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Chapter Eleven
Frequency Domain Design

Sensitivity improvements in one frequency range must be paid for with signsiéiteriora-
tions in another frequency range, and the price is higher if the plant is -bpam unstable.
This applies to every controller, no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture, 1989 [Ste03].

In this chapter we continue to explore the use of frequencyado techniques
with a focus on the design of feedback systems. We begin witbra thorough de-
scription of the performance specifications for control syt and then introduce
the concept of “loop shaping” as a mechanism for designimgrobtiers in the fre-
guency domain. We also introduce some fundamental liroitatio performance
for systems with time delays and right half-plane poles aTdz

11.1 Sensitivity Functions

In the previous chapter, we considered the use of propattiotegral-derivative
(PID) feedback as a mechanism for designing a feedback dientfor a given
process. In this chapter we will expand our approach to dekiricher repertoire
of tools for shaping the frequency response of the closepl $ystem.

One of the key ideas in this chapter is that we can design theviier of the
closed loop system by focusing on the open loop transfettiumcT his same ap-
proach was used in studying stability using the Nyquiseddn: we plotted the
Nyquist plot for theopenloop transfer function to determine the stability of the
closedloop system. From a design perspective, the use of loop asdbals is
very powerful: since the loop transfer functionlis= PC, if we can specify the
desired performance in terms of properties pfve can directly see the impact of
changes in the controll€. This is much easier, for example, than trying to rea-
son directly about the tracking response of the closed lgsfem, whose transfer
function is given byGy, = PC/(1+ PC).

We will start by investigating some key properties of thedtesck loop. A
block diagram of a basic feedback loop is shown in Figure Th&.system loop is
composed of two components: the process and the contrbfiercontroller itself
has two blocks: the feedback blo€kand the feedforward blodk. There are two
disturbances acting on the process, the load disturbdrasel the measurement
noisen. The load disturbance represents disturbances that devertdtess away
from its desired behavior, while the measurement noiseesgmts disturbances
that corrupt information about the process given by the@ansn the figure, the
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Figure 11.1: Block diagram of a basic feedback loop with two degrees of freedora. Th
controller has a feedback blo€kand a feedforward block. The external signals are the
reference signal, the load disturbance and the measurement noiseThe process output
is n, and the control signal is.

load disturbance is assumed to act on the process input. §hisimplification
since disturbances often enter the process in many differays, but it allows us
to streamline the presentation without significant loss oiegality.

The process output is the real variable that we want to control. Control is
based on the measured siggalvhere the measurements are corrupted by mea-
surement noisa. The process is influenced by the controller via the contrat var
ableu. The process is thus a system with three inputs—the contri@htau, the
load disturbance and the measurement noise-and one output—the measured
signaly. The controller is a system with two inputs and one output. Tipeitis
are the measured signahnd the reference signgland the output is the control
signalu. Note that the control signalis an input to the process and the output of
the controller, and that the measured signa the output of the process and an
input to the controller.

The feedback loop in Figure 11.1 is influenced by three exteigahts, the
reference, the load disturbanced and the measurement noiseAny of the re-
maining signals can be of interest in controller designetelng on the particular
application. Since the system is linear, the relations betvtke inputs and the in-
teresting signals can be expressed in terms of the transfetibns. The following
relations are obtained from the block diagram in Figure 11.1:

PCF P 1
11PC 1+PC 1+tPC
y PCF P —PC
n 1+PC 1+PC L14PC| .,
CF 1 —C
VI = | 13pc 1:PC 11PC [d] (11.1)
u CF  -PC -C n
e 1+PC 1+PC 1+PC
F —p —1

\1+PC 1+PC 1+PC

In addition, we can write the transfer function for the eoetween the reference
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r and the outpufy (not an explicit signal in the diagram), which satisfies

1 PCF —P q PC
e=r-n=( JAP¢y+1+NZ+l+Wﬁ

There are several interesting conclusions we can draw fresetlequations.
First we can observe that several transfer functions areaime ind that the ma-
jority of the relations are given by the following set of siansfer functions, which
we call theGang of Six

PCF PC P
TF=1rpc T=1rpc PS=17pc

CF C 1 (11.2)
CFS=1rpc CS=17pe S=1ypC

The transfer functions in the first column give the responséefrocess output
and control signal to the reference signal. The second colyiuas the response
of the control variable to the load disturbance and the naisd the final col-
umn gives the response of the process output to those twisirigatice that only
four transfer functions are required to describe how théesyseacts to load dis-
turbances and measurement noise, and that two additi@redfér functions are
required to describe how the system responds to refereguoalsi

The linear behavior of the system is determined by the sixsfearfunctions
in equation (11.2), and specifications can be expressednrstef these transfer
functions. The special case whEn= 1 is called a system with (pure) error feed-
back. In this case all control actions are based on feedivankthe error only and
the system is completely characterized by four transfectfans, namely, the four
rightmost transfer functions in equation (11.2), whichénapecific names:

1 sensitivity P load
S= ; PS= sensitivity
1+PC function 1+PC function
(11.3)
pc  complementary C noise
T=-——= sensitivity CS= sensitivity
1+PC function 1+PC function

These transfer functions and their equivalent systems #ieszl¢che Gang of Four
The load sensitivity function is sometimes called the inguisstivity function and
the noise sensitivity function is sometimes called the ougensitivity function.
These transfer functions have many interesting propettigswill be discussed
in detail in the rest of the chapter. Good insight into thesmperties is essential
in understanding the performance of feedback systems &ptiposes of both
analysis and design.

Analyzing the Gang of Six, we find that the feedback contradllenfluences
the effects of load disturbances and measurement noiseeNbat measurement
noise enters the process via the feedback. In Section 12.@ ibevshown that
the controller influences the sensitivity of the closed loogptocess variations.



318 CHAPTER 11. FREQUENCY DOMAIN DESIGN

w 4

—

P
up T y

EC |-

Figure11.2: A more general representation of a feedback system. The propess iepre-
sents the control signal, which can be manipulated, and the processvingpitesents other
signals that influence the process. The process owtuthe vector of measured variables
andz are other signals of interest.

The feedforward paif of the controller influences only the response to command
signals.

In Chapter 9 we focused on the loop transfer function, andoved that its
properties gave useful insights into the properties of #éesysTo make a proper
assessment of a feedback system it is necessary to cortmdmoperties of all the
transfer functions (11.2) in the Gang of Six or the Gang of Fasrillustrated in
the following example.

