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Chapter Two
System Modeling

... | asked Fermi whether he was not impressed by the agreemawtdre our calculated
numbers and his measured numbers. He replied, “How many arbipargmeters did you
use for your calculations?” | thought for a moment about our cut-ofigedures and said,
“Four” He said, “l remember my friend Johnny von Neumann useday svith four param-
eters | can fit an elephant, and with five | can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for mesatospscattering to
Enrico Fermi in 1953 [Dys04].

A model is a precise representation of a system’s dynamied ts answer
guestions via analysis and simulation. The model we chogsendis on the ques-
tions we wish to answer, and so there may be multiple models fingle dy-
namical system, with different levels of fidelity dependingtbe phenomena of
interest. In this chapter we provide an introduction to thecept of modeling and
present some basic material on two specific methods commaeely in feedback
and control systems: differential equations and diffeeemguations.

2.1 Modeling Concepts

A modelis a mathematical representation of a physical, biologicahformation
system. Models allow us to reason about a system and maké&twad about
how a system will behave. In this text, we will mainly be irgsted in models of
dynamical systems describing the input/output behavi@ystems, and we will
often work in “state space” form.

Roughly speaking, a dynamical system is one in which thecesffef actions
do not occur immediately. For example, the velocity of a caesinot change
immediately when the gas pedal is pushed nor does the tetupeia a room
rise instantaneously when a heater is switched on. Similafyeadache does not
vanish right after an aspirin is taken, requiring time fdoitake effect. In business
systems, increased funding for a development project datdacrease revenues in
the short term, although it may do so in the long term (if it wagod investment).
All of these are examples of dynamical systems, in which thlealsior of the
system evolves with time.

In the remainder of this section we provide an overview of safithe key
concepts in modeling. The mathematical details introdueed are explored more
fully in the remainder of the chapter.
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Figure 2.1: Spring—mass system with nonlinear damping. The position of the mass is de-
noted byq, with g = O corresponding to the rest position of the spring. The forces on the
mass are generated by a linear spring with spring conktamdl a damper with force depen-
dent on the velocity.”

The Heritage of Mechanics

The study of dynamics originated in attempts to describegtéag motion. The
basis was detailed observations of the planets by TychoeBaal the results of
Kepler, who found empirically that the orbits of the plan&tsild be well described
by ellipses. Newton embarked on an ambitious program totexplain why the
planets move in ellipses, and he found that the motion coeld¥plained by his
law of gravitation and the formula stating that force equadss times acceleration.
In the process he also invented calculus and differentiahtons.

One of the triumphs of Newton’s mechanics was the obsenvdltiat the mo-
tion of the planets could be predicted based on the curresitigos and velocities
of all planets. It was not necessary to know the past motioa stdteof a dynam-
ical system is a collection of variables that completelyrabterizes the motion of
a system for the purpose of predicting future motion. Forstesy of planets the
state is simply the positions and the velocities of the pgkand/e call the set of all
possible states thstate space

A common class of mathematical models for dynamical systisnesdinary
differential equations (ODES). In mechanics, one of the fstsuch differential
equations is that of a spring—mass system with damping:

mg+c(q) +kg= 0. (2.1)

This system is illustrated in Figure 2.1. The variafple R represents the position
of the masam with respect to its rest position. We use the notatipio denote
the derivative ofg with respect to time (i.e., the velocity of the mass) antb ~
represent the second derivative (acceleration). The ssi@gsumed to satisfy
Hooke’s law, which says that the force is proportional to displacement. The
friction element (damper) is taken as a nonlinear functi@), which can model
effects such as stiction and viscous drag. The posgiand velocityq represent
the instantaneous state of the system. We say that thissystasecond-order
systensince the dynamics depend on the first two derivatives of

The evolution of the position and velocity can be describadgusither a time
plot or a phase portrait, both of which are shown in Figure 2tztime plot on
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Figure 2.2: lllustration of a state model. A state model gives the rate of change of tiee sta
as a function of the state. The plot on the left shows the evolution of the statéuaction

of time. The plot on the right shows the evolution of the states relative to ethel, with

the velocity of the state denoted by arrows.

the left, shows the values of the individual states as a fonctf time. Thephase
portrait, on the right, shows theector fieldfor the system, which gives the state
velocity (represented as an arrow) at every point in the Sadice. In addition, we
have superimposed the traces of some of the states fromedtiffeonditions. The
phase portrait gives a strong intuitive representatiorheféquation as a vector
field or a flow. While systems of second order (two states) carepeesented in
this way, unfortunately it is difficult to visualize equat®of higher order using
this approach.

The differential equation (2.1) is called antonomousystem because there
are no external influences. Such a model is natural for use @stigl mechanics
because it is difficult to influence the motion of the planetanbmy examples, it
is useful to model the effects of external disturbances atrotled forces on the
system. One way to capture this is to replace equation (.1) b

md+c(q) +kg=u, (2.2)

whereu represents the effect of external inputs. The model (2.2llsa aforced

or controlled differential equatianit implies that the rate of change of the state
can be influenced by the inputt). Adding the input makes the model richer and
allows new questions to be posed. For example, we can exammatinfluence
external disturbances have on the trajectories of a systenin the case where
the input variable is something that can be modulated in &raolbed way, we can
analyze whether it is possible to “steer” the system from poiat in the state
space to another through proper choice of the input.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineg, where the de-
sign of electronic amplifiers led to a focus on input/outpuidogor. A system was
considered a device that transforms inputs to outputs|uesdrited in Figure 2.3.
Conceptually an input/output model can be viewed as a gadoh¢ tof inputs and
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Figure 2.3: lllustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the onthemight is its
representation as a block diagram.

outputs. Given an input signalt) over some interval of time, the model should
produce the resulting outpwtt).

The input/output framework is used in many engineering dis@s since it
allows us to decompose a system into individual componesrisected through
their inputs and outputs. Thus, we can take a complicate@rmsystich as a radio
or a television and break it down into manageable pieces aadie receiver,
demodulator, amplifier and speakers. Each of these piecesdaohinputs and
outputs and, through proper design, these components cardoeonnected to
form the entire system.

The input/output view is particularly useful for the spedaikss oflinear time-
invariant systemsrThis term will be defined more carefully later in this chapier,
roughly speaking a system is linear if the superpositiorlifaah) of two inputs
yields an output that is the sum of the outputs that wouldespond to individual
inputs being applied separately. A system is time-invaiiftie output response
for a given input does not depend on when that input is applied

Many electrical engineering systems can be modeled bytlitve-invariant
systems, and hence a large number of tools have been dede¢topralyze them.
One such tool is thetep responsevhich describes the relationship between an
input that changes from zero to a constant value abruptlyefa isput) and the
corresponding output. As we shall see later in the text, the esponse is very
useful in characterizing the performance of a dynamicaksgsand it is often used
to specify the desired dynamics. A sample step responsevasim Figure 2.4a.

Another way to describe a linear time-invariant system igefresent it by its
response to sinusoidal input signals. This is calledftthguency responsand a
rich, powerful theory with many concepts and strong, usedslilts has emerged.
The results are based on the theory of complex variables arlddeappansforms.
The basic idea behind frequency response is that we can ctatypdbaracterize
the behavior of a system by its steady-state response teadal inputs. Roughly
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Figure 2.4: Input/output response of a linear system. The step response (&9 gmautput
of the system due to an input that changes from 0 to 1 at timé& s. The frequency re-
sponse (b) shows the amplitude gain and phase change due to a sihingaitiat different

frequencies.

speaking, this is done by decomposing any arbitrary signal a linear combi-
nation of sinusoids (e.g., by using the Fourier transforng hen using linearity
to compute the output by combining the response to the iddalifrequencies. A
sample frequency response is shown in Figure 2.4b.

The input/output view lends itself naturally to experimémtatermination of
system dynamics, where a system is characterized by recpidi response to
particular inputs, e.g., a step or a set of sinusoids ovengeraf frequencies.

The Control View

When control theory emerged as a discipline in the 1940safipeoach to dy-
namics was strongly influenced by the electrical enginedfimaut/output) view.
A second wave of developments in control, starting in the 1&850s, was inspired
by mechanics, where the state space perspective was usegiméhgence of space
flight is a typical example, where precise control of the oobid spacecraft is es-
sential. These two points of view gradually merged into wkabday the state
space representation of input/output systems.

The development of state space models involved modifyingrtbdels from
mechanics to include external actuators and sensors dimingtimore general
forms of equations. In control, the model given by equatih@) was replaced by

Ko fxu,  y=hocw), 23
wherex is a vector of state variablesjs a vector of control signals aryds a vec-
tor of measurements. The tedw/dt represents the derivative pfvith respect to
time, now considered a vector, alidandh are (possibly nonlinear) mappings of
their arguments to vectors of the appropriate dimensionnte@chanical systems,
the state consists of the position and velocity of the syssanthatx = (q,q) in
the case of a damped spring—mass system. Note that in th@ldanmulation we
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model dynamics as first-order differential equations, butwiesee that this can
capture the dynamics of higher-order differential equeiby appropriate defini-
tion of the state and the mapsandh.

