Chapter Seven
Output Feedback

One may separate the problem of physical realization into two stages:utatign of the
“best approximation”x(t;) of the state from knowledge ofty fort < t; and computation of
u(ty) givenx(ty).

R. E. Kalman, “Contributions to the Theory of Optimal Control,” 1960 [K3I6

In this chapter we show how to use output feedback to modiéydynamics
of the system through the use of observers. We introducedheept of observ-
ability and show that if a system is observable, it is posstblrecover the state
from measurements of the inputs and outputs to the systenth&¥eshow how to
design a controller with feedback from the observer stateimdportant concept is
the separation principle quoted above, which is also provld structure of the
controllers derived in this chapter is quite general andisined by many other
design methods.

7.1 Observability

In Section 6.2 of the previous chapter it was shown that it issjiide to find a

state feedback law that gives desired closed loop eigessglwovided that the
system is reachable and that all the states are measurechdyr situations, it

is highly unrealistic to assume that all the states are nmmedsin this section we
investigate how the state can be estimated by using a mativatmaodel and a
few measurements. It will be shown that computation of thé&stcan be carried
out by a dynamical system called abserver

Definition of Observability

Consider a system described by a set of differential equsitio

% = Ax+ Bu, y =Cx+ Du, (7.1)

wherex € R" is the statey € RP the input andy € RY the measured output. We
wish to estimate the state of the system from its inputs amplubs, as illustrated

in Figure 7.1. In some situations we will assume that theranig one measured
signal, i.e., that the signalis a scalar and tha&t is a (row) vector. This signal may
be corrupted by noise, although we shall start by considering the noise-free.case
We write X for the state estimate given by the observer.
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Figure 7.1: Block diagram for an observer. The observer uses the processursezenty
(possibly corrupted by nois@) and the inputi to estimate the current state of the process,
denotedk.

Definition 7.1 (Observability) A linear system i®bservabléf forany T > Oitis
possible to determine the state of the systdifi) through measurements gft)
andu(t) on the interval [0T].

The definition above holds for nonlinear systems as well, aaddbults dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many importaptieations, even
outside feedback systems. If a system is observable, tieea &éne no “hidden” dy-
namics inside it; we can understand everything that is goimtiprough observation
(over time) of the inputs and outputs. As we shall see, thblpro of observability
is of significant practical interest because it will detereniha set of sensors is
sufficient for controlling a system. Sensors combined with theraatical model
can also be viewed as a “virtual sensor” that gives inforamaéibout variables that
are not measured directly. The process of reconciling ssginain many sensors
with mathematical models is also callsensor fusion

Testing for Observability

When discussing reachability in the last chapter, we négethe output and fo-
cused on the state. Similarly, it is convenient here to ilytiaeglect the input and
focus on the autonomous system

dx

dt
We wish to understand when it is possible to determine the &tam observations
of the output.

The output itself gives the projection of the state on vediwasare rows of the
matrix C. The observability problem can immediately be solved if tlarm C is
invertible. If the matrix is not invertible, we can take detives of the output to
obtain

AX, y=CXx. (7.2)

dy dx
— =C— =CAXx
dt =~ dt %

From the derivative of the output we thus get the projectiotihefstate on vectors



7.1. OBSERVABILITY 203

that are rows of the matri€ A. Proceeding in this way, we get

y C
y CA
y | =| S~ |x (7.3)
[y cA-1
We thus find that the state can be determined ifabhservability matrix
C
CA

W,=| CA (7.4)

C An—l

hasn independent rows. It turns out that we need not consideranyadives higher
thann — 1 (this is an application of the Cayley—Hamilton theorem |[fEise 63]).

The calculation can easily be extended to systems with inpuesstate is then
given by a linear combination of inputs and outputs and thigiher derivatives.
The observability criterion is unchanged. We leave this easan exercise for the
reader.

In practice, differentiation of the output can give largeoes when there is
measurement noise, and therefore the method sketched sbowe particularly
practical. We will address this issue in more detail in thetisection, but for now
we have the following basic result.

Theorem 7.1(Observability rank condition)A linear system of the forify.1) is
observable if and only if the observability matrix ¥ full rank.

Proof. The sufficiency of the observability rank condition followstrin the analysis@
above. To prove necessity, suppose that the system is albdebut\\, is not full
rank. Leto € R", v # 0, be a vector in the null space W, so thatWyo = 0. If
we letx(0) = o be the initial condition for the system and choase: 0, then the
output is given byy(t) = Ce*'v. Sincee” can be written as a power seriesAn
and sinceA" and higher powers can be rewritten in terms of lower powews (@fy
the Cayley—Hamilton theorem), it follows that the outputl Wwe identically zero
(the reader should fill in the missing steps if this is not gleldowever, if both the
input and output of the system are 0, then a valid estimateso$tate iX = 0 for
all time, which is clearly incorrect sinog0) = v # 0. Hence by contradiction we
must have that\, is full rank if the system is observable. O

Example 7.1 Compartment model
Consider the two-compartment model in Figure 3.18a, butasgshat the concen-
tration in the first compartment can be measured. The systeps@ided by the
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Figure 7.2: An unobservable system. Two identical subsystems have outputs thtatstdher
to form the overall system output. The individual states of the subsystenotbe determined
since the contributions of each to the output are not distinguishable. Thet cliagram on
the right is an example of such a system.

linear system

de [-ko—ki ki bo .
a_[ K —kz]C+[0 u, y = [1 O]x.

The first compartment represents the drug concentration ibltioel plasma, and
the second compartment the drug concentration in the tisheee it is active. To

determine if it is possible to find the concentration in theusscompartment from
a measurement of blood plasma, we investigate the obsétyalbithe system by

forming the observability matrix

C 1 0
o= [ca] = [t )

The rows are linearly independentkif # 0, and under this condition it is thus
possible to determine the concentration of the drug in thieeacompartment from
measurements of the drug concentration in the blood. \%

It is useful to have an understanding of the mechanisms th#&er system
unobservable. Such a system is shown in Figure 7.2. The systemmisosed of
two identical systems whose outputs are added. It seenitiviatyclear that itis not
possible to deduce the states from the output since we cdedate the individual
output contributions from the sum. This can also be seen fityrfiexercise 70).

