
Chapter Seven
Output Feedback

One may separate the problem of physical realization into two stages: computation of the
“best approximation” x̂(t1) of the state from knowledge of y(t) for t ≤ t1 and computation of
u(t1) given x̂(t1).

R. E. Kalman, “Contributions to the Theory of Optimal Control,” 1960 [Kal60].

In this chapter we show how to use output feedback to modify the dynamics
of the system through the use of observers. We introduce the concept of observ-
ability and show that if a system is observable, it is possible to recover the state
from measurements of the inputs and outputs to the system. We then show how to
design a controller with feedback from the observer state. An important concept is
the separation principle quoted above, which is also proved. The structure of the
controllers derived in this chapter is quite general and is obtained by many other
design methods.

7.1 Observability
In Section 6.2 of the previous chapter it was shown that it is possible to find a
state feedback law that gives desired closed loop eigenvalues provided that the
system is reachable and that all the states are measured. For many situations, it
is highly unrealistic to assume that all the states are measured. In this section we
investigate how the state can be estimated by using a mathematical model and a
few measurements. It will be shown that computation of the states can be carried
out by a dynamical system called an observer.

Definition of Observability
Consider a system described by a set of differential equations

dx
dt

= Ax + Bu, y = Cx + Du, (7.1)

where x ∈ Rn is the state, u ∈ Rp the input and y ∈ Rq the measured output. We
wish to estimate the state of the system from its inputs and outputs, as illustrated
in Figure 7.1. In some situations we will assume that there is only one measured
signal, i.e., that the signal y is a scalar and that C is a (row) vector. This signal may
be corrupted by noise n, although we shall start by considering the noise-free case.
We write x̂ for the state estimate given by the observer.

Feedback Systems by Astrom and Murray, v2.10d
http://www.cds.caltech.edu/~murray/FBSwiki
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Figure 7.1: Block diagram for an observer. The observer uses the process measurement y
(possibly corrupted by noise n) and the input u to estimate the current state of the process,
denoted x̂ .

Definition 7.1 (Observability). A linear system is observable if for any T > 0 it is
possible to determine the state of the system x(T ) through measurements of y(t)
and u(t) on the interval [0, T ].

The definition above holds for nonlinear systems as well, and the results dis-
cussed here have extensions to the nonlinear case.
The problem of observability is one that has many important applications, even

outside feedback systems. If a system is observable, then there are no “hidden” dy-
namics inside it; we can understand everything that is going on through observation
(over time) of the inputs and outputs. As we shall see, the problem of observability
is of significant practical interest because it will determine if a set of sensors is
sufficient for controlling a system. Sensors combined with a mathematical model
can also be viewed as a “virtual sensor” that gives information about variables that
are not measured directly. The process of reconciling signals from many sensors
with mathematical models is also called sensor fusion.

Testing for Observability
When discussing reachability in the last chapter, we neglected the output and fo-
cused on the state. Similarly, it is convenient here to initially neglect the input and
focus on the autonomous system

dx
dt

= Ax, y = Cx . (7.2)

We wish to understand when it is possible to determine the state from observations
of the output.
The output itself gives the projection of the state on vectors that are rows of the

matrix C . The observability problem can immediately be solved if the matrix C is
invertible. If the matrix is not invertible, we can take derivatives of the output to
obtain

dy
dt

= C
dx
dt

= CAx .

From the derivative of the output we thus get the projection of the state on vectors
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that are rows of the matrix CA. Proceeding in this way, we get



y
ẏ
ÿ
...

y(n−1)




=




C
CA
CA2

...
CAn−1




x . (7.3)

We thus find that the state can be determined if the observability matrix

Wo =




C
CA
CA2

...
CAn−1




(7.4)

has n independent rows. It turns out that we need not consider any derivatives higher
than n−1 (this is an application of the Cayley–Hamilton theorem [Exercise 6.10]).
The calculation can easily be extended to systems with inputs. The state is then

given by a linear combination of inputs and outputs and their higher derivatives.
The observability criterion is unchanged. We leave this case as an exercise for the
reader.
In practice, differentiation of the output can give large errors when there is

measurement noise, and therefore the method sketched above is not particularly
practical. We will address this issue in more detail in the next section, but for now
we have the following basic result.

Theorem 7.1 (Observability rank condition). A linear system of the form (7.1) is
observable if and only if the observability matrix Wo is full rank.

Proof. The sufficiency of the observability rank condition follows from the analysis !
above. To prove necessity, suppose that the system is observable but Wo is not full
rank. Let v ∈ Rn , v $= 0, be a vector in the null space of Wo, so that Wov = 0. If
we let x(0) = v be the initial condition for the system and choose u = 0, then the
output is given by y(t) = CeAtv . Since eAt can be written as a power series in A
and since An and higher powers can be rewritten in terms of lower powers of A (by
the Cayley–Hamilton theorem), it follows that the output will be identically zero
(the reader should fill in the missing steps if this is not clear). However, if both the
input and output of the system are 0, then a valid estimate of the state is x̂ = 0 for
all time, which is clearly incorrect since x(0) = v $= 0. Hence by contradiction we
must have that Wo is full rank if the system is observable.

Example 7.1 Compartment model
Consider the two-compartment model in Figure 3.18a, but assume that the concen-
tration in the first compartment can be measured. The system is described by the
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Figure 7.2:Anunobservable system. Two identical subsystems have outputs that add together
to form the overall systemoutput. The individual states of the subsystem cannot be determined
since the contributions of each to the output are not distinguishable. The circuit diagram on
the right is an example of such a system.

linear system

dc
dt

=

−k0 − k1 k1

k2 −k2


 c +


b00


 u, y =


1 0


 c.

The first compartment represents the drug concentration in the blood plasma, and
the second compartment the drug concentration in the tissue where it is active. To
determine if it is possible to find the concentration in the tissue compartment from
a measurement of blood plasma, we investigate the observability of the system by
forming the observability matrix

Wo =

 C
CA


 =


 1 0

−k0 − k1 k1


 .

The rows are linearly independent if k1 $= 0, and under this condition it is thus
possible to determine the concentration of the drug in the active compartment from
measurements of the drug concentration in the blood. ∇

It is useful to have an understanding of the mechanisms that make a system
unobservable. Such a system is shown in Figure 7.2. The system is composed of
two identical systemswhose outputs are added. It seems intuitively clear that it is not
possible to deduce the states from the output since we cannot deduce the individual
output contributions from the sum. This can also be seen formally (Exercise 7.2).

