Chapter Seven
Output Feedback

One may separate the problem of physical realization into two stages: computation of the “best approximation” \(\hat{x}(t_1) \) of the state from knowledge of \(y(t) \) for \(t \leq t_1 \) and computation of \(u(t_1) \) given \(\hat{x}(t_1) \).

In this chapter we show how to use output feedback to modify the dynamics of the system through the use of observers. We introduce the concept of observability and show that if a system is observable, it is possible to recover the state from measurements of the inputs and outputs to the system. We then show how to design a controller with feedback from the observer state. An important concept is the separation principle quoted above, which is also proved. The structure of the controllers derived in this chapter is quite general and is obtained by many other design methods.

7.1 Observability

In Section 6.2 of the previous chapter it was shown that it is possible to find a state feedback law that gives desired closed loop eigenvalues provided that the system is reachable and that all the states are measured. For many situations, it is highly unrealistic to assume that all the states are measured. In this section we investigate how the state can be estimated by using a mathematical model and a few measurements. It will be shown that computation of the states can be carried out by a dynamical system called an observer.

Definition of Observability

Consider a system described by a set of differential equations

\[
\frac{dx}{dt} = Ax + Bu, \quad y = Cx + Du, \tag{7.1}
\]

where \(x \in \mathbb{R}^n \) is the state, \(u \in \mathbb{R}^p \) the input and \(y \in \mathbb{R}^q \) the measured output. We wish to estimate the state of the system from its inputs and outputs, as illustrated in Figure 7.1. In some situations we will assume that there is only one measured signal, i.e., that the signal \(y \) is a scalar and that \(C \) is a (row) vector. This signal may be corrupted by noise \(n \), although we shall start by considering the noise-free case. We write \(\hat{x} \) for the state estimate given by the observer.
Definition 7.1 (Observability). A linear system is observable if for any $T > 0$ it is possible to determine the state of the system $x(T)$ through measurements of $y(t)$ and $u(t)$ on the interval $[0, T]$.

The definition above holds for nonlinear systems as well, and the results discussed here have extensions to the nonlinear case.

The problem of observability is one that has many important applications, even outside feedback systems. If a system is observable, then there are no “hidden” dynamics inside it; we can understand everything that is going on through observation (over time) of the inputs and outputs. As we shall see, the problem of observability is of significant practical interest because it will determine if a set of sensors is sufficient for controlling a system. Sensors combined with a mathematical model can also be viewed as a “virtual sensor” that gives information about variables that are not measured directly. The process of reconciling signals from many sensors with mathematical models is also called sensor fusion.

Testing for Observability

When discussing reachability in the last chapter, we neglected the output and focused on the state. Similarly, it is convenient here to initially neglect the input and focus on the autonomous system

$$\frac{dx}{dt} = Ax, \quad y = Cx. \tag{7.2}$$

We wish to understand when it is possible to determine the state from observations of the output.

The output itself gives the projection of the state on vectors that are rows of the matrix C. The observability problem can immediately be solved if the matrix C is invertible. If the matrix is not invertible, we can take derivatives of the output to obtain

$$\frac{dy}{dt} = C \frac{dx}{dt} = CAx.$$

From the derivative of the output we thus get the projection of the state on vectors
that are rows of the matrix CA. Proceeding in this way, we get

$$
\begin{bmatrix}
 y \\
 \dot{y} \\
 \ddot{y} \\
 \vdots \\
 y^{(n-1)}
\end{bmatrix}
=
\begin{bmatrix}
 C \\
 CA \\
 CA^2 \\
 \vdots \\
 CA^{n-1}
\end{bmatrix}
x.
$$

(7.3)

We thus find that the state can be determined if the \textit{observability matrix}

$$
W_o =
\begin{bmatrix}
 C \\
 CA \\
 CA^2 \\
 \vdots \\
 CA^{n-1}
\end{bmatrix}
$$

(7.4)

has n independent rows. It turns out that we need not consider any derivatives higher than $n-1$ (this is an application of the Cayley–Hamilton theorem [Exercise 6.10]).

The calculation can easily be extended to systems with inputs. The state is then given by a linear combination of inputs and outputs and their higher derivatives. The observability criterion is unchanged. We leave this case as an exercise for the reader.

In practice, differentiation of the output can give large errors when there is measurement noise, and therefore the method sketched above is not particularly practical. We will address this issue in more detail in the next section, but for now we have the following basic result.

\textbf{Theorem 7.1 (Observability rank condition).} A linear system of the form (7.1) is observable if and only if the observability matrix W_o is full rank.

\textit{Proof.} The sufficiency of the observability rank condition follows from the analysis above. To prove necessity, suppose that the system is observable but W_o is not full rank. Let $v \in \mathbb{R}^n$, $v \neq 0$, be a vector in the null space of W_o, so that $W_o v = 0$. If we let $x(0) = v$ be the initial condition for the system and choose $u = 0$, then the output is given by $y(t) = Ce^{AT}v$. Since e^{AT} can be written as a power series in A and since A^n and higher powers can be rewritten in terms of lower powers of A (by the Cayley–Hamilton theorem), it follows that the output will be identically zero (the reader should fill in the missing steps if this is not clear). However, if both the input and output of the system are 0, then a valid estimate of the state is $\hat{x} = 0$ for all time, which is clearly incorrect since $x(0) = v \neq 0$. Hence by contradiction we must have that W_o is full rank if the system is observable.

\textbf{Example 7.1 Compartment model}

Consider the two-compartment model in Figure 3.18a, but assume that the concentration in the first compartment can be measured. The system is described by the
linear system

\[
\frac{dc}{dt} = \begin{pmatrix} -k_0 - k_1 & k_1 \\ k_2 & -k_2 \end{pmatrix} + \begin{pmatrix} b_0 \\ 0 \end{pmatrix} u, \quad y = \begin{pmatrix} 1 & 0 \end{pmatrix} x.
\]

The first compartment represents the drug concentration in the blood plasma, and the second compartment the drug concentration in the tissue where it is active. To determine if it is possible to find the concentration in the tissue compartment from a measurement of blood plasma, we investigate the observability of the system by forming the observability matrix

\[
W_o = \begin{pmatrix} C \\ CA \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -k_0 - k_1 & k_1 \end{pmatrix}.
\]

The rows are linearly independent if \(k_1 \neq 0 \), and under this condition it is thus possible to determine the concentration of the drug in the active compartment from measurements of the drug concentration in the blood.

It is useful to have an understanding of the mechanisms that make a system unobservable. Such a system is shown in Figure 7.2. The system is composed of two identical systems whose outputs are added. It seems intuitively clear that it is not possible to deduce the states from the output since we cannot deduce the individual output contributions from the sum. This can also be seen formally (Exercise 7.2).

Observable Canonical Form

As in the case of reachability, certain canonical forms will be useful in studying observability. A linear single-input, single-output state space system is in *observable*
7.1. OBSERVABILITY

The definition can be extended to systems with many inputs; the only difference is that the vector multiplying u is replaced by a matrix.

