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Chapter Ten
PID Control

Based on a survey of over eleven thousand controllers in the refiffiegjicals and pulp and
paper industries, 97% of regulatory controllers utilize PID feedback.

L. Desborough and R. Miller, 2002 [DMO02].

This chapter treats the basic properties of proportiornegiral-derivative (PID)
control and the methods for choosing the parameters of theaters. We also
analyze the effects of actuator saturation and time dedayjrhportant features of
many feedback systems, and describe methods for compaméatithese effects.
Finally, we will discuss the implementation of PID controfleas an example of
how to implement feedback control systems using analoggitaticomputation.

10.1 Basic Control Functions

PID control, which was introduced in Section 1.5 and has beed us several
examples, is by far the most common way of using feedbackjmerring systems.
It appears in simple devices and in large factories with saods of controllers.
PID controllers appear in many different forms: as standa@loontrollers, as part
of hierarchical, distributed control systems and builbietnbedded components.
Most PID controllers do not use derivative action, so theyshstrictly speaking
be called PI controllers; we will, however, use PID as a gerterin for this class
of controller. There is also growing evidence that PID cordppears in biological
systems [YHSDOO].

Block diagrams of closed loop systems with PID controlleessdrown in Fig-
ure 10.1. The control signalfor the system in Figure 10.1a is formed entirely from
the errore; there is no feedforward term (which would corresponk} tan the state
feedback case). A common alternative in which proportiamal derivative action
do not act on the reference is shown in Figure 10.1b; combinatf the schemes
will be discussed in Section 10.5. The command signalcalled the reference
signal in regulation problems, or tlsetpointin the literature of PID control. The
input/output relation for an ideal PID controller with erfeedback is

t de 1/t de
u=kpe+k [ e(r)d — =kple+ = | e(x)d T—). 10.1
etk [ emdrria g —lo(er 1 [ emdr + ). (o)

The control action is thus the sum of three terms: proporti@ealback, the integral

term and derivative action. For this reason PID controlleesenoriginally called
three-term controllersThe controller parameters are the proportional ggirthe
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Figure 10.1: Block diagrams of closed loop systems with ideal PID controllers. Both con
trollers have one output, the control sigmalThe controller in (a), which is based on error
feedback, has one input, the control eet r — y. For this controller proportional, integral
and derivative action acts on the erme r — y. The two degree-of-freedom controller in
(b) has two inputs, the referencend the process output Integral action acts on the error,
but proportional and derivative action act on the process oytput

integral gaink; and the derivative gailkg. The time constant$; and Ty, called
integral time (constant) and derivative time (constamt,smmetimes used instead
of the integral and derivative gains.

The controller (10.1) represents an idealized controliés.d useful abstraction
for understanding the PID controller, but several modificationust be made to
obtain a controller thatis practically useful. Before dissing these practical issues
we will develop some intuition about PID control.

We start by considering pure proportional feedback. Fig@r@d shows the
responses of the process output to a unit step in the refevahee for a system with
pure proportional control at different gain settings. la #bsence of a feedforward
term, the output never reaches the reference, and henceavieftawith nonzero
steady-state error. Letting the process and the controdlee transfer functions
P(s) andC(s), the transfer function from reference to output is

"= s (102)
and thus the steady-state error for a unit step is
1-Gy(0) = ;
1+kpP(0)

For the system in Figure 10.2a with gaiks = 1, 2 and 5, the steady-state error
is 0.5,0.33 and 0.17. The error decreases with increasimg lgati the system also
becomes more oscillatory. Notice in the figure that the ihitzdue of the control
signal equals the controller gain.

To avoid having a steady-state error, the proportional ambe changed to

u(t) = kpe(t) + ug, (10.3)

whereug is a feedforward term that is adjusted to give the desireddststate
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Figure10.2: Responsesto step changes in the reference value for a system witlogtipraal
controller (a), Pl controller (b) and PID controller (c). The process thme transfer function
P(s) = 1/(s+1)%, the proportional controller has parametgys= 1,2 and 5, the Pl controller
has parametekg, = 1,k; = 0,0.2,0.5and 1, and the PID controller has paramétess 2.5,

ki = 1.5andky =0, 1, 2 and 4.

value. If we choosels = r/P(0) = k r, then the output will be exactly equal
to the reference value, as it was in the state space casdddothat there are
no disturbances. However, this requires exact knowledgieegprocess dynamics,
which is usually not available. The parameter calledresetin the PID literature,
must therefore be adjusted manually.

As we saw in Section 6.4, integral action guarantees that itheeps output
agrees with the reference in steady state and provides emmatitze to the feed-
forward term. Since this result is so important, we will paeia general proof.
Consider the controller given by equation (10.1). Assunagttiere exists a steady
state withu = up ande = &. It then follows from equation (10.1) that

Uo = Kp€o + ki eot,

which is a contradiction unless or ki is zero. We can thus conclude that with
integral action the error will be zero if it reaches a steadjes Notice that we have
not made any assumptions about the linearity of the procehe disturbances. We
have, however assumed that an equilibrium exists. Usimgiat action to achieve
zero steady-state error is much better than using feedfdywehich requires a
precise knowledge of process parameters.