Observable Canonical Form
As in the case of reachability, certain canonical forms will be useful in studying ob-
servability. A linear single-input, single-output state space system is in observable
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Figure 7.3:Block diagram of a system in observable canonical form. The states of the system
are represented by individual integrators whose inputs are a weighted combination of the next
integrator in the chain, the first state (rightmost integrator) and the system input. The output
is a combination of the first state and the input.

canonical form if its dynamics are given by

dz
dt

=




−a1 1 0 · · · 0
−a2 0 1 0

...
. . .

−an−1 0 0 1
−an 0 0 · · · 0




z +




b1
b2
...

bn−1
bn




u,

y =

1 0 0 · · · 0


 z + Du.

The definition can be extended to systems with many inputs; the only difference is
that the vector multiplying u is replaced by a matrix.
Figure 7.3 is a block diagram for a system in observable canonical form. As

in the case of reachable canonical form, we see that the coefficients in the system
description appear directly in the block diagram. The characteristic polynomial for
a system in observable canonical form is

λ(s) = sn + a1sn−1 + · · · + an−1s + an. (7.5)

It is possible to reason about the observability of a system in observable canonical
form by studying the block diagram. If the input u and the output y are available,
the state z1 can clearly be computed. Differentiating z1, we obtain the input to the
integrator that generates z1, andwe can nowobtain z2 = ż1+a1z1−b1u. Proceeding
in this way, we can compute all states. The computation will, however, require that
the signals be differentiated.
To check observability more formally, we compute the observability matrix for
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a system in observable canonical form, which is given by

Wo =




1 0 0 . . . 0
−a1 1 0 . . . 0

−a21 − a1a2 −a1 1 0
...

...
. . .

...
∗ ∗ . . . 1




,

where * represents an entry whose exact value is not important. The rows of this
matrix are linearly independent (since it is lower triangular), and hence Wo is
full rank. A straightforward but tedious calculation shows that the inverse of the
observability matrix has a simple form given by

W−1
o =




1 0 0 · · · 0
a1 1 0 · · · 0
a2 a1 1 · · · 0
...

...
. . .

...
an−1 an−2 an−3 · · · 1




.

As in the case of reachability, it turns out that if a system is observable then there
always exists a transformation T that converts the system into observable canonical
form. This is useful for proofs since it lets us assume that a system is in observable
canonical form without any loss of generality. The observable canonical form may
be poorly conditioned numerically.

7.2 State Estimation
Having defined the concept of observability, we now return to the question of
how to construct an observer for a system. We will look for observers that can be
represented as a linear dynamical system that takes the inputs and outputs of the
system we are observing and produces an estimate of the system’s state. That is,
we wish to construct a dynamical system of the form

dx̂
dt

= Fx̂ + Gu + Hy,

where u and y are the input and output of the original system and x̂ ∈ Rn is an
estimate of the state with the property that x̂(t) → x(t) as t → ∞.

The Observer
We consider the system in equation (7.1) with D set to zero to simplify the expo-
sition:

dx
dt

= Ax + Bu, y = Cx . (7.6)
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We can attempt to determine the state simply by simulating the equations with the
correct input. An estimate of the state is then given by

dx̂
dt

= Ax̂ + Bu. (7.7)

To find the properties of this estimate, introduce the estimation error x̃ = x − x̂ . It
follows from equations (7.6) and (7.7) that

dx̃
dt

= Ax̃ .

If matrix A has all its eigenvalues in the left half-plane, the error x̃ will go to zero,
and hence equation (7.7) is a dynamical system whose output converges to the state
of the system (7.6).
The observer given by equation (7.7) uses only the process input u; themeasured

signal does not appear in the equation.Wemust also require that the systembe stable,
and essentially our estimator converges because the state of both the observer and
the estimator are going zero. This is not very useful in a control design context since
we want to have our estimate converge quickly to a nonzero state so that we can
make use of it in our controller. We will therefore attempt to modify the observer
so that the output is used and its convergence properties can be designed to be fast
relative to the system’s dynamics. This version will also work for unstable systems.
Consider the observer

dx̂
dt

= Ax̂ + Bu + L(y − Cx̂). (7.8)

This can be considered as a generalization of equation (7.7). Feedback from the
measured output is provided by adding the term L(y−Cx̂), which is proportional to
the difference between the observed output and the output predicted by the observer.
It follows from equations (7.6) and (7.8) that

dx̃
dt

= (A − LC)x̃ .

If the matrix L can be chosen in such a way that the matrix A − LC has eigen-
values with negative real parts, the error x̃ will go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.
Notice the similarity between the problems of finding a state feedback and

finding the observer. State feedback design by eigenvalue assignment is equivalent
to finding a matrix K so that A− BK has given eigenvalues. Designing an observer
with prescribed eigenvalues is equivalent to finding a matrix L so that A− LC has
given eigenvalues. Since the eigenvalues of a matrix and its transpose are the same
we can establish the following equivalences:

A ↔ AT , B ↔ CT , K ↔ LT , Wr ↔ WT
o .

The observer design problem is the dual of the state feedback design problem.Using
the results of Theorem 6.3, we get the following theorem on observer design.
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Theorem 7.2 (Observer design by eigenvalue assignment). Consider the system
given by

dx
dt

= Ax + Bu, y = Cx, (7.9)

with one input and one output. Let λ(s) = sn + a1sn−1 + · · · + an−1s + an be the
characteristic polynomial for A. If the system is observable, then the dynamical
system

dx̂
dt

= Ax̂ + Bu + L(y − Cx̂) (7.10)

is an observer for the system, with L chosen as

L = W−1
o W̃o




p1 − a1
p2 − a2

...
pn − an




(7.11)

and the matrices Wo and W̃o given by

Wo =




C
CA
...

CAn−1




, W̃o =




1 0 0 · · · 0 0
a1 1 0 · · · 0 0
a2 a1 1 0 0
...

...
. . .

...
an−2 an−3 an−4 1 0
an−1 an−2 an−3 . . . a1 1




−1

.

The resulting observer error x̃ = x − x̂ is governed by a differential equation
having the characteristic polynomial

p(s) = sn + p1sn−1 + · · · + pn.

The dynamical system (7.10) is called an observer for (the states of) the sys-
tem (7.9) because it will generate an approximation of the states of the system from
its inputs and outputs. This form of an observer is a much more useful form than
the one given by pure differentiation in equation (7.3).

Example 7.2 Compartment model
Consider the compartment model in Example 7.1, which is characterized by the
matrices

A =

−k0 − k1 k1

k2 −k2


 , B =


b00


 , C =


1 0


 .