Figure 7.3 is a block diagram for a system in observable canonical form. As in the case of reachable canonical form, we see that the coefficients in the system description appear directly in the block diagram. The characteristic polynomial for a system in observable canonical form is

$$\lambda(s) = s^n + a_1 s^{n-1} + \cdots + a_{n-1} s + a_n. \quad (7.5)$$

It is possible to reason about the observability of a system in observable canonical form by studying the block diagram. If the input u and the output y are available, the state z_1 can clearly be computed. Differentiating z_1, we obtain the input to the integrator that generates z_1, and we can now obtain $z_2 = \dot{z}_1 + a_1 z_1 - b_1 u$. Proceeding in this way, we can compute all states. The computation will, however, require that the signals be differentiated.

To check observability more formally, we compute the observability matrix for
a system in observable canonical form, which is given by

\[W_o = \begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
-a_1 & 1 & 0 & \ldots & 0 \\
-a_1^2 - a_1 a_2 & -a_1 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
* & * & \ldots & 1
\end{bmatrix}, \]

where * represents an entry whose exact value is not important. The rows of this matrix are linearly independent (since it is lower triangular), and hence \(W_o \) is full rank. A straightforward but tedious calculation shows that the inverse of the observability matrix has a simple form given by

\[W_o^{-1} = \begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
a_1 & 1 & 0 & \ldots & 0 \\
a_2 & a_1 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
a_{n-1} & a_{n-2} & a_{n-3} & \ldots & 1
\end{bmatrix}. \]

As in the case of reachability, it turns out that if a system is observable then there always exists a transformation \(T \) that converts the system into observable canonical form. This is useful for proofs since it lets us assume that a system is in observable canonical form without any loss of generality. The observable canonical form may be poorly conditioned numerically.

7.2 State Estimation

Having defined the concept of observability, we now return to the question of how to construct an observer for a system. We will look for observers that can be represented as a linear dynamical system that takes the inputs and outputs of the system we are observing and produces an estimate of the system’s state. That is, we wish to construct a dynamical system of the form

\[\frac{\dot{x}}{dt} = F \dot{x} + Gu + H y, \]

where \(u \) and \(y \) are the input and output of the original system and \(\dot{x} \in \mathbb{R}^n \) is an estimate of the state with the property that \(\dot{x}(t) \to x(t) \) as \(t \to \infty \).

The Observer

We consider the system in equation (7.1) with \(D \) set to zero to simplify the exposition:

\[\frac{dx}{dt} = Ax + Bu, \quad y = Cx. \]
We can attempt to determine the state simply by simulating the equations with the correct input. An estimate of the state is then given by

\[\frac{d\hat{x}}{dt} = A\hat{x} + Bu. \]

(7.7)

To find the properties of this estimate, introduce the estimation error \(\tilde{x} = x - \hat{x} \). It follows from equations (7.6) and (7.7) that

\[\frac{d\tilde{x}}{dt} = A\tilde{x}. \]

If matrix \(A \) has all its eigenvalues in the left half-plane, the error \(\tilde{x} \) will go to zero, and hence equation (7.7) is a dynamical system whose output converges to the state of the system (7.6).

The observer given by equation (7.7) uses only the process input \(u \); the measured signal does not appear in the equation. We must also require that the system be stable, and essentially our estimator converges because the state of both the observer and the estimator are going zero. This is not very useful in a control design context since we want to have our estimate converge quickly to a nonzero state so that we can make use of it in our controller. We will therefore attempt to modify the observer so that the output is used and its convergence properties can be designed to be fast relative to the system’s dynamics. This version will also work for unstable systems.

Consider the observer

\[\frac{d\hat{x}}{dt} = A\hat{x} + Bu + L(y - C\hat{x}). \]

(7.8)

This can be considered as a generalization of equation (7.7). Feedback from the measured output is provided by adding the term \(L(y - C\hat{x}) \), which is proportional to the difference between the observed output and the output predicted by the observer. It follows from equations (7.6) and (7.8) that

\[\frac{d\tilde{x}}{dt} = (A - LC)\tilde{x}. \]

If the matrix \(L \) can be chosen in such a way that the matrix \(A - LC \) has eigenvalues with negative real parts, the error \(\tilde{x} \) will go to zero. The convergence rate is determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a state feedback and finding the observer. State feedback design by eigenvalue assignment is equivalent to finding a matrix \(K \) so that \(A - BK \) has given eigenvalues. Designing an observer with prescribed eigenvalues is equivalent to finding a matrix \(L \) so that \(A - LC \) has given eigenvalues. Since the eigenvalues of a matrix and its transpose are the same we can establish the following equivalences:

\[A \leftrightarrow A^T, \quad B \leftrightarrow C^T, \quad K \leftrightarrow L^T, \quad W_r \leftrightarrow W_o^T. \]

The observer design problem is the dual of the state feedback design problem. Using the results of Theorem 6.3, we get the following theorem on observer design.
Theorem 7.2 (Observer design by eigenvalue assignment). Consider the system given by

\[
\frac{dx}{dt} = Ax + Bu, \quad y = Cx, \quad (7.9)
\]

with one input and one output. Let \(\lambda(s) = s^n + a_1 s^{n-1} + \cdots + a_{n-1} s + a_n \) be the characteristic polynomial for \(A \). If the system is observable, then the dynamical system

\[
\frac{d\hat{x}}{dt} = A\hat{x} + Bu + L(y - C\hat{x}) \quad (7.10)
\]

is an observer for the system, with \(L \) chosen as

\[
L = W_o^{-1}\bar{W}_o \begin{pmatrix} p_1 - a_1 \\ p_2 - a_2 \\ \vdots \\ p_n - a_n \end{pmatrix} \quad (7.11)
\]

and the matrices \(W_o \) and \(\bar{W}_o \) given by

\[
W_o = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix}, \quad \bar{W}_o = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ a_1 & 1 & 0 & \cdots & 0 & 0 \\ a_2 & a_1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ a_{n-2} & a_{n-3} & a_{n-4} & \cdots & 1 & 0 \\ a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_1 & 1 \end{pmatrix}^{-1}.
\]

The resulting observer error \(\hat{x} = x - \hat{x} \) is governed by a differential equation having the characteristic polynomial

\[
p(s) = s^n + p_1 s^{n-1} + \cdots + p_n.
\]

The dynamical system (7.10) is called an observer for (the states of) the system (7.9) because it will generate an approximation of the states of the system from its inputs and outputs. This form of an observer is a much more useful form than the one given by pure differentiation in equation (7.3).

