Chapter Eleven
Frequency Domain Design

Sensitivity improvements in one frequency range must be paid for with sindiieriorations
in another frequency range, and the price is higher if the plant is opep-lowtable. This
applies to every controller, no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture, 1989 [Ste03].

In this chapter we continue to explore the use of frequencyado techniques
with a focus on the design of feedback systems. We begin witior@e thorough
description of the performance specifications for contrsteays and then introduce
the concept of “loop shaping” as a mechanism for designingrobers in the
frequency domain. We also introduce some fundamentaHiioits to performance
for systems with time delays and right half-plane poles a&rdz

11.1 Sensitivity Functions

In the previous chapter, we considered the use of propattiotegral-derivative
(PID) feedback as a mechanism for designing a feedback dientfor a given
process. In this chapter we will expand our approach to dehkuricher repertoire
of tools for shaping the frequency response of the closepl $ystem.

One of the key ideas in this chapter is that we can design thaviier of the
closed loop system by focusing on the open loop transfertimmcThis same
approach was used in studying stability using the Nyquittrion: we plotted the
Nyquist plot for theopenloop transfer function to determine the stability of the
closedoop system. From a design perspective, the use of loop asétdyds is very
powerful: since the loop transfer functionlis= P C, if we can specify the desired
performance in terms of propertieslof we can directly see the impact of changes
in the controllerC. This is much easier, for example, than trying to reason threc
about the tracking response of the closed loop system, winassfer function is
given byGy, = PC/(1+ PC).

We will start by investigating some key properties of thediegck loop. A
block diagram of a basic feedback loop is shown in Figure 11DH](6 Jan 08)
Reworded the third and fourth sentences. OK? The systemdsammiposed of two
components: the process and the controller. The contradlelf ihas two blocks:
the feedback block and the feedforward block. There are two disturbances act-
ing on the process, the load disturbaxcand the measurement noiseThe load
disturbance represents disturbances that drive the m@sesy from its desired
behavior, while the measurement noise represents distcelsahat corrupt infor-
mation about the process given by the sensors. In the figuedo#d disturbance
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Figure 11.1: Block diagram of a basic feedback loop with two degrees of freedora. Th
controller has a feedback blo¢k and a feedforward block. The external signals are the
reference signal, the load disturbance and the measurement noiseThe process output
is 5, and the control signal ig.

is assumed to act on the process input. This is a simplificatime slisturbances
often enter the process in many different ways, but it allow$o streamline the
presentation without significant loss of generality.

The process outpytis the real variable that we want to control. Control is based
on the measured signg) where the measurements are corrupted by measurement
noisen. The process is influenced by the controller via the controlaée u.
The process is thus a system with three inputs—the contr@hleru, the load
disturbancel and the measurement noise-and one output—the measured signal
y. The controller is a system with two inputs and one output. Tipeits are the
measured signat and the reference signal and the output is the control signal
u. Note that the control signal is an input to the process and the output of the
controller, and that the measured sigpés the output of the process and an input
to the controller.

The feedback loop in Figure 11.1 is influenced by three exteligahts, the
reference, the load disturbanced and the measurement noiseAny of the re-
maining signals can be of interest in controller designeteling on the particular
application. Since the system is linear, the relations betvike inputs and the in-
teresting signals can be expressed in terms of the transfetibns. The following
relations are obtained from the block diagram in Figure 11.1:

PCF P 1
1+PC 1+PC 1+PC
y PCF P —PC
p 1J(EEC 1+1PC 1+(F:’C "
"I = |1¥pc 1¥pPc 1Itrc |d] (11.1)
u CF  -PC -C n
e 1+PC 1+PC 1+PC
F —P -1
1+ PC 1+PC 1+PC

In addition, we can write the transfer function for the evetween the reference
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r and the outpug; (not an explicit signal in the diagram), which satisfies

r (1 PCF )r+ —P d+ PC n
€E=r—n= - .
1 1+PC) "1+PC "1+PC
There are several interesting conclusions we can draw fregetbquations. First
we can observe that several transfer functions are the sadtbat the majority of
the relations are given by the following set of six transterdtions, which we call

the Gang of Six

PCF = P
:1;10’ T:1+(F:>c’ PS=17pc
CF C 1 (11.2)
FS=_— =—— = -
CFS 1+ PC’ €S 1+ PC’ S 1+ PC

The transfer functions in the first column give the responséefrocess output
and control signal to the reference signal. The second colyiuas the response
of the control variable to the load disturbance and the naisd the final column
gives the response of the process output to those two ingatie that only four
transfer functions are required to describe how the systawts to load disturbances
and measurement noise, and that two additional transfetiuns are required to
describe how the system responds to reference signals.

The linear behavior of the system is determined by the sixstearfunctions
in equation (11.2), and specifications can be expressedrstef these transfer
functions. The special case whén= 1 is called a system with (pure) error feed-
back. In this case all control actions are based on feedlvaokthe error only and
the system is completely characterized by four transfectfans, namely, the four
rightmost transfer functions in equation (11.2), whichénapecific names:

S= _ 1 sensitivity PS= P Isoeandsitivity
1+ PC function 1+ PC function
(11.3)
PC complementary C noise
T= T sensitivity S= e sensitivity
function function

These transfer functions and their equivalent systems #ieszl¢dhe Gang of Four
The load sensitivity function is sometimes called the inguisstivity function and
the noise sensitivity function is sometimes called the ougensitivity function.
These transfer functions have many interesting propettigswill be discussed
in detail in the rest of the chapter. Good insight into thesmperties is essential
in understanding the performance of feedback systems &ptiposes of both
analysis and design.

Analyzing the Gang of Six, we find that the feedback contrdllenfluences
the effects of load disturbances and measurement noiseeNbat measurement
noise enters the process via the feedback. In Section 12.@ ibevshown that
the controller influences the sensitivity of the closed loogptocess variations.
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Figure 11.2: A more general representation of a feedback system. The progassuin
represents the control signal, which can be manipulated, and the pinpesw represents
other signals that influence the process. The process owtmithe vector of measured
variables and are other signals of interest.

The feedforward parfEe of the controller influences only the response to command
signals.

In Chapter 9 we focused on the loop transfer function, andoved that its
properties gave a useful insight into the properties of éesysTo make a proper
assessment of a feedback system it is necessary to corfmdmoperties of all the
transfer functions (11.2) in the Gang of Six or the Gang of Faatrillustrated in
the following example.

Example 11.1 Theloop transfer function givesonly limited insight

Consider a process with the transfer functi®¢s) = 1/(s — a) controlled by a PI
controller with error feedback having the transfer funei@xs) = k(s—a)/s. The
loop transfer function i = k/s, and the sensitivity functions are

T PC _ k , PS_ P _ S ,
1+ PC s+k 1+ PC (s—a)(s+Kk)
cS— C :k(s—a)’ _ 1 _ s'
1+ PC s+k 1+ PC s+k

Notice that the factos — a is canceled when computing the loop transfer function
and that this factor also does not appear in the sensitivitgtfon or the comple-
mentary sensitivity function. However, cancellation o flactor is very serious if

a > 0 since the transfer functio® Srelating load disturbances to process output is
then unstable. In particular, a small disturbad@an lead to an unbounded output,
which is clearly not desirable. \%

The system in Figure 11.1 represents a special case becasiss$uimed that
the load disturbance enters at the process input and that¢heured output is the
sum of the process variable and the measurement noiserlizistes can enter in
many different ways, and the sensors may have dynamics. A& alostract way
to capture the general case is shown in Figure 11.2, which higstwo blocks
representing the procesg) and the controller®). The process has two inputs,
the control signali and a vector of disturbancas and two outputs, the measured
signaly and a vector of signalsthat is used to specify performance. The system
in Figure 11.1 can be captured by choosing= (d, n) andz = (4, v, e,¢). The
process transfer functioR is a 4x 3 matrix, and the controller transfer functién
is a 1x 2 matrix; compare with Exercise 11.3.
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Figure 11.3: Block diagram of a system with feedforward compensation for impraeed
sponse to reference signals and measured disturbances (2 DOR)syidtece feedforward
elements are preserf,(s) sets the desired output valug,(s) generates the feedforward
commandus andF4(s) attempts to cancel disturbances.