The observability matrix was computed in Example 7.1, where we concluded that
the system was observable if k1 $= 0. The dynamics matrix has the characteristic
polynomial

λ(s) = det

s + k0 + k1 −k1

−k2 s + k2


 = s2 + (k0 + k1 + k2)s + k0k2.
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Figure 7.4:Observer for a two compartment system. A two compartment model is shown on
the left. The observer measures the input concentration u and output concentration y = c1 to
determine the compartment concentrations, shown on the right. The true concentrations are
shown by solid lines and the estimates generated by the observer by dashed lines.

Let the desired characteristic polynomial of the observer be s2 + p1s + p2, and
equation (7.11) gives the observer gain

L =

 1 0

−k0 − k1 k1




−1 
 1 0
k0 + k1 + k2 1




−1 
p1 − k0 − k1 − k2

p2 − k0k2




=

 p1 − k0 − k1 − k2

(p2 − p1k2 + k1k2 + k22)/k1


 .

Notice that the observability condition k1 $= 0 is essential. The behavior of the
observer is illustrated by the simulation in Figure 7.4b. Notice how the observed
concentrations approach the true concentrations. ∇

The observer is a dynamical systemwhose inputs are the process input u and the
process output y. The rate of change of the estimate is composed of two terms. One
term, Ax̂ + Bu, is the rate of change computed from the model with x̂ substituted
for x . The other term, L(y− ŷ), is proportional to the difference e = y− ŷ between
measured output y and its estimate ŷ = Cx̂ . The observer gain L is a matrix that
tells how the error e is weighted and distributed among the states. The observer thus
combines measurements with a dynamical model of the system. A block diagram
of the observer is shown in Figure 7.5.

Computing the Observer Gain
For simple low-order problems it is convenient to introduce the elements of the
observer gain L as unknown parameters and solve for the values required to give
the desired characteristic polynomial, as illustrated in the following example.

Example 7.3 Vehicle steering
The normalized linear model for vehicle steering derived in Examples 5.12 and 6.4
gives the following state space model dynamics relating lateral path deviation y to
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ŷ

y

u

L −1

B
∫

C

A

Figure 7.5: Block diagram of the observer. The observer takes the signals y and u as inputs
and produces an estimate x . Notice that the observer contains a copy of the process model
that is driven by y − ŷ through the observer gain L .

steering angle u:

dx
dt

=

0 1
0 0


 x +


γ
1


 u, y =


1 0


 x . (7.12)

Recall that the state x1 represents the lateral path deviation and that x2 represents
the turning rate. We will now derive an observer that uses the system model to
determine the turning rate from the measured path deviation.
The observability matrix is

Wo =

1 0
0 1


 ,

i.e., the identity matrix. The system is thus observable, and the eigenvalue assign-
ment problem can be solved. We have

A − LC =

−l1 1

−l2 0


 ,

which has the characteristic polynomial

det (s I − A + LC) = det

s + l1 −1

l2 s


 = s2 + l1s + l2.

Assuming that we want to have an observer with the characteristic polynomial

s2 + p1s + p2 = s2 + 2ζoωos + ω2o,

the observer gains should be chosen as

l1 = p1 = 2ζoωo, l2 = p2 = ω2o.

The observer is then
dx̂
dt

= Ax̂ + Bu + L(y − Cx̂) =

0 1
0 0


 x̂ +


γ
1


 u +


l1l2


 (y − x̂1).
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Figure 7.6:Simulation of an observer for a vehicle driving on a curvy road (left). The observer
has an initial velocity error. The plots on the middle show the lateral deviation x1, the lateral
velocity x2 by solid lines and their estimates x̂1 and x̂2 by dashed lines. The plots on the right
show the estimation errors.

A simulation of the observer for a vehicle driving on a curvy road is simulated in
Figure 7.6. The vehicle length is the time unit in the normalized model. The figure
shows that the observer error settles in about 3 vehicle lengths. ∇

For systems of high order we have to use numerical calculations. The duality
between the design of a state feedback and the design of an observer means that the
computer algorithms for state feedback can also be used for the observer design;
we simply use the transpose of the dynamics matrix and the output matrix. The
MATLAB command acker, which essentially is a direct implementation of the
calculations given in Theorem 7.2, can be used for systems with one output. The
MATLAB command place can be used for systems with many outputs. It is also
better conditioned numerically.

7.3 Control Using Estimated State
In this section we will consider a state space system of the form

dx
dt

= Ax + Bu, y = Cx . (7.13)

Notice that we have assumed that there is no direct term in the system (D = 0).
This is often a realistic assumption. The presence of a direct term in combination
with a controller having proportional action creates an algebraic loop, which will
be discussed in Section 8.3. The problem can be solved even if there is a direct
term, but the calculations are more complicated.
We wish to design a feedback controller for the system where only the output

is measured. As before, we will assume that u and y are scalars. We also assume
that the system is reachable and observable. In Chapter 6 we found a feedback of
the form

u = −Kx + krr
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for the case that all states could be measured, and in Section 7.2 we developed an
observer that can generate estimates of the state x̂ based on inputs and outputs. In
this section we will combine the ideas of these sections to find a feedback that gives
desired closed loop eigenvalues for systems where only outputs are available for
feedback.
If all states are not measurable, it seems reasonable to try the feedback

u = −K x̂ + krr, (7.14)

where x̂ is the output of an observer of the state, i.e.,

dx̂
dt

= Ax̂ + Bu + L(y − Cx̂). (7.15)

Since the system (7.13) and the observer (7.15) are both of state dimension n, the
closed loop system has state dimension 2n with state (x , x̂). The evolution of the
states is described by equations (7.13)–(7.15). To analyze the closed loop system,
the state variable x̂ is replaced by

x̃ = x − x̂ . (7.16)

Subtraction of equation (7.15) from equation (7.13) gives

dx̃
dt

= Ax − Ax̂ − L(Cx − Cx̂) = Ax̃ − LCx̃ = (A − LC)x̃ .

Returning to the process dynamics, introducing u from equation (7.14) into
equation (7.13) and using equation (7.16) to eliminate x̂ gives

dx
dt

= Ax + Bu = Ax − BK x̂ + Bkrr = Ax − BK (x − x̃) + Bkrr

= (A − BK )x + BK x̃ + Bkrr.

The closed loop system is thus governed by

d
dt


xx̃


 =


A − BK BK

0 A − LC





xx̃


 +


Bkr
0


 r. (7.17)

Notice that the state x̃ , representing the observer error, is not affected by the refer-
ence signal r . This is desirable since we do not want the reference signal to generate
observer errors.
Since the dynamics matrix is block diagonal, we find that the characteristic

polynomial of the closed loop system is

λ(s) = det (s I − A + BK ) det (s I − A + LC).