Example 7.2 Compartment model

Consider the compartment model in Example 7.1, which is characterized by the matrices

\[
A = \begin{pmatrix} -k_0 - k_1 & k_1 \\ k_2 & -k_2 \end{pmatrix}, \quad B = \begin{pmatrix} b_0 \\ 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \end{pmatrix}.
\]

The observability matrix was computed in Example 7.1, where we concluded that the system was observable if \(k_1 \neq 0 \). The dynamics matrix has the characteristic polynomial

\[
\lambda(s) = \det \begin{pmatrix} s + k_0 + k_1 & -k_1 \\ -k_2 & s + k_2 \end{pmatrix} = s^2 + (k_0 + k_1 + k_2)s + k_0 k_2.
\]
Let the desired characteristic polynomial of the observer be $s^2 + p_1 s + p_2$, and equation (7.11) gives the observer gain

$$L = \begin{bmatrix} 1 & 0 \\ -k_0 - k_1 & k_1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ k_0 + k_1 + k_2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} p_1 - k_0 - k_1 - k_2 \\ p_2 - k_0 k_2 \end{bmatrix}$$

Notice that the observability condition $k_1 \neq 0$ is essential. The behavior of the observer is illustrated by the simulation in Figure 7.4b. Notice how the observed concentrations approach the true concentrations.

The observer is a dynamical system whose inputs are the process input u and the process output y. The rate of change of the estimate is composed of two terms. One term, $A\hat{x} + Bu$, is the rate of change computed from the model with \hat{x} substituted for x. The other term, $L(y - \hat{y})$, is proportional to the difference $e = y - \hat{y}$ between measured output y and its estimate $\hat{y} = C\hat{x}$. The observer gain L is a matrix that tells how the error e is weighted and distributed among the states. The observer thus combines measurements with a dynamical model of the system. A block diagram of the observer is shown in Figure 7.5.

Computing the Observer Gain

For simple low-order problems it is convenient to introduce the elements of the observer gain L as unknown parameters and solve for the values required to give the desired characteristic polynomial, as illustrated in the following example.

Example 7.3 Vehicle steering

The normalized linear model for vehicle steering derived in Examples 5.12 and 6.4 gives the following state space model dynamics relating lateral path deviation y to
steering angle u:

$$\frac{dx}{dt} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} y \\ 1 \end{bmatrix} u, \quad \begin{bmatrix} y \\ 1 \end{bmatrix} x.$$

Recall that the state x_1 represents the lateral path deviation and that x_2 represents the turning rate. We will now derive an observer that uses the system model to determine the turning rate from the measured path deviation.

The observability matrix is

$$W_o = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

i.e., the identity matrix. The system is thus observable, and the eigenvalue assignment problem can be solved. We have

$$A - LC = \begin{bmatrix} -l_1 & 1 \\ -l_2 & 0 \end{bmatrix},$$

which has the characteristic polynomial

$$\det(sI - A + LC) = \det \begin{bmatrix} s + l_1 & -1 \\ l_2 & s \end{bmatrix} = s^2 + l_1 s + l_2.$$

Assuming that we want to have an observer with the characteristic polynomial

$$s^2 + p_1 s + p_2 = s^2 + 2\zeta_\omega \omega_o s + \omega_o^2,$$

the observer gains should be chosen as

$$l_1 = p_1 = 2\zeta_\omega \omega_o, \quad l_2 = p_2 = \omega_o^2.$$

The observer is then

$$\frac{d\hat{x}}{dt} = A\hat{x} + Bu + L(y - C\hat{x}) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \hat{x} + \begin{bmatrix} y \\ 1 \end{bmatrix} u + \begin{bmatrix} l_1 \\ l_2 \end{bmatrix} (y - \hat{x}_1).$$
In this section we will consider a state space system of the form

\[\frac{dx}{dt} = Ax + Bu, \quad y = Cx. \]

(7.13)

Notice that we have assumed that there is no direct term in the system \((D = 0)\). This is often a realistic assumption. The presence of a direct term in combination with a controller having proportional action creates an algebraic loop, which will be discussed in Section 8.3. The problem can be solved even if there is a direct term, but the calculations are more complicated.

We wish to design a feedback controller for the system where only the output is measured. As before, we will assume that \(u\) and \(y\) are scalars. We also assume that the system is reachable and observable. In Chapter 6 we found a feedback of the form

\[u = -Kx + k_r. \]
for the case that all states could be measured, and in Section 7.2 we developed an observer that can generate estimates of the state \hat{x} based on inputs and outputs. In this section we will combine the ideas of these sections to find a feedback that gives desired closed loop eigenvalues for systems where only outputs are available for feedback.

If all states are not measurable, it seems reasonable to try the feedback

$$u = -K \hat{x} + k_r,$$

(7.14)

where \hat{x} is the output of an observer of the state, i.e.,

$$\frac{d\hat{x}}{dt} = A\hat{x} + Bu + L(y - C\hat{x}).$$

(7.15)

Since the system (7.13) and the observer (7.15) are both of state dimension n, the closed loop system has state dimension $2n$ with state (x, \hat{x}). The evolution of the states is described by equations (7.13)–(7.15). To analyze the closed loop system, the state variable \hat{x} is replaced by

$$\tilde{x} = x - \hat{x}.$$

(7.16)

Subtraction of equation (7.15) from equation (7.13) gives

$$\frac{d\tilde{x}}{dt} = Ax - A\hat{x} - L(Cx - C\hat{x}) = A\tilde{x} - LC\tilde{x} = (A - LC)\tilde{x}.$$

Returning to the process dynamics, introducing u from equation (7.14) into equation (7.13) and using equation (7.16) to eliminate \hat{x} gives

$$\frac{dx}{dt} = Ax + Bu = Ax - BK\hat{x} + Bk_r r = Ax - BK(x - \tilde{x}) + Bk_r r$$

$$= (A - BK)x + BK\tilde{x} + Bk_r r.$$

The closed loop system is thus governed by

$$\frac{d}{dt} \begin{bmatrix} x \\ \tilde{x} \end{bmatrix} = \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix} \begin{bmatrix} x \\ \tilde{x} \end{bmatrix} + \begin{bmatrix} Bk_r \\ 0 \end{bmatrix} r.$$

(7.17)

Notice that the state \tilde{x}, representing the observer error, is not affected by the reference signal r. This is desirable since we do not want the reference signal to generate observer errors.

Since the dynamics matrix is block diagonal, we find that the characteristic polynomial of the closed loop system is

$$\lambda(s) = \det(sI - A + BK) \det(sI - A + LC).$$

This polynomial is a product of two terms: the characteristic polynomial of the closed loop system obtained with state feedback and the characteristic polynomial of the observer error. The feedback (7.14) that was motivated heuristically thus provides a neat solution to the eigenvalue assignment problem. The result is summarized as follows.
Theorem 7.3 (Eigenvalue assignment by output feedback). Consider the system

\[\frac{dx}{dt} = Ax + Bu, \quad y = Cx. \]

The controller described by

\[\frac{d\hat{x}}{dt} = A\hat{x} + Bu + L(y - C\hat{x}) = (A - BK - LC)\hat{x} + Ly, \]

\[u = -K\hat{x} + kr \]

gives a closed loop system with the characteristic polynomial

\[\lambda(s) = \det (sI - A + BK) \det (sI - A + LC). \]

This polynomial can be assigned arbitrary roots if the system is reachable and observable.

