Chapter Two
System Modeling

... | asked Fermi whether he was not impressed by the agreemawtdre our calculated
numbers and his measured numbers. He replied, “How many arbifrargmeters did you use
for your calculations?” | thought for a moment about our cut-off prdaees and said, “Four.”
He said, “I remember my friend Johnny von Neumann used to say, witp&oameters | can
fit an elephant, and with five | can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for mesatospscattering to
Enrico Fermi in 1953 [Dys04].

A modelis a precise representation of a system’s dynaméatasanswer ques-
tions via analysis and simulation. The model we choose depemdhe questions
we wish to answer, and so there may be multiple models forggesitynamical sys-
tem, with different levels of fidelity depending on the phemora of interest. In this
chapter we provide an introduction to the concept of modedind present some
basic material on two specific methods commonly used in feddhad control
systems: differential equations and difference equations

2.1 Modeling Concepts

A modelis a mathematical representation of a physical, biologicahformation
system. Models allow us to reason about a system and maké&twad about
how a system will behave. In this text, we will mainly be irgsted in models of
dynamical systems describing the input/output behavi@ystems, and we will
often work in “state space” form.

Roughly speaking, a dynamical system is one in which thectffef actions
do not occur immediately. For example, the velocity of a caesinot change
immediately when the gas pedal is pushed nor does the tetapeinaa room rise
instantaneously when a heater is switched on. Similarlyad&ehe does not vanish
right after an aspirin is taken, requiring time for it to taéect. In business systems,
increased funding for a development project does not iserezvenues in the short
term, although it may do so in the long term (if it was a goodestment). All
of these are examples of dynamical systems, in which thevilmhef the system
evolves with time.

In the remainder of this section we provide an overview of safithe key
concepts in modeling. The mathematical details introdueed are explored more
fully in the remainder of the chapter.
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Figure 2.1: Spring—mass system with nonlinear damping. The position of the massiteden
by g, with g = 0 corresponding to the rest position of the spring. The forces on the anas
generated by a linear spring with spring constaand a damper with force dependent on the
velocity g.

The Heritage of Mechanics

The study of dynamics originated in attempts to describegtéag motion. The
basis was detailed observations of the planets by TychoeBaak the results of
Kepler, who found empirically that the orbits of the plan&isild be well described
by ellipses. Newton embarked on an ambitious program tatexplain why the
planets move in ellipses, and he found that the motion coeld¥plained by his
law of gravitation and the formula stating that force equadss times acceleration.
In the process he also invented calculus and differentiahtons.

One of the triumphs of Newton’s mechanics was the obsenvétit the motion
of the planets could be predicted based on the current posiand velocities of
all planets. It was not necessary to know the past motion stdteof a dynamical
system is a collection of variables that completely chamts the motion of a
system for the purpose of predicting future motion. For desyisof planets the
state is simply the positions and the velocities of the pgan&/e call the set of all
possible states thstate space

A common class of mathematical models for dynamical systisnesdinary
differential equations (ODES). In mechanics, one of the f@stsuch differential
equations is that of a spring—mass system with damping:

mg + c(q) + kg = 0. (2.1)

This system is illustrated in Figure 2.1. The variafple R represents the position
of the massn with respect to its rest position. We use the notatjdo denote the
derivative ofg with respect to time (i.e., the velocity of the mass) grid represent
the second derivative (acceleration). The spring is asstongatisfy Hooke’s law,
which says that the force is proportional to the displacemnidme friction element
(damper) is taken as a nonlinear functia(d), which can model effects such as
stiction and viscous drag. The positigmnd velocityg represent the instantaneous
state of the system. We say that this system seeond-order systesince the
dynamics depend on the first two derivativesgjof

The evolution of the position and velocity can be describadgusither a time
plot or a phase portrait, both of which are shown in Figure 2tztime plot on
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Figure 2.2: lllustration of a state model. A state model gives the rate of change of tiee sta
as a function of the state. The plot on the left shows the evolution of the statiiaction of
time. The plot on the right shows the evolution of the states relative to eaeh wtith the
velocity of the state denoted by arrows.

the left, shows the values of the individual states as a fonctf time. Thephase
portrait, on the right, shows theector fieldfor the system, which gives the state
velocity (represented as an arrow) at every point in theestpaice. In addition,
we have superimposed the traces of some of the states fréenedif conditions.
The phase portrait gives a strong intuitive representatitimeoequation as a vector
field or a flow. While systems of second order (two states) carepeesented in
this way, unfortunately it is difficult to visualize equat®of higher order using
this approach.

The differential equation (2.1) is called antonomousystem because there
are no external influences. Such a model is natural for use @sti&l mechanics
because it is difficult to influence the motion of the planetanbmy examples, it
is useful to model the effects of external disturbances atrotied forces on the
system. One way to capture this is to replace equation (£.1) b

md +c(@) + kg =u, (2.2)

whereu represents the effect of external inputs. The model (2.2)llsa aforced

or controlled differential equatioft.implies that the rate of change of the state can
be influenced by the inpui(t). Adding the input makes the model richer and allows
new questions to be posed. For example, we can examine whegrioe external
disturbances have on the trajectories of a system. Or, isdke where the input
variable is something that can be modulated in a controllag we can analyze
whether it is possible to “steer” the system from one pointhia state space to
another through proper choice of the input.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineg, where the design
of electronic amplifiers led to a focus on input/output bebavA system was
considered a device that transforms inputs to outputs|uesdrited in Figure 2.3.
Conceptually an input/output model can be viewed as a gaoi¢ tof inputs and
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Figure 2.3: lllustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the onthemight is its
representation as a block diagram.

outputs. Given an input signalt) over some interval of time, the model should
produce the resulting outpytt).

The input/output framework is used in many engineering dis@s since it
allows us to decompose a system into individual componesrisected through
their inputs and outputs. Thus, we can take a complicate@rmsystich as a radio
or a television and break it down into manageable pieces aadie receiver,
demodulator, amplifier and speakers. Each of these piecesdaohinputs and
outputs and, through proper design, these components cardoeonnected to
form the entire system.

The input/output view is particularly useful for the spedaikss oflinear time-
invariant systemsThis term will be defined more carefully later in this chapier,
roughly speaking a system is linear if the superpositiorlifaah) of two inputs
yields an output that is the sum of the outputs that wouldespond to individual
inputs being applied separately. A system is time-invaiiftie output response
for a given input does not depend on when that input is applied

Many electrical engineering systems can be modeled bytlitia-invariant
systems, and hence a large number of tools have been dedetopralyze them.
One such tool is thetep responsevhich describes the relationship between an
input that changes from zero to a constant value abruptlyefa isput) and the
corresponding output. As we shall see later in the text, thp esponse is very
useful in characterizing the performance of a dynamicaksysand it is often used
to specify the desired dynamics. A sample step responsevasim Figure 2.4a.

Another way to describe a linear time-invariant system igefresent it by its
response to sinusoidal input signals. This is calledfthguency responsand a
rich, powerful theory with many concepts and strong, usedslilts has emerged.
The results are based on the theory of complex variables arlddeapransforms.
The basic idea behind frequency response is that we can ctatypdbaracterize
the behavior of a system by its steady-state response teadal inputs. Roughly
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Figure 2.4: Input/output response of a linear system. The step response (&9 gmautput
of the system due to an input that changes from 0 to 1 at time 5 s. The frequency
response (b) shows the amplitude gain and phase change due to &sihinpat at different
frequencies.

speaking, this is done by decomposing any arbitrary sigrtal a linear combi-
nation of sinusoids (e.g., by using the Fourier transforng #nen using linearity
to compute the output by combining the response to the iddalifrequencies. A
sample frequency response is shown in Figure 2.4b.

The input/output view lends itself naturally to experimémtatermination of
system dynamics, where a system is characterized by recpitdi response to
particular inputs, e.g., a step or a set of sinusoids ovengeraf frequencies.

The Control View

When control theory emerged as a discipline in the 1940safipgoach to dy-
namics was strongly influenced by the electrical enginedjimgut/output) view.
A second wave of developments in control, starting in the 1850s, was inspired
by mechanics, where the state space perspective was useeméhgence of space
flight is a typical example, where precise control of the odjia spacecraft is
essential. These two points of view gradually merged intotwhtoday the state
space representation of input/output systems.

The development of state space models involved modifyingrtbdels from
mechanics to include external actuators and sensors dimingtimore general
forms of equations. In control, the model given by equat@2) was replaced by

Cotww, y=how, .3
wherex is a vector of state variables,is a vector of control signals angis a
vector of measurements. The tedm/dt represents the derivative pivith respect
to time, now considered a vector, ah@ndh are (possibly nonlinear) mappings of
their arguments to vectors of the appropriate dimensionntechanical systems,
the state consists of the position and velocity of the sysserthaix = (q, ) inthe
case of adamped spring—mass system. Note that in the cfamtrallation we model
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dynamics as first-order differential equations, but we vé# shat this can capture
the dynamics of higher-order differential equations byrappate definition of the
state and the mapk andh.

