asymptotically
stable), then the original system has the same type of stability.

This analysis shows that for linear systems with distinct eigenvalues, the stability
of the system can be completely determined by examining the real part of the
eigenvalues of the dynamics matrix. For more general systems, we make use of the
following theorem, proved in the next chapter:

Theorem 4.1 (Stability of a linear system). The system

dx

dt
= Ax

is asymptotically stable if and only if all eigenvalues of A all have a strictly negative
real part and is unstable if any eigenvalue of A has a strictly positive real part.

Example 4.6 Compartment model
Consider the two-compartment module for drug delivery introduced in Section 3.6.
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Using concentrations as state variables and denoting the state vector by x , the system
dynamics are given by

dx

dt
=

⎧⎪⎪⎩−k0 − k1 k1

k2 −k2

⎫⎪⎪⎭ x +
⎧⎪⎪⎩b0

0

⎫⎪⎪⎭ u, y =
⎧⎩0 1

⎫⎭ x,

where the input u is the rate of injection of a drug into compartment 1 and the
concentration of the drug in compartment 2 is the measured output y. We wish to
design a feedback control law that maintains a constant output given by y = yd .

We choose an output feedback control law of the form

u = −k(y − yd) + ud,

where ud is the rate of injection required to maintain the desired concentration and
k is a feedback gain that should be chosen such that the closed loop system is stable.
Substituting the control law into the system, we obtain

dx

dt
=

⎧⎪⎪⎩−k0 − k1 k1 − b0k
k2 −k2

⎫⎪⎪⎭ x +
⎧⎪⎪⎩b0

0

⎫⎪⎪⎭ ud =: Ax + Bud,

y =
⎧⎩0 1

⎫⎭ x =: Cx .

The equilibrium concentration xe ∈ R
2 is given by xe = −A−1Bud and

ye = −CA−1Bud = b0k2

k0k2 + b0k2k
ud .

Choosing ud such that ye = yd provides the constant rate of injection required to
maintain the desired output. We can now shift coordinates to place the equilibrium
point at the origin, which yields

dz

dt
=

⎧⎪⎪⎩−k0 − k1 k1 − b0k
k2 −k2

⎫⎪⎪⎭ z,

where z = x − xe. We can now apply the results of Theorem 4.1 to determine the
stability of the system. The eigenvalues of the system are given by the roots of the
characteristic polynomial

λ(s) = s2 + (k0 + k1 + k2)s + (k0k2 + b0k2k).

While the specific form of the roots is messy, it can be shown that the roots are posi-
tive as long as the linear term and the constant term are both positive (Exercise 4.16).
Hence the system is stable for any k > 0. ∇

Stability Analysis via Linear Approximation

An important feature of differential equations is that it is often possible to determine
the local stability of an equilibrium point by approximating the system by a linear
system. The following example illustrates the basic idea.
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Example 4.7 Inverted pendulum
Consider again an inverted pendulum whose open loop dynamics are given by

dx

dt
=

⎧⎪⎪⎩ x2

sin x1 − γ x2

⎫⎪⎪⎭ ,

where we have defined the state as x = (θ, θ̇). We first consider the equilibrium
point at x = (0, 0), corresponding to the straight-up position. If we assume that the
angle θ = x1 remains small, then we can replace sin x1 with x1 and cos x1 with 1,
which gives the approximate system

dx

dt
=

⎧⎪⎪⎩ x2

x1 − γ x2

⎫⎪⎪⎭ =
⎧⎪⎪⎩0 1

1 −γ

⎫⎪⎪⎭ x . (4.9)

Intuitively, this system should behave similarly to the more complicated model
as long as x1 is small. In particular, it can be verified that the equilibrium point
(0, 0) is unstable by plotting the phase portrait or computing the eigenvalues of the
dynamics matrix in equation (4.9)

We can also approximate the system around the stable equilibrium point at
x = (π, 0). In this case we have to expand sin x1 and cos x1 around x1 = π ,
according to the expansions

sin(π + θ) = − sin θ ≈ −θ, cos(π + θ) = − cos(θ) ≈ −1.

If we define z1 = x1 − π and z2 = x2, the resulting approximate dynamics are
given by

dz

dt
=

⎧⎪⎪⎩ z2

−z1 − γ z2

⎫⎪⎪⎭ =
⎧⎪⎪⎩ 0 1

−1 −γ

⎫⎪⎪⎭ z. (4.10)

Note that z = (0, 0) is the equilibrium point for this system and that it has the same
basic form as the dynamics shown in Figure 4.8. Figure 4.11 shows the phase por-
traits for the original system and the approximate system around the corresponding
equilibrium points. Note that they are very similar, although not exactly the same.
It can be shown that if a linear approximation has either asymptotically stable or
unstable equilibrium points, then the local stability of the original system must be
the same (Theorem 4.3). ∇

More generally, suppose that we have a nonlinear system

dx

dt
= F(x)

that has an equilibrium point at xe. Computing the Taylor series expansion of the
vector field, we can write

dx

dt
= F(xe) + ∂F

∂x

∣∣∣∣
xe

(x − xe) + higher-order terms in (x − xe).

Since F(xe) = 0, we can approximate the system by choosing a new state variable
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Differentiation gives the following linear equations for ṙ and ϕ̇:

ẋ1 = ṙ cos ϕ − r ϕ̇ sin ϕ, ẋ2 = ṙ sin ϕ + r ϕ̇ cos ϕ.

Solving this linear system for ṙ and ϕ̇ gives, after some calculation,

dr

dt
= r(1 − r2),

dϕ

dt
= −1.

Notice that the equations are decoupled; hence we can analyze the stability of each
state separately.

The equation for r has three equilibria: r = 0, r = 1 and r = −1 (not realiz-
able since r must be positive). We can analyze the stability of these equilibria by
linearizing the radial dynamics with F(r) = r(1 − r2). The corresponding linear
dynamics are given by

dr

dt
= ∂F

∂r

∣∣∣∣
re

r = (1 − 3r2
e )r, re = 0, 1,

where we have abused notation and used r to represent the deviation from the
equilibrium point. It follows from the sign of (1 − 3r2

e ) that the equilibrium r = 0
is unstable and the equilibrium r = 1 is asymptotically stable. Thus for any initial
condition r > 0 the solution goes to r = 1 as time goes to infinity, but if the system
starts with r = 0, it will remain at the equilibrium for all times. This implies that
all solutions to the original system that do not start at x1 = x2 = 0 will approach
the circle x2

1 + x2
2 = 1 as time increases.

To show the stability of the full solution (4.12), we must investigate the behavior
of neighboring solutions with different initial conditions. We have already shown
that the radius r will approach that of the solution (4.12) as long as r(0) > 0. The
equation for the angle ϕ can be integrated analytically to give ϕ(t) = −t + ϕ(0),
which shows that solutions starting at different angles ϕ will neither converge nor
diverge. Thus, the unit circle is attracting, but the solution (4.12) is only stable, not
asymptotically stable. The behavior of the system is illustrated by the simulation
in Figure 4.12. Notice that the solutions approach the circle rapidly, but that there
is a constant phase shift between the solutions. ∇

4.4 Lyapunov Stability Analysis�

We now return to the study of the full nonlinear system

dx

dt
= F(x), x ∈ R

n. (4.13)

Having defined when a solution for a nonlinear dynamical system is stable, we
can now ask how to prove that a given solution is stable, asymptotically stable
or unstable. For physical systems, one can often argue about stability based on
dissipation of energy. The generalization of that technique to arbitrary dynamical
systems is based on the use of Lyapunov functions in place of energy.
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dx
dt

∂V
∂x

V (x) = c2
V (x) = c1 < c2

Figure 4.13: Geometric illustration of Lyapunov’s stability theorem. The closed contours
represent the level sets of the Lyapunov function V (x) = c. If dx/dt points inward to these
sets at all points along the contour, then the trajectories of the system will always cause V (x)
to decrease along the trajectory.

R
n and let V̇ represent the time derivative of V along trajectories of the system

dynamics (4.13):

V̇ = ∂V

∂x

dx

dt
= ∂V

∂x
F(x).

Let Br = Br (0) be a ball of radius r around the origin. If there exists r > 0 such
that V is positive definite and V̇ is negative semidefinite for all x ∈ Br , then x = 0
is locally stable in the sense of Lyapunov. If V is positive definite and V̇ is negative
definite in Br , then x = 0 is locally asymptotically stable.

If V satisfies one of the conditions above, we say that V is a (local) Lyapunov
function for the system. These results have a nice geometric interpretation. The
level curves for a positive definite function are the curves defined by V (x) = c,
c > 0, and for each c this gives a closed contour, as shown in Figure 4.13. The
condition that V̇ (x) is negative simply means that the vector field points toward
lower-level contours. This means that the trajectories move to smaller and smaller
values of V and if V̇ is negative definite then x must approach 0.

Example 4.9 Scalar nonlinear system
Consider the scalar nonlinear system

dx

dt
= 2

1 + x
− x .

This system has equilibrium points at x = 1 and x = −2. We consider the equilib-
rium point at x = 1 and rewrite the dynamics using z = x − 1:

dz

dt
= 2

2 + z
− z − 1,

which has an equilibrium point at z = 0. Now consider the candidate Lyapunov
function

V (z) = 1

2
z2,
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Figure 4.15:Dynamics of a genetic switch. The phase portrait on the left shows that the switch
has three equilibrium points, corresponding to protein A having a concentration greater than,
equal to or less than protein B. The equilibrium point with equal protein concentrations is
unstable, but the other equilibrium points are stable. The simulation on the right shows the
time response of the system starting from two different initial conditions. The initial portion of
the curve corresponds to initial concentrations z(0) = (1, 5) and converges to the equilibrium
where z1e < z2e. At time t = 10, the concentrations are perturbed by +2 in z1 and −2 in z2,
moving the state into the region of the state space whose solutions converge to the equilibrium
point where z2e < z1e.

point. By construction,

V̇ = wT(PA + ATP)w + F̃ T(w)Pw + wTP F̃(w)

= −wTw + F̃ T(w)Pw + wTP F̃(w).

Since all terms in F̃ are quadratic or higher order in w, it follows that F̃ T(w)Pw
and wTP F̃(w) consist of terms that are at least third order in w. Therefore if w
is sufficiently close to zero, then the cubic and higher-order terms will be smaller
than the quadratic terms. Hence, sufficiently close to w = 0, V̇ is negative definite,
allowing us to conclude that these equilibrium points are both stable.

Figure 4.15 shows the phase portrait and time traces for a system with μ = 4,
illustrating the bistable nature of the system. When the initial condition starts with
a concentration of protein B greater than that of A, the solution converges to the
equilibrium point at (approximately) (1/μn−1, μ). If A is greater than B, then it
goes to (μ, 1/μn−1). The equilibrium point with z1e = z2e is unstable. ∇

More generally, we can investigate what the linear approximation tells about
the stability of a solution to a nonlinear equation. The following theorem gives a
partial answer for the case of stability of an equilibrium point.

Theorem 4.3. Consider the dynamical system (4.15) with F(0) = 0 and F̃ such
that lim ‖F̃(x)‖/‖x‖ → 0 as ‖x‖ → 0. If the real parts of all eigenvalues of A are
strictly less than zero, then xe = 0 is a locally asymptotically stable equilibrium
point of equation (4.15).

This theorem implies that asymptotic stability of the linear approximation im-
plies local asymptotic stability of the original nonlinear system. The theorem is very
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Figure 4.20: Simulation of noise cancellation. The top left figure shows the headphone signal
without noise cancellation, and the bottom leftfigure shows the signal with noise cancellation.
The right figures show the parameters a and b of the filter.

4.6 Further Reading

The field of dynamical systems has a rich literature that characterizes the possi-
ble features of dynamical systems and describes how parametric changes in the
dynamics can lead to topological changes in behavior. Readable introductions to
dynamical systems are given by Strogatz [188] and the highly illustrated text by
Abraham and Shaw [2]. More technical treatments include Andronov, Vitt and
Khaikin [8], Guckenheimer and Holmes [91] and Wiggins [201]. For students with
a strong interest in mechanics, the texts by Arnold [13] and Marsden and Ratiu [147]
provide an elegant approach using tools from differential geometry. Finally, good
treatments of dynamical systems methods in biology are given by Wilson [203]
and Ellner and Guckenheimer [70]. There is a large literature on Lyapunov stability
theory, including the classic texts by Malkin [144], Hahn [94] and Krasovski [128].
We highly recommend the comprehensive treatment by Khalil [123].

Exercises

4.1 (Time-invariant systems) Show that if we have a solution of the differential
equation (4.1) given by x(t) with initial condition x(t0) = x0, then x̃(τ ) = x(t− t0)
is a solution of the differential equation

dx̃

dτ
= F(x̃)

with initial condition x̃(0) = x0, where τ = t − t0.

4.2 (Flow in a tank) A cylindrical tank has cross section A m2, effective outlet
area a m2 and inflow qin m3/s. An energy balance shows that the outlet velocity is
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v = √
2gh m/s, where g m/s2 is the acceleration of gravity and h is the distance

between the outlet and the water level in the tank (in meters). Show that the system
can be modeled by

dh

dt
= − a

A

√
2gh − 1

A
qin, qout = a

√
2gh.

Use the parameters A = 0.2, a = 0.01. Simulate the system when the inflow is zero
and the initial level is h = 0.2. Do you expect any difficulties in the simulation?

4.3 (Cruise control) Consider the cruise control system described in Section 3.1.
Generate a phase portrait for the closed loop system on flat ground (θ = 0), in third
gear, using a PI controller (with kp = 0.5 and ki = 0.1), m = 1000 kg and desired
speed 20 m/s. Your system model should include the effects of saturating the input
between 0 and 1.

4.4 (Lyapunov functions) Consider the second-order system

dx1

dt
= −ax1,

dx2

dt
= −bx1 − cx2,

where a, b, c > 0. Investigate whether the functions

V1(x) = 1

2
x2

1 + 1

2
x2

2 , V2(x) = 1

2
x2

1 + 1

2
(x2 + b

c − a
x1)

2

are Lyapunov functions for the system and give any conditions that must hold.

4.5 (Damped spring–mass system) Consider a damped spring–mass system with �
dynamics

mq̈ + cq̇ + kq = 0.

A natural candidate for a Lyapunov function is the total energy of the system, given
by

V = 1

2
mq̇2 + 1

2
kq2.

Use the Krasovski–Lasalle theorem to show that the system is asymptotically stable.