The controller has a strong intuitive appeal: it can be thought of as being composed of two parts, one state feedback and one observer. The dynamics of the controller are generated by the observer. The feedback gain K can be computed as if all state variables can be measured, and it depends on only A and B. The observer gain L depends on only A and C. The property that the eigenvalue assignment for output feedback can be separated into an eigenvalue assignment for a state feedback and an observer is called the separation principle.

A block diagram of the controller is shown in Figure 7.7. Notice that the con-
CHAPTER 7. OUTPUT FEEDBACK

Figure 7.8: Simulation of a vehicle driving on a curvy road with a controller based on state feedback and an observer. The left plot shows the lane boundaries (dotted), the vehicle position (solid) and its estimate (dashed), the upper right plot shows the velocity (solid) and its estimate (dashed), and the lower right plot shows the control signal using state feedback (solid) and the control signal using the estimated state (dashed).

The controller contains a dynamical model of the plant. This is called the internal model principle: the controller contains a model of the process being controlled.

Example 7.4 Vehicle steering
Consider again the normalized linear model for vehicle steering in Example 6.4. The dynamics relating the steering angle \(u \) to the lateral path deviation \(y \) is given by the state space model (7.12). Combining the state feedback derived in Example 6.4 with the observer determined in Example 7.3, we find that the controller is given by

\[
d\hat{x}/dt = A\hat{x} + Bu + L(y - C\hat{x}) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \hat{x} + \begin{bmatrix} \gamma \\ 1 \end{bmatrix} u + \begin{bmatrix} l_1 \\ l_2 \end{bmatrix} (y - \hat{x}),
\]

\[u = -K\hat{x} + kr = k_1(r - \hat{x}_1) - k_2\hat{x}_2.\]

Elimination of the variable \(u \) gives

\[
d\hat{x}/dt = (A - BK - LC)\hat{x} + Ly + Bkr
\]

\[= \begin{bmatrix} l_1 - \gamma k_1 & 1 - \gamma k_2 \\ -k_1 & -k_2 \end{bmatrix} \hat{x} + \begin{bmatrix} l_1 \\ l_2 \end{bmatrix} y + \begin{bmatrix} \gamma \\ 1 \end{bmatrix} k_1r.\]

The controller is a dynamical system of second order, with two inputs \(y \) and \(r \) and one output \(u \). Figure 7.8 shows a simulation of the system when the vehicle is driven along a curvy road. Since we are using a normalized model, the length unit is the vehicle length and the time unit is the time it takes to travel one vehicle length. The estimator is initialized with all states equal to zero but the real system has an initial velocity of 0.5. The figures show that the estimates converge quickly to their true values. The vehicle tracks the desired path, which is in the middle of the road, but there are errors because the road is irregular. The tracking error can be improved by introducing feedforward (Section 7.5).
7.4 Kalman Filtering

One of the principal uses of observers in practice is to estimate the state of a system in the presence of noisy measurements. We have not yet treated noise in our analysis, and a full treatment of stochastic dynamical systems is beyond the scope of this text. In this section, we present a brief introduction to the use of stochastic systems analysis for constructing observers. We work primarily in discrete time to avoid some of the complications associated with continuous-time random processes and to keep the mathematical prerequisites to a minimum. This section assumes basic knowledge of random variables and stochastic processes; see Kumar and Varaiya [KV86] or Åström [Åst06] for the required material.

Consider a discrete-time linear system with dynamics

\[
x[k+1] = Ax[k] + Bu[k] + Fv[k], \quad y[k] = Cx[k] + w[k],
\]

(7.18)

where \(v[k]\) and \(w[k]\) are Gaussian white noise processes satisfying

\[
E\{v[k]\} = 0, \quad E\{w[k]\} = 0,
\]

\[
E\{v[k]v^T[j]\} = \begin{cases} 0 & k \neq j, \\ R_v & k = j, \end{cases}
\]

(7.19)

\[
E\{w[k]w^T[j]\} = \begin{cases} 0 & k \neq j, \\ R_w & k = j, \end{cases}
\]

\[
E\{v[k]w^T[j]\} = 0.
\]

(7.20)

E\{v[k]\} represents the expected value of \(v[k]\) and \(E\{v[k]v^T[j]\}\) the correlation matrix. The matrices \(R_v\) and \(R_w\) are the covariance matrices for the process disturbance \(v\) and measurement noise \(w\). We assume that the initial condition is also modeled as a Gaussian random variable with

\[
E\{x[0]\} = x_0, \quad E\{x[0]x^T[0]\} = P_0.
\]

(7.21)

We would like to find an estimate \(\hat{x}[k]\) that minimizes the mean square error

\[
E\{(x[k] - \hat{x}[k])(x[k] - \hat{x}[k])^T\}
\]

given the measurements \(\{y(\tau) : 0 \leq \tau \leq t\}\). We consider an observer in the same basic form as derived previously:

\[
\hat{x}[k+1] = A\hat{x}[k] + Bu[k] + L[k](y[k] - C\hat{x}[k]).
\]

(7.22)

The following theorem summarizes the main result.

Theorem 7.4 (Kalman, 1961). Consider a random process \(x[k]\) with dynamics given by equation (7.18) and noise processes and initial conditions described by equations (7.19) and (7.20). The observer gain \(L\) that minimizes the mean square error is given by

\[
L[k] = AP[k]C^T(R_w + C P[k]C^T)^{-1},
\]

where

\[
P[k+1] = (A - LC)P[k](A - LC)^T + FR_wF^T + LR_wL^T
\]

\[
P_0 = E\{x[0]x^T[0]\}.
\]

Before we prove this result, we reflect on its form and function. First, note that the Kalman filter has the form of a recursive filter: given mean square error
To minimize this expression, we choose \(L \). Letting
\[
\begin{bmatrix}
\hat{x}[k] \\
\hat{x}[k]
\end{bmatrix}
\]
satisfies the recursion given in equation (7.22). By definition, we can show that for the Kalman filter the correlation matrix is by the description of the noise processes. The solution for the constant gain case is solved the Kalman filter permits a systematic derivation of the observer gains given a noise, but in a nontrivial way. Like the use of LQR to choose state feedback gains, we see that the optimal gain depends on both the process noise and the measurement noise or disturbances are nonstationary. When the system is stationary and if \(P[k] \) converges, then the observer gain is constant:
\[
L = APCT(R_w + CPT)T,
\]
where \(P \) satisfies
\[
P = APA^T + FR_wF^T - APC^TR_w(CPT)^{-1}CPA^T.
\]
We see that the optimal gain depends on both the process noise and the measurement noise, but in a nontrivial way. Like the use of LQR to choose state feedback gains, the Kalman filter permits a systematic derivation of the observer gains given a description of the noise processes. The solution for the constant gain case is solved by the `dlqe` command in MATLAB.