Adding inputs and outputs has increased the richness ofdlsical problems
and led to many new concepts. For example, it is natural taf aslssible statex
can be reached with the proper choicei¢feachability) and if the measurement
contains enough information to reconstruct the state (@hbdity). These topics
will be addressed in greater detail in Chapters 6 and 7.

A final development in building the control point of view wag timergence of
disturbances and model uncertainty as critical elementsartheory. The simple
way of modeling disturbances as deterministic signalsdik@s and sinusoids has
the drawback that such signals cannot be predicted precisehore realistic ap-
proach is to model disturbances as random signals. This viexvgives a natural
connection between prediction and control. The dual viewamit/output repre-
sentations and state space representations are paitiausaful when modeling
uncertainty since state models are convenient to descnbenal model but un-
certainties are easier to describe using input/output teddéen via a frequency
response description). Uncertainty will be a constant gndmoughout the text and
will be studied in particular detail in Chapter 12.

An interesting observation in the design of control systésnhat feedback
systems can often be analyzed and designed based on corglasatple models.
The reason for this is the inherent robustness of feedbat&ragsHowever, other
uses of models may require more complexity and more accutasy example is
feedforward control strategies, where one uses a modektmprpute the inputs
that cause the system to respond in a certain way. Anotheissgstem validation,
where one wishes to verify that the detailed response ofytsies performs as it
was designed. Because of these different uses of modetscdnnmon to use a
hierarchy of models having different complexity and fidelity

Multidomain Modeling

Modeling is an essential element of many disciplines, taditions and methods
from individual disciplines can differ from each other, figstrated by the previous
discussion of mechanical and electrical engineering. Acdity in systems engi-
neering is that it is frequently necessary to deal with legfeneous systems from
many different domains, including chemical, electricakamanical and informa-
tion systems.

To model such multidomain systems, we start by partitiorangystem into
smaller subsystems. Each subsystem is represented by dalquations for mass,
energy and momentum, or by appropriate descriptions ofrimition processing
in the subsystem. The behavior at the interfaces is captyrdddxribing how the
variables of the subsystem behave when the subsystemdenmimected. These
interfaces act by constraining variables within the indidal subsystems to be equal
(such as mass, energy or momentum fluxes). The complete mddehisbtained
by combining the descriptions of the subsystems and th&factes.
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Using this methodology it is possible to build up librarigssabsystems that
correspond to physical, chemical and informational congpdgé The procedure
mimics the engineering approach where systems are buiit$udosystems that are
themselves built from smaller components. As experiengaiiged, the components
and their interfaces can be standardized and collecteddehibraries. In practice,
it takes several iterations to obtain a good library that barreused for many
applications.

State models or ordinary differential equations are noablétfor component-
based modeling of this form because states may disappear eameponents are
connected. This implies that the internal description of mgonent may change
when it is connected to other components. As an illustratierconsider two ca-
pacitors in an electrical circuit. Each capacitor has a stateesponding to the
voltage across the capacitors, but one of the states wapgisar if the capacitors
are connected in parallel. A similar situation happens with rotating inertias,
each of which is individually modeled using the angle of tioimand the angular
velocity. Two states will disappear when the inertias anegd by a rigid shaft.

This difficulty can be avoided by replacing differential eqoas bydifferential
algebraic equationswhich have the form

F(z,2) =0,

wherez € R". A simple special case is

x=1fxy), 9gxy=0, (2.4)

wherez = (x,y) andF = (X — f(X,Y), g(X, y)). The key property is that the
derivativezis not given explicitly and there may be pure algebraic retstbetween
the components of the vectar

The model (2.4) captures the examples of the parallel capa@nd the linked
rotating inertias. For example, when two capacitors ar@eoted, we simply add
the algebraic equation expressing that the voltages athessapacitors are the
same.

Modelicais a language that has been developed to support compoased-b
modeling. Differential algebraic equations are used as#sc description, and
object-oriented programming is used to structure the nsodiébdelica is used to
model the dynamics of technical systems in domains such akanéal, electri-
cal, thermal, hydraulic, thermofluid and control subsystdvtmdelica is intended
to serve as a standard format so that models arising in éiffetomains can be
exchanged between tools and users. A large set of free anahemial Modelica
component libraries are available and are used by a growimgper of people
in industry, research and academia. For further informagibout Modelica, see
http://www.modelica.org or Tiller [TilO1].
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2.2 State Space Models

In this section we introduce the two primary forms of modélsttwe use in this
text: differential equations and difference equationghBoake use of the notions
of state, inputs, outputs and dynamics to describe the ahafva system.

Ordinary Differential Equations

The state of a system is a collection of variables that sunzmdhe past of a
system for the purpose of predicting the future. For a plysigstem the state is
composed of the variables required to account for storageass, momentum and
energy. A key issue in modeling is to decide how accuratesy/dtorage has to be
represented. The state variables are gathered in a vectoR" called thestate
vector The control variables are represented by another vectorRP, and the
measured signal by the vectgre RY. A system can then be represented by the
differential equation

dx
5 = foaw, y = h(x, u), (2.5)

wheref : R" x RP - R"andh : R" x RP — RY are smooth mappings. We call
a model of this form &tate space model

The dimension of the state vector is called trder of the system. The sys-
tem (2.5) is calledime-invariantbecause the functiont andh do not depend
explicitly on timet; there are more general time-varying systems where the func
tions do depend on time. The model consists of two functidresfunctionf gives
the rate of change of the state vector as a function of gtated control, and the
functionh gives the measured values as functions of stataed controlu.

A system is called &near state space system if the functiohandh are linear
in X andu. A linear state space system can thus be represented by

d
d_)t( = AX + Bu, y = Cx+ Du, (2.6)

whereA, B, C andD are constant matrices. Such a system is said tmbar and
time-invariant or LTI for short. The matrixA is called thedynamics matrixthe
matrix B is called thecontrol matrix the matrixC is called thesensor matrixand
the matrixD is called thedirect term Frequently systems will not have a direct
term, indicating that the control signal does not influenesattput directly.
A different form of linear differential equations, genezalg the second-order
dynamics from mechanics, is an equation of the form
n n—1
dy + a]_d _y
dtn din-1
wheret is the independent (time) variablg(t) is the dependent (output) variable
andu(t) is the input. The notatiody/dt* is used to denote thith derivative
of y with respect ta, sometimes also written ag¥. The controlled differential
equation (2.7) is said to be ath-order system. This system can be converted into

tootay=u (2.7)
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state space form by defining

35

X1 dn—ly/dtn—l
X dn—2y/dtn—2
X = . s
Xn—1 dy/dt
Xn ] y

and the state space equations become

—alxl—"'—anxn
+ s y=Xﬂ-
Xn 1 Xn 2
Xn—1

With the appropriate definitions @&, B, C and D, this equation is in linear state
space form.

An even more general system is obtained by letting the olnpuatlinear com-
bination of the states of the system, i.e.,

o C

[eNe)

y = bixg + boxa + - - - 4 by + du.

This system can be modeled in state space as

X1 [—a; —a, ... —a,_1 —a, 1
X2 1 0 .. 0 0 0
dlx|_-]o0o 1 0 0|xs|ofu
al z s (2.8)
x2] o o 10 0
y=[b b b4x+du

This particular form of a linear state space system is cabedhable canonical
formand will be studied in more detail in later chapters.

Example 2.1 Balance systems

An example of a type of system that can be modeled using asdutiferential
equations is the class bélance system# balance system is a mechanical system
in which the center of mass is balanced above a pivot pointe®@mmon examples
of balance systems are shown in Figure 2.5. The Segway® Pers@mepbrter
(Figure 2.5a) uses a motorized platform to stabilize a pestanding on top of
it. When the rider leans forward, the transportation depiapels itself along the
ground but maintains its upright position. Another exanipéerocket (Figure 2.5b),
in which a gimbaled nozzle at the bottom of the rocket is useddabilize the body
of the rocket above it. Other examples of balance systenhsdadiumans or other
animals standing upright or a person balancing a stick an hiaed.
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(a) Segway (b) Saturn rocket (c) Cart—pendulum system

Figure 2.5: Balance systems. (a) Segway Personal Transporter, (b) Satket @nd (c)
inverted pendulum on a cart. Each of these examples uses forcedattitia of the system
to keep it upright.

Balance systems are a generalization of the spring—maites1syse saw earlier.
We can write the dynamics for a mechanical system in the géfeam

M(@)4 + C(q, q) + K(q) = B(q)u,

where M (q) is the inertia matrix for the systeng(q, ) represents the Coriolis
forces as well as the damping,(q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into theuhjcs. The
specific form of the equations can be derived using Newtoniaohanics. Note
that each of the terms depends on the configuration of themrsystnd that these
terms are often nonlinear in the configuration variables.