The effect of integral action can also be understood fromueegy domain
analysis. The transfer function of the PID controller is

qg=@+%+ms (10.4)

The controller has infinite gain at zero frequen€y(@) = o), and it then follows
from equation (10.2) thaBy, (0) = 1, which implies that there is no steady-state
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Figure 10.3: Implementation of Pl and PD controllers. The block diagram in (a) shams h
integral action is implemented usipgsitive feedbaclith a first-order system, sometimes
called automatic reset. The block diagram in (b) shows how derivati@nazan be imple-
mented by taking differences between a static system and a first-osdensy

error for a step input.

Integral action can also be viewed as a method for genertistgedforward
termug in the proportional controller (10.3) automatically. Onaywto do this is
shown in Figure 10.3a, where the controller output is lowspgidtered and fed back
with positive gain. This implementation, calladtomatic resetvas one of the early
inventions of integral control. The transfer function of gystem in Figure 10.3a
is obtained by block diagram algebra; we have

1+5sT k
Gue:kp s ':kp+s—%,

which is the transfer function for a PI controller.

The properties of integral action are illustrated in Figure2bGor a step input.
The proportional gain is constaky, = 1, and the integral gains ake= 0,0.2, 0.5
and 1. The casle = 0 corresponds to pure proportional control, with a steadies
error of 50%. The steady-state error is eliminated when rategin action is used.
The response creeps slowly toward the reference for smalesadtk; and goes
faster for larger integral gains, but the system also besanme oscillatory.

The integral gairk; is a useful measure for attenuation of load disturbances.
Consider a closed loop system under PID control and assurhéhthaystem is
stable and initially at rest with all signals being zero. Apgounit step disturbance at
the process input. After a transient the process outputtga@eso and the controller
output settles at a value that compensates for the disteeb#riollows from (10.1)
that

u(oo) = k; /OOO e(t)dt.

The integrated error is thus inversely proportional to thegral gairk; . The integral
gain is thus a measure of the effectiveness of disturbateeusttion. A large gain
ki attenuates disturbances effectively, but too large a ge@is@scillatory behavior,
poor robustness and possibly instability.

We now return to the general PID controller and consider tlecebf the
derivative ternmky. Recall that the original motivation for derivative feedkavas
to provide predictive or anticipatory action. Notice thhé tcombination of the
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proportional and the derivative terms can be written as
de de
u=Kkpe — =Kp(e+ Tg—) =kpe
pe+ ki p(e+ ddt) p€p;

wheree,(t) can be interpreted as a prediction of the error at timeTy by linear
extrapolation. The prediction tim& = kqy/Kkj is the derivative time constant of
the controller.

Derivative action can be implemented by taking the diffeesimetween the signal
and its low-pass filtered version as shown in Figure 10.3b. Tdrester function
for the system is

) = koo
1+sTy Pl4sTy

The system thus has the transfer functi®(s) = sTq/(1 + sTy), which approxi-
mates a derivative for low frequencids|(< Ty).

Figure 10.2c illustrates the effect of derivative actiore flystem is oscillatory
when no derivative action is used, and it becomes more dampdue derivative
gain is increased. Performance deteriorates if the derevgtin is too high. When
the input is a step, the controller output generated by thivatee term will be
an impulse. This is clearly visible in Figure 10.2c. The impuaa be avoided by
using the controller configuration shown in Figure 10.1b.

Although PID control was developed in the context of engimegapplications,
it also appears in nature. Disturbance attenuation by fegdm biological sys-
tems is often calleddaptation A typical example is the pupillary reflex discussed
in Example 8.11, where it is said that the eye adapts to chgrgjht intensity.
Analogously, feedback with integral action is called petrfedaptation [YHSDOOQ].
In biological systems proportional, integral and deriv@taction is generated by
combining subsystems with dynamical behavior similarlymuat is done in en-
gineering systems. For example, Pl action can be generatdtebgteraction of
several hormones [ESGKO02].

(10.5)

Guels) = kp(1

Example 10.1 PD action in theretina
The response of cone photoreceptors in the retina is an egavhgire proportional
and derivative action is generated by a combination of caneshorizontal cells.
The cones are the primary receptors stimulated by light, vimiturn stimulate the
horizontal cells, and the horizontal cells give inhibitgnggative) feedback to the
cones. A schematic diagram of the system is shown in Figu#alOhe system
can be modeled by ordinary differential equations by regmesg neuron signals
as continuous variables representing the average putsdmdiVil99] it is shown
that the system can be represented by the differential ieqgat

dx 1 dx
d_tl = ?c(—xl—kx2+u), d_t2
whereu is the light intensity anat; andx, are the average pulse rates from the cones
and the horizontal cells. A block diagram of the system issghim Figure 10.4b.

—Lou-x
_Th 1 2)
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Figure 10.4: Schematic diagram of cone photoreceptors (C) and horizontal cellsn(H)
the retina. In the schematic diagram in (a), excitatory feedback is indibgtedrows and
inhibitory feedback by circles. A block diagram is shown in (b) and the @sponse in (c).

The step response of the system shown in Figure 10.4c showthéhggstem has
a large initial response followed by a lower, constant stestdte response typical
of proportional and derivative action. The parameters usatieé simulation are
k =4, T, = 0.025 andT, = 0.08. \%

10.2 Simple Controllers for Complex Systems

Many of the design methods discussed in previous chapteestha property that
the complexity of the controller is directly reflected by tloerplexity of the model.
When designing controllers by output feedback in Chaptare7found for single-
input, single-output systems that the order of the corgreVas the same as the order
of the model, possibly one order higher if integral actiorswequired. Applying
similar design methods for PID control will require that werééow-order models
of the processes to be able to easily analyze the results.