Adding inputs and outputs has increased the richness ofdlsical problems
and led to many new concepts. For example, it is natural tdaf gslssible statex
can be reached with the proper choicaigfeachability) and if the measurement
contains enough information to reconstruct the state (ohbdity). These topics
will be addressed in greater detail in Chapters 6 and 7.

A final development in building the control point of view wag timergence of
disturbances and model uncertainty as critical elementsaritheory. The simple
way of modeling disturbances as deterministic signalsdik@s and sinusoids has
the drawback that such signals cannot be predicted precisehore realistic ap-
proach is to model disturbances as random signals. This viedvgives a natural
connection between prediction and control. The dual viewamit/output repre-
sentations and state space representations are pattiausaful when modeling
uncertainty since state models are convenient to descnbennal model but un-
certainties are easier to describe using input/output teqdéen via a frequency
response description). Uncertainty will be a constant thémoughout the text
and will be studied in particular detail in Chapter 12.

An interesting observation in the design of control systentisat feedback sys-
tems can often be analyzed and designed based on compgraimple models.
The reason for this is the inherent robustness of feedbat&ragsHowever, other
uses of models may require more complexity and more accutasy example is
feedforward control strategies, where one uses a modektmprpute the inputs
that cause the system to respond in a certain way. Anotharigsystem valida-
tion, where one wishes to verify that the detailed respoh#eeosystem performs
as it was designed. Because of these different uses of madelsommon to use
a hierarchy of models having different complexity and figelit

Multidomain Modeling

Modeling is an essential element of many disciplines, taditions and methods
from individual disciplines can differ from each other, Hsstrated by the previ-
ous discussion of mechanical and electrical engineerindifffeulty in systems
engineering is that it is frequently necessary to deal wétefogeneous systems
from many different domains, including chemical, electjenechanical and in-
formation systems.

To model such multidomain systems, we start by partitiorangystem into
smaller subsystems. Each subsystem is represented by dalquations for mass,
energy and momentum, or by appropriate descriptions ofrimition processing
in the subsystem. The behavior at the interfaces is capturetkescribing how
the variables of the subsystem behave when the subsystenistenrconnected.
These interfaces act by constraining variables within tdé&vidual subsystems to
be equal (such as mass, energy or momentum fluxes). The comquded is then
obtained by combining the descriptions of the subsysterddtainterfaces.
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Using this methodology it is possible to build up librarigssabsystems that
correspond to physical, chemical and informational congpdg The procedure
mimics the engineering approach where systems are buitt f@bsystems that
are themselves built from smaller components. As expegiégngained, the com-
ponents and their interfaces can be standardized and teallécmodel libraries.
In practice, it takes several iterations to obtain a goagi¥pthat can be reused for
many applications.

State models or ordinary differential equations are noablétfor component-
based modeling of this form because states may disappear eameponents are
connected. This implies that the internal description of mgonent may change
when it is connected to other components. As an illustratierconsider two ca-
pacitors in an electrical circuit. Each capacitor has a stateesponding to the
voltage across the capacitors, but one of the states wapgisar if the capacitors
are connected in parallel. A similar situation happens with rotating inertias,
each of which is individually modeled using the angle of tiofmand the angular
velocity. Two states will disappear when the inertias airegd by a rigid shaft.

This difficulty can be avoided by replacing differential eqoas bydifferential
algebraic equationswhich have the form

F(z,2) =0,
wherez € R". A simple special case is

x="f(xy), g(xy) =0, (2.4)

wherez = (x,y) andF = (x— f(x,y),9(x,y)). The key property is that the deriva-
tive zis not given explicitly and there may be pure algebraic iefst between the
components of the vectar

The model (2.4) captures the examples of the parallel capa@nd the linked
rotating inertias. For example, when two capacitors ar@eoted, we simply add
the algebraic equation expressing that the voltages athessapacitors are the
same.

Modelicais a language that has been developed to support compoased-b
modeling. Differential algebraic equations are used as#sc description, and
object-oriented programming is used to structure the nsodiébdelica is used to
model the dynamics of technical systems in domains such akanéal, electri-
cal, thermal, hydraulic, thermofluid and control subsystdvtmdelica is intended
to serve as a standard format so that models arising in éiffedomains can be
exchanged between tools and users. A large set of free anahemial Modelica
component libraries are available and are used by a growimgper of people
in industry, research and academia. For further informagibout Modelica, see
http://www.modelica.org or Tiller [TilO1].
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2.2 State Space Models

In this section we introduce the two primary forms of modélsttwe use in this
text: differential equations and difference equationghBoake use of the notions
of state, inputs, outputs and dynamics to describe the ahafva system.

Ordinary Differential Equations

The state of a system is a collection of variables that sunmmdhe past of a
system for the purpose of predicting the future. For a playsgstem the state
is composed of the variables required to account for stoohgeass, momentum
and energy. A key issue in modeling is to decide how accyr#éitéd storage has
to be represented. The state variables are gathered in a weet®" called the
state vectarThe control variables are represented by another vectoRP, and
the measured signal by the vecyor RY. A system can then be represented by the
differential equation

3.)[(: f(X,U), y= h(X, U), (25)

wheref : R" x RP — R" andh: R" x RP — RY are smooth mappings. We call a
model of this form astate space model

The dimension of the state vector is called trder of the system. The sys-
tem (2.5) is calledime-invariantbecause the functions andh do not depend
explicitly on timet; there are more general time-varying systems where the func
tions do depend on time. The model consists of two functidresfunctionf gives
the rate of change of the state vector as a function of statel controlu, and the
functionh gives the measured values as functions of stated controlu.

A system is called dnear state space system if the functiohandh are linear
in x andu. A linear state space system can thus be represented by

?;[( = Ax+ Bu, y = Cx+ Du, (2.6)

whereA, B, C andD are constant matrices. Such a system is said tmbar and
time-invariant or LTI for short. The matrixXA is called thedynamics matrixthe
matrix B is called thecontrol matrix the matrixC is called thesensor matrixand
the matrixD is called thedirect term Frequently systems will not have a direct
term, indicating that the control signal does not influenesattput directly.
A different form of linear differential equations, genezalg the second-order
dynamics from mechanics, is an equation of the form
dn dnfl
dTZ ra dt”—i/
wheret is the independent (time) variabl}) is the dependent (output) variable
and u(t) is the input. The notation¥y/dt¥ is used to denote thkth derivative
of y with respect tat, sometimes also written 389. The controlled differential
equation (2.7) is said to be ath-order system. This system can be converted into

+-t+ay=u, 2.7)
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state space form by defining

X1 dnfly/dtnfl
X2 dnfzy/dtan
X= : = : )
Xn—1 dy/dt
Xn Yy

and the state space equations become

X1 —aiXy — - —anXp u
X X 0
g 2 B 1 . . .
dt . - . . ) y_ n
Xn-1 Xn-2 0
Xn Xn—1 0

With the appropriate definitions &, B, C andD, this equation is in linear state
space form.

An even more general system is obtained by letting the olpatlinear com-
bination of the states of the system, i.e.,

y = bixg +boxo + - + bpxp + du.

This system can be modeled in state space as

X1 —a1 —8.2 ... —dn-1 —an 1
q X2 . 0 0 0
< e 0 0 |x+|O0]uy,
: : (2.8)
Xn 1 0 0
b]_ by, ... ]X+du

This particular form of a linear state space system is catbedhable canonical
formand will be studied in more detail in later chapters.

Example 2.1 Balance systems

An example of a type of system that can be modeled using ardutifferential
equations is the class bilance system#\ balance system is a mechanical sys-
tem in which the center of mass is balanced above a pivot.pdarhe common
examples of balance systems are shown in Figure 2.5. The SegRey®nal
Transporter (Figure 2.5a) uses a motorized platform tolstaeta person standing
on top of it. When the rider leans forward, the transportatevice propels itself
along the ground but maintains its upright position. Anotixeample is a rocket
(Figure 2.5b), in which a gimbaled nozzle at the bottom of theket is used to
stabilize the body of the rocket above it. Other examplesatdice systems in-
clude humans or other animals standing upright or a perslamt&iag a stick on
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(a) Segway (b) Saturn rocket (c) Cart—pendulum system

Figure 2.5: Balance systems. (a) Segway Personal Transporter, (b) Satket @nd (c)
inverted pendulum on a cart. Each of these examples uses forcedattitra of the system
to keep it upright.

their hand.
Balance systems are a generalization of the spring—maites1syse saw earlier.
We can write the dynamics for a mechanical system in the géfeam

M(a)d+C(a,q) +K(q) =B(q)u,

whereM(q) is the inertia matrix for the systen(q,q) represents the Coriolis
forces as well as the dampinig(q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into theuwhycs. The spe-
cific form of the equations can be derived using Newtonian raeics. Note that
each of the terms depends on the configuration of the sygterd that these terms
are often nonlinear in the configuration variables.