Proof of theorem. We wish to minimize the mean square of the error \(E\left\{ (x[k] - \hat{x}[k])(x[k] - \hat{x}[k])^T \right\} \). We will define this quantity as \(P[k] \) and then show that it satisfies the recursion given in equation (7.22). By definition,
\[
P[k + 1] = E\left\{ (x[k + 1] - \hat{x}[k + 1])(x[k + 1] - \hat{x}[k + 1])^T \right\}
= (A - LC)P[k](A - LC)^T + FR_wF^T + LR_wL^T
= AP[k]A^T - APC^TL^T - LCP[k]A^T + L(R_w + CPT)^TL^T.
\]
Letting \(R_c = (R_w + CPT) \), we have
\[
P[k + 1] = AP[k]A^T - APC^TL^T - APC^TL^T + LR_cL^T
= AP[k]A^T + \left(L - APC^TL^T \right)R_c \left(L - APC^TL^T \right)^T
- AP[k]C^TR_c^{-1}CP[k]A^T.
\]
To minimize this expression, we choose \(L = APC^T \), and the theorem is proved. \(\Box \)
7.4. Kalman Filtering

The Kalman filter can also be applied to continuous-time stochastic processes. The mathematical derivation of this result requires more sophisticated tools, but the final form of the estimator is relatively straightforward.

Consider a continuous stochastic system

\[
\frac{dx}{dt} = Ax + Bu + Fv, \quad E\{v(s)v^T(t)\} = R_v(t)\delta(t-s),
\]

\[y = Cx + w, \quad E\{w(s)w^T(t)\} = R_w(t)\delta(t-s),\]

where \(\delta(\tau)\) is the unit impulse function. Assume that the disturbance \(v\) and noise \(w\) are zero mean and Gaussian (but not necessarily stationary):

\[
\text{pdf}(v) = \frac{1}{\sqrt{2\pi \sqrt{\det R_v}}} e^{-\frac{1}{2}v^T R_v^{-1}v}, \quad \text{pdf}(w) = \frac{1}{\sqrt{2\pi \sqrt{\det R_w}}} e^{-\frac{1}{2}w^T R_w^{-1}w}.
\]

We wish to find the estimate \(\hat{x}(t)\) that minimizes the mean square error \(E\{(x(t) - \hat{x}(t))(x(t) - \hat{x}(t))^T\}\) given \(\{y(\tau) : 0 \leq \tau \leq t\}\).

Theorem 7.5 (Kalman–Bucy, 1961). The optimal estimator has the form of a linear observer

\[
\frac{d\hat{x}}{dt} = A\hat{x} + Bu + L(y - C\hat{x}),
\]

where \(L(t) = P(t)C^TR_w^{-1}\) and \(P(t) = E\{(x(t) - \hat{x}(t))(x(t) - \hat{x}(t))^T\}\) and satisfies

\[
\frac{dP}{dt} = AP + PA^T - PC^TR_w^{-1}(t)CP + FR_v(t)F^T, \quad P[0] = E\{x[0]x^T[0]\}.
\]

As in the discrete case, when the system is stationary and if \(P(t)\) converges, the observer gain is constant:

\[L = PC^TR_w^{-1} \quad \text{where} \quad AP + PA^T - PC^TR_w^{-1}CP + FR_v F^T = 0.\]

The second equation is the *algebraic Riccati equation*.

Example 7.5 Vectored thrust aircraft

We consider the lateral dynamics of the system, consisting of the subsystems whose states are given by \(z = (x, \theta, \dot{x}, \dot{\theta})\). To design a Kalman filter for the system, we must include a description of the process disturbances and the sensor noise. We thus augment the system to have the form

\[
\frac{dz}{dt} = Az + Bu + Fv, \quad y = Cz + w,
\]

where \(F\) represents the structure of the disturbances (including the effects of non-linearities that we have ignored in the linearization), \(w\) represents the disturbance source (modeled as zero mean, Gaussian white noise) and \(v\) represents that measurement noise (also zero mean, Gaussian and white).

For this example, we choose \(F\) as the identity matrix and choose disturbances \(v_i, i = 1, \ldots, n\), to be independent disturbances with covariance given by \(R_{ii} = 0.1, R_{ij} = 0, i \neq j\). The sensor noise is a single random variable which we model as
CHAPTER 7. OUTPUT FEEDBACK

Figure 7.9: Kalman filter design for a vectored thrust aircraft. In the first design (a) only the lateral position of the aircraft is measured. Adding a direct measurement of the roll angle produces a much better observer (b). The initial condition for both simulations is $(0.1, 0.0175, 0.01, 0)$.

having covariance $R_w = 10^{-4}$. Using the same parameters as before, the resulting Kalman gain is given by

$$L = \begin{bmatrix} 37.0 \\ -46.9 \\ 185 \\ -31.6 \end{bmatrix}. $$

The performance of the estimator is shown in Figure 7.9a. We see that while the estimator converges to the system state, it contains significant overshoot in the state estimate, which can lead to poor performance in a closed loop setting.

To improve the performance of the estimator, we explore the impact of adding a new output measurement. Suppose that instead of measuring just the output position x, we also measure the orientation of the aircraft θ. The output becomes

$$y = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} z + \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, $$

and if we assume that w_1 and w_2 are independent noise sources each with covariance $R_{w_i} = 10^{-4}$, then the optimal estimator gain matrix becomes

$$L = \begin{bmatrix} 32.6 & -0.150 \\ -0.150 & 32.6 \\ 32.7 & -9.79 \\ -0.0033 & 31.6 \end{bmatrix}. $$

These gains provide good immunity to noise and high performance, as illustrated in Figure 7.9b.
7.5 A General Controller Structure

State estimators and state feedback are important components of a controller. In this section, we will add feedforward to arrive at a general controller structure that appears in many places in control theory and is the heart of most modern control systems. We will also briefly sketch how computers can be used to implement a controller based on output feedback.

Feedforward

In this chapter and the previous one we have emphasized feedback as a mechanism for minimizing tracking error; reference values were introduced simply by adding them to the state feedback through a gain k_r. A more sophisticated way of doing this is shown by the block diagram in Figure 7.10, where the controller consists of three parts: an observer that computes estimates of the states based on a model and measured process inputs and outputs, a state feedback, and a trajectory generator that generates the desired behavior of all states x_d and a feedforward signal u_{ff}. Under the ideal conditions of no disturbances and no modeling errors the signal u_{ff} generates the desired behavior x_d when applied to the process. The signal x_d can be generated by a system that gives the desired response of the state. To generate the signal u_{ff}, we must also have a model of the inverse of the process dynamics.

To get some insight into the behavior of the system, we assume that there are no disturbances and that the system is in equilibrium with a constant reference signal and with the observer state \hat{x} equal to the process state x. When the reference signal is changed, the signals u_{ff} and x_d will change. The observer tracks the state perfectly because the initial state was correct. The estimated state \hat{x} is thus equal to the desired state x_d, and the feedback signal $u_{fb} = L(x_d - \hat{x})$ will also be zero. All action is thus created by the signals from the trajectory generator. If there are some disturbances or some modeling errors, the feedback signal will attempt to correct the situation.

This controller is said to have **two degrees of freedom** because the responses
to command signals and disturbances are decoupled. Disturbance responses are governed by the observer and the state feedback, while the response to command signals is governed by the trajectory generator (feedforward).