Low-order models can be obtained from first principles. Anylgtasystem
can be modeled by a static system if its inputs are sufficiegsitw. Similarly a
first-order model is sufficient if the storage of mass, momertuenergy can be
captured by only one variable; typical examples are thecitylof a car on a road,
angular velocity of a stiff rotational system, the level itmak and the concentration
in a volume with good mixing. System dynamics are of secondrdfdhe storage
of mass, energy and momentum can be captured by two statbles; typical
examples are the position of a car on the road, the stalidizaf stiff satellites,
the levels in two connected tanks and two-compartment nsodelvide range of
techniques for model reduction are also available. In thégpter we will focus on
design techniques where we simplify the models to capt@weslsential properties
that are needed for PID design.

We begin by analyzing the case of integral control. A stalgktesn can be
controlled by an integral controller provided that the riegments on the closed
loop system are modest. To design the controller we assiatthtitransfer function
of the process is a constaiit = P(0). The loop transfer function under integral
control then becomdsk; /s, and the closed loop characteristic polynomial is simply



10.2. SIMPLE CONTROLLERS FOR COMPLEX SYSTEMS 299

s+ Kk;. Specifying performance by the desired time constartf the closed loop
system, we find that the integral gain is given by

ki = 1/(Ta P(0)).

The analysis requires th# be sufficiently large that the process transfer function
can be approximated by a constant.

For systems that are not well represented by a constant wairtan obtain
a better approximation by using the Taylor series expangidhe loop transfer
function:

PO
=k P'(0) + ki s( ).
Choosingk; P’(0) = —0.5 gives a system with good robustness, as will be discussed
in Section 12.5. The controller gain is then given by
1

and the expected closed loop time constartjise —2P’(0)/P(0).

L9 = PO L kPO +5PO)

Example 10.2 Integral control of AFM in tapping mode

A simplified model of the dynamics of the vertical motion of aeraic force
microscope in tapping mode was discussed in Exercise 9.2.r&hsfér function
for the system dynamics is

a(l—e™)

st(s+a)’

wherea = ¢wp, T = 27 n/wo and the gain has been normalized to 1. We have
P(0) = 1 andP’(0) = —z/2 — 1/a, and it follows from (10.6) that the integral

gain can be chosen &s = a/(2 + ar). Nyquist and Bode plots for the resulting
loop transfer function are shown in Figure 10.5. \%

P(s) =

A first-order system has the transfer function
b
P(s) = —.
) =7 Ta
With a PI controller the closed loop system has the charatiegolynomial

s(s+ a) + bkys + bks = s? + (a + bkp)s + bk.

The closed loop poles can thus be assigned arbitrary valugsdper choice of
the controller gains. Requiring that the closed loop sydtene the characteristic
polynomial

p(s) ="+ s+ a5,
we find that the controller parameters are
a

a —a
ki = —. 10.7
b b | b (0 )

kp:
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Figure 10.5: Integral control for AFM in tapping mode. An integral controller is desidgn
based on the slope of the process transfer function at 0. The congrioksrgood robustness
properties based on a very simple analysis.

If we require aresponse of the closed loop system that issithan that of the open
loop system, a reasonable choicejs= a + a anda, = aa. If a response faster
than that of the open loop system is required, it is reaseralthoose; = 2¢wo
anda, = w3, wherewp and¢ are undamped natural frequency and damping ratio
of the dominant mode. These choices have significant impadteorobustness of
the system and will be discussed in Section 12.4. An uppet o is given by

the validity of the model. Large values @§ will require fast control actions, and
actuators may saturate if the value is too large. A first-ondedel is unlikely to
represent the true dynamics for high frequencies. We itistthe design by an
example.

Example 10.3 Cruise control using Pl feedback

Consider the problem of maintaining the speed of a car ases gip a hill. In

Example 5.14 we found that there was little difference betw#e linear and
nonlinear models when investigating PI control, provideat the throttle did not
reach the saturation limits. A simple linear model of a cag gigen in Example 5.11:

% — —a(v — ve) + b(U — Ue) — gb, (10.8)

wherev is the velocity of the cawn is the input from the engine argtis the slope

of the hill. The parameters weee= 0.0101,b = 1.3203,g = 9.8, ve = 20 and

Ue = 0.1616. This model will be used to find suitable parameters of &lespeed

controller. The transfer function from throttle to velocitya first-order system.

Since the open loop dynamics is so slow, it is natural to spediéister closed loop

system by requiring that the closed loop system be of secodel with damping

ratioc and undamped natural frequenay The controller gains are given by (10.7).
Figure 10.6 shows the velocity and the throttle for a car thaially moves

on a horizontal road and encounters a hill with a slope°aditdtimet = 6 s. To

design a PI controller we chooge= 1 to obtain a response without overshoot, as
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Figure 10.6: Cruise control using Pl feedback. The step responses for theartoinput
illustrate the effect of parameteys= 1 andw, on the response of a car with cruise control.
A change in road slope fron? Qo 4° is applied betweeh = 5 and 6 s. (a) Responses for
wo = 0.5and; = 0.5, 1 and 2. Choosing = 1 gives no overshoot. (b) Responses/fes 1
andwg = 0.2, 0.5and 1.0.