Figure 2.5c shows a simplified diagram for a balance systemgtomgsof an
inverted pendulum on a cart. To model this system, we chaase wariables that
represent the position and velocity of the base of the sygpeand p, and the an-
gle and angular rate of the structure above the b@sad 6. We letF represent
the force applied at the base of the system, assumed to be hotizontal direc-
tion (aligned withp), and choose the position and angle of the system as outputs.
With this set of definitions, the dynamics of the system candmaputed using
Newtonian mechanics and have the form

(M+m) —mlcosB) (p cp+mising62)  (F
[—mlcose (J+m|2)] [9] * [ y6 — mglsin@ ] - [O] (29

whereM is the mass of the basm,andJ are the mass and moment of inertia of the
system to be balanceldis the distance from the base to the center of mass of the
balanced body; andy are coefficients of viscous friction amds the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space fgrdetining the

state ax=(p, 8, p, 0), the input as1 = F and the output ag= (p, 0). If we define
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the total mass and total inertia as
M=M+m,  J=J+mP,

the equations of motion then become

( p
p . 6 .
dloe —mlsg82 +mgml?/3)sgcg — cp— (y/J)mlcg8 +u
dt | p| M¢ —m(mi2/%)c3 »
0 —mI2530992+Mth59—clcep—y(Mt/m)éJrIceu
J(Mt/m) —m(Icg)?

_1|p
y_ 6] 9
where we have used the shorthanpd= cosf andsg = sin6.

In many cases, the angewill be very close to 0, and hence we can use the
approximations sifl ~ 6 and co® =~ 1. Furthermore, if0 is small, we can ig-

nore quadratic and higher terms én Substituting these approximations into our
equations, we see that we are left witlireear state space equation

D 0 0 1 0 0 0
d|e 0 0 0 1 0 0
at [p| = o mP2gu —ca/u —yim/u| [o] T asm |
0 0 Mmgl/u —clm/u —yM/u) \O Im/u
_(r 000,
Y=1o 1 0 o) *®
whereu = MyJ — Al 0

Example 2.2 Inverted pendulum

A variation of the previous example is one in which the lozaf the base does

not need to be controlled. This happens, for example, if weéraeeested only in
stabilizing a rocket’s upright orientation without wonng about the location of
base of the rocket. The dynamics of this simplified system aenddy

d [(9] _ [mgl ° ] y—0 (2.10)
dt (6) | —=Zsin6— L6+ —cosbul’ o '
J Joo%
wherey is the coefficient of rotational friction = J+ ml® andu is the force
applied at the base. This system is referred to dsarted pendulum O

Difference Equations

In some circumstances, it is more natural to describe thugen of a system
at discrete instants of time rather than continuously iretiiifi we refer to each
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of these times by an integ&r=0,1,2, ..., then we can ask how the state of the
system changes for eakhJust as in the case of differential equations, we define
the state to be those sets of variables that summarize thefghs system for the
purpose of predicting its future. Systems described in traamer are referred to
asdiscrete-time systems

The evolution of a discrete-time system can be written in ¢t f

X[k+ 1] = f(x[k],ulk]), y[K| = h(x[k],ulk]), (2.11)

wherex[k] € R" is the state of the system at tirkgan integer)u[k] € RP is the
input andy[k] € R% is the output. As beforef, andh are smooth mappings of the
appropriate dimension. We call equation (2.13jifference equatiosince it tells
us howx[k + 1] differs fromx[k]. The statex[k] can be either a scalar- or a vector-
valued quantity; in the case of the latter we weijék] for the value of thgth state
at timek.

Just as in the case of differential equations, it is oftercdse that the equations
are linear in the state and input, in which case we can desthi#&system by

x[k+ 1] = Axk] + BulK], y[K] = Cx[k] + DulK].

As before, we refer to the matricés B, C andD as the dynamics matrix, the
control matrix, the sensor matrix and the direct term. Thatsw of a linear dif-
ference equation with initial conditiox]0] and inputu[0],...,u[T] is given by

x[K] = AX[0] + kz:Akilsu[ il,
J:
1 k> 0. (2.12)
y[k] = CAX[0] + %CA"’j’lBu[ j] + Dulk],
=

Difference equations are also useful as an approximatialiffefrential equa-
tions, as we will show later.

Example 2.3 Predator—prey
As an example of a discrete-time system, consider a simptiehior a predator—
prey system. The predator—prey problem refers to an ecalbgystem in which
we have two species, one of which feeds on the other. This tfgsgsbem has
been studied for decades and is known to exhibit interesiymgmics. Figure 2.6
shows a historical record taken over 90 years for a populaifdynxes versus a
population of hares [Mac37]. As can been seen from the gtaptannual records
of the populations of each species are oscillatory in nature

A simple model for this situation can be constructed usingsardte-time
model by keeping track of the rate of births and deaths of spelties. Letting
H represent the population of hares dncepresent the population of lynxes, we
can describe the state in terms of the populations at despeziods of time. Let-
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Figure 2.6: Predator versus prey. The photograph on the left shows a Canadiaarygl
a snowshoe hare, the lynx’s primary prey. The graph on the rightskiwe populations of
hares and lynxes between 1845 and 1935 in a section of the Canadigesjdtac37]. The

data were collected on an annual basis over a period of 90 yearso@Pdyoh copyright Tom
and Pat Leeson.)

ting k be the discrete-time index (e.g., the day or month numbex);an write
Hk+ 1] = H[K] + by (u)H K] —aL[k]H K],
L[k+ 1] = L[k] + cL[K|H[k] —dsL[K],

whereby (u) is the hare birth rate per unit period and as a function of toel f
supplyu, ds is the lynx mortality rate and andc are the interaction coefficients.
The interaction ternaL[k]H [k] models the rate of predation, which is assumed to
be proportional to the rate at which predators and prey megttisshence given
by the product of the population sizes. The interaction tekfi]H [K] in the lynx
dynamics has a similar form and represents the rate of groftie lynx popula-
tion. This model makes many simplifying assumptions—sudha$act that hares
decrease in number only through predation by lynxes—nbutends sufficient to
answer basic questions about the system.

To illustrate the use of this system, we can compute the nuoftignxes and
hares at each time point from some initial population. Thadoise by starting with
X[0] = (Ho,Lo) and then using equation (2.13) to compute the populatiotisein
following period. By iterating this procedure, we can geerthe population over
time. The output of this process for a specific choice of pararaeind initial con-
ditions is shown in Figure 2.7. While the details of the siniola are different
from the experimental data (to be expected given the siplaf our assump-
tions), we see qualitatively similar trends and hence weusaithe model to help
explore the dynamics of the system. O

(2.13)

Example 2.4 E-mail server
The IBM Lotus server is an collaborative software system thatinisters users’
e-mail, documents and notes. Client machines interact evithusers to provide
access to data and applications. The server also handlesadth@istrative tasks.
In the early development of the system it was observed tlegpénformance was
poor when the central processing unit (CPU) was overloadeause of too many
service requests, and mechanisms to control the load wereftine introduced.
The interaction between the client and the server is in thra fifremote proce-
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Figure 2.7: Discrete-time simulation of the predator—prey model (2.13). Using thenpa
etersa= ¢ = 0.014, b, (u) = 0.6 andd = 0.7 in equation (2.13) with daily updates, the
period and magnitude of the lynx and hare population cycles approxinmatelh the data
in Figure 2.6.

dure calls (RPCs). The server maintains a log of statisticowipteted requests.
The total number of requests being served, cale® (RPCs in server), is also
measured. The load on the server is controlled by a paranedted vaxUser s,
which sets the total number of client connections to theeseivhis parameter is
controlled by the system administrator. The server can bardeg as a dynami-
cal system withvaxUser s as the input andRl S as the output. The relationship
between input and output was first investigated by explofiregsteady-state per-
formance and was found to be linear.

In [HDPTO04] a dynamic model in the form of a first-order differerequation
is used to capture the dynamic behavior of this system. Usiatgm identification
techniques, they construct a model of the form

y[k+ 1] = ay{k] + bulk],

whereu = MaxUser s —MaxUser s andy = RI S—RI' S. The parametera =
0.43 andb = 0.47 are parameters that describe the dynamics of the systemdar
the operating point, an¥axUser s = 165 andRI S = 135 represent the nomi-
nal operating point of the system. The number of requests wasged over a
sampling period of 60 s. O

Simulation and Analysis

State space models can be used to answer many questions. Derenudst com-
mon, as we have seen in the previous examples, involvesciregthe evolution
of the system state from a given initial condition. While $omple models this can
be done in closed form, more often it is accomplished thracmhputer simula-
tion. One can also use state space models to analyze thdl dedravior of the
system without making direct use of simulation.

Consider again the damped spring—mass system from Seclion2 this time
with an external force applied, as shown in Figure 2.8. We washredict the
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Figure 2.8: A driven spring—mass system with damping. Here we use a linear damping
element with coefficient of viscous frictiom The mass is driven with a sinusoidal force of
amplitudeA.

motion of the system for a periodic forcing function, withigem initial condition,
and determine the amplitude, frequency and decay rate oéthdting motion.