Observable Canonical Form

As in the case of reachability, certain canonical forms lélluseful in studying ob-
servability. A linear single-input, single-output stap@mse system is inbservable
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Figure 7.3: Block diagram of a system in observable canonical form. The states sy#tem
are represented by individual integrators whose inputs are a weight@uation of the next
integrator in the chain, the first state (rightmost integrator) and the systam ifhe output
is a combination of the first state and the input.

canonical formif its dynamics are given by

[ —ay 10 0 b1
—a 0 1 0 o))
dz_f . z+| : |u
dt | = N
—-an-1 0 O 1 Pn-1
| —a, 0 0 0 b
y=[1 00 - 0]z+Du

The definition can be extended to systems with many inputs;nhedifference is
that the vector multiplyingi is replaced by a matrix.

Figure 7.3 is a block diagram for a system in observable caabform. As
in the case of reachable canonical form, we see that the deefidn the system
description appear directly in the block diagram. The charéstic polynomial for
a system in observable canonical form is

n-1

A8) =s"+as" "+ +a,_1S+ an. (7.5)

It is possible to reason about the observability of a systeabservable canonical
form by studying the block diagram. If the inputand the outpuy are available,
the statez; can clearly be computed. Differentiatizg, we obtain the input to the
integrator that generates and we can now obtam = z;+a;2; —b;u. Proceeding
in this way, we can compute all states. The computation wallyéver, require that
the signals be differentiated.

To check observability more formally, we compute the obakeility matrix for
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a system in observable canonical form, which is given by

1 0O 0 ... 0
—ap 1 0O ... 0

W, = -2 —ap —a 1 ol .
* * o1

where * represents an entry whose exact value is not impoitae rows of this
matrix are linearly independent (since it is lower triaregyl and henca\, is
full rank. A straightforward but tedious calculation shothat the inverse of the
observability matrix has a simple form given by

1 0 o -.- 0

a 1 o --- 0

Wo—l — ao aq 1 ... 0
-1 82 a3 --- 1

As inthe case of reachability, it turns out that if a systeotiservable then there
always exists a transformatidnthat converts the system into observable canonical
form. This is useful for proofs since it lets us assume thaséesy is in observable
canonical form without any loss of generality. The obsemalalnonical form may
be poorly conditioned numerically.

7.2 State Estimation

Having defined the concept of observability, we now returnh® question of
how to construct an observer for a system. We will look foresleers that can be
represented as a linear dynamical system that takes thesiapd outputs of the
system we are observing and produces an estimate of thersystate. That is,
we wish to construct a dynamical system of the form

dx

— = FX 4+ Gu+ Hy,

dt + + Ay
whereu andy are the input and output of the original system &nd R" is an
estimate of the state with the property ti@t) — x(t) ast — oo.

The Observer
We consider the system in equation (7.1) witlset to zero to simplify the expo-
sition:

d
d_)t( = AX+ Bu, y =Cx. (7.6)
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We can attempt to determine the state simply by simulatiegetiuations with the
correct input. An estimate of the state is then given by

dx R
i AX 4 Bu. (7.7)
To find the properties of this estimate, introduce the estonarrork = x — X. It
follows from equations (7.6) and (7.7) that

dx .

T AX.
If matrix A has all its eigenvalues in the left half-plane, the ekavill go to zero,
and hence equation (7.7) is a dynamical system whose ouipuweyes to the state
of the system (7.6).

The observer given by equation (7.7) uses only the procesgsinfhe measured
signal does notappear in the equation. We must also reqairthe system be stable,
and essentially our estimator converges because the $tad¢éhahe observer and
the estimator are going zero. This is not very useful in a cbdesign context since
we want to have our estimate converge quickly to a nonzete stathat we can
make use of it in our controller. We will therefore attempttodify the observer
so that the output is used and its convergence propertiesecdasigned to be fast
relative to the system'’s dynamics. This version will alsokfor unstable systems.

Consider the observer

% = AX+ Bu+ L(y — CX). (7.8)

This can be considered as a generalization of equation [#eédback from the
measured outputis provided by adding the térfy— CX), which is proportional to
the difference between the observed output and the outpdigted by the observer.
It follows from equations (7.6) and (7.8) that

dx -

T (A—=LOX.
If the matrix L can be chosen in such a way that the makix LC has eigen-
values with negative real parts, the erkowill go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a statedback and
finding the observer. State feedback design by eigenvalugrasent is equivalent
to finding a matrixk so thatA— BK has given eigenvalues. Designing an observer
with prescribed eigenvalues is equivalent to finding a matrso thatA — LC has
given eigenvalues. Since the eigenvalues of a matrix andhitspose are the same
we can establish the following equivalences:

Ao AT, BoCl, KoL, Wow.

The observer design problem s theal of the state feedback design problem. Using
the results of Theorem 6.3, we get the following theorem oroies design.
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Theorem 7.2(Observer design by eigenvalue assignme@®nsider the system
given by

dx

qi Ax+ Bu, y=Cx, (7.9)
with one input and one output. L&fs) = s" + a;s"* + - - - + a,_1S + a, be the
characteristic polynomial for A. If the system is obserealthen the dynamical
system

% = AX 4+ Bu+ L(y — CX) (7.10)
is an observer for the system, with L chosen as
Pr—a

L= woi, | P2 R % (7.11)
Pn - an

and the matrices \Wand W, given by

(1 0 0o .- 0 0O
C a 1 o .- 0 O
CA - dp g 1 0 0
VVo - . 5 Wo - .
CA™t a2 @n-3 an-s 10
[@h-1 @2 a3 ... a 1]

The resulting observer errok = x — X is governed by a differential equation
having the characteristic polynomial

ps) =s"+ pis" T+ - + pp.

The dynamical system (7.10) is called aloserverfor (the states of) the sys-
tem (7.9) because it will generate an approximation of theestof the system from
its inputs and outputs. This form of an observer is a much meeéuliform than
the one given by pure differentiation in equation (7.3).

Example 7.2 Compartment model
Consider the compartment model in Example 7.1, which is cbarized by the

matrices
| —ko—ki ki | bo _
A_[ ” —kz]’ B_[O], C_[l o].

The observability matrix was computed in Example 7.1, whereoveluded that
the system was observablekif £ 0. The dynamics matrix has the characteristic
polynomial

s+ko+ki kg

A(s) = det[ —k S+ ko

] = &% 4 (Ko + Ky + ko)s + koko.
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Figure 7.4: Observer for a two compartment system. A two compartment modebvgrsbn
the left. The observer measures the input concentratenmd output concentration= c; to
determine the compartment concentrations, shown on the right. Theomaerdrations are
shown by solid lines and the estimates generated by the observer byl diasise

Let the desired characteristic polynomial of the observes®e p;s + p,, and
equation (7.11) gives the observer gain

L O]_llpl—ko—kl—kz

1 0] 1
—ko—ki kg ko+ki+k 1 P2 — Kok
_ p1 — ko — ki — ko

(P2 — pika + kiko +K3)/ky |

Notice that the observability conditidky # 0 is essential. The behavior of the
observer is illustrated by the simulation in Figure 7.4b.ibtow the observed
concentrations approach the true concentrations. \%

The observer is a dynamical system whose inputs are the griogaegu and the
process outpuwy. The rate of change of the estimate is composed of two ternes. On
term, AX + Bu, is the rate of change computed from the model Witubstituted
for x. The other terml.(y — ¥), is proportional to the differena= y — y between
measured output and its estimat§ = CX. The observer gaih is a matrix that
tells how the erroeis weighted and distributed among the states. The obsemgr th
combines measurements with a dynamical model of the sy#duack diagram
of the observer is shown in Figure 7.5.

Computing the Observer Gain

For simple low-order problems it is convenient to introddice elements of the
observer gairL as unknown parameters and solve for the values required/¢o gi
the desired characteristic polynomial, as illustratechanfbllowing example.

Example 7.3 Vehicle steering
The normalized linear model for vehicle steering derived iafBgles 5.12 and 6.4
gives the following state space model dynamics relatirgyédipath deviatioly to
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Figure 7.5: Block diagram of the observer. The observer takes the signat&lu as inputs
and produces an estimate Notice that the observer contains a copy of the process model
that is driven byy — y through the observer gain.

steering angle:

3—?: [8 é] X+ [ji] u, y = [1 0] X. (7.12)

Recall that the state; represents the lateral path deviation and thaepresents
the turning rate. We will now derive an observer that usessifsgem model to
determine the turning rate from the measured path deviation

The observability matrix is

10
WO:[O 1]:

i.e., the identity matrix. The system is thus observable,thacigenvalue assign-
ment problem can be solved. We have

!
A-LC= [_|2 0],

which has the characteristic polynomial

S+|1 -1

det(sl — A+ LC) :det[ |
2 S

] =Sz+|13+|2.

Assuming that we want to have an observer with the charatitepiolynomial
$*+ pis+ P2 = S + 2ow0S + 0,

the observer gains should be chosen as

l1 = p1 = 200w, 2= po =2

The observer is then
dx

A o\ 0 1] . Y |1 A
a_Ax+Bu+L(y—Cx)_[0 O]x+[1]u+[|2](y—x1).
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Figure 7.6: Simulation of an observer for a vehicle driving on a curvy road (lefie ®bserver
has an initial velocity error. The plots on the middle show the lateral deviatiche lateral
velocity x, by solid lines and their estimatég andx, by dashed lines. The plots on the right
show the estimation errors.

A simulation of the observer for a vehicle driving on a curegd is simulated in
Figure 7.6. The vehicle length is the time unit in the normaizedel. The figure
shows that the observer error settles in about 3 vehicleheng \%

For systems of high order we have to use numerical calcustidhe duality
between the design of a state feedback and the design of arvebmeans that the
computer algorithms for state feedback can also be usedhéooliserver design;
we simply use the transpose of the dynamics matrix and theubutatrix. The
MATLAB commandacker , which essentially is a direct implementation of the
calculations given in Theorem 7.2, can be used for systentsamé output. The
MATLAB commandpl ace can be used for systems with many outputs. It is also
better conditioned numerically.

7.3 Control Using Estimated State

In this section we will consider a state space system of tira fo

dX—Ax—i- Bu
dt ’

Notice that we have assumed that there is no direct term isytiiem D = 0).
This is often a realistic assumption. The presence of a diegct in combination
with a controller having proportional action creates arehlgic loop, which will
be discussed in Section 8.3. The problem can be solved eveerd th a direct
term, but the calculations are more complicated.

We wish to design a feedback controller for the system whehg the output
is measured. As before, we will assume thatndy are scalars. We also assume
that the system is reachable and observable. In Chapter 6unel fa feedback of
the form

y =Cx. (7.13)

U= —KXx+Kkr
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for the case that all states could be measured, and in SecHamerdeveloped an
observer that can generate estimates of the &thtesed on inputs and outputs. In
this section we will combine the ideas of these sections todiiegdback that gives
desired closed loop eigenvalues for systems where onlyutsigye available for
feedback.

If all states are not measurable, it seems reasonable toarfgedback

u=—-Kx+kr, (7.14)
whereX is the output of an observer of the state, i.e.,
dx . R
Tl AX + Bu+ L(y — CX). (7.15)

Since the system (7.13) and the observer (7.15) are bothtefditaensiom, the
closed loop system has state dimensionagth state &, X). The evolution of the
states is described by equations (7.13)—(7.15). To an#ilyzelosed loop system,
the state variabl& is replaced by

X=X-—X. (7.16)
Subtraction of equation (7.15) from equation (7.13) gives
(;—): =AX— AX—L(Cx—CX)=AX—LCX=(A—-LO)X.

Returning to the process dynamics, introducinfrom equation (7.14) into
equation (7.13) and using equation (7.16) to eliminatgves

dx
a:Ax+ Bu= Ax — BKX + Bkr = Ax— BK(x — X) + Bkr

= (A—-BK)x+ BKX + Bkr.

The closed loop system is thus governed by

d [x A—-BK BK X Bk

TR AT LIS
Notice that the stat®, representing the observer error, is not affected by therref
ence signal. This is desirable since we do not want the reference sigrgiterate
observer errors.

Since the dynamics matrix is block diagonal, we find that theattaristic
polynomial of the closed loop system is

A(s) = det(sl — A+ BK)det(sl — A+ LC).

This polynomial is a product of two terms: the characteriptitynomial of the
closed loop system obtained with state feedback and theacteaistic polyno-
mial of the observer error. The feedback (7.14) that was rated heuristically
thus provides a neat solution to the eigenvalue assignnmebhtgm. The result is
summarized as follows.
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Figure 7.7: Block diagram of an observer-based control system. The obsesesrthe mea-
sured outputy and the inputu to construct an estimate of the state. This estimate is used
by a state feedback controller to generate the corrective input. Thettentonsists of the
observer and the state feedback; the observer is identical to that ire Hidur

Theorem 7.3(Eigenvalue assignment by output feedbadRpnsider the system

dx
—=A B =Cx.
dt X+Bu Y X
The controller described by
dg
d—f — AR+ BU+L(y—CR) = (A—BK — LC)R + Ly,
u=—KxX+kr

gives a closed loop system with the characteristic polyabmi
A(s) = det(sl — A+ BK)det(sl — A+ LC).

This polynomial can be assigned arbitrary roots if the sysiemeachable and
observable.

The controller has a strong intuitive appeal: it can be thoofjas being com-
posed of two parts, one state feedback and one observer. Tiaeniys of the
controller are generated by the observer. The feedbackkgaen be computed as
if all state variables can be measured, and it depends onfoaity B. The observer
gainL depends on onlyA andC. The property that the eigenvalue assignment for
output feedback can be separated into an eigenvalue assigfona state feedback
and an observer is called teeparation principle

A block diagram of the controller is shown in Figure 7.7. Nettbat the con-
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Figure 7.8: Simulation of a vehicle driving on a curvy road with a controller based on
state feedback and an observer. The left plot shows the lane baem(tiotted), the vehicle
position (solid) and its estimate (dashed), the upper right plot shows kb&tygsolid) and

its estimate (dashed), and the lower right plot shows the control sigimgj state feedback
(solid) and the control signal using the estimated state (dashed).

troller contains a dynamical model of the plant. This is chlieeinternal model
principle: the controller contains a model of the process being ciatro

Example 7.4 Vehicle steering

Consider again the normalized linear model for vehiclersigan Example 6.4.
The dynamics relating the steering angl® the lateral path deviatiopis given by
the state space model (7.12). Combining the state feedleaisled in Example 6.4
with the observer determined in Example 7.3, we find that théraber is given
by

A

d)t(_Ax+Bu+L(y CX) = [8 0]X+[ ]u+[ ](y—Xl)

U= —KX+kr =ky(r — Xx;) — koXo.
Elimination of the variablel gives

i
d—)t(=(A— BK — LC)X + Ly + Bkr

N [ —Iil—yél —&)ZKZ] o [Il] e [ ] ar

The controller is a dynamical system of second order, withityeotsy andr and
one output. Figure 7.8 shows a simulation of the system when the velscgvien
along a curvy road. Since we are using a normalized modeletigth unit is the
vehicle length and the time unit is the time it takes to traved vehicle length. The
estimator is initialized with all states equal to zero bet teal system has an initial
velocity of 0.5. The figures show that the estimates convergekiyuo their true
values. The vehicle tracks the desired path, which is in ttiellaiof the road, but

there are errors because the road is irregular. The tracking @n be improved
by introducing feedforward (Section 7.5). \%
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7.4 Kalman Filtering %

One of the principal uses of observers in practice is to egénthe state of a
system in the presencembisymeasurements. We have not yet treated noise in our
analysis, and a full treatment of stochastic dynamicalesystis beyond the scope
of this text. In this section, we present a brief introductio the use of stochastic
systems analysis for constructing observers. We work piiyria discrete time to
avoid some of the complications associated with continttimne random processes
and to keep the mathematical prerequisites to a minimum. §é¢don assumes
basic knowledge of random variables and stochastic presgesgee Kumar and
Varaiya [KV86] or Astrom [Ast06] for the required material.

Consider a discrete-time linear system with dynamics

X[k + 1] = AX[K] + Bu[K] + Fo[K], y[k] = CX[K] + w[K], (7.18)
whereo[K] and w[k] are Gaussian white noise processes satisfying
E{v[k]} =0, E{w[k]} =0,
0 k#]j 0 k#]j

E{o[kloT[i]} = E{w[Klw'[j]} =

Rv k:J, Rw k:J,
Efw[Klw[j]} =0.
E{v[K]} represents the expected valueofk] and E{v[k]o"[j]} the correlation
matrix. The matriceR}, and R,, are the covariance matrices for the process dis-

turbancer and measurement noise We assume that the initial condition is also
modeled as a Gaussian random variable with

E{x[0]} = xo,  E{x[0]x"[0]} = P. (7.20)

We would like to find an estimatg[k] that minimizes the mean square error
E{(X[K] — X[K])(X[K] — X[K])T} given the measurementg(z) : 0 < z < t}. We
consider an observer in the same basic form as derived pigyio

K[k + 1] = AR[K] + Bu[k] + L[K](y[K] — CRIK]). (7.21)

The following theorem summarizes the main result.

(7.19)

Theorem 7.4 (Kalman, 1961) Consider a random procesgk{ with dynamics
given by equatiorf7.18)and noise processes and initial conditions described by
equationg7.19)and (7.20) The observer gain L that minimizes the mean square
error is given by
L[K] = AP[KICT(R, + CP[KIC")™™,

where

Plk+1] = (A— LC)PIKI(A—LC)" + FR,FT + LR,L"

Py = E{x[0]x"[0]}.
Before we prove this result, we reflect on its form and functieinst, note

that the Kalman filter has the form ofracursivefilter: given mean square error

(7.22)
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P[K] = E{(x[K] —X[K])(x[K] —X[K]) "} at timek, we can compute how the estimate
and errorchange Thus we do not need to keep track of old values of the output.
Furthermore, the Kalman filter gives the estim#&fk] and the error covariance
P[k], so we can see how reliable the estimate is. It can also berskiwat the
Kalman filter extracts the maximum possible information almuiput data. If we
form the residual between the measured output and the estroatput,

e[k] = y[k] — CX[K],
we can show that for the Kalman filter the correlation matrix is
1 j=k
0 j#k.

In other words, the error is a white noise process, so theére ismaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used evdreiptocess,
noise or disturbances are nonstationary. When the syststatisnary andf P[K]
converges, then the observer gain is constant:

L = APC'(R, + CPCT),

Re(j, k) = E{e[jle"[K]} = W[K]dj,  dik = [

whereP satisfies
P=APA  +FR,FT — APCT(R,+CPCT) '"CPA',

We see that the optimal gain depends on both the processamuisee measurement
noise, but in a nontrivial way. Like the use of LQR to choosessta¢dback gains,
the Kalman filter permits a systematic derivation of the obsegains given a
description of the noise processes. The solution for thetaohgain case is solved
by thedl ge command in MATLAB.

Proof of theorem.We wish to minimize the mean square of the ered(x[k] —
K[KD(X[K] = X[K])T}. We will define this quantity a®[k] and then show that it
satisfies the recursion given in equation (7.22). By definjtion

Plk + 1] = E{(X[k 4+ 1] — R[k + 1] (x[k + 1] — K[k + 1])"}
=(A-=LC)PKI(A-LC)" + FR,FT + LR,L"
= AP[K]AT — AP[KICTLT — LCP[K]AT + L(R, + CP[K]ICT)LT.
Letting R. = (R, + CP[K]CT), we have
P[k+ 1] = AP[K]AT — AP[KICTLT — LCP[K]AT + LR.LT
= AP[K]AT + (L — AP[KICTR-")R.(L — AP[KICT R;l)T
— APKICTR-!CPT[K]AT.

To minimize this expression, we chooke= AP[K]CTR-%, and the theorem is
proved. O
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The Kalman filter can also be applied to continuous-time stetidhprocesses.
The mathematical derivation of this result requires morehstigated tools, but
the final form of the estimator is relatively straightforward

Consider a continuous stochastic system

dx
i Ax+ Bu+ Fo, E{o(s)o" (1)} = R, (t)d(t —s),
y=Cx+uw, E{w(®)w' (1)} = R,(1)d(t ),

whered(z) is the unit impulse function. Assume that the disturbanesd noise
w are zero mean and Gaussian (but not necessarily stationary)

1 1 Tt 1 1 To-1
dfp) = —— 2" R v, df(w) = ez Rytw
Pdi) = o et pdit) = o detr

We wish to find the estimatg(t) that minimizes the mean square eref(x(t) —
K(O))(x(1) = X(1)") given{y(r) : 0 < = < t}.

Theorem 7.5(Kalman—Bucy, 1961)The optimal estimator has the form of alinear
observer

Z—f = AX+ Bu+ L(y —CX),
where L(t) = P(t)CTR; and P(t) = E{(x(t) —X(t))(x(t)—X(t))"} and satisfies
?TT = AP+ PAT — PCTRY(t)CP+ FR,(1)FT, P[0] = E{x[0]x"[0]}.

As in the discrete case, when the system is stationary dd )fconverges, the
observer gain is constant:

L=PC'R;! where AP+ PA" —PC'R;!CP+FRF'" =0.
The second equation is tlagebraic Riccati equation

Example 7.5 Vectored thrust aircraft
We consider the lateral dynamics of the system, consisfitigesubsystems whose
states are given by = (x, 0, X, 0). To design a Kalman filter for the system, we
must include a description of the process disturbancesf@ddnsor noise. We
thus augment the system to have the form

dz

a:Az+ Bu+ Fo, y=Cz+w,

whereF represents the structure of the disturbances (includie@fiects of non-
linearities that we have ignored in the linearizatian);epresents the disturbance
source (modeled as zero mean, Gaussian white noise) egfatesents that mea-
surement noise (also zero mean, Gaussian and white).

For this example, we choos$eas the identity matrix and choose disturbanges
i =1,...,n, to be independent disturbances with covariance giveRipy= 0.1,
Rj = 0,i # ]. The sensor noise is a single random variable which we model as
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Figure 7.9: Kalman filter design for a vectored thrust aircraft. In the first desigro(ay
the lateral position of the aircraft is measured. Adding a direct meamsneof the roll
angle produces a much better observer (b). The initial condition for siathlations is
(0.1,0.01750.01, 0).

having covarianc®,, = 10~4. Using the same parameters as before, the resulting
Kalman gain is given by
37.0
—46.9
185
—-316

L =

The performance of the estimator is shown in Figure 7.9a. Wehsgavhile the
estimator converges to the system state, it contains signtfavershoot in the state
estimate, which can lead to poor performance in a closeddetimg.

To improve the performance of the estimator, we explorertigaict of adding a
new output measurement. Suppose that instead of measustrigguwutput position
X, we also measure the orientation of the aircfaff he output becomes

|1 000 -
Y=1lo 10 0
and if we assume that; andw; are independent noise sources each with covariance
R, = 1074, then the optimal estimator gain matrix becomes

326  —0.150
L — —-0.150 326
o 327 -9.79
—0.0033 316

These gains provide good immunity to noise and high perfoomaas illustrated
in Figure 7.9b. \%
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Figure 7.10:Block diagram of a controller based on a structure with two degreesexfdra
which combines feedback and feedforward. The controller condiattrajectory generator,
state feedback and an observer. The trajectory generation subsysterutes a feedforward
commandiy along with the desired statg. The state feedback controller uses the estimated
state and desired state to compute a corrective ingut

7.5 A General Controller Structure

State estimators and state feedback are important comgookatcontroller. In
this section, we will add feedforward to arrive at a geneositoller structure that
appears in many places in control theory and is the heart st modern control
systems. We will also briefly sketch how computers can be uséuplement a
controller based on output feedback.

Feedforward

In this chapter and the previous one we have emphasizeddekdls a mechanism
for minimizing tracking error; reference values were idoed simply by adding
them to the state feedback through a dainA more sophisticated way of doing
this is shown by the block diagram in Figure 7.10, where therotlar consists of
three parts: an observer that computes estimates of tles stased on a model and
measured process inputs and outputs, a state feedback tiajelctory generator
that generates the desired behavior of all stateand a feedforward signai.
Under the ideal conditions of no disturbances and no moglelirors the signal
generates the desired behavigmwhen applied to the process. The signatan be
generated by a system that gives the desired response aatbe™ generate the
the signalug, we must also have a model of the inverse of the process dgsami

To get some insight into the behavior of the system, we asshat¢here are
no disturbances and that the system is in equilibrium witlostant reference
signal and with the observer statequal to the process stateWhen the reference
signal is changed, the signalg andxy will change. The observer tracks the state
perfectly because the initial state was correct. The estidstate is thus equal to
the desired statey, and the feedback signag, = L (xg — X) will also be zero. All
action is thus created by the signals from the trajectoregsor. If there are some
disturbances or some modeling errors, the feedback sighatiempt to correct
the situation.

This controller is said to havevo degrees of freedolmecause the responses
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to command signals and disturbances are decoupled. Dastcebresponses are
governed by the observer and the state feedback, while spemse to command
signals is governed by the trajectory generator (feedfaitjva

For an analytic description we start with the full nonlinemamics of the

process
dx

Tl f(x,u), y = h(x, u). (7.23)
Assume that the trajectory generator is able to computeigeddsajectory(Xq, Us)
that satisfies the dynamics (7.23) and satisfies h(xq, ug). To design the con-
troller, we construct the error system. lzet X — Xg andv = u — ug and compute

the dynamics for the error:
Z=X—X3= f(x,u) — f(Xq, Ug)
= f(Zz+ Xd, v + Ugr) — F(Xq, Urr) = F(Z, v, Xa(t), U (1)).

In general, this system is time-varying. Note that —ein Figure 7.10 due to the
convention of using negative feedback in the block diagram.

For trajectory tracking, we can assume tha small (if our controller is doing
a good job), and so we can linearize around 0:

dz ~ A(t)z+ B(t)o, A) = ok , B@)= ok .

dt (xa 0. (1) 90 J(y(),up (1)
It is often the case tha#\(t) and B(t) depend only orxy, in which case it is
convenient to writeA(t) = A(Xq) andB(t) = B(Xqg).

Assume now thaty andug are either constant or slowly varying (with respect
to the performance criterion). This allows us to considet flus (constant) linear
system given byA(xq), B(Xq)). If we design a state feedback controlke(xy) for
eachxq, then we can regulate the system using the feedback

v = —K(Xq)z
Substituting back the definitions efandwv, our controller becomes
U= —K(Xq)(X — Xq) + Us.

This form of controller is called gain scheduletinear controller withfeedforward
Uss .

Finally, we consider the observer. The full nonlinear dynanaign be used for
the prediction portion of the observer and the linearizestesy for the correction
term: R

dx . . o

g = W+ Ly = h&, W),
where L(X) is the observer gain obtained by linearizing the systemratdhe
currently estimated state. This form of the observer is knaswrextended Kalman
filter and has proved to be a very effective means of estimatingdteesf a nonlinear
system.
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Figure 7.11: Trajectory generation for changing lanes. We wish to change from thieutef
to the right lane over a distance of 30 min 4 s. The planned trajectory iythkane is shown
in (@) and the lateral positiop and the steering angteover the maneuver time interval are
shown in (b).

There are many ways to generate the feedforward signal, ereldhe also many
different ways to compute the feedback giirand the observer gain. Note that
once again the internal model principle applies: the cdlietroontains a model of
the system to be controlled through the observer.

Example 7.6 Vehicle steering
To illustrate how we can use a two degree-of-freedom desigmprove the per-
formance of the system, consider the problem of steering toa@nange lanes on
aroad, as illustrated in Figure 7.11a.

We use the non-normalized form of the dynamics, where wareatkin Exam-
ple 2.8. Using the center of the rear wheels as the referenee(), the dynamics
can be written as

dx dy . d 1

— = CcosH — =sinf — = —tané

dt ot odt T p

wherev is the forward velocity of the vehicle aidds the steering angle. To generate
a trajectory for the system, we note that we can solve for tites and inputs of

the system givem, y by solving the following sets of equations:

X = v COSY, X = v cost — vf sind,
y = v sing, Y = v sinf + vé cosy, (7.24)
0 = v/l tand.

This set of five equations has five unknowﬁsd', v, v ando) that can be solved
using trigonometry and linear algebra. It follows that wa campute a feasible
trajectory for the system given any paitt), y(t). (This special property of a system
is known adifferential flatnes$FLMR92, FLMR95].)

To find a trajectory from an initial stateo, Yo, &) to a final statex;, y¢, 6+)
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at a timeT, we look for a pathx(t), y(t) that satisfies

X(0) = Xo, X(T) = X,
y(0) = Yo, y(T) =i, (7.25)
X(0) sinép + y(0) coshy = 0, X(T)sinfr + y(T)cosfr =0, ’

y(0) sin6p + y(0) cosy = 0, y(T) sinét + y(T) costr = 0.
One such trajectory can be found by choosiig andy(t) to have the form

Xa(t) = oo + ot + o2t? + aat®, Ya(t) = o+ Pat + Bat? + pat®.
Substituting these equations into equation (7.25), we diravith a set of linear
equations that can be solved gt fi,i = 0, 1, 2, 3. This gives a feasible trajectory

for the system by using equation (7.24) to solvetgroq anddy.

Figure 7.11b shows a sample trajectory generated by a sajtedihorder equa-
tions that also set the initial and final steering angle to.Z2¢aice that the feedfor-
ward input is quite different from 0, allowing the contralte command a steering
angle that executes the turn in the absence of errors. \%

Kalman’s Decomposition of a Linear System

In this chapter and the previous one we have seen that twafoedtal properties
of a linear input/output system are reachability and olegahty. It turns out that
these two properties can be used to classify the dynamicssgftem. The key
result is Kalman’s decomposition theorem, which says thisiear system can be
divided into four subsystem&,, which is reachable and observahig; which is
reachable but not observable;, which is not reachable but is observable aig
which is neither reachable nor observable.

We will first consider this in the special case of systems whezenatrixA has
distinct eigenvalues. In this case we can find a set of coarsrsuch that thé\
matrix is diagonal and, with some additional reorderinghaf states, the system
can be written as

(A O 0 O Bro
dx 0 Arf) 0 0 Bré
- = X u
gt~ [0 0 A o Tfof" (7.26)
(0 0 0 A 0 '
y= rCro 0 Cro O] X+ Du.

All statesxy such thatBy # 0 are reachable, and all states such at4 0 are
observable. If we set the initial state to zero (or equivilydnok at the steady-state
response ifA is stable), the states given By, andxy; will be zero andx;; does
not affect the output. Hence the outputan be determined from the system

dXo
dt

= AroXro + BroU, y = CroXro + Du.
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Figure 7.12: Kalman’s decomposition of a linear system. The decomposition in (a) is for
a system with distinct eigenvalues and the one in (b) is the general casesy$tem is
broken into four subsystems, representing the various combinatioeadfable and observ-
able states. The input/output relationship only depends on the subsetesftbiat are both
reachable and observable.

Thus from the input/output point of view, it is only the reableand observable
dynamics that matter. A block diagram of the system illusigathis property is
given in Figure 7.12a.

The general case of the Kalman decomposition is more cong@ticand re-
quires some additional linear algebra; see the originaéphp Kalman, Ho and
Narendra [KHNG63]. The key result is that the state space dthbestdecomposed
into four parts, but there will be additional coupling sotttiee equations have the
form

[ Ao 0 * 0 Bro
dX_ *  Ag  x * Bro
gt |o o A of*T|o|%™ 7.27)
L 0 O * Fo O .
y=[Co 0 Crw o] X,

where* denotes block matrices of appropriate dimensions. The fopitut re-
sponse of the system is given by

dXo
dt
which are the dynamics of the reachable and observable signsy,,. A block

diagram of the system is shown in Figure 7.12b.
The following example illustrates Kalman’s decomposition.

- AYOXYO + Brou, y — Crero + DU, (728)

Example 7.7 System and controller with feedback from observer state

Consider the system

dx
gr - R y=0x

The following controller, based on feedback from the obsestate, was given in
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Theorem 7.3:

a2
d_T:A>2+ Bu+L(y—CR), u=—K&+kr.

Introducing the states andX = x — X, the closed loop system can be written as

d [x A—-BK BK X Bk

&[f(]:[ 0 A—LC][X]+[O]r’ y:[C O]X’
which is a Kalman decomposition like the one shown in Figue@.with only
two subsystem&,, and Xr,. The subsystenz,,, with statex, is reachable and
observable, and the subsystein,, with stateX, is not reachable but observable.
It is natural that the state is not reachable from the reference signblecause it
would not make sense to design a system where changes inrtiraaral signal

could generate observer errors. The relationship betweereference and the
outputy is given by

d
d—)t( — (A— BK)x+ Bkr, y=Cx
which is the same relationship as for a system with full sieg¢elback. \%

Computer Implementation

The controllers obtained so far have been described by aydditferential equa-

tions. They can be implemented directly using analog compisna/hether elec-
tronic circuits, hydraulic valves or other physical degic8ince in modern engi-
neering applications most controllers are implementedgisomputers, we will

briefly discuss how this can be done.

A computer-controlled system typically operates periatlijc every cycle, sig-
nals fromthe sensors are sampled and converted to digitalfpthe A/D converter,
the control signal is computed and the resulting output iveded to analog form
for the actuators, as shown in Figure 7.13. To illustrate tharprinciples of how
to implement feedback in this environment, we consider th&roller described
by equations (7.14) and (7.15), i.e.,

d
d_)t(:A>2+Bu+L(y—C>2), u=—KX+Kkr.

The second equation consists only of additions and muléiptios and can thus
be implemented directly on a computer. The first equation campkmented by
approximating the derivative by a difference

dx ~ K(tky1) — X(te)
dt h

wheret, are the sampling instants ahd= tx 1 —tx isthe sampling period. Rewriting
the equation to isolat(tx, 1), we get the difference equation

X(ter1) = K(t) + h(AR(t) + Bu(tk) + L (y(t) — CX(t))). (7.29)

= AR(t) + Bu(ti) + L (y(t) — CX(t),
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Figure 7.13:Components of a computer-controlled system. The controller consetsutufg-

to-digital (A/D) and digital-to-analog (D/A) converters, as well as a corapthat implements
the control algorithm. A system clock controls the operation of the contrsij@chronizing

the A/D, D/A and computing processes. The operator input is also fed tmthputer as an
external input.

The calculation of the estimated state at titng requires only addition and mul-
tiplication and can easily be done by a computer. A sectigusefidocode for the
program that performs this calculation is

% Control algorithm- nmain |oop

r = adin(chl) % read reference

y = adin(ch2) % get process out put

u = K*(xd - xhat) + uff % conput e control variable
daout (chl, u) % set anal og out put

xhat = xhat + h*( A*x+B*u+L*(y-C*x)) % update state estinate

The program runs periodically at a fixed rdte Notice that the number of
computations between reading the analog input and settegrialog output has
been minimized by updating the state after the analog outpsitbeen set. The
program has an array of statesat that represents the state estimate. The choice
of sampling period requires some care.

There are more sophisticated ways of approximating a diffexkeequation by a
difference equation. If the control signal is constant lestwthe sampling instants,
it is possible to obtain exact equations; see [AW97].

There are several practical issues that also must be dehltkat example, it
is necessary to filter measured signals before they are sdmmplthat the filtered
signal has little frequency content abofig2, wherefs is the sampling frequency.
This avoids a phenomena knowsadissing If controllers with integral action are
used, it is also necessary to provide protection so thahtegial does not become
too large when the actuator saturates. This issue, daliegrator windupis studied
in more detail in Chapter 10. Care must also be taken so thabtyeer changes do
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not cause disturbances.

7.6 Further Reading

The notion of observability is due to Kalman [Kal61b] and, ¢coned with the dual
notion of reachability, it was a major stepping stone towestblishing state space
control theory beginning in the 1960s. The observer first apgueas the Kalman
filter, in the paper by Kalman [Kal61a] on the discrete-timeecand Kalman and
Bucy [KB61] on the continuous-time case. Kalman also cdojed that the con-
troller for output feedback could be obtained by combinirgjade feedback with
an observer; see the quote in the beginning of this chapterrd$ult was formally
proved by Josep and Tou [JT61] and Gunckel and Franklin [GF7¥H.cbmbined
result is known as the linear quadratic Gaussian contrarihe compact treat-
ment is given in the books by Anderson and Moore [AM90] and@st[Ast06].
Much later it was shown that solutions to robust control pepis also had a sim-
ilar structure but with different ways of computing obseremd state feedback
gains [DGKF89]. The general controller structure discusaegiction 7.5, which
combines feedback and feedforward, was described by Hrawi 963 [Hor63].
The particular form in Figure 7.10 appeared in [AW97], whichoalreats digital
implementation of the controller. The hypothesis that motiontrol in humans
is based on a combination of feedback and feedforward wgsopea by Ito in
1970 [Ito70].

Exercises

69 (Coordinate transformations) Consider a system under@atwie transforma-
tionz = T x, whereT € R™" is an invertible matrix. Show that the observability
matrix for the transformed system is giveny = W, T ~! and hence observability
is independent of the choice of coordinates.

70 Show that the system depicted in Figure 7.2 is not observable.

71(Observable canonical form) Show that if a system is obsésytiten there exists
a change of coordinates= T x that puts the transformed system into observable
canonical form.

72 (Bicycle dynamics) The linearized model for a bicycle is gieequation (3.5),
which has the form

d’p  Dogdo mo3h

_— - = m

a? b at Mt
whereg is the tilt of the bicycle and is the steering angle. Give conditions under

which the system is observable and explain any specialtgingawhere it loses
observability.

J,
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73 (Integral action) The model (7.1) assumes that the inpst 0 corresponds to
x = 0. In practice, it is very difficult to know the value of the capitsignal that

gives a precise value of the state or the output becausedhisinequire a perfectly
calibrated system. One way to avoid this assumption is tenrasghat the model is
given by dx

a:Ax+B(u+uo), y =Cx+ Du,

whereug is an unknown constant that can be modeledas/dt = 0. Consider

Up as an additional state variable and derive a controllercdbasdfeedback from
the observed state. Show that the controller has integrialneahd that it does not
require a perfectly calibrated system.

74 (Vectored thrust aircraft) The lateral dynamics of the vesdathrust aircraft
example described in Example 6.8 can be obtained by consgdéne motion
described by the states= (x, 0, X, 0). Construct an estimator for these dynamics
by setting the eigenvalues of the observer inBudterworth patterrwith Ay, =
—3.83+9.24i, —9.24+ 3.83 . Using this estimator combined with the state space
controller computed in Example 6.8, plot the step responsthefclosed loop
system.

75 (Uniqueness of observers) Show that the design of an obseyveigenvalue
assignment is unique for single-output systems. Constanples that show that
the problem is not necessarily unique for systems with manguds.

76 (Observers using differentiation) Consider the lineatays(7.2), and assume
that the observability matriX\, is invertible. Show that

x=Wi[y yy - yo?]

is an observer. Show that it has the advantage of giving the ststantaneously
but that it also has some severe practical drawbacks.

77 (Observer for Teorell's compartment model) Teorell's camment model,
shown in Figure 3.17, has the following state space reprasent

kK, O 0 0 0 1
ix |k -k 0 k 0 0
—=10 Ka 0 0 O x4+ {0} u,
dt 0 k, 0 —ks—ks O 0

0 0 0 k& 0 0

where representative parametersilare= 0.02,k, = 0.1, k3 = 0.05,k; = ks =
0.005. The concentration of a drug that is active in compartriesimeasured in
the bloodstream (compartment 2). Determine the compattnieat are observable
from measurement of concentration in the bloodstream asijl@n estimator
for these concentrations base on eigenvalue assignments€lthe closed loop
eigenvalues-0.03,—0.05 and—0.1. Simulate the system when the input is a pulse
injection.
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78 (Observer design for motor drive) Consider the normalizedehof the motor
drive in Exercise 16 where the open loop system has the eily@s@0, —0.05+i .

A state feedback that gave a closed loop system with eigeesah—2, —1 and
—1+i was designed in Exercise 64. Design an observer for the sytbnhas
eigenvalues-4, —2 and—2 + 2i. Combine the observer with the state feedback
from Exercise 64 to obtain an output feedback and simulatedgh®lete system.

79 (Feedforward design for motor drive) Consider the normdlizedel of the
motor drive in Exercise 16. Design the dynamics of the blobleled “trajectory
generation”in Figure 7.10 so that the dynamics relating thpwt to the reference
signalr has the dynamics

dBYm szm dym

— — — = amafl, 7.30

g T amigz T ame~ -+ amaYm = 8ms (7.30)
with parametergy; = 2.50m, amz = 2.502, andays = 2. Discuss how the
largest value of the command signal for a unit step in the canthsignal depends
on wm.

80 (Whipple bicycle model) Consider the Whipple bicycle modiren by equa-
tion (3.7) in Section 3.2. A state feedback for the system vesssgtied in Exer-
cise 65. Design an observer and an output feedback for tiersys

81 (Discrete-time random walk) Suppose that we wish to estit@@osition of a
particle that is undergoing a random walk in one dimensi@n, (@long a line). We
model the position of the particle as

X[k + 1] = x[K] + u[Kk],

wherex is the position of the particle ands a white noise processes wE{u[i]} =
OandE{u[i]u[j]}Ruo( — j). We assume that we can measxiseibject to additive,
zero-mean, Gaussian white noise with covariance 1.

(a) Compute the expected value and covariance of the paatich function ok.

(b) Construct a Kalman filter to estimate the position of thetipl@ given the
noisy measurements of its position. Compute the steadg-sxected value and
covariance of the error of your estimate.

(c) Suppose thaE{u[0]} = u # 0 but is otherwise unchanged. How would your
answers to parts (a) and (b) change?

82 (Kalman decomposition) Consider a linear system charaetkby the matrices

2 1 -1 2 2
1 -3 0 2 2

A=|1 T 4 5| B=|3]. c=[01-10], D=0
0 1 -1 -1 1

Construct a Kalman decomposition for the system. (Hint:tdrgliagonalize.)