4.6 (Electric generator) The following simple model for an electric generator con-
nected to a strong power grid was given in Exercise 2.7:

J
d2ϕ

dt2
= Pm − Pe = Pm − EV

X
sin ϕ.

The parameter

a = Pmax

Pm
= EV

X Pm
(4.25)

is the ratio between the maximum deliverable power Pmax = EV/X and the me-
chanical power Pm .

(a) Consider a as a bifurcation parameter and discuss how the equilibria depend
on a.
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(b) For a > 1, show that there is a center at ϕ0 = arcsin(1/a) and a saddle at
ϕ = π − ϕ0.

(c) Show that if Pm/J = 1 there is a solution through the saddle that satisfies

1

2

(dϕ

dt

)2 − ϕ + ϕ0 − a cos ϕ −
√
a2 − 1 = 0. (4.26)

Use simulation to show that the stability region is the interior of the area enclosed
by this solution. Investigate what happens if the system is in equilibrium with a
value of a that is slightly larger than 1 and a suddenly decreases, corresponding to
the reactance of the line suddenly increasing.

4.7 (Lyapunov equation) Show that Lyapunov equation (4.14) always has a solution
if all of the eigenvalues of A are in the left half-plane. (Hint: Use the fact that the
Lyapunov equation is linear in P and start with the case where A has distinct
eigenvalues.)

4.8 (Congestion control) Consider the congestion control problem described in Sec-
tion 3.4. Confirm that the equilibrium point for the system is given by equation (3.21)
and compute the stability of this equilibrium point using a linear approximation.

4.9 (Swinging up a pendulum) Consider the inverted pendulum, discussed in Ex-
ample 4.4, that is described by

θ̈ = sin θ + u cos θ,

where θ is the angle between the pendulum and the vertical and the control signal
u is the acceleration of the pivot. Using the energy function

V (θ, θ̇ ) = cos θ − 1 + 1

2
θ̇2,

show that the state feedback u = k(V0 − V )θ̇ cos θ causes the pendulum to “swing
up” to the upright position.

4.10 (Root locus diagram) Consider the linear system

dx

dt
=

⎧⎪⎪⎩0 1
0 −3

⎫⎪⎪⎭ x +
⎧⎪⎪⎩−1

4

⎫⎪⎪⎭ u, y =
⎧⎩1 0

⎫⎭ x,

with the feedback u = −ky. Plot the location of the eigenvalues as a function the
parameter k.

4.11 (Discrete-time Lyapunov function) Consider a nonlinear discrete-time system�
with dynamics x[k + 1] = f (x[k]) and equilibrium point xe = 0. Suppose there
exists a smooth, positive definite functionV : R

n → R such thatV ( f (x))−V (x) <
0 for x �= 0 and V(0) = 0. Show that xe = 0 is (locally) asymptotically stable.

4.12 (Operational amplifier oscillator) An op amp circuit for an oscillator was
shown in Exercise 3.5. The oscillatory solution for that linear circuit was stable
but not asymptotically stable. A schematic of a modified circuit that has nonlinear
elements is shown in the figure below.
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The modification is obtained by making a feedback around each operational am-
plifier that has capacitors using multipliers. The signal ae = v2

1 + v2
2 − v2

0 is the
amplitude error. Show that the system is modeled by

dv1

dt
= R4

R1R3C1
v2 + 1

R11C1
v1(v

2
0 − v2

1 − v2
2),

dv2

dt
= − 1

R2C2
v1 + 1

R22C2
v2(v

2
0 − v2

1 − v2
2).

Show that the circuit gives an oscillation with a stable limit cycle with amplitude
v0. (Hint: Use the results of Example 4.8.)

4.13 (Self-activating genetic circuit) Consider the dynamics of a genetic circuit that
implements self-activation: the protein produced by the gene is an activator for the
protein, thus stimulating its own production through positive feedback. Using the
models presented in Example 2.13, the dynamics for the system can be written as

dm

dt
= αp2

1 + kp2
+ α0 − γm,

dp

dt
= βm − δp, (4.27)

for p,m ≥ 0. Find the equilibrium points for the system and analyze the local
stability of each using Lyapunov analysis.

4.14 (Diagonal systems) Let A ∈ R
n×n be a square matrix with real eigenvalues

λ1, . . . , λn and corresponding eigenvectors v1, . . . , vn .

(a) Show that if the eigenvalues are distinct (λi �= λ j for i �= j), then vi �= v j for
i �= j .

(b) Show that the eigenvectors form a basis for R
n so that any vector x can be

written as x = ∑
αivi for αi ∈ R.

(c) Let T =
⎧⎩v1 v2 . . . vn

⎫⎭ and show that T−1AT is a diagonal matrix of

the form (4.8).
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Chapter Five
Linear Systems

Few physical elements display truly linear characteristics. For example the relation between
force on a spring and displacement of the spring is always nonlinear to some degree. The
relation between current through a resistor and voltage drop across it also deviates from a
straight-line relation. However, if in each case the relation is reasonably linear, then it will
be found that the system behavior will be very close to that obtained by assuming an ideal,
linear physical element, and the analytical simplification is so enormous that we make linear
assumptions wherever we can possibly do so in good conscience.

Robert H. Cannon, Dynamics of Physical Systems, 1967 [49].

In Chapters 2–4 we considered the construction and analysis of differential
equation models for dynamical systems. In this chapter we specialize our results to
the case of linear, time-invariant input/output systems. Two central concepts are the
matrix exponential and the convolution equation, through which we can completely
characterize the behavior of a linear system. We also describe some properties of
the input/output response and show how to approximate a nonlinear system by a
linear one.

5.1 Basic Definitions

We have seen several instances of linear differential equations in the examples in the
previous chapters, including the spring–mass system (damped oscillator) and the
operational amplifier in the presence of small (nonsaturating) input signals. More
generally, many dynamical systems can be modeled accurately by linear differential
equations. Electrical circuits are one example of a broad class of systems for which
linear models can be used effectively. Linear models are also broadly applicable in
mechanical engineering, for example, as models of small deviations from equilibria
in solid and fluid mechanics. Signal-processing systems, including digital filters of
the sort used in CD and MP3 players, are another source of good examples, although
these are often best modeled in discrete time (as described in more detail in the
exercises).

In many cases, we create systems with a linear input/output response through
the use of feedback. Indeed, it was the desire for linear behavior that led Harold
S. Black to the invention of the negative feedback amplifier. Almost all modern
signal processing systems, whether analog or digital, use feedback to produce linear
or near-linear input/output characteristics. For these systems, it is often useful to
represent the input/output characteristics as linear, ignoring the internal details
required to get that linear response.
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Figure 5.2: Response to piecewise constant inputs. A piecewise constant signal can be rep-
resented as a sum of step signals (a), and the resulting output is the sum of the individual
outputs (b).

posing the responses to a combination of step inputs. Let H(t) be the response to
a unit step applied at time 0. The response to the first step is then H(t − t0)u(t0),
the response to the second step is H(t − t1)

(
u(t1) − u(t0)

)
, and we find that the

complete response is given by

y(t) = H(t − t0)u(t0) + H(t − t1)
(
u(t1) − u(t0)

) + · · ·
= (

H(t − t0) − H(t − t1)
)
u(t0) + (

H(t − t1) − H(t − t2)
)
u(t1) + · · ·

=
tn<t∑
n=0

∞(
H(t − tn) − H(t − tn+1)

)
u(tn)

=
tn<t∑
n=0

H(t − tn) − H(t − tn+1)

tn+1 − tn
u(tn)

(
tn+1 − tn

)
.

An example of this computation is shown in Figure 5.2b.
The response to a continuous input signal is obtained by taking the limit as

tn+1 − tn → 0, which gives

y(t) =
∫ t

0
H ′(t − τ)u(τ )dτ, (5.5)

where H ′ is the derivative of the step response, also called the impulse response.
The response of a linear time-invariant system to any input can thus be computed
from the step response. Notice that the output depends only on the input since we
assumed the system was initially at rest, x(0) = 0. We will derive equation (5.5)
in a slightly different way in the Section 5.3.
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λ = σ ± iω and v = u ± iw, which implies that

u = v + v∗

2
, w = v − v∗

2i
.

Making use of the matrix exponential, we have

eAtv = eλt(u + iw) = eσ t
(
(u cos ωt − w sin ωt) + i(u sin ωt + w cos ωt)

)
,

from which it follows that

eAtu = 1

2

(
eAtv + eAtv∗

)
= ueσ t cos ωt − weσ t sin ωt,

eAtw = 1

2i

(
eAtv − eAtv∗

)
= ueσ t sin ωt + weσ t cos ωt .

A solution with initial conditions in the subspace spanned by the real part u and
imaginary part w of the eigenvector will thus remain in that subspace. The solution
will be a logarithmic spiral characterized by σ and ω. We again call the solution
corresponding to λ a mode of the system, and v the mode shape.

If a matrix A has n distinct eigenvalues λ1, . . . , λn , then the initial condition
response can be written as a linear combination of the modes. To see this, suppose
for simplicity that we have all real eigenvalues with corresponding unit eigenvectors
v1, . . . , vn . From linear algebra, these eigenvectors are linearly independent, and
we can write the initial condition x(0) as

x(0) = α1v1 + α2v2 + · · · + αnvn.

Using linearity, the initial condition response can be written as

x(t) = α1e
λ1tv1 + α2e

λ2tv2 + · · · + αne
λn tvn.

Thus, the response is a linear combination of the modes of the system, with the
amplitude of the individual modes growing or decaying as eλi t . The case for distinct
complex eigenvalues follows similarly (the case for nondistinct eigenvalues is more
subtle and requires making use of the Jordan form discussed in the previous section).

Example 5.5 Coupled spring–mass system
Consider the spring–mass system shown in Figure 5.4, but with the addition of
dampers on each mass. The equations of motion of the system are

m1q̈1 = −2kq1 − cq̇1 + kq2, m2q̈2 = kq1 − 2kq2 − cq̇2.

In state space form, we define the state to be x = (q1, q2, q̇1, q̇2), and we can rewrite
the equations as

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1 0
0 0 0 1

−2k

m

k

m
− c

m
0

k

m
−2k

m
0 − c

m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x .
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We now define a transformation z = T x that puts this system into a simpler form.
Let z1 = 1

2 (q1 + q2), z2 = ż1, z3 = 1
2 (q1 − q2) and z4 = ż3, so that

z = T x = 1

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ x .

In the new coordinates, the dynamics become

dz

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 0

− k

m
− c

m
0 0

0 0 0 1

0 0 −3k

m
− c

m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
z,

and we see that the system is in block diagonal (or modal) form.
In the z coordinates, the states z1 and z2 parameterize one mode with eigen-

values λ ≈ c/(2
√
km) ± i

√
k/m, and the states z3 and z4 another mode with

λ ≈ c/(2
√

3km) ± i
√

3k/m. From the form of the transformation T we see that
these modes correspond exactly to the modes in Figure 5.4, in which q1 and q2 move
either toward or against each other. The real and imaginary parts of the eigenvalues
give the decay rates σ and frequencies ω for each mode. ∇
5.3 Input/Output Response

In the previous section we saw how to compute the initial condition response using
the matrix exponential. In this section we derive the convolution equation, which
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (5.3), repeated here:

dx

dt
= Ax + Bu, y = Cx + Du. (5.13)

Using the matrix exponential, the solution to equation (5.13) can be written as
follows.

Theorem 5.4. The solution to the linear differential equation (5.13) is given by

x(t) = eAt x(0) +
∫ t

0
eA(t−τ)Bu(τ )dτ. (5.14)

Proof. To prove this, we differentiate both sides and use the property (5.8) of the
matrix exponential. This gives

dx

dt
= AeAt x(0) +

∫ t

0
AeA(t−τ)Bu(τ )dτ + Bu(t) = Ax + Bu,
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In state space form, we define the state to be x = (q1, q2, q̇1, q̇2), and we can rewrite
the equations as

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1 0
0 0 0 1

−2k

m

k

m
− c

m
0

k

m
−2k

m
0 − c

m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0

0

k

m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
u.

This is a coupled set of four differential equations and is quite complicated to solve
in analytical form.

The dynamics matrix is the same as in Example 5.5, and we can use the coor-
dinate transformation defined there to put the system in modal form:

dz

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 0

− k

m
− c

m
0 0

0 0 0 1

0 0 −3k

m
− c

m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
z +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
k

2m
0

− k

2m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
u.

Note that the resulting matrix equations are block diagonal and hence decoupled.
We can solve for the solutions by computing the solutions of two sets of second-
order systems represented by the states (z1, z2) and (z3, z4). Indeed, the functional
form of each set of equations is identical to that of a single spring–mass system.
(The explicit solution is derived in Section 6.3.)

Once we have solved the two sets of independent second-order equations, we
can recover the dynamics in the original coordinates by inverting the state transfor-
mation and writing x = T−1z. We can also determine the stability of the system
by looking at the stability of the independent second-order systems. ∇

Steady-State Response

Given a linear input/output system

dx

dt
= Ax + Bu, y = Cx + Du, (5.21)

the general form of the solution to equation (5.21) is given by the convolution
equation:

y(t) = CeAt x(0) +
∫ t

0
CeA(t−τ)Bu(τ )dτ + Du(t).

We see from the form of this equation that the solution consists of an initial condition
response and an input response.

The input response, corresponding to the last two terms in the equation above,
itself consists of two components—the transient response and the steady-state
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Figure 5.13: AFM frequency response. (a) A block diagram for the vertical dynamics of an
atomic force microscope in contact mode. The plot in (b) shows the gain and phase for the
piezo stack. The response contains two frequency peaks at resonances of the system, along
with an antiresonance at ω = 268 krad/s. The combination of a resonant peak followed by
an antiresonance is common for systems with multiple lightly damped modes.

Another important property of the frequency response is the resonant peak
Mr , the largest value of the frequency response, and the peak frequency ωmr , the
frequency where the maximum occurs. These two properties describe the frequency
of the sinusoidal input that produces the largest possible output and the gain at the
frequency.