shown in Figure 10.6a. The choice®f is a compromise between response speed
and control actions: a large value gives a fast responsét, taguires fast control
action. The trade-off is is illustrated in Figure 10.6b. Theayéest velocity error
decreases with increasimg, but the control signal also changes more rapidly. In
the simple model (10.8) it was assumed that the force resgposthntaneously to
throttle commands. For rapid changes there may be additignamics that have

to be accounted for. There are also physical limitationseéaalte of change of the
force, which also restricts the admissible valuevgf A reasonable choice @y

is in the range 0.5-1.0. Notice in Figure 10.6 that even wigh= 0.2 the largest
velocity error is only 1 m/s. \%

A PI controller can also be used for a process with secondragdemics, but
there will be restrictions on the possible locations of ttesed loop poles. Using a
PID controller, it is possible to control a system of secordkoin such a way that
the closed loop poles have arbitrary locations; see Exel€isz

Instead of finding a low-order model and designing contrslfer them, we
can also use a high-order model and attempt to place only ademnant poles.
An integral controller has one parameter, and it is posgiblgosition one pole.
Consider a process with the transfer functi¢s). The loop transfer function with
anintegral controllerit (s) = ki P(s)/s. The roots of the closed loop characteristic
polynomial are the roots &f + k; P(s) = 0. Requiring that = —a be a root, we
find that the controller gain should be chosen as

a
ki = Pl—a)’

(10.9)
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Figure 10.7: Ziegler-Nichols step and frequency response experiments. Thetepites
sponse in (a) is characterized by the parametenrsdz. The frequency response method (b)
characterizes process dynamics by the point where the Nyquist oftve process transfer
function first intersects the negative real axis and the frequepeyhere this occurs.

The poles = —a will be dominant ifa is small. A similar approach can be applied
to Pl and PID controllers.

10.3 PID Tuning

Users of control systems are frequently faced with the ta#ljasting the controller
parameters to obtain a desired behavior. There are manyetifferays to do this.
One approach is to go through the conventional steps of rimgdahd control
design as described in the previous section. Since the PIDotlenthas so few
parameters, a number of special empirical methods havebakso developed for
direct adjustment of the controller parameters. The firstiyiniles were developed
by Ziegler and Nichols [ZN42]. Their idea was to perform a simgteeriment,
extract some features of process dynamics from the expetiamel determine the
controller parameters from the features.

Ziegler—Nichols’ Tuning

In the 1940s, Ziegler and Nichols developed two methods fotrotler tuning
based on simple characterization of process dynamics itirtteeand frequency
domains.

The time domain method is based on a measurement of part op#reloop
unit step response of the process, as shown in Figure 10.7atdheesponse is
measured by applying a unit step input to the process anddiagathe response.
The response is characterized by parametarsdz, which are the intercepts of the
steepest tangent of the step response with the coordinese Blie parameteris
an approximation of the time delay of the system andis the steepest slope of the
step response. Notice that it is not necessary to wait uptildy state is reached to
find the parameters, it suffices to wait until the response hdwahanflection point.
The controller parameters are given in Table 10.1. The pasmeftere obtained



10.3. PID TUNING 303

Table10.1: Ziegler—Nichols tuning rules. (a) The step response methods give thmpters
in terms of the interce@ and the apparent time delay(b) The frequency response method
gives controller parameters in termsasitical gain k. andcritical period Te.

Type ky T 0Ty Type  kp T T

P 1l/a P 0.5

Pl 09/a 3 PI 0.4, 0.8T,
PID 12/a 2 05 PID 0.&. 0.5T, 0.1257
(a) Step response method (b) Frequency response method

by extensive simulation of a range of representative psmE®sA controller was
tuned manually for each process, and an attempt was then inaderelate the
controller parameters with andz.

In the frequency domain method, a controller is connectatieqrocess, the
integral and derivative gains are set to zero and the prigpaitgain is increased
until the system starts to oscillate. The critical value @& groportional gairk;
is observed together with the period of oscillatin It follows from Nyquist's
stability criterion that the loop transfer functian= k. P(s) intersects the critical
point at the frequencw. = 2z /T.. The experiment thus gives the point on the
Nyquist curve of the process transfer function where thespHag is 180, as
shown in Figure 10.7b.

The Ziegler—Nichols methods had a huge impact when they wéiedunced
in the 1940s. The rules were simple to use and gave initialidond for manual
tuning. The ideas were adopted by manufacturers of contsdbéeroutine use. The
Ziegler—Nichols tuning rules unfortunately have two sewdnavbacks: too little
process information is used, and the closed loop systemsthaobtained lack
robustness.

The step response method can be improved significantly by atieaizang the
unit step response by paramet&rsr andT in the model

P(s) = K e (10.10)

The parameters can be obtained by fitting the model to a meastegdesponse.
Notice that the experiment takes a longer time than the @xpet in Figure 10.7a
because to determineit is necessary to wait until the steady state has been rdache
Also notice that the interceptin the Ziegler—Nichols rule is given ty= Kz /T.

The frequency response method can be improved by measurirgggoimts on
the Nyquist curve, e.g., the zero frequency giiror the point where the process
has a 90 phase lag. This latter point can be obtained by connectingtegral
controller and increasing its gain until the system reat¢hesstability limit. The
experiment can also be automated by using relay feedbackilldse discussed
later in this section.