Processes with multiple inputs and outputs can also be cenesidy regarding
andy as vectors. Representations at these higher levels obabietr are useful for
the development of theory because they make it possibletsfon fundamentals
and to solve general problems with a wide range of applinatiblowever, care
must be exercised to maintain the coupling to the real-woolitrol problems we
intend to solve.

11.2 Feedforward Design

Most of our analysis and design tools up to this point haveged on the role of
feedback and its effect on the dynamics of the system. Fegdfdiis a simple and
powerful technique that complements feedback. It can be lnsth to improve the
response to reference signals and to reduce the effect dfursdde disturbances.
Feedforward compensation admits perfect elimination ofudignces, but it is
much more sensitive to process variations than feedbackensation. A general
scheme for feedforward was discussed in Section 7.5 usingd=igli0. A simple
form of feedforward for PID controllers was discussed in $ecfi0.5. The con-
trollerin Figure 11.1 also has a feedforward block to impnasponse to command
signals. An alternative version of feedforward is shown igufé 11.3, which we
will use in this section to understand some of the trade{udtsveen feedforward
and feedback.

Controllers with two degrees of freedom (feedforward aretifeck) have the
advantage that the response to reference signals can pael@andependently of
the design for disturbance attenuation!design of comrslior and robustness. We
will first consider the response to reference signals, and iWéharefore initially
assume that the load disturbamids zero. LetF, represent the ideal response of the
system to reference signals. The feedforward compensatbarscterized by the
transfer functions-, andF,,. When the reference is changed, the transfer function
F, generates the signag, which is chosen to give the desired output when applied
as input to the process. Under ideal conditions the outpsithen equal to, the
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error signal is zero and there will be no feedback actiorhéfé are disturbances
or modeling errors, the signayg, andy will differ. The feedback then attempts to
bring the error to zero.
To make a formal analysis, we compute the transfer functiomfreference
input to process output:
P(CFn + Fu) PFy — Fm

Gy(§) = —21 Y _pF 42 T 11.4
v (S) 1+ PC m+ 1+ PC (11.4)

whereP = P,P;. Thefirstterm represents the desired transfer function. Tdunske
term can be made small in two ways. Feedforward compensatiome used to
makeP F, — Fn, small, or feedback compensation can be used to makePLC
large. Perfect feedforward compensation is obtained bysihgo
Fm

Fu= b (11.5)
Design of feedforward using transfer functions is thus g #mple task. Notice
that the feedforward compensatBy contains an inverse model of the process
dynamics.

Feedback and feedforward have different properties. Fesdfdraction is ob-
tained by matching two transfer functions, requiring psedinowledge of the pro-
cess dynamics, while feedback attempts to make the errdt byndividing it by
a large quantity. For a controller having integral actidre toop gain is large for
low frequencies, and it is thus sufficient to make sure thattrlition for ideal
feedforward holds at higher frequencies. This is easier thang to satisfy the
condition (11.5) for all frequencies.

We will now consider reduction of the effects of the load alibanced in Fig-
ure 11.3 by feedforward control. We assume that the disthwdaignal is measured
and that the disturbance enters the process dynamics innnkmay (captured by
P, andP,). The effect of the disturbance can be reduced by feeding dasured
signal through a dynamical system with the transfer fumctg. Assuming that
the reference is zero, we can use block diagram algebra to find that the gansf
function from the disturbance to the process output is

Go — P>(1+ FqP1)
o= " 11pCc
whereP = P; P,. The effect of the disturbance can be reduced by makin§dP;

small (feedforward) or by making-t P C large (feedback). Perfect compensation
is obtained by choosing

(11.6)

Fo = —Pt, (11.7)

requiring inversion of the transfer functid®.

Asinthe case of reference tracking, disturbance attemueatin be accomplished
by combining feedback and feedforward control. Since loegfrency disturbances
can be eliminated by feedback, we require the use of feediohenly for high-
frequency disturbances, and the transfer funcigim equation (11.7) can then be
computed using an approximation Bf for high frequencies.
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Figurell.4: Feedforward control for vehicle steering. The plot on the left shoe/s ejectory
generated by the controller for changing lanes. The plots on the righttbledateral deviation

y (top) and the steering anglgbottom) for a smooth lane change control using feedforward
(based on the linearized model).

Equations (11.5) and (11.7) give analytic expressions ffg¢bdforward com-
pensator. To obtain a transfer function that can be impleéedanithout difficulties
we require that the feedforward compensator be stable adt thoes not require
differentiation. Therefore there may be constraints oniptesshoices of the de-
sired responsé&,, and approximations are needed if the process has zeros in th
right half-plane or time delays.

Example 11.2 Vehicle steering

A linearized model for vehicle steering was given in Exampde Bhe normalized
transfer function from steering angiéo lateral deviatiory is P(s) = (y s+ 1)/s%.
For a lane transfer system we would like to have a nice regpwitiout overshoot,
and we therefore choose the desired response, &8 = a?/(s + a)?, where the
response speed or aggressiveness of the steering is go\®rree parametea.
Equation (11.5) gives

F a?s?
Fu = _m

P  (ys+D(s+a?

which is a stable transfer function as longrias 0. Figure 11.4 shows the responses
of the system foa = 0.5. The figure shows that a lane change is accomplished
in about 10 vehicle lengths with smooth steering angles. afyekt steering angle

is slightly larger than 0.1 rad {{ Using the scaled variables, the curve showing
lateral deviationsy as a function ot) can also be interpreted as the vehicle path
(y as a function ok) with the vehicle length as the length unit. \Y%

A major advantage of controllers with two degrees of freedbat combine
feedback and feedforward is that the control design prolokmibe splitin two parts.
The feedback controlle€ can be designed to give good robustness and effective
disturbance attenuation, and the feedforward part can Sigried independently
to give the desired response to command signals.



322 CHAPTER 11. FREQUENCY DOMAIN DESIGN

11.3 Performance Specifications

A key element of the control design process is how we spebifydesired per-
formance of the system. It is also important for users to tstdad performance
specifications so that they know what to ask for and how to tegstem. Specifi-
cations are often given in terms of robustness to procesatizars and responses
to reference signals and disturbances. They can be givemirs t&f both time and
frequency responses. Specifications for the step responstetence signals were
given in Figure 5.9 in Section 5.3 and in Section 6.3. Robustapssifications
based on frequency domain concepts were provided in SecBané will be con-
sidered further in Chapter 12. The specifications discussadqusly were based
on the loop transfer function. Since we found in Section 11at &single transfer
function did not always characterize the properties of theexl loop completely,
we will give a more complete discussion of specifications is slection, based on
the full Gang of Six.

The transfer function gives a good characterization of thea behavior of a
system. To provide specifications it is desirable to captueecharacteristic prop-
erties of a system with a few parameters. Common featurdsrierresponses are
overshoot, rise time and settling time, as shown in FigureGonmon features of
frequency responses are resonant peak, peak frequentyrgasover frequency
and bandwidth. Aesonant peaks a maximum of the gain, and the peak frequency
is the corresponding frequency. Thain crossover frequencsg the frequency
where the open loop gain is equal one. Tamdwidthis defined as the frequency
range where the closed loop gain g2 of the low-frequency gain (low-pass),
mid-frequency gain (band-pass) or high-frequency gagi{mass). There are inter-
esting relations between specifications in the time and &egudomains. Roughly
speaking, the behavior of time responses for short timesased to the behavior
of frequency responses at high frequencies, and vice VvEhgaprecise relations
are not trivial to derive.