Example 11.1 Theloop transfer function gives only limited insight

Consider a process with the transfer functi(s) = 1/(s—a) controlled by a PI
controller with error feedback having the transfer funct@is) = k(s—a)/s. The
loop transfer function i& = k/s, and the sensitivity functions are

_ PC :L PS_ P _ S

1+PC s+k’ 1+PC (s—a)(s+k)’
cs— C :k(s—a) _ 1 s

1+PC  s+k ’ 1+PC  s+k

Notice that the factos— a is canceled when computing the loop transfer function
and that this factor also does not appear in the sensitivitgtion or the comple-
mentary sensitivity function. However, cancellation o flactor is very serious if

a > 0 since the transfer functiddSrelating load disturbances to process output is
then unstable. In particular, a small disturbad@an lead to an unbounded output,
which is clearly not desirable. O

The system in Figure 11.1 represents a special case becasiss$uimed that
the load disturbance enters at the process input and thatebeured output is the
sum of the process variable and the measurement noiserlizistes can enter in
many different ways, and the sensors may have dynamics. A& aostract way
to capture the general case is shown in Figure 11.2, which higstwo blocks
representing the proces$?) and the controller®). The process has two inputs,
the control signall and a vector of disturbances and two outputs, the measured
signaly and a vector of signalsthat is used to specify performance. If we omit the
reference input, the system in Figure 11.1 can be captured by choosiagd, n)
andz= (n,v,e¢). The process transfer functio® is a 5x 3 matrix, and the
controller transfer functiof® is a 1x 1 matrix; compare with Exercise 11.3.



11.2. FEEDFORWARD DESIGN 319

Utr

Fu(s)

Ym e

Fm(s)

—1 |-

Figure 11.3: Block diagram of a system with feedforward compensation for impraeed
sponse to reference signals and measured disturbances (2 DOR)syidtece feedforward
elements are preserfy(s) sets the desired output valug,(s) generates the feedforward
command; andFy(s) attempts to cancel disturbances.

Processes with multiple inputs and outputs can also be canesidy regarding
u andy as vectors. Representations at these higher levels ohatbietr are useful
for the development of theory because they make it possitftectis on fundamen-
tals and to solve general problems with a wide range of agipdias. However, care
must be exercised to maintain the coupling to the real-woolatrol problems we
intend to solve.

11.2 Feedforward Design

Most of our analysis and design tools up to this point haveded on the role of
feedback and its effect on the dynamics of the system. Fegdfdris a simple
and powerful technique that complements feedback. It canseé both to im-
prove the response to reference signals and to reduce dut effmeasurable dis-
turbances. Feedforward compensation admits perfect eltioimof disturbances,
but it is much more sensitive to process variations thantfaekicompensation. A
general scheme for feedforward was discussed in Sectionsih§ &igure 7.10.
A simple form of feedforward for PID controllers was discus$e Section 10.5.
The controller in Figure 11.1 also has a feedforward block forove response to
command signals. An alternative version of feedforwarchims in Figure 11.3,
which we will use in this section to understand some of thderaffs between
feedforward and feedback.

Controllers with two degrees of freedom (feedforward aretifeck) have the
advantage that the response to reference signals can pael@andependently of
the design for disturbance attenuation and robustness. \\Vérst consider the
response to reference signals, and we will therefore llyiteessume that the load

disturbancel is zero. Let, represent the ideal response of the system to reference

signals. The feedforward compensator is characterized dyréimsfer functions
F. andFy,. When the reference is changed, the transfer fundtiogenerates the
signalug, which is chosen to give the desired output when applied@ag ito the

process. Under ideal conditions the outgus then equal tyn, the error signal
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is zero and there will be no feedback action. If there areutisinces or modeling
errors, the signalgy, andy will differ. The feedback then attempts to bring the
error to zero.
To make a formal analysis, we compute the transfer functiomfreference
input to process output:
P(CFn+Fy) PR, —Fm

Sr®=—37pc ~Mt1ipc (11.4)

whereP = P,P;. The first term represents the desired transfer function. Té¢mnske
term can be made small in two ways. Feedforward compensatiome used to
makePF, — Fy, small, or feedback compensation can be used to makedlarge.
Perfect feedforward compensation is obtained by choosing
|
Design of feedforward using transfer functions is thus & wimple task. Notice
that the feedforward compensat®rcontains an inverse model of the process dy-
namics.

Feedback and feedforward have different properties. Fesdfdraction is ob-
tained by matching two transfer functions, requiring psedinowledge of the pro-
cess dynamics, while feedback attempts to make the errdt Byndividing it by
a large quantity. For a controller having integral actidrg toop gain is large for
low frequencies, and it is thus sufficient to make sure thattralition for ideal
feedforward holds at higher frequencies. This is easier thang to satisfy the
condition (11.5) for all frequencies.

We will now consider reduction of the effects of the load alibanced in Fig-
ure 11.3 by feedforward control. We assume that the dishwdaignal is mea-
sured and that the disturbance enters the process dynanddsniown way (cap-
tured byP, andP,). The effect of the disturbance can be reduced by feeding the
measured signal through a dynamical system with the trafigietionFy. Assum-
ing that the referenceis zero, we can use block diagram algebra to find that the
transfer function from the disturbance to the process dugpu

P(1+FgPy)

Gya=—""1pc (11.6)

whereP = P,P,. The effect of the disturbance can be reduced by makindriP;
small (feedforward) or by making-& PC large (feedback). Perfect compensation
is obtained by choosing

(11.5)

Fa=—-P% (11.7)

requiring inversion of the transfer functid.

As in the case of reference tracking, disturbance attemmiatan be accom-
plished by combining feedback and feedforward control. &lowe/-frequency dis-
turbances can be eliminated by feedback, we require thefusedforward only
for high-frequency disturbances, and the transfer fundigin equation (11.7)
can then be computed using an approximatioRy,ddr high frequencies.
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Figure 11.4: Feedforward control for vehicle steering. The plot on the left shoedrtjec-
tory generated by the controller for changing lanes. The plots on thegfight the lateral
deviationy (top) and the steering angée (bottom) for a smooth lane change control using
feedforward (based on the linearized model).

Equations (11.5) and (11.7) give analytic expressions ®fekrdforward com-
pensator. To obtain a transfer function that can be impléeaanithout difficulties
we require that the feedforward compensator be stable adt thoes not require
differentiation. Therefore there may be constraints oniptesshoices of the de-
sired responsEéy, and approximations are needed if the process has zeros in th
right half-plane or time delays.

Example 11.2 Vehicle steering
A linearized model for vehicle steering was given in Exampfe Bhe normalized
transfer function from steering angfeto lateral deviatioty is P(s) = (ys+1)/s%.
For a lane transfer system we would like to have a nice regpwiteout overshoot,
and we therefore choose the desired respon$e,& = a?/(s+ a)?, where the
response speed or aggressiveness of the steering is go\mriiee parameted.
Equation (11.5) gives

. Fm a’s?