Example 5.9 Atomic force microscope in contact mode
Consider the model for the vertical dynamics of the atomic force microscope in
contact mode, discussed in Section 3.5. The basic dynamics are given by equa-
tion (3.23). The piezo stack can be modeled by a second-order system with un-
damped natural frequency ω3 and damping ratio ζ3. The dynamics are then de-
scribed by the linear system

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0 0

−k2/(m1 + m2) −c2/(m1 + m2) 1/m2 0
0 0 0 ω3

0 0 −ω3 −2ζ3ω3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ x +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0
0
0
ω3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ u,

y = m2

m1 + m2

⎧⎪⎩ m1k2

m1 + m2

m1c2

m1 + m2
1 0

⎫⎪⎭ x,

where the input signal is the drive signal to the amplifier and the output is the elon-
gation of the piezo. The frequency response of the system is shown in Figure 5.13b.
The zero frequency gain of the system is M0 = 1. There are two resonant poles with
peaks Mr1 = 2.12 at ωmr1 = 238 krad/s and Mr2 = 4.29 at ωmr2 = 746 krad/s.
The bandwidth of the system, defined as the lowest frequency where the gain is√

2 less than the zero frequency gain, is ωb = 292 krad/s. There is also a dip in
the gain Md = 0.556 for ωmd = 268 krad/s. This dip, called an antiresonance, is
associated with a dip in the phase and limits the performance when the system is
controlled by simple controllers, as we will see in Chapter 10. ∇
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described in Gardner and Barnes [81]. Use of the matrix exponential started with
developments of control theory in the 1960s, strongly stimulated by a textbook by
Zadeh and Desoer [207]. Use of matrix techniques expanded rapidly when the pow-
erful methods of numeric linear algebra were packaged in programs like LabVIEW,
MATLAB and Mathematica.

Exercises

5.1 (Response to the derivative of a signal) Show that if y(t) is the output of a
linear system corresponding to input u(t), then the output corresponding to an
input u̇(t) is given by ẏ(t). (Hint: Use the definition of the derivative: ẏ(t) =
limε→0

(
y(t + ε) − y(t)

)
/ε.)

5.2 (Impulse response and convolution) Show that a signal u(t) can be decomposed�
in terms of the impulse function δ(t) as

u(t) =
∫ t

0
δ(t − τ)u(τ ) dτ

and use this decomposition plus the principle of superposition to show that the
response of a linear system to an input u(t) (assuming a zero initial condition) can
be written as

y(t) =
∫ t

0
h(t − τ)u(τ ) dτ,

where h(t) is the impulse response of the system.

5.3 (Pulse response for a compartment model) Consider the compartment model
given in Example 5.7. Compute the step response for the system and compare it
with Figure 5.10b. Use the principle of superposition to compute the response to
the 5 s pulse input shown in Figure 5.10c. Use the parameter values k0 = 0.1,
k1 = 0.1, k2 = 0.5 and b0 = 1.5.

5.4 (Matrix exponential for second-order system) Assume that ζ < 1 and let ωd =
ω0

√
1 − ζ 2. Show that

exp

⎧⎪⎪⎩−ζω0 ωd

−ωd −ζω0

⎫⎪⎪⎭ t =
⎧⎪⎪⎩ e−ζω0t cos ωd t e−ζω0t sin ωd t

−e−ζω0t sin ωd t e−ζω0t cos ωd t

⎫⎪⎪⎭ .

5.5 (Lyapunov function for a linear system) Consider a linear system ẋ = Ax with
Re λ j < 0 for all eigenvalues λ j of the matrix A. Show that the matrix

P =
∫ ∞

0
eA

T τQeAτ dτ

defines a Lyapunov function of the form V (x) = xT Px .

5.6 (Nondiagonal Jordan form) Consider a linear system with a Jordan form that is
non-diagonal.
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(a) Prove Proposition 5.3 by showing that if the system contains a real eigenvalue
λ = 0 with a nontrivial Jordan block, then there exists an initial condition with a
solution that grows in time.

(b) Extend this argument to the case of complex eigenvalues with Re λ = 0 by �
using the block Jordan form

Ji =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 ω 1 0

−ω 0 0 1
0 0 0 ω
0 0 −ω 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ .

5.7 (Rise time for a first-order system) Consider a first-order system of the form

τ
dx

dt
= −x + u, y = x .

We say that the parameter τ is the time constant for the system since the zero input
system approaches the origin as e−t/τ . For a first-order system of this form, show
that the rise time for a step response of the system is approximately 2τ , and that
1%, 2%, and 5% settling times approximately corresponds to 4.6τ , 4τ and 3τ .

5.8 (Discrete-time systems) Consider a linear discrete-time system of the form

x[k + 1] = Ax[k] + Bu[k], y[k] = Cx[k] + Du[k].

(a) Show that the general form of the output of a discrete-time linear system is
given by the discrete-time convolution equation:

y[k] = CAkx[0] +
k−1∑
j=0

CAk− j−1Bu[ j] + Du[k].

(b) Show that a discrete-time linear system is asymptotically stable if and only if
all the eigenvalues of A have a magnitude strictly less than 1.

(c) Let u[k] = sin(ωk) represent an oscillatory input with frequency ω < π (to
avoid “aliasing”). Show that the steady-state component of the response has gain
M and phase θ , where

Meiθ = C(eiω I − A)−1B + D.

(d) Show that if we have a nonlinear discrete-time system

x[k] = f (x[k], u[k]), x[k] ∈ R
n, u ∈ R,

y[k] = h(x[k], u[k]), y ∈ R,

then we can linearize the system around an equilibrium point (xe, ue) by defining
the matrices A, B, C and D as in equation (5.34).
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5.9 (Keynesian economics) Consider the following simple Keynesian macroeco-
nomic model in the form of a linear discrete-time system discussed in Exercise 5.8:⎧⎪⎪⎩C[t + 1]

I [t + 1]

⎫⎪⎪⎭ =
⎧⎪⎪⎩ a a
ab − b ab

⎫⎪⎪⎭ ⎧⎪⎪⎩C[t]
I [t]

⎫⎪⎪⎭ +
⎧⎪⎪⎩ a
ab

⎫⎪⎪⎭G[t],

Y [t] = C[t] + I [t] + G[t].

Determine the eigenvalues of the dynamics matrix. When are the magnitudes of
the eigenvalues less than 1? Assume that the system is in equilibrium with constant
values capital spending C , investment I and government expenditure G. Explore
what happens when government expenditure increases by 10%. Use the values
a = 0.25 and b = 0.5.

5.10 Consider a scalar system

dx

dt
= 1 − x3 + u.

Compute the equilibrium points for the unforced system (u = 0) and use a Taylor
series expansion around the equilibrium point to compute the linearization. Verify
that this agrees with the linearization in equation (5.33).

5.11 (Transcriptional regulation) Consider the dynamics of a genetic circuit that im-
plements self-repression: the protein produced by a gene is a repressor for that gene,
thus restricting its own production. Using the models presented in Example 2.13,
the dynamics for the system can be written as

dm

dt
= α

1 + kp2
+ α0 − γm − u,

dp

dt
= βm − δp, (5.40)

where u is a disturbance term that affects RNA transcription and m, p ≥ 0. Find
the equilibrium points for the system and use the linearized dynamics around each
equilibrium point to determine the local stability of the equilibrium point and the
step response of the system to a disturbance.
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Figure 6.1b shows a sample trajectory bringing the system to the origin. Note
that if we steer the system to an equilibrium point, it is possible to remain there
indefinitely (since ẋ1 = 0 when x2 = 0), but if we go to any other point in the state
space, we can pass through the point only in a transient fashion. ∇

To find general conditions under which a linear system is reachable, we will
first give a heuristic argument based on formal calculations with impulse functions.
We note that if we can reach all points in the state space through some choice of
input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the system to an input u(t) is given
by

x(t) =
∫ t

0
eA(t−τ)Bu(τ ) dτ. (6.2)

If we choose the input to be a impulse function δ(t) as defined in Section 5.3, the
state becomes

xδ =
∫ t

0
eA(t−τ)Bδ(τ ) dτ = dxS

dt
= eAt B.

(Note that the state changes instantaneously in response to the impulse.) We can
find the response to the derivative of an impulse function by taking the derivative
of the impulse response (Exercise 5.1):

xδ̇ = dxδ

dt
= AeAt B.

Continuing this process and using the linearity of the system, the input

u(t) = α1δ(t) + α2δ̇(t) + α3δ̈(t) + · · · + αnδ
(n−1)(t)

gives the state

x(t) = α1e
At B + α2Ae

At B + α3A
2eAt B + · · · + αn A

n−1eAt B.

Taking the limit as t goes to zero through positive values, we get

lim
t→0+ x(t) = α1B + α2AB + α3A

2B + · · · + αn A
n−1B.

On the right is a linear combination of the columns of the matrix

Wr =
⎧⎩B AB · · · An−1B

⎫⎭ . (6.3)

To reach an arbitrary point in the state space, we thus require that there are n linear
independent columns of the matrix Wr . The matrix Wr is called the reachability
matrix.

An input consisting of a sum of impulse functions and their derivatives is a very
violent signal. To see that an arbitrary point can be reached with smoother signals
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To have zero frequency gain equal to unity, the parameter kr should be chosen
as

kr = an + k̃n
bn

= pn
bn

. (6.19)

Notice that it is essential to know the precise values of parameters an and bn in order
to obtain the correct zero frequency gain. The zero frequency gain is thus obtained
by precise calibration. This is very different from obtaining the correct steady-state
value by integral action, which we shall see in later sections.

Eigenvalue Assignment

We have seen through the examples how feedback can be used to design the dy-
namics of a system through assignment of its eigenvalues. To solve the problem in
the general case, we simply change coordinates so that the system is in reachable
canonical form. Consider the system

dx

dt
= Ax + Bu, y = Cx + Du. (6.20)

We can change the coordinates by a linear transformation z = T x so that the
transformed system is in reachable canonical form (6.15). For such a system the
feedback is given by equation (6.16), where the coefficients are given by equa-
tion (6.18). Transforming back to the original coordinates gives the feedback

u = −K̃ z + krr = −K̃ T x + krr.

The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedback). Consider the system
given by equation (6.20), with one input and one output. Let λ(s) = sn + a1sn−1 +
· · · + an−1s + an be the characteristic polynomial of A. If the system is reachable,
then there exists a feedback

u = −Kx + krr

that gives a closed loop system with the characteristic polynomial

p(s) = sn + p1s
n−1 + · · · + pn−1s + pn

and unity zero frequency gain between r and y. The feedback gain is given by

K = K̃ T =
⎧⎩p1 − a1 p2 − a2 · · · pn − an

⎫⎭ W̃rW
−1
r , (6.21)

where ai are the coefficients of the characteristic polynomial of the matrix A and
the matrices Wr and W̃r are given by
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Wr =
⎧⎩B AB · · · An−1B

⎫⎭ , W̃r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 a1 a2 · · · an−1

0 1 a1 · · · an−2
...

. . .
. . .

...
0 0 · · · 1 a1

0 0 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−1

.

The reference gain is given by

kr = −1/
(
C(A − BK )−1B

)
.

For simple problems, the eigenvalue assignment problem can be solved by
introducing the elements ki of K as unknown variables. We then compute the
characteristic polynomial

λ(s) = det(s I − A + BK )

and equate coefficients of equal powers of s to the coefficients of the desired char-
acteristic polynomial

p(s) = sn + p1s
n−1 + · · · + pn−1s + pn.

This gives a system of linear equations to determine ki . The equations can always
be solved if the system is reachable, exactly as we did in Example 6.4.

Equation (6.21), which is called Ackermann’s formula [3, 4], can be used for
numeric computations. It is implemented in the MATLAB function acker. The
MATLAB function place is preferable for systems of high order because it is
better conditioned numerically.

Example 6.5 Predator–prey
Consider the problem of regulating the population of an ecosystem by modulating
the food supply. We use the predator–prey model introduced in Section 3.7. The
dynamics for the system are given by

dH

dt
= (r + u)H

(
1 − H

k

)
− aHL

c + H
, H ≥ 0,

dL

dt
= b

aHL

c + H
− dL , L ≥ 0.

We choose the following nominal parameters for the system, which correspond to
the values used in previous simulations:

a = 3.2, b = 0.6, c = 50,

d = 0.56, k = 125 r = 1.6.

We take the parameter r , corresponding to the growth rate for hares, as the input to
the system, which we might modulate by controlling a food source for the hares.
This is reflected in our model by the term (r + u) in the first equation. We choose
the number of lynxes as the output of our system.

To control this system, we first linearize the system around the equilibrium
point of the system (He, Le), which can be determined numerically to be xe ≈
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Figure 6.7: Simulation results for the controlled predator–prey system. The population of
lynxes and hares as a function of time is shown in (a), and a phase portrait for the controlled
system is shown in (b). Feedback is used to make the population stable at He = 20.6 and
Le = 20.

6.3 State Feedback Design

The location of the eigenvalues determines the behavior of the closed loop dynam-
ics, and hence where we place the eigenvalues is the main design decision to be
made. As with all other feedback design problems, there are trade-offs among the
magnitude of the control inputs, the robustness of the system to perturbations and
the closed loop performance of the system. In this section we examine some of
these trade-offs starting with the special case of second-order systems.

Second-Order Systems

One class of systems that occurs frequently in the analysis and design of feedback
systems is second-order linear differential equations. Because of their ubiquitous
nature, it is useful to apply the concepts of this chapter to that specific class of
systems and build more intuition about the relationship between stability and per-
formance.

The canonical second-order system is a differential equation of the form

q̈ + 2ζω0q̇ + ω2
0q = kω2

0u, y = q. (6.22)

In state space form, this system can be represented as

dx

dt
=

⎧⎪⎪⎩ 0 ω0

−ω0 −2ζω0

⎫⎪⎪⎭ x +
⎧⎪⎪⎩ 0
kω0

⎫⎪⎪⎭ u, y =
⎧⎩1 0

⎫⎭ x . (6.23)

The eigenvalues of this system are given by

λ = −ζω0 ±
√

ω2
0(ζ

2 − 1),

and we see that the origin is a stable equilibrium point if ω0 > 0 and ζ > 0. Note
that the eigenvalues are complex if ζ < 1 and real otherwise. Equations (6.22)
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and (6.23) can be used to describe many second-order systems, including damped
oscillators, active filters and flexible structures, as shown in the examples below.

The form of the solution depends on the value of ζ , which is referred to as the
damping ratio for the system. If ζ > 1, we say that the system is overdamped, and
the natural response (u = 0) of the system is given by

y(t) = βx10 + x20

β − α
e−αt − αx10 + x20

β − α
e−βt ,

where α = ω0(ζ + √
ζ 2 − 1) and β = ω0(ζ − √

ζ 2 − 1). We see that the response
consists of the sum of two exponentially decaying signals. If ζ = 1, then the system
is critically damped and solution becomes

y(t) = e−ζω0t
(
x10 + (x20 + ζω0x10)t

)
.