We choose to model the system with a linear ordinary difféakequation.
Using Hooke’s law to model the spring and assuming that thepéa exerts a
force that is proportional to the velocity of the system, vagén

mg+ cq+kg=u, (2.14)

wherem is the massq is the displacement of the massjs the coefficient of
viscous friction k is the spring constant andis the applied force. In state space
form, usingx = (q, ) as the state and choosigg- g as the output, we have

dx e
e c k ul> y=Xi.
dt ——Xo— =X+ —

m m m

We see that this is a linear second-order differential egaatith one inputu and
one outputy.

We now wish to compute the response of the system to an inplaédbrmu =
Asinwt. Although it is possible to solve for the response analiiticave instead
make use of a computational approach that does not rely ogpibefic form of
this system. Consider the general state space system

dx

— = f(x,u).

gt = fxu)

Given the state at timet, we can approximate the value of the state at a short
time h > 0 later by assuming that the rate of changd ©f,u) is constant over the
intervalt tot + h. This gives

X(t+h) =x(t) +hf(x(t),u(t)). (2.15)

Iterating this equation, we can thus solve fas a function of time. This approxi-
mation is known as Euler integration and is in fact a diffeeeaguation if we leh
represent the time increment and wrif&] = x(kh). Although modern simulation
tools such as MATLAB and Mathematica use more accurate methaasEuler
integration, they still have some of the same basic tratke-of
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Figure 2.9: Simulation of the forced spring—mass system with different simulation time
constants. The solid line represents the analytical solution. The dasheddpresent the
approximate solution via the method of Euler integration, using decreasipgizes.

Returning to our specific example, Figure 2.9 shows the restitemputing
X(t) using equation (2.15), along with the analytical compotatWe see that as
h gets smaller, the computed solution converges to the exattien. The form
of the solution is also worth naoticing: after an initial tei@nt, the system settles
into a periodic motion. The portion of the response after thedient is called the
steady-state responsethe input.

In addition to generating simulations, models can also led ts answer other
types of questions. Two that are central to the methods itbestin this text con-
cern the stability of an equilibrium point and the inputfawitfrequency response.
We illustrate these two computations through the exampsband return to the
general computations in later chapters.

Returning to the damped spring—mass system, the equafiomstion with no
input forcing are given by

dx—[ ¢k ] (2.16)

dt | —Sxo——xg
m m

whereXx; is the position of the mass (relative to the rest positiorg gnis its
velocity. We wish to show that if the initial state of the sstis away from the
rest position, the system will return to the rest positioergually (we will later
define this situation to mean that the rest positioasigmptotically stable While
we could heuristically show this by simulating many, manijiah conditions, we
seek instead to prove that this is true &myinitial condition.

To do so, we construct a functidh: R" — R that maps the system state to a
positive real number. For mechanical systems, a convedinite is the energy of
the system,

V(X) = %kx%+%mx§. (2.17)
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If we look at the time derivative of the energy function, we deat

av . . C k
e kxaXa + Mxexo = kxaxo + mxz(—axz — mxl) = —0%,

which is always either negative or zero. Hentg(t)) is never increasing and,
using a bit of analysis that we will see formally later, theiuidual states must
remain bounded.

If we wish to show that the states eventually return to thgioyiwe must use
a slightly more detailed analysis. Intuitively, we can mass follows: suppose
that for some period of time/(x(t)) stops decreasing. Then it must be true that
V(x(t)) = 0, which in turn implies thaty(t) = 0 for that same period. In that case,
X2(t) = 0, and we can substitute into the second line of equatiom®)2olobtain

O0=x = Cx kxf I(x
=Xo= o X = XL

Thus we must have thai also equals zero, and so the only time téx(t)) can
stop decreasing is if the state is at the origin (and heneestfstem is at its rest
position). Since we know thaf (x(t)) is never increasing (because< 0), we
therefore conclude that the origin is stable @oryinitial condition).

This type of analysis, called Lyapunov stability analyss;ansidered in detail
in Chapter 4. It shows some of the power of using models foattadysis of system
properties.

Another type of analysis that we can perform with models isdmpute the
output of a system to a sinusoidal input. We again considesghing—mass sys-
tem, but this time keeping the input and leaving the systeits iariginal form:

mg+cq+kg=u. (2.18)
We wish to understand how the system responds to a sinusojmslof the form
u(t) = Asinwt.

We will see how to do this analytically in Chapter 6, but fomnee make use of
simulations to compute the answer.

We first begin with the observation thatjft) is the solution to equation (2.18)
with inputu(t), then applying an inputit) will give a solution 2(t) (this is easily
verified by substitution). Hence it suffices to look at an inpithwnit magnitude,
A =1. A second observation, which we will prove in Chapter 5het the long-
term response of the system to a sinusoidal input is itseili@ssid at the same
frequency, and so the output has the form

q(t) = g(w)sin(wt + ¢ (w)),
whereg(w) is called thegain of the system and (w) is called thephase(or phase
offset).
To compute the frequency response numerically, we can atmtihe system
at a set of frequencies,...,wy and plot the gain and phase at each of these
frequencies. An example of this type of computation is showFigure 2.10.
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Figure 2.10: A frequency response (gain only) computed by measuring the respain
individual sinusoids. The figure on the left shows the response ofystera as a function
of time to a number of different unit magnitude inputs (at differentdiestries). The figure
on the right shows this same data in a different way, with the magnitude oktiponse
plotted as a function of the input frequency. The filled circles corredporthe particular
frequencies shown in the time responses.

2.3 Modeling Methodology

To deal with large, complex systems, it is useful to haveedét representations
of the system that capture the essential features and hmeleviant details. In all
branches of science and engineering it is common practiaegsome graphical
description of systems, callethematic diagramslhey can range from stylistic
pictures to drastically simplified standard symbols. Thestupés make it possi-
ble to get an overall view of the system and to identify theviaiial components.
Examples of such diagrams are shown in Figure 2.11. Schematgaans are
useful because they give an overall picture of a system, isigogifferent subpro-
cesses and their interconnection and indicating variahlgtscan be manipulated
and signals that can be measured.

Block Diagrams

A special graphical representation calleblack diagramhas been developed in
control engineering. The purpose of a block diagram is to exsigk the informa-
tion flow and to hide details of the system. In a block diagraiffiernt process
elements are shown as boxes, and each box has inputs depditezshwith arrows
pointing toward the box and outputs denoted by lines witbvasrgoing out of the
box. The inputs denote the variables that influence a procedsha outputs de-
note the signals that we are interested in or signals thatinée other subsystems.
Block diagrams can also be organized in hierarchies, winelieidual blocks may
themselves contain more detailed block diagrams.

Figure 2.12 shows some of the notation that we use for bloakaias. Signals
are represented as lines, with arrows to indicate inputsoaityuts. The first di-
agram is the representation for a summation of two signatsinfut/output re-
sponse is represented as a rectangle with the system nam®iloematical de-
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Figure 2.13: A block diagram representation of the flight control system for an irfggng
against the wind. The mechanical portion of the model consists of thelyaigt dynamics
of the fly, the drag due to flying through the air and the forces genergtéuehwings. The
motion of the body causes the visual environment of the fly to changethainformation
is then used to control the motion of the wings (through the sensory mattemsy, closing
the loop.

scription) in the block. Two special cases are a proportigain, which scales the
input by a multiplicative factor, and an integrator, whialtputs the integral of the
input signal.

Figure 2.13 illustrates the use of a block diagram, in thig dasmodeling the
flight response of a fly. The flight dynamics of an insect are inbigdntricate,
involving careful coordination of the muscles within the fiyhaintain stable flight
in response to external stimuli. One known characterigtftes is their ability to
fly upwind by making use of the optical flow in their compound eges feedback
mechanism. Roughly speaking, the fly controls its orientasio that the point of
contraction of the visual field is centered in its visual field.

To understand this complex behavior, we can decompose tralbdynamics
of the system into a series of interconnected subsystensdoky. Referring to
Figure 2.13, we can model the insect navigation system tirangnterconnection
of five blocks. The sensory motor system (a) takes the infaoméitom the visual
system (e) and generates muscle commands that attempetatstdly so that the
point of contraction is centered. These muscle commandaxered into forces
through the flapping of the wings (b) and the resulting aeradyin forces that are
produced. The forces from the wings are combined with the dratipe fly (d) to
produce a net force on the body of the fly. The wind velocity enterough the
drag aerodynamics. Finally, the body dynamics (c) describvethe fly translates
and rotates as a function of the net forces that are appligdTtbe insect position,
speed and orientation are fed back to the drag aerodynamitsision system
blocks as inputs.