Figure 2.5¢ shows a simplified diagram for a balance systemstomgsof an
inverted pendulum on a cart. To model this system, we chaase wariables that
represent the position and velocity of the base of the sygpeand p, and the angle
and angular rate of the structure above the basadd. We letF represent the
force applied at the base of the system, assumed to be in tiehial direction
(aligned withp), and choose the position and angle of the system as outiits.
this set of definitions, the dynamics of the system can be ctedpising Newtonian
mechanics and have the form

(M+m) —mlcosd] [p cp+mlising6?]  [F 2.9)
—mlcost (J+ml?)| |4 + y0 —mglsing | — (0] '

whereM is the mass of the basm,andJ are the mass and moment of inertia of the
system to be balanceldis the distance from the base to the center of mass of the
balanced body; andy are coefficients of viscous friction amds the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space fgrdetining the
state ax = (p, 6, p, 0), the input as1 = F and the output ag = (p, 9). If we
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define the total mass and total inertia as

Mi=M+m, J=J+mlp?
the equations of motion then become

P
P . 4 .
d o | —mls0*+mgml?/I)sc —cp—ylmed +u
dt [p| ~ M — m(mI?/3)c; ’
0

—ml%sycyH? + Miglsy — cleyp — y (M/m)é + Icgu
J(M¢/m) —m(lcy)?

o~ (3]
where we have used the shorthapd= cosf andsy = sind.

In many cases, the anglewill be very close to 0, and hence we can use the
approximations sii ~ 0 and co® ~ 1. Furthermore, i) is small, we can
ignore quadratic and higher termsfinSubstituting these approximations into our
equations, we see that we are left withireear state space equation

D 0 0 1 0 D 0
d |s 0 0 0 1 2] 0
dt |[p| ~ |0 mAPg/u —cd/u —yHIm/u| | P T o |
0 [0 Mimgl/u —clm/u =y My/u ) L8 Im/u
_[r 000
Y=lo 1009
wherey = MyJ, — m?l2. \Y

Example 2.2 Inverted pendulum

A variation of the previous example is one in which the lomanf the base does

not need to be controlled. This happens, for example, if werdeeested only in
stabilizing a rocket’s upright orientation without wonngi about the location of
base of the rocket. The dynamics of this simplified system aengby

d [el—lmgl yé | I y=0 (2.10)
dt [0] ~ | —==sind — LH+ —coshul’ - '
J J J
wherey is the coefficient of rotational friction), = J + ml? andu is the force
applied at the base. This system is referred to asarted pendulum \%

Difference Equations

In some circumstances, it is more natural to describe thiigoo of a system at
discrete instants of time rather than continuously in titheve refer to each of
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these times by an integér= 0, 1, 2, ..., then we can ask how the state of the
system changes for ea&hJust as in the case of differential equations, we define
the state to be those sets of variables that summarize thefghs system for the
purpose of predicting its future. Systems described in traamer are referred to
asdiscrete-time systems

The evolution of a discrete-time system can be written in ¢t f

X[k + 1] = f(x[K], u[k]), y[k] = h(x[K], u[k]), (2.11)

wherex[k] € R" is the state of the system at tilkg(an integer)u[k] € RP is
the input andy[Kk] € RY is the output. As beforef andh are smooth mappings of
the appropriate dimension. We call equation (2.1djfeerence equatiosince it
tells us howx[k + 1] differs fromx[k]. The statex[k] can be either a scalar- or a
vector-valued quantity; in the case of the latter we wxitgk] for the value of the
jth state at timéx.

Just as in the case of differential equations, it is oftercdse that the equations
are linear in the state and input, in which case we can destirdsystem by

x[k + 1] = Ax[k] + Bulk],  y[k] = Cx[k] + Du[K].

As before, we refer to the matricés B, C andD as the dynamics matrix, the control
matrix, the sensor matrix and the direct term. The solutioa tifiear difference
equation with initial conditiorx[0] and inputu[0], ..., u[T] is given by
k—1
X[K] = A%+ > AI=IBU[]],
j=0
k—1
ylkl = CA'% + > CA“I'BU[j] + Du[K],
j=0

k> 0. (2.12)

Difference equations are also useful as an approximatialifiefrential equa-
tions, as we will show later.

Example 2.3 Predator—prey
As an example of a discrete-time system, consider a simptiehior a predator—
prey system. The predator—prey problem refers to an ecalbgystem in which
we have two species, one of which feeds on the other. This tfgsgsbem has
been studied for decades and is known to exhibit interestymgmics. Figure 2.6
shows a historical record taken over 90 years for a populatfdynxes versus a
population of hares [Mac37]. As can been seen from the gtaptannual records
of the populations of each species are oscillatory in nature

A simple model for this situation can be constructed usinigerdte-time model
by keeping track of the rate of births and deaths of each epdoettingH represent
the population of hares aridrepresent the population of lynxes, we can describe
the state in terms of the populations at discrete periodsa. tLettingk be the
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1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1
1845 1855 1865 1875 1885 1895 1905 1915 1925 1935
Figure 2.6: Predator versus prey. The photograph on the left shows a Canadiaarygl
a snowshoe hare, the lynx’s primary prey. The graph on the rightskiwe populations of
hares and lynxes between 1845 and 1935 in a section of the Canadigesjdtac37]. The

data were collected on an annual basis over a period of 90 yearso@Pdyoh copyright Tom
and Pat Leeson.)

discrete-time index (e.g., the month number), we can write

HIk + 1] = H[K] + b (U)H[K] — aL[K]H[K],
L[k + 1] = L[K] + cL[K]H[K] — d L[K],

whereb; (u) is the hare birth rate per unit period and as a function of twal f
supplyu, ds is the lynx mortality rate and andc are the interaction coefficients.
The interaction ternaL[k] H[k] models the rate of predation, which is assumed
to be proportional to the rate at which predators and preyt areeis hence given
by the product of the population sizes. The interaction tetrfk]H[k] in the
lynx dynamics has a similar form and represents the rate @f/thr of the lynx
population. This model makes many simplifying assumptiosgeh as the fact
that hares decrease in number only through predation byegsvbut it often is
sufficient to answer basic questions about the system.

To illustrate the use of this system, we can compute the nuwitignxes and
hares at each time point from some initial population. Thifise by starting with
X[0] = (Ho, Lo) and then using equation (2.13) to compute the populations in
the following period. By iterating this procedure, we camgmate the population
over time. The output of this process for a specific choice cdupaters and initial
conditions is shown in Figure 2.7. While the details of thewdation are different
from the experimental data (to be expected given the siitypti€our assumptions),
we see qualitatively similar trends and hence we can use tidehto help explore
the dynamics of the system. \%

(2.13)

Example 2.4 E-mail server

The IBM Lotus server is an collaborative software system thatinisters users’
e-mail, documents and notes. Client machines interact evithusers to provide
access to data and applications. The server also handlesadth@istrative tasks.
In the early development of the system it was observed tiegpénformance was
poor when the central processing unit (CPU) was overloadeause of too many
service requests, and mechanisms to control the load wereftine introduced.

The interaction between the client and the server is in thm fafrremote pro-
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Figure 2.7: Discrete-time simulation of the predator—prey model (2.13). Using tfeepeters
a=c=0.014,b (u) = 0.6 andd = 0.7 in equation (2.13), the period and magnitude of the
lynx and hare population cycles approximately match the data in Figure 2.6.

cedure calls (RPCs). The server maintains a log of statistiosropleted requests.
The total number of requests being served, caRe& (RPCs in server), is also
measured. The load on the server is controlled by a paranedted MaxUser s,
which sets the total number of client connections to theeseivhis parameter is
controlled by the system administrator. The server can bardeg as a dynami-
cal system withvaxUser s as the input andRl S as the output. The relationship
between input and output was first investigated by explotiregsteady-state per-
formance and was found to be linear.

In [HDPTO04] a dynamic model in the form of a first-order differerequation
is used to capture the dynamic behavior of this system. Usistgm identification
technigues, they construct a model of the form

y[k + 1] = ay[k] + bu[k],

whereu = MaxUsers — MaxUsers andy = RIS — RI'S. The parameters

a = 0.43 andb = 0.47 are parameters that describe the dynamics of the system
around the operating point, ahMixUser s = 165 andRl' S = 135 represent the
nominal operating point of the system. The number of requwesssaveraged over

a sampling period of 60 s. \%

Simulation and Analysis

State space models can be used to answer many questions.t@amolkt common,
as we have seen in the previous examples, involves preglittenevolution of the
system state from a given initial condition. While for simphodels this can be
done in closed form, more often it is accomplished throughmater simulation.
One can also use state space models to analyze the overallitredf the system
without making direct use of simulation.

Consider again the damped spring—mass system from Seclion2 this time
with an external force applied, as shown in Figure 2.8. We washredict the
motion of the system for a periodic forcing function, withigem initial condition,
and determine the amplitude, frequency and decay rate oégudting motion.
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Figure 2.8: A driven spring—mass system with damping. Here we use a linear damping
element with coefficient of viscous friction The mass is driven with a sinusoidal force of
amplitudeA.