This polynomial is a product of two terms: the characteristic polynomial of the
closed loop system obtained with state feedback and the characteristic polyno-
mial of the observer error. The feedback (7.14) that was motivated heuristically
thus provides a neat solution to the eigenvalue assignment problem. The result is
summarized as follows.
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Figure 7.7: Block diagram of an observer-based control system. The observer uses the mea-
sured output y and the input u to construct an estimate of the state. This estimate is used
by a state feedback controller to generate the corrective input. The controller consists of the
observer and the state feedback; the observer is identical to that in Figure 7.5.

Theorem 7.3 (Eigenvalue assignment by output feedback). Consider the system
dx
dt

= Ax + Bu, y = Cx .

The controller described by
dx̂
dt

= Ax̂ + Bu + L(y − Cx̂) = (A − BK − LC)x̂ + Bkrr + Ly,

u = −K x̂ + krr

gives a closed loop system with the characteristic polynomial

λ(s) = det (s I − A + BK ) det (s I − A + LC).

This polynomial can be assigned arbitrary roots if the system is reachable and
observable.

The controller has a strong intuitive appeal: it can be thought of as being com-
posed of two parts, one state feedback and one observer. The dynamics of the
controller are generated by the observer. The feedback gain K can be computed as
if all state variables can be measured, and it depends on only A and B. The observer
gain L depends on only A and C . The property that the eigenvalue assignment for
output feedback can be separated into an eigenvalue assignment for a state feedback
and an observer is called the separation principle.
A block diagram of the controller is shown in Figure 7.7. Notice that the con-
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Figure 7.8: Simulation of a vehicle driving on a curvy road with a controller based on
state feedback and an observer. The left plot shows the lane boundaries (dotted), the vehicle
position (solid) and its estimate (dashed), the upper right plot shows the velocity (solid) and
its estimate (dashed), and the lower right plot shows the control signal using state feedback
(solid) and the control signal using the estimated state (dashed).

troller contains a dynamical model of the plant. This is called the internal model
principle: the controller contains a model of the process being controlled.

Example 7.4 Vehicle steering
Consider again the normalized linear model for vehicle steering in Example 6.4.
The dynamics relating the steering angle u to the lateral path deviation y is given by
the state space model (7.12). Combining the state feedback derived in Example 6.4
with the observer determined in Example 7.3, we find that the controller is given
by

dx̂
dt

= Ax̂ + Bu + L(y − Cx̂) =

0 1
0 0


 x̂ +


γ
1


 u +


l1l2


 (y − x̂1),

u = −K x̂ + krr = k1(r − x̂1) − k2 x̂2.
Elimination of the variable u gives

dx̂
dt

= (A − BK − LC)x̂ + Ly + Bkrr

=

−l1 − γ k1 1− γ k2

−k1 − l2 −k2


 x̂ +


l1l2


 y +


γ
1


 k1r.

The controller is a dynamical system of second order, with two inputs y and r and
one output u. Figure 7.8 shows a simulation of the systemwhen the vehicle is driven
along a curvy road. Since we are using a normalized model, the length unit is the
vehicle length and the time unit is the time it takes to travel one vehicle length. The
estimator is initialized with all states equal to zero but the real system has an initial
velocity of 0.5. The figures show that the estimates converge quickly to their true
values. The vehicle tracks the desired path, which is in the middle of the road, but
there are errors because the road is irregular. The tracking error can be improved
by introducing feedforward (Section 7.5). ∇
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7.4 Kalman Filtering !!

One of the principal uses of observers in practice is to estimate the state of a
system in the presence of noisymeasurements. We have not yet treated noise in our
analysis, and a full treatment of stochastic dynamical systems is beyond the scope
of this text. In this section, we present a brief introduction to the use of stochastic
systems analysis for constructing observers. We work primarily in discrete time to
avoid some of the complications associatedwith continuous-time randomprocesses
and to keep the mathematical prerequisites to a minimum. This section assumes
basic knowledge of random variables and stochastic processes; see Kumar and
Varaiya [KV86] or Åström [Åst06] for the required material.
Consider a discrete-time linear system with dynamics

x[k + 1] = Ax[k]+ Bu[k]+ Fv[k], y[k] = Cx[k]+ w[k], (7.18)

where v[k] and w[k] are Gaussian white noise processes satisfying
E{v[k]} = 0, E{w[k]} = 0,

E{v[k]vT [ j]} =

{
0 k $= j
Rv k = j,

E{w[k]wT [ j]} =

{
0 k $= j
Rw k = j,

E{v[k]wT [ j]} = 0.

(7.19)

E{v[k]} represents the expected value of v[k] and E{v[k]vT [ j]} the correlation
matrix. The matrices Rv and Rw are the covariance matrices for the process dis-
turbance v and measurement noise w. We assume that the initial condition is also
modeled as a Gaussian random variable with

E{x[0]} = x0, E{x[0]xT [0]} = P0. (7.20)

We would like to find an estimate x̂[k] that minimizes the mean square error
E{(x[k] − x̂[k])(x[k] − x̂[k])T } given the measurements {y(τ ) : 0 ≤ τ ≤ t}. We
consider an observer in the same basic form as derived previously:

x̂[k + 1] = Ax̂[k]+ Bu[k]+ L[k](y[k]− Cx̂[k]). (7.21)

The following theorem summarizes the main result.

Theorem 7.4 (Kalman, 1961). Consider a random process x[k] with dynamics
given by equation (7.18) and noise processes and initial conditions described by
equations (7.19) and (7.20). The observer gain L that minimizes the mean square
error is given by

L[k] = AP[k]CT (Rw + CP[k]CT )−1,

where
P[k + 1] = (A − LC)P[k](A − LC)T + FRvFT + LRwLT

P0 = E{x[0]xT [0]}.
(7.22)

Before we prove this result, we reflect on its form and function. First, note
that the Kalman filter has the form of a recursive filter: given mean square error
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P[k] = E{(x[k]− x̂[k])(x[k]− x̂[k])T } at time k, we can compute how the estimate
and error change. Thus we do not need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estimate x̂[k] and the error covariance
P[k], so we can see how reliable the estimate is. It can also be shown that the
Kalman filter extracts the maximum possible information about output data. If we
form the residual between the measured output and the estimated output,

e[k] = y[k]− Cx̂[k],

we can show that for the Kalman filter the correlation matrix is

Re( j, k) = E{e[ j]eT [k]} = W [k]δ jk, δ jk =

{
1 j = k
0 j $= k.