Each of the blocks in the diagram can itself be a complicatbdysiem. For
example, the visual system of a fruit fly consists of two coogiktd compound
eyes (with about 700 elements per eye), and the sensory sydtem has about
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200,000 neurons that are used to process information. A detedled block dia-
gram of the insect flight control system would show the intenszxtions between
these elements, but here we have used one block to represerthé motion of
the fly affects the output of the visual system, and a secorekiorepresent how
the visual field is processed by the fly’s brain to generate reusminmands. The
choice of the level of detail of the blocks and what elememteparate into differ-
ent blocks often depends on experience and the questidr@thavants to answer
using the model. One of the powerful features of block diagyrés their ability to
hide information about the details of a system that may notdeded to gain an
understanding of the essential dynamics of the system.

Modeling from Experiments

Since control systems are provided with sensors and ac#,dtds also possible
to obtain models of system dynamics from experiments on tbegss. The mod-
els are restricted to input/output models since only thageats are accessible to
experiments, but modeling from experiments can also be gwdhlwith modeling
from physics through the use of feedback and interconnectio

A simple way to determine a system’s dynamics is to obsemedbponse to a
step change in the control signal. Such an experiment begisstbing the control
signal to a constant value; then when steady state is edtedlithe control signal
is changed quickly to a new level and the output is observed. &tperiment
gives the step response of the system, and the shape of fumsesgives useful
information about the dynamics. It immediately gives anidation of the response
time, and it tells if the system is oscillatory or if the resge is monotone.

Example 2.5 Spring—mass system
Consider the spring—mass system from Section 2.1, whoserdgsare given by

mg+cq+kg=u. (2.19)

We wish to determine the constamis ¢ andk by measuring the response of the
system to a step input of magnituBg

We will show in Chapter 6 that whest < 4km, the step response for this system
from the rest configuration is given by

q(t) = % (1— al)d\/EeXp(_zcr:w) sin(awyt + ¢)) ,

V4km—c? o —tant <\/4km— 02>
) - C .

2m

From the form of the solution, we see that the form of the respas determined
by the parameters of the system. Hence, by measuring céetires of the step
response we can determine the parameter values.

Figure 2.14 shows the response of the system to a step of mdghit= 20 N,
along with some measurements. We start by noting that tlaelststate position
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Figure 2.14: Step response for a spring—mass system. The magnitude of the stéfsinpu
Fo = 20 N. The period of oscillatiofT is determined by looking at the time between two
subsequent local maxima in the response. The period combined wittettysstate value
g() and the relative decrease between local maxima can be used to estinpeeatheters

in a model of the system.

of the mass (after the oscillations die down) is a functiothefspring constark

o) = 22, (2.20)

whereFy is the magnitude of the applied force)(= 1 for a unit step input). The
parameter Ak is called thegain of the system. The period of the oscillation can be
measured between two peaks and must satisfy

2m /4km—c2

Finally, the rate of decay of the oscillations is given by tlpanential factor in
the solution. Measuring the amount of decay between twogeek have

log (q(tl) - %) - Iog(q(tz) - %) = %1

Using this set of three equations, we can solve for the parsiand determine
that for the step response in Figure 2.14 we hawve 250 kg,c ~ 60 N s/m and
k=40 N/m. |

(to—t1). (2.22)

Modeling from experiments can also be done using many otgealks. Sinu-
soidal signals are commonly used (particularly for systewite fast dynamics)
and precise measurements can be obtained by exploitinglaton techniques.
An indication of nonlinearities can be obtained by repenérperiments with in-
put signals having different amplitudes.

Normalization and Scaling

Having obtained a model, it is often useful to scale the \wem by introducing
dimension-free variables. Such a procedure can often diripk equations for a
system by reducing the number of parameters and revea¢atiieg properties of
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the model. Scaling can also improve the numerical conditgmif the model to
allow faster and more accurate simulations.

The procedure of scaling is straightforward: choose uniteéah independent
variable and introduce new variables by dividing the vdealy the chosen nor-
malization unit. We illustrate the procedure with two exdesp

Example 2.6 Spring—mass system
Consider again the spring—mass system introduced edlefecting the damp-
ing, the system is described by

mg+ kg=u.
The model has two parametarsandk. To normalize the model we introduce
dimension-free variables = q/I and T = wyot, whereawy = y/k/m and| is the
chosen length scale. We scale forcerblw? and introducer = u/(mlw?). The
scaled equation then becomes

d? d?q/I 1
: N _ a)g(—kq+U)=—X+v,

drz2 ~ d(wt)2 ml
which is the normalized undamped spring—mass system. &ltitat the normal-
ized model has no parameters, while the original model hadparametersn
andk. Introducing the scaled, dimension-free state variakles x = q/I and
2, = dx/dt = g/(lwy), the model can be written as

a2)= (5o ()4 [0)

This simple linear equation describes the dynamics of anpwgpmass system,
independent of the particular parameters, and hence gs/assight into the fun-
damental dynamics of this oscillatory system. To recoverghysical frequency
of oscillation or its magnitude, we must invert the scaling lvave applied. [

Example 2.7 Balance system
Consider the balance system described in Section 2.1. Nemedamping by
puttingc = 0 andy = 0 in equation (2.9), the model can be written as

d?p d?6 . 00,2
(M+m)W—mICOSGW+mIsm9(a) =F,
d2p ,.d%0 .
—mIcosGWJr(Jerl )W—mglsme_o.

Let an = /mgl/(J+ ml?), choose the length scalelaset the time scale be/tw,
choose the force scale &9 + m)lw? and introduce the scaled variables- wyt,

x=p/l andu=F/((M+m)lwp). The equations then become

d?x d?e . do\2 d’x  d%6 .

a2 acos@w + asm@(a> =u, —Bcos@w + a2 —sind =0,
wherea = m/(M +m) andf = mI?/(J4ml?). Notice that the original model has
five parameterm, M, J, | andg but the normalized model has only two parameters
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Figure 2.15: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a), where the solid line indicates the nominal input/output relatiorsstdpthe
dashed lines indicate the range of possible uncertainty. The uncertairip [E®D59] in

(b) is one way to capture uncertainty in dynamical systems emphasizirgiadel is valid

only in some amplitude and frequency ranges. In (c) a model is repies by a nominal
modelM and another model representing the uncertainty analogous to the representation
of parameter uncertainty.

a andB. If M > mandml? > J, we geta ~ 0 andf ~ 1 and the model can be
approximated by

d?x d’e .

P—u, W—sme_ucose.
The model can be interpreted as a mass combined with an idveetedulum
driven by the same input. O

Model Uncertainty

Reducing uncertainty is one of the main reasons for usirgjd@ek, and it is there-
fore important to characterize uncertainty. When makingsneements, there is a
good tradition to assign both a nominal value and a measuneadrtainty. It is
useful to apply the same principle to modeling, but unfaatety it is often difficult
to express the uncertainty of a model quantitatively.

For a static system whose input/output relation can be cteriaed by a func-
tion, uncertainty can be expressed by an uncertainty barnllasated in Fig-
ure 2.15a. At low signal levels there are uncertainties dusensor resolution,
friction and quantization. Some models for queuing systemesells are based
on averages that exhibit significant variations for smallyatons. At large sig-
nal levels there are saturations or even system failuressifinal ranges where a
model is reasonably accurate vary dramatically betweelicapipns, but it is rare
to find models that are accurate for signal ranges larger té&n 1

Characterization of the uncertainty of a dynamic model isimmore difficult.
We can try to capture uncertainties by assigning unceregind parameters of the
model, but this is often not sufficient. There may be errors dyghenomena that
have been neglected, e.g., small time delays. In contralltimeate test is how well
a control system based on the model performs, and time detaybe important.
There is also a frequency aspect. There are slow phenomemaasaging, that
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can cause changes or drift in the systems. There are alsdreigiency effects: a
resistor will no longer be a pure resistance at very highdeagies, and a beam
has stiffness and will exhibit additional dynamics whenjsabto high-frequency
excitation. Theuncertainty lemodGPD59] shown in Figure 2.15b is one way to
conceptualize the uncertainty of a system. It illustraked & model is valid only
in certain amplitude and frequency ranges.

We will introduce some formal tools for representing unaierty in Chapter 12
using figures such as Figure 2.15c. These tools make use of thept@f a trans-
fer function, which describes the frequency response ohaaotioutput system.
For now, we simply note that one should always be carefuld¢ogeize the limits
of a model and not to make use of models outside their rangppicability. For
example, one can describe the uncertainty lemon and thek thhenake sure that
signals remain in this region. In early analog computingysiesn was simulated
using operational amplifiers, and it was customary to givenaawhen certain
signal levels were exceeded. Similar features can be indlidgigital simulation.

2.4 Modeling Examples

In this section we introduce additional examples thatitiate some of the differ-
ent types of systems for which one can develop differentjabéion and difference
equation models. These examples are specifically chosen framge of differ-
ent fields to highlight the broad variety of systems to whiakdteack and control
concepts can be applied. A more detailed set of applicatlmatsserve as running
examples throughout the text are given in the next chapter.