There are many versions of improved tuning rules. As an ithiisin we give
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Figure 10.8: PI control of an AFM in tapping mode. Nyquist plots (a) and step resgmons
(b) for PI control of the vertical motion of an atomic force microscop&pping mode. The
averaging parameter is = 20. Results with Ziegler—Nichols tuning are shown by dashed
lines, and modified Ziegler—Nichols tuning is shown by solid lines. The Nyglis of the
process transfer function is shown by dotted lines.

the following rules for PI control, based on [AHO5]:

o _ 0150 +0.35T (O.QT) o _ 0461 +0.02T (0.3T)
P Kt K /> Kz2 K2/’
0.0 0.16k. 0.62 0.5k, (10.11)
07 1 . 5
k, = 0.22k. — — (0.4 ki = :
P o= ( kC)’ A SR ( T, )

The values for the Ziegler—Nichols rule are given in parergheBlotice that the
improved formulas typically give lower controller gainsaththe Ziegler—Nichols
method. The integral gain is higher for systems where the mjcsgare delay-
dominatedz > T.

Example 10.4 Atomic force microscopein tapping mode

A simplified model of the dynamics of the vertical motion of araic force
microscope in tapping mode was discussed in Example 10.2rdihgfér function

is normalized by choosing/a as the time unit. The normalized transfer function
is

whereT, = 2nza/wo = 2nz . The Nyquist plot of the transfer function is shown
in Figure 10.8a foz = 0.002 anch = 20. The leftmost intersection of the Nyquist
curve with the real axis occurs at Re- —0.0461 forew = 13.1. The critical gain
is thusk. = 21.7 and the critical period i3, = 0.48. Using the Ziegler—Nichols
tuning rule, we find the parametekg = 8.87 andk; = 22.6 (T; = 0.384) for
a PI controller. With this controller the stability margingg = 0.31, which is
quite small. The step response of the controller is shown iargi@0.8. Notice in
particular that there is a large overshoot in the contraialig

The modified Ziegler—Nichols rule (10.11) gives the contrgilerameter& =
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Figure 10.9: Block diagram of a process with relay feedback (a) and typical sighal3 e
process outpwy is a solid line, and the relay outpuis a dashed line. Notice that the signals
u andy have opposite phases.

3.47 andk; = 8.73 (T; = 0.459) and the stability margin becomgs= 0.61. The
step response with this controller is shown in Figure 10.8 oMgarison of the
responses obtained with the original Ziegler—Nichols rhtengs that the overshoot
has been reduced. Notice that the control signal reachssédy-state value almost
instantaneously. It follows from Example 10.2 that a puregnal controller has
the normalized gaik; = 1/(2 + T,) = 0.44. Comparing this with the gains of a
P1 controller, we can conclude that a Pl controller gives mugttelo performance
than a pure integral controller. \Y%

Relay Feedback

The Ziegler—Nichols frequency response method increasgathef a proportional
controller until oscillation to determine the critical gdi. and the corresponding
critical periodT, or, equivalently, the point where the Nyquist curve intets¢he
negative real axis. One way to obtain this information awtecally is to connect
the process in a feedback loop with a nonlinear element bavirelay function as
shown in Figure 10.9a. For many systems there will then be@tai®on, as shown
in Figure 10.9b, where the relay outputs a square wave and the process output
y is close to a sinusoid. Moreover the input and the output arefophase, which
means that the system oscillates with the critical pefligdvhere the process has
a phase lag of 180 Notice that an oscillation with constant period is esti#d
quickly.

The critical period is simply the period of the oscillatioro @etermine the
critical gain we expand the square wave relay output in aiEpseries. Notice
in the figure that the process output is practically sinuddiéaause the process
attenuates higher harmonics effectively. It is then sufficie consider only the
first harmonic component of the input. Lettidgoe the relay amplitude, the first
harmonic of the square wave input has amplitudé= If a is the amplitude
of the process output, the process gain at the critical #equw, = 27 /T is

|P(iwc)| = wa/(4d) and the critical gain is
4
Ke = —d (10.12)
ar
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Having obtained the critical gaik. and the critical periods, the controller pa-
rameters can then be determined using the Ziegler—Nichigls.mmproved tuning
can be obtained by fitting a model to the data obtained fromelas experiment.
The relay experiment can be automated. Since the amplitudhe afcillation
is proportional to the relay output, it is easy to control yt &djusting the relay
output.Automatic tunindgbased on relay feedback is used in many commercial PID
controllers. Tuning is accomplished simply by pushing @dmnthat activates relay
feedback. The relay amplitude is automatically adjustedetpkthe oscillations
sufficiently small, and the relay feedback is switched to a Ribtiller as soon as
the tuning is finished.

10.4 Integrator Windup

Many aspects of a control system can be understood fronrlmedels. There are,
however, some nonlinear phenomena that must be taken intwiaic These are
typically limitations in the actuators: a motor has limitggeed, a valve cannot be
more than fully opened or fully closed, etc. For a system tipatrates over a wide
range of conditions, it may happen that the control variabéches the actuator
limits. When this happens, the feedback loop is broken aedsystem runs in
open loop because the actuator remains at its limit indegrethydof the process
output as long as the actuator remains saturated. The ihtegrawill also build
up since the error is typically nonzero. The integral term tredcontroller output
may then become very large. The control signal will then rensaiturated even
when the error changes, and it may take a long time beforentbgrator and the
controller output come inside the saturation range. Theemunsnce is that there
are large transients. This situation is referred tomgsgrator windupillustrated in
the following example.