We choose to model the system with a linear ordinary diffeaérequation.
Using Hooke’s law to model the spring and assuming that thepeéa exerts a force
that is proportional to the velocity of the system, we have

mg + cq + kqg=u, (2.14)

wherem is the massq is the displacement of the massjs the coefficient of
viscous frictionk is the spring constant andis the applied force. In state space
form, usingx = (q, ) as the state and choosigg= q as the output, we have

dx XT( y—x
— = c ul - = X1.
dt [ ——x+—

m m m

We see that this is a linear second-order differential egnatith one inpuu and
one outputy.

We now wish to compute the response of the system to an inpihiecform
u = Asinwt. Although it is possible to solve for the response analilticave
instead make use of a computational approach that does Igairréhe specific
form of this system. Consider the general state space system

Given the state at timet, we can approximate the value of the state at a short
timeh > 0 later by assuming that the rate of changé 6f, u) is constant over the
intervalt tot + h. This gives

X(t + h) = x(t) + hf(x(1), u(t)). (2.15)

Iterating this equation, we can thus solve %aas a function of time. This approxi-
mation is known as Euler integration and is in fact a diffeee@quation if we leh
represent the time increment and wei{é] = x(kh). Although modern simulation
tools such as MATLAB and Mathematica use more accurate methaasEuler
integration, they still have some of the same basic tratke-of

Returning to our specific example, Figure 2.9 shows the restitemputing
x(t) using equation (2.15), along with the analytical compotat\We see that as
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Figure 2.9: Simulation of the forced spring—mass system with different simulation time
constants. The dashed line represents the analytical solution. The saliddpresent the
approximate solution via the method of Euler integration, using decreasipgizes.

h gets smaller, the computed solution converges to the exadian. The form
of the solution is also worth noticing: after an initial tsint, the system settles
into a periodic motion. The portion of the response after taegient is called the
steady-state responsge the input.

In addition to generating simulations, models can also led trs answer other
types of questions. Two that are central to the methods itbesiin this text concern
the stability of an equilibrium point and the input/outptgduency response. We
illustrate these two computations through the exampleswbalnd return to the
general computations in later chapters.

Returning to the damped spring—mass system, the equafiomstion with no
input forcing are given by

dx X2

—_— — k 2.1

dt [—EXZ — —X]_] ’ ( 6)
m m

wherex; is the position of the mass (relative to the rest positiorg mnis its
velocity. We wish to show that if the initial state of the srstis away from the
rest position, the system will return to the rest positioeragually (we will later
define this situation to mean that the rest positioasigmptotically stable While
we could heuristically show this by simulating many, mangiah conditions, we
seek instead to prove that this is true &myinitial condition.

To do so, we construct a functioh : R" — R that maps the system state to a
positive real number. For mechanical systems, a conveaiite is the energy of
the system,

1 1
V(X) = E|<xf + ém><§. (2.17)

If we look at the time derivative of the energy function, we seat
dv
dt

which is always either negative or zero. Henéex(t)) is never increasing and,

) . C k
= ki + MxeXe = kxxe +MXe(——xp — —x1) = —cX3,
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using a bit of analysis that we will see formally later, thdiindual states must
remain bounded.

If we wish to show that the states eventually return to thgioyiwe must use
a slightly more detailed analysis. Intuitively, we can @asss follows: suppose
that for some period of timey (x(t)) stops decreasing. Then it must be true that
V (x(t)) = 0, which in turn implies thak,(t) = 0 for that same period. In that
case xo(t) = 0, and we can substitute into the second line of equatior6)2adl
obtain

_ c k
0=X%Xy=——Xo — —X1 = —Xj.
m m m

Thus we must have thag also equals zero, and so the only time tW&k(t)) can
stop decreasing is if the state is at the origin (and hensestfstem is at its rest
position). Since we know that (x(t)) is never increasing (because < 0), we
therefore conclude that the origin is stable @oryinitial condition).

This type of analysis, called Lyapunov stability analyss;onsidered in detail
in Chapter 4. It shows some of the power of using models foattadysis of system
properties.

Another type of analysis that we can perform with models isdmpute the
output of a system to a sinusoidal input. We again considesphing—mass system,
but this time keeping the input and leaving the system inrtsimal form:

mg + cq + kq = u. (2.18)
We wish to understand how the system responds to a sinusojddlof the form
u(t) = Asinwt.

We will see how to do this analytically in Chapter 6, but fomnee make use of
simulations to compute the answer.

We first begin with the observation thagt) is the solution to equation (2.18)
with inputu(t), then applying an inputl(t) will give a solution 2j(t) (this is easily
verified by substitution). Hence it suffices to look at an inpithwnit magnitude,
A = 1. A second observation, which we will prove in Chapter 5hat the long-
term response of the system to a sinusoidal input is itseili@ssid at the same
frequency, and so the output has the form

q(t) = g(w) sin(wt + ¢ (w)),

whereg(w) is called thegain of the system ang(w) is called thephase(or phase
offset).

To compute the frequency response numerically, we can atmtihe system
at a set of frequencies,, ..., oy and plot the gain and phase at each of these
frequencies. An example of this type of computation is showigure 2.10.
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Figure 2.10: A frequency response (gain only) computed by measuring the respain
individual sinusoids. The figure on the left shows the response of/tera as a function of
time to a number of different unit magnitude inputs (at different fregies). The figure on
the right shows this same data in a different way, with the magnitude of $pemse plotted
as a function of the input frequency. The filled circles correspond tpaftécular frequencies
shown in the time responses.

2.3 Modeling Methodology

To deal with large, complex systems, it is useful to haveedét representations
of the system that capture the essential features and maleviant details. In all
branches of science and engineering it is common practiaegsome graphical
description of systems, callethematic diagramsThey can range from stylistic
pictures to drastically simplified standard symbols. Theswipts make it possible
to get an overall view of the system and to identify the indinal components.
Examples of such diagrams are shown in Figure 2.11. Schemagjizains are useful
because they give an overall picture of a system, showifeydift subprocesses and
their interconnection and indicating variables that camla@ipulated and signals
that can be measured.

Block Diagrams

A special graphical representation calletlack diagramhas been developed in
control engineering. The purpose of a block diagram is to exsigk the information
flow and to hide details of the system. In a block diagram, iffiéprocess elements
are shown as boxes, and each box has inputs denoted by lithesrvaws pointing
toward the box and outputs denoted by lines with arrows goumgof the box.
The inputs denote the variables that influence a process, anoutputs denote
the signals that we are interested in or signals that influeticer subsystems.
Block diagrams can also be organized in hierarchies, winelieidual blocks may
themselves contain more detailed block diagrams.

Figure 2.12 shows some of the notation that we use for bloakaias. Signals
are represented as lines, with arrows to indicate inputeatmlits. The first diagram
is the representation for a summation of two signals. An tifguiput response is
represented as a rectangle with the system name (or matbahtscription) in
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Figure 2.11: Schematic diagrams for different disciplines. Each diagram is used ttélles
the dynamics of a feedback system: (a) electrical schematics forersgatem [Kun93], (b)
a biological circuit diagram for a synthetic clock circuit [ASMNO3], (Qracess diagram for
a distillation column [SEMO04] and (d) a Petri net description of a commtioicgrotocol.
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Figure 2.12:Standard block diagram elements. The arrows indicate the the inputstgidsou
of each element, with the mathematical operation corresponding to thesdltatheled at the
output. The system block (f) represents the full input/output respdresdymamical system.
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Figure 2.13: A block diagram representation of the flight control system for an irfggng
against the wind. The mechanical portion of the model consists of thelyaigt dynamics
of the fly, the drag due to flying through the air and the forces genergtéuehwings. The
motion of the body causes the visual environment of the fly to changethainformation
is then used to control the motion of the wings (through the sensory mattemsy, closing
the loop.

the block. Two special cases are a proportional gain, whiethes the input by
a multiplicative factor, and an integrator, which outpute tntegral of the input
signal.

Figure 2.13 illustrates the use of a block diagram, in thig dasmodeling the
flight response of a fly. The flight dynamics of an insect are inbigdntricate,
involving careful coordination of the muscles within the fiyhaintain stable flight
in response to external stimuli. One known characterigtftes is their ability to
fly upwind by making use of the optical flow in their compound eges feedback
mechanism. Roughly speaking, the fly controls its orientasio that the point of
contraction of the visual field is centered in its visual field.

To understand this complex behavior, we can decompose tralbdynamics
of the system into a series of interconnected subsystentddoky. Referring to
Figure 2.13, we can model the insect navigation system tirangnterconnection
of five blocks. The sensory motor system (a) takes the infoomditom the visual
system (e) and generates muscle commands that attempetalstdly so that the
point of contraction is centered. These muscle commandaxerted into forces
through the flapping of the wings (b) and the resulting aeradyin forces that are
produced. The forces from the wings are combined with the dratle fly (d) to
produce a net force on the body of the fly. The wind velocity enterough the
drag aerodynamics. Finally, the body dynamics (c) descrilvethe fly translates
and rotates as a function of the net forces that are appligdTtbe insect position,
speed and orientation are fed back to the drag aerodynamitsision system
blocks as inputs.