In other words, the error is a white noise process, so there is no remaining dynamic
information content in the error.
The Kalman filter is extremely versatile and can be used even if the process,

noise or disturbances are nonstationary. When the system is stationary and if P[k]
converges, then the observer gain is constant:

L = APCT (Rw + CPCT ),

where P satisfies

P = APAT + FRvFT − APCT (
Rw + CPCT )−1CPAT .

Wesee that the optimal gain depends on both the process noise and themeasurement
noise, but in a nontrivial way. Like the use of LQR to choose state feedback gains,
the Kalman filter permits a systematic derivation of the observer gains given a
description of the noise processes. The solution for the constant gain case is solved
by the dlqe command in MATLAB.

Proof of theorem. We wish to minimize the mean square of the error E{(x[k] −
x̂[k])(x[k] − x̂[k])T }. We will define this quantity as P[k] and then show that it
satisfies the recursion given in equation (7.22). By definition,

P[k + 1] = E{(x[k + 1]− x̂[k + 1])(x[k + 1]− x̂[k + 1])T }
= (A − LC)P[k](A − LC)T + FRvFT + LRwLT

= AP[k]AT + FRvFT − AP[k]CT LT − LCP[k]AT

+ L(Rw + CP[k]CT )LT .

Letting Rε = (Rw + CP[k]CT ), we have

P[k + 1] = AP[k]AT + FRvFT − AP[k]CT LT − LCP[k]AT + LRεLT

= AP[k]AT + FRvFT +
(
L−AP[k]CT R−1

ε

)
Rε

(
L−AP[k]CT R−1

ε

)T

− AP[k]CT R−1
ε CPT [k]AT .

To minimize this expression, we choose L = AP[k]CT R−1
ε , and the theorem is

proved.
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The Kalman filter can also be applied to continuous-time stochastic processes.
The mathematical derivation of this result requires more sophisticated tools, but
the final form of the estimator is relatively straightforward.
Consider a continuous stochastic system

dx
dt

= Ax + Bu + Fv, E{v(s)vT (t)} = Rv (t)δ(t − s),

y = Cx + w, E{w(s)wT (t)} = Rw(t)δ(t − s),

where δ(τ ) is the unit impulse function. Assume that the disturbance v and noise
w are zero mean and Gaussian (but not necessarily stationary):

pdf(v) =
1

n
√
2π

√
det Rv

e− 1
2 vT R−1

v v , pdf(w) =
1

n
√
2π

√
det Rw

e− 1
2 wT R−1

w w.

We wish to find the estimate x̂(t) that minimizes the mean square error E{(x(t) −
x̂(t))(x(t) − x̂(t))T } given {y(τ ) : 0 ≤ τ ≤ t}.

Theorem 7.5 (Kalman–Bucy, 1961). The optimal estimator has the form of a linear
observer

d x̂
dt

= Ax̂ + Bu + L(y − Cx̂),

where L(t) = P(t)CT R−1
w and P(t) = E{(x(t)− x̂(t))(x(t)− x̂(t))T } and satisfies

d P
dt

= AP + PAT − PCT R−1
w (t)CP + FRv (t)FT , P[0] = E{x[0]xT [0]}.

As in the discrete case, when the system is stationary and if P(t) converges, the
observer gain is constant:

L = PCT R−1
w where AP + PAT − PCT R−1

w CP + FRvFT = 0.

The second equation is the algebraic Riccati equation.

Example 7.5 Vectored thrust aircraft
We consider the lateral dynamics of the system, consisting of the subsystemswhose
states are given by z = (x, θ, ẋ, θ̇). To design a Kalman filter for the system, we
must include a description of the process disturbances and the sensor noise. We
thus augment the system to have the form

dz
dt

= Az + Bu + Fv, y = Cz + w,

where F represents the structure of the disturbances (including the effects of non-
linearities that we have ignored in the linearization), w represents the disturbance
source (modeled as zero mean, Gaussian white noise) and v represents that mea-
surement noise (also zero mean, Gaussian and white).
For this example, we choose F as the identitymatrix and choose disturbances vi ,

i = 1, . . . , n, to be independent disturbances with covariance given by Rii = 0.1,
Ri j = 0, i $= j . The sensor noise is a single random variable which we model as
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(b) Position and orientation

Figure 7.9: Kalman filter design for a vectored thrust aircraft. In the first design (a) only
the lateral position of the aircraft is measured. Adding a direct measurement of the roll
angle produces a much better observer (b). The initial condition for both simulations is
(0.1, 0.0175, 0.01, 0).

having covariance Rw = 10−4. Using the same parameters as before, the resulting
Kalman gain is given by

L =




37.0
−46.9
185

−31.6




.

The performance of the estimator is shown in Figure 7.9a. We see that while the
estimator converges to the system state, it contains significant overshoot in the state
estimate, which can lead to poor performance in a closed loop setting.
To improve the performance of the estimator, we explore the impact of adding a

newoutputmeasurement. Suppose that instead ofmeasuring just the output position
x , we also measure the orientation of the aircraft θ . The output becomes

y =

1 0 0 0
0 1 0 0


 z +


w1

w2


 ,

and ifwe assume thatw1 andw2 are independent noise sources eachwith covariance
Rwi = 10−4, then the optimal estimator gain matrix becomes

L =




32.6 −0.150
−0.150 32.6
32.7 −9.79

−0.0033 31.6




.

These gains provide good immunity to noise and high performance, as illustrated
in Figure 7.9b. ∇
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Figure 7.10: Block diagram of a controller based on a structure with two degrees of freedom
which combines feedback and feedforward. The controller consists of a trajectory generator,
state feedback and an observer. The trajectory generation subsystem computes a feedforward
command uff along with the desired state xd . The state feedback controller uses the estimated
state and desired state to compute a corrective input ufb.

7.5 A General Controller Structure
State estimators and state feedback are important components of a controller. In
this section, we will add feedforward to arrive at a general controller structure that
appears in many places in control theory and is the heart of most modern control
systems. We will also briefly sketch how computers can be used to implement a
controller based on output feedback.