Example 10.5 Cruise control

The windup effect s illustrated in Figure 10.10a, which shavhsit happens when
a car encounters a hill that is so steep) (Bat the throttle saturates when the cruise
controller attempts to maintain speed. When encountehieglope at timé = 5,
the velocity decreases and the throttle increases to germaae torque. However,
the torque required is so large that the throttle saturateserror decreases slowly
because the torque generated by the engine is just a litgerlghan the torque
required to compensate for gravity. The error is large andntiegral continues to
build up until the error reaches zero attime 30, but the odletroutput is still larger
than the saturation limit and the actuator remains satiratee integral term starts
to decrease, and at time 45 and the velocity settles quicktii¢ desired value.
Notice that it takes considerable time before the contraligput comes into the
range where it does not saturate, resulting in a large ogetsh \%

There are many methods to avoid windup. One method is illestren Fig-
ure 10.11: the system has an extra feedback path that isajeddsy measuring
the actual actuator output, or the output of a mathematicalahof the saturating
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Figure 10.10: Simulation of Pl cruise control with windup (a) and anti-windup (b). Therfig
shows the speed and the throttleu for a car that encounters a slope that is so steep that
the throttle saturates. The controller output is a dashed line. The contrati@mpters are

kp = 0.5 andk; = 0.1. The anti-windup compensator eliminates the overshoot by preventing
the error for building up in the integral term of the controller.

actuator, and forming an error sigmal as the difference between the output of
the controller» and the actuator output The signale; is fed to the input of the
integrator through gaik;. The signaks is zero when there is no saturation and the
extra feedback loop has no effect on the system. When thatactsaturates, the
signale; is fed back to the integrator in such a way teagoes toward zero. This
implies that controller output is kept close to the satoratimit. The controller
output will then change as soon as the error changes sigméggtal windup is
avoided.

The rate at which the controller output is reset is governedhieyfeedback
gaink;; a large value ok; gives a short reset time. The paramé¢erannot be too
large because measurement noise can then cause an uridesgab A reasonable
choice is to choosl as a fraction of 1T;. We illustrate how integral windup can
be avoided by investigating the cruise control system.

Example 10.6 Cruise control with anti-windup

Figure 10.10b shows what happens when a controller withveinglup is applied
to the system simulated in Figure 10.10a. Because of the &&dimm the actuator
model, the output of the integrator is quickly reset to a @auch that the controller
output is at the saturation limit. The behavior is drasticdifferent from that in
Figure 10.10a and the large overshoot is avoided. The tragdimysk; = 2 in the
simulation. \Y%
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Figure 10.11: PID controller with a filtered derivative and anti-windup. The input to the
integrator (¥s) consists of the error term plus a “reset” based on input saturatione If th
actuator is not saturated, then= u — v, otherwisee; will decrease the integrator input to
prevent windup.

10.5 Implementation

There are many practical issues that have to be consideradimpé&menting PID
controllers. They have been developed over time based otigadeexperience. In
this section we consider some of the most common. Similarideretions also
apply to other types of controllers.

Filtering the Derivative

A drawback with derivative action is that an ideal derivativas high gain for
high-frequency signals. This means that high-frequencysoreanent noise will
generate large variations in the control signal. The effecteasurement noise may
be reduced by replacing the tekgs by kys/(1 + sT¢), which can be interpreted
as an ideal derivative of a low-pass filtered signal. For sgidé transfer function
is approximatelykys and for larges it is equal toky/ T¢. The approximation acts
as a derivative for low-frequency signals and as a constintfgr high-frequency
signals. The filtering time is chosen @s = (ky/k)/N, with N in the range 2—-20.
Filtering is obtained automatically if the derivative is itemented by taking the
difference between the signal and its filtered version as shiowigure 10.3b (see
equation (10.5)).

Instead of filtering just the derivative, it is also possild@se an ideal controller
and filter the measured signal. The transfer function of sucima@ller with a filter
is then

C(s) =k (1 + Si + sTd) ! (10.13)

T 1+sT; +(sTf)2/2’

where a second-order filter is used.
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Setpoint Weighting

Figure 10.1 shows two configurations of a PID controller. Theesysin Fig-
ure 10.1a has a controller witrror feedbackwhere proportional, integral and
derivative action acts on the error. In the simulation of Plitcollers in Fig-
ure 10.2c there is a large initial peak in the control signdiich is caused by the
derivative of the reference signal. The peak can be avoidessiomg the controller
in Figure 10.1b, where proportional and derivative acticts aoly on the process
output. An intermediate form is given by

o0 dr d

u=kp(Br —y) +k /0 (= y@)de+kay o= 51)  (20.14)
where the proportional and derivative actions act on fomsty andy of the refer-
ence. Integral action has to act on the error to make suré¢ht@atror goes to zero
in steady state. The closed loop systems obtained for differdues ofs andy
respond to load disturbances and measurement noise imtigevgay. The response
to reference signals is different because it depends orefnes off andy , which
are calledeference weightsr setpoint weightsWe illustrate the effect of setpoint
weighting by an example.