Each of the blocks in the diagram can itself be a complicatédysiem. For
example, the visual system of a fruit fly consists of two cowgitd compound eyes
(with about 700 elements per eye), and the sensory motarayss about 200,000
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neurons that are used to process information. A more ddthlteck diagram of
the insect flight control system would show the interconmastibetween these
elements, but here we have used one block to represent hawaten of the fly
affects the output of the visual system, and a second blaelptesent how the visual
field is processed by the fly’s brain to generate muscle commahdshoice of the
level of detail of the blocks and what elements to separabadifferent blocks often
depends on experience and the questions that one wantsterarsing the model.
One of the powerful features of block diagrams is their &pith hide information
about the details of a system that may not be needed to gaindersianding of
the essential dynamics of the system.

Modeling from Experiments

Since control systems are provided with sensors and acty#t@ralso possible to
obtain models of system dynamics from experiments on thegs The models
are restricted to input/output models since only theseadsgare accessible to
experiments, but modeling from experiments can also be gwdhlwith modeling
from physics through the use of feedback and interconnectio

A simple way to determine a system’s dynamics is to obsemedbponse to a
step change in the control signal. Such an experiment begissthing the control
signal to a constant value; then when steady state is esttaellithe control signal is
changed quickly to a new level and the output is observed. Xxergnent gives the
step response of the system, and the shape of the respoaseigaful information
about the dynamics. It immediately gives an indication efriésponse time, and it
tells if the system is oscillatory or if the response is monet

Example 2.5 Spring—mass system
Consider the spring—mass system from Section 2.1, whoserdgsare given by

mg + cq + kg = u. (2.19)

We wish to determine the constamts c andk by measuring the response of the
system to a step input of magnituég.
We will show in Chapter 6 that whee? < 4km, the step response for this
system from the rest configuration is given by
A/ 4km — c?
Fo ct, . ©d =5
qt) = m (1 - exp(—ﬁ) sin(wgt + (p)) ,

P = tan‘l (\/m) .

From the form of the solution, we see that the form of the respasm determined
by the parameters of the system. Hence, by measuring céetimres of the step
response we can determine the parameter values.

Figure 2.14 shows the response of the system to a step of mdghi§ = 20
N, along with some measurements. We start by noting thatdtlaelg-state position
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Figure 2.14: Step response for a spring—mass system. The magnitude of the stéfsinpu
Fo = 20 N. The period of oscillatiofl is determined by looking at the time between two
subsequent local maxima in the response. The period combined wittettysstate value
g(c0) and the relative decrease between local maxima can be used to estinpateatheters

in a model of the system.

of the mass (after the oscillations die down) is a functiothefspring constark
F
a(00) = . (2.20)

whereF is the magnitude of the applied forcEqo(= 1 for a unit step input). The
parameter 1k is called thegain of the system. The period of the oscillation can be
measured between two peaks and must satisfy

2 /4km— c?
= (2.21)

Finally, the rate of decay of the oscillations is given by tkpanential factor in the
solution. Measuring the amount of decay between two pea&ksiave

F F
log(a(ty) - ?0) —log(a(ts) — ?0) - %(t2 —t). (2.22)

Using this set of three equations, we can solve for the paesand determine
that for the step response in Figure 2.14 we have 250 kg,c ~ 60 N s/m and
k =~ 40 N/m. \%

Modeling from experiments can also be done using many oflgeaks. Si-
nusoidal signals are commonly used (particularly for systavith fast dynamics)
and precise measurements can be obtained by exploitingatbon techniques. An
indication of nonlinearities can be obtained by repeatixggeeiments with input
signals having different amplitudes.

Normalization and Scaling

Having obtained a model, it is often useful to scale the \wem by introducing
dimension-free variables. Such a procedure can often diripk equations for a
system by reducing the number of parameters and revea¢atiieg properties of
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the model. Scaling can also improve the numerical conditgmif the model to
allow faster and more accurate simulations.

The procedure of scaling is straightforward: choose unitsech indepen-
dent variable and introduce new variables by dividing théatdes by the chosen
normalization unit. We illustrate the procedure with twaeples.

Example 2.6 Spring—mass system
Consider again the spring—mass system introduced e&tégtecting the damping,
the system is described by

mg + kq = u.

The model has two parameters and k. To normalize the model we introduce
dimension-free variables = g/l andr = wpt, wherewy = /k/m andl is the
chosen length scale. We scale forcerbioZ and introducer = u/(mlw3). The
scaled equation then becomes

d’x  d?q/! 1
e — —k =—

422 = oot~ miggl KaTW = x4,
which is the normalized undamped spring—mass system. &libiat the normalized
model has no parameters, while the original model had twarpateran andk.
Introducing the scaled, dimension-free state variabless x = g/l andz, =
dx/dz = q/(lwp), the model can be written as

ai =) =[5 o] [2]+ 2]

This simple linear equation describes the dynamics of anpgpmass system,
independent of the particular parameters, and hence g#/assight into the fun-
damental dynamics of this oscillatory system. To recoveptiysical frequency of
oscillation or its magnitude, we must invert the scaling \aeehapplied. \%

Example 2.7 Balance system
Consider the balance system described in Section 2.1. Nemedamping by
puttingc = 0 andy = 0 in equation (2.9), the model can be written as

dq d20 _da.2
(M + m)ﬁ - mIcos@W + mlsme(a) =F,
d%q ,.d%0 :
—mIcos@W +J+ml )W — mglsing = 0.

Letwo = v/mgl/(J + ml2), choose the length scalelatet the time scale be/ty,
choose the force scale @8l + m)lw? and introduce the scaled variables= wot,
x =@/l andu = F/((M + m)lw3). The equations then become

d?x d?0 do 2 d’x  d%9

—— — 0 COSH — sind{—) =u, —pcosd—+ — —sind =0,

dez~ * dz? ta (dr) p dz? + dr?
wherea = m/(M +m) andg = ml?/(J +ml?). Notice that the original model has
five parameterm, M, J, | andg but the normalized model has only two parameters
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Figure 2.15: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a), where the solid line indicates the nominal input/output relatiorestdpthe
dashed lines indicate the range of possible uncertainty. The uncertairip [E®D59] in

(b) is one way to capture uncertainty in dynamical systems emphasizirgiadel is valid

only in some amplitude and frequency ranges. In (c) a model is repies by a nominal
modelM and another moded representing the uncertainty analogous to the representation
of parameter uncertainty.

a andp. If M > mandml? > J, we geta &~ 0 andf ~ 1 and the model can be
approximated by

d?x d?9

— =u, —— —sinfd = ucosy.

dz2 dz2
The model can be interpreted as a mass combined with an idyestelulum driven
by the same input. \Y%

Model Uncertainty

Reducing uncertainty is one of the main reasons for usirgji@ek, and it is there-
fore important to characterize uncertainty. When makingsneements, there is a
good tradition to assign both a nominal value and a measuneadrtainty. It is
useful to apply the same principle to modeling, but unfaatety it is often difficult
to express the uncertainty of a model quantitatively.

For a static system whose input/output relation can be cheniaed by a func-
tion, uncertainty can be expressed by an uncertainty barnliuasated in Fig-
ure 2.15a. At low signal levels there are uncertainties dusensor resolution,
friction and quantization. Some models for queuing systentells are based on
averages that exhibit significant variations for small papahs. At large signal
levels there are saturations or even system failures. Thals@nges where a model
is reasonably accurate vary dramatically between appicstbut it is rare to find
models that are accurate for signal ranges larger than 10

Characterization of the uncertainty of a dynamic model isimmore difficult.
We can try to capture uncertainties by assigning uncerégind parameters of the
model, but this is often not sufficient. There may be errors dyghenomena that
have been neglected, e.g., small time delays. In contralltieate test is how well
a control system based on the model performs, and time detaybe important.
There is also a frequency aspect. There are slow phenomemaasaging, that
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can cause changes or drift in the systems. There are alsdreiglency effects: a
resistor will no longer be a pure resistance at very highdeagies, and a beam
has stiffness and will exhibit additional dynamics whenjsabto high-frequency
excitation. Theuncertainty lemodGPD59] shown in Figure 2.15b is one way to
conceptualize the uncertainty of a system. Itillustrates & model is valid only in
certain amplitude and frequency ranges.

We will introduce some formal tools for representing unaierty in Chapter 12
using figures such as Figure 2.15c. These tools make use of tbeptai a transfer
function, which describes the frequency response of antfoptput system. For
now, we simply note that one should always be careful to neizegthe limits of
a model and not to make use of models outside their range dicapipity. For
example, one can describe the uncertainty lemon and thek thhenake sure that
signals remain in this region. In early analog computingysiesn was simulated
using operational amplifiers, and it was customary to givenadawhen certain
signal levels were exceeded. Similar features can be indlundgigital simulation.