Feedforward
In this chapter and the previous one we have emphasized feedback as a mechanism
for minimizing tracking error; reference values were introduced simply by adding
them to the state feedback through a gain kr . A more sophisticated way of doing
this is shown by the block diagram in Figure 7.10, where the controller consists of
three parts: an observer that computes estimates of the states based on a model and
measured process inputs and outputs, a state feedback, and a trajectory generator
that generates the desired behavior of all states xd and a feedforward signal uff.
Under the ideal conditions of no disturbances and no modeling errors the signal uff
generates the desired behavior xd when applied to the process. The signal xd can be
generated by a system that gives the desired response of the state. To generate the
the signal uff, we must also have a model of the inverse of the process dynamics.
To get some insight into the behavior of the system, we assume that there are

no disturbances and that the system is in equilibrium with a constant reference
signal and with the observer state x̂ equal to the process state x . When the reference
signal is changed, the signals uff and xd will change. The observer tracks the state
perfectly because the initial state was correct. The estimated state x̂ is thus equal to
the desired state xd , and the feedback signal ufb = L(xd − x̂) will also be zero. All
action is thus created by the signals from the trajectory generator. If there are some
disturbances or some modeling errors, the feedback signal will attempt to correct
the situation.
This controller is said to have two degrees of freedom because the responses
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to command signals and disturbances are decoupled. Disturbance responses are
governed by the observer and the state feedback, while the response to command
signals is governed by the trajectory generator (feedforward).
For an analytic description we start with the full nonlinear dynamics of the

process
dx
dt

= f (x, u), y = h(x, u). (7.23)

Assume that the trajectory generator is able to compute a desired trajectory (xd, uff)
that satisfies the dynamics (7.23) and satisfies r = h(xd, uff). To design the con-
troller, we construct the error system. Let z = x − xd and v = u− uff and compute
the dynamics for the error:

ż = ẋ − ẋd = f (x, u) − f (xd, uff)
= f (z + xd, v + uff) − f (xd, uff) =: F(z, v, xd(t), uff(t)).

In general, this system is time-varying. Note that z = −e in Figure 7.10 due to the
convention of using negative feedback in the block diagram.
For trajectory tracking, we can assume that e is small (if our controller is doing

a good job), and so we can linearize around z = 0:

dz
dt

≈ A(t)z + B(t)v, A(t) =
∂F
∂z

∣∣∣∣
(xd (t),uff(t))

, B(t) =
∂F
∂v

∣∣∣∣
(xd (t),uff(t)

.

It is often the case that A(t) and B(t) depend only on xd , in which case it is
convenient to write A(t) = A(xd) and B(t) = B(xd).
Assume now that xd and uff are either constant or slowly varying (with respect

to the performance criterion). This allows us to consider just the (constant) linear
system given by (A(xd), B(xd)). If we design a state feedback controller K (xd) for
each xd , then we can regulate the system using the feedback

v = −K (xd)z.

Substituting back the definitions of e and v , our controller becomes

u = −K (xd)(x − xd) + uff.

This form of controller is called a gain scheduled linear controller with feedforward
uff.
Finally, we consider the observer. The full nonlinear dynamics can be used for

the prediction portion of the observer and the linearized system for the correction
term:

dx̂
dt

= f (x̂, u) + L(x̂)(y − h(x̂, u)),

where L(x̂) is the observer gain obtained by linearizing the system around the
currently estimated state. This form of the observer is known as an extendedKalman
filter andhas proved to be a very effectivemeans of estimating the state of a nonlinear
system.
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Figure 7.11: Trajectory generation for changing lanes. We wish to change from the left lane
to the right lane over a distance of 30 m in 4 s. The planned trajectory in the xy plane is shown
in (a) and the lateral position y and the steering angle δ over the maneuver time interval are
shown in (b).

.

There aremanyways to generate the feedforward signal, and there are alsomany
different ways to compute the feedback gain K and the observer gain L . Note that
once again the internal model principle applies: the controller contains a model of
the system to be controlled through the observer.

Example 7.6 Vehicle steering
To illustrate how we can use a two degree-of-freedom design to improve the per-
formance of the system, consider the problem of steering a car to change lanes on
a road, as illustrated in Figure 7.11a.
We use the non-normalized form of the dynamics, where were derived in Exam-

ple 2.8. Using the center of the rear wheels as the reference (α = 0), the dynamics
can be written as

dx
dt

= cos θv,
dy
dt

= sin θv,
dθ

dt
=

v

b
tan δ,

where v is the forward velocity of the vehicle and δ is the steering angle. To generate
a trajectory for the system, we note that we can solve for the states and inputs of
the system given x , y by solving the following sets of equations:

ẋ = v cos θ, ẍ = v̇ cos θ − v θ̇ sin θ,

ẏ = v sin θ, ÿ = v̇ sin θ + v θ̇ cos θ,

θ̇ = (v/b) tan δ.

(7.24)

This set of five equations has five unknowns (θ , θ̇ , v , v̇ and δ) that can be solved
using trigonometry and linear algebra. It follows that we can compute a feasible
trajectory for the systemgiven any path x(t), y(t). (This special property of a system
is known as differential flatness [FLMR92, FLMR95].)
To find a trajectory from an initial state (x0, y0, θ0) to a final state (x f , y f , θ f )
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at a time T , we look for a path x(t), y(t) that satisfies

x(0) = x0, x(T ) = x f ,
y(0) = y0, y(T ) = y f ,
ẋ(0) sin θ0 − ẏ(0) cos θ0 = 0, ẋ(T ) sin θ f − ẏ(T ) cos θ f = 0,
ẏ(0) sin θ0 + ẋ(0) cos θ0 = v0, ẏ(T ) sin θ f + ẋ(T ) cos θ f = v f .

(7.25)

One such trajectory can be found by choosing x(t) and y(t) to have the form

xd(t) = α0 + α1t + α2t2 + α3t3, yd(t) = β0 + β1t + β2t2 + β3t3.

Substituting these equations into equation (7.25), we are left with a set of linear
equations that can be solved for αi , βi , i = 0, 1, 2, 3. This gives a feasible trajectory
for the system by using equation (7.24) to solve for θd , vd and δd .
Figure 7.11b shows a sample trajectory generated by a set of higher-order equa-

tions that also set the initial and final steering angle to zero. Notice that the feedfor-
ward input is quite different from 0, allowing the controller to command a steering
angle that executes the turn in the absence of errors. ∇

Kalman’s Decomposition of a Linear System
!

In this chapter and the previous one we have seen that two fundamental properties
of a linear input/output system are reachability and observability. It turns out that
these two properties can be used to classify the dynamics of a system. The key
result is Kalman’s decomposition theorem, which says that a linear system can be
divided into four subsystems:!ro which is reachable and observable,!r ō which is
reachable but not observable,!r̄o which is not reachable but is observable and!r̄ ō
which is neither reachable nor observable.
We will first consider this in the special case of systems where the matrix A has

distinct eigenvalues. In this case we can find a set of coordinates such that the A
matrix is diagonal and, with some additional reordering of the states, the system
can be written as

dx
dt

=




Aro 0 0 0
0 Arō 0 0
0 0 Ar̄o 0
0 0 0 Ar̄ō



x +




Bro
Brō
0
0



u,

y =

Cro 0 Cr̄o 0


 x + Du.