Example 10.7 Cruise control with setpoint weighting

Consider the PI controller for the cruise control systemweetin Example 10.3.
Figure 10.12 shows the effect of setpoint weighting on thpaese of the system
to a reference signal. With = 1 (error feedback) there is an overshoot in velocity
and the control signal (throttle) is initially close to thetgration limit. There is no
overshoot withp = 0 and the control signal is much smaller, clearly a much bette
drive comfort. The frequency responses gives another vigheofame effect. The
parametelf is typically in the range 0-1, ang is normally zero to avoid large
transients in the control signal when the reference is obdng \%

The controller given by equation (10.14) is a special cadeeaféneral controller
structure having two degrees of freedom, which was discliss8ection 7.5.

Implementation Based on Operational Amplifiers

PID controllers have been implemented in different techgiel® Figure 10.13
shows how Pl and PID controllers can be implemented by feediackd opera-
tional amplifiers.

To show that the circuit in Figure 10.13b is a PID controller wi# use the
approximate relation between the input voltagend the output voltage of the
operational amplifier derived in Example 8.3,

In this equatior; is the impedance between the negative input of the amplifaer an
the input voltage, andZ, is the impedance between the zero input of the amplifier
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Figure 10.12: Time and frequency responses for PI cruise control with setpointhtie@
Step responses are shown in (a), and the gain curves of the frggesponses in (b). The
controller gains ar&, = 0.74 andk; = 0.19. The setpoint weights afe= 0, 0.5 and 1, and
y =0.

and the output voltage. The impedances are given by

Ry 1
Z1(8) = ———— Z58) = R+ —
1(9) 1T RCS 28 =R+ o
and we find the following relation between the input voltaged the output voltage
u:
U= _é o _&(14— RlCls)(l—i- RzCzS)e
o Z1 a Ry R.Css .

This is the input/output relation for a PID controller of therfo(10.1) with param-
eters

Ro
kp=—=—, T =RCi, Tg=RCy
Ry
|1
1l
C
O—A— — o——w— —
R | B2 ¢, R R C,
e o) e e
u u
o ‘o) o ‘o)
(a) PI controller (b) PID controller

Figure 10.13: Schematic diagrams for Pl and PID controllers using op amps. Thatditcu
(a) uses a capacitor in the feedback path to store the integral of theTreocircuit in (b)
adds a filter on the input to provide derivative action.
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The corresponding results for a Pl controller are obtainedeltiyng C; = O (re-
moving the capacitor).

Computer Implementation

In this section we briefly describe how a PID controller may bplemented using
a computer. The computer typically operates periodicaliyh wignals from the
sensors sampled and converted to digital form by the A/Dedav, and the control
signal computed and then converted to analog form for thesdmts. The sequence
of operation is as follows:

1. Wait for clock interrupt 4. Send output to the actuator
2. Read input from sensor 5. Update controller variables
3. Compute control signal 6. Repeat

Notice that an output is sent to the actuators as soon as\vaikhkle. The time
delay is minimized by making the calculations in step 3 agtsé® possible and
performing all updates after the output is commanded. Thigla way of reducing
the latency is, unfortunately, seldom used in commercistiesys.

As an illustration we consider the PID controller in Figure1llQ.which has
a filtered derivative, setpoint weighting and protectioniagfaintegral windup.
The controller is a continuous-time dynamical system. Tolément it using a
computer, the continuous-time system has to be approxdratex discrete-time
system.

A block diagram of a PID controller with anti-windup is showrRigure 10.11.
The signab is the sum of the proportional, integral and derivative ®rand the
controller output is1 = sai(v), where sat is the saturation function that models the
actuator. The proportional terky (Sr — y) is implemented simply by replacing the
continuous variables with their sampled versions. Hence

P(te) = kp (A1 (t) — y(t)) , (10.15)

where{tc} denotes the sampling instants, i.e., the times when the gnpeads
its input. We leth represent the sampling time, so that; = tx + h. The integral
term is obtained by approximating the integral with a sum,

| (tgr) = | (to) + kih e(te) + %(sal(z)) —v), (10.16)

whereT; = h/k; represents the anti-windup term. The filtered derivative tBrm
is given by the differential equation
dD
Ti— 4+ D = —kyy.
fgr T Kay
Approximating the derivative with a backward differenceas
T, D(t) — D(t-1) y(t) — y(tk—1)
h h ’

+ D(tk) = —ky
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which can be rewritten as

T
L b (tk—1) —

Ts +h Te+h

The advantage of using a backward difference is that the peaity /(T + h)

is nonnegative and less than 1 for lalk- 0, which guarantees that the difference
equation is stable. Reorganizing equations (10.15)-7)0the PID controller can
be described by the following pseudocode:

D(tx) = (Y(t) — y(tk-1)) - (10.17)

% Preconpute controller coefficients
bi =ki *h

ad=Tf/ (Tf +h)

bd=kd/ ( Tf +h)

br=h/ Tt

% Control algorithm- nain |oop
while (running) {

r=adi n(ch1l) % read setpoint fromchl

y=adi n(ch2) % read process variable fromch2
P=kp* (b*r-y) % conput e proportional part

D=ad* D- bd* (y-yol d) % updat e derivative part

v=P+| +D % conput e tenporary out put

u=sat (v, ul ow, uhi gh) % si mul ate actuator saturation
daout (chl) % set anal og out put chl

I =1 +bi *(r-y)+br*(u-v) % updat e integral

yol d=y % update ol d process out put

sl eep(h) % wait until next update interval

}

Precomputation of the coefficiertts , ad, bd andbr saves computer time in
the main loop. These calculations have to be done only wheinatlem parameters
are changed. The main loop is executed once every samplifglp&he program
has three stategol d, | , andD. One state variable can be eliminated at the cost
of less readable code. The latency between reading the aimgogand setting
the analog output consists of four multiplications, foudiéidns and evaluation
of thesat function. All computations can be done using fixed-point gitons
if necessary. Notice that the code computes the filtered atardvof the process
output and that it has setpoint weighting and anti-windugigution.