TP (ystD)(sta)?

which is a stable transfer function as longyas 0. Figure 11.4 shows the responses
of the system fom = 0.5. The figure shows that a lane change is accomplished in
about 10 vehicle lengths with smooth steering angles. Thyeirsteering angle
is slightly larger than 0.1 rad {§ Using the scaled variables, the curve showing
lateral deviationsy as a function ot) can also be interpreted as the vehicle path
(y as a function ok) with the vehicle length as the length unit. O

A major advantage of controllers with two degrees of freedbat combine
feedback and feedforward is that the control design proldambe split in two
parts. The feedback controll€can be designed to give good robustness and ef-
fective disturbance attenuation, and the feedforwardgaarte designed indepen-
dently to give the desired response to command signals.
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11.3 Performance Specifications

A key element of the control design process is how we spebifydesired per-
formance of the system. It is also important for users to tstdad performance
specifications so that they know what to ask for and how to tegstem. Specifi-
cations are often given in terms of robustness to procesatizars and responses
to reference signals and disturbances. They can be givennrs tef both time
and frequency responses. Specifications for the step respmreference signals
were given in Figure 5.9 in Section 5.3 and in Section 6.3. Rolesst specifica-
tions based on frequency domain concepts were provided ito8ex3 and will
be considered further in Chapter 12. The specifications diecugreviously were
based on the loop transfer function. Since we found in Sectioh that a single
transfer function did not always characterize the propsitif the closed loop com-
pletely, we will give a more complete discussion of speciitrat in this section,
based on the full Gang of Six.

The transfer function gives a good characterization of thea behavior of a
system. To provide specifications it is desirable to captueecharacteristic prop-
erties of a system with a few parameters. Common featuresnf@ responses
are overshoot, rise time and settling time, as shown in Figi@eCommon fea-
tures of frequency responses are resonant peak, peak fi@gumin crossover
frequency and bandwidth. fesonant peaks a maximum of the gain, and the
peak frequency is the corresponding frequency. aie crossover frequendg
the frequency where the open loop gain is equal one bEmelwidthis defined as
the frequency range where the closed loop gairig2 of the low-frequency gain
(low-pass), mid-frequency gain (band-pass) or high-fezmqy gain (high-pass).
There are interesting relations between specifications iritie and frequency
domains. Roughly speaking, the behavior of time respormeshiort times is re-
lated to the behavior of frequency responses at high freziegnand vice versa.
The precise relations are not trivial to derive.

Response to Reference Signals

Consider the basic feedback loop in Figure 11.1. The responségrence signals
is described by the transfer functio, = PCF/(1+ PC) andGy, = CF/(1+
PC) (F = 1 for systems with error feedback). Notice that it is usefutonsider
both the response of the output and that of the control signgbarticular, the
control signal response allows us to judge the magnituderatedof the control
signal required to obtain the output response.

Example 11.3 Third-order system

Consider a process with the transfer functis) = (s+1)~2 and a PI controller
with error feedback having the gaiks= 0.6 andk; = 0.5. The responses are illus-
trated in Figure 11.5. The solid lines show results for a propaoal-integral (PI)
controller with error feedback. The dashed lines show redaita controller with
feedforward designed to give the transfer funct®p = (0.5s+ 1)=3. Looking
at the time responses, we find that the controller with feeddod gives a faster
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Figure 11.5: Reference signal responses. The responses in process guwpdtcontrol
signalu to a unit step in the reference sigmadre shown in (a), and the gain curvesGj
and Gy, are shown in (b). Results with PI control with error feedback are shmyvsolid
lines, and the dashed lines show results for a controller with a feedfdivoanpensator.

response with no overshoot. However, much larger contgolads are required to
obtain the fast response. The largest value of the controakig 8, compared to
1.2 for the regular PI controller. The controller with feedfard has a larger band-
width (marked witho) and no resonant peak. The transfer functi&p also has
higher gain at high frequencies. O

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to conep#re output of the
closed loop system in Figure 11.1 with the output of the cpoading open loop
system obtained by settil@= 0. If we let the disturbances for the open and closed
loop systems be identical, the output of the closed loopesyss then obtained
simply by passing the open loop output through a system \ihriansfer func-
tion S The sensitivity function tells how the variations in theuitare influenced
by feedback (Exercise 11.7). Disturbances with frequersties thaiS(iw)| < 1
are attenuated, but disturbances with frequencies suthShe)| > 1 are am-
plified by feedback. The maximum sensitivit§s, which occurs at the frequency
s is thus a measure of the largest amplification of the dishaoés. The max-
imum magnitude of (14 L) is also the minimum ofl + L|, which is precisely
the stability margirs, defined in Section 9.3, so thits = 1/s,,. The maximum
sensitivity is therefore also a robustness measure.

If the sensitivity function is known, the potential imprawents by feedback
can be evaluated simply by recording a typical output andifilgeit through the
sensitivity function. A plot of the gain curve of the senstiy function is a good
way to make an assessment of the disturbance attenuatiare i@ sensitivity
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Figure 11.6: Graphical interpretation of the sensitivity function. Gain curves of the loop
transfer function and the sensitivity function (a) can be used to calcuf@tiperties of the
sensitivity function through the relatidh= 1/(1+L). The sensitivity crossover frequency
wsc and the frequencyams where the sensitivity has its largest value are indicated in the
sensitivity plot. The Nyquist plot (b) shows the same information in a diffeform. All
points inside the dashed circle have sensitivities greater than 1.

function depends only on the loop transfer function, itspernties can also be vi-
sualized graphically using the Nyquist plot of the loop &fan function. This is
illustrated in Figure 11.6. The complex numbef L (iw) can be represented as
the vector from the point-1 to the pointL(iw) on the Nyquist curve. The sensi-
tivity is thus less than 1 for all points outside a circle wildius 1 and center at
—1. Disturbances with frequencies in this range are attedlay the feedback.

The transfer functiorGyq from load disturbance to process outpuy for the
system in Figure 11.1is

P T

= 1+PC_PS_C. (11.8)
Since load disturbances typically have low frequencies,nitural to focus on the
behavior of the transfer function at low frequencies. Foystem withP(0) # 0
and a controller with integral action, the controller gaoeg to infinity for small
frequencies and we have the following approximation forlsma

_T.1l.s
“CcTCcT Kk’

wherek; is the integral gain. Since the sensitivity functiSigoes to 1 for largs,
we have the approximatidByq ~ P for high frequencies.

Measurement noise, which typically has high frequenciesegates rapid vari-
ations in the control variable that are detrimental bec#lusgcause wear in many
actuators and can even saturate an actuator. It is thustiampdo keep variations
in the control sighal due to measurement noise at reasofeMalis—a typical re-
quirement is that the variations are only a fraction of thenspf the control signal.
The variations can be influenced by filtering and by proper desighe high-

Gyd (11.9)
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Figure 11.7: Disturbance responses. The time and frequency responses espraatpuy/
to load disturbancd are shown in (a) and the responses of control sigitalmeasurement
noisen are shown in (b).

frequency properties of the controller.
The effects of measurement noise are captured by the trafusfetion from
the measurement noise to the control signal,

C T
-~ _ —CS=—. 11.10
1+PC P ( )
The complementary sensitivity function is close to 1 for lawguencies @ <
wyc), andGyp, can be approximated by1/P. The sensitivity function is close to 1

for high frequenciesc > wyc), andGyn can be approximated byC.