For an analytic description we start with the full nonlinear dynamics of the process
\[
\frac{dx}{dt} = f(x, u), \quad y = h(x, u). \tag{7.23}
\]
Assume that the trajectory generator is able to compute a desired trajectory \((x_d, u_{\text{ff}})\) that satisfies the dynamics (7.23) and satisfies \(r = h(x_d, u_{\text{ff}})\). To design the controller, we construct the error system. Let \(z = x - x_d\) and \(v = u - u_{\text{ff}}\) and compute the dynamics for the error:
\[
\dot{z} = \dot{x} - \dot{x}_d = f(x, u) - f(x_d, u_{\text{ff}})
\]
\[
= f(z + x_d, v + u_{\text{ff}}) - f(x_d, u_{\text{ff}}) =: F(z, v, x_d(t), u_{\text{ff}}(t)).
\]
In general, this system is time-varying. Note that \(z = -e\) in Figure 7.10 due to the convention of using negative feedback in the block diagram.

For trajectory tracking, we can assume that \(e\) is small (if our controller is doing a good job), and so we can linearize around \(z = 0\):
\[
\frac{dz}{dt} \approx A(t)z + B(t)v, \quad A(t) = \left. \frac{\partial F}{\partial z} \right|_{(x_d(t), u_{\text{ff}}(t))}, \quad B(t) = \left. \frac{\partial F}{\partial v} \right|_{(x_d(t), u_{\text{ff}}(t))}.
\]
It is often the case that \(A(t)\) and \(B(t)\) depend only on \(x_d\), in which case it is convenient to write \(A(t) = A(x_d)\) and \(B(t) = B(x_d)\).

Assume now that \(x_d\) and \(u_{\text{ff}}\) are either constant or slowly varying (with respect to the performance criterion). This allows us to consider just the (constant) linear system given by \((A(x_d), B(x_d))\). If we design a state feedback controller \(K(x_d)\) for each \(x_d\), then we can regulate the system using the feedback
\[
v = -K(x_d)z.
\]
Substituting back the definitions of \(e\) and \(v\), our controller becomes
\[
u = -K(x_d)(x - x_d) + u_{\text{ff}}.
\]
This form of controller is called a gain scheduled linear controller with feedforward \(u_{\text{ff}}\).

Finally, we consider the observer. The full nonlinear dynamics can be used for the prediction portion of the observer and the linearized system for the correction term:
\[
\frac{d\hat{x}}{dt} = f(\hat{x}, u) + L(\hat{x})(y - h(\hat{x}, u)),
\]
where \(L(\hat{x})\) is the observer gain obtained by linearizing the system around the currently estimated state. This form of the observer is known as an extended Kalman filter and has proved to be a very effective means of estimating the state of a nonlinear system.
7.5. A GENERAL CONTROLLER STRUCTURE

There are many ways to generate the feedforward signal, and there are also many different ways to compute the feedback gain K and the observer gain L. Note that once again the internal model principle applies: the controller contains a model of the system to be controlled through the observer.

Example 7.6 Vehicle steering

To illustrate how we can use a two degree-of-freedom design to improve the performance of the system, consider the problem of steering a car to change lanes on a road, as illustrated in Figure 7.11a.

We use the non-normalized form of the dynamics, where were derived in Example 2.8. Using the center of the rear wheels as the reference ($\alpha = 0$), the dynamics can be written as

$$\frac{dx}{dt} = \cos \theta v,$$
$$\frac{dy}{dt} = \sin \theta v,$$
$$\frac{d\theta}{dt} = \frac{1}{b} \tan \delta,$$

where v is the forward velocity of the vehicle and δ is the steering angle. To generate a trajectory for the system, we note that we can solve for the states and inputs of the system given x, y by solving the following sets of equations:

$$\dot{x} = v \cos \theta, \quad \ddot{x} = \dot{v} \cos \theta - v \dot{\theta} \sin \theta,$$
$$\dot{y} = v \sin \theta, \quad \ddot{y} = \dot{v} \sin \theta + v \dot{\theta} \cos \theta,$$
$$\dot{\theta} = \frac{v}{l \tan \delta}.$$

This set of five equations has five unknowns ($\theta, \dot{\theta}, v, \dot{v}$ and δ) that can be solved using trigonometry and linear algebra. It follows that we can compute a feasible trajectory for the system given any path $x(t), y(t)$. (This special property of a system is known as differential flatness [FLMR92, FLMR95].)

To find a trajectory from an initial state (x_0, y_0, θ_0) to a final state (x_f, y_f, θ_f)
at a time T, we look for a path $x(t), y(t)$ that satisfies
\begin{align*}
x(0) &= x_0, & x(T) &= x_f, \\
y(0) &= y_0, & y(T) &= y_f, \\
\dot{x}(0) \sin \theta_0 + \dot{y}(0) \cos \theta_0 &= 0, & \dot{x}(T) \sin \theta_T + \dot{y}(T) \cos \theta_T &= 0, \\
\dot{y}(0) \sin \theta_0 + \dot{y}(0) \cos \theta_0 &= 0, & \dot{y}(T) \sin \theta_T + \dot{y}(T) \cos \theta_T &= 0.
\end{align*}
(7.25)

One such trajectory can be found by choosing $x(t)$ and $y(t)$ to have the form
\begin{align*}
x_d(t) &= a_0 + a_1 t + a_2 t^2 + a_3 t^3, \\
y_d(t) &= \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3.
\end{align*}

Substituting these equations into equation (7.25), we are left with a set of linear equations that can be solved for $a_i, \beta_i, i = 0, 1, 2, 3$. This gives a feasible trajectory for the system by using equation (7.24) to solve for θ_d, ν_d and δ_d.

Figure 7.11b shows a sample trajectory generated by a set of higher-order equations that also set the initial and final steering angle to zero. Notice that the feedforward input is quite different from 0, allowing the controller to command a steering angle that executes the turn in the absence of errors.

Kalman’s Decomposition of a Linear System

In this chapter and the previous one we have seen that two fundamental properties of a linear input/output system are reachability and observability. It turns out that these two properties can be used to classify the dynamics of a system. The key result is Kalman’s decomposition theorem, which says that a linear system can be divided into four subsystems: Σ_{r_0} which is reachable and observable, Σ_{r_0} which is reachable but not observable, Σ_{r_0} which is not reachable but is observable and Σ_{r_0} which is neither reachable nor observable.