Response to Reference Signals

Consider the basic feedback loop in Figure 11.1. The responségrence signals
is described by the transfer functioBg, = PCF/(1+ PC) andGy, = CF/(1+
PC) (F = 1 for systems with error feedback). Notice that it is usedutonsider
both the response of the output and that of the control signgbarticular, the
control signal response allows us to judge the magnituderatedof the control
signal required to obtain the output response.

Example 11.3 Third-order system

Consider a process with the transfer funct®fs) = (s+ 1)~2 and a Pl controller
with error feedback having the gaikg = 0.6 andk; = 0.5. The responses are
illustratedin Figure 11.5. The solid lines show results farapprtional-integral (PI)
controller with error feedback. The dashed lines show redaita controller with
feedforward designed to give the transfer funct®p = (0.5s + 1)~>. Looking
at the time responses, we find that the controller with feeddod gives a faster
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Figure11.5: Reference signal responses. The responses in processyatpltontrol signal
u to a unit step in the reference sigmadre shown in (a), and the gain curves®f, andGy,
are shown in (b). Results with Pl control with error feedback are shoysolid lines, and
the dashed lines show results for a controller with a feedforward cosapan

response with no overshoot. However, much larger contgolads are required to
obtain the fast response. The largest value of the contnoabig 8, comparedto 1.2
for the regular Pl controller. The controller with feedforddias a larger bandwidth
(marked witho) and no resonant peak. The transfer funct&p also has higher
gain at high frequencies. \%

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to conetae output of the closed
loop system in Figure 11.1 with the output of the correspomdipen loop system
obtained by setting@ = 0. If we let the disturbances for the open and closed loop
systems be identical, the output of the closed loop systeheis obtained simply
by passing the open loop output through a system with thesfeearfiunctionS.
The sensitivity function tells how the variations in the auttare influenced by
feedback (Exercise 11.7). Disturbances with frequenciels that| S(iw)| < 1 are
attenuated, but disturbances with frequencies suchStiat)| > 1 are amplified by
feedback. The maximum sensitivi§s, which occurs at the frequeney, is thus a
measure of the largest amplification of the disturbances. Tdeémum magnitude
of 1/(1+ L) is also the minimum offLl + L |, which is precisely the stability margin
Sy defined in Section 9.3, so thist; = 1/s,. The maximum sensitivity is therefore
also a robustness measure.

If the sensitivity function is known, the potential imprawents by feedback
can be evaluated simply by recording a typical output andifilgeit through the
sensitivity function. A plot of the gain curve of the senatif function is agood way
to make an assessment of the disturbance attenuation. Basertsitivity function
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Figure 11.6: Graphical interpretation of the sensitivity function. Gain curves of the loop
transfer function and the sensitivity function (a) can be used to calcuf@ tiperties of the
sensitivity function through the relatidh= 1/(1 + L). The sensitivity crossover frequency
wsc and the frequencyns where the sensitivity has its largest value are indicated in the
sensitivity plot. The Nyquist plot (b) shows the same information in a diffeform. All
points inside the dashed circle have sensitivities greater than 1.

depends only on the loop transfer function, its propertas a&lso be visualized
graphically using the Nyquist plot of the loop transfer ftiog. This is illustrated

in Figure 11.6. The complex numberlL (iw) can be represented as the vector
from the point—1 to the pointL (i w) on the Nyquist curve. The sensitivity is thus
less than 1 for all points outside a circle with radius 1 and@eat—1. Disturbances
with frequencies in this range are attenuated by the feédbac

The transfer functiorsy4 from load disturbance to process outpuy for the
system in Figure 11.1is

P T
_1+PC_PS_C' (11.8)
Since load disturbances typically have low frequencies,nitural to focus on the
behavior of the transfer function at low frequencies. Foystesn withP(0) # 0
and a controller with integral action, the controller gaoeg to infinity for small
frequencies and we have the following approximation forlssa
T 1 S

Gy = c¥c Tk (11.9)
wherek; is the integral gain. Since the sensitivity functiSigoes to 1 for largs,
we have the approximatid@,q ~ P for high frequencies.

Measurement noise, which typically has high frequenciesegates rapid vari-
ations in the control variable that are detrimental bec#lusgcause wear in many
actuators and can even saturate an actuator. It is thustampéo keep variations in
the control signal due to measurement noise at reasonable-tea typical require-
ment is that the variations are only a fraction of the spamefcontrol signal. The
variations can be influenced by filtering and by proper desighehigh-frequency
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Figure 11.7: Disturbance responses. The time and frequency responses espraatputy
to load disturbancd are shown in (a) and the responses of control sigrialmeasurement
noisen are shown in (b).

properties of the controller.

The effects of measurement noise are captured by the trdastgion from the
measurement noise to the control signal,

C T

=——  =CS=—. 11.10

1+ PC P ( )
The complementary sensitivity function is close to 1 for loacuenciesd < wyc),
andGy, can be approximated by1/P. The sensitivity function is close to 1 for
high frequenciesdq > wyc), andGy, can be approximated byC.

un

Example 11.4 Third-order system

Consider a process with the transfer funct®§s) = (s+ 1)~2 and a proportional-
integral-derivative (PID) controller with gairls, = 0.6, ki = 0.5 andky = 2.0.
We augment the controller using a second-order noise filtidr Tyi = 0.1, so that
its transfer function is

ks +ks+k
CS(S2T?/24+sTi + 1)

C(s)

The system responses are illustrated in Figure 11.7. The resdnhe output to
a step in the load disturbance in the top part of Figure 11.%ah@zeak of 0.28 at
timet = 2.73. The frequency response in Figure 11.7a shows that the gaia h
maximum of 0.58 at» = 0.7.

The response of the control signal to a step in measuremesd roshown in
Figure 11.7b. The high-frequency roll-off of the transferdtion Gy, (i w) is due
to filtering; without it the gain curve in Figure 11.7b would tiome to rise after
20 rad’s. The stepresponse has a peak of 13a0.08. The frequency response has
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its peak 20 at» = 14. Notice that the peak occurs far above the peak of the negpo
to load disturbances and far above the gain crossover fnegug. = 0.78. An
approximation derived in Exercise 11.9 gives ni@8(i w)| ~ kq/ Ty = 20, which
occurs at = +/2/ Ty = 14.1. \Y

11.4 Feedback Design via Loop Shaping

One advantage of the Nyquist stability theorem is that iaisdul on the loop transfer
function, which is related to the controller transfer fuantthroughL = PC. Itis
thus easy to see how the controller influences the loop trafigietion. To make
an unstable system stable we simply have to bend the Nyaurig: away from the
critical point.

This simple idea is the basis of several different design oustltollectively
calledloop shaping These methods are based on choosing a compensator that
gives a loop transfer function with a desired shape. Oneilpbisis to determine
a loop transfer function that gives a closed loop system thighdesired properties
and to compute the controller & = L/P. Another is to start with the process
transfer function, change its gain and then add poles arab zertil the desired
shape is obtained. In this section we will explore differeap-shaping methods
for control law design.