Note that this is still asymptotically stable as long as ω0 > 0, although the second
term in the solution is increasing with time (but more slowly than the decaying
exponential that is multiplying it).

Finally, if 0 < ζ < 1, then the solution is oscillatory and equation (6.22) is said
to be underdamped. The parameter ω0 is referred to as the natural frequency of the
system, stemming from the fact that for small ζ , the eigenvalues of the system are
approximately λ = −ζω0 ± jω0. The natural response of the system is given by

y(t) = e−ζω0t

(
x10 cos ωd t +

(ζω0

ωd
x10 + 1

ωd
x20

)
sin ωd t

)
,

where ωd = ω0

√
1 − ζ 2 is called the damped frequency. For ζ 
 1, ωd ≈ ω0

defines the oscillation frequency of the solution and ζ gives the damping rate relative
to ω0.

Because of the simple form of a second-order system, it is possible to solve
for the step and frequency responses in analytical form. The solution for the step
response depends on the magnitude of ζ :

y(t) = k

(
1 − e−ζω0t cos ωd t − ζ√

1 − ζ 2
e−ζω0t sin ωd t

)
, ζ < 1;

y(t) = k
(
1 − e−ω0t(1 + ω0t)

)
, ζ = 1;

y(t) = k

(
1 − 1

2

(
ζ√
ζ 2−1

+ 1
)
e−ω0t (ζ−

√
ζ 2−1)

+1

2

(
ζ√
ζ 2−1

− 1
)
e−ω0t (ζ+

√
ζ 2−1)

)
, ζ > 1,

(6.24)

where we have taken x(0) = 0. Note that for the lightly damped case (ζ < 1) we
have an oscillatory solution at frequency ωd .

Step responses of systems with k = 1 and different values of ζ are shown in
Figure 6.8. The shape of the response is determined by ζ , and the speed of the
response is determined by ω0 (included in the time axis scaling): the response is
faster if ω0 is larger.
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Figure 6.8: Step response for a second-order system. Normalized step responses h for the
system (6.23) for ζ = 0, 0.4, 0.7, 1 and 1.2. As the damping ratio is increased, the rise time
of the system gets longer, but there is less overshoot. The horizontal axis is in scaled units
ω0t ; higher values of ω0 result in a faster response (rise time and settling time).

In addition to the explicit form of the solution, we can also compute the properties
of the step response that were defined in Section 5.3. For example, to compute the
maximum overshoot for an underdamped system, we rewrite the output as

y(t) = k

(
1 − 1√

1 − ζ 2
e−ζω0t sin(ωd t + ϕ)

)
, (6.25)

where ϕ = arccos ζ . The maximum overshoot will occur at the first time in which
the derivative of y is zero, which can be shown to be

Mp = e−πζ/
√

1−ζ 2
.

Similar computations can be done for the other characteristics of a step response.
Table 6.1 summarizes the calculations.

The frequency response for a second-order system can also be computed ex-

Table 6.1: Properties of the step response for a second-order system with 0 < ζ < 1.

Property Value ζ = 0.5 ζ = 1/
√

2 ζ = 1

Steady-state value k k k k

Rise time Tr = 1/ω0 · eϕ/ tan ϕ 1.8/ω0 2.2/ω0 2.7/ω0

Overshoot Mp = e−πζ/
√

1−ζ 2 16% 4% 0%

Settling time (2%) Ts ≈ 4/ζω0 8.0/ω0 5.9/ω0 5.8/ω0
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for a complex eigenvalue λ to be

ζ = −Re λ

|λ| .

We say that a complex conjugate pair of eigenvalues λ, λ∗ is a dominant pair if it
has the lowest damping ratio compared with all other eigenvalues of the system.

Assuming that a system is stable, the dominant pair of eigenvalues tends to be
the most important element of the response. To see this, assume that we have a
system in Jordan form with a simple Jordan block corresponding to the dominant
pair of eigenvalues:

dz

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
λ∗

J2
. . .

Jk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
z + Bu, y = Cz.

(Note that the state z may be complex because of the Jordan transformation.) The
response of the system will be a linear combination of the responses from each
of the individual Jordan subsystems. As we see from Figure 6.8, for ζ < 1 the
subsystem with the slowest response is precisely the one with the smallest damping
ratio. Hence, when we add the responses from each of the individual subsystems,
it is the dominant pair of eigenvalues that will be the primary factor after the initial
transients due to the other terms in the solution die out. While this simple analysis
does not always hold (e.g., if some nondominant terms have larger coefficients
because of the particular form of the system), it is often the case that the dominant
eigenvalues determine the (step) response of the system.

The only formal requirement for eigenvalue assignment is that the system be
reachable. In practice there are many other constraints because the selection of
eigenvalues has a strong effect on the magnitude and rate of change of the control
signal. Large eigenvalues will in general require large control signals as well as
fast changes of the signals. The capability of the actuators will therefore impose
constraints on the possible location of closed loop eigenvalues. These issues will
be discussed in depth in Chapters 11 and 12.

We illustrate some of the main ideas using the balance system as an example.

Example 6.7 Balance system
Consider the problem of stabilizing a balance system, whose dynamics were given
in Example 6.2. The dynamics are given by

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 1 0
0 0 0 1

0 m2l2g/μ −cJt/μ −γ Jtlm/μ

0 Mtmgl/μ −clm/μ −γMt/μ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0
0

Jt/μ

lm/μ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ ,

where Mt = M + m, Jt = J + ml2, μ = Mt Jt − m2l2 and we have left c and γ
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nonzero. We use the following parameters for the system (corresponding roughly
to a human being balanced on a stabilizing cart):

M = 10 kg, m = 80 kg, c = 0.1 N s/m,

J = 100 kg m2/s2, l = 1 m, γ = 0.01 N m s,
g = 9.8 m/s2.

The eigenvalues of the open loop dynamics are given by λ ≈ 0, 4.7, −1.9±2.7i .
We have verified already in Example 6.2 that the system is reachable, and hence
we can use state feedback to stabilize the system and provide a desired level of
performance.

To decide where to place the closed loop eigenvalues, we note that the closed
loop dynamics will roughly consist of two components: a set of fast dynamics
that stabilize the pendulum in the inverted position and a set of slower dynamics
that control the position of the cart. For the fast dynamics, we look to the natural
period of the pendulum (in the hanging-down position), which is given by ω0 =√
mgl/(J + ml2) ≈ 2.1 rad/s. To provide a fast response we choose a damping ratio

of ζ = 0.5 and try to place the first pair of eigenvalues at λ1,2 ≈ −ζω0 ± ω0 ≈
−1 ± 2i , where we have used the approximation that

√
1 − ζ 2 ≈ 1. For the slow

dynamics, we choose the damping ratio to be 0.7 to provide a small overshoot and
choose the natural frequency to be 0.5 to give a rise time of approximately 5 s. This
gives eigenvalues λ3,4 = −0.35 ± 0.35i .

The controller consists of a feedback on the state and a feedforward gain for the
reference input. The feedback gain is given by

K =
⎧⎩−15.6 1730 −50.1 443

⎫⎭ ,

which can be computed using Theorem 6.3 or using the MATLAB place com-
mand. The feedforward gain is kr = −1/(C(A − BK )−1B) = −15.5. The step
response for the resulting controller (applied to the linearized system) is given in
Figure 6.11a. While the step response gives the desired characteristics, the input
required (bottom left) is excessively large, almost three times the force of gravity
at its peak.

To provide a more realistic response, we can redesign the controller to have
slower dynamics. We see that the peak of the input force occurs on the fast time scale,
and hence we choose to slow this down by a factor of 3, leaving the damping ratio
unchanged. We also slow down the second set of eigenvalues, with the intuition that
we should move the position of the cart more slowly than we stabilize the pendulum
dynamics. Leaving the damping ratio for the slow dynamics unchanged at 0.7 and
changing the frequency to 1 (corresponding to a rise time of approximately 10 s),
the desired eigenvalues become

λ = {−0.33 ± 0.66i, −0.18 ± 0.18i}.
The performance of the resulting controller is shown in Figure 6.11b. ∇

As we see from this example, it can be difficult to determine where to place
the eigenvalues using state feedback. This is one of the principal limitations of this
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6.2 (Reachability from nonzero initial state) Extend the argument in Section 6.1 to
show that if a system is reachable from an initial state of zero, it is reachable from
a nonzero initial state.

6.3 (Unreachable systems) Consider the system shown in Figure 6.3. Write the
dynamics of the two systems as

dx

dt
= Ax + Bu,

dz

dt
= Az + Bu.

If x and z have the same initial condition, they will always have the same state
regardless of the input that is applied. Show that this violates the definition of
reachability and further show that the reachability matrix Wr is not full rank.

6.4 (Integral feedback for rejecting constant disturbances) Consider a linear system
of the form

dx

dt
= Ax + Bu + Fd, y = Cx

where u is a scalar and d is a disturbance that enters the system through a disturbance
vector F ∈ R

n . Assume that the matrix A is invertible and the zero frequency gain
CA−1B is nonzero. Show that integral feedback can be used to compensate for a
constant disturbance by giving zero steady-state output error even when d �= 0.

6.5 (Rear-steered bicycle) A simple model for a bicycle was given by equation (3.5)
in Section 3.2. A model for a bicycle with rear-wheel steering is obtained by re-
versing the sign of the velocity in the model. Determine the conditions under which
this systems is reachable and explain any situations in which the system is not
reachable.

6.6 (Characteristic polynomial for reachable canonical form) Show that the char-
acteristic polynomial for a system in reachable canonical form is given by equa-
tion (6.7) and that

dnzk
dtn

+ a1
dn−1zk
dtn−1

+ · · · + an−1
dzk
dt

+ anzk = dn−ku
dtn−k

,

where zk is the kth state.

6.7 (Reachability matrix for reachable canonical form) Consider a system in reach-
able canonical form. Show that the inverse of the reachability matrix is given by

W̃−1
r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 a1 a2 · · · an
0 1 a1 · · · an−1

0 0 1
. . .

...
...

. . . a1

0 0 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.
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6.8 (Non-maintainable equilibria) Consider the normalized model of a pendulum
on a cart

d2x

dt2
= u,

d2θ

dt2
= −θ + u,

where x is cart position and θ is pendulum angle. Can the angle θ = θ0 for θ0 �= 0
be maintained?

6.9 (Eigenvalue assignment for unreachable system) Consider the system

dx

dt
=

⎧⎪⎪⎩0 1
0 0

⎫⎪⎪⎭ x +
⎧⎪⎪⎩1

0

⎫⎪⎪⎭ u, y =
⎧⎩1 0

⎫⎭ x,

with the control law
u = −k1x1 − k2x2 + krr.

Show that eigenvalues of the system cannot be assigned to arbitrary values.

6.10 (Cayley–Hamilton theorem) Let A ∈ R
n×n be a matrix with characteristic

polynomial λ(s) = det(s I − A) = sn + a1sn−1 + · · · + an−1s + an . Assume that
the matrix A can be diagonalized and show that it satisfies

λ(A) = An + a1A
n−1 + · · · + an−1A + an I = 0,

Use the result to show that Ak , k ≥ n, can be rewritten in terms of powers of A of
order less than n.

6.11 (Motor drive) Consider the normalized model of the motor drive in Exer-
cise 2.10. Using the following normalized parameters,

J1 = 10/9, J2 = 10, c = 0.1, k = 1, kI = 1,

verify that the eigenvalues of the open loop system are 0, 0, −0.05 ± i . Design a
state feedback that gives a closed loop system with eigenvalues −2, −1 and −1± i .
This choice implies that the oscillatory eigenvalues will be well damped and that
the eigenvalues at the origin are replaced by eigenvalues on the negative real axis.
Simulate the responses of the closed loop system to step changes in the command
signal for θ2 and a step change in a disturbance torque on the second rotor.

6.12 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (3.7) in Section 3.2. Using the parameters from the companion web site, the
model is unstable at the velocity v = 5 m/s and the open loop eigenvalues are -1.84,
-14.29 and 1.30 ± 4.60i . Find the gains of a controller that stabilizes the bicycle
and gives closed loop eigenvalues at -2, -10 and −1 ± i . Simulate the response of
the system to a step change in the steering reference of 0.002 rad.

6.13 (Atomic force microscope) Consider the model of an AFM in contact mode
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given in Example 5.9:

dx

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0 0

−k2/(m1 + m2) −c2/(m1 + m2) 1/m2 0
0 0 0 ω3

0 0 −ω3 −2ζ3ω3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ x +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0
0
0
ω3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ u,

y = m2

m1 + m2

⎧⎪⎩ m1k2

m1 + m2

m1c2

m1 + m2
1 0

⎫⎪⎭ x .

Use the MATLAB script afm_data.m from the companion web site to generate the
system matrices.

(a) Compute the reachability matrix of the system and numerically determine its
rank. Scale the model by using milliseconds instead of seconds as time units. Repeat
the calculation of the reachability matrix and its rank.

(b) Find a state feedback controller that gives a closed loop system with complex
poles having damping ratio 0.707. Use the scaled model for the computations.

(c) Compute state feedback gains using linear quadratic control. Experiment by
using different weights. Compute the gains for q1 = q2 = 0, q3 = q4 = 1 and
ρ1 = 0.1 and explain the result. Choose q1 = q2 = q3 = q4 = 1 and explore what
happens to the feedback gains and closed loop eigenvalues when you change ρ1.
Use the scaled system for this computation.

6.14 Consider the second-order system

d2y

dt2
+ 0.5

dy

dt
+ y = a

du

dt
+ u.

Let the initial conditions be zero.

(a) Show that the initial slope of the unit step response is a. Discuss what it means
when a < 0.

(b) Show that there are points on the unit step response that are invariant with a.
Discuss qualitatively the effect of the parameter a on the solution.

(c) Simulate the system and explore the effect of a on the rise time and overshoot.

6.15 (Bryson’s rule) Bryson and Ho [47] have suggested the following method for
choosing the matrices Qx and Qu in equation (6.26). Start by choosing Qx and Qu

as diagonal matrices whose elements are the inverses of the squares of the maxima
of the corresponding variables. Then modify the elements to obtain a compromise
among response time, damping and control effort. Apply this method to the motor
drive in Exercise 6.11. Assume that the largest values of the ϕ1 and ϕ2 are 1, the
largest values of ϕ̇1 and ϕ̇2 are 2 and the largest control signal is 10. Simulate the
closed loop system for ϕ2(0) = 1 and all other states are initialized to 0. Explore
the effects of different values of the diagonal elements for Qx and Qu .
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to command signals and disturbances are decoupled. Disturbance responses are
governed by the observer and the state feedback, while the response to command
signals is governed by the trajectory generator (feedforward).