2.4 Modeling Examples

In this section we introduce additional examples thatitaie some of the different
types of systems for which one can develop differential @qnaand difference

equation models. These examples are specifically chosen franga of different

fields to highlight the broad variety of systems to which fessakband control

concepts can be applied. A more detailed set of applicatlmatsserve as running
examples throughout the text are given in the next chapter.

Motion Control Systems

Motion control systems involve the use of computation ardiback to control the
movement of a mechanical system. Motion control systemgerdirom nanopo-

sitioning systems (atomic force microscopes, adaptiviEsptto control systems
for the read/write heads in a disk drive of a CD player, to nfiacturing systems

(transfer machines and industrial robots), to automotomrol systems (antilock
brakes, suspension control, traction control), to air grats flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 2.8 Vehicle steering—the bicycle model
A common problem in motion control is to control the trajegtof a vehicle
through an actuator that causes a change in the orientatisteering wheel on an
automobile and the front wheel of a bicycle are two examplessimilar dynamics
occur in the steering of ships or control of the pitch dynaaican aircraft. In many
cases, we can understand the basic behavior of these sybi@mgh the use of a
simple model that captures the basic kinematics of the syste

Consider a vehicle with two wheels as shown in Figure 2.16tl@purpose of
steering we are interested in a model that describes howetbeity of the vehicle
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Figure 2.16: Vehicle steering dynamics. The left figure shows an overhead viewelhiale
with four wheels. The wheel basebsand the center of mass at a distaaderward of the
rear wheels. By approximating the motion of the front and rear pairshefelg by a single
front wheel and a single rear wheel, we obtain an abstraction calldiidyee modelshown
on the right. The steering angledsand the velocity at the center of mass has the amgle
relative the length axis of the vehicle. The position of the vehicle is givetxby) and the
orientation (heading) bg.

depends on the steering angldo be specific, consider the velocityat the center
of mass, a distanca from the rear wheel, and l&tbe the wheel base, as shown
in Figure 2.16. Lek andy be the coordinates of the center of masthe heading
angle and: the angle between the velocity vectaand the centerline of the vehicle.
Sinceb = rytand anda = r, tane, it follows that tam: = (a/b) tané and we get
the following relation between and the steering ange

0.(0) = arctar(

Assume that the wheels are rolling without slip and that thleaity of the rear
wheel isvg. The vehicle speed at its center of mass is vg/ cosa, and we find
that the motion of this point is given by

atan5>. (2.23)

d 0
d_)t( = v cos(a + 0) = vo—coségsj ),
(2.24)

%/ =vosin(a +0) = 00%.
To see how the angle is influenced by the steering angle, we observe from Fig-
ure 2.16 that the vehicle rotates with the angular velogjidr, around the point
O. Hence 40 vo  vo
it 1. D tano. (2.25)

Equations (2.23)—(2.25) can be used to model an automohilertihe assump-
tions that there is no slip between the wheels and the roadhatdhe two front
wheels can be approximated by a single wheel at the centdreoddr. The as-
sumption of no slip can be relaxed by adding an extra statablat giving a more
realistic model. Such a model also describes the steeringndizs of ships as well
as the pitch dynamics of aircraft and missiles. It is alscsjiids to choose coor-
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(a) Harrier “jump jet” (b) Simplified model

Figure 2.17: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) resits its

engine thrust downward so that it can “hover” above the ground.eSainfrom the engine
is diverted to the wing tips to be used for maneuvering. As shown in (bypehéhrust on
the aircraft can be decomposed into a horizontal fétcand a vertical forcd-, acting at a
distance from the center of mass.

dinates so that the reference point is at the rear wheelse§monding to setting
a = 0), a model often referred to as tBeibins car[Dub57].

Figure 2.16 represents the situation when the vehicle mavesafd and has
front-wheel steering. The case when the vehicle reversdstésned by changing
the sign of the velocity, which is equivalent to a vehicletwi¢ar-wheel steering.

\%

Example 2.9 Vectored thrust aircraft

Consider the motion of vectored thrust aircraft, such asHheier “jump jet”
shown Figure 2.17a. The Harrier is capable of vertical takbpffedirecting its
thrust downward and through the use of smaller maneuvehningters located on
its wings. A simplified model of the Harrier is shown in Figurdzh, where we
focus on the motion of the vehicle in a vertical plane throtigd wings of the
aircraft. We resolve the forces generated by the main dowhteiuster and the
maneuvering thrusters as a pair of forégandF, acting at a distanaebelow the
aircraft (determined by the geometry of the thrusters).

Let (x, y, #) denote the position and orientation of the center of mashtef t
aircraft. Letmbe the mass of the vehicléthe moment of inertigg the gravitational
constant and the damping coefficient. Then the equations of motion for ttécle
are given by

mX = F; cosd — Frsing — cXx,
my = F; sind + F, cosf — mg— cy, (2.26)
JO =rFq.

Itis convenient to redefine the inputs so that the origin iscanldrium point of the
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Figure 2.18:Schematic diagram of a queuing system. Messages arrive ataateare stored
in a queue. Messages are processed and removed from the quateq@iThe average size
of the queue is given by € R.

system with zero input. Letting; = F; andu, = F, — mg, the equations become

mX = —mgsing — cX + Uy Cos# — U, sing,

my = mg(cosf — 1) — cy + U3 Sind + U, cosY, (2.27)
J0 =ruj.
These equations describe the motion of the vehicle as a sekeftoupled second-
order differential equations. \%

Information Systems

Information systems range from communication systemsthkenternet to soft-
ware systems that manipulate data or manage enterprisesgderces. Feedback
is presentin all these systems, and designing strategissting, flow control and
buffer management is a typical problem. Many results in qugtheory emerged
from design of telecommunication systems and later fronelbgment of the In-
ternet and computer communication systems [BG87, Kle7583' HcManagement
of queues to avoid congestion is a central problem and wethélefore start by
discussing the modeling of queuing systems.

Example 2.10 Queuing systems

A schematic picture of a simple queue is shown in Figure 2. HjuRsts arrive
and are then queued and processed. There can be large variatiarrival rates
and service rates, and the queue length builds up when tivalaate is larger
than the service rate. When the queue becomes too larg&eserdenied using
an admission control policy.

The system can be modeled in many different ways. One way i®teheach
incoming request, which leads to an event-based model vilhestate is an integer
that represents the queue length. The queue changes wheuestragives or a
request is serviced. The statistics of arrival and serviaiggtypically modeled as
random processes. In many cases it is possible to determaitigtiss of quantities
like queue length and service time, but the computationdeaguite complicated.

A significant simplification can be obtained by usindglewv model Instead
of keeping track of each request we instead view service agdests as flows,
similar to what is done when replacing molecules by a contimwhen analyzing
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Figure 2.19: Queuing dynamics. (a) The steady-state queue length as a functign gf.
(b) The behavior of the queue length when there is a temporary overidhad system. The
solid line shows a realization of an event-based simulation, and the dasheshéws the
behavior of the flow model (2.29).

fluids. Assuming that the average queue length a continuous variable and that
arrivals and services are flows with rateand u, the system can be modeled by
the first-order differential equation
dx
a:l_ﬂ:l_ﬂmaxf(x)a x>0, (2.28)
where umax IS the maximum service rate arfdx) is a number between 0 and 1
that describes the effective service rate as a functionefjtteue length.
Itis natural to assume that the effective service rate dépen the queue length
because larger queues require more resources. In stedady&davef (x) =
A/ itmax, @aNd we assume that the queue length goes to zero ivhehnx goes to zero
and that it goes to infinity whe/ 1 max goes to 1. This implies thaft(0) = 0 and
that f (co) = 1. In addition, if we assume that the effective service raterdorates
monotonically with queue length, then the functib¢x) is monotone and concave.
A simple function that satisfies the basic requirementsis = x/(1+ x), which
gives the model
dx P X
a =A== ,UmaxX 1

This model was proposed by Agnew [Agn76]. It can be shown fretrival and
service processes are Poisson processes, the averageengthed given by equa-
tion (2.29) and that equation (2.29) is a good approximagien for short queue
lengths; see Tipper [TS90].
To explore the properties of the model (2.29) we will first istigate the equi-
librium value of the queue length when the arrival ratss constant. Setting the
derivatived x/dt to zero in equation (2.29) and solving forwe find that the queue
lengthx approaches the steady-state value
Xe = L (2.30)

Hmax — A
Figure 2.19a shows the steady-state queue length as a furaftio/ i« max the
effective service rate excess. Notice that the queue lengtkases rapidly aé

(2.29)
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Figure 2.20: Illustration of feedback in the virtual memory system of the IBM/370. (a¢ T
effect of feedback on execution times in a simulation, following [BG6&sits with no
feedback are shown with, and results with feedback with Notice the dramatic decrease
in execution time for the system with feedback. (b) How the three statedbtamed based
on process measurements.

approachegmax. TOo have a queue length less than 20 requir@snax < 0.95. The
average time to service arequeskds= (X+1)/umax anditincreases dramatically
as/ approacheg max.