Design Considerations

We will first discuss a suitable shape for the loop transfection that gives good
performance and good stability margins. Figure 11.8 showpiaal loop transfer
function. Good robustness requires good stability mar@@ngood gain and phase
margins), which imposes requirements on the loop transfiectfon around the
crossover frequencies,. andwgc. The gain ofL at low frequencies must be large
in order to have good tracking of command signals and go@shadition of low-
frequency disturbances. SinSe= 1/(1+ L), it follows that for frequencies where
|L| > 101 disturbances will be attenuated by a factor of 100 anttdlcking error is
less than 1%. Itis therefore desirable to have a large cvesfrequency and a steep
(negative) slope of the gain curve. The gain at low frequencas be increased by
a controller with integral action, which is also callldy compensatianTo avoid
injecting too much measurement noise into the system, the ti@nsfer function
should have low gain at high frequencies, which is caliggh-frequency roll-off
The choice of gain crossover frequency is a compromise amtterguation of load
disturbances, injection of measurement noise and robsstne

Bode'’s relations (see Section 9.4) impose restrictions ersitape of the loop
transfer function. Equation (9.8) implies that the slopeha gain curve at gain
crossover cannot be too steep. If the gain curve has a corsétge, we have the
following relation between slopegy: and phase margipm:

2
Nge = =2+ 2™ [rad]. (11.11)
T
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Figure11.8: Gain curve and sensitivity functions for a typical loop transfer funcfitre plot
on the left shows the gain curve and the plots on the right show the senditinitiion and
complementary sensitivity function. The gain crossover frequengynd the slopeg. of
the gain curve at crossover are important parameters that deterreir@btistness of closed
loop systems. At low frequency, a large magnitude lfoprovides good load disturbance
rejection and reference tracking, while at high frequency a small lagpig used to avoid
amplifying measurement noise.

This formulais areasonable approximation when the gaireadimes not deviate too
much from a straight line. It follows from equation (11.1hxt the phase margins
30°, 45° and 60 correspond to the slopess/3, —3/2 and—4/3.

Loop shaping is a trial-and-error procedure. We typicallytstith a Bode plot
of the process transfer function. We then attempt to shapletp transfer function
by changing the controller gain and adding poles and zertigetoontroller trans-
fer function. Different performance specifications are eatdd for each controller
as we attempt to balance many different requirements bystdgicontroller pa-
rameters and complexity. Loop shaping is straightforwampjoly to single-input,
single-output systems. It can also be applied to systentsamié input and many
outputs by closing the loops one at a time starting with theiimost loop. The only
limitation for minimum phase systems is that large phasgdead high controller
gains may be required to obtain closed loop systems withtadaponse. Many
specific procedures are available: they all require expegicbut they also give
good insight into the conflicting requirements. There are &mental limitations
to what can be achieved for systems that are not minimum pliaesg will be
discussed in the next section.

Lead and Lag Compensation

A simple way to do loop shaping is to start with the transfection of the process
and add simple compensators with the transfer function

s+a
C(s) =k——-. 11.12
() =k b ( )
The compensator is calledead compensatdf a < b, and alag compensatoif

a > b. The PI controller is a special case of a lag compensator lwith 0, and
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Figurell1.9: Frequency response for lead and lag compens@t@)s= k(s+a)/(s+b). Lead
compensation (a) occurs whan< b and provides phase lead between= a andw = b.
Lag compensation (b) correspondsato- b and provides low-frequency gain. PI control is
a special case of lag compensation and PD control is a special caselafdmpensation.
PI/PD frequency responses are shown by dashed curves.

the ideal PD controller is a special case of a lead compengétioia = 0. Bode
plots of lead and lag compensators are shown in Figure 11.9ch@agpensation,
which increases the gain at low frequencies, is typicalldu® improve tracking
performance and disturbance attenuation at low frequenCigmpensators that are
tailored to specific disturbances can be also designed, asishdexercise 11.10.
Lead compensation is typically used to improve phase maidia.following ex-
amples give illustrations.

Example 11.5 Atomic force microscopein tapping mode
A simple model of the dynamics of the vertical motion of annaitoforce micro-
scope in tapping mode was given in Exercise 9.2. The transfetiin for the
system dynamics is .
P(S) — M,

st(s+a)
wherea = ¢wp, T = 272n/wo and the gain has been normalized to 1. A Bode plot
of this transfer function for the parameters= 1 andz — 0.25 is shown in dashed
curvesinFigure 11.10a. Toimprove the attenuation of lostidbances we increase
the low-frequency gain by introducing an integral congollThe loop transfer
function then becomek = k; P(s)/s, and we adjust the gain so that the phase
margin is zero, givind;;, = 8.3. Notice the increase of the gain at low frequencies.
The Bode plot is shown by the dotted line in Figure 11.10a, wtiereritical point
is indicated byo. To improve the phase margin we introduce proportionabacti
and we increase the proportional g&ingradually until reasonable values of the
sensitivities are obtained. The vakie= 3.5 gives maximum sensitivitils = 1.6
and maximum complementary sensitivigy = 1.3. The loop transfer function is
shown in solid lines in Figure 11.10a. Notice the significactéase of the phase
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Figure 11.10: Loop-shaping design of a controller for an atomic force microscopejpitig
mode. (a) Bode plots of the process (dashed), the loop transfetidarfor an integral
controller with critical gain (dotted) and a PI controller (solid) adjusted te gaasonable
robustness. (b) Gain curves for the Gang of Four for the system.

margin compared with the purely integral controller (ddtiee).

To evaluate the design we also compute the gain curves afhsfer functions
in the Gang of Four. They are shown in Figure 11.10b. The peakeddnsitivity
curves are reasonable, and the plotRds shows that the largest value &fSis
0.3, which implies that the load disturbances are well at¢ed. The plot o€ S
shows that the largest controller gain is 6. The controllerdgain of 3.5 at high
frequencies, and hence we may consider adding high-fregueii-off. \%

A common problem in the design of feedback systems is thgitihee margin
is too small, and phadead must then be added to the system. If weaet b in
equation (11.12), we add phase lead in the frequency rartgeée the pole/zero
pair (and extending approximately £0n frequency in each direction). By appro-
priately choosing the location of this phase lead, we cawigeoadditional phase
margin at the gain crossover frequency.

Because the phase of a transfer function is related to tpe slithe magnitude,
increasing the phase requires increasing the gain of thettaasfer function over
the frequency range in which the lead compensation is apgdleExercise 11.11
it is shown that the gain increases exponentially with theamhof phase lead. We
can also think of the lead compensator as changing the sfope tvansfer function
and thus shaping the loop transfer function in the crosseggon (although it can
be applied elsewhere as well).

Example 11.6 Roll control for a vectored thrust aircraft
Consider the control of the roll of a vectored thrust aircsath as the oneillustrated
in Figure 11.11. Following Exercise 8.10, we model the systéimasecond-order
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Symbol  Description Value
m Vehicle mass 4.0 kg
J Vehicle inertiags axis ~ 0.0475 kg rh
r Force moment arm 25.0cm
y c Damping coefficient 0.05 kg m/s
g Gravitational constant 9.8 nf/s

Figure 11.11: Roll control of a vectored thrust aircraft. (a) The roll angles controlled by
applying maneuvering thrusters, resulting in a moment generatéd.k{{p) The table lists
the parameter values for a laboratory version of the system.

transfer function of the form

r

PE) = Js?+¢s’

with the parameters given in Figure 11.11b. We take as ouopeence specifica-
tion that we would like less than 1% error in steady state asslthan 10% tracking
error up to 10 rad/s.

The open loop transfer function is shown in Figure 11.12a. Toexe our
performance specification, we would like to have a gain ofadtl&0 at a frequency
of 10 rad/s, requiring the gain crossover frequency to benaleer frequency. We
see from the loop shape that in order to achieve the desiréorp@nce we cannot
simply increase the gain since this would give a very low phaargin. Instead,
we must increase the phase at the desired crossover frgquenc

To accomplish this, we use a lead compensator (11.12)ant? andb = 50.
We then set the gain of the system to provide a large loop gaio the desired
bandwidth, as shown in Figure 11.12b. We see that this systsra fain of greater
than 10 at all frequencies up to 10 rad/s and that it has mane 6 of phase
margin. \%

The action of alead compensator is essentially the sametas tha derivative
portion of a PID controller. As described in Section 10.5, weiuse a filter for
the derivative action of a PID controller to limit the higke§uency gain. This same
effect is present in a lead compensator through the pae=ab.