10.6 Further Reading

The history of PID control is very rich and stretches back tolteginning of the
foundation of control theory. Very readable treatmentgaren by Bennett [Ben79,
Ben93] and Mindel [Min02]. The Ziegler—Nichols rules for tngiPID controllers,
first presented in 1942 [ZN42], were developed based on exteesperiments
with pneumatic simulators and Vannevar Bush’s differdratimlyzer at MIT. An

interesting view of the development of the Ziegler—Nichalkes is given in an
interview with Ziegler [Bli90]. An industrial perspectivend?ID control is given
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in [Bia95], [Shi96] and [YH91] and in the paper [DM02] cited ihe beginning
of this chapter. A comprehensive presentation of PID comgrgiven in [AHO5].
Interactive learning tools for PID control can be downloadi@in http://www.
calerga.com/contrib.

Exercises

10.1(Ideal PID controllers) Consider the systems representéuddylock diagrams
in Figure 10.1. Assume that the process has the transfeiidarfe{s) = b/(s+a)
and show that the transfer functions fronto y are

B bkys? + bkps + bk

@ Gy(s) = (1+ bkg)s2 + (a + bkp)s + bk '
bk

(b) Gyr (s) = ‘

(14 bky)s? + (a+ bkp)s + bk
Pick some parameters and compare the step responses oftdrasys

10.2 Consider a second-order process with the transfer function
b
S+ as+ay
The closed loop system with a PI controller is a third-ordetesys Show that it is

possible to position the closed loop poles as long as the $tira poles is-a;. Give
equations for the parameters that give the closed loop cteaistic polynomial

P(s) =

(S + a0)(S° + 20woS + ).

10.3 Consider a system with the transfer functiBiis) = (s + 1)~2. Find an
integral controller that gives a closed loop polsat —a and determine the value
of a that maximizes the integral gain. Determine the other pol¢ise system and
judge if the pole can be considered dominant. Compare watlidhue of the integral
gain given by equation (10.6).

10.4 (Ziegler—Nichols tuning) Consider a system with transferction P(s) =
e5/s. Determine the parameters of P, Pl and PID controllers usirgjetieNichols
step and frequency response methods. Compare the paramletes obtained by
the different rules and discuss the results.

10.5 (Vehicle steering) Design a proportional-integral cotrofor the vehicle
steering system that gives the closed loop characterisjmpmial

3 + 2m08? + 200S + a)g’.

10.6 (Congestion control) A simplified flow model for TCP transmissie de-
rived in [HMTGOO, LPDO02]. The linearized dynamics are modeledhytransfer
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function b
—S7e

qu(S) (S + al) (S + az) © ’
which describes the dynamics relating the expected quegélg to the expected
packet dropp. The parameters are given by = 2N?/(ct?), a = 1/7e and
b = ¢?/(2N). The parametec is the bottleneck capacity\ is the number of
sources feeding the link ang is the round-trip delay time. Use the parameter
valuesN = 75 sourcesC = 1250 packets/s and = 0.15 and find the parameters
of a PI controller using one of the Ziegler—Nichols rules arel ¢brresponding
improved rule. Simulate the responses of the closed loopsgsbbtained with the
PI1 controllers.

10.7 (Motor drive) Consider the model of the motor drive in Exees10. Develop
an approximate second-order model of the system and usdesign an ideal PD
controller that gives a closed loop system with eigenvaiigsog + i wg/1 — 2.
Add low-pass filtering as shown in equation (10.13) and exphmw largewg can
be made while maintaining a good stability margin. Simulatedosed loop system
with the chosen controller and compare the results withdinéroller based on state
feedback in Exercise 6.11.

10.8 Consider the system in Exercise 10.7 investigate what hadptre second-
order filtering of the derivative is replace by a first-order filte

10.9 (Tuning rules) Apply the Ziegler—Nichols and the modified tunrules to
design PI controllers for systems with the transfer funaion
e e’
Pp=—, P,=——,
YT s T s+1
Compute the stability margins and explore any patterns.

10.10(Windup and anti-windup) Consider a Pl controller of the f@is) = 1+1/s

for a process with input that saturates wiygin> 1, and whose linear dynamics are
given by the transfer functioR(s) = 1/s. Simulate the response of the system to
step changes in the reference signal of magnitude 1, 2 angjd@dRthe simulation
when the windup protection scheme in Figure 10.11 is used.

P; =¢e5.

10.11 (Windup protection by conditional integration) Many medischave been
proposed to avoid integrator windup. One method catledditional integration
is to update the integral only when the error is sufficientlanTo illustrate this
method we consider a system with Pl control described by

dxe e iflel <&
dt |0 if |e| > ey,

d
d_)il =u, u = sat, (kpe + kix2),

wheree = r — Xx. Plot the phase portrait of the system for the parameter salue
kp = 1, ki = 1,up = 1 ande = 1 and discuss the properties of the system.
The example illustrates the difficulties of introducing ad hoalinearities without
careful analysis.