—Gun

Example 11.4 Third-order system
Consider a process with the transfer functi®fis) = (s+ 1)~2 and a proportional-
integral-derivative (PID) controller with gairkg = 0.6, ki = 0.5 andky = 2.0. We
augment the controller using a second-order noise filter Witk 0.1, so that its
transfer function is

kS + kps+ ki

cle = S(PT?/2+sTi+1)

The system responses are illustrated in Figure 11.7. The resmdnhe output to
a step in the load disturbance in the top part of Figure 11.%ah@meak of 0.28 at
timet = 2.73 s. The frequency response in Figure 11.7a shows that ith@ama
maximum of 0.58 atv = 0.7 rad/s.

The response of the control signal to a step in measuremesd i®oshown in
Figure 11.7b. The high-frequency roll-off of the transferdtion Gyn(iw) is due
to filtering; without it the gain curve in Figure 11.7b would tiome to rise after
20 rad's. The step response has a peak of 13-a0.08 s. The frequency response
has its peak 20 ab = 14 rad/s. Notice that the peak occurs far above the peak
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Figure 11.8: Gain curve and sensitivity functions for a typical loop transfer functidme
plot on the left shows the gain curve and the plots on the right show theigénfunction
and complementary sensitivity function. The gain crossover frequagg and the slope
ngc of the gain curve at crossover are important parameters that degetineimobustness of
closed loop systems. At low frequency, a large magnitudé forovides good load distur-
bance rejection and reference tracking, while at high frequency b e gain is used to
avoid amplifying measurement noise.

of the response to load disturbances and far above the gassarer frequency
wyc = 0.78 rad/s. An approximation derived in Exercise 11.9 givag|@S(iw)| ~

kq/Ts = 20, which occurs ao = /2/Ty = 14.1 rad/s. O

11.4 Feedback Design via Loop Shaping

One advantage of the Nyquist stability theorem is that itisdal on the loop trans-
fer function, which is related to the controller transfendtion throughL = PC.

It is thus easy to see how the controller influences the loapstea function. To
make an unstable system stable we simply have to bend theigtymuve away
from the critical point.

This simple idea is the basis of several different design oulcollectively
calledloop shaping These methods are based on choosing a compensator that
gives a loop transfer function with a desired shape. Oneilpitigsis to determine
a loop transfer function that gives a closed loop system thighdesired properties
and to compute the controller &= L/P. Another is to start with the process
transfer function, change its gain and then add poles arah zentil the desired
shape is obtained. In this section we will explore differeap-shaping methods
for control law design.

Design Considerations

We will first discuss a suitable shape for the loop transfection that gives good
performance and good stability margins. Figure 11.8 showgpiaal loop trans-
fer function. Good robustness requires good stability mar@or good gain and
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phase margins), which imposes requirements on the loopfenrafunction around
the crossover frequencies,. and wyc. The gain ofL at low frequencies must be
large in order to have good tracking of command signals aratl gdtenuation
of low-frequency disturbances. SinBe-=1/(1+L), it follows that for frequencies
where|L| > 101 disturbances will be attenuated by a factor of 100 antécking
error is less than 1%. It is therefore desirable to have alargssover frequency
and a steep (negative) slope of the gain curve. The gain atrleguéncies can
be increased by a controller with integral action, whichlsoaalledlag compen-
sation To avoid injecting too much measurement noise into theesysthe loop
transfer function should have low gain at high frequenacidsch is calledhigh-
frequency roll-off The choice of gain crossover frequency is a compromise among
attenuation of load disturbances, injection of measurémeise and robustness.

Bode's relations (see Section 9.4) impose restrictions erstiape of the loop
transfer function. Equation (9.8) implies that the slopeha gain curve at gain
crossover cannot be too steep. If the gain curve has a cosébae, we have the
following relation between slopgy. and phase margigim:

2
Nge= —2+ ":Tm (11.11)

This formula is a reasonable approximation when the gainecdoes not deviate
too much from a straight line. It follows from equation (11)lhat the phase
margins 30, 45° and 60 correspond to the slopesb/3, —3/2 and—4/3.

Loop shaping is a trial-and-error procedure. We typicallytsvith a Bode plot
of the process transfer function. We then attempt to shapletp transfer function
by changing the controller gain and adding poles and zertigetoontroller trans-
fer function. Different performance specifications are estedd for each controller
as we attempt to balance many different requirements bystidgucontroller pa-
rameters and complexity. Loop shaping is straightforwampialy to single-input,
single-output systems. It can also be applied to systentsamié input and many
outputs by closing the loops one at a time starting with timeimost loop. The
only limitation for minimum phase systems is that large ghlasds and high con-
troller gains may be required to obtain closed loop systeiitis avfast response.
Many specific procedures are available: they all require epee, but they also
give good insight into the conflicting requirements. Therefanelamental limita-
tions to what can be achieved for systems that are not minipisse; they will
be discussed in the next section.

Lead and Lag Compensation

A simple way to do loop shaping is to start with the transfeiction of the process
and add simple compensators with the transfer function

. Sta

Cls) =k . (11.12)
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Figure 11.9: Frequency response for lead and lag compens&@s= k(s+ a)/(s+ b).
Lead compensation (a) occurs wteen b and provides phase lead betweer- aandw = b.
Lag compensation (b) correspondsate- b and provides low-frequency gain. Pl control is
a special case of lag compensation and PD control is a special caselafdmpensation.
PI/PD frequency responses are shown by dashed curves.

The compensator is calledead compensataf a < b, and alag compensatoif

a > b. The PI controller is a special case of a lag compensatorlwtld, and the
ideal PD controller is a special case of a lead compensathranit 0. Bode plots
of lead and lag compensators are shown in Figure 11.9. Lag ewapen, which
increases the gain at low frequencies, is typically usedniorove tracking per-
formance and disturbance attenuation at low frequenciemp@énsators that are
tailored to specific disturbances can be also designed, asishdexercise 11.10.
Lead compensation is typically used to improve phase maifdia.following ex-
amples give illustrations.

Example 11.5 Atomic for ce microscope in tapping mode
A simple model of the dynamics of the vertical motion of annaimforce micro-
scope in tapping mode was given in Exercise 9.2. The transfatiin for the

system dynamics is
a(l—e®)
P(S) T T e
st(s+a)
wherea = {wp, T = 2rm/wyp and the gain has been normalized to 1. A Bode plot
of this transfer function for the parametexrs- 1 andt = 0.25 is shown in dashed
curves in Figure 11.10a. To improve the attenuation of loatuddances we in-
crease the low-frequency gain by introducing an integratr@dler. The loop trans-
fer function then becomds= k;P(s)/s, and we adjust the gain so that the phase
margin is zero, giving; = 8.3. Notice the increase of the gain at low frequencies.
The Bode plot is shown by the dash-dotted line in Figure 11 \/Bare the critical
point is indicated by. To improve the phase margin we introduce proportional
action and we increase the proportional gigirgradually until reasonable values
of the sensitivities are obtained. The vakje= 3.5 gives maximum sensitivity
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Figure 11.10: Loop-shaping design of a controller for an atomic force microscopejpitig
mode. (a) Bode plots of the process (dashed), the loop transfdaiduificr an integral con-
troller with critical gain (dash-dotted) and a PI controller (solid) adjustedv igasonable
robustness. (b) Gain curves for the Gang of Four for the system.