Figure 2.19b illustrates the behavior of the server in a Bigigerload situation.
The maximum service rate jgsnax = 1, and the arrival rate starts at= 0.5. The
arrival rate is increased tb = 4 at time 20, and it returns to = 0.5 at time 25.
The figure shows that the queue builds up quickly and clearsslewly. Since the
response time is proportional to queue length, it meansthieaquality of service
is poor for a long period after an overload. This behavior iedaherush-hour
effectand has been observed in web servers and many other questegisysuch
as automobile traffic.

The dashed line in Figure 2.19b shows the behavior of the flow mathéch
describes the average queue length. The simple model cajtelhavior qualita-
tively, but there are variations from sample to sample winmendqueue length is
short. \%

Many complex systems use discrete control actions. Sucaragstan be mod-
eled by characterizing the situations that correspond th €antrol action, as
illustrated in the following example.

Example 2.11 Virtual memory paging control

An early example of the use of feedback in computer systenssapplied in the
operating system OS/VS for the IBM 370 [BG68, Cro75]. The systeed virtual
memory, which allows programs to address more memory thalmyisically avail-
able as fast memory. Data in current fast memory (randonsaaoemory, RAM)
is accessed directly, but data that resides in slower me(dasly) is automatically
loaded into fast memory. The system is implemented in suchyahed it appears
to the programmer as a single large section of memory. Themsys¢rformed very
well in many situations, but very long execution times waneaintered in over-
load situations, as shown by the open circles in Figure 2.2Ba.difficulty was
resolved with a simple discrete feedback system. The lodtkeafdéntral processing
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Figure 2.21: Consensus protocols for sensor networks. (a) A simple sensor metvith
five nodes. In this network, node 1 communicates with node 2 and nodenghanicates
with nodes 1, 3, 4, 5, etc. (b) A simulation demonstrating the convergefibe consensus
protocol (2.31) to the average value of the initial conditions.

unit (CPU) was measured together with the number of page shetpgeen fast
memory and slow memory. The operating region was classifiegiag n one of
three states: normal, underload or overload. The norma &atharacterized by
high CPU activity, the underload state is characterized WwyQ®U activity and few
page replacements, the overload state has moderate to lolo@é&but many page
replacements; see Figure 2.20b. The boundaries betweergibagand the time
for measuring the load were determined from simulationsgugipical loads. The
control strategy was to do nothing in the normal load coaditio exclude a process
from memory in the overload condition and to allow a new pssocar a previously
excluded process in the underload condition. The crossegurd-2.20a show the
effectiveness of the simple feedback system in simulataeddoSimilar principles
are used in many other situations, e.g., in fast, on-chipeatemory. \%

Example 2.12 Consensus protocols in sensor networks

Sensor networks are used in a variety of applications whergvare to collect
and aggregate information over a region of space using phelléiensors that are
connected together via a communications network. Examptésde monitoring
environmental conditions in a geographical area (or inaitlailding), monitoring
the movement of animals or vehicles and monitoring the nesoloading across
a group of computers. In many sensor networks the computdtiesources are
distributed along with the sensors, and it can be importarthie set of distributed
agents to reach a consensus about a certain property, Sheteasrage temperature
in a region or the average computational load among a setopaters.

We model the connectivity of the sensor network using a grapthh nodes
corresponding to the sensors and edges corresponding ¢éxi#tence of a direct
communications link between two nodes. We use the notatipto represent the
set of neighbors of a node For example, in the network shown in Figure 2.21a
N2 ={1,3,4,5} and N3 = {2, 4}.

To solve the consensus problem xebe the state of thigh sensor, correspond-
ing to that sensor’s estimate of the average value that wieyaing to compute. We
initialize the state to the value of the quantity measuredhieyindividual sensor.
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The consensus protocol (algorithm) can now be realized asahupdate law

xi[k+1]=x[Kl +7 D [k = x[K]). (2.31)
jeN;

This protocol attempts to compute the average by updatintptia state of each
agent based on the value of its neighbors. The combined dgsahall agents can
be written in the form

X[k + 1] = x[k] — 7 (D — A)X[K], (2.32)

where A is the adjacency matrix anB is a diagonal matrix with entries corre-
sponding to the number of neighbors of each node. The constdascribes the
rate at which the estimate of the average is updated basedfamation from
neighboring nodes. The matrix:= D — Ais called theLaplacianof the graph.
The equilibrium points of equation (2.32) are the set of statech thakg[k +
1] = x¢[K]. It can be shown thate = («, «, . .., ) is an equilibrium state for the
system, corresponding to each sensor having an identioakgsa for the average.
Furthermore, we can show thatis indeed the average value of the initial states.
Since there can be cycles in the graph, it is possible thattie of the system
could enter into an infinite loop and never converge to therdésionsensus state.
A formal analysis requires tools that will be introducecetan the text, but it can
be shown that for any connected graph we can always findwach that the states
of the individual agents converge to the average. A simutadiemonstrating this
property is shown in Figure 2.21b. \%

Biological Systems

Biological systems provide perhaps the richest sourceanftfack and control ex-
amples. The basic problem of homeostasis, in which a quasntdy as temperature
or blood sugar level is regulated to a fixed value, is but onlesiiany types of com-
plex feedback interactions that can occur in molecular nme&sh cells, organisms
and ecosystems.

Example 2.13 Transcriptional regulation
Transcription is the process by which messenger RNA (mRBE&gherated from a
segmentof DNA. The promoter region of a gene allows transoripo be controlled
by the presence of other proteins, which bind to the prom@gion and either
repress or activate RNA polymerase, the enzyme that preducemRNA transcript
from DNA. The mRNA is then translated into a protein accordimds nucleotide
sequence. This process is illustrated in Figure 2.22.

A simple model of the transcriptional regulation processhimugh the use
of a Hill function [dJ02, Mur04]. Consider the regulation afprotein A with a
concentration given by, and a corresponding mRNA concentratiog. Let B
be a second protein with concentratippthat represses the production of protein
A through transcriptional regulation. The resulting dynesrof p, andm, can be
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Figure 2.22:Biological circuitry. The cell on the left is a bovine pulmonary cell, stained s
that the nucleus, actin and chromatin are visible. The figure on the rigks$ gn overview
of the process by which proteins in the cell are made. RNA is transcribed DNA by an
RNA polymerase enzyme. The RNA is then translated into a protein by ameltg called

a ribosome.

written as

dmy Oab dpa
dt 1+ k:bpﬂab 00 = YaMay g = faMa — daPe, (2:33)

whereaa,+ 040 IS the unregulated transcription rajg represents the rate of degra-
dation of MRNA b, Kap andngy, are parameters that describe how B represses A,
[a represents the rate of production of the protein from itsesponding mRNA
andod, represents the rate of degradation of the protein A. The petexian,g de-
scribes the “leakiness” of the promoter, amg is called the Hill coefficient and
relates to the cooperativity of the promoter.

A similar model can be used when a protein activates the ptaiuof another
protein rather than repressing it. In this case, the equsaitiave the form

dms  aabkappp™ dpa
at 11 Zab F;Dtr)]ab + 0ta0 — YaMa, at BaMa — Ja Pa, (2.34)

where the variables are the same as described previoudly.thit in the case of
the activator, ifpy is zero, then the production ratedigy (Versusoap + a9 for the
repressor). Ay gets large, the first term in the expressionrigy approaches 1
and the transcription rate becomes + a0 (Versusago for the repressor). Thus
we see that the activator and repressor act in oppositeofasiom each other.

As an example of how these models can be used, we consideroithel of a
“repressilator,” originally due to Elowitz and Leibler [ELOOThe repressilator is
a synthetic circuit in which three proteins each represshesmon a cycle. This is
shown schematically in Figure 2.23a, where the three protia TetR/ cl and
Lacl. The basic idea of the repressilator is that if TetR is@neghen it represses
the production ofi cl. If Acl is absent, then Lacl is produced (at the unregulated
transcription rate), which in turn represses TetR. OncR Tetepressed, thercl is
no longer repressed, and so on. If the dynamics of the ciaceitiesigned properly,
the resulting protein concentrations will oscillate.