We will first consider this in the special case of systems where the matrix A has distinct eigenvalues. In this case we can find a set of coordinates such that the A matrix is diagonal and, with some additional reordering of the states, the system can be written as
\begin{equation}
\frac{dx}{dt} = \begin{pmatrix}
A_{r_0} & 0 & 0 & 0 \\
0 & A_{\tilde{r}_0} & 0 & 0 \\
0 & 0 & A_{r_0} & 0 \\
0 & 0 & 0 & A_{\tilde{r}_0}
\end{pmatrix} x + \begin{pmatrix}
B_{r_0} \\
B_{\tilde{r}_0} \\
0 \\
0
\end{pmatrix} u,
\end{equation}
(7.26)

\begin{equation}
y = \begin{pmatrix}
C_{r_0} & 0 & C_{\tilde{r}_0} & 0
\end{pmatrix} x + Du.
\end{equation}

All states x_k such that $B_k \neq 0$ are reachable, and all states such that $C_k \neq 0$ are observable. If we set the initial state to zero (or equivalently look at the steady-state response if A is stable), the states given by x_{r_0} and $x_{\tilde{r}_0}$ will be zero and $x_{\tilde{r}_0}$ does not affect the output. Hence the output y can be determined from the system
\begin{align*}
\frac{dx_{r_0}}{dt} &= A_{r_0} x_{r_0} + B_{r_0} u, \\
y &= C_{r_0} x_{r_0} + Du.
\end{align*}
7.5. A GENERAL CONTROLLER STRUCTURE

Thus from the input/output point of view, it is only the reachable and observable dynamics that matter. A block diagram of the system illustrating this property is given in Figure 7.12a.

The general case of the Kalman decomposition is more complicated and requires some additional linear algebra; see the original paper by Kalman, Ho and Narendra [KHN63]. The key result is that the state space can still be decomposed into four parts, but there will be additional coupling so that the equations have the form

$$\frac{dx}{dt} = \begin{bmatrix} A_{ro} & 0 & * & 0 \\ * & A_{roo} & * & * \\ 0 & 0 & A_{ro} & 0 \\ 0 & 0 & * & A_{roo} \end{bmatrix} x + \begin{bmatrix} B_{ro} \\ B_{roo} \\ 0 \\ 0 \end{bmatrix} u,$$

$$y = \begin{bmatrix} C_{ro} & 0 & C_{roo} & 0 \end{bmatrix} x,$$

(7.27)

where * denotes block matrices of appropriate dimensions. The input/output response of the system is given by

$$\frac{dx_{ro}}{dt} = A_{ro}x_{ro} + B_{ro}u, \quad y = C_{ro}x_{ro} + Du,$$

(7.28)

which are the dynamics of the reachable and observable subsystem Σ_{ro}. A block diagram of the system is shown in Figure 7.12b.

The following example illustrates Kalman’s decomposition.

Example 7.7 System and controller with feedback from observer states

Consider the system

$$\frac{dx}{dt} = Ax + Bu, \quad y = Cx.$$

The following controller, based on feedback from the observer state, was given in
Theorem 7.3:

\[
\frac{d\hat{x}}{dt} = A\hat{x} + Bu + L(y - C\hat{x}), \quad u = -K\hat{x} + kr.
\]

Introducing the states \(x\) and \(\tilde{x} = x - \hat{x}\), the closed loop system can be written as

\[
\frac{d}{dt} \begin{bmatrix} x \\ \tilde{x} \end{bmatrix} = \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix} \begin{bmatrix} x \\ \tilde{x} \end{bmatrix} + \begin{bmatrix} Bkr \\ 0 \end{bmatrix} r, \quad y = \begin{bmatrix} C & 0 \end{bmatrix} x,
\]

which is a Kalman decomposition like the one shown in Figure 7.12b with only two subsystems \(\Sigma_{ro}\) and \(\Sigma_{\tilde{x}o}\). The subsystem \(\Sigma_{ro}\), with state \(x\), is reachable and observable, and the subsystem \(\Sigma_{\tilde{x}o}\), with state \(\tilde{x}\), is not reachable but observable.

It is natural that the state \(\tilde{x}\) is not reachable from the reference signal \(r\) because it would not make sense to design a system where changes in the command signal could generate observer errors. The relationship between the reference \(r\) and the output \(y\) is given by

\[
\frac{dx}{dt} = (A - BK)x + Bkr, \quad y = Cx,
\]

which is the same relationship as for a system with full state feedback.

\(\nabla\)

Computer Implementation

The controllers obtained so far have been described by ordinary differential equations. They can be implemented directly using analog components, whether electronic circuits, hydraulic valves or other physical devices. Since in modern engineering applications most controllers are implemented using computers, we will briefly discuss how this can be done.

A computer-controlled system typically operates periodically: every cycle, signals from the sensors are sampled and converted to digital form by the A/D converter, the control signal is computed and the resulting output is converted to analog form for the actuators, as shown in Figure 7.13. To illustrate the main principles of how to implement feedback in this environment, we consider the controller described by equations (7.14) and (7.15), i.e.,

\[
\frac{d\hat{x}}{dt} = A\hat{x} + Bu + L(y - C\hat{x}), \quad u = -K\hat{x} + kr.
\]

The second equation consists only of additions and multiplications and can thus be implemented directly on a computer. The first equation can be implemented by approximating the derivative by a difference

\[
\frac{d\hat{x}}{dt} \approx \frac{\hat{x}(t_{k+1}) - \hat{x}(t_k)}{h} = A\hat{x}(t_k) + Bu(t_k) + L(y(t_k) - C\hat{x}(t_k)),
\]

where \(t_k\) are the sampling instants and \(h = t_{k+1} - t_k\) is the sampling period. Rewriting the equation to isolate \(\hat{x}(t_{k+1})\), we get the difference equation

\[
\hat{x}(t_{k+1}) = \hat{x}(t_k) + h(A\hat{x}(t_k) + Bu(t_k) + L(y(t_k) - C\hat{x}(t_k))).
\]

(7.29)
The calculation of the estimated state at time t_{k+1} requires only addition and multiplication and can easily be done by a computer. A section of pseudocode for the program that performs this calculation is

```
% Control algorithm - main loop
r = adin(ch1) % read reference
y = adin(ch2) % get process output
u = K*(xd - xhat) + uff % compute control variable
daout(ch1, u) % set analog output
xhat = xhat + h*(A*x+B*u+L*(y-C*x)) % update state estimate
```

The program runs periodically at a fixed rate h. Notice that the number of computations between reading the analog input and setting the analog output has been minimized by updating the state after the analog output has been set. The program has an array of states x_{hat} that represents the state estimate. The choice of sampling period requires some care.

There are more sophisticated ways of approximating a differential equation by a difference equation. If the control signal is constant between the sampling instants, it is possible to obtain exact equations; see [ÅW97].

There are several practical issues that also must be dealt with. For example, it is necessary to filter measured signals before they are sampled so that the filtered signal has little frequency content above $f_s/2$, where f_s is the sampling frequency. This avoids a phenomena known as aliasing. If controllers with integral action are used, it is also necessary to provide protection so that the integral does not become too large when the actuator saturates. This issue, called integrator windup, is studied in more detail in Chapter 10. Care must also be taken so that parameter changes do
not cause disturbances.