Ms = 1.6 and maximum complementary sensitiviy = 1.3. The loop transfer
function is shown in solid lines in Figure 11.10a. Notice tlgmgicant increase of
the phase margin compared with the purely integral comtrétiash-dotted line).
To evaluate the design we also compute the gain curves afthsfer functions
in the Gang of Four. They are shown in Figure 11.10b. The peakeddnsitivity
curves are reasonable, and the plotP& shows that the largest value BSis
0.3, which implies that the load disturbances are well atiéed. The plot 0€S
shows that the largest controller gain is 6. The controllerdgain of 3.5 at high
frequencies, and hence we may consider adding high-fregueii-off. O

A common problem in the design of feedback systems is thgitihee margin
is too small, and phadead must then be added to the system. If weasetb in
equation (11.12), we add phase lead in the frequency rarigeée the pole/zero
pair (and extending approximately £0n frequency in each direction). By appro
priately choosing the location of this phase lead, we camigecadditional phase
margin at the gain crossover frequency.

Because the phase of a transfer function is related to tpe siithe magnitude,
increasing the phase requires increasing the gain of theettaasfer function over
the frequency range in which the lead compensation is apgdleExercise 11.11
it is shown that the gain increases exponentially with theamhof phase lead. We
can also think of the lead compensator as changing the sfdpe transfer func-
tion and thus shaping the loop transfer function in the @esisregion (although
it can be applied elsewhere as well).

Example 11.6 Roll control for a vectored thrust aircraft
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Symbol  Description Value
m Vehicle mass 4.0 kg
J Vehicle inertia,¢3 axis  0.0475 kgrh
r Force moment arm 25.0cm
y c Damping coefficient 0.05 kgm/s
g Gravitational constant 9.8 ntls
(a) Simplified model (b) Parameter values

Figure 11.11: Roll control of a vectored thrust aircraft. (a) The roll an§lé controlled by
applying maneuvering thrusters, resulting in a moment generatésgl. [fip) The table lists
the parameter values for a laboratory version of the system.

Consider the control of the roll of a vectored thrust aircsafch as the one il-
lustrated in Figure 11.11. Following Exercise 8.10, we mobelgystem with a
second-order transfer function of the form

-
INES

with the parameters given in Figure 11.11b. We take as ouope&nce speci-
fication that we would like less than 1% error in steady statklass than 10%
tracking error up to 10 rad/s.

The open loop transfer function is shown in Figure 11.12a. Toesxe our
performance specification, we would like to have a gain ofadtl&0 at a frequency
of 10 rad/s, requiring the gain crossover frequency to behigtzer frequency. We
see from the loop shape that in order to achieve the desiréorp@nce we cannot
simply increase the gain since this would give a very low phaargin. Instead,
we must increase the phase at the desired crossover frggquenc

To accomplish this, we use a lead compensator (11.12)awitt2 andb = 50.
We then set the gain of the system to provide a large loop gaito the desired
bandwidth, as shown in Figure 11.12b. We see that this systsra bain of greater
than 10 at all frequencies up to 10 rad/s and that it has mere 8 of phase
margin. O

P(s)

The action of alead compensator is essentially the sametasf tha derivative
portion of a PID controller. As described in Section 10.5, weiuse a filter for
the derivative action of a PID controller to limit the higke§uency gain. This same
effect is present in a lead compensator through the pae-di.

Equation (11.12) is a first-order compensator and can provideo D0 of
phase lead. Larger phase lead can be obtained by using a-oiglezrlead com-



11.5. FUNDAMENTAL LIMITATIONS 331

_ 100t . _10F ]
3 3
g1t 1 5
10° : 10°
0 0
2 oo . 2 o0 1
o -
N N
-18 : -180 . ; ;
10 10° 10' 100 10 10' 10° 10’
Frequencyw [rad/s] Frequencyw [rad/s]
(a) Process dynamics (b) Lead compensator

Figure 11.12: Control design for a vectored thrust aircraft using lead compensakios
Bode plot for the open loop proceBsis shown in (a) and the loop transfer functibn=
PC using a lead compensator in (b). Note the phase lead in the crossoieT negrw =
100 rad/s.

pensator (Exercise 11.11):

11.5 Fundamental Limitations

Although loop shaping gives us a great deal of flexibility irsidaing the closed
loop response of a system, there are certain fundamentis lon what can be
achieved. We consider here some of the primary performamigtions that can
occur because of difficult dynamics; additional limitatiosakted to robustness are

considered in the next chapter.

Right Half-Plane Poles and Zeros and Time Delays

There are linear systems that are inherently difficult to @dnirhe limitations are
related to poles and zeros in the right half-plane and timiayde To explore the
limitations caused by poles and zeros in the right half-phlame factor the process

transfer function as
P(S) = Pmp(S)Pap(s), (11.13)

wherePnypis the minimum phase part afy, is the nonminimum phase part. The
factorization is normalized so thfRsp(iw)| = 1, and the sign is chosen so tiRap
has negative phase. The transfer functapis called arall-pass systerbecause
it has unit gain for all frequencies. Requiring that the ghiasargin bep,, we get

argl (iwyc) = argPap(icye) + argPmp(iwye) +argCiwye) > —m+ ¢m, (11.14)
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whereC is the controller transfer function. Lec be the slope of the gain curve
at the crossover frequency. Sinégp(iw)| = 1, it follows that

_ dlog|L(iw)| _ dlog|Pnp(iw)C(iw)|

Nge = .
g¢ dlogw | o dlogw oy
= C = C

Assuming that the slopey is negative, it has to be larger thai2 for the system
to be stable. It follows from Bode’s relations, equatior8f9that

argPmp(iw) +argC(iw) ~ ngcg .
Combining this with equation (11.14) gives the followingquality for the allow-
able phase lag of the all-pass part at the gain crossovardrey:

—argPap(iwye) < mM— ¢m+ ngc%T =: 4. (11.15)

This condition, which we call thgain crossover frequency inequalishows that
the gain crossover frequency must be chosen so that the wmed the non-
minimum phase component is not too large. For systems wgh hbbustness
requirements we may choose a phase margin 6f (@@, = 11/3) and a slope
ngc = —1, which gives an admissible phase lag= 11/6 = 0.52 rad (30). For
systems where we can accept a lower robustness we may chpbsseamargin
of 45° (¢m = 11/4) and the slopegc = —1/2, which gives an admissible phase lag
¢ = /2= 1.57 rad (90).