Motion Control Systems

Motion control systems involve the use of computation ardiback to control the
movement of a mechanical system. Motion control systemga&om nanoposi-
tioning systems (atomic force microscopes, adaptive sptio control systems
for the read/write heads in a disk drive of a CD player, to nfiacturing systems
(transfer machines and industrial robots), to automotomrol systems (antilock
brakes, suspension control, traction control), to air guats flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 2.8 Vehicle steering—the bicycle model
A common problem in motion control is to control the trajegt@f a vehicle
through an actuator that causes a change in the orientatisteering wheel on an
automobile and the front wheel of a bicycle are two examdessimilar dynam-
ics occur in the steering of ships or control of the pitch dyies of an aircraft.
In many cases, we can understand the basic behavior of th&tses through the
use of a simple model that captures the basic kinematicedahtstem.

Consider a vehicle with two wheels as shown in Figure 2.16 tik@purpose
of steering we are interested in a model that describes hewsdlocity of the
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Figure 2.16: Vehicle steering dynamics. The left figure shows an overhead viewelfiale
with four wheels. The wheel basebsand the center of mass at a distaaderward of the
rear wheels. By approximating the motion of the front and rear pairshefelg by a single
front wheel and a single rear wheel, we obtain an abstraction calldzidyee modelshown
on the right. The steering angle dsand the velocity at the center of mass has the angle
relative the length axis of the vehicle. The position of the vehicle is givetxby and the
orientation (heading) bg.

vehicle depends on the steering anglelo be specific, consider the velocinat
the center of mass, a distarc&om the rear wheel, and letbe the wheel base, as
shown in Figure 2.16. Let andy be the coordinates of the center of ma@she
heading angle and the angle between the velocity vectoand the centerline of
the vehicle. Sincé = ratand anda = ratana, it follows that taro = (a/b)tand
and we get the following relation betweenand the steering angte

(2.23)

a(d) = arctar( atané) :

b
Assume that the wheels are rolling without slip and that tblecity of the rear

wheel isvp. The vehicle speed at its center of mass is vp/ cosa, and we find
that the motion of this point is given by

d—f[(:vcos(or—ke) :voms(fsj;e),

g n(a+ 0) (2.24)
dy . _sin(a +

at =vsin(a +0) =Vo T oeg

To see how the angl@ is influenced by the steering angle, we observe from Fig-
ure 2.16 that the vehicle rotates with the angular velogityr, around the point
O. Hence

de . Vo .

Vo
it b tand. (2.25)
Equations (2.23)—(2.25) can be used to model an automohilertine assump-
tions that there is no slip between the wheels and the roadhatdhe two front
wheels can be approximated by a single wheel at the centdreoddr. The as-
sumption of no slip can be relaxed by adding an extra statablat giving a more
realistic model. Such a model also describes the steeringndizs of ships as well
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(a) Harrier “jump jet” (b) Simplified model

Figure 2.17: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) resits its

engine thrust downward so that it can “hover” above the ground.eSainfrom the engine
is diverted to the wing tips to be used for maneuvering. As shown in (bypehéhrust on
the aircraft can be decomposed into a horizontal féicand a vertical forcé acting at a
distancer from the center of mass.

as the pitch dynamics of aircraft and missiles. It is alscsfids to choose coor-
dinates so that the reference point is at the rear wheelsemnding to setting
a = 0), a model often referred to as tBeibins car[Dub57].

Figure 2.16 represents the situation when the vehicle maresgafd and has
front-wheel steering. The case when the vehicle reversdstégsned by changing
the sign of the velocity, which is equivalent to a vehicletwi¢ar-wheel steering.

O

Example 2.9 Vectored thrust aircraft

Consider the motion of vectored thrust aircraft, such asHbgier “jump jet”
shown Figure 2.17a. The Harrier is capable of vertical takbpffedirecting its
thrust downward and through the use of smaller maneuvehningters located on
its wings. A simplified model of the Harrier is shown in Figurdzb, where we
focus on the motion of the vehicle in a vertical plane throtigh wings of the
aircraft. We resolve the forces generated by the main dowhtaeiuster and the
maneuvering thrusters as a pair of forég®ndF, acting at a distancebelow the
aircraft (determined by the geometry of the thrusters).

Let (x,y,0) denote the position and orientation of the center of maséef t
aircraft. Letm be the mass of the vehiclé,the moment of inertiag the gravita-
tional constant andthe damping coefficient. Then the equations of motion for the
vehicle are given by

mX = F1 cosf — F,sinf — cx,
my = F1sin@ + F, cosf — mg-— cy, (2.26)
JO =rFy.

It is convenient to redefine the inputs so that the origin is quildrium point
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Figure 2.18: Schematic diagram of a queuing system. Messages arrive ai ratel are
stored in a queue. Messages are processed and removed froretiesatjuate:. The average
size of the queue is given byc R.

of the system with zero input. Lettinggp = F; andu, = F, — mg, the equations

become . . . .
MX = —mgsin® — cx+ u; cosO — Uz sing,

my = mg(cosB — 1) — cy+ u; Sin6 + ux coso, (2.27)
Jé =Trus.
These equations describe the motion of the vehicle as a $eeef¢oupled second-
order differential equations. O

Information Systems

Information systems range from communication systemstlikeinternet to soft-
ware systems that manipulate data or manage enterprisesgdarces. Feedback
is presentin all these systems, and designing strategiesfting, flow control and
buffer management is a typical problem. Many results in qugetheory emerged
from design of telecommunication systems and later fronelbg@ment of the In-
ternet and computer communication systems [BG87, Kle758'HcManagement
of queues to avoid congestion is a central problem and wethélefore start by
discussing the modeling of queuing systems.

Example 2.10 Queuing systems

A schematic picture of a simple queue is shown in Figure 2. HjuRsts arrive
and are then queued and processed. There can be large variatiarrival rates
and service rates, and the queue length builds up when tivalaate is larger
than the service rate. When the queue becomes too larg&eserdenied using
an admission control policy.

The system can be modeled in many different ways. One way i®teheach
incoming request, which leads to an event-based model vilhestate is an integer
that represents the queue length. The queue changes wheuestragives or a
request is serviced. The statistics of arrival and serviaiagtypically modeled as
random processes. In many cases it is possible to determaitigtiss of quantities
like queue length and service time, but the computationdeaguite complicated.

A significant simplification can be obtained by usindglev model Instead
of keeping track of each request we instead view service agdests as flows,
similar to what is done when replacing molecules by a contimwhen analyzing
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fluids. Assuming that the average queue lengtha continuous variable and that
arrivals and services are flows with ratesand i, the system can be modeled by
the first-order differential equation

dx
a:/\_uz)‘_umaxf(x)’ x>0, (2.28)
where Umax is the maximum service rate arfdx) is a number between 0 and 1
that describes the effective service rate as a functioneofjtieue length.

It is natural to assume that the effective service rate digpem the queue
length because larger queues require more resources. ddysstate we have
f(X) = A /Umax, @nd we assume that the queue length goes to zero WheRax
goes to zero and that it goes to infinity whan timax goes to 1. This implies
that f (0) = 0 and thatf (o) = 1. In addition, if we assume that the effective ser-
vice rate deteriorates monotonically with queue lengtantthe functionf (x) is
monotone and concave. A simple function that satisfies thie beguirements is
f(x) = x/(1+x), which gives the model

dx A X

a- I-lmaxm-
This model was proposed by Agnew [Agn76]. It can be shown fretrival and
service processes are Poisson processes, the averageengthed given by equa-
tion (2.29) and that equation (2.29) is a good approximagizen for short queue
lengths; see Tipper [TS90].

To explore the properties of the model (2.29) we will first istigate the equi-
librium value of the queue length when the arrival ratés constant. Setting the
derivativedx/dt to zero in equation (2.29) and solving fgrwe find that the queue
lengthx approaches the steady-state value

A
Hmax— A~
Figure 2.19a shows the steady-state queue length as a furadtid/ tmayx, the
effective service rate excess. Notice that the queue lengteases rapidly as
approachegimax. To have a queue length less than 20 requirgsmax < 0.95. The
average time to service a requestds= (X+1)/Umax and itincreases dramatically
asA approachegimax-

Figure 2.19b illustrates the behavior of the server in a Blmuerload situation.
The maximum service rate [gnax = 1, and the arrival rate starts &t= 0.5. The
arrival rate is increased td = 4 at time 20, and it returns td = 0.5 at time 25.
The figure shows that the queue builds up quickly and clearssiewly. Since the
response time is proportional to queue length, it meanslieaquality of service
is poor for a long period after an overload. This behavior Iedahe rush-hour
effectand has been observed in web servers and many other questegisysuch
as automobile traffic.

The dashed line in Figure 2.19b shows the behavior of the flow hatiéch
describes the average queue length. The simple model cajiiteinavior qualita-

(2.29)

Xe = (2.30)
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Figure 2.19: Queuing dynamics. (a) The steady-state queue length as a funcfioiugfy.
(b) The behavior of the queue length when there is a temporary overidaed system. The
solid line shows a realization of an event-based simulation, and the dasheshéws the
behavior of the flow model (2.29).

tively, but there are variations from sample to sample wimengueue length is
short. O

Many complex systems use discrete control actions. Sucaregstan be mod-
eled by characterizing the situations that correspond ¢t eantrol action, as il-
lustrated in the following example.