For an analytic description we start with the full nonlinear dynamics of the
process

dx

dt
= f (x, u), y = h(x, u). (7.23)

Assume that the trajectory generator is able to compute a desired trajectory (xd, uff)
that satisfies the dynamics (7.23) and satisfies r = h(xd, uff). To design the con-
troller, we construct the error system. Let z = x − xd and v = u− uff and compute
the dynamics for the error:

ż = ẋ − ẋd = f (x, u) − f (xd, uff)

= f (z + xd, v + uff) − f (xd, uff) =: F(z, v, xd(t), uff(t)).

In general, this system is time-varying. Note that z = −e in Figure 7.10 due to the
convention of using negative feedback in the block diagram.

For trajectory tracking, we can assume that e is small (if our controller is doing
a good job), and so we can linearize around z = 0:

dz

dt
≈ A(t)z + B(t)v, A(t) = ∂F

∂z

∣∣∣∣
(xd (t),uff(t))

, B(t) = ∂F

∂v

∣∣∣∣
(xd (t),uff(t)

.

It is often the case that A(t) and B(t) depend only on xd , in which case it is
convenient to write A(t) = A(xd) and B(t) = B(xd).

Assume now that xd and uff are either constant or slowly varying (with respect
to the performance criterion). This allows us to consider just the (constant) linear
system given by (A(xd), B(xd)). If we design a state feedback controller K (xd) for
each xd , then we can regulate the system using the feedback

v = K (xd)z.

Substituting back the definitions of e and v , our controller becomes

u = −K (xd)(x − xd) + uff.

This form of controller is called a gain scheduled linear controller with feedforward
uff.

Finally, we consider the observer. The full nonlinear dynamics can be used for
the prediction portion of the observer and the linearized system for the correction
term:

dx̂

dt
= f (x̂, u) + L(x̂)(y − h(x̂, u)),

where L(x̂) is the observer gain obtained by linearizing the system around the
currently estimated state. This form of the observer is known as an extendedKalman
filter and has proved to be a very effective means of estimating the state of a nonlinear
system.
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Theorem 7.3:

dx̂

dt
= Ax̂ + Bu + L(y − Cx̂), u = −K x̂ + krr.

Introducing the states x and x̃ = x − x̂ , the closed loop system can be written as

d

dt

⎧⎪⎪⎩xx̃
⎫⎪⎪⎭ =

⎧⎪⎪⎩A − BK BK
0 A − LC

⎫⎪⎪⎭⎧⎪⎪⎩xx̃
⎫⎪⎪⎭ +

⎧⎪⎪⎩Bkr
0

⎫⎪⎪⎭ r, y =
⎧⎩C 0

⎫⎭ x,

which is a Kalman decomposition like the one shown in Figure 7.12b with only
two subsystems �ro and �r̄o. The subsystem �ro, with state x , is reachable and
observable, and the subsystem �r̄o, with state x̃ , is not reachable but observable.
It is natural that the state x̃ is not reachable from the reference signal r because it
would not make sense to design a system where changes in the command signal
could generate observer errors. The relationship between the reference r and the
output y is given by

dx

dt
= (A − BK )x + Bkrr, y = Cx,

which is the same relationship as for a system with full state feedback. ∇

Computer Implementation

The controllers obtained so far have been described by ordinary differential equa-
tions. They can be implemented directly using analog components, whether elec-
tronic circuits, hydraulic valves or other physical devices. Since in modern engi-
neering applications most controllers are implemented using computers, we will
briefly discuss how this can be done.

A computer-controlled system typically operates periodically: every cycle, sig-
nals from the sensors are sampled and converted to digital form by the A/D converter,
the control signal is computed and the resulting output is converted to analog form
for the actuators, as shown in Figure 7.13. To illustrate the main principles of how
to implement feedback in this environment, we consider the controller described
by equations (7.14) and (7.15), i.e.,

dx̂

dt
= Ax̂ + Bu + L(y − Cx̂), u = −K x̂ + krr.

The second equation consists only of additions and multiplications and can thus
be implemented directly on a computer. The first equation can be implemented by
approximating the derivative by a difference

dx̂

dt
≈ x̂(tk+1) − x̂(tk)

h
= Ax̂(tk) + Bu(tk) + L

(
y(tk) − Cx̂(tk)

)
,

where tk are the sampling instants andh = tk+1−tk is the sampling period. Rewriting
the equation to isolate x̂(tk+1), we get the difference equation

x̂(tk+1) = x̂(tk) + h
(
Ax̂(tk) + Bu(tk) + L

(
y(tk) − Cx̂(tk)

))
. (7.29)
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Figure 8.4: A pole zero diagram for a transfer function with zeros at −5 and −1 and poles at
−3 and −2±2 j . The circles represent the locations of the zeros, and the crosses the locations
of the poles. A complete characterization requires we also specify the gain of the system.

model. One easy way to see this is to notice that the value of G(s) is unbounded
when s is an eigenvalue of a system since this is precisely the set of points where
the characteristic polynomial λ(s) = det(s I − A) = 0 (and hence s I − A is
noninvertible). It follows that the poles of a state space system depend only on the
matrix A, which represents the intrinsic dynamics of the system. We say that a
transfer function is stable if all of its poles have negative real part.

To find the zeros of a state space system, we observe that the zeros are complex
numbers s such that the input u(t) = u0est gives zero output. Inserting the pure
exponential response x(t) = x0est and y(t) = 0 in equation (8.2) gives

sest x0 = Ax0e
st + Bu0e

st 0 = Cest x0 + Destu0,

which can be written as ⎧⎪⎪⎩A − s I B
C D

⎫⎪⎪⎭⎧⎪⎪⎩x0

u0

⎫⎪⎪⎭ est = 0.

This equation has a solution with nonzero x0, u0 only if the matrix on the left does
not have full rank. The zeros are thus the values s such that the matrix⎧⎪⎪⎩A − s I B

C D

⎫⎪⎪⎭ (8.17)

looses rank.
Since the zeros depend on A, B, C and D, they therefore depend on how the

inputs and outputs are coupled to the states. Notice in particular that if the matrix
B has full row rank, then the matrix in equation (8.17) has n linearly independent
rows for all values of s. Similarly there are n linearly independent columns if the
matrix C has full column rank. This implies that systems where the matrix B or C
is square and full rank do not have zeros. In particular it means that a system has
no zeros if it is fully actuated (each state can be controlled independently) or if the
full state is measured.

A convenient way to view the poles and zeros of a transfer function is through
a pole zero diagram, as shown in Figure 8.4. In this diagram, each pole is marked
with a cross, and each zero with a circle. If there are multiple poles or zeros at a
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(a) Cart–pendulum system
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(b) Pole zero diagram for HθF
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(c) Pole zero diagram for HpF

Figure 8.5: Poles and zeros for a balance system. The balance system (a) can be modeled
around its vertical equilibrium point by a fourth order linear system. The poles and zeros for
the transfer functions HθF and HpF are shown in (b) and (c), respectively.

fixed location, these are often indicated with overlapping crosses or circles (or other
annotations). Poles in the left half-plane correspond to stable modes of the system,
and poles in the right half-plane correspond to unstable modes. We thus call a pole
in the left-half plane a stable pole and a pole in the right-half plane an unstable
pole. A similar terminology is used for zeros, even though the zeros do not directly
related to stability or instability of the system. Notice that the gain must also be
given to have a complete description of the transfer function.

Example 8.5 Balance system
Consider the dynamics for a balance system, shown in Figure 8.5. The transfer func-
tion for a balance system can be derived directly from the second-order equations,
given in Example 2.1:

Mt
d2 p

dt2
− ml

d2θ

dt2
cos θ + c

dp

dt
+ ml sin θ

(dθ

dt

)2 = F,

−ml cos θ
d2 p

dt2
+ Jt

d2θ

dt2
− mgl sin θ + γ θ̇ = 0.

If we assume that θ and θ̇ are small, we can approximate this nonlinear system by
a set of linear second-order differential equations,

Mt
d2 p

dt2
− ml

d2θ

dt2
+ c

dp

dt
= F,

−ml d
2 p

dt2
+ Jt

d2θ

dt2
+ γ

dθ

dt
− mglθ = 0.
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Figure 8.10: Car with PI cruise control encountering a sloping road. The velocity error is
shown on the left and the throttle is shown on the right. Results with a PI controller with
kp = 0.5 and ki = 0.0051, where the process pole s = −0.0101, is shown by solid lines, and
a controller with kp = 0.5 and ki = 0.5 is shown by dashed lines. Compare with Figure 3.3b.

signals are

Gv θ (s) = bgkps

(s − a)(s + bkp)
, Gu θ (s) = bkp

s + bkp
.

Notice that the canceled mode s = a = −0.0101 appears in Gvθ but not in Guθ .
The reason why the control signal remains constant is that the controller has a zero
at s = −0.0101, which cancels the slowly decaying process mode. Notice that the
error would diverge if the canceled pole was unstable. ∇

The lesson we can learn from this example is that it is a bad idea to try to
cancel unstable or slow process poles. A more detailed discussion of pole/zero
cancellations is given in Section 12.4.

Algebraic Loops

When analyzing or simulating a system described by a block diagram, it is necessary
to form the differential equations that describe the complete system. In many cases
the equations can be obtained by combining the differential equations that describe
each subsystem and substituting variables. This simple procedure cannot be used
when there are closed loops of subsystems that all have a direct connection between
inputs and outputs, known as an algebraic loop.

To see what can happen, consider a system with two blocks, a first-order non-
linear system,

dx

dt
= f (x, u), y = h(x), (8.21)

and a proportional controller described by u = −ky. There is no direct term since
the function h does not depend on u. In that case we can obtain the equation for the
closed loop system simply by replacing u by −ky in (8.21) to give

dx

dt
= f (x, −ky), y = h(x).

Such a procedure can easily be automated using simple formula manipulation.
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(a) Low-pass filter
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Figure 8.15: Bode plots for low-pass, band-pass and high-pass filters. The top plots are the
gain curves and the bottom plots are the phase curves. Each system passes frequencies in a
different range and attenuates frequencies outside of that range.

below or well above ω0, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For frequencies below a/100
there is a phase lead of 90◦, and for frequencies above 100a there is a phase lag
of 90◦. These actions correspond to differentiation and integration of the signal in
these frequency ranges.

Example 8.9 Transcriptional regulation
Consider a genetic circuit consisting of a single gene. We wish to study the response
of the protein concentration to fluctuations in the mRNA dynamics. We consider
two cases: a constitutive promoter (no regulation) and self-repression (negative
feedback), illustrated in Figure 8.16. The dynamics of the system are given by

dm

dt
= α(p) − γm − u,

dp

dt
= βm − δp,

where u is a disturbance term that affects mRNA transcription.
For the case of no feedback we have α(p) = α0, and the system has an equi-

librium point at me = α0/γ , pe = βα0/(δγ ). The transfer function from v to p is
given by

Gol
pv (s) = −β

(s + γ )(s + δ)
.

For the case of negative regulation, we have

α(p) = α1

1 + kpn
+ α0,

and the equilibrium points satisfy

me = δ

β
pe,

α

1 + kpne
+ α0 = γme = γ δ

β
pe.
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Figure 9.8: PD control of an inverted pendulum. (a) The system consists of a mass that is
balanced by applying a force at the pivot point. A proportional-derivative controller with
transfer function C(s) = k(s + 2) is used to command u based on θ . (b) A Nyquist plot of
the loop transfer function for gain k = 2. There is one counterclockwise encirclement of the
critical point, giving N = −1 clockwise encirclements.

Derivation of Nyquist’s Stability Theorem
�

We will now prove the Nyquist stability theorem for a general loop transfer func-
tion L(s). This requires some results from the theory of complex variables, for
which the reader can consult Ahlfors [6]. Since some precision is needed in stating
Nyquist’s criterion properly, we will use a more mathematical style of presenta-
tion. We also follow the mathematical convention of counting encirclements in the
counterclockwise direction for the remainder of this section. The key result is the
following theorem about functions of complex variables.

Theorem 9.3 (Principle of variation of the argument). Let D be a closed region
in the complex plane and let � be the boundary of the region. Assume the function
f : C → C is analytic in D and on �, except at a finite number of poles and zeros.
Then the winding number wn is given by

wn = 1

2π
�� arg f (z) = 1

2π i

∫
�

f ′(z)
f (z)

dz = Z − P,

where �� is the net variation in the angle when z traverses the contour � in the
counterclockwise direction, Z is the number of zeros in D and P is the number of
poles in D. Poles and zeros of multiplicity m are counted m times.

Proof. Assume that z = a is a zero of multiplicitym. In the neighborhood of z = a
we have

f (z) = (z − a)mg(z),

where the function g is analytic and different from zero. The ratio of the derivative
of f to itself is then given by

f ′(z)
f (z)

= m

z − a
+ g′(z)

g(z)
,

and the second term is analytic at z = a. The function f ′/ f thus has a single pole
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Figure 9.16: Describing function analysis. A feedback connection between a static nonlin-
earity and a linear system is shown in (a). The linear system is characterized by its transfer
function L(s), which depends on frequency, and the nonlinearity by its describing function
N (a), which depends on the amplitude a of its input. The Nyquist plot of L(iω) and the plot
of the −1/N (a) are shown in (b). The intersection of the curves represents a possible limit
cycle.

Systems where the phase between inputs and outputs is 90◦ or less for all inputs are
called passive systems. It follows from the Nyquist stability theorem that a closed
loop linear system is stable if the phase of the loop transfer function is between
−π and π . This result can be extended to nonlinear systems as well. It is called the
passivity theorem and is closely related to the small gain theorem. See Khalil [123]
for a more detailed description.

Additional applications of the small gain theorem and its application to robust
stability are given in Chapter 12.

Describing Functions
�

For special nonlinear systems like the one shown in Figure 9.16a, which consists
of a feedback connection between a linear system and a static nonlinearity, it is
possible to obtain a generalization of Nyquist’s stability criterion based on the idea
of describing functions. Following the approach of the Nyquist stability condition,
we will investigate the conditions for maintaining an oscillation in the system. If
the linear subsystem has low-pass character, its output is approximately sinusoidal
even if its input is highly irregular. The condition for oscillation can then be found
by exploring the propagation of a sinusoid that corresponds to the first harmonic.