Equation (11.12) is a first-order compensator and can proyide @0 of phase
lead. Larger phase lead can be obtained by using a higher{iesttcompensator
(Exercise 11.11):

(s+a)"

C(S) = km, a<hb.
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Figure11.12: Control design for a vectored thrust aircraft using lead compensatimBode
plot for the open loop proces$sis shown in (a) and the loop transfer functibn= P C using
a lead compensator in (b). Note the phase lead in the crossover regian £e100 rad/s.

11.5 Fundamental Limitations

Although loop shaping gives us a great deal of flexibility irsidaing the closed
loop response of a system, there are certain fundamentis lon what can be
achieved. We consider here some of the primary performamigtions that can
occur because of difficult dynamics; additional limitatioakted to robustness are

considered in the next chapter.

Right Half-Plane Poles and Zeros and Time Delays

There are linear systems that are inherently difficult to @dnirhe limitations are
related to poles and zeros in the right half-plane and tinl@yde To explore the
limitations caused by poles and zeros in the right half-@hlae factor the process
transfer function as

wherePy,, is the minimum phase part ai,, is the nonminimum phase part. The
factorization is normalized so thiR, (i )| = 1, and the sign is chosen so tiat,
has negative phase. The transfer functiag is called arall-pass systerhecause
it has unit gain for all frequencies. Requiring that the ghamargin bep,,, we get

argL (iwge) = argPap(i wge) + arg Pmp(i wge) +argC(iwge) > — +om, (11.14)

whereC is the controller transfer function. Let, be the slope of the gain curve
at the crossover frequency. Sind&(iw)| = 1, it follows that

__dlog|L(iw)| _dlog|Pmp(io)C(iw)|
7 dlogw | dlogw .

w=0gyc
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Assuming that the slopey is negative, it has to be larger thai2 for the system
to be stable. It follows from Bode’s relations, equatior8}9that

argPmp(iw) + argC(iw) ~ ngcg.

Combining this with equation (11.14) gives the following@guality for the allow-
able phase lag of the all-pass part at the gain crossovardrey:

. T
—argPap(iwge) < 7 — ¢om + Ngem =191 (11.15)

This condition, which we call thgain crossover frequency inequalighows thatthe
gain crossover frequency must be chosen so that the phasgtlkegnonminimum
phase component is not too large. For systems with high tobss requirements
we may choose a phase margin of 9 = = /3) and a slop@g. = —1, which
gives an admissible phase lag= = /6 = 0.52 rad (30). For systems where we
can accept alower robustness we may choose a phase mar§irf@f4= = /4) and
the slopengc = —1/2, which gives an admissible phase lag= 7 /2 = 1.57 rad
(90°).

The crossover frequency inequality shows that nonminimuaseltomponents
impose severe restrictions on possible crossover fregegiitalso means that there
are systems that cannot be controlled with sufficient stgiiargins. We illustrate
the limitations in a number of commonly encountered situreti

Example 11.7 Zero in the right half-plane
The nonminimum phase part of the process transfer functioa &ystem with a

right half-plane zero is
zZ—s
Pap(s) = —,
an(S) = S

wherez > 0. The phase lag of the nonminimum phase part is
—argPapiw) =2 arctang.

Since the phase lag %, increases with frequency, the inequality (11.15) gives
the following bound on the crossover frequency:

wge < Z tan(p,/2). (11.16)

With ¢ = 7 /3 we getwg < 0.6z. Slow right half-plane zerogz(mall) therefore
give tighter restrictions on possible gain crossover feggpies than fast right half-
plane zeros. \%

Time delays also impose limitations similar to those givgrzéros in the right
half-plane. We can understand this intuitively from the &agproximation
1-05st 2/t-—5s
~ 17055t 2/c+s
A long time delay is thus equivalent to a slow right half-maeroz = 2/.

—ST
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Example 11.8 Polein theright half-plane
The nonminimum phase part of the transfer function for a systéh a pole in the
right half-plane is

S+ p
Pap(s) = s — pa
wherep > 0. The phase lag of the nonminimum phase part is

—argPap(iw) =2 arctanE,
w

and the crossover frequency inequality becomes

p
“” tanpi/2)
Right half-plane poles thus require that the closed loopesy$ave a sufficiently
high bandwidth. Withy, = 7 /3 we getwyg. > 1.7p. Fast right half-plane poles
(p large) therefore give tighter restrictions on possiblengaossover frequencies
than slow right half-plane poles. The control of unstabléesys imposes minimum
bandwidth requirements for process actuators and sensors. \%

(11.17)

We will now consider systems with aright half-plane zeamd a right half-plane
pole p. If p = z, there will be an unstable subsystem that is neither redemaip
observable, and the system cannot be stabilized (see S&dijoiVe can therefore
expect that the system is difficult to control if the right hpléne pole and zero are
close. A straightforward way to use the crossover frequérayuality is to plot the
phase of the nonminimum phase facRy, of the process transfer function. Such
a plot, which can be incorporated in an ordinary Bode plolf,imimediately show
the permissible gain crossover frequencies. An illugirai given in Figure 11.13,
which shows the phase &, for systems with a right half-plane pole/zero pair
and systems with a right half-plane pole and a time delay.dfrequire that the
phase lag, of the nonminimum phase factor be less than 9@& must require that
the ratioz/ p be larger than 6 or smaller than 1/6 for systems with rightt-plaine
poles and zeros and that the prodpetbe less than 0.3 for systems with a time
delay and a right half-plane pole. Notice the symmetry ingreblem forz > p
andz < p: in either case the zeros and the poles must be sufficientlgfart
(Exercise 11.12). Also notice that possible values of tha gedssover frequency
wgc are quite restricted.

Using the theory of functions of complex variables, it canshewn that for
systems with a right half-plane pofeand a right half-plane zem(or a time delay
), any stabilizing controller gives sensitivity functiongth the property

i >
suplS(io)| = - =,
This result is proven in Exercise 11.13.

As the examples above show, right half-plane poles and zagusficantly
limit the achievable performance of a system, hence onediikd to avoid these
whenever possible. The poles of a system depend on the intdyisamics of the

sup|T (iw)| > eP*. (11.18)
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Figure11.13: Example limitations due to the gain crossover frequency inequality. Theefigu
show the phase lag of the all-pass fadfgy as a function of frequency. Since the phase lag
of P,p at the gain crossover frequency cannot be too large, it is necdssetrpose the gain
crossover frequency properly. All systems have a right half-ptente ats = 1. The system

in (a) has zeros &= 2, 5, 20 and 100 (solid lines) andsat 0.5, 0.2, 0.05 and 0.01 (dashed
lines). The system in (b) has time delays- 0.02 0.1, 0.5 and 1.

system and are given by the eigenvalues of the dynamicsx#atifia linear system.

Sensors and actuators have no effect on the poles; the onlyoaehange poles

is to redesign the system. Notice that this does not imply dihatable systems
should be avoided. Unstable system may actually have aalyasitone example is
high-performance supersonic aircraft.

The zeros of a system depend on how the sensors and actuatcugted to
the states. The zeros depend on all the mati#gel, C andD in a linear system.
The zeros can thus be influenced by moving the sensors andastaeby adding
sensors and actuators. Notice that a fully actuated syBtesm does not have any
zeros.

Example 11.9 Balance system
As an example of a system with both right half-plane poleszands, consider the
balance system with zero damping, whose dynamics are given b

ml
Hoe =
oF —(M¢J — m22)s2 + mglM,’
—Js? + mgl

S2(—(M¢J — m212)s? + mgl M)

Assume that we want to stabilize the pendulum by using thepaesition as the
measured signal. The transfer function from the input fd¥de the cart position
p has poleq0, 0, +,/mglM, /(M J, — m212)} and zerog=+./mgl/J}. Using the

parameters in Example 6.7, the right half-plane pole is 2t 2.68 and the zero is
atz = 2.09. Equation (11.18) then giveS(iw)| > 8, which shows that it is not
possible to control the system robustly.
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The right half-plane zero of the system can be eliminated bBypging the output
of the system. For example, if we choose the output to cooresfn a position at a
distance along the pendulum, we haye= p —r sing and the transfer function
for the linearized output becomes

(mlr — J)s? + mgl
?(—(MJ — m?12)s? + mgl M)

If we chooser sufficiently large, themlIr — J; > 0 and we eliminate the right
half-plane zero, obtaining instead two pure imaginary gefidie gain crossover
frequency inequality is then based just on the right hadfaplpole (Example 11.8).
If our admissible phase lag for the nonminimum phase pait is 45°, then our
gain crossover must satisfy

Hyr = Hpr —THor =

——— =268
g > tang /2 68
If the actuators have sufficiently high bandwidth, e.g., adiaof 10 abovevy. or
roughly 4 Hz, then we can provide robust tracking up to ttesjfrency. \%

Bode’s Integral Formula

In addition to providing adequate phase margin for robadtikty, a typical control
designwill have to satisfy performance conditions on tmsgg ity functions (Gang

of Four). In particular, the sensitivity functio = 1/(1 + PC) represents the
disturbance attenuation and also relates the tracking etoathe reference signal:
we usually want the sensitivity to be small over the rangeexfdiencies where we
want small tracking error and good disturbance attenuafidrasic problem is to
investigate ifS can be made small over a large frequency range. We will syart b
investigating an example.

Example 11.10 System that admits small sensitivities
Consider a closed loop system consisting of a first-orderga®and a proportional
controller. Let the loop transfer function be

Ls)=PC=——,
® s+1
where parametd is the controller gain. The sensitivity function is

and we have

. 1+ w?
S = .
ISA )l \/1+2k+k2+a)2

Thisimplies thatS(iw)| < 1 for all finite frequencies and that the sensitivity can be
made arbitrarily small for any finite frequency by makigufficiently large. V
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The system in Example 11.10 is unfortunately an exception. Byefdature
of the system is that the Nyquist curve of the process is cetalyl contained in
the right half-plane. Such systems are calpadsive and their transfer functions
are positive real For typical control systems there are severe constramthe
sensitivity function. The following theorem, due to Bodegyides insights into the
limits of performance under feedback.

Theorem 11.1 (Bode’s integral formula) Assume that the loop transfer function
L(s) of a feedback system goes to zero faster thémas s— oo, and let §s)
be the sensitivity function. If the loop transfer functicastpoles p in the right
half-plane, then the sensitivity function satisfies thifeihg integral:

/O Iog|S(|a))|dco=/o Iogmdwzank. (11.19)

Equation (11.19) implies that there are fundamental linute to what can
be achieved by control and that control design can be viewes r@distribution
of disturbance attenuation over different frequenciegdrticular, this equation
shows that if the sensitivity function is made smaller fomgdrequencies, it must
increase at other frequencies so that the integral of3Gg)| remains constant.
This means that if disturbance attenuation is improved infogguency range, it
will be worse in another, a property sometime referred thasvaterbed effectt
also follows that systems with open loop poles in the right-piane have larger
overall sensitivity than stable systems.

Equation (11.19) can be regarded asoaservation lawif the loop transfer
function has no poles in the right half-plane, the equatiopkfies to

/00 log|S(iw)|dew = 0.
0

This formula can be given a nice geometric interpretationllastiated in Fig-
ure 11.14, which shows Id&(i w)| as a function ofv. The area over the horizontal
axis must be equal to the area under the axis when the freguieptotted on a
linear scale. Thus if we wish to make the sensitivity smaller up toes@maquency
wsc, We must balance this by increased sensitivity aboye Control system de-
sign can be viewed as trading the disturbance attenuatgsigid of controllers for
at some frequencies for disturbance amplification at otlegyuencies. Notice that
the system in Example 11.10 violates the condition that imsL(s) = 0 and
hence the integral formula doesn’t apply.

There is result analogous to equation (11.19) for the comghtany sensitivity
function: - ,

/ m do =7 i, (11.20)
0 @ Zi

where the summation is over all right half-plane zeros. déothat slow right half-
plane zeros are worse than fast ones and that fast righplzailé poles are worse
than slow ones.
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Figure11.14: Interpretation of thevaterbed effeciThe function lod S(i )| is plotted versus
winlinear scales in (a). According to Bode’s integral formula (11.19) atea of log S(i w) |
above zero must be equal to the area below zero. Gunter Stein’s ettipn of design as a
trade-off of sensitivities at different frequencies is shown in (rf{Ste03]).

Example 11.11 X-29 air cr aft

As an example of the application of Bode’s integral formwla, present an anal-
ysis of the control system for the X-29 aircraft (see Figurel®a), which has an
unusual configuration of aerodynamic surfaces that are wegitp enhance its
maneuverability. This analysis was originally carried oyt@®unter Stein in his
article “Respect the Unstable” [Ste03], which is also thersewf the quote at the
beginning of this chapter.

To analyze this system, we make use of a small set of parasrtaedrdescribe
the key properties of the system. The X-29 has longitudinabdyics that are very
similar to inverted pendulum dynamics (Exercise 8.3) angairicular, have a pair
of poles at approximatelg = +6 and a zero a = 26. The actuators that stabilize
the pitch have a bandwidth ef, = 40 rad/s and the desired bandwidth of the pitch
control loop isw; = 3 rad/s. Since the ratio of the zero to the pole is only 4.3, we
may expect that it may be difficult to achieve the specifications

Ms
OF!
)
01 o
Frequencyy [rad/s]
(a) X-29 aircraft (b) Sensitivity analysis

Figure11.15: X-29 flight control system. The aircraft makes use of forward swéipgs and
a set of canards on the fuselage to achieve high maneuverability @jleRired sensitivity
for the closed loop system is shown in (b). We seek to use our contraritytto shape the
sensitivity curve so that we have low sensitivity (good performanced dpequencyw; by
creating higher sensitivity up to our actuator bandwidgh
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To evaluate the achievable performance, we search for aotdet such that
the sensitivity function is small up to the desired bandivid not greater thavg
beyond that frequency. Because of the Bode integral fornm&now thatMg must
be greaterthan 1 at high frequencies to balance the smaitiséy at low frequency.
We thus ask if we can find a controller that has the shape showigure 11.15b
with the smallest value ofMs. Note that the sensitivity above the frequengy
is not specified since we have no actuator authority at thguéecy. However,
assuming that the process dynamics fall off at high frequethe sensitivity at
high frequency will approach 1. Thus, we desire to design setildoop system
that has low sensitivity at frequencies belaywand sensitivity that is not too large
betweernw; andw,.

From Bode’s integral formula, we know that whatever congénmolve choose,
equation (11.19) must hold. We will assume that the seiitsitiunction is given

by

wMg
. o < w
|S(iw)] =1
Ms w1 <o < w,,

corresponding Figure 11.15b. If we further assume|thég)| < J/w? for frequen-
cies larger than the actuator bandwidth, Bode’s integrebbees

/Oolog|5(iw)|da):/walog|S(ia))|da)
0 0

w1 M
:/ Iogw ® dw + (wa — w1) logMs = 7 p.
0

w1
Evaluation of the integral givesw; + w,l0gMs = 7 p or
MS — e(”p‘f'wl)/wa'

This formula tells us what the achievable valuevbf will be for the given control
specifications. In particular, using = 6, w1 = 3 andw, = 40 rad/s, we find
thatMs = 1.75, which means that in the range of frequencies betwgemdw,,
disturbances at the input to the process dynamics (suchrad will be amplified
by a factor of 175 in terms of their effect on the aircraft.

Another way to view these results is to compute the phaseimtrgt corre-
sponds to the given level of sensitivity. Since the peak sgitginormally occurs
at or near the crossover frequency, we can compute the plagarorresponding
to Mg = 1.75. As shown in Exercise 11.14, the maximum achievable phasgim
for this system is approximately 35wvhich is below the usual design limit of 45
in aerospace systems. The zers at 26 limits the maximum gain crossover the
can be achieved. \%

Derivation of Bode’s Formula

We now derive Bode’s integral formula (Theorem 11.1). Thisteschnical section
that requires some knowledge of the theory of complex vaghn particular
contour integration. Assume that the loop transfer fumctias distinct poles at
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-iR

Figure11.16: Contour used to prove Bode’s theorem. For each right half-planengoteeate
a path from the imaginary axis that encircles the pole as shown. To avdidrolve have
shown only one of the paths that enclose one right half-plane.

s = px in the right half-plane and that(s) goes to zero faster tharyd.for large
values ofs.

Consider the integral of the logarithm of the sensitivitpdtion S(s) = 1/(1+
L(s)) over the contour shown in Figure 11.16. The contour enclosesigfnt
half-plane except for the poinss= px where the loop transfer function(s) =
P(s)C(s) has poles and the sensitivity functi®fs) has zeros. The direction of the
contour is counterclockwise.

The integral of the log of the sensitivity function aroundstobbntour is given

by

—-iR
/F log(S(s)) ds = / log(S(s)) ds+ /R log(S(s)) ds+ Zk; /y log(S(s)) ds

R
=lhi+1l,+13=0,

where R is a large semicircle on the right and is the contour starting on the
imaginary axis as = Im p, and a small circle enclosing the pgbg. The integral
is zero because the function I18¢s) is analytic inside the contour. We have

iR iR
lp = —i / log(S(iw))dw = —2i / log(]S(i w)|)dw
i 0

iR

because the real part of I&ji w) is an even function and the imaginary part is an
odd function. Furthermore we have

I2=/Rlog(S(s))ds=—/Rlog(1+ L(s))dsw—/RL(s)ds

Sincel (s) goes to zero faster tharrd.for larges, the integral goes to zero when
the radius of the circle goes to infinity.

Next we consider the integréd. For this purpose we split the contour into three
partsX,,y andX_, asindicated in Figure 11.16. We can then write the integral a

I3:/ IogS(s)ds+/IogS(s)ds+/ log S(s) ds.
X4 y X—
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The contoury is a small circle with radius around the polgy. The magnitude of
the integrand is of the order log and the length of the path isc2. The integral
thus goes to zero as the radiugoes to zero. Furthermore, making use of the fact
that X_ is oriented oppositely fronX, , we have

/IogS(s)ds+/ IogS(s)ds:/ (log S(s)—log S(s — 2i)) ds = 2z Repy.
X4 X_ X4

Since|S(s)| = |S(s — 2rxi)|, we have
log S(s) — log S(s — 2zi) = argS(s) — argS(s — 2zi) = 2x i,

and we find that
ls=27 i > Rep.
k

Letting the small circles go to zero and the large circle gafimity and adding the
contributions from all right half-plane polgx gives

R
|1+|2+|3:—2i/ Iog|S(Ia))|da)+| 2271' Repx = 0.
0 k

Since complex poles appear as complex conjugate ajfRe px = >, Pk, Which
gives Bode’s formula (11.19).

11.6 Design Example

In this section we present a detailed example that illussrdte main design tech-
niques described in this chapter.

Example 11.12 L ateral control of a vectored thrust aircraft

The problem of controlling the motion of a vertical takeofiddanding (VTOL)
aircraft was introduced in Example 2.9 and in Example 11.6 revive designed a
controller for the roll dynamics. We now wish to control thesgiion of the aircraft,
a problem that requires stabilization of both the attitude #he position.

To control the lateral dynamics of the vectored thrust aftcive make use of a
“inner/outer” loop design methodology, as illustrated igdtie 11.17. This diagram
shows the process dynamics and controller divided into wvoponents: aimner
loop consisting of the roll dynamics and control and@uter loopconsisting of
the lateral position dynamics and controller. This decoritjposfollows the block
diagram representation of the dynamics given in Exercise. 8.1

The approach that we take is to design a contrdllefor the inner loop so
that the resulting closed loop systéth provides fast and accurate control of the
roll angle for the aircraft. We then design a controller foe tateral position that
uses the approximation that we can directly control theantile as an input to
the dynamics controlling the position. Under the assunmptii@at the dynamics of
the roll controller are fast relative to the desired bandkwiaf the lateral position
control, we can then combine the inner and outer loop cdaetsoto get a single
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Figure 11.17: Inner/outer control design for a vectored thrust aircraft. The innep le;
controls the roll angle of the aircraft using the vectored thrust. The ¢ndercontrollerC,
commands the roll angle to regulate the lateral position. The procesmibymare decom-
posed into inner loopR) and outer loop IP,) dynamics, which combine to form the full
dynamics for the aircraft.

controller for the entire system. As a performance specifindbr the entire system,
we would like to have zero steady-state error in the latevsitipn, a bandwidth of
approximately 1 rad/s and a phase margin ¢f 45

For the inner loop, we choose our design specification to geotrie outer loop
with accurate and fast control of the roll. The inner loop dyiies are given by

r
J +cs
We choose the desired bandwidth to be 10 rad/s (10 times thla¢ @uter loop)
and the low-frequency error to be no more than 5%. This spetidices satisfied
using the lead compensator of Example 11.6 designed préyisosnve choose

S+a
CI(S) S+ba a > b 50,

The closed loop dynamics for the system satisfy
__ G _mg Ch _ Gd-mgR)

1+GP 1+GCPR 1+GP
A plot of the magnitude of this transfer function is shown iguie 11.18, and we
see thaH; ~ —mg= 39.2 is a good approximation up to 10 rad/s.

To design the outer loop controller, we assume the inner todicontrol is
perfect, so that we can taki as the input to our lateral dynamics. Following the
diagram shown in Exercise 8.10, the outer loop dynamics cavritten as
Hi (0)

me ’
where we replacel; (s) with H; (0) to reflect our approximation that the inner loop

will eventually track our commanded input. Of course, thupr@ximation may not
be valid, and so we must verify this when we complete our ahesig

Pi = HQU]_ =

Hi

P(s) = Hi(0)Ps(s) =
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(a) Outer loop approximation (b) Actual roll dynamics

Figure 11.18: Outer loop control design for a vectored thrust aircraft. (a) The dotgy
approximates the roll dynamics as a state gaimg. (b) The Bode plot for the roll dynamics,
indicating that this approximation is accurate up to approximately 10 rad/s.

Our control goal is now to design a controller that gives zeady-state error
in X and has a bandwidth of 1 rad/s. The outer loop process dynaneiggven by a
second-order integrator, and we can again use a simple ¢eapensator to satisfy
the specifications. We also choose the design such that tperaasfer function
for the outer loop haH_,| < 0.1 forw > 10 rad/s, so that the; dynamics can be
neglected. We choose the controller to be of the form

S+ &
S+ by’

with the negative sign to cancel the negative sign in theggedynamics. To find the
location of the poles, we note that the phase lead flatteng appaoximatelyo/10.

We desire phase lead at crossover, and we desire the croasaye= 1 rad/s, so

this givesb, = 10. To ensure that we have adequate phase lead, we must choose
a, such thab,/10 < 10a, < by, which implies that, should be between 0.1 and

1. We choose, = 0.3. Finally, we need to set the gain of the system such that at
crossover the loop gain has magnitude 1. A simple calculaimws thak, = 2
satisfies this objective. Thus, the final outer loop controleardmes

s+0.3
s+ 10

Finally, we can combine the inner and outer loop controllerd gerify that
the system has the desired closed loop performance. The Badsyajuist plots
corresponding to Figure 11.17 with inner and outer loop adlers are shown in
Figure 11.19, and we see that the specifications are satisfiaddltion, we show
the Gang of Four in Figure 11.20, and we see that the transfetifuns between all
inputs and outputs are reasonable. The sensitivity to lcstdrthance$ Sis large
at low frequency because the controller does not have iltagtion.

The approach of splitting the dynamics into an inner and agréobp is common
in many control applications and can lead to simpler designsomplex systems.

Co(s) = _ko

Co(s) = 0.8
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(a) Bode plot (b) Nyquist plot
Figure 11.19: Inner/outer loop controller for a vectored thrust aircraft. The Bodé @lp

and Nyquist plot (b) for the transfer function for the combined innet @uter loop transfer
functions are shown. The system has a phase margin°adré8a gain margin of 6.2.

Indeed, for the aircraft dynamics studied in this examplis, very challenging to
directly design a controller from the lateral positioto the inputu;. The use of the
additional measurement éfgreatly simplifies the design because it can be broken

up into simpler pieces. \Y%

11.7 Further Reading

Design by loop shaping was a key element in the early devedopof control, and
systematic design methods were developed; see Jamesl|g\ialddhillips [JNP47],
Chestnut and Mayer [CM51], Truxal [Tru55] and Thaler [Tha8%op shap-
ing is also treated in standard textbooks such as FranklineP@nd Emami-
Naeini [FPENO5], Dorf and Bishop [DB04], Kuo and Golnaraghi [6&} and
Ogata [Oga01]. Systems with two degrees of freedom werealesdby Horowitz [Hor63],
who also discussed the limitations of poles and zeros ingihe nalf-plane. Funda-
mental results on limitations are given in Bode [Bod45]; enacent presentations
are found in Goodwin, Graebe and Salgado [GGSO01]. The treatm®attion 11.5

is based on [Ast00]. Much of the early work was based on thetiemsfer function;
the importance of the sensitivity functions appeared imeation with the devel-
opment in the 1980s that resultedhfy, design methods. A compact presentation
is given in the texts by Doyle, Francis and Tannenbaum [DFT9@Jzmou, Doyle
and Glover [ZDG96]. Loop shaping was integrated with the rbbastrol theory

in McFarlane and Glover [MG90] and Vinnicombe [Vin01]. Corapensive treat-
ments of control system design are given in Maciejowski [8B8and Goodwin,
Graebe and Salgado [GGSO01].
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Figure 11.20: Gang of Four for vectored thrust aircraft system.
Exercises

11.1 Consider the system in Figure 11.1. Give all signal pairs @hatrelated by
the transfer functions/A1+ PC), P/(1+ PC),C/(1+ PC)andPC/(1+ PC).

11.2 Consider the system in Example 11.1. Choose the paraneeters-1 and
compute the time and frequency responses for all the trafusfetions in the Gang
of Four for controllers wittkk = 0.2 andk = 5.

11.3 (Equivalence of Figures 11.1 and 11.2) Consider the systenguré&il1l.1 and
let the outputs of interest le= (7, v) and the major disturbances be= (n, d).
Show that the system can be represented by Figure 11.2 anthginetrix transfer
functionsP andC. Verify that the closed loop transfer functiéty,, gives the Gang
of Four.

11.4 Consider the spring—mass system given by (2.14), which tegransfer
function 1

P(s) = me +cs+ k’

Design a feedforward compensator that gives a responsecwiibal damping
=1

11.5 (Sensitivity of feedback and feedforward) Consider theesysn Figure 11.1
and letGy, be the transfer function relating the measured sigrtalthe reference
r. Show that the sensitivities dby, with respect to the feedforward and feed-
back transfer functiong andC are given bydGy,/dF = CP/(1+ PC) and
dGy,/dC = FP/(1+ PC)? = Gy L/C.

11.6 (Equivalence of controllers with two degrees of freedom) Stiaithe systems
inFigures 11.1 and 11.3 give the same responses to commaadksidg-C + F, =
CF.
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11.7 (Disturbance attenuation) Consider the feedback systemrsim Figure 11.1.
Assume that the reference signal is constant.yhetbe the measured output when
there is no feedback ang, be the output with feedback. Show thé§(s) =
S(s) Yo (S), whereSis the sensitivity function.

11.8 (Disturbance reduction through feedback) Consider a prokih which an
output variable has been measured to estimate the potEmtdisturbance attenu-
ation by feedback. Suppose an analysis shows that it is pessidesign a closed
loop system with the sensitivity function

Estimate the possible disturbance reduction when the medslisturbance is

y(t) = 5sin(0.1t) + 3sin(0.17t) + 0.5co0s(0.9t) + 0.1t.

11.9 Show that the effect of noise on the control signal for theesysin Exer-
cise 11.4 can be approximated by

kqs
(ST)2/2+sTy+1°

and that the largest value € S(iw)| is kq/ Tt which occurs forw = +/2/T;.

CS~C=

11.10 (Attenuation of low-frequency sinusoidal disturbancesggral action elim-
inates constant disturbances and reduces low-frequestyrioiances because the
controller gain is infinite at zero frequency. A similar ideande used to reduce the
effects of sinusoidal disturbances of known frequengyy using the controller

ksS
S2 + 20 oS + ©F

C(s) =kp+

This controller has the gai@s(i w) = kp+Ks/(2) for the frequencywg, which can

be large by choosing a small valueafAssume that the process has the transfer
function P(s) = 1/s. Determine the Bode plot of the loop transfer function and
simulate the system. Compare the results with PI control.

11.11 Consider a lead compensator with the transfer function
s+a \n
Cis)=(——
which has zero frequency gat®(0) = 1 and high-frequency gai€(co) = k.
Show that the gain required to give a given phase {e&d

k= (1+2tarf(p/n) + 2tartp/m) 1+ tan?(go/n))n,

and that limk = e%.

n— o0
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11.12 Consider a process with the loop transfer function
z—s
s—p’
with positivez and p. Show that the system is stablegfz < k <1orl<Kk <

p/z, and that the largest stability margindg = |p — z|/(p + 2) is obtained for
k = 2p/(p + 2). Determine the pole/zero ratios that gives the stabilitygima

Sn = 2/3.

@ 11.13 Prove the inequalities given by equation (11.18). (Hint: theemaximum
modulus theorem.)

L(s) =k

11.14 (Phase margin formulas) Show that the relationship betwesgpitase margin
and the values of the sensitivity functions at gain crosssvgiven by

1
25iNpm/2)’

11.15 (Stabilization of an inverted pendulum with visual feedbhaCknsider sta-

bilization of an inverted pendulum based on visual feedhesikg a video camera
with a 50-Hz frame rate. Let the effective pendulum lengthl bE&se the gain

crossover frequency inequality to determine the minimumgtle of the pendulum

that can be stabilized if we desire a phasegdagf no more than 90

| S(i wgc)| =T a’gc)| =

11.16 (Rear-steered bicycle) Consider the simple model of a kcyt Equa-
tion (3.5), which has one pole in the right half-plane. The slaglalso valid for a
bicycle with rear wheel steering, but the sign of the velp@@tthen reversed and
the system also has a zero in the right half-plane. Use thétsed Exercise 11.12
to give a condition on the physical parameters that admitsraraller with the
stability marginsn,.

@ 11.17 Prove the formula (11.20) for the complementary sensitivity