Example 2.11 Virtual memory paging control

An early example of the use of feedback in computer systenssapplied in the
operating system OS/VS for the IBM 370 [BG68, Cro75]. The systsed virtual
memory, which allows programs to address more memory thalmyisically avail-
able as fast memory. Data in current fast memory (randonsaacoemory, RAM)
is accessed directly, but data that resides in slower me(dasly) is automatically
loaded into fast memory. The system is implemented in suchyahed it appears
to the programmer as a single large section of memory. Thersyserformed very
well in many situations, but very long execution times weneaintered in over-
load situations, as shown by the open circles in Figure 2.PBa.difficulty was
resolved with a simple discrete feedback system. The loakdeoféntral process-

CPU load
@, 150 T T
g © open loop o Normal
= 1000 * closed loop ]
c
9
3 500¢ ° - Underload| Overload
0 2 3 4 Memory swaps
Number of processes
(a) System performance (b) System state

Figure 2.20: Illustration of feedback in the virtual memory system of the IBM/370. (a¢ T
effect of feedback on execution times in a simulation, following [BG6&sits with no
feedback are shown with, and results with feedback with Notice the dramatic decrease
in execution time for the system with feedback. (b) How the three statedbtamed based
on process measurements.
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Figure 2.21: Consensus protocols for sensor networks. (a) A simple sensor metvith
five nodes. In this network, node 1 communicates with node 2 and nodenghanicates
with nodes 1, 3, 4, 5, etc. (b) A simulation demonstrating the convergefibe consensus
protocol (2.31) to the average value of the initial conditions.

ing unit (CPU) was measured together with the number of pagpswetween
fast memory and slow memory. The operating region was clagsiebeing in

one of three states: normal, underload or overload. The rigtai is character-
ized by high CPU activity, the underload state is charaaeérizy low CPU activity

and few page replacements, the overload state has modetate €CPU load but

many page replacements; see Figure 2.20b. The boundariesdretie regions
and the time for measuring the load were determined fromlsitions using typ-

ical loads. The control strategy was to do nothing in the notosd condition,

to exclude a process from memory in the overload conditiahtarallow a new

process or a previously excluded process in the underloaditcan. The crosses
in Figure 2.20a show the effectiveness of the simple feedbgstiem in simulated
loads. Similar principles are used in many other situatieng., in fast, on-chip
cache memory. O

Example 2.12 Consensus protocols in sensor networks

Sensor networks are used in a variety of applications whergvare to collect
and aggregate information over a region of space using phellsiensors that are
connected together via a communications network. Examptésde monitoring
environmental conditions in a geographical area (or inaitlailding), monitoring
the movement of animals or vehicles and monitoring the nesoloading across
a group of computers. In many sensor networks the computdtiesources are
distributed along with the sensors, and it can be importarthie set of distributed
agents to reach a consensus about a certain property, stighasrage tempera-
ture in a region or the average computational load among@f semputers.

We model the connectivity of the sensor network using a graptihn nodes
corresponding to the sensors and edges corresponding éxi#tence of a direct
communications link between two nodes. We use the notafioto represent the
set of neighbors of a node For example, in the network shown in Figure 2.21a
A2 =1{1,3,4,5} and.43 = {2,4}.

To solve the consensus problem Xghbe the state of thigh sensor, correspond-
ing to that sensor’s estimate of the average value that wieyaing to compute. We
initialize the state to the value of the quantity measuredhieyindividual sensor.
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The consensus protocol (algorithm) can now be realized asahupdate law

Xilk+ 1 =x[kl+y S (XK —xik]). (2.31)
e
This protocol attempts to compute the average by updatintptad state of each
agent based on the value of its neighbors. The combined dgsarhiall agents
can be written in the form

X[k+ 1] = x[k] — y(D — A)x[K], (2.32)

whereA is the adjacency matrix and is a diagonal matrix with entries corre-
sponding to the number of neighbors of each node. The cong@esgcribes the
rate at which the estimate of the average is updated basedfamation from
neighboring nodes. The matrix:= D — Ais called the_aplacianof the graph.
The equilibrium points of equation (2.32) are the set of statech thakg[k +
1] = x¢[K]. It can be shown thate = (a,qa,...,a) is an equilibrium state for the
system, corresponding to each sensor having an identittalags a for the av-
erage. Furthermore, we can show thaits indeed the average value of the initial
states. Since there can be cycles in the graph, it is posh#iéhe state of the sys-
tem could enter into an infinite loop and never converge to #dwreld consensus
state. A formal analysis requires tools that will be introéld later in the text, but
it can be shown that for any connected graph we can always firgliah that the
states of the individual agents converge to the averaganAlation demonstrating
this property is shown in Figure 2.21b. O

Biological Systems

Biological systems provide perhaps the richest sourceanftiack and control ex-
amples. The basic problem of homeostasis, in which a quasntdy as temperature
or blood sugar level is regulated to a fixed value, is but ondéefmany types of

complex feedback interactions that can occur in molecukehimes, cells, organ-
isms and ecosystems.

Example 2.13 Transcriptional regulation
Transcription is the process by which messenger RNA (mRNAgnherated from
a segment of DNA. The promoter region of a gene allows trapiseni to be con-
trolled by the presence of other proteins, which bind to tf@mter region and
either repress or activate RNA polymerase, the enzyme tiogiupes an mRNA
transcript from DNA. The mRNA is then translated into a pnoteccording to its
nucleotide sequence. This process is illustrated in Fig22. 2.

A simple model of the transcriptional regulation processhimugh the use
of a Hill function [dJ02, Mur04]. Consider the regulation afprotein A with a
concentration given by, and a corresponding mRNA concentratiog. Let B
be a second protein with concentratipgmthat represses the production of protein
A through transcriptional regulation. The resulting dynesmf p, andm, can be
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RNA
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Transcription
Translation

Figure 2.22:Biological circuitry. The cell on the left is a bovine pulmonary cell, stained s
that the nucleus, actin and chromatin are visible. The figure on the rigks$ gn overview
of the process by which proteins in the cell are made. RNA is transcribed DNA by an
RNA polymerase enzyme. The RNA is then translated into a protein by ameltg called

a ribosome.
written as
dmy Oab dpa
Gt~ 15 ko™ + Qa0 — YaMa, gt — Pama—daPa; (2.33)

where aa, + 0y is the unregulated transcription ratg, represents the rate of
degradation of mMRNAQ@ap, kap and ngy are parameters that describe how B re-
presses Af3, represents the rate of production of the protein from itsespond-
ing mMRNA andd, represents the rate of degradation of the protein A. The pa-
rametera,g describes the “leakiness” of the promoter, and is called the Hill
coefficient and relates to the cooperativity of the promoter.

A similar model can be used when a protein activates the tamuof another
protein rather than repressing it. In this case, the equaitiave the form

dm.  QapkapPp® dp
d 1+ kabpgab + Qa0 — YalMe, ar Bama — OaPa, (2.34)

where the variables are the same as described previoudly.thit in the case of
the activator, ifp, is zero, then the production ratedgy (versusaa, + a4 for the
repressor). Agy, gets large, the first term in the expression rigy approaches 1
and the transcription rate becomes, + ayo (Versusayg for the repressor). Thus
we see that the activator and repressor act in oppositeofasiom each other.

As an example of how these models can be used, we consideraithel wf a
“repressilator,” originally due to Elowitz and Leibler [ELOOThe repressilator is
a synthetic circuit in which three proteins each represstaman a cycle. This is
shown schematically in Figure 2.23a, where the three protia TetRA ¢l and
Lacl. The basic idea of the repressilator is that if TetR is@neghen it represses
the production ofA cl. If A cl is absent, then Lacl is produced (at the unregulated
transcription rate), which in turn represses TetR. OncR Tetepressed, thehcl
is no longer repressed, and so on. If the dynamics of theitaoeidesigned prop-
erly, the resulting protein concentrations will oscillate

We can model this system using three copies of equation )(2:8th A and
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Figure 2.23: The repressilator genetic regulatory network. (a) A schematic diagfahe o
repressilator, showing the layout of the genes in the plasmid that holds¢hé as well as
the circuit diagram (center). (b) A simulation of a simple model for theaggilator, showing
the oscillation of the individual protein concentrations. (Figure courtesklbwitz.)