To carry out this analysis, we have to analyze how a sinusoidal signal propa-
gates through a static nonlinear system. In particular we investigate how the first
harmonic of the output of the nonlinearity is related to its (sinusoidal) input. Letting
F represent the nonlinear function, we expand F(eiωt) in terms of its harmonics:

F(aeiωt) =
∞∑
n=0

Mn(a)e
i(nωt+ϕn(a)),

where Mn(a) and ϕn(a) represent the gain and phase of the nth harmonic, which
depend on the input amplitude since the function F is nonlinear. We define the
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transfer function C(s) = kds + kp, where the gains are kd = 2ζω0 and kp = ω2
0.

Calculate and plot the gain, phase and stability margins as a function ζ .

9.7 (Congestion control in overload conditions) A strongly simplified flow model
of a TCP loop under overload conditions is given by the loop transfer function

L(s) = k

s
e−sτ ,

where the queuing dynamics are modeled by an integrator, the TCP window control
is a time delay τ and the controller is simply a proportional controller. A major
difficulty is that the time delay may change significantly during the operation of
the system. Show that if we can measure the time delay, it is possible to choose a
gain that gives a stability margin of sn ≥ 0.6 for all time delays τ .

9.8 (Bode’s formula) Consider Bode’s formula (9.8) for the relation between gain
and phase for a transfer function that has all its singularities in the left half-plane.
Plot the weighting function and make an assessment of the frequencies where the
approximation argG ≈ (π/2)d log |G|/d log ω is valid.

9.9 (Padé approximation to a time delay) Consider the transfer functions

G1(s) = e−sτ , G2(s) = e−sτ ≈ 1 − sτ/2

1 + sτ/2
. (9.16)

Show that the minimum phase properties of the transfer functions are similar for
frequencies ω < 1/τ . A long time delay τ is thus equivalent to a small right half-
plane zero. The approximation (9.16) is called a first-order Padé approximation.

9.10 (Inverse response) Consider a system whose input/output response is modeled
by G(s) = 6(−s + 1)/(s2 + 5s + 6), which has a zero in the right half-plane.
Compute the step response for the system, and show that the output goes in the
wrong direction initially, which is also referred to as an inverse response. Compare
the response to a minimum phase system by replacing the zero at s = 1 with a zero
at s = −1.

9.11 (Describing function analysis) . Consider the system with the block diagram
shown on the left below.

−1

�
r e u

P(s)
y

R( · )

y

u

c

b

The block R is a relay with hysteresis whose input/output response is shown on the
right and the process transfer function is P(s) = e−sτ /s. Use describing function
analysis to determine frequency and amplitude of possible limit cycles. Simulate
the system and compare with the results of the describing function analysis.
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(b) Anti-windup

Figure 10.10: Simulation of PI cruise control with windup (a) and anti-windup (b). The figure
shows the speed v and the throttle u for a car that encounters a slope that is so steep that
the throttle saturates. The controller output is a dashed line. The controller parameters are
kp = 0.5 and ki = 0.1. The anti-windup compensator eliminates the overshoot by preventing
the error for building up in the integral term of the controller.

actuator, and forming an error signal es as the difference between the output of
the controller v and the actuator output u. The signal es is fed to the input of the
integrator through gain kt . The signal es is zero when there is no saturation and the
extra feedback loop has no effect on the system. When the actuator saturates, the
signal es is fed back to the integrator in such a way that es goes toward zero. This
implies that controller output is kept close to the saturation limit. The controller
output will then change as soon as the error changes sign and integral windup is
avoided.

The rate at which the controller output is reset is governed by the feedback
gain kt ; a large value of kt gives a short reset time. The parameter kt cannot be too
large because measurement noise can then cause an undesirable reset. A reasonable
choice is to choose kt as a fraction of 1/Ti . We illustrate how integral windup can
be avoided by investigating the cruise control system.

Example 10.6 Cruise control with anti-windup
Figure 10.10b shows what happens when a controller with anti-windup is applied
to the system simulated in Figure 10.10a. Because of the feedback from the actuator
model, the output of the integrator is quickly reset to a value such that the controller
output is at the saturation limit. The behavior is drastically different from that in
Figure 10.10a and the large overshoot is avoided. The tracking gain is kt = 2 in the
simulation. ∇
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Figure 10.11: PID controller with a filtered derivative and anti-windup. The input to the
integrator (1/s) consists of the error term plus a “reset” based on input saturation. If the
actuator is not saturated, then es = u − ν, otherwise es will decrease the integrator input to
prevent windup.

10.5 Implementation

There are many practical issues that have to be considered when implementing PID
controllers. They have been developed over time based on practical experience. In
this section we consider some of the most common. Similar considerations also
apply to other types of controllers.

Filtering the Derivative

A drawback with derivative action is that an ideal derivative has high gain for
high-frequency signals. This means that high-frequency measurement noise will
generate large variations in the control signal. The effect of measurement noise may
be reduced by replacing the term kds by kds/(1 + sT f ), which can be interpreted
as an ideal derivative of a low-pass filtered signal. For small s the transfer function
is approximately kds and for large s it is equal to kd/T f . The approximation acts
as a derivative for low-frequency signals and as a constant gain for high-frequency
signals. The filtering time is chosen as T f = (kd/k)/N , with N in the range 2–20.
Filtering is obtained automatically if the derivative is implemented by taking the
difference between the signal and its filtered version as shown in Figure 10.3b (see
equation (10.5)).

Instead of filtering just the derivative, it is also possible to use an ideal controller
and filter the measured signal. The transfer function of such a controller with a filter
is then

C(s) = kp

(
1 + 1

sTi
+ sTd

)
1

1 + sT f + (sT f )2/2
, (10.13)

where a second-order filter is used.
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Figure 10.12: Time and frequency responses for PI cruise control with setpoint weighting.
Step responses are shown in (a), and the gain curves of the frequency responses in (b). The
controller gains are kp = 0.74 and ki = 0.19. The setpoint weights are β = 0, 0.5 and 1, and
γ = 0.

and the output voltage u. The impedances are given by

Z1(s) = R1

1 + R1C1s
, Z2(s) = R2 + 1

C2s
,

and wefind the following relation between the input voltage e and the output voltage
u:

u = − Z2

Z1
e = − R2

R1

(1 + R1C1s)(1 + R2C2s)

R2C2s
e.

This is the input/output relation for a PID controller of the form (10.1) with param-
eters

kp = R2

R1
, Ti = R2C1, Td = R1C1.

−

+

R1 R C2 2

e

u

(a) PI controller

−

+

R1 R C2 2

C1

e

u

(b) PID controller

Figure 10.13: Schematic diagrams for PI and PID controllers using op amps. The circuit in
(a) uses a capacitor in the feedback path to store the integral of the error. The circuit in (b)
adds a filter on the input to provide derivative action.
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The corresponding results for a PI controller are obtained by setting C1 = 0 (re-
moving the capacitor).

Computer Implementation

In this section we briefly describe how a PID controller may be implemented using
a computer. The computer typically operates periodically, with signals from the
sensors sampled and converted to digital form by the A/D converter, and the control
signal computed and then converted to analog form for the actuators. The sequence
of operation is as follows:

1. Wait for clock interrupt

2. Read input from sensor

3. Compute control signal

4. Send output to the actuator

5. Update controller variables

6. Repeat

Notice that an output is sent to the actuators as soon as it is available. The time
delay is minimized by making the calculations in step 3 as short as possible and
performing all updates after the output is commanded. This simple way of reducing
the latency is, unfortunately, seldom used in commercial systems.

As an illustration we consider the PID controller in Figure 10.11, which has
a filtered derivative, setpoint weighting and protection against integral windup.
The controller is a continuous-time dynamical system. To implement it using a
computer, the continuous-time system has to be approximated by a discrete-time
system.

A block diagram of a PID controller with anti-windup is shown in Figure 10.11.
The signal v is the sum of the proportional, integral and derivative terms, and the
controller output is u = sat(v), where sat is the saturation function that models the
actuator. The proportional term kp(βr− y) is implemented simply by replacing the
continuous variables with their sampled versions. Hence

P(tk) = kp (βr(tk) − y(tk)) , (10.15)

where {tk} denotes the sampling instants, i.e., the times when the computer reads
its input. We let h represent the sampling time, so that tk+1 = tk + h. The integral
term is obtained by approximating the integral with a sum,

I (tk+1) = I (tk) + kih e(tk) + h

Tt

(
sat(v) − v

)
, (10.16)

where Tt = h/kt represents the anti-windup term. The filtered derivative term D
is given by the differential equation

T f
dD

dt
+ D = −kd ẏ.

Approximating the derivative with a backward difference gives

T f
D(tk) − D(tk−1)

h
+ D(tk) = −kd y(tk) − y(tk−1)

h
,
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[205] and in the paper [58] cited in the beginning of this chapter. A comprehen-
sive presentation of PID control is given in [16]. Interactive learning tools for PID
control can be downloaded from http://www.calerga.com/contrib.

Exercises

10.1 (Ideal PID controllers) Consider the systems represented by the block diagrams
in Figure 10.1. Assume that the process has the transfer function P(s) = b/(s+a)
and show that the transfer functions from r to y are

(a) Gyr (s) = bkds2 + bkps + bki
(1 + bkd)s2 + (a + bkp)s + bki

,

(b) Gyr (s) = bki
(1 + bkd)s2 + (a + bkp)s + bki

.

Pick some parameters and compare the step responses of the systems.

10.2 Consider a second-order process with the transfer function

P(s) = b

s2 + a1s + a2
.

The closed loop system with a PI controller is a third-order system. Show that it is
possible to position the closed loop poles as long as the sum of the poles is −a1. Give
equations for the parameters that give the closed loop characteristic polynomial

(s + α0)(s
2 + 2ζ0ω0s + ω2

0).

10.3 Consider a system with the transfer function P(s) = (s + 1)−2. Find an
integral controller that gives a closed loop pole at s = −a and determine the value
of a that maximizes the integral gain. Determine the other poles of the system and
judge if the pole can be considered dominant. Compare with the value of the integral
gain given by equation (10.6).

10.4 (Ziegler–Nichols tuning) Consider a system with transfer function P(s) =
e−s/s. Determine the parameters of P, PI and PID controllers using Ziegler–Nichols
step and frequency response methods. Compare the parameter values obtained by
the different rules and discuss the results.

10.5 (Vehicle steering) Design a proportional-integral controller for the vehicle
steering system that gives the closed loop characteristic polynomial

s3 + 2ω0s
2 + 2ω0s + ω3

0.

10.6 (Congestion control) A simplified flow model for TCP transmission is derived
in [101, 137]. The linearized dynamics are modeled by the transfer function

Gqp(s) = b

(s + a1)(s + a2)
e−sτe ,
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which describes the dynamics relating the expected queue length q to the expected
packet drop p. The parameters are given by a1 = 2N 2/(cτ 2

e ), a2 = 1/τe and
b = c2/(2N ). The parameter c is the bottleneck capacity, N is the number of
sources feeding the link and τe is the round-trip delay time. Use the parameter
values N = 75 sources,C = 1250 packets/s and τe = 0.15 and find the parameters
of a PI controller using one of the Ziegler–Nichols rules and the corresponding
improved rule. Simulate the responses of the closed loop systems obtained with the
PI controllers.

10.7 (Motor drive) Consider the model of the motor drive in Exercise 2.10. Develop
an approximate second-order model of the system and use it to design an ideal PD
controller that gives a closed loop system with eigenvalues in ζω0 ± iω0

√
1 − ζ 2.

Add low-pass filtering as shown in equation (10.13) and explore how large ω0 can
be made while maintaining a good stability margin. Simulate the closed loop system
with the chosen controller and compare the results with the controller based on state
feedback in Exercise 6.11.

10.8 Consider the system in Exercise 10.7 investigate what happens if the second-
order filtering of the derivative is replace by a first-order filter.

10.9 (Tuning rules) Apply the Ziegler–Nichols and the modified tuning rules to
design PI controllers for systems with the transfer functions

P1 = e−s

s
, P2 = e−s

s + 1
, P3 = e−s .

Compute the stability margins and explore any patterns.

10.10 (Windup and anti-windup) Consider a PI controller of the formC(s) = 1+1/s
for a process with input that saturates when |u| > 1, and whose linear dynamics are
given by the transfer function P(s) = 1/s. Simulate the response of the system to
step changes in the reference signal of magnitude 1, 2 and 3. Repeat the simulation
when the windup protection scheme in Figure 10.11 is used.

10.11 (Windup protection by conditional integration) Many methods have been
proposed to avoid integrator windup. One method called conditional integration
is to update the integral only when the error is sufficiently small. To illustrate this
method we consider a system with PI control described by

dx1

dt
= u, u = satu0(kpe + ki x2),

dx2

dt
=

{
e if |e| < e0

0 if |e| ≥ e0,

where e = r − x . Plot the phase portrait of the system for the parameter values
kp = 1, ki = 1, u0 = 1 and e0 = 1 and discuss the properties of the system.
The example illustrates the difficulties of introducing ad hoc nonlinearities without
careful analysis.
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Chapter Eleven
Frequency Domain Design

Sensitivity improvements in one frequency rangemust be paid forwith sensitivity deteriorations
in another frequency range, and the price is higher if the plant is open-loop unstable. This
applies to every controller, no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture, 1989 [185].

In this chapter we continue to explore the use of frequency domain techniques
with a focus on the design of feedback systems. We begin with a more thorough
description of the performance specifications for control systems and then introduce
the concept of “loop shaping” as a mechanism for designing controllers in the
frequency domain. We also introduce some fundamental limitations to performance
for systems with time delays and right half-plane poles and zeros.

11.1 Sensitivity Functions

In the previous chapter, we considered the use of proportional-integral-derivative
(PID) feedback as a mechanism for designing a feedback controller for a given
process. In this chapter we will expand our approach to include a richer repertoire
of tools for shaping the frequency response of the closed loop system.

One of the key ideas in this chapter is that we can design the behavior of the
closed loop system by focusing on the open loop transfer function. This same
approach was used in studying stability using the Nyquist criterion: we plotted the
Nyquist plot for the open loop transfer function to determine the stability of the
closed loop system. From a design perspective, the use of loop analysis tools is very
powerful: since the loop transfer function is L = PC , if we can specify the desired
performance in terms of properties of L , we can directly see the impact of changes
in the controller C . This is much easier, for example, than trying to reason directly
about the tracking response of the closed loop system, whose transfer function is
given by Gyr = PC/(1 + PC).