The crossover frequency inequality shows that nonminimuas@lcomponents
impose severe restrictions on possible crossover fredgegnit also means that
there are systems that cannot be controlled with sufficietilgly margins. We
illustrate the limitations in a number of commonly encouatksituations.

Example 11.7 Zero in theright half-plane
The nonminimum phase part of the process transfer functioa 8ystem with a
right half-plane zero is
z—s
~z+¢

wherez > 0. The phase lag of the nonminimum phase part is

Pap(s)

: W
—argPp(iw) =2 arctar?

Since the phase lag &%, increases with frequency, the inequality (11.15) gives
the following bound on the crossover frequency:

Wyc < ztan(¢;/2). (11.16)

With ¢, = 11/3 we getwyc < 0.6z Slow right half-plane zerogzgmall) therefore
give tighter restrictions on possible gain crossover fegguies than fast right half-
plane zeros. O
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Time delays also impose limitations similar to those givgrzéros in the right
half-plane. We can understand this intuitively from the @agproximation
st 1-05st _ 2/T—s
1+0.5st 2/T+S

A long time delay is thus equivalent to a slow right half-pareroz=2/1.

Example 11.8 Polein theright half-plane
The nonminimum phase part of the transfer function for a systéth a pole in
the right half-plane is

_S+p
Pap(s) = .1 0’
wherep > 0. The phase lag of the nonminimum phase part is

—argPap(iw) =2 arctan(%,

and the crossover frequency inequality becomes

W > o (11.17)

tan(¢;/2)
Right half-plane poles thus require that the closed loopesy$ave a sufficiently
high bandwidth. Withp, = 11/3 we getwyc > 1.7p. Fast right half-plane polegp(
large) therefore give tighter restrictions on possiblegabssover frequencies than
slow right half-plane poles. The control of unstable systémsoses minimum
bandwidth requirements for process actuators and sensors. a

We will now consider systems with a right half-plane zerand a right half-
plane polep. If p =z there will be an unstable subsystem that is neither reach-
able nor observable, and the system cannot be stabilizedSsetion 7.5). We
can therefore expect that the system is difficult to controhé right half-plane
pole and zero are close. A straightforward way to use thesoxas frequency in-
equality is to plot the phase of the nonminimum phase fal{grof the process
transfer function. Such a plot, which can be incorporatechiordinary Bode plot,
will immediately show the permissible gain crossover fregies. An illustration
is given in Figure 11.13, which shows the phasédgf for systems with a right
half-plane pole/zero pair and systems with a right halfiplpole and a time delay.

If we require that the phase lafy of the nonminimum phase factor be less than
90°, we must require that the raty p be larger than 6 or smaller than 1/6 for
systems with right half-plane poles and zeros and that théymt pt be less than
0.3 for systems with a time delay and a right half-plane peice the symmetry

in the problem forz > p andz < p: in either case the zeros and the poles must be
sufficiently far apart (Exercise 11.12). Also notice that jjassvalues of the gain
crossover frequencyyc are quite restricted.

Using the theory of functions of complex variables, it canshewn that for
systems with a right half-plane popeand a right half-plane ze(or a time delay
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Figure 11.13: Example limitations due to the gain crossover frequency inequality. The fig-
ures show the phase lag of the all-pass faBjgras a function of frequency. Since the phase
lag of P,y at the gain crossover frequency cannot be too large, it is necesselypose the
gain crossover frequency properly. All systems have a right Halfeppole as = 1. The
system in (a) has zerosst 2, 5, 20 and 100 (solid lines) andst 0.5, 0.2, 0.05 and 0.01
(dashed lines). The system in (b) has time delays0.02 0.1, 0.5 and 1.

T), any stabilizing controller gives sensitivity functiowgth the property

sup|S(iw)| > Ptz
w

, sup| T (iw)| > eP’. 11.18
> BT suplT(iw) (1118

This result is proven in Exercise 11.13.

As the examples above show, right half-plane poles and zggogicantly limit
the achievable performance of a system, hence one woultblékeoid these when-
ever possible. The poles of a system depend on the intrinsiandics of the sys-
tem and are given by the eigenvalues of the dynamics matoixa linear system.
Sensors and actuators have no effect on the poles; the onlyoaehange poles
is to redesign the system. Notice that this does not imply wihatable systems
should be avoided. Unstable system may actually have aalyasitone example is
high-performance supersonic aircraft.

The zeros of a system depend on how the sensors and actuacsugted to
the states. The zeros depend on all the matigd® C andD in a linear system.
The zeros can thus be influenced by moving the sensors andastaeby adding
sensors and actuators. Notice that a fully actuated syBtenh does not have any
zeros.

Example 11.9 Balance system
As an example of a system with both right half-plane poleszands, consider the
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balance system with zero damping, whose dynamics are given b

ml
(M — m212)s2 + mgiM’
oo —Js?+mgl
PF = (= (Mg — mPI2)? + mgIM) -

Hor = —

Assume that we want to stabilize the pendulum by using thiepzeition as the
measured signal. The transfer function from the input férde the cart position
p has poles(0,0,++/mgIM /(M — m?12)} and zeros{+,/mgl/J}. Using the
parameters in Example 6.7, the right half-plane pole ip &t2.68 and the zero
is atz= 2.09. Equation (11.18) then givéS(iw)| > 8, which shows that it is not
possible to control the system robustly.

The right half-plane zero of the system can be eliminated laygimg the out-
put of the system. For example, if we choose the output tespond to a position
at a distance along the pendulum, we haye- p—r sinf and the transfer function
for the linearized output becomes

(mlr — )% 4+ mgl
(=M —PI2)?+ mgiM) -

If we chooser sufficiently large, thermlr — J > 0 and we eliminate the right
half-plane zero, obtaining instead two pure imaginary gefidne gain crossover
frequency inequality is then based just on the right hadfaplpole (Example 11.8).
If our admissible phase lag for the nonminimum phase papt is 45°, then our
gain crossover must satisfy

Hyr = Hpr —rHgr =

p
> ——— =6.48rad/s
e~ tan(91/2)
If the actuators have sufficiently high bandwidth, e.g., adiaof 10 abovewy or
roughly 10 Hz, then we can provide robust tracking up to tfegdiency. O

Bode’s Integral Formula

In addition to providing adequate phase margin for robuiikty, a typical con-
trol design will have to satisfy performance conditions lo& $ensitivity functions
(Gang of Four). In particular, the sensitivity functi8e= 1/(1+ PC) represents the
disturbance attenuation and also relates the tracking etoathe reference signal:
we usually want the sensitivity to be small over the rangeexdiencies where we
want small tracking error and good disturbance attenuafidrasic problem is to
investigate ifS can be made small over a large frequency range. We will syart b
investigating an example.