B replaced by the appropriate combination of TetR, cl and Laké state of the
system is then given by= (Mretr, Pretr, Mel, Pl MLacl, PLact)- Figure 2.23b shows
the traces of the three protein concentrations for parasete 2, a = 0.5,k =
6.25x 1074, ag=5%x10"% y=58x 102, 3 =0.12 andd = 1.2 x 10~3 with
initial conditionsx(0) = (1,0,0,200,0,0) (following [ELOO]). O

Example 2.14 Wave propagation in neuronal networks
The dynamics of the membrane potential in a cell are a fundeherechanism
in understanding signaling in cells, particularly in news@nd muscle cells. The
Hodgkin—Huxley equations give a simple model for studyimgpagation waves
in networks of neurons. The model for a single neuron has titme fo

Cc(lj\: = _INa_ IK - IIeak+ Iinputa
whereV is the membrane potentidl,is the capacitancéy, andlk are the current
caused by the transport of sodium and potassium across theerabrane Jjeax
is a leakage current arlghot is the external stimulation of the cell. Each current

obeys Ohm’s law, i.e.,
I = g(V - E)’

whereg is the conductance aritlis the equilibrium voltage. The equilibrium volt-
age is given by Nernst's law,
RT Ce
E=—log—
nF g G’
whereR is Boltzmann’s constani] is the absolute temperaturig,is Faraday’s
constantn is the charge (or valence) of the ion aniéndce are the ion concentra-
tions inside the cell and in the external fluid. At 20 we haveRT/F =20 mV.
The Hodgkin—Huxley model was originally developed as a mearmedict
the quantitative behavior of the squid giant axon [HH52].dgkin and Huxley
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shared the 1963 Nobel Prize in Physiology (along with J. C. Bydte analysis

of the electrical and chemical events in nerve cell disabsrgdhe voltage clamp

described in Section 1.3 was a key element in Hodgkin and Kisxxperiments.
t

2.5 Further Reading

Modeling is ubiquitous in engineering and science and hasghiistory in applied
mathematics. For example, the Fourier series was intratogd-ourier when he
modeled heat conduction in solids [FouO7]. Models of dyr@nfiave been de-
veloped in many different fields, including mechanics [Arn@l53], heat con-
duction [CJ59], fluids [BRS60], vehicles [Abk69, Bla91, Ell9djbotics [MLS94,
SV89], circuits [Gui63], power systems [Kun93], acoustiBelb4] and microme-
chanical systems [Sen01]. Control theory requires moddtiogn many differ-
ent domains, and most control theory texts contain sevérapters on model-
ing using ordinary differential equations and differencpiaions (see, for ex-
ample, [FPENO5]). A classic book on the modeling of physicateys, espe-
cially mechanical, electrical and thermofluid systems, isirt@a [Can03]. The
book by Aris [Ari94] is highly original and has a detailed dission of the use
of dimension-free variables. Two of the authors’ favoriteoks on modeling of
biological systems are J. D. Murray [Mur04] and Wilson [VE]9

Exercises

2.1 (Chain of integrators form) Consider the linear ordinarifedéntial equa-
tion (2.7). Show that by choosing a state space represemtaiib x; =y, the
dynamics can be written as

0o 1 0 0
L 0

A=| O w0 g | ], C:(l .0 0].
o . 0 1 :
—an —an-1 —a1 1

This canonical form is called thehain of integratordorm.

2.2(Inverted pendulum) Use the equations of motion for a baaystem to derive
a dynamic model for the inverted pendulum described in Exar@# and verify
that for smallf the dynamics are approximated by equation (2.10).

2.3(Discrete-time dynamics) Consider the following discriéee system
x[k+ 1] = AXK] + Bulk], y[k] = CxK],

where

(% _ [ann a _ [0 _
X — [x2]’ A_[O azz], B_[l], c_[l o].
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In this problem, we will explore some of the properties o$ttliscrete-time system
as a function of the parameters, the initial conditions dednputs.

(a) For the case wheay, = 0 andu = 0, give a closed form expression for the
output of the system.

(b) A discrete system is iaquilibriumwhenx[k+ 1] = x[k] for all k. Letu=r be

a constant input and compute the resulting equilibrium fpinthe system. Show
that if |a;j| < 1 for all i, all initial conditions give solutions that converge to the
equilibrium point.

(c) Write a computer program to plot the output of the systenesponse to a unit
step inputulk] = 1, k > 0. Plot the response of your system wiiB] = 0 andA
given bya;1 = 0.5, a12 = 1 anday, = 0.25.

2.4 (Keynesian economics) Keynes'’ simple model for an econangyvien by
Y[K| = CIK] + I [K] + G[K],

whereY, C, | andG are gross national product (GNP), consumption, investment
and government expenditure for ydaConsumption and investment are modeled
by difference equations of the form

Ck+1]=aYk,  I[k+1] =b(C[k+1]—C[K),

wherea andb are parameters. The first equation implies that consumption in
creases with GNP but that the effect is delayed. The secoratiegumplies that
investment is proportional to the rate of change of consionpt

Show that the equilibrium value of the GNP is given by

1

- l1-a
where the parameter/{1 — a) is the Keynes multiplier (the gain froinor G to
Y). With a= 0.75 an increase of government expenditure will result in aftidd

increase of GNP. Also show that the model can be written a®tlosving discrete-
time state model:

[(':[[lfi 11]]] N [aba—b ;b] [CI:[[IL(}]] + [;b] G[K],

Y[k = ClK]+1[K + G[KI.

Ye

(le+Ge),

2.5(Least squares system identification) Consider a nonlinéareintial equation
that can be written in the form

dx M

a@t :i;ai fi(x),

where fi(x) are known nonlinear functions armxd are unknown, but constant, pa-
rameters. Suppose that we have measurements (or estimiaties)wall statex at
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time instantdy,ty, ..., tn, with N > M. Show that the parametess can be deter-
mined by finding the least squares solution to a linear equatithe form

Ha = b,
wherea € RM is the vector of all parameters amtlc RN*M andb € RN are
appropriately defined.

2.6(Normalized oscillator dynamics) Consider a damped sprimass system with
dynamics

mi+cq+kg=F.
Let wp = y/k/mbe the natural frequency agd= c/(2v/km) be the damping ratio.
(&) Show that by rescaling the equations, we can write therdigsin the form

G+ 2¢ an+ whd = B, (2.35)
whereu = F /k. This form of the dynamics is that of a linear oscillator witktural
frequencywy and damping ratid .

(b) Show that the system can be further normalized and wiiitt&me form
da _ 4z
dr @ dr
The essential dynamics of the system are governed by a siaglpidg parameter
{. TheQ-valuedefined af) = 1/2( is sometimes used instead {f

=—21—2{2,+V. (2.36)

2.7 (Electric generator) An electric generator connected tocmgtpower grid can
be modeled by a momentum balance for the rotor of the generato
2

J(:jtf =Pn—Pe=Pn— %sind),
wherelJ is the effective moment of inertia of the generaiprthe angle of rota-
tion, Py, the mechanical power that drives the generdgrs the active electrical
power, E the generator voltagd/ the grid voltage anK the reactance of the
line. Assuming that the line dynamics are much faster thanrdtor dynamics,
P.=VI = (EV/X)sing, wherel is the current component in phase with the volt-
ageE andg¢ is the phase angle between voltagesndV. Show that the dynamics
of the electric generator has a normalized form that is sintd the dynamics of a
pendulum with forcing at the pivot.

2.8 (Admission control for a queue) Consider the queuing sysiescribed in
Example 2.10. The long delays created by temporary overlaaube reduced by
rejecting requests when the queue gets large. This allowestgjthat are accepted
to be serviced quickly and requests that cannot be accontetda receive a
rejection quickly so that they can try another server. Gigrsan admission control
system described by

dx

X
at :)\U_Umaxm7 u = satg 1) (k(r —x)), (2.37)
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where the controller is a simple proportional control wititusation (sakp) is
defined by equation (3.9)) anmdis the desired (reference) queue length. Use a
simulation to show that this controller reduces the rustrhedfect and explain
how the choice of affects the system dynamics.

2.9 (Biological switch) A genetic switch can be formed by cortiregtwo repres-
sors together in a cycle as shown below.

A m—
N
U1_|g 5._UZ
~.. .
B L w

Using the models from Example 2.13—assuming that the paeamate the same
for both genes and that the mRNA concentrations reach stetady quickly—
show that the dynamics can be written in normalized cootdsas

dz U dz H

= 71—V = 7V 2.38

dr  1+2 b dr  1+27] 2 (2.38)
wherez; andz, are scaled versions of the protein concentrations andrieedcale
has also been changed. Show that 200 using the parameters in Example 2.13,
and use simulations to demonstrate the switch-like beha¥ithe system.

2.10 (Motor drive) Consider a system consisting of a motor dgviwo masses
that are connected by a torsional spring, as shown in theatiagelow.

?1 ®2

—— Motor

W 0]
i I
This system can represent a motor with a flexible shaft thagésgli@ioad. Assuming

that the motor delivers a torque that is proportional to tieemt, the dynamics of
the system can be described by the equations

2 =
‘Jldd'gl C(O::(Iptl_ogptz> K91~ ) =k, (2.39)
: + .
2dd$2+c(d(;’irzcﬁl>+k(¢2¢l) B

Similar equations are obtained for a robot with flexible armg fam the arms of
DVD and optical disk drives.
Derive a state space model for the system by introducingtiher(alized) state

variables = @1, Xo = ¢2, X3 = Wi/ twp, andxa = wy/ wn, Wherewy = \/k(Jl +J2)/(Ad2)
is the undamped natural frequency of the system when theataignal is zero.