(7.26)

All states xk such that Bk $= 0 are reachable, and all states such that Ck $= 0 are
observable. If we set the initial state to zero (or equivalently look at the steady-state
response if A is stable), the states given by xr̄o and xr̄ ō will be zero and xrō does
not affect the output. Hence the output y can be determined from the system

dxro
dt

= Aroxro + Brou, y = Croxro + Du.
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Figure 7.12: Kalman’s decomposition of a linear system. The decomposition in (a) is for
a system with distinct eigenvalues and the one in (b) is the general case. The system is
broken into four subsystems, representing the various combinations of reachable and observ-
able states. The input/output relationship only depends on the subset of states that are both
reachable and observable.

Thus from the input/output point of view, it is only the reachable and observable
dynamics that matter. A block diagram of the system illustrating this property is
given in Figure 7.12a.
The general case of the Kalman decomposition is more complicated and re-

quires some additional linear algebra; see the original paper by Kalman, Ho and
Narendra [KHN63]. The key result is that the state space can still be decomposed
into four parts, but there will be additional coupling so that the equations have the
form

dx
dt

=




Aro 0 ∗ 0
∗ Arō ∗ ∗
0 0 Ar̄o 0
0 0 ∗ Ar̄ō



x +




Bro
Brō
0
0



u,

y =

Cro 0 Cr̄o 0


 x,

(7.27)

where ∗ denotes block matrices of appropriate dimensions. The input/output re-
sponse of the system is given by

dxro
dt

= Aroxro + Brou, y = Croxro + Du, (7.28)

which are the dynamics of the reachable and observable subsystem !ro. A block
diagram of the system is shown in Figure 7.12b.
The following example illustrates Kalman’s decomposition.

Example 7.7 System and controller with feedback from observer states
Consider the system

dx
dt

= Ax + Bu, y = Cx .

The following controller, based on feedback from the observer state, was given in
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Theorem 7.3:
dx̂
dt

= Ax̂ + Bu + L(y − Cx̂), u = −K x̂ + krr.

Introducing the states x and x̃ = x − x̂ , the closed loop system can be written as
d
dt


xx̃


 =


A − BK BK

0 A − LC





xx̃


 +


Bkr
0


 r, y =


C 0





xx̃


 ,

which is a Kalman decomposition like the one shown in Figure 7.12b with only
two subsystems !ro and !r̄o. The subsystem !ro, with state x , is reachable and
observable, and the subsystem !r̄o, with state x̃ , is not reachable but observable.
It is natural that the state x̃ is not reachable from the reference signal r because it
would not make sense to design a system where changes in the command signal
could generate observer errors. The relationship between the reference r and the
output y is given by

dx
dt

= (A − BK )x + Bkrr, y = Cx,

which is the same relationship as for a system with full state feedback. ∇

Computer Implementation
The controllers obtained so far have been described by ordinary differential equa-
tions. They can be implemented directly using analog components, whether elec-
tronic circuits, hydraulic valves or other physical devices. Since in modern engi-
neering applications most controllers are implemented using computers, we will
briefly discuss how this can be done.
A computer-controlled system typically operates periodically: every cycle, sig-

nals from the sensors are sampled and converted to digital formby theA/Dconverter,
the control signal is computed and the resulting output is converted to analog form
for the actuators, as shown in Figure 7.13. To illustrate the main principles of how
to implement feedback in this environment, we consider the controller described
by equations (7.14) and (7.15), i.e.,

dx̂
dt

= Ax̂ + Bu + L(y − Cx̂), u = −K x̂ + krr.

The second equation consists only of additions and multiplications and can thus
be implemented directly on a computer. The first equation can be implemented by
approximating the derivative by a difference

dx̂
dt

≈
x̂(tk+1) − x̂(tk)

h
= Ax̂(tk) + Bu(tk) + L

(
y(tk) − Cx̂(tk)

)
,

where tk are the sampling instants andh = tk+1−tk is the samplingperiod.Rewriting
the equation to isolate x̂(tk+1), we get the difference equation

x̂(tk+1) = x̂(tk) + h
(
Ax̂(tk) + Bu(tk) + L

(
y(tk) − Cx̂(tk)

))
. (7.29)
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Controller

System Sensors

Filter

Clock

operator input

D/A Computer A/D

noiseexternal disturbancesnoise

!!
Output

Process

Actuators

Figure 7.13:Components of a computer-controlled system. The controller consists of analog-
to-digital (A/D) and digital-to-analog (D/A) converters, aswell as a computer that implements
the control algorithm. A system clock controls the operation of the controller, synchronizing
the A/D, D/A and computing processes. The operator input is also fed to the computer as an
external input.

The calculation of the estimated state at time tk+1 requires only addition and mul-
tiplication and can easily be done by a computer. A section of pseudocode for the
program that performs this calculation is

% Control algorithm - main loop
r = adin(ch1) % read reference
y = adin(ch2) % get process output
u = K*(xd - xhat) + uff % compute control variable
daout(ch1, u) % set analog output
xhat = xhat + h*(A*x+B*u+L*(y-C*x)) % update state estimate

The program runs periodically at a fixed rate h. Notice that the number of
computations between reading the analog input and setting the analog output has
been minimized by updating the state after the analog output has been set. The
program has an array of states xhat that represents the state estimate. The choice
of sampling period requires some care.
There are more sophisticated ways of approximating a differential equation by a

difference equation. If the control signal is constant between the sampling instants,
it is possible to obtain exact equations; see [ÅW97].
There are several practical issues that also must be dealt with. For example, it

is necessary to filter measured signals before they are sampled so that the filtered
signal has little frequency content above fs/2, where fs is the sampling frequency.
This avoids a phenomena known as aliasing. If controllers with integral action are
used, it is also necessary to provide protection so that the integral does not become
too largewhen the actuator saturates. This issue, called integrator windup, is studied
in more detail in Chapter 10. Care must also be taken so that parameter changes do
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not cause disturbances.