Example 11.10 System that admits small sensitivities
Consider a closed loop system consisting of a first-orderga®and a proportional
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controller. Let the loop transfer function be

k
L(s)=PC= —
(s) 1
where parametelis the controller gain. The sensitivity function is
s+1
X8) = s+1+k
and we have
. 1+ w?
[Sliw)l = \/1+2k+ k24 w?’

This implies thatS(iw)| < 1 for all finite frequencies and that the sensitivity can be
made arbitrarily small for any finite frequency by makigufficiently large. [

The system in Example 11.10 is unfortunately an exception. Eyedature
of the system is that the Nyquist curve of the process is cetalyl contained in
the right half-plane. Such systems are calp@dsive and their transfer functions
are positive real For typical control systems there are severe constraimthe
sensitivity function. The following theorem, due to Bodegyides insights into
the limits of performance under feedback.

Theorem 11.1 (Bode's integral formula) Assume that the loop transfer function
L(s) of a feedback system goes to zero faster thgmas s— o, and let $s)
be the sensitivity function. If the loop transfer functiasipoles p in the right
half-plane, then the sensitivity function satisfies thiofeihg integral:

* . * 1
/o Iogys(lw)]dw_/o IOg|1+L(iw)]dw_nZ Pk- (11.19)

Equation (11.19) implies that there are fundamental linutest to what can
be achieved by control and that control design can be vieweal r@distribution
of disturbance attenuation over different frequenciedrticular, this equation
shows that if the sensitivity function is made smaller famgdfrequencies, it must
increase at other frequencies so that the integral ofS0@)| remains constant.
This means that if disturbance attenuation is improved infoggpuency range, it
will be worse in another, a property sometime referred thvasvaterbed effectit
also follows that systems with open loop poles in the right-piane have larger
overall sensitivity than stable systems.

Equation (11.19) can be regarded asoaservation lawif the loop transfer
function has no poles in the right half-plane, the equatiompkfies to

/Ooolog|S(iw)|do):O.

This formula can be given a nice geometric interpretationllastiated in Fig-
ure 11.14, which shows Id§(iw)| as a function otv. The area over the horizontal
axis must be equal to the area under the axis when the fregueptotted on a
linear scale. Thus if we wish to make the sensitivity smaller up toesémquency
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Figure 11.14: Interpretation of thevaterbed effecfThe function logS(iw)| is plotted versus
win linear scales in (a). According to Bode’s integral formula (11.1%) atea of logS(iw)|
above zero must be equal to the area below zero. Gunter Stein’s ettipn of design as a
trade-off of sensitivities at different frequencies is shown in (rf{Ste03]).

wsc, We must balance this by increased sensitivity abmye Control system de-
sign can be viewed as trading the disturbance attenuatisona¢ frequencies for
disturbance amplification at other frequencies. Notice thatsystem in Exam-
ple 11.10 violates the condition that lim., sL(s) = 0 and hence the integral for-
mula does not apply.

There is result analogous to equation (11.19) for the comgeany sensitivity

function: l0g|T (i) 1
*log|T (iw
—————dw=mn) — 11.20
|2 S5 (11.20)
where the summation is over all right half-plane zeros. &othat slow right half-
plane zeros are worse than fast ones and that fast righplaadé poles are worse
than slow ones.

Example 11.11 X-29 air cr aft

As an example of the application of Bode’s integral formwa, present an anal-
ysis of the control system for the X-29 aircraft (see Figurel®a), which has an
unusual configuration of aerodynamic surfaces that are weditp enhance its
maneuverability. This analysis was originally carried oytGunter Stein in his
article “Respect the Unstable” [Ste03], which is also thesewf the quote at the
beginning of this chapter.

To analyze this system, we make use of a small set of parasrtbegrdescribe
the key properties of the system. The X-29 has longitudinabdyics that are very
similar to inverted pendulum dynamics (Exercise 8.3) andpdrticular, have a
pair of poles at approximatelg = +6 and a zero at = 26. The actuators that
stabilize the pitch have a bandwidth@f = 40 rad/s and the desired bandwidth of
the pitch control loop isu = 3 rad/s. Since the ratio of the zero to the pole is only
4.3, we may expect that it may be difficult to achieve the spetifios.

To evaluate the achievable performance, we search for aotdei such that
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Figure 11.15: X-29 flight control system. The aircraft makes use of forward swépgs and
a set of canards on the fuselage to achieve high maneuverability @}l€Rired sensitivity
for the closed loop system is shown in (b). We seek to use our contraritytto shape the
sensitivity curve so that we have low sensitivity (good performanced dequencyw, by
creating higher sensitivity up to our actuator bandwidgh

the sensitivity function is small up to the desired bandtviahd not greater than
Ms beyond that frequency. Because of the Bode integral fornwaaknow that
Ms must be greater than 1 at high frequencies to balance the semsitivity at
low frequency. We thus ask if we can find a controller that hasstiiape shown
in Figure 11.15b with the smallest valueM{. Note that the sensitivity above the
frequencyw, is not specified since we have no actuator authority at thqtiéecy.
However, assuming that the process dynamics fall off at frigdjuency, the sen-
sitivity at high frequency will approach 1. Thus, we desirelésign a closed loop
system that has low sensitivity at frequencies betowand sensitivity that is not
too large betweeny andw,.

From Bode’s integral formula, we know that whatever congmolve choose,
equation (11.19) must hold. We will assume that the seitgitiunction is given

by

wM
. S w<w
rsow)r:{Mwl
s W< W< Wy,

corresponding to Figure 11.15b. If we further assume fih@)| < &/w? for fre-
qguencies larger than the actuator bandwidth, Bode’s intdigrcomes

o @a
/ Iog\S(iw)\doo:/ log|S(iw)|dw
0 0

W
:/ log wMde+(&}a—&h)|09Ms= p.
0 WL

Evaluation of the integral givesw; + wylogMs = mtp or

MS — e(np"'wl)/wa.

This formula tells us what the achievable valuevafwill be for the given control
specifications. In particular, using= 6, w; = 3 andw, = 40 rad/s, we find that
Ms = 1.75, which means that in the range of frequencies betweeand w;,
disturbances at the input to the process dynamics (suchrad will be amplified
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Figure 11.16: Contour used to prove Bode’s theorem. For each right half-planewele
create a path from the imaginary axis that encircles the pole as showroitbciutter we
have shown only one of the paths that enclose one right half-plane.

by a factor of 175 in terms of their effect on the aircraft.

Another way to view these results is to compute the phaseimdrgt corre-
sponds to the given level of sensitivity. Since the peak sgitginormally occurs
at or near the crossover frequency, we can compute the phag@nsorrespond-
ing to Mg = 1.75. As shown in Exercise 11.14, the maximum achievable phase
margin for this system is approximately°3%vhich is below the usual design limit
of 45° in aerospace systems. The zereat26 limits the maximum gain crossover
that can be achieved. O

Derivation of Bode’s Formula @

We now derive Bode’s integral formula (Theorem 11.1). Thisteclnical section
that requires some knowledge of the theory of complex veeghn particular
contour integration. Assume that the loop transfer fumctias distinct poles at
s= pk in the right half-plane and that(s) goes to zero faster thary4dfor large
values ofs.