We will start by investigating some key properties of the feedback loop. A
block diagram of a basic feedback loop is shown in Figure 11.1. The system loop is
composed of two components: the process and the controller. The controller itself
has two blocks: the feedback block C and the feedforward block F . There are two
disturbances acting on the process, the load disturbance d and the measurement
noise n. The load disturbance represents disturbances that drive the process away
from its desired behavior, while the measurement noise represents disturbances that
corrupt information about the process given by the sensors. In the figure, the load
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Figure 11.1: Block diagram of a basic feedback loop with two degrees of freedom. The
controller has a feedback block C and a feedforward block F . The external signals are the
reference signal r , the load disturbance d and the measurement noise n. The process output
is η, and the control signal is u.

disturbance is assumed to act on the process input. This is a simplification since
disturbances often enter the process in many different ways, but it allows us to
streamline the presentation without significant loss of generality.

The process output η is the real variable that we want to control. Control is based
on the measured signal y, where the measurements are corrupted by measurement
noise n. The process is influenced by the controller via the control variable u.
The process is thus a system with three inputs—the control variable u, the load
disturbance d and the measurement noise n—and one output—the measured signal
y. The controller is a system with two inputs and one output. The inputs are the
measured signal y and the reference signal r , and the output is the control signal
u. Note that the control signal u is an input to the process and the output of the
controller, and that the measured signal y is the output of the process and an input
to the controller.

The feedback loop in Figure 11.1 is influenced by three external signals, the
reference r , the load disturbance d and the measurement noise n. Any of the re-
maining signals can be of interest in controller design, depending on the particular
application. Since the system is linear, the relations between the inputs and the in-
teresting signals can be expressed in terms of the transfer functions. The following
relations are obtained from the block diagram in Figure 11.1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
η
ν
u
e

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=
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⎫⎪⎪⎪⎪⎪⎭ . (11.1)

In addition, we can write the transfer function for the error between the reference
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Figure 11.3: Block diagram of a system with feedforward compensation for improved re-
sponse to reference signals and measured disturbances (2 DOF system). Three feedforward
elements are present: Fm(s) sets the desired output value, Fu(s) generates the feedforward
command ufr and Fd(s) attempts to cancel disturbances.

Processes with multiple inputs and outputs can also be considered by regarding u
and y as vectors. Representations at these higher levels of abstraction are useful for
the development of theory because they make it possible to focus on fundamentals
and to solve general problems with a wide range of applications. However, care
must be exercised to maintain the coupling to the real-world control problems we
intend to solve.

11.2 Feedforward Design

Most of our analysis and design tools up to this point have focused on the role of
feedback and its effect on the dynamics of the system. Feedforward is a simple and
powerful technique that complements feedback. It can be used both to improve the
response to reference signals and to reduce the effect of measurable disturbances.
Feedforward compensation admits perfect elimination of disturbances, but it is
much more sensitive to process variations than feedback compensation. A general
scheme for feedforward was discussed in Section 7.5 using Figure 7.10. A simple
form of feedforward for PID controllers was discussed in Section 10.5. The con-
troller in Figure 11.1 also has a feedforward block to improve response to command
signals. An alternative version of feedforward is shown in Figure 11.3, which we
will use in this section to understand some of the trade-offs between feedforward
and feedback.

Controllers with two degrees of freedom (feedforward and feedback) have the
advantage that the response to reference signals can be designed independently of
the design for disturbance attenuation and robustness. We will first consider the
response to reference signals, and we will therefore initially assume that the load
disturbance d is zero. Let Fm represent the ideal response of the system to reference
signals. The feedforward compensator is characterized by the transfer functions Fu
and Fm . When the reference is changed, the transfer function Fu generates the signal
ufr, which is chosen to give the desired output when applied as input to the process.
Under ideal conditions the output y is then equal to ym , the error signal is zero and
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there will be no feedback action. If there are disturbances or modeling errors, the
signals ym and y will differ. The feedback then attempts to bring the error to zero.

To make a formal analysis, we compute the transfer function from reference
input to process output:

Gyr (s) = P(CFm + Fu)

1 + PC
= Fm + PFu − Fm

1 + PC
, (11.4)

where P = P2P1. Thefirst term represents the desired transfer function. The second
term can be made small in two ways. Feedforward compensation can be used to
make PFu − Fm small, or feedback compensation can be used to make 1 + PC
large. Perfect feedforward compensation is obtained by choosing

Fu = Fm
P

. (11.5)

Design of feedforward using transfer functions is thus a very simple task. Notice
that the feedforward compensator Fu contains an inverse model of the process
dynamics.

Feedback and feedforward have different properties. Feedforward action is ob-
tained by matching two transfer functions, requiring precise knowledge of the pro-
cess dynamics, while feedback attempts to make the error small by dividing it by
a large quantity. For a controller having integral action, the loop gain is large for
low frequencies, and it is thus sufficient to make sure that the condition for ideal
feedforward holds at higher frequencies. This is easier than trying to satisfy the
condition (11.5) for all frequencies.

We will now consider reduction of the effects of the load disturbance d in Fig-
ure 11.3 by feedforward control. We assume that the disturbance signal is measured
and that the disturbance enters the process dynamics in a known way (captured by
P1 and P2). The effect of the disturbance can be reduced by feeding the measured
signal through a dynamical system with the transfer function Fd . Assuming that
the reference r is zero, we can use block diagram algebra to find that the transfer
function from the disturbance to the process output is

Gyd = P2(1 + Fd P1)

1 + PC
, (11.6)

where P = P1P2. The effect of the disturbance can be reduced by making 1+Fd P1

small (feedforward) or by making 1 + PC large (feedback). Perfect compensation
is obtained by choosing

Fd = −P−1
1 , (11.7)

requiring inversion of the transfer function P1.
As in the case of reference tracking, disturbance attenuation can be accomplished

by combining feedback and feedforward control. Since low-frequency disturbances
can be eliminated by feedback, we require the use of feedforward only for high-
frequency disturbances, and the transfer function Fd in equation (11.7) can then be
computed using an approximation of P1 for high frequencies.
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Figure 11.5:Reference signal responses. The responses in process output y and control signal
u to a unit step in the reference signal r are shown in (a), and the gain curves of Gyr and Gur

are shown in (b). Results with PI control with error feedback are shown by solid lines, and
the dashed lines show results for a controller with a feedforward compensator.

response with no overshoot. However, much larger control signals are required to
obtain the fast response. The largest value of the control signal is 8, compared to 1.2
for the regular PI controller. The controller with feedforward has a larger bandwidth
(marked with ◦) and no resonant peak. The transfer function Gur also has higher
gain at high frequencies. ∇

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to compare the output of the closed
loop system in Figure 11.1 with the output of the corresponding open loop system
obtained by setting C = 0. If we let the disturbances for the open and closed loop
systems be identical, the output of the closed loop system is then obtained simply
by passing the open loop output through a system with the transfer function S.
The sensitivity function tells how the variations in the output are influenced by
feedback (Exercise 11.7). Disturbances with frequencies such that |S(iω)| < 1 are
attenuated, but disturbances with frequencies such that |S(iω)| > 1 are amplified
by feedback. The maximum sensitivity Ms , which occurs at the frequency ωms ,
is thus a measure of the largest amplification of the disturbances. The maximum
magnitude of 1/(1 + L) is also the minimum of |1 + L|, which is precisely the
stability margin sm defined in Section 9.3, so that Ms = 1/sm . The maximum
sensitivity is therefore also a robustness measure.

If the sensitivity function is known, the potential improvements by feedback
can be evaluated simply by recording a typical output and filtering it through the
sensitivity function. A plot of the gain curve of the sensitivity function is a good way
to make an assessment of the disturbance attenuation. Since the sensitivity function
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Figure 11.7: Disturbance responses. The time and frequency responses of process output y
to load disturbance d are shown in (a) and the responses of control signal u to measurement
noise n are shown in (b).

properties of the controller.
The effects of measurement noise are captured by the transfer function from the

measurement noise to the control signal,

−Gun = C

1 + PC
= CS = T

P
. (11.10)

The complementary sensitivity function is close to 1 for low frequencies (ω < ωgc),
and Gun can be approximated by −1/P . The sensitivity function is close to 1 for
high frequencies (ω > ωgc), and Gun can be approximated by −C .

Example 11.4 Third-order system
Consider a process with the transfer function P(s) = (s+1)−3 and a proportional-
integral-derivative (PID) controller with gains kp = 0.6, ki = 0.5 and kd = 2.0.
We augment the controller using a second-order noise filter with T f = 0.1, so that
its transfer function is

C(s) = kds2 + kps + ki
s(s2T 2

f /2 + sT f + 1)
.

The system responses are illustrated in Figure 11.7. The response of the output to
a step in the load disturbance in the top part of Figure 11.7a has a peak of 0.28 at
time t = 2.73 s. The frequency response in Figure 11.7a shows that the gain has a
maximum of 0.58 at ω = 0.7 rad/s.

The response of the control signal to a step in measurement noise is shown
in Figure 11.7b. The high-frequency roll-off of the transfer function Gun(iω) is
due to filtering; without it the gain curve in Figure 11.7b would continue to rise
after 20 rad/s. The step response has a peak of 13 at t = 0.08 s. The frequency
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response has its peak 20 at ω = 14 rad/s. Notice that the peak occurs far above
the peak of the response to load disturbances and far above the gain crossover
frequency ωgc = 0.78 rad/s. An approximation derived in Exercise 11.9 gives
max |CS(iω)| ≈ kd/T f = 20, which occurs at ω = √

2/Td = 14.1 rad/s. ∇

11.4 Feedback Design via Loop Shaping

One advantage of the Nyquist stability theorem is that it is based on the loop transfer
function, which is related to the controller transfer function through L = PC . It is
thus easy to see how the controller influences the loop transfer function. To make
an unstable system stable we simply have to bend the Nyquist curve away from the
critical point.

This simple idea is the basis of several different design methods collectively
called loop shaping. These methods are based on choosing a compensator that
gives a loop transfer function with a desired shape. One possibility is to determine
a loop transfer function that gives a closed loop system with the desired properties
and to compute the controller as C = L/P . Another is to start with the process
transfer function, change its gain and then add poles and zeros until the desired
shape is obtained. In this section we will explore different loop-shaping methods
for control law design.

Design Considerations

We will first discuss a suitable shape for the loop transfer function that gives good
performance and good stability margins. Figure 11.8 shows a typical loop transfer
function. Good robustness requires good stability margins (or good gain and phase
margins), which imposes requirements on the loop transfer function around the
crossover frequencies ωpc and ωgc. The gain of L at low frequencies must be large
in order to have good tracking of command signals and good attenuation of low-
frequency disturbances. Since S = 1/(1+ L), it follows that for frequencies where
|L| > 101 disturbances will be attenuated by a factor of 100 and the tracking error is
less than 1%. It is therefore desirable to have a large crossover frequency and a steep
(negative) slope of the gain curve. The gain at low frequencies can be increased by
a controller with integral action, which is also called lag compensation. To avoid
injecting too much measurement noise into the system, the loop transfer function
should have low gain at high frequencies, which is called high-frequency roll-off.
The choice of gain crossover frequency is a compromise among attenuation of load
disturbances, injection of measurement noise and robustness.

Bode’s relations (see Section 9.4) impose restrictions on the shape of the loop
transfer function. Equation (9.8) implies that the slope of the gain curve at gain
crossover cannot be too steep. If the gain curve has a constant slope, we have the
following relation between slope ngc and phase margin ϕm :

ngc = −2 + 2ϕm

π
[rad]. (11.11)
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(a) Simplified model

Symbol Description Value

m Vehicle mass 4.0 kg

J Vehicle inertia, ϕ3 axis 0.0475 kg m2

r Force moment arm 25.0 cm

c Damping coefficient 0.05 kg m/s

g Gravitational constant 9.8 m/s2

(b) Parameter values

Figure 11.11: Roll control of a vectored thrust aircraft. (a) The roll angle θ is controlled by
applying maneuvering thrusters, resulting in a moment generated by Fz . (b) The table lists
the parameter values for a laboratory version of the system.

transfer function of the form
P(s) = r

Js2
,

with the parameters given in Figure 11.11b. We take as our performance specifica-
tion that we would like less than 1% error in steady state and less than 10% tracking
error up to 10 rad/s.

The open loop transfer function is shown in Figure 11.12a. To achieve our
performance specification, we would like to have a gain of at least 10 at a frequency
of 10 rad/s, requiring the gain crossover frequency to be at a higher frequency. We
see from the loop shape that in order to achieve the desired performance we cannot
simply increase the gain since this would give a very low phase margin. Instead,
we must increase the phase at the desired crossover frequency.

To accomplish this, we use a lead compensator (11.12) with a = 2 and b = 50.
We then set the gain of the system to provide a large loop gain up to the desired
bandwidth, as shown in Figure 11.12b. We see that this system has a gain of greater
than 10 at all frequencies up to 10 rad/s and that it has more than 60◦ of phase
margin. ∇

The action of a lead compensator is essentially the same as that of the derivative
portion of a PID controller. As described in Section 10.5, we often use a filter for
the derivative action of a PID controller to limit the high-frequency gain. This same
effect is present in a lead compensator through the pole at s = b.

Equation (11.12) is a first-order compensator and can provide up to 90◦ of phase
lead. Larger phase lead can be obtained by using a higher-order lead compensator
(Exercise 11.11):

C(s) = k
(s + a)n

(s + b)n
, a < b.
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The system in Example 11.10 is unfortunately an exception. The key feature
of the system is that the Nyquist curve of the process is completely contained in
the right half-plane. Such systems are called passive, and their transfer functions
are positive real. For typical control systems there are severe constraints on the
sensitivity function. The following theorem, due to Bode, provides insights into the
limits of performance under feedback.

Theorem 11.1 (Bode’s integral formula). Assume that the loop transfer function
L(s) of a feedback system goes to zero faster than 1/s as s → ∞, and let S(s)
be the sensitivity function. If the loop transfer function has poles pk in the right
half-plane, then the sensitivity function satisfies the following integral:∫ ∞

0
log |S(iω)| dω =

∫ ∞

0
log

1

|1 + L(iω)| dω = π
∑

pk . (11.19)

Equation (11.19) implies that there are fundamental limitations to what can
be achieved by control and that control design can be viewed as a redistribution
of disturbance attenuation over different frequencies. In particular, this equation
shows that if the sensitivity function is made smaller for some frequencies, it must
increase at other frequencies so that the integral of log |S(iω)| remains constant.
This means that if disturbance attenuation is improved in one frequency range, it
will be worse in another, a property sometime referred to as the waterbed effect. It
also follows that systems with open loop poles in the right half-plane have larger
overall sensitivity than stable systems.