7.6 Further Reading

The notion of observability is due to Kalman [Kal61b] and, combined with the dual notion of reachability, it was a major stepping stone toward establishing state space control theory beginning in the 1960s. The observer first appeared as the Kalman filter, in the paper by Kalman [Kal61a] on the discrete-time case and Kalman and Bucy [KB61] on the continuous-time case. Kalman also conjectured that the controller for output feedback could be obtained by combining a state feedback with an observer; see the quote in the beginning of this chapter. This result was formally proved by Josep and Tou [JT61] and Gunckel and Franklin [GF71]. The combined result is known as the linear quadratic Gaussian control theory; a compact treatment is given in the books by Anderson and Moore [AM90] and Åström [Åst06]. Much later it was shown that solutions to robust control problems also had a similar structure but with different ways of computing observer and state feedback gains [DGKF89]. The general controller structure discussed in Section 7.5, which combines feedback and feedforward, was described by Horowitz in 1963 [Hor63]. The particular form in Figure 7.10 appeared in [ÅW97], which also treats digital implementation of the controller. The hypothesis that motion control in humans is based on a combination of feedback and feedforward was proposed by Ito in 1970 [Ito70].

Exercises

7.1 (Coordinate transformations) Consider a system under a coordinate transformation $z = T x$, where $T \in \mathbb{R}^{n \times n}$ is an invertible matrix. Show that the observability matrix for the transformed system is given by $\tilde{W}_o = W_o T^{-1}$ and hence observability is independent of the choice of coordinates.

7.2 Show that the system depicted in Figure 7.2 is not observable.

7.3 (Observable canonical form) Show that if a system is observable, then there exists a change of coordinates $z = T x$ that puts the transformed system into observable canonical form.

7.4 (Bicycle dynamics) The linearized model for a bicycle is given in equation (3.5), which has the form

$$J \frac{d^2 \phi}{dt^2} - \frac{D v_0}{b} \frac{d \delta}{dt} = m g h \phi + \frac{m v_0^2 h}{b} \delta,$$

where ϕ is the tilt of the bicycle and δ is the steering angle. Give conditions under which the system is observable and explain any special situations where it loses observability.
7.5 (Integral action) The model (7.1) assumes that the input \(u = 0 \) corresponds to \(x = 0 \). In practice, it is very difficult to know the value of the control signal that gives a precise value of the state or the output because this would require a perfectly calibrated system. One way to avoid this assumption is to assume that the model is given by

\[
\frac{dx}{dt} = Ax + B(u + u_0), \quad y = Cx + Du,
\]

where \(u_0 \) is an unknown constant that can be modeled as \(du_0/dt = 0 \). Consider \(u_0 \) as an additional state variable and derive a controller based on feedback from the observed state. Show that the controller has integral action and that it does not require a perfectly calibrated system.

7.6 (Vectored thrust aircraft) The lateral dynamics of the vectored thrust aircraft example described in Example 6.8 can be obtained by considering the motion described by the states \(z = (x, \theta, \dot{x}, \dot{\theta}) \). Construct an estimator for these dynamics by setting the eigenvalues of the observer into a Butterworth pattern with \(\lambda_{bw} = -3.83 \pm 9.24i, -9.24 \pm 3.83i \). Using this estimator combined with the state space controller computed in Example 6.8, plot the step response of the closed loop system.

7.7 (Uniqueness of observers) Show that the design of an observer by eigenvalue assignment is unique for single-output systems. Construct examples that show that the problem is not necessarily unique for systems with many outputs.

7.8 (Observers using differentiation) Consider the linear system (7.2), and assume that the observability matrix \(W_o \) is invertible. Show that

\[
\hat{x} = W_o^{-1} \begin{bmatrix} y & \dot{y} & \ddot{y} & \ldots & y^{(n-1)} \end{bmatrix}^T
\]

is an observer. Show that it has the advantage of giving the state instantaneously but that it also has some severe practical drawbacks.

7.9 (Observer for Teorell’s compartment model) Teorell’s compartment model, shown in Figure 3.17, has the following state space representation:

\[
\frac{dx}{dt} = \begin{bmatrix} -k_1 & 0 & 0 & 0 & 0 \\ k_1 & -k_2 - k_4 & 0 & k_3 & 0 \\ 0 & k_4 & 0 & 0 & 0 \\ 0 & 0 & -k_3 - k_5 & 0 & 0 \\ 0 & 0 & 0 & k_5 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} u,
\]

where representative parameters are \(k_1 = 0.02, k_2 = 0.1, k_3 = 0.05, k_4 = k_5 = 0.005 \). The concentration of a drug that is active in compartment 5 is measured in the bloodstream (compartment 2). Determine the compartments that are observable from measurement of concentration in the bloodstream and design an estimator for these concentrations base on eigenvalue assignment. Choose the closed loop eigenvalues \(-0.03, -0.05 \) and \(-0.1 \). Simulate the system when the input is a pulse injection.
7.10 (Observer design for motor drive) Consider the normalized model of the motor drive in Exercise 2.10 where the open loop system has the eigenvalues $0, 0, -0.05 \pm i$. A state feedback that gave a closed loop system with eigenvalues in $-2, -1$ and $-1 \pm i$ was designed in Exercise 6.11. Design an observer for the system that has eigenvalues $-4, -2$ and $-2 \pm 2i$. Combine the observer with the state feedback from Exercise 6.11 to obtain an output feedback and simulate the complete system.

7.11 (Feedforward design for motor drive) Consider the normalized model of the motor drive in Exercise 2.10. Design the dynamics of the block labeled “trajectory generation” in Figure 7.10 so that the dynamics relating the output η to the reference signal r has the dynamics
\[
\frac{d^3 y_m}{dt^3} + a_{m1} \frac{d^2 y_m}{dt^2} + a_{m2} \frac{dy_m}{dt} + a_{m3} y_m = a_{m3} r,
\] (7.30)
with parameters $a_{m1} = 2.5 \omega_m$, $a_{m2} = 2.5 \omega_m^2$ and $a_{m3} = \omega_m^3$. Discuss how the largest value of the command signal for a unit step in the command signal depends on ω_m.

7.12 (Whipple bicycle model) Consider the Whipple bicycle model given by equation (3.7) in Section 3.2. A state feedback for the system was designed in Exercise 6.12. Design an observer and an output feedback for the system.

7.13 (Discrete-time random walk) Suppose that we wish to estimate the position of a particle that is undergoing a random walk in one dimension (i.e., along a line). We model the position of the particle as
\[
x[k + 1] = x[k] + u[k],
\]
where x is the position of the particle and u is a white noise processes with $E[u[i]] = 0$ and $E[u[i]u[j]] R_u \delta(i - j)$. We assume that we can measure x subject to additive, zero-mean, Gaussian white noise with covariance 1.

(a) Compute the expected value and covariance of the particle as a function of k.
(b) Construct a Kalman filter to estimate the position of the particle given the noisy measurements of its position. Compute the steady-state expected value and covariance of the error of your estimate.
(c) Suppose that $E[u[0]] = \mu \neq 0$ but is otherwise unchanged. How would your answers to parts (a) and (b) change?

7.14 (Kalman decomposition) Consider a linear system characterized by the matrices
\[
A = \begin{bmatrix} -2 & 1 & -1 & 2 \\ 1 & -3 & 0 & 2 \\ 1 & 1 & -4 & 2 \\ 0 & 1 & -1 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 \\ 2 \\ 2 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix}, \quad D = 0.
\]
Construct a Kalman decomposition for the system. (Hint: Try to diagonalize.)