Consider the integral of the logarithm of the sensitivitpétionS(s) = 1/(1+
L(s)) over the contour shown in Figure 11.16. The contour enclogesght half-
plane except for the points= px where the loop transfer functidr(s) = P(s)C(s)
has poles and the sensitivity functi&s) has zeros. The direction of the contour
is counterclockwise.

The integral of the log of the sensitivity function aroundstbbntour is given
by

—iR
/r log(S(s)) ds= /iR log(S(s)) ds+ /R 0g(S(s)ds+ Y /y log(S(s)) ds
=l1+1l2+13=0,

whereR is a large semicircle on the right angd is the contour starting on the
imaginary axis as = Im px and a small circle enclosing the pgbe. The integral
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is zero because the function I8¢) is analytic inside the contour. We have

Iy = —i /zlog(S(iw))da): 2 /ORIog(|S(iw)|)dw

because the real part of I8 w) is an even function and the imaginary part is an
odd function. Furthermore we have

12— [ log(S(s)) ds= — [ log(L+L(s))ds~— [ L(s)ds

SinceL(s) goes to zero faster thary4dfor larges, the integral goes to zero when
the radius of the circle goes to infinity.

Next we consider the integrh. For this purpose we split the contour into three
partsX., yandX_, as indicated in Figure 11.16. We can then write the integral a

I3:/X+ IogS(s)ds+/ongS(s)ds+/X logS(s)ds

The contouty is a small circle with radius around the polgy. The magnitude of
the integrand is of the order logand the length of the path igi®2. The integral
thus goes to zero as the radiugoes to zero. Sinc§(s) ~ k/(s— pk) close to the
pole, the argument d¥(s) decreases byr2as the contour encircles the pole. On
the contours{, andX_ we therefore have

ISc.| =1 |,  argSk =argS, —2m
Hence

log(Sx, ) —log(Sx_) = 2,
and we get . .
/ IogS(s)ds+/ logS(s)ds=2mi Rep.
Xy X_

Repeating the argument for all poleg in the right half plane, letting the small
circles go to zero and the large circle go to infinity gives

R
|1+I2+I3:—2i/ oglSiico)|deo-+i 5 2 Rep. = 0.
0

Since complex poles appear as complex conjugate PaiRRepx = 3k Pk, Which
gives Bode’s formula (11.19).

11.6 Design Example

In this section we present a detailed example that illussrdte main design tech-
niques described in this chapter.

Example 11.12 L ateral control of a vectored thrust aircraft
The problem of controlling the motion of a vertical takeofiddanding (VTOL)
aircraft was introduced in Example 2.9 and in Example 11.6 revive designed a
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—1 |-

Figure 11.17: Inner/outer control design for a vectored thrust aircraft. The innep
controls the roll angle of the aircraft using the vectored thrust. The éuaercontrollerCo
commands the roll angle to regulate the lateral position. The procesmibymare decom-
posed into inner loopR) and outer loopR,) dynamics, which combine to form the full
dynamics for the aircraft.

controller for the roll dynamics. We now wish to control thesjiion of the aircraft,
a problem that requires stabilization of both the attitude @ne position.

To control the lateral dynamics of the vectored thrust aitciwve make use of
a “inner/outer” loop design methodology, as illustratedrigure 11.17. This dia-
gram shows the process dynamics and controller dividedwadaomponents: an
inner loopconsisting of the roll dynamics and control andaner loopconsist-
ing of the lateral position dynamics and controller. Thisataposition follows the
block diagram representation of the dynamics given in Exer8il10.

The approach that we take is to design a contr@dor the inner loop so that
the resulting closed loop systeirh provides fast and accurate control of the roll
angle for the aircraft. We then design a controller for thera position that uses
the approximation that we can directly control the roll ang$ an input to the dy-
namics controlling the position. Under the assumptiontifratynamics of the roll
controller are fast relative to the desired bandwidth oflétteral position control,
we can then combine the inner and outer loop controllersta gangle controller
for the entire system. As a performance specification for thtéeesystem, we
would like to have zero steady-state error in the lateraltipos a bandwidth of
approximately 1 rad/s and a phase margin of. 45

For the inner loop, we choose our design specification to geotrie outer loop
with accurate and fast control of the roll. The inner loop dyies are given by

r
Jg+cs
We choose the desired bandwidth to be 10 rad/s (10 times thiat @uter loop)

and the low-frequency error to be no more than 5%. This spetitite satisfied
using the lead compensator of Example 11.6 designed préyisosve choose

PI :HGU]_:

. Sta

(S) = k—— =2 = k=1.
Ci(s) stb’ a=2, b=50,
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Figure 11.18: Outer loop control design for a vectored thrust aircraft. (a) The dotgy
approximates the roll dynamics as a state gaimg. (b) The Bode plot for the roll dynamics,
indicating that this approximation is accurate up to approximately 10 rad/s.

The closed loop dynamics for the system satisfy

_ G, GR _G(-mgR)
1+GR 1+GR 1+GR -

A plot of the magnitude of this transfer function is shown igutie 11.18, and we
see thatH; ~ —mg= —39.2 is a good approximation up to 10 rad/s.

To design the outer loop controller, we assume the inner foticontrol is
perfect, so that we can taléy as the input to our lateral dynamics. Following the
diagram shown in Exercise 8.10, the outer loop dynamics carritten as
_hHO
S mg’
where we replacel; (s) with H;(0) to reflect our approximation that the inner loop
will eventually track our commanded input. Of course, thip@ximation may not
be valid, and so we must verify this when we complete our aesig

Our control goal is now to design a controller that gives zteady-state error
in y and has a bandwidth of 1 rad/s. The outer loop process dynaarecgiven
by a second-order integrator, and we can again use a singuectanpensator to
satisfy the specifications. We also choose the design suttihihdoop transfer
function for the outer loop hgs,| < 0.1 for w > 10 rad/s, so that thid; dynamics
can be neglected. We choose the controller to be of the form

S+a
Cols) = k°s+ bo’
with the negative sign to cancel the negative sign in theggscdynamics. To find
the location of the poles, we note that the phase lead flatigrest @pproximately
bo/10. We desire phase lead at crossover, and we desire th@weoss wyc =
1 rad/s, so this givels, = 10. To ensure that we have adequate phase lead, we must
chooses, such thab,/10 < 10a, < by, Which implies thatg, should be between

Hi

P(s) = Hi(0)Ro(s)
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Figure 11.19: Inner/outer loop controller for a vectored thrust aircraft. The Bode @lp
and Nyquist plot (b) for the transfer function for the combined innet @uter loop transfer
functions are shown. The system has a phase margin°cdr@@a gain margin of 6.2.

0.1 and 1. We choos® = 0.3. Finally, we need to set the gain of the system such
that at crossover the loop gain has