We can model this system using three copies of equation ), 288t A and
B replaced by the appropriate combination of TetR, cl and L&ké state of the
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Figure 2.23: The repressilator genetic regulatory network. (a) A schematic diagfahe o
repressilator, showing the layout of the genes in the plasmid that holds¢hé as well as
the circuit diagram (center). (b) A simulation of a simple model for theaggilator, showing
the oscillation of the individual protein concentrations. (Figure courtesklbwitz.)

system is then given by = (Mretr, Pretr, Mel> Pel> Miact, Prac)- Figure 2.23b
shows the traces of the three protein concentrations fanpetersy = 2,a = 0.5,
k=625x10% 0p=5x 104y =58x 1073, =012ands = 1.2 x 1073
with initial conditionsx(0) = (1, 0, 0, 200, 0, 0) (following [ELQO]). \%

Example 2.14 Wave propagation in neuronal networks

The dynamics of the membrane potential in a cell are a fundeherechanism

in understanding signaling in cells, particularly in news@nd muscle cells. The
Hodgkin—Huxley equations give a simple model for studyinggagation waves in

networks of neurons. The model for a single neuron has the form

C— = —Ina— Ik — lieak+ linputs
dt Na K leak input

whereV is the membrane potentid, is the capacitancéy, andl are the current
caused by the transport of sodium and potassium across theaabrane | jgax
is a leakage current arlghy, is the external stimulation of the cell. Each current
obeys Ohm’s law, i.e.,

I =g(V - E),

where g is the conductance and is the equilibrium voltage. The equilibrium
voltage is given by Nernst's law,

RT Ce
E= nF log G’
whereRis Boltzmann’s constant, is the absolute temperatufejs Faraday’s con-
stant,n is the charge (or valence) of the ion anjéindc, are the ion concentrations
inside the cell and in the external fluid. At 2C we haveRT/F = 20 mV.
The Hodgkin—Huxley model was originally developed as a méapsedict the
gquantitative behavior of the squid giant axon [HH52]. Hoitigknd Huxley shared
the 1963 Nobel Prize in Physiology (along with J. C. Eccles) falgsis of the
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electrical and chemical events in nerve cell dischargesvohage clamp described
in Section 1.3 was a key element in Hodgkin and Huxley’s expenis. \Y%

2.5 Further Reading

Modeling is ubiquitous in engineering and science and hasghistory in applied
mathematics. For example, the Fourier series was intratlogd-ourier when he
modeled heat conduction in solids [Fou07]. Models of dyranfiave been de-
veloped in many different fields, including mechanics [Arn@l53], heat con-
duction [CJ59], fluids [BRS60], vehicles [Abk69, Bla91, Ell9djbotics [MLS94,
SV89], circuits [Gui63], power systems [Kun93], acoustiBelb4] and microme-
chanical systems [Sen01]. Control theory requires moddtiogn many differ-
ent domains, and most control theory texts contain sevégters on modeling
using ordinary differential equations and difference digus (see, for example,
[FPENO5S]). A classic book on the modeling of physical systerapgeially me-
chanical, electrical and thermofluid systems, is Cannon (@prThe book by
Aris [Ari94] is highly original and has a detailed discussiaf the use of dimension-
free variables. Two of the authors’ favorite books on maugtif biological systems
are J. D. Murray [Mur04] and Wilson [Wil99].

Exercises

2.1 (Chain of integrators form) Consider the linear ordinarffedential equa-
tion (2.7). Show that by choosing a state space represemtaith x; = vy, the
dynamics can be written as

0 1 0 0
. . 0
A=] O 0 B=| . C:[l .0 o].
0 0 1 :
—a, —an_1 —a 1

This canonical form is called thehain of integratordorm.

2.2(Inverted pendulum) Use the equations of motion for a baaystem to derive
a dynamic model for the inverted pendulum described in Exar@® and verify
that for smalld the dynamics are approximated by equation (2.10).

2.3 (Disrete-time dynamics) Consider the following discriétee system
X[k + 1] = AX[K] + Bu[k], y[k] = Cx[K],

where

_Ix _ |aun a2 _ |0 —
X_[XZ]’ A_[O azz]’ B_[ll, C_[l o].
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In this problem, we will explore some of the properties o$ttliscrete-time system
as a function of the parameters, the initial conditions duednputs.

(a) For the case whesm, = 0 andu = O, give a closed form expression for the
output of the system.

(b) Adiscrete system is iaquilibriumwhenx[k + 1] = x[k] for all k. Letu =r

be a constant input and compute the resulting equilibriumtgor the system.
Show that if|a; | < 1 for alli, all initial conditions give solutions that converge to
the equilibrium point.

(c) Write a computer program to plot the output of the systenesponse to a unit
step inputu[k] = 1,k > 0. Plot the response of your system wifld] = 0 andA
given bya;; = 0.5,a;, = 1 anday, = 0.25.

2.4 (Keynesian economics) Keynes'’ simple model for an econangyvien by
Y[k] = C[K] + I [K] + G[K],

whereY, C, | andG are gross national product (GNP), consumption, investment
and government expenditure for ydaiConsumption and investment are modeled
by difference equations of the form

Clk+1]=aY[k], I[k+ 1] =Db(C[k+ 1] - C[k]),

wherea andb are parameters. The first equation implies that consumptiveases
with GNP but that the effect is delayed. The second equatipfiésthat investment
is proportional to the rate of change of consumption.

Show that the equilibrium value of the GNP is given by

1
l1-a
where the parameter/ (1 — a) is the Keynes multiplier (the gain fromor G to
Y). With a = 0.25 an increase of government expenditure will result in aftdd

increase of GNP. Also show that the model can be written a®tlosving discrete-
time state model:

(T = oo a) [THd) + ) st

Y[K] = C[K] + I [K] + G[K].

Ye: (|e+Ge):

2.5(Least squares system identification) Consider a nonlinéareintial equation
that can be written in the form

dx i ()
— = D aili(X),
dt &

where f;(x) are known nonlinear functions and are unknown, but constant,
parameters. Suppose that we have measurements (or esfiofdtes full statex
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at time instantd,, t, ..., ty, with N > M. Show that the parametess can be
determined by finding the least squares solution to a lineaatéan of the form
Ha = b,

wherea € RM is the vector of all parameters amtl € RN*M andb € RN are
appropriately defined.

2.6(Normalized oscillator dynamics) Consider a damped sprimass system with
dynamics
md + cq + kg = F.

Let wp = +/k/m be the natural frequency agd= c/(2~/km) be the damping
ratio.

(&) Show that by rescaling the equations, we can write therdigsin the form
G + 2¢ wod + whg = w3, (2.35)

whereu = F/k. This form of the dynamics is that of a linear oscillator wititural
frequencywy and damping ratig.

(b) Show that the system can be further normalized and wiiitt&me form

d d
ﬁ = 27y, ﬁ = —Z]_—ZCZZ—FZ). (236)
dr dr

The essential dynamics of the system are governed by a siaglpidg parameter
¢. The Q-valuedefined axQ = 1/2¢ is sometimes used instead.af

2.7 (Electric generator) An electric generator connected tocagtpower grid can
be modeled by a momentum balance for the rotor of the gemerato

d?p
dt?
whereJ is the effective moment of inertia of the generagothe angle of rotation,
Pm the mechanical power that drives the generdgis the active electrical power,
E the generator voltag¥, the grid voltage ani the reactance of the line. Assuming
that the line dynamics are much faster than the rotor dyrankic = VI =
(EV/X) sing, wherel is the current component in phase with the volt&gandg

is the phase angle between voltagesndV . Show that the dynamics of the electric
generator has a normalized form that is similar to the dynaiwiia pendulum with
forcing at the pivot.

EV .

2.8 (Admission control for a queue) Consider the queuing sysiescribed in
Example 2.10. The long delays created by temporary overlaatbe reduced by
rejecting requests when the queue gets large. This allowestgjthat are accepted
to be serviced quickly and requests that cannot be accontewda receive a
rejection quickly so that they can try another server. Gigrsan admission control
system described by

dx

— = AU —
dt ,UmaxX+1:

u= Sak(),l)(k(l' — X)), (237)
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where the controller is a simple proportional control wittwsation (sakp is
defined by equation (3.9)) andis the desired (reference) queue length. Use a
simulation to show that this controller reduces the rustrhedfect and explain
how the choice of affects the system dynamics.

2.9 (Biological switch) A genetic switch can be formed by cortiregtwo repres-
sors together in a cycle as shown below.

u1_|g />,_u2 ﬁ -

LUZ

Using the models from Example 2.13—assuming that the pasmate the same
for both genes and that the mRNA concentrations reach sgtatyquickly—show
that the dynamics can be written in normalized coordinages a

dz H dz H

=717, " 4a-—nu, - =

dr 1+27) dr 1+27]
wherez; andz, are scaled versions of the protein concentrations andrtieedcale
has also been changed. Show that 200 using the parameters in Example 2.13,
and use simulations to demonstrate the switch-like behavithe system.

— Zp — U2, (238)

2.10(Motor drive) Consider a system consisting of a motor diguivo masses that
are connected by a torsional spring, as shown in the diagedoavb

?1 ®2

— Motor

@ @2
Ji I
This system can represent a motor with a flexible shaft thagégi@ioad. Assuming

that the motor delivers a torque that is proportional to tieemt, the dynamics of
the system can be described by the equations

d? d d
J1_¢21 "'C(ﬂ - ﬂ) + k(g1 —92) = ki I,
d2(02 dp, dos '
g T e ~ap) TRz — e =To

Similar equations are obtained for a robot with flexible armg fam the arms of
DVD and optical disk drives.

Derive a state space model for the system by introducing riber(alized)
state variables; = @1, X2 = @2, X3 = w1/we, aNdX4 = w2 /wg, Wherewy =
VK1 + J)/(JI1dp) is the undamped natural frequency of the system when the
control signal is zero.