7.6 Further Reading
The notion of observability is due to Kalman [Kal61b] and, combined with the dual
notion of reachability, it was a major stepping stone toward establishing state space
control theory beginning in the 1960s. The observer first appeared as the Kalman
filter, in the paper by Kalman [Kal61a] on the discrete-time case and Kalman and
Bucy [KB61] on the continuous-time case. Kalman also conjectured that the con-
troller for output feedback could be obtained by combining a state feedback with
an observer; see the quote in the beginning of this chapter. This result was formally
proved by Josep and Tou [JT61] and Gunckel and Franklin [GF71]. The combined
result is known as the linear quadratic Gaussian control theory; a compact treat-
ment is given in the books by Anderson and Moore [AM90] and Åström [Åst06].
Much later it was shown that solutions to robust control problems also had a sim-
ilar structure but with different ways of computing observer and state feedback
gains [DGKF89]. The general controller structure discussed in Section 7.5, which
combines feedback and feedforward, was described by Horowitz in 1963 [Hor63].
The particular form in Figure 7.10 appeared in [ÅW97], which also treats digital
implementation of the controller. The hypothesis that motion control in humans
is based on a combination of feedback and feedforward was proposed by Ito in
1970 [Ito70].

Exercises
7.1 (Coordinate transformations) Consider a system under a coordinate transforma-
tion z = T x , where T ∈ Rn×n is an invertible matrix. Show that the observability
matrix for the transformed system is given by W̃o = WoT−1 and hence observability
is independent of the choice of coordinates.

7.2 Show that the system depicted in Figure 7.2 is not observable.

7.3 (Observable canonical form) Show that if a system is observable, then there
exists a change of coordinates z = T x that puts the transformed system into ob-
servable canonical form.

7.4 (Bicycle dynamics) The linearizedmodel for a bicycle is given in equation (3.5),
which has the form

J
d2ϕ
dt2

−
Dv0
b

dδ

dt
= mghϕ +

mv20h
b

δ,

where ϕ is the tilt of the bicycle and δ is the steering angle. Give conditions under
which the system is observable and explain any special situations where it loses
observability.
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7.5 (Integral action) The model (7.1) assumes that the input u = 0 corresponds to
x = 0. In practice, it is very difficult to know the value of the control signal that
gives a precise value of the state or the output because this would require a perfectly
calibrated system. One way to avoid this assumption is to assume that the model is
given by

dx
dt

= Ax + B(u + u0), y = Cx + Du,

where u0 is an unknown constant that can be modeled as du0/dt = 0. Consider
u0 as an additional state variable and derive a controller based on feedback from
the observed state. Show that the controller has integral action and that it does not
require a perfectly calibrated system.

7.6 (Vectored thrust aircraft) The lateral dynamics of the vectored thrust aircraft !
example described in Example 6.8 can be obtained by considering the motion
described by the states z = (x, θ, ẋ, θ̇). Construct an estimator for these dynamics
by setting the eigenvalues of the observer into a Butterworth pattern with λbw =
−3.83± 9.24i ,−9.24± 3.83i . Using this estimator combined with the state space
controller computed in Example 6.8, plot the step response of the closed loop
system.

7.7 (Uniqueness of observers) Show that the design of an observer by eigenvalue
assignment is unique for single-output systems. Construct examples that show that
the problem is not necessarily unique for systems with many outputs.

7.8 (Observers using differentiation) Consider the linear system (7.2), and assume
that the observability matrix Wo is invertible. Show that

x̂ = W−1
o


y ẏ ÿ · · · y(n−1)


T

is an observer. Show that it has the advantage of giving the state instantaneously
but that it also has some severe practical drawbacks.

7.9 (Observer for Teorell’s compartment model) Teorell’s compartment model, !
shown in Figure 3.17, has the following state space representation:

dx
dt

=




−k1 0 0 0 0
k1 −k2 − k4 0 k3 0
0 k4 0 0 0
0 k2 0 −k3 − k5 0
0 0 0 k5 0




x +




1
0
0
0
0




u,

where representative parameters are k1 = 0.02, k2 = 0.1, k3 = 0.05, k4 = k5 =
0.005. The concentration of a drug that is active in compartment 5 is measured in
the bloodstream (compartment 2). Determine the compartments that are observable
from measurement of concentration in the bloodstream and design an estimator
for these concentrations base on eigenvalue assignment. Choose the closed loop
eigenvalues−0.03,−0.05 and−0.1. Simulate the system when the input is a pulse
injection.
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7.10 (Observer design for motor drive) Consider the normalizedmodel of the motor
drive in Exercise 2.10where the open loop system has the eigenvalues 0, 0, −0.05±
i . A state feedback that gave a closed loop system with eigenvalues in −2, −1 and
−1± i was designed in Exercise 6.11. Design an observer for the system that has
eigenvalues −4, −2 and −2 ± 2i . Combine the observer with the state feedback
from Exercise 6.11 to obtain an output feedback and simulate the complete system.

7.11 (Feedforward design for motor drive) Consider the normalized model of the
motor drive in Exercise 2.10. Design the dynamics of the block labeled “trajectory
generation” in Figure 7.10 so that the dynamics relating the output η to the reference
signal r has the dynamics

d3ym
dt3

+ am1
d2ym
dt2

+ am2
dym
dt

+ am3ym = am3r, (7.30)

with parametersam1 = 2.5ωm ,am2 = 2.5ω2m andam3 = ω3m .Discuss how the largest
value of the feedforward signal for a unit step in the command signal depends on
ωm .

7.12 (Whipple bicycle model) Consider the Whipple bicycle model given by equa-
tion (3.7) in Section 3.2. A state feedback for the system was designed in Exer-
cise 6.12. Design an observer and an output feedback for the system.

7.13 (Discrete-time random walk) Suppose that we wish to estimate the position!
of a particle that is undergoing a random walk in one dimension (i.e., along a line).
We model the position of the particle as

x[k + 1] = x[k]+ u[k],

where x is the position of the particle andu is awhite noise processeswith E{u[i]} =
0 and E{u[i] u[ j]} = Ruδ(i − j). We assume that we can measure x subject to
additive, zero-mean, Gaussian white noise with covariance 1.

(a) Compute the expected value and covariance of the particle as a function of k.
(b) Construct a Kalman filter to estimate the position of the particle given the
noisy measurements of its position. Compute the steady-state expected value and
covariance of the error of your estimate.
(c) Suppose that E{u[0]} = µ $= 0 but is otherwise unchanged. How would your
answers to parts (a) and (b) change?

7.14 (Kalman decomposition) Consider a linear system characterized by the matri-
ces

A =




−2 1 −1 2
1 −3 0 2
1 1 −4 2
0 1 −1 −1




, B =




2
2
2
1




, C =

0 1 −1 0


 , D = 0.

Construct a Kalman decomposition for the system. (Hint: Try to diagonalize.)