Equation (11.19) can be regarded as a conservation law: if the loop transfer
function has no poles in the right half-plane, the equation simplifies to∫ ∞

0
log |S(iω)|dω = 0.

This formula can be given a nice geometric interpretation as illustrated in Fig-
ure 11.14, which shows log |S(iω)| as a function of ω. The area over the horizontal
axis must be equal to the area under the axis when the frequency is plotted on a
linear scale. Thus if we wish to make the sensitivity smaller up to some frequency
ωsc, we must balance this by increased sensitivity above ωsc. Control system design
can be viewed as trading the disturbance attenuation at some frequencies for distur-
bance amplification at other frequencies. Notice that the system in Example 11.10
violates the condition that lims→∞ sL(s) = 0 and hence the integral formula does
not apply.

There is result analogous to equation (11.19) for the complementary sensitivity
function: ∫ ∞

0

log |T (iω)|
ω2

dω = π
∑ 1

zi
, (11.20)

where the summation is over all right half-plane zeros. Notice that slow right half-
plane zeros are worse than fast ones and that fast right half-plane poles are worse
than slow ones.
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11.7 (Disturbance attenuation) Consider the feedback system shown in Figure 11.1.
Assume that the reference signal is constant. Let yol be the measured output when
there is no feedback and ycl be the output with feedback. Show that Ycl(s) =
S(s)Yol(s), where S is the sensitivity function.

11.8 (Disturbance reduction through feedback) Consider a problem in which an
output variable has been measured to estimate the potential for disturbance attenu-
ation by feedback. Suppose an analysis shows that it is possible to design a closed
loop system with the sensitivity function

S(s) = s

s2 + s + 1
.

Estimate the possible disturbance reduction when the measured disturbance is

y(t) = 5 sin (0.1 t) + 3 sin (0.17 t) + 0.5 cos (0.9 t) + 0.1 t.

11.9 Show that the effect of high frequency measurement noise on the control
signal for the system in Example 11.4 can be approximated by

CS ≈ C = kds

(sT f )2 /2 + sT f + 1
,

and that the largest value of |CS(iω)| is kd/T f which occurs for ω = √
2/T f .

11.10 (Attenuation of low-frequency sinusoidal disturbances) Integral action elim-
inates constant disturbances and reduces low-frequency disturbances because the
controller gain is infinite at zero frequency. A similar idea can be used to reduce the
effects of sinusoidal disturbances of known frequency ω0 by using the controller

C(s) = kp + kss

s2 + 2ζω0s + ω2
0

.

This controller has the gainCs(iω) = kp+ks/(2ζ ) for the frequency ω0, which can
be large by choosing a small value of ζ . Assume that the process has the transfer
function P(s) = 1/s. Determine the Bode plot of the loop transfer function and
simulate the system. Compare the results with PI control.

11.11 Consider a lead compensator with the transfer function

Cn(s) =
(s n

√
k + a

s + a

)n
,

which has zero frequency gain C(0) = 1 and high-frequency gain C(∞) = k.
Show that the gain required to give a given phase lead ϕ is

k =
(

1 + 2 tan2(ϕ/n) + 2 tan(ϕ/n)
√

1 + tan2(ϕ/n)
)n

,

and that lim
n→∞ k = e2ϕ .
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Figure 12.4: Geometric interpretation of d(P1, P2). At each frequency, the points on the
Nyquist curve for P1 (solid) and P2 (dashed) are projected onto a sphere of radius 1 sitting
at the origin of the complex plane. The projection of the point 1 − i is shown. The distance
between the two systems is defined as the maximum distance between the projections of
P1(iω) and P2(iω) over all frequencies ω. The figure is plotted for the transfer functions
P1(s) = 2/(s + 1) and P2(s) = 2/(s − 1). (Diagram courtesy G. Vinnicombe.)

Figure 12.4, where the Nyquist plots of P1 and P2 are projected onto a sphere with
diameter 1 at the origin of the complex plane (called the Riemann sphere). Points
in the complex plane are projected onto the sphere by a line through the point and
the north pole (Figure 12.4). The distance d(P1, P2) is the shortest chordal distance
between the projections of P1(iω) and P2(iω). The distance is small when P1 and
P2 are small or large, but it emphasizes the behavior around the gain crossover
frequency.

The distance d(P1, P2) has one drawback for the purpose of comparing the
behavior of systems under feedback. If P2 is perturbed continuously from P1 to P2,
there can be intermediate transfer functions P where d(P1, P) is 1 even if d(P1, P2)
is small (see Exercise 12.4). To explore when this could happen, we observe that

1 − d2(P1, P) = (1 + P(iω)P1(−iω))(1 + P(−iω)P1(iω))

(1 + |P1(iω)|2)(1 + |P(iω)|2) .

The right-hand side is zero, and hence d(P1, P) = 1 if 1 + P(iω)P1(−iω) = 0
for some ω. To explore when this could occur, we investigate the behavior of the
function 1+P(s)P1(−s)when P is perturbed from P1 to P2. If the functions f1(s) =
1+P1(s)P1(−s) and f2(s) = 1+P2(s)P1(−s)do not have the same number of zeros
in the right half-plane, there is an intermediate P such that 1+ P(iω)P1(−iω) = 0
for some ω. To exclude this case we introduce the set C as all pairs (P1, P2) such
that the functions f1 = 1+ P1(s)P1(−s) and f2 = 1+ P2(s)P1(−s) have the same
number of zeros in the right half-plane.

The Vinnicombe metric or ν-gap metric is defined as

δν(P1, P2) =
{
d(P1, P2), if (P1, P2) ∈ C
1, otherwise.

(12.4)

Vinnicombe [196] showed that δν(P1, P2) is a metric, he gave strong robustness
results based on the metric and he developed the theory for systems with many
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Figure 12.7: Illustration of robustness to process perturbations. A system with additive un-
certainty (left) can be manipulated via block diagram algebra to one with multiplicative
uncertainty δ = �/P (center). Additional manipulations isolate the uncertainty in a manner
that allows application of the small gain theorem (right)

Example 12.6 Bode’s ideal loop transfer function
A major problem in the design of electronic amplifiers is to obtain a closed loop
system that is insensitive to changes in the gain of the electronic components.
Bode found that the loop transfer function L(s) = ks−n , with 1 ≤ n ≤ 5/3, was
an ideal loop transfer function. The gain curve of the Bode plot is a straight line
with slope −n and the phase is constant arg L(iω) = −nπ/2. The phase margin
is thus ϕm = 90(2 − n)◦ for all values of the gain k and the stability margin is
sm = sin π(1 − n/2). This exact transfer function cannot be realized with physical
components, but it can be approximated over a given frequency range with a rational
function (Exercise 12.7). An operational amplifier circuit that has the approximate
transfer function G(s) = k/(s+a) is a realization of Bode’s ideal transfer function
with n = 1, as described in Example 8.3. Designers of operational amplifiers go to
great efforts to make the approximation valid over a wide frequency range. ∇

Youla Parameterization
�

Since stability is such an essential property, it is useful to characterize all controllers
that stabilize a given process. Such a representation, which is called a Youla pa-
rameterization, is very useful when solving design problems because it makes it
possible to search over all stabilizing controllers without the need to test stability
explicitly.

We will first derive Youla’s parameterization for a stable process with a rational
transfer function P . A system with the complementary sensitivity function T can
be obtained by feedforward control with the stable transfer function Q if T = PQ.

Table 12.1: Conditions for robust stability for different types of uncertainty

Process Uncertainty Type Robust Stability

P + � Additive ‖CS�‖∞ < 1

P(1 + δ) Multiplicative ‖T δ‖∞ < 1

P/(1 + �fb · P) Feedback ‖PS�fb‖∞ < 1
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Nyquist plot indicates that the robustness is poor since the loop transfer function is
very close to the critical point −1. The phase margin is 7◦ and the stability margin
is sm = 0.077. The poor robustness shows up in the Bode plot, where the gain
curve hovers around the value 1 and the phase curve is close to −180◦ for a wide
frequency range. More insight is obtained by analyzing the sensitivity functions,
shown by solid lines in Figure 12.12. The maximum sensitivities are Ms = 13 and
Mt = 12, indicating that the system has poor robustness.

At first sight it is surprising that a controller where the nominal closed system
has well damped poles and zeros is so sensitive to process variations. We have an
indication that something is unusual because the controller has a zero at s = 3.5
in the right half-plane. To understand what happens, we will investigate the reason
for the peaks of the sensitivity functions.

Let the transfer functions of the process and the controller be

P(s) = np(s)

dp(s)
, C(s) = nc(s)

dc(s)
,

where np(s), nc(s), dp(s) and dc(s) are the numerator and denominator polynomi-
als. The complementary sensitivity function is

T (s) = PC

1 + PC
= np(s)nc(s)

dp(s)dc(s) + np(s)np(s)
.

The poles of T (s) are the poles of the closed loop system and the zeros are given
by the zeros of the process and controller. Sketching the gain curve of the comple-
mentary sensitivity function we find that T (s) = 1 for low frequencies and that
|T (iω)| starts to increase at its first zero, which is the process zero at s = 2. It
increases further at the controller zero at s = 3.4, and it does not start to decrease
until the closed loop poles appear at ωc = 10 and ωo = 20. We can thus conclude
that there will be a peak in the complementary sensitivity function. The magnitude
of the peak depends on the ratio of the zeros and the poles of the transfer function.

The peak of the complementary sensitivity function can be avoided by assigning
a closed loop pole close to the slow process zero. We can achieve this by choosing
ωc = 10 and ζc = 2.6, which gives closed loop poles at s = −2 and s = −50. The
controller transfer function then becomes

C(s) = 3628s + 40000

s2 + 80.28s + 156.56
= 3628

s + 11.02

(s + 2)(s + 78.28)
.

The sensitivity functions are shown by dashed lines in Figure 12.12. The controller
gives the maximum sensitivities Ms = 1.34 and Mt = 1.41, which give much
better robustness. Notice that the controller has a pole at s = −2 that cancels the
slow process zero. The design can also be done simply by canceling the slow stable
process zero and designing the controller for the simplified system. ∇

One lesson from the example is that it is necessary to choose closed loop poles
that are equal to or close to slow stable process zeros. Another lesson is that slow
unstable process zeros impose limitations on the achievable bandwidth, as already
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12.5 Design for Robust Performance �

Control design is a rich problem where many factors have to be taken into account.
Typical requirements are that load disturbances should be attenuated, the controller
should inject only a moderate amount of measurement noise, the output should
follow variations in the command signal well and the closed loop system should be
insensitive to process variations. For the system in Figure 12.9 these requirements
can be captured by specifications on the sensitivity functions S and T and the
transfer functions Gyd , Gun , Gyr and Gur . Notice that it is necessary to consider
at least six transfer functions, as discussed Section 11.1. The requirements are
mutually conflicting, and it is necessary to make trade-offs. The attenuation of load
disturbances will be improved if the bandwidth is increased, but so will the noise
injection.

It is highly desirable to have design methods that can guarantee robust perfor-
mance. Such design methods did not appear until the late 1980s. Many of these
design methods result in controllers having the same structure as the controller
based on state feedback and an observer. In this section we provide a brief review
of some of the techniques as a preview for those interested in more specialized
study.

Quantitative Feedback Theory

Quantitative feedback theory (QFT) is a graphical design method for robust loop
shaping that was developed by I. M. Horowitz [104]. The idea is to first determine a
controller that gives a complementary sensitivity that is robust to process variations
and then to shape the response to reference signals by feedforward. The idea is
illustrated in Figure 12.16a, which shows the level curves of the complementary
sensitivity function T on a Nyquist plot. The complementary sensitivity function has
unit gain on the line Re L(iω) = −0.5. In the neighborhood of this line, significant
variations in process dynamics only give moderate changes in the complementary
transfer function. The dashed part of the figure corresponds to the region 0.9 <
|T (iω)| < 1.1. To use the design method, we represent the uncertainty for each
frequency by a region and attempt to shape the loop transfer function so that the
variation in T is as small as possible. The design is often performed using the
Nichols chart shown in Figure 12.16b.

Linear Quadratic Control

One way to make the trade-off between the attenuation of load disturbances and
the injection of measurement noise is to design a controller that minimizes the loss
function

J = 1

T

∫ T

0

(
y2(t) + ρu2(t)

)
dt,

where ρ is a weighting parameter as discussed in Section 6.3. This loss function
gives a compromise between load disturbance attenuation and disturbance injec-
tion because it balances control actions against deviations in the output. If all state
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Figure 12.16: Hall and Nichols charts. The Hall chart is a Nyquist plot with curves for
constant gain and phase of the complementary sensitivity function T . The Nichols chart
is the conformal map of the Hall chart under the transformation N = log L (with the scale
flipped). The dashed curve is the line where |T (iω)| = 1, and the shaded region corresponding
to loop transfer functions whose complementary sensitivity changes by no more than ±10%
is shaded.

variables are measured, the controller is a state feedback u = −Kx and it has the
same form as the controller obtained by eigenvalue assignment (pole placement)
in Section 6.2. However, the controller gain is obtained by solving an optimiza-
tion problem. It has been shown that this controller is very robust. It has a phase
margin of at least 60◦ and an infinite gain margin. The controller is called a linear
quadratic control or LQ control because the process model is linear and the criterion
is quadratic.

When all state variables are not measured, the state can be reconstructed using
an observer, as discussed in Section 7.3. It is also possible to introduce process
disturbances and measurement noise explicitly in the model and to reconstruct
the states using a Kalman filter, as discussed briefly in Section 7.4. The Kalman
filter has the same structure as the observer designed by eigenvalue assignment in
Section 7.3, but the observer gains L are now obtained by solving an optimization
problem. The control law obtained by combining linear quadratic control with a
Kalman filter is called linear quadratic Gaussian control or LQG control. The
Kalman filter is optimal when the models for load disturbances and measurement
noise are Gaussian.

It is interesting that the solution to the optimization problem leads to a controller
having the structure of a state feedback and an observer. The state feedback gains
depend on the parameter ρ, and the filter gains depend on the parameters in the
model that characterize process noise and measurement noise (see Section 7.4).
There are efficient programs to compute these feedback and observer gains.

The nice robustness properties of state feedback are unfortunately lost when the
observer is added. It is possible to choose parameters that give closed loop systems
with poor robustness, similar to Example 12.8. We can thus conclude that there is a
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