
Chapter Two

System Modeling

... I asked Fermi whether he was not impressed by the agreement between our calculated
numbers and his measured numbers. He replied, “How many arbitraryparameters did you
use for your calculations?” I thought for a moment about our cut-off procedures and said,
“Four.” He said, “I remember my friend Johnny von Neumann used to say, with four param-
eters I can fit an elephant, and with five I can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for meson-proton scattering to
Enrico Fermi in 1953 [Dys04].

A model is a precise representation of a system’s dynamics used to answer
questions via analysis and simulation. The model we choose depends on the ques-
tions we wish to answer, and so there may be multiple models for a single dy-
namical system, with different levels of fidelity depending on the phenomena of
interest. In this chapter we provide an introduction to the concept of modeling and
present some basic material on two specific methods commonly used in feedback
and control systems: differential equations and difference equations.

2.1 Modeling Concepts

A modelis a mathematical representation of a physical, biologicalor information
system. Models allow us to reason about a system and make predictions about
how a system will behave. In this text, we will mainly be interested in models of
dynamical systems describing the input/output behavior ofsystems, and we will
often work in “state space” form.

Roughly speaking, a dynamical system is one in which the effects of actions
do not occur immediately. For example, the velocity of a car does not change
immediately when the gas pedal is pushed nor does the temperature in a room
rise instantaneously when a heater is switched on. Similarly, a headache does not
vanish right after an aspirin is taken, requiring time for itto take effect. In business
systems, increased funding for a development project does not increase revenues in
the short term, although it may do so in the long term (if it wasa good investment).
All of these are examples of dynamical systems, in which the behavior of the
system evolves with time.

In the remainder of this section we provide an overview of some of the key
concepts in modeling. The mathematical details introduced here are explored more
fully in the remainder of the chapter.

Feedback Systems by Astrom and Murray, v2.11b
http://www.cds.caltech.edu/~murray/FBSwiki
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Figure 2.1: Spring–mass system with nonlinear damping. The position of the mass is de-
noted byq, with q = 0 corresponding to the rest position of the spring. The forces on the
mass are generated by a linear spring with spring constantk and a damper with force depen-
dent on the velocity ˙q.

The Heritage of Mechanics

The study of dynamics originated in attempts to describe planetary motion. The
basis was detailed observations of the planets by Tycho Brahe and the results of
Kepler, who found empirically that the orbits of the planetscould be well described
by ellipses. Newton embarked on an ambitious program to try to explain why the
planets move in ellipses, and he found that the motion could be explained by his
law of gravitation and the formula stating that force equalsmass times acceleration.
In the process he also invented calculus and differential equations.

One of the triumphs of Newton’s mechanics was the observation that the mo-
tion of the planets could be predicted based on the current positions and velocities
of all planets. It was not necessary to know the past motion. Thestateof a dynam-
ical system is a collection of variables that completely characterizes the motion of
a system for the purpose of predicting future motion. For a system of planets the
state is simply the positions and the velocities of the planets. We call the set of all
possible states thestate space.

A common class of mathematical models for dynamical systemsis ordinary
differential equations (ODEs). In mechanics, one of the simplest such differential
equations is that of a spring–mass system with damping:

mq̈+c(q̇)+kq= 0. (2.1)

This system is illustrated in Figure 2.1. The variableq∈ R represents the position
of the massm with respect to its rest position. We use the notation ˙q to denote
the derivative ofq with respect to time (i.e., the velocity of the mass) and ¨q to
represent the second derivative (acceleration). The springis assumed to satisfy
Hooke’s law, which says that the force is proportional to thedisplacement. The
friction element (damper) is taken as a nonlinear functionc(q̇), which can model
effects such as stiction and viscous drag. The positionq and velocity ˙q represent
the instantaneous state of the system. We say that this system is asecond-order
systemsince the dynamics depend on the first two derivatives ofq.

The evolution of the position and velocity can be described using either a time
plot or a phase portrait, both of which are shown in Figure 2.2.The time plot, on
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Figure 2.2: Illustration of a state model. A state model gives the rate of change of the state
as a function of the state. The plot on the left shows the evolution of the state as a function
of time. The plot on the right shows the evolution of the states relative to eachother, with
the velocity of the state denoted by arrows.

the left, shows the values of the individual states as a function of time. Thephase
portrait, on the right, shows thevector fieldfor the system, which gives the state
velocity (represented as an arrow) at every point in the state space. In addition, we
have superimposed the traces of some of the states from different conditions. The
phase portrait gives a strong intuitive representation of the equation as a vector
field or a flow. While systems of second order (two states) can be represented in
this way, unfortunately it is difficult to visualize equations of higher order using
this approach.

The differential equation (2.1) is called anautonomoussystem because there
are no external influences. Such a model is natural for use in celestial mechanics
because it is difficult to influence the motion of the planets. Inmany examples, it
is useful to model the effects of external disturbances or controlled forces on the
system. One way to capture this is to replace equation (2.1) by

mq̈+c(q̇)+kq= u, (2.2)

whereu represents the effect of external inputs. The model (2.2) is called aforced
or controlled differential equation. It implies that the rate of change of the state
can be influenced by the inputu(t). Adding the input makes the model richer and
allows new questions to be posed. For example, we can examinewhat influence
external disturbances have on the trajectories of a system.Or, in the case where
the input variable is something that can be modulated in a controlled way, we can
analyze whether it is possible to “steer” the system from onepoint in the state
space to another through proper choice of the input.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineering, where the de-
sign of electronic amplifiers led to a focus on input/output behavior. A system was
considered a device that transforms inputs to outputs, as illustrated in Figure 2.3.
Conceptually an input/output model can be viewed as a giant table of inputs and
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Figure 2.3: Illustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the one onthe right is its
representation as a block diagram.

outputs. Given an input signalu(t) over some interval of time, the model should
produce the resulting outputy(t).

The input/output framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio
or a television and break it down into manageable pieces suchas the receiver,
demodulator, amplifier and speakers. Each of these pieces has aset of inputs and
outputs and, through proper design, these components can beinterconnected to
form the entire system.

The input/output view is particularly useful for the specialclass oflinear time-
invariant systems. This term will be defined more carefully later in this chapter,but
roughly speaking a system is linear if the superposition (addition) of two inputs
yields an output that is the sum of the outputs that would correspond to individual
inputs being applied separately. A system is time-invariant if the output response
for a given input does not depend on when that input is applied.

Many electrical engineering systems can be modeled by linear time-invariant
systems, and hence a large number of tools have been developed to analyze them.
One such tool is thestep response, which describes the relationship between an
input that changes from zero to a constant value abruptly (a step input) and the
corresponding output. As we shall see later in the text, the step response is very
useful in characterizing the performance of a dynamical system, and it is often used
to specify the desired dynamics. A sample step response is shown in Figure 2.4a.

Another way to describe a linear time-invariant system is torepresent it by its
response to sinusoidal input signals. This is called thefrequency response, and a
rich, powerful theory with many concepts and strong, usefulresults has emerged.
The results are based on the theory of complex variables and Laplace transforms.
The basic idea behind frequency response is that we can completely characterize
the behavior of a system by its steady-state response to sinusoidal inputs. Roughly
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Figure 2.4: Input/output response of a linear system. The step response (a) shows the output
of the system due to an input that changes from 0 to 1 at timet = 5 s. The frequency re-
sponse (b) shows the amplitude gain and phase change due to a sinusoidal input at different
frequencies.

speaking, this is done by decomposing any arbitrary signal into a linear combi-
nation of sinusoids (e.g., by using the Fourier transform) and then using linearity
to compute the output by combining the response to the individual frequencies. A
sample frequency response is shown in Figure 2.4b.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.

The Control View

When control theory emerged as a discipline in the 1940s, theapproach to dy-
namics was strongly influenced by the electrical engineering(input/output) view.
A second wave of developments in control, starting in the late 1950s, was inspired
by mechanics, where the state space perspective was used. Theemergence of space
flight is a typical example, where precise control of the orbitof a spacecraft is es-
sential. These two points of view gradually merged into what is today the state
space representation of input/output systems.

The development of state space models involved modifying themodels from
mechanics to include external actuators and sensors and utilizing more general
forms of equations. In control, the model given by equation (2.2) was replaced by

dx
dt

= f (x,u), y= h(x,u), (2.3)

wherex is a vector of state variables,u is a vector of control signals andy is a vec-
tor of measurements. The termdx/dt represents the derivative ofx with respect to
time, now considered a vector, andf andh are (possibly nonlinear) mappings of
their arguments to vectors of the appropriate dimension. For mechanical systems,
the state consists of the position and velocity of the system, so thatx = (q, q̇) in
the case of a damped spring–mass system. Note that in the control formulation we
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model dynamics as first-order differential equations, but wewill see that this can
capture the dynamics of higher-order differential equations by appropriate defini-
tion of the state and the mapsf andh.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to askif possible statesx
can be reached with the proper choice ofu (reachability) and if the measurementy
contains enough information to reconstruct the state (observability). These topics
will be addressed in greater detail in Chapters 6 and 7.

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements inthe theory. The simple
way of modeling disturbances as deterministic signals likesteps and sinusoids has
the drawback that such signals cannot be predicted precisely. A more realistic ap-
proach is to model disturbances as random signals. This viewpoint gives a natural
connection between prediction and control. The dual views ofinput/output repre-
sentations and state space representations are particularly useful when modeling
uncertainty since state models are convenient to describe anominal model but un-
certainties are easier to describe using input/output models (often via a frequency
response description). Uncertainty will be a constant theme throughout the text
and will be studied in particular detail in Chapter 12.

An interesting observation in the design of control systemsis that feedback sys-
tems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system valida-
tion, where one wishes to verify that the detailed response of the system performs
as it was designed. Because of these different uses of models, it is common to use
a hierarchy of models having different complexity and fidelity.

Multidomain Modeling
�

Modeling is an essential element of many disciplines, but traditions and methods
from individual disciplines can differ from each other, as illustrated by the previ-
ous discussion of mechanical and electrical engineering. Adifficulty in systems
engineering is that it is frequently necessary to deal with heterogeneous systems
from many different domains, including chemical, electrical, mechanical and in-
formation systems.

To model such multidomain systems, we start by partitioninga system into
smaller subsystems. Each subsystem is represented by balance equations for mass,
energy and momentum, or by appropriate descriptions of information processing
in the subsystem. The behavior at the interfaces is captured by describing how
the variables of the subsystem behave when the subsystems are interconnected.
These interfaces act by constraining variables within the individual subsystems to
be equal (such as mass, energy or momentum fluxes). The completemodel is then
obtained by combining the descriptions of the subsystems and the interfaces.
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Using this methodology it is possible to build up libraries of subsystems that
correspond to physical, chemical and informational components. The procedure
mimics the engineering approach where systems are built from subsystems that
are themselves built from smaller components. As experience is gained, the com-
ponents and their interfaces can be standardized and collected in model libraries.
In practice, it takes several iterations to obtain a good library that can be reused for
many applications.

State models or ordinary differential equations are not suitable for component-
based modeling of this form because states may disappear when components are
connected. This implies that the internal description of a component may change
when it is connected to other components. As an illustrationwe consider two ca-
pacitors in an electrical circuit. Each capacitor has a statecorresponding to the
voltage across the capacitors, but one of the states will disappear if the capacitors
are connected in parallel. A similar situation happens withtwo rotating inertias,
each of which is individually modeled using the angle of rotation and the angular
velocity. Two states will disappear when the inertias are joined by a rigid shaft.

This difficulty can be avoided by replacing differential equations bydifferential
algebraic equations, which have the form

F(z, ż) = 0,

wherez∈ R
n. A simple special case is

ẋ= f (x,y), g(x,y) = 0, (2.4)

wherez= (x,y) andF = (ẋ− f (x,y),g(x,y)). The key property is that the deriva-
tive ż is not given explicitly and there may be pure algebraic relations between the
components of the vectorz.

The model (2.4) captures the examples of the parallel capacitors and the linked
rotating inertias. For example, when two capacitors are connected, we simply add
the algebraic equation expressing that the voltages acrossthe capacitors are the
same.

Modelica is a language that has been developed to support component-based
modeling. Differential algebraic equations are used as thebasic description, and
object-oriented programming is used to structure the models. Modelica is used to
model the dynamics of technical systems in domains such as mechanical, electri-
cal, thermal, hydraulic, thermofluid and control subsystems. Modelica is intended
to serve as a standard format so that models arising in different domains can be
exchanged between tools and users. A large set of free and commercial Modelica
component libraries are available and are used by a growing number of people
in industry, research and academia. For further information about Modelica, see
http://www.modelica.org or Tiller [Til01].
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2.2 State Space Models

In this section we introduce the two primary forms of models that we use in this
text: differential equations and difference equations. Both make use of the notions
of state, inputs, outputs and dynamics to describe the behavior of a system.

Ordinary Differential Equations

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a physical system the state
is composed of the variables required to account for storageof mass, momentum
and energy. A key issue in modeling is to decide how accurately this storage has
to be represented. The state variables are gathered in a vector x ∈ R

n called the
state vector. The control variables are represented by another vectoru∈ R

p, and
the measured signal by the vectory∈R

q. A system can then be represented by the
differential equation

dx
dt

= f (x,u), y= h(x,u), (2.5)

where f : Rn×R
p → R

n andh : Rn×R
p → R

q are smooth mappings. We call a
model of this form astate space model.

The dimension of the state vector is called theorder of the system. The sys-
tem (2.5) is calledtime-invariantbecause the functionsf and h do not depend
explicitly on timet; there are more general time-varying systems where the func-
tions do depend on time. The model consists of two functions: the functionf gives
the rate of change of the state vector as a function of statex and controlu, and the
functionh gives the measured values as functions of statex and controlu.

A system is called alinear state space system if the functionsf andh are linear
in x andu. A linear state space system can thus be represented by

dx
dt

= Ax+Bu, y=Cx+Du, (2.6)

whereA, B, C andD are constant matrices. Such a system is said to belinear and
time-invariant, or LTI for short. The matrixA is called thedynamics matrix, the
matrix B is called thecontrol matrix, the matrixC is called thesensor matrixand
the matrixD is called thedirect term. Frequently systems will not have a direct
term, indicating that the control signal does not influence the output directly.

A different form of linear differential equations, generalizing the second-order
dynamics from mechanics, is an equation of the form

dny
dtn

+a1
dn−1y
dtn−1 + · · ·+any= u, (2.7)

wheret is the independent (time) variable,y(t) is the dependent (output) variable
and u(t) is the input. The notationdky/dtk is used to denote thekth derivative
of y with respect tot, sometimes also written asy(k). The controlled differential
equation (2.7) is said to be annth-order system. This system can be converted into
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state space form by defining
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With the appropriate definitions ofA, B, C andD, this equation is in linear state
space form.

An even more general system is obtained by letting the outputbe a linear com-
bination of the states of the system, i.e.,

y= b1x1+b2x2+ · · ·+bnxn+du.

This system can be modeled in state space as
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(2.8)

This particular form of a linear state space system is calledreachable canonical
formand will be studied in more detail in later chapters.

Example 2.1 Balance systems
An example of a type of system that can be modeled using ordinary differential
equations is the class ofbalance systems. A balance system is a mechanical sys-
tem in which the center of mass is balanced above a pivot point. Some common
examples of balance systems are shown in Figure 2.5. The Segway®Personal
Transporter (Figure 2.5a) uses a motorized platform to stabilize a person standing
on top of it. When the rider leans forward, the transportation device propels itself
along the ground but maintains its upright position. Another example is a rocket
(Figure 2.5b), in which a gimbaled nozzle at the bottom of the rocket is used to
stabilize the body of the rocket above it. Other examples of balance systems in-
clude humans or other animals standing upright or a person balancing a stick on
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(a) Segway (b) Saturn rocket
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θ
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(c) Cart–pendulum system

Figure 2.5: Balance systems. (a) Segway Personal Transporter, (b) Saturn rocket and (c)
inverted pendulum on a cart. Each of these examples uses forces at thebottom of the system
to keep it upright.

their hand.
Balance systems are a generalization of the spring–mass system we saw earlier.

We can write the dynamics for a mechanical system in the general form

M(q)q̈+C(q, q̇)+K(q) = B(q)u,

whereM(q) is the inertia matrix for the system,C(q, q̇) represents the Coriolis
forces as well as the damping,K(q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into the dynamics. The spe-
cific form of the equations can be derived using Newtonian mechanics. Note that
each of the terms depends on the configuration of the systemq and that these terms
are often nonlinear in the configuration variables.

Figure 2.5c shows a simplified diagram for a balance system consisting of an
inverted pendulum on a cart. To model this system, we choose state variables that
represent the position and velocity of the base of the system, p and ṗ, and the an-
gle and angular rate of the structure above the base,θ andθ̇ . We letF represent
the force applied at the base of the system, assumed to be in the horizontal direc-
tion (aligned withp), and choose the position and angle of the system as outputs.
With this set of definitions, the dynamics of the system can be computed using
Newtonian mechanics and have the form
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−mlcosθ (J+ml2)
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cṗ+mlsinθ θ̇ 2

γθ̇ −mglsinθ
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F
0








, (2.9)

whereM is the mass of the base,mandJ are the mass and moment of inertia of the
system to be balanced,l is the distance from the base to the center of mass of the
balanced body,c andγ are coefficients of viscous friction andg is the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space form by defining the
state asx= (p,θ , ṗ, θ̇), the input asu=F and the output asy= (p,θ). If we define
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the total mass and total inertia as

Mt = M+m, Jt = J+ml2,

the equations of motion then become

d
dt
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where we have used the shorthandcθ = cosθ andsθ = sinθ .
In many cases, the angleθ will be very close to 0, and hence we can use the

approximations sinθ ≈ θ and cosθ ≈ 1. Furthermore, ifθ̇ is small, we can ig-
nore quadratic and higher terms inθ̇ . Substituting these approximations into our
equations, we see that we are left with alinear state space equation
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x,

whereµ = MtJt −m2l2. ∇

Example 2.2 Inverted pendulum
A variation of the previous example is one in which the location of the basep does
not need to be controlled. This happens, for example, if we areinterested only in
stabilizing a rocket’s upright orientation without worrying about the location of
base of the rocket. The dynamics of this simplified system are given by

d
dt
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θ̇
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mgl
Jt

sinθ − γ
Jt

θ̇ +
l
Jt

cosθ u















, y= θ , (2.10)

whereγ is the coefficient of rotational friction,Jt = J+ml2 and u is the force
applied at the base. This system is referred to as aninverted pendulum. ∇

Difference Equations

In some circumstances, it is more natural to describe the evolution of a system
at discrete instants of time rather than continuously in time. If we refer to each
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of these times by an integerk = 0,1,2, . . . , then we can ask how the state of the
system changes for eachk. Just as in the case of differential equations, we define
the state to be those sets of variables that summarize the past of the system for the
purpose of predicting its future. Systems described in this manner are referred to
asdiscrete-time systems.

The evolution of a discrete-time system can be written in the form

x[k+1] = f (x[k],u[k]), y[k] = h(x[k],u[k]), (2.11)

wherex[k] ∈ R
n is the state of the system at timek (an integer),u[k] ∈ R

p is the
input andy[k] ∈ R

q is the output. As before,f andh are smooth mappings of the
appropriate dimension. We call equation (2.11) adifference equationsince it tells
us howx[k+1] differs fromx[k]. The statex[k] can be either a scalar- or a vector-
valued quantity; in the case of the latter we writex j [k] for the value of thejth state
at timek.

Just as in the case of differential equations, it is often thecase that the equations
are linear in the state and input, in which case we can describe the system by

x[k+1] = Ax[k]+Bu[k], y[k] =Cx[k]+Du[k].

As before, we refer to the matricesA, B, C and D as the dynamics matrix, the
control matrix, the sensor matrix and the direct term. The solution of a linear dif-
ference equation with initial conditionx[0] and inputu[0], . . . ,u[T] is given by

x[k] = Akx[0]+
k−1

∑
j=0

Ak− j−1Bu[ j],

y[k] =CAkx[0]+
k−1

∑
j=0

CAk− j−1Bu[ j]+Du[k],

k> 0. (2.12)

Difference equations are also useful as an approximation ofdifferential equa-
tions, as we will show later.

Example 2.3 Predator–prey
As an example of a discrete-time system, consider a simple model for a predator–
prey system. The predator–prey problem refers to an ecological system in which
we have two species, one of which feeds on the other. This type of system has
been studied for decades and is known to exhibit interestingdynamics. Figure 2.6
shows a historical record taken over 90 years for a population of lynxes versus a
population of hares [Mac37]. As can been seen from the graph,the annual records
of the populations of each species are oscillatory in nature.

A simple model for this situation can be constructed using a discrete-time
model by keeping track of the rate of births and deaths of eachspecies. Letting
H represent the population of hares andL represent the population of lynxes, we
can describe the state in terms of the populations at discrete periods of time. Let-



2.2. STATE SPACE MODELS 39

1845

160

140

120

100

80

60

40

20

1855 1865 1875 1885 1895

Hare

Lynx

1905 1915 1925 1935

Figure 2.6: Predator versus prey. The photograph on the left shows a Canadian lynx and
a snowshoe hare, the lynx’s primary prey. The graph on the right shows the populations of
hares and lynxes between 1845 and 1935 in a section of the Canadian Rockies [Mac37]. The
data were collected on an annual basis over a period of 90 years. (Photograph copyright Tom
and Pat Leeson.)

ting k be the discrete-time index (e.g., the day or month number), we can write

H[k+1] = H[k]+br(u)H[k]−aL[k]H[k],

L[k+1] = L[k]+cL[k]H[k]−df L[k],
(2.13)

wherebr(u) is the hare birth rate per unit period and as a function of the food
supplyu, df is the lynx mortality rate anda andc are the interaction coefficients.
The interaction termaL[k]H[k] models the rate of predation, which is assumed to
be proportional to the rate at which predators and prey meet and is hence given
by the product of the population sizes. The interaction termcL[k]H[k] in the lynx
dynamics has a similar form and represents the rate of growthof the lynx popula-
tion. This model makes many simplifying assumptions—such asthe fact that hares
decrease in number only through predation by lynxes—but it often is sufficient to
answer basic questions about the system.

To illustrate the use of this system, we can compute the number of lynxes and
hares at each time point from some initial population. This isdone by starting with
x[0] = (H0,L0) and then using equation (2.13) to compute the populations inthe
following period. By iterating this procedure, we can generate the population over
time. The output of this process for a specific choice of parameters and initial con-
ditions is shown in Figure 2.7. While the details of the simulation are different
from the experimental data (to be expected given the simplicity of our assump-
tions), we see qualitatively similar trends and hence we canuse the model to help
explore the dynamics of the system. ∇

Example 2.4 E-mail server
The IBM Lotus server is an collaborative software system that administers users’
e-mail, documents and notes. Client machines interact withend users to provide
access to data and applications. The server also handles other administrative tasks.
In the early development of the system it was observed that the performance was
poor when the central processing unit (CPU) was overloaded because of too many
service requests, and mechanisms to control the load were therefore introduced.

The interaction between the client and the server is in the form of remote proce-
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Figure 2.7: Discrete-time simulation of the predator–prey model (2.13). Using the param-
etersa = c = 0.014, br(u) = 0.6 andd = 0.7 in equation (2.13) with daily updates, the
period and magnitude of the lynx and hare population cycles approximatelymatch the data
in Figure 2.6.

dure calls (RPCs). The server maintains a log of statistics of completed requests.
The total number of requests being served, calledRIS (RPCs in server), is also
measured. The load on the server is controlled by a parameter calledMaxUsers,
which sets the total number of client connections to the server. This parameter is
controlled by the system administrator. The server can be regarded as a dynami-
cal system withMaxUsers as the input andRIS as the output. The relationship
between input and output was first investigated by exploring the steady-state per-
formance and was found to be linear.

In [HDPT04] a dynamic model in the form of a first-order difference equation
is used to capture the dynamic behavior of this system. Usingsystem identification
techniques, they construct a model of the form

y[k+1] = ay[k]+bu[k],

whereu = MaxUsers−MaxUsers andy = RIS−RIS. The parametersa =
0.43 andb= 0.47 are parameters that describe the dynamics of the system around
the operating point, andMaxUsers = 165 andRIS = 135 represent the nomi-
nal operating point of the system. The number of requests was averaged over a
sampling period of 60 s. ∇

Simulation and Analysis

State space models can be used to answer many questions. One ofthe most com-
mon, as we have seen in the previous examples, involves predicting the evolution
of the system state from a given initial condition. While forsimple models this can
be done in closed form, more often it is accomplished throughcomputer simula-
tion. One can also use state space models to analyze the overall behavior of the
system without making direct use of simulation.

Consider again the damped spring–mass system from Section 2.1, but this time
with an external force applied, as shown in Figure 2.8. We wishto predict the
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Figure 2.8: A driven spring–mass system with damping. Here we use a linear damping
element with coefficient of viscous frictionc. The mass is driven with a sinusoidal force of
amplitudeA.

motion of the system for a periodic forcing function, with a given initial condition,
and determine the amplitude, frequency and decay rate of theresulting motion.

We choose to model the system with a linear ordinary differential equation.
Using Hooke’s law to model the spring and assuming that the damper exerts a
force that is proportional to the velocity of the system, we have

mq̈+cq̇+kq= u, (2.14)

wherem is the mass,q is the displacement of the mass,c is the coefficient of
viscous friction,k is the spring constant andu is the applied force. In state space
form, usingx= (q, q̇) as the state and choosingy= q as the output, we have

dx
dt

=

















x2

− c
m

x2−
k
m

x1+
u
m

















, y= x1.

We see that this is a linear second-order differential equation with one inputu and
one outputy.

We now wish to compute the response of the system to an input ofthe formu=
Asinωt. Although it is possible to solve for the response analytically, we instead
make use of a computational approach that does not rely on thespecific form of
this system. Consider the general state space system

dx
dt

= f (x,u).

Given the statex at time t, we can approximate the value of the state at a short
time h> 0 later by assuming that the rate of change off (x,u) is constant over the
intervalt to t +h. This gives

x(t +h) = x(t)+h f(x(t),u(t)). (2.15)

Iterating this equation, we can thus solve forx as a function of time. This approxi-
mation is known as Euler integration and is in fact a difference equation if we leth
represent the time increment and writex[k] = x(kh). Although modern simulation
tools such as MATLAB and Mathematica use more accurate methodsthan Euler
integration, they still have some of the same basic trade-offs.
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Figure 2.9: Simulation of the forced spring–mass system with different simulation time
constants. The solid line represents the analytical solution. The dashed lines represent the
approximate solution via the method of Euler integration, using decreasing step sizes.

Returning to our specific example, Figure 2.9 shows the resultsof computing
x(t) using equation (2.15), along with the analytical computation. We see that as
h gets smaller, the computed solution converges to the exact solution. The form
of the solution is also worth noticing: after an initial transient, the system settles
into a periodic motion. The portion of the response after the transient is called the
steady-state responseto the input.

In addition to generating simulations, models can also be used to answer other
types of questions. Two that are central to the methods described in this text con-
cern the stability of an equilibrium point and the input/output frequency response.
We illustrate these two computations through the examples below and return to the
general computations in later chapters.

Returning to the damped spring–mass system, the equations of motion with no
input forcing are given by

dx
dt

=













x2

− c
m

x2−
k
m

x1













, (2.16)

wherex1 is the position of the mass (relative to the rest position) and x2 is its
velocity. We wish to show that if the initial state of the system is away from the
rest position, the system will return to the rest position eventually (we will later
define this situation to mean that the rest position isasymptotically stable). While
we could heuristically show this by simulating many, many initial conditions, we
seek instead to prove that this is true forany initial condition.

To do so, we construct a functionV : Rn → R that maps the system state to a
positive real number. For mechanical systems, a convenientchoice is the energy of
the system,

V(x) =
1
2

kx2
1+

1
2

mx2
2. (2.17)
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If we look at the time derivative of the energy function, we see that

dV
dt

= kx1ẋ1+mx2ẋ2 = kx1x2+mx2(−
c
m

x2−
k
m

x1) =−cx2
2,

which is always either negative or zero. HenceV(x(t)) is never increasing and,
using a bit of analysis that we will see formally later, the individual states must
remain bounded.

If we wish to show that the states eventually return to the origin, we must use
a slightly more detailed analysis. Intuitively, we can reason as follows: suppose
that for some period of time,V(x(t)) stops decreasing. Then it must be true that
V̇(x(t)) = 0, which in turn implies thatx2(t) = 0 for that same period. In that case,
ẋ2(t) = 0, and we can substitute into the second line of equation (2.16) to obtain

0= ẋ2 =− c
m

x2−
k
m

x1 =− k
m

x1.

Thus we must have thatx1 also equals zero, and so the only time thatV(x(t)) can
stop decreasing is if the state is at the origin (and hence this system is at its rest
position). Since we know thatV(x(t)) is never increasing (becauseV̇ ≤ 0), we
therefore conclude that the origin is stable (forany initial condition).

This type of analysis, called Lyapunov stability analysis, is considered in detail
in Chapter 4. It shows some of the power of using models for theanalysis of system
properties.

Another type of analysis that we can perform with models is tocompute the
output of a system to a sinusoidal input. We again consider the spring–mass sys-
tem, but this time keeping the input and leaving the system inits original form:

mq̈+cq̇+kq= u. (2.18)

We wish to understand how the system responds to a sinusoidalinput of the form

u(t) = Asinωt.

We will see how to do this analytically in Chapter 6, but for now we make use of
simulations to compute the answer.

We first begin with the observation that ifq(t) is the solution to equation (2.18)
with inputu(t), then applying an input 2u(t) will give a solution 2q(t) (this is easily
verified by substitution). Hence it suffices to look at an input with unit magnitude,
A= 1. A second observation, which we will prove in Chapter 5, is that the long-
term response of the system to a sinusoidal input is itself a sinusoid at the same
frequency, and so the output has the form

q(t) = g(ω)sin(ωt +ϕ(ω)),

whereg(ω) is called thegainof the system andϕ(ω) is called thephase(or phase
offset).

To compute the frequency response numerically, we can simulate the system
at a set of frequenciesω1, . . . ,ωN and plot the gain and phase at each of these
frequencies. An example of this type of computation is shownin Figure 2.10.
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Figure 2.10: A frequency response (gain only) computed by measuring the response of
individual sinusoids. The figure on the left shows the response of the system as a function
of time to a number of different unit magnitude inputs (at different frequencies). The figure
on the right shows this same data in a different way, with the magnitude of theresponse
plotted as a function of the input frequency. The filled circles correspond to the particular
frequencies shown in the time responses.

2.3 Modeling Methodology

To deal with large, complex systems, it is useful to have different representations
of the system that capture the essential features and hide irrelevant details. In all
branches of science and engineering it is common practice touse some graphical
description of systems, calledschematic diagrams. They can range from stylistic
pictures to drastically simplified standard symbols. These pictures make it possi-
ble to get an overall view of the system and to identify the individual components.
Examples of such diagrams are shown in Figure 2.11. Schematic diagrams are
useful because they give an overall picture of a system, showing different subpro-
cesses and their interconnection and indicating variablesthat can be manipulated
and signals that can be measured.

Block Diagrams

A special graphical representation called ablock diagramhas been developed in
control engineering. The purpose of a block diagram is to emphasize the informa-
tion flow and to hide details of the system. In a block diagram, different process
elements are shown as boxes, and each box has inputs denoted by lines with arrows
pointing toward the box and outputs denoted by lines with arrows going out of the
box. The inputs denote the variables that influence a process, and the outputs de-
note the signals that we are interested in or signals that influence other subsystems.
Block diagrams can also be organized in hierarchies, where individual blocks may
themselves contain more detailed block diagrams.

Figure 2.12 shows some of the notation that we use for block diagrams. Signals
are represented as lines, with arrows to indicate inputs andoutputs. The first di-
agram is the representation for a summation of two signals. An input/output re-
sponse is represented as a rectangle with the system name (ormathematical de-
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Figure 2.11:Schematic diagrams for different disciplines. Each diagram is used to illustrate
the dynamics of a feedback system: (a) electrical schematics for a power system [Kun93],
(b) a biological circuit diagram for a synthetic clock circuit [ASMN03], (c) a process dia-
gram for a distillation column [SEM04] and (d) a Petri net description of a communication
protocol.
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Figure 2.12:Standard block diagram elements. The arrows indicate the the inputs and out-
puts of each element, with the mathematical operation corresponding to the blocked labeled
at the output. The system block (f) represents the full input/output response of a dynamical
system.
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Figure 2.13:A block diagram representation of the flight control system for an insectflying
against the wind. The mechanical portion of the model consists of the rigid-body dynamics
of the fly, the drag due to flying through the air and the forces generated by the wings. The
motion of the body causes the visual environment of the fly to change, and this information
is then used to control the motion of the wings (through the sensory motor system), closing
the loop.

scription) in the block. Two special cases are a proportional gain, which scales the
input by a multiplicative factor, and an integrator, which outputs the integral of the
input signal.

Figure 2.13 illustrates the use of a block diagram, in this case for modeling the
flight response of a fly. The flight dynamics of an insect are incredibly intricate,
involving careful coordination of the muscles within the fly to maintain stable flight
in response to external stimuli. One known characteristic of flies is their ability to
fly upwind by making use of the optical flow in their compound eyesas a feedback
mechanism. Roughly speaking, the fly controls its orientation so that the point of
contraction of the visual field is centered in its visual field.

To understand this complex behavior, we can decompose the overall dynamics
of the system into a series of interconnected subsystems (orblocks). Referring to
Figure 2.13, we can model the insect navigation system through an interconnection
of five blocks. The sensory motor system (a) takes the information from the visual
system (e) and generates muscle commands that attempt to steer the fly so that the
point of contraction is centered. These muscle commands are converted into forces
through the flapping of the wings (b) and the resulting aerodynamic forces that are
produced. The forces from the wings are combined with the dragon the fly (d) to
produce a net force on the body of the fly. The wind velocity enters through the
drag aerodynamics. Finally, the body dynamics (c) describe how the fly translates
and rotates as a function of the net forces that are applied toit. The insect position,
speed and orientation are fed back to the drag aerodynamics and vision system
blocks as inputs.

Each of the blocks in the diagram can itself be a complicated subsystem. For
example, the visual system of a fruit fly consists of two complicated compound
eyes (with about 700 elements per eye), and the sensory motorsystem has about
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200,000 neurons that are used to process information. A moredetailed block dia-
gram of the insect flight control system would show the interconnections between
these elements, but here we have used one block to represent how the motion of
the fly affects the output of the visual system, and a second block to represent how
the visual field is processed by the fly’s brain to generate muscle commands. The
choice of the level of detail of the blocks and what elements to separate into differ-
ent blocks often depends on experience and the questions that one wants to answer
using the model. One of the powerful features of block diagrams is their ability to
hide information about the details of a system that may not beneeded to gain an
understanding of the essential dynamics of the system.

Modeling from Experiments

Since control systems are provided with sensors and actuators, it is also possible
to obtain models of system dynamics from experiments on the process. The mod-
els are restricted to input/output models since only these signals are accessible to
experiments, but modeling from experiments can also be combined with modeling
from physics through the use of feedback and interconnection.

A simple way to determine a system’s dynamics is to observe the response to a
step change in the control signal. Such an experiment begins by setting the control
signal to a constant value; then when steady state is established, the control signal
is changed quickly to a new level and the output is observed. The experiment
gives the step response of the system, and the shape of the response gives useful
information about the dynamics. It immediately gives an indication of the response
time, and it tells if the system is oscillatory or if the response is monotone.

Example 2.5 Spring–mass system
Consider the spring–mass system from Section 2.1, whose dynamics are given by

mq̈+cq̇+kq= u. (2.19)

We wish to determine the constantsm, c andk by measuring the response of the
system to a step input of magnitudeF0.

We will show in Chapter 6 that whenc2< 4km, the step response for this system
from the rest configuration is given by

q(t) =
F0

k

(

1− 1
ωd

√

k
m

exp
(

− ct
2m

)

sin(ωdt +ϕ)

)

,

ωd =

√
4km−c2

2m
, ϕ = tan−1

(√
4km−c2

c

)

.

From the form of the solution, we see that the form of the response is determined
by the parameters of the system. Hence, by measuring certainfeatures of the step
response we can determine the parameter values.

Figure 2.14 shows the response of the system to a step of magnitudeF0 = 20 N,
along with some measurements. We start by noting that the steady-state position
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Figure 2.14: Step response for a spring–mass system. The magnitude of the step input is
F0 = 20 N. The period of oscillationT is determined by looking at the time between two
subsequent local maxima in the response. The period combined with the steady-state value
q(∞) and the relative decrease between local maxima can be used to estimate theparameters
in a model of the system.

of the mass (after the oscillations die down) is a function ofthe spring constantk:

q(∞) =
F0

k
, (2.20)

whereF0 is the magnitude of the applied force (F0 = 1 for a unit step input). The
parameter 1/k is called thegainof the system. The period of the oscillation can be
measured between two peaks and must satisfy

2π
T

=

√
4km−c2

2m
. (2.21)

Finally, the rate of decay of the oscillations is given by the exponential factor in
the solution. Measuring the amount of decay between two peaks, we have

log
(

q(t1)−
F0

k

)

− log
(

q(t2)−
F0

k

)

=
c

2m
(t2− t1). (2.22)

Using this set of three equations, we can solve for the parameters and determine
that for the step response in Figure 2.14 we havem≈ 250 kg,c ≈ 60 N s/m and
k≈ 40 N/m. ∇

Modeling from experiments can also be done using many other signals. Sinu-
soidal signals are commonly used (particularly for systemswith fast dynamics)
and precise measurements can be obtained by exploiting correlation techniques.
An indication of nonlinearities can be obtained by repeating experiments with in-
put signals having different amplitudes.

Normalization and Scaling

Having obtained a model, it is often useful to scale the variables by introducing
dimension-free variables. Such a procedure can often simplify the equations for a
system by reducing the number of parameters and reveal interesting properties of
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the model. Scaling can also improve the numerical conditioning of the model to
allow faster and more accurate simulations.

The procedure of scaling is straightforward: choose units for each independent
variable and introduce new variables by dividing the variables by the chosen nor-
malization unit. We illustrate the procedure with two examples.

Example 2.6 Spring–mass system
Consider again the spring–mass system introduced earlier.Neglecting the damp-
ing, the system is described by

mq̈+kq= u.

The model has two parametersm andk. To normalize the model we introduce
dimension-free variablesx = q/l and τ = ω0t, whereω0 =

√

k/m and l is the
chosen length scale. We scale force bymlω2

0 and introducev = u/(mlω2
0). The

scaled equation then becomes

d2x
dτ2 =

d2q/l
d(ω0t)2 =

1

mlω2
0

(−kq+u) =−x+v,

which is the normalized undamped spring–mass system. Notice that the normal-
ized model has no parameters, while the original model had two parametersm
and k. Introducing the scaled, dimension-free state variablesz1 = x = q/l and
z2 = dx/dτ = q̇/(lω0), the model can be written as

d
dt









z1
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+









0
v








.

This simple linear equation describes the dynamics of any spring–mass system,
independent of the particular parameters, and hence gives us insight into the fun-
damental dynamics of this oscillatory system. To recover the physical frequency
of oscillation or its magnitude, we must invert the scaling we have applied. ∇

Example 2.7 Balance system
Consider the balance system described in Section 2.1. Neglecting damping by
puttingc= 0 andγ = 0 in equation (2.9), the model can be written as

(M+m)
d2p
dt2

−mlcosθ
d2θ
dt2

+mlsinθ
(dθ

dt

)2
= F,

−mlcosθ
d2p
dt2

+(J+ml2)
d2θ
dt2

−mglsinθ = 0.

Let ω0 =
√

mgl/(J+ml2), choose the length scale asl , let the time scale be 1/ω0,
choose the force scale as(M+m)lω2

0 and introduce the scaled variablesτ = ω0t,
x= p/l andu= F/((M+m)lω2

0). The equations then become

d2x
dτ2 −α cosθ

d2θ
dτ2 +α sinθ

(dθ
dτ

)2
= u, −β cosθ

d2x
dτ2 +

d2θ
dτ2 −sinθ = 0,

whereα = m/(M+m) andβ = ml2/(J+ml2). Notice that the original model has
five parametersm, M, J, l andg but the normalized model has only two parameters
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Figure 2.15: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a), where the solid line indicates the nominal input/output relationshipand the
dashed lines indicate the range of possible uncertainty. The uncertainty lemon [GPD59] in
(b) is one way to capture uncertainty in dynamical systems emphasizing that a model is valid
only in some amplitude and frequency ranges. In (c) a model is represented by a nominal
modelM and another model∆ representing the uncertainty analogous to the representation
of parameter uncertainty.

α andβ . If M ≫ m andml2 ≫ J, we getα ≈ 0 andβ ≈ 1 and the model can be
approximated by

d2x
dτ2 = u,

d2θ
dτ2 −sinθ = ucosθ .

The model can be interpreted as a mass combined with an inverted pendulum
driven by the same input. ∇

Model Uncertainty

Reducing uncertainty is one of the main reasons for using feedback, and it is there-
fore important to characterize uncertainty. When making measurements, there is a
good tradition to assign both a nominal value and a measure ofuncertainty. It is
useful to apply the same principle to modeling, but unfortunately it is often difficult
to express the uncertainty of a model quantitatively.

For a static system whose input/output relation can be characterized by a func-
tion, uncertainty can be expressed by an uncertainty band asillustrated in Fig-
ure 2.15a. At low signal levels there are uncertainties due to sensor resolution,
friction and quantization. Some models for queuing systems or cells are based
on averages that exhibit significant variations for small populations. At large sig-
nal levels there are saturations or even system failures. Thesignal ranges where a
model is reasonably accurate vary dramatically between applications, but it is rare
to find models that are accurate for signal ranges larger than 104.

Characterization of the uncertainty of a dynamic model is much more difficult.
We can try to capture uncertainties by assigning uncertainties to parameters of the
model, but this is often not sufficient. There may be errors due to phenomena that
have been neglected, e.g., small time delays. In control theultimate test is how well
a control system based on the model performs, and time delayscan be important.
There is also a frequency aspect. There are slow phenomena, such as aging, that
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can cause changes or drift in the systems. There are also high-frequency effects: a
resistor will no longer be a pure resistance at very high frequencies, and a beam
has stiffness and will exhibit additional dynamics when subject to high-frequency
excitation. Theuncertainty lemon[GPD59] shown in Figure 2.15b is one way to
conceptualize the uncertainty of a system. It illustrates that a model is valid only
in certain amplitude and frequency ranges.

We will introduce some formal tools for representing uncertainty in Chapter 12
using figures such as Figure 2.15c. These tools make use of the concept of a trans-
fer function, which describes the frequency response of an input/output system.
For now, we simply note that one should always be careful to recognize the limits
of a model and not to make use of models outside their range of applicability. For
example, one can describe the uncertainty lemon and then check to make sure that
signals remain in this region. In early analog computing, a system was simulated
using operational amplifiers, and it was customary to give alarms when certain
signal levels were exceeded. Similar features can be included in digital simulation.

2.4 Modeling Examples

In this section we introduce additional examples that illustrate some of the differ-
ent types of systems for which one can develop differential equation and difference
equation models. These examples are specifically chosen from arange of differ-
ent fields to highlight the broad variety of systems to which feedback and control
concepts can be applied. A more detailed set of applicationsthat serve as running
examples throughout the text are given in the next chapter.

Motion Control Systems

Motion control systems involve the use of computation and feedback to control the
movement of a mechanical system. Motion control systems range from nanoposi-
tioning systems (atomic force microscopes, adaptive optics), to control systems
for the read/write heads in a disk drive of a CD player, to manufacturing systems
(transfer machines and industrial robots), to automotive control systems (antilock
brakes, suspension control, traction control), to air and space flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 2.8 Vehicle steering—the bicycle model
A common problem in motion control is to control the trajectory of a vehicle
through an actuator that causes a change in the orientation.A steering wheel on an
automobile and the front wheel of a bicycle are two examples,but similar dynam-
ics occur in the steering of ships or control of the pitch dynamics of an aircraft.
In many cases, we can understand the basic behavior of these systems through the
use of a simple model that captures the basic kinematics of the system.

Consider a vehicle with two wheels as shown in Figure 2.16. Forthe purpose
of steering we are interested in a model that describes how the velocity of the
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Figure 2.16:Vehicle steering dynamics. The left figure shows an overhead view of avehicle
with four wheels. The wheel base isb and the center of mass at a distancea forward of the
rear wheels. By approximating the motion of the front and rear pairs of wheels by a single
front wheel and a single rear wheel, we obtain an abstraction called thebicycle model, shown
on the right. The steering angle isδ and the velocity at the center of mass has the angleα
relative the length axis of the vehicle. The position of the vehicle is given by(x,y) and the
orientation (heading) byθ .

vehicle depends on the steering angleδ . To be specific, consider the velocityv at
the center of mass, a distancea from the rear wheel, and letb be the wheel base, as
shown in Figure 2.16. Letx andy be the coordinates of the center of mass,θ the
heading angle andα the angle between the velocity vectorv and the centerline of
the vehicle. Sinceb= ra tanδ anda= ra tanα, it follows that tanα = (a/b) tanδ
and we get the following relation betweenα and the steering angleδ :

α(δ ) = arctan
(atanδ

b

)

. (2.23)

Assume that the wheels are rolling without slip and that the velocity of the rear
wheel isv0. The vehicle speed at its center of mass isv= v0/cosα, and we find
that the motion of this point is given by

dx
dt

= vcos(α +θ) = v0
cos(α +θ)

cosα
,

dy
dt

= vsin(α +θ) = v0
sin(α +θ)

cosα
.

(2.24)

To see how the angleθ is influenced by the steering angle, we observe from Fig-
ure 2.16 that the vehicle rotates with the angular velocityv0/ra around the point
O. Hence

dθ
dt

=
v0

ra
=

v0

b
tanδ . (2.25)

Equations (2.23)–(2.25) can be used to model an automobile under the assump-
tions that there is no slip between the wheels and the road andthat the two front
wheels can be approximated by a single wheel at the center of the car. The as-
sumption of no slip can be relaxed by adding an extra state variable, giving a more
realistic model. Such a model also describes the steering dynamics of ships as well
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(a) Harrier “jump jet”
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(b) Simplified model

Figure 2.17: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) redirects its
engine thrust downward so that it can “hover” above the ground. Some air from the engine
is diverted to the wing tips to be used for maneuvering. As shown in (b), thenet thrust on
the aircraft can be decomposed into a horizontal forceF1 and a vertical forceF2 acting at a
distancer from the center of mass.

as the pitch dynamics of aircraft and missiles. It is also possible to choose coor-
dinates so that the reference point is at the rear wheels (corresponding to setting
α = 0), a model often referred to as theDubins car[Dub57].

Figure 2.16 represents the situation when the vehicle moves forward and has
front-wheel steering. The case when the vehicle reverses is obtained by changing
the sign of the velocity, which is equivalent to a vehicle with rear-wheel steering.

∇

Example 2.9 Vectored thrust aircraft
Consider the motion of vectored thrust aircraft, such as theHarrier “jump jet”
shown Figure 2.17a. The Harrier is capable of vertical takeoffby redirecting its
thrust downward and through the use of smaller maneuvering thrusters located on
its wings. A simplified model of the Harrier is shown in Figure 2.17b, where we
focus on the motion of the vehicle in a vertical plane throughthe wings of the
aircraft. We resolve the forces generated by the main downward thruster and the
maneuvering thrusters as a pair of forcesF1 andF2 acting at a distancer below the
aircraft (determined by the geometry of the thrusters).

Let (x,y,θ) denote the position and orientation of the center of mass of the
aircraft. Letm be the mass of the vehicle,J the moment of inertia,g the gravita-
tional constant andc the damping coefficient. Then the equations of motion for the
vehicle are given by

mẍ= F1cosθ −F2sinθ −cẋ,

mÿ= F1sinθ +F2cosθ −mg−cẏ,

Jθ̈ = rF1.

(2.26)

It is convenient to redefine the inputs so that the origin is an equilibrium point
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Figure 2.18: Schematic diagram of a queuing system. Messages arrive at rateλ and are
stored in a queue. Messages are processed and removed from the queue at rateµ . The average
size of the queue is given byx∈ R.

of the system with zero input. Lettingu1 = F1 andu2 = F2 −mg, the equations
become

mẍ=−mgsinθ −cẋ+u1cosθ −u2sinθ ,
mÿ= mg(cosθ −1)−cẏ+u1sinθ +u2cosθ ,
Jθ̈ = ru1.

(2.27)

These equations describe the motion of the vehicle as a set of three coupled second-
order differential equations. ∇

Information Systems

Information systems range from communication systems likethe Internet to soft-
ware systems that manipulate data or manage enterprisewideresources. Feedback
is present in all these systems, and designing strategies for routing, flow control and
buffer management is a typical problem. Many results in queuing theory emerged
from design of telecommunication systems and later from development of the In-
ternet and computer communication systems [BG87, Kle75, Sch87]. Management
of queues to avoid congestion is a central problem and we willtherefore start by
discussing the modeling of queuing systems.

Example 2.10 Queuing systems
A schematic picture of a simple queue is shown in Figure 2.18. Requests arrive
and are then queued and processed. There can be large variations in arrival rates
and service rates, and the queue length builds up when the arrival rate is larger
than the service rate. When the queue becomes too large, service is denied using
an admission control policy.

The system can be modeled in many different ways. One way is to model each
incoming request, which leads to an event-based model wherethe state is an integer
that represents the queue length. The queue changes when a request arrives or a
request is serviced. The statistics of arrival and servicingare typically modeled as
random processes. In many cases it is possible to determine statistics of quantities
like queue length and service time, but the computations canbe quite complicated.

A significant simplification can be obtained by using aflow model. Instead
of keeping track of each request we instead view service and requests as flows,
similar to what is done when replacing molecules by a continuum when analyzing
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fluids. Assuming that the average queue lengthx is a continuous variable and that
arrivals and services are flows with ratesλ andµ, the system can be modeled by
the first-order differential equation

dx
dt

= λ −µ = λ −µmaxf (x), x≥ 0, (2.28)

whereµmax is the maximum service rate andf (x) is a number between 0 and 1
that describes the effective service rate as a function of the queue length.

It is natural to assume that the effective service rate depends on the queue
length because larger queues require more resources. In steady state we have
f (x) = λ/µmax, and we assume that the queue length goes to zero whenλ/µmax
goes to zero and that it goes to infinity whenλ/µmax goes to 1. This implies
that f (0) = 0 and thatf (∞) = 1. In addition, if we assume that the effective ser-
vice rate deteriorates monotonically with queue length, then the functionf (x) is
monotone and concave. A simple function that satisfies the basic requirements is
f (x) = x/(1+x), which gives the model

dx
dt

= λ −µmax
x

x+1
. (2.29)

This model was proposed by Agnew [Agn76]. It can be shown that if arrival and
service processes are Poisson processes, the average queue length is given by equa-
tion (2.29) and that equation (2.29) is a good approximationeven for short queue
lengths; see Tipper [TS90].

To explore the properties of the model (2.29) we will first investigate the equi-
librium value of the queue length when the arrival rateλ is constant. Setting the
derivativedx/dt to zero in equation (2.29) and solving forx, we find that the queue
lengthx approaches the steady-state value

xe =
λ

µmax−λ
. (2.30)

Figure 2.19a shows the steady-state queue length as a function of λ/µmax, the
effective service rate excess. Notice that the queue lengthincreases rapidly asλ
approachesµmax. To have a queue length less than 20 requiresλ/µmax< 0.95. The
average time to service a request isTs= (x+1)/µmax, and it increases dramatically
asλ approachesµmax.

Figure 2.19b illustrates the behavior of the server in a typical overload situation.
The maximum service rate isµmax= 1, and the arrival rate starts atλ = 0.5. The
arrival rate is increased toλ = 4 at time 20, and it returns toλ = 0.5 at time 25.
The figure shows that the queue builds up quickly and clears veryslowly. Since the
response time is proportional to queue length, it means thatthe quality of service
is poor for a long period after an overload. This behavior is called therush-hour
effectand has been observed in web servers and many other queuing systems such
as automobile traffic.

The dashed line in Figure 2.19b shows the behavior of the flow model, which
describes the average queue length. The simple model captures behavior qualita-
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Figure 2.19:Queuing dynamics. (a) The steady-state queue length as a function ofλ/µmax.
(b) The behavior of the queue length when there is a temporary overloadin the system. The
solid line shows a realization of an event-based simulation, and the dashed line shows the
behavior of the flow model (2.29).

tively, but there are variations from sample to sample when the queue length is
short. ∇

Many complex systems use discrete control actions. Such systems can be mod-
eled by characterizing the situations that correspond to each control action, as il-
lustrated in the following example.

Example 2.11 Virtual memory paging control
An early example of the use of feedback in computer systems was applied in the
operating system OS/VS for the IBM 370 [BG68, Cro75]. The system used virtual
memory, which allows programs to address more memory than isphysically avail-
able as fast memory. Data in current fast memory (random access memory, RAM)
is accessed directly, but data that resides in slower memory(disk) is automatically
loaded into fast memory. The system is implemented in such a way that it appears
to the programmer as a single large section of memory. The system performed very
well in many situations, but very long execution times were encountered in over-
load situations, as shown by the open circles in Figure 2.20a.The difficulty was
resolved with a simple discrete feedback system. The load of the central process-
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Figure 2.20: Illustration of feedback in the virtual memory system of the IBM/370. (a) The
effect of feedback on execution times in a simulation, following [BG68]. Results with no
feedback are shown witho, and results with feedback withx. Notice the dramatic decrease
in execution time for the system with feedback. (b) How the three states are obtained based
on process measurements.
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Figure 2.21: Consensus protocols for sensor networks. (a) A simple sensor network with
five nodes. In this network, node 1 communicates with node 2 and node 2 communicates
with nodes 1, 3, 4, 5, etc. (b) A simulation demonstrating the convergenceof the consensus
protocol (2.31) to the average value of the initial conditions.

ing unit (CPU) was measured together with the number of page swaps between
fast memory and slow memory. The operating region was classified as being in
one of three states: normal, underload or overload. The normal state is character-
ized by high CPU activity, the underload state is characterized by low CPU activity
and few page replacements, the overload state has moderate to low CPU load but
many page replacements; see Figure 2.20b. The boundaries between the regions
and the time for measuring the load were determined from simulations using typ-
ical loads. The control strategy was to do nothing in the normal load condition,
to exclude a process from memory in the overload condition and to allow a new
process or a previously excluded process in the underload condition. The crosses
in Figure 2.20a show the effectiveness of the simple feedbacksystem in simulated
loads. Similar principles are used in many other situations,e.g., in fast, on-chip
cache memory. ∇

Example 2.12 Consensus protocols in sensor networks
Sensor networks are used in a variety of applications where wewant to collect
and aggregate information over a region of space using multiple sensors that are
connected together via a communications network. Examples include monitoring
environmental conditions in a geographical area (or insidea building), monitoring
the movement of animals or vehicles and monitoring the resource loading across
a group of computers. In many sensor networks the computational resources are
distributed along with the sensors, and it can be important for the set of distributed
agents to reach a consensus about a certain property, such asthe average tempera-
ture in a region or the average computational load among a setof computers.

We model the connectivity of the sensor network using a graph, with nodes
corresponding to the sensors and edges corresponding to theexistence of a direct
communications link between two nodes. We use the notationNi to represent the
set of neighbors of a nodei. For example, in the network shown in Figure 2.21a
N2 = {1,3,4,5} andN3 = {2,4}.

To solve the consensus problem, letxi be the state of theith sensor, correspond-
ing to that sensor’s estimate of the average value that we aretrying to compute. We
initialize the state to the value of the quantity measured bythe individual sensor.
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The consensus protocol (algorithm) can now be realized as a local update law

xi [k+1] = xi [k]+ γ ∑
j∈Ni

(x j [k]−xi [k]). (2.31)

This protocol attempts to compute the average by updating thelocal state of each
agent based on the value of its neighbors. The combined dynamics of all agents
can be written in the form

x[k+1] = x[k]− γ(D−A)x[k], (2.32)

whereA is the adjacency matrix andD is a diagonal matrix with entries corre-
sponding to the number of neighbors of each node. The constantγ describes the
rate at which the estimate of the average is updated based on information from
neighboring nodes. The matrixL := D−A is called theLaplacianof the graph.

The equilibrium points of equation (2.32) are the set of states such thatxe[k+
1] = xe[k]. It can be shown thatxe = (α,α, . . . ,α) is an equilibrium state for the
system, corresponding to each sensor having an identical estimateα for the av-
erage. Furthermore, we can show thatα is indeed the average value of the initial
states. Since there can be cycles in the graph, it is possible that the state of the sys-
tem could enter into an infinite loop and never converge to the desired consensus
state. A formal analysis requires tools that will be introduced later in the text, but
it can be shown that for any connected graph we can always find aγ such that the
states of the individual agents converge to the average. A simulation demonstrating
this property is shown in Figure 2.21b. ∇

Biological Systems

Biological systems provide perhaps the richest source of feedback and control ex-
amples. The basic problem of homeostasis, in which a quantitysuch as temperature
or blood sugar level is regulated to a fixed value, is but one of the many types of
complex feedback interactions that can occur in molecular machines, cells, organ-
isms and ecosystems.

Example 2.13 Transcriptional regulation
Transcription is the process by which messenger RNA (mRNA) is generated from
a segment of DNA. The promoter region of a gene allows transcription to be con-
trolled by the presence of other proteins, which bind to the promoter region and
either repress or activate RNA polymerase, the enzyme that produces an mRNA
transcript from DNA. The mRNA is then translated into a protein according to its
nucleotide sequence. This process is illustrated in Figure 2.22.

A simple model of the transcriptional regulation process isthrough the use
of a Hill function [dJ02, Mur04]. Consider the regulation ofa protein A with a
concentration given bypa and a corresponding mRNA concentrationma. Let B
be a second protein with concentrationpb that represses the production of protein
A through transcriptional regulation. The resulting dynamics of pa andma can be
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Figure 2.22:Biological circuitry. The cell on the left is a bovine pulmonary cell, stained so
that the nucleus, actin and chromatin are visible. The figure on the right gives an overview
of the process by which proteins in the cell are made. RNA is transcribed from DNA by an
RNA polymerase enzyme. The RNA is then translated into a protein by an organelle called
a ribosome.

written as

dma

dt
=

αab

1+kabpnab
b

+αa0− γama,
dpa

dt
= βama−δapa, (2.33)

whereαab+ αa0 is the unregulated transcription rate,γa represents the rate of
degradation of mRNA,αab, kab andnab are parameters that describe how B re-
presses A,βa represents the rate of production of the protein from its correspond-
ing mRNA andδa represents the rate of degradation of the protein A. The pa-
rameterαa0 describes the “leakiness” of the promoter, andnab is called the Hill
coefficient and relates to the cooperativity of the promoter.

A similar model can be used when a protein activates the production of another
protein rather than repressing it. In this case, the equations have the form

dma

dt
=

αabkabpnab
b

1+kabpnab
b

+αa0− γama,
dpa

dt
= βama−δapa, (2.34)

where the variables are the same as described previously. Note that in the case of
the activator, ifpb is zero, then the production rate isαa0 (versusαab+αa0 for the
repressor). Aspb gets large, the first term in the expression for ˙ma approaches 1
and the transcription rate becomesαab+αa0 (versusαa0 for the repressor). Thus
we see that the activator and repressor act in opposite fashion from each other.

As an example of how these models can be used, we consider the model of a
“repressilator,” originally due to Elowitz and Leibler [EL00].The repressilator is
a synthetic circuit in which three proteins each repress another in a cycle. This is
shown schematically in Figure 2.23a, where the three proteins are TetR,λ cI and
LacI. The basic idea of the repressilator is that if TetR is present, then it represses
the production ofλ cI. If λ cI is absent, then LacI is produced (at the unregulated
transcription rate), which in turn represses TetR. Once TetR is repressed, thenλ cI
is no longer repressed, and so on. If the dynamics of the circuit are designed prop-
erly, the resulting protein concentrations will oscillate.

We can model this system using three copies of equation (2.33), with A and



60 CHAPTER 2. SYSTEM MODELING

ampR

SC101 

origin

PLtetO1

 cI-lite

 PR

lacI-lite

PLlacO1

tetR-lite

TetR

LacI cI

(a) Repressilator plasmid

0 100 200 300
0

1000

2000

3000

4000

5000

Time t [min]

P
ro

te
in

s 
pe

r 
ce

ll

 

 
 cI
 lacI
 tetR

(b) Repressilator simulation

Figure 2.23: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simple model for the repressilator, showing
the oscillation of the individual protein concentrations. (Figure courtesy M. Elowitz.)

B replaced by the appropriate combination of TetR, cI and LacI. The state of the
system is then given byx= (mTetR, pTetR,mcI, pcI,mLacI, pLacI). Figure 2.23b shows
the traces of the three protein concentrations for parameters n = 2, α = 0.5, k =
6.25×10−4, α0 = 5×10−4, γ = 5.8×10−3, β = 0.12 andδ = 1.2×10−3 with
initial conditionsx(0) = (1,0,0,200,0,0) (following [EL00]). ∇

Example 2.14 Wave propagation in neuronal networks
The dynamics of the membrane potential in a cell are a fundamental mechanism
in understanding signaling in cells, particularly in neurons and muscle cells. The
Hodgkin–Huxley equations give a simple model for studying propagation waves
in networks of neurons. The model for a single neuron has the form

C
dV
dt

=−INa− IK − Ileak+ Iinput,

whereV is the membrane potential,C is the capacitance,INa andIK are the current
caused by the transport of sodium and potassium across the cell membrane,Ileak
is a leakage current andIinput is the external stimulation of the cell. Each current
obeys Ohm’s law, i.e.,

I = g(V −E),

whereg is the conductance andE is the equilibrium voltage. The equilibrium volt-
age is given by Nernst’s law,

E =
RT
nF

log
ce

ci
,

whereR is Boltzmann’s constant,T is the absolute temperature,F is Faraday’s
constant,n is the charge (or valence) of the ion andci andce are the ion concentra-
tions inside the cell and in the external fluid. At 20◦C we haveRT/F = 20 mV.

The Hodgkin–Huxley model was originally developed as a meansto predict
the quantitative behavior of the squid giant axon [HH52]. Hodgkin and Huxley
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shared the 1963 Nobel Prize in Physiology (along with J. C. Eccles) for analysis
of the electrical and chemical events in nerve cell discharges. The voltage clamp
described in Section 1.3 was a key element in Hodgkin and Huxley’s experiments.

∇

2.5 Further Reading

Modeling is ubiquitous in engineering and science and has a long history in applied
mathematics. For example, the Fourier series was introduced by Fourier when he
modeled heat conduction in solids [Fou07]. Models of dynamics have been de-
veloped in many different fields, including mechanics [Arn78, Gol53], heat con-
duction [CJ59], fluids [BRS60], vehicles [Abk69, Bla91, Ell94], robotics [MLS94,
SV89], circuits [Gui63], power systems [Kun93], acoustics [Ber54] and microme-
chanical systems [Sen01]. Control theory requires modelingfrom many differ-
ent domains, and most control theory texts contain several chapters on model-
ing using ordinary differential equations and difference equations (see, for ex-
ample, [FPEN05]). A classic book on the modeling of physical systems, espe-
cially mechanical, electrical and thermofluid systems, is Cannon [Can03]. The
book by Aris [Ari94] is highly original and has a detailed discussion of the use
of dimension-free variables. Two of the authors’ favorite books on modeling of
biological systems are J. D. Murray [Mur04] and Wilson [Wil99].

Exercises

2.1 (Chain of integrators form) Consider the linear ordinary differential equa-
tion (2.7). Show that by choosing a state space representation with x1 = y, the
dynamics can be written as

A=
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This canonical form is called thechain of integratorsform.

2.2(Inverted pendulum) Use the equations of motion for a balance system to derive
a dynamic model for the inverted pendulum described in Example 2.2 and verify
that for smallθ the dynamics are approximated by equation (2.10).

2.3 (Discrete-time dynamics) Consider the following discrete-time system

x[k+1] = Ax[k]+Bu[k], y[k] =Cx[k],

where

x=
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In this problem, we will explore some of the properties of this discrete-time system
as a function of the parameters, the initial conditions and the inputs.

(a) For the case whena12 = 0 andu = 0, give a closed form expression for the
output of the system.

(b) A discrete system is inequilibriumwhenx[k+1] = x[k] for all k. Let u= r be
a constant input and compute the resulting equilibrium point for the system. Show
that if |aii | < 1 for all i, all initial conditions give solutions that converge to the
equilibrium point.

(c) Write a computer program to plot the output of the system in response to a unit
step input,u[k] = 1, k ≥ 0. Plot the response of your system withx[0] = 0 andA
given bya11 = 0.5, a12 = 1 anda22 = 0.25.

2.4 (Keynesian economics) Keynes’ simple model for an economy is given by

Y[k] =C[k]+ I [k]+G[k],

whereY, C, I andG are gross national product (GNP), consumption, investment
and government expenditure for yeark. Consumption and investment are modeled
by difference equations of the form

C[k+1] = aY[k], I [k+1] = b(C[k+1]−C[k]),

wherea and b are parameters. The first equation implies that consumption in-
creases with GNP but that the effect is delayed. The second equation implies that
investment is proportional to the rate of change of consumption.

Show that the equilibrium value of the GNP is given by

Ye =
1

1−a
(Ie+Ge),

where the parameter 1/(1−a) is the Keynes multiplier (the gain fromI or G to
Y). With a= 0.75 an increase of government expenditure will result in a fourfold
increase of GNP. Also show that the model can be written as thefollowing discrete-
time state model:
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G[k],

Y[k] =C[k]+ I [k]+G[k].

2.5(Least squares system identification) Consider a nonlinear differential equation�
that can be written in the form

dx
dt

=
M

∑
i=1

αi fi(x),

where fi(x) are known nonlinear functions andαi are unknown, but constant, pa-
rameters. Suppose that we have measurements (or estimates) of the full statex at
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time instantst1, t2, . . . , tN, with N > M. Show that the parametersαi can be deter-
mined by finding the least squares solution to a linear equation of the form

Hα = b,

whereα ∈ R
M is the vector of all parameters andH ∈ R

N×M and b ∈ R
N are

appropriately defined.

2.6(Normalized oscillator dynamics) Consider a damped spring–mass system with
dynamics

mq̈+cq̇+kq= F.

Let ω0 =
√

k/mbe the natural frequency andζ = c/(2
√

km) be the damping ratio.

(a) Show that by rescaling the equations, we can write the dynamics in the form

q̈+2ζ ω0q̇+ω2
0q= ω2

0u, (2.35)

whereu= F/k. This form of the dynamics is that of a linear oscillator with natural
frequencyω0 and damping ratioζ .

(b) Show that the system can be further normalized and writtenin the form

dz1

dτ
= z2,

dz2

dτ
=−z1−2ζz2+v. (2.36)

The essential dynamics of the system are governed by a single damping parameter
ζ . TheQ-valuedefined asQ= 1/2ζ is sometimes used instead ofζ .

2.7(Electric generator) An electric generator connected to a strong power grid can
be modeled by a momentum balance for the rotor of the generator:

J
d2ϕ
dt2

= Pm−Pe = Pm− EV
X

sinϕ,

whereJ is the effective moment of inertia of the generator,ϕ the angle of rota-
tion, Pm the mechanical power that drives the generator,Pe is the active electrical
power, E the generator voltage,V the grid voltage andX the reactance of the
line. Assuming that the line dynamics are much faster than the rotor dynamics,
Pe =VI = (EV/X)sinϕ, whereI is the current component in phase with the volt-
ageE andϕ is the phase angle between voltagesE andV. Show that the dynamics
of the electric generator has a normalized form that is similar to the dynamics of a
pendulum with forcing at the pivot.

2.8 (Admission control for a queue) Consider the queuing systemdescribed in
Example 2.10. The long delays created by temporary overloads can be reduced by
rejecting requests when the queue gets large. This allows requests that are accepted
to be serviced quickly and requests that cannot be accommodated to receive a
rejection quickly so that they can try another server. Consider an admission control
system described by

dx
dt

= λu−µmax
x

x+1
, u= sat(0,1)(k(r −x)), (2.37)
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where the controller is a simple proportional control with saturation (sat(a,b) is
defined by equation (3.9)) andr is the desired (reference) queue length. Use a
simulation to show that this controller reduces the rush-hour effect and explain
how the choice ofr affects the system dynamics.

2.9 (Biological switch) A genetic switch can be formed by connecting two repres-
sors together in a cycle as shown below.

u1

A

B

u2
B

u2

u1

A

Using the models from Example 2.13—assuming that the parameters are the same
for both genes and that the mRNA concentrations reach steadystate quickly—
show that the dynamics can be written in normalized coordinates as

dz1

dτ
=

µ
1+zn

2
−z1−v1,

dz2

dτ
=

µ
1+zn

1
−z2−v2, (2.38)

wherez1 andz2 are scaled versions of the protein concentrations and the time scale
has also been changed. Show thatµ ≈ 200 using the parameters in Example 2.13,
and use simulations to demonstrate the switch-like behavior of the system.

2.10 (Motor drive) Consider a system consisting of a motor driving two masses
that are connected by a torsional spring, as shown in the diagram below.

Motor
I

J1

1

1

J2

ω

ϕ 2ϕ

2ω

This system can represent a motor with a flexible shaft that drives a load. Assuming
that the motor delivers a torque that is proportional to the current, the dynamics of
the system can be described by the equations

J1
d2ϕ1

dt2
+c
(dϕ1

dt
− dϕ2

dt

)

+k(ϕ1−ϕ2) = kI I ,

J2
d2ϕ2

dt2
+c
(dϕ2

dt
− dϕ1

dt

)

+k(ϕ2−ϕ1) = Td.

(2.39)

Similar equations are obtained for a robot with flexible arms and for the arms of
DVD and optical disk drives.

Derive a state space model for the system by introducing the (normalized) state
variablesx1=ϕ1, x2=ϕ2, x3=ω1/ω0, andx4=ω2/ω0, whereω0=

√

k(J1+J2)/(J1J2)
is the undamped natural frequency of the system when the control signal is zero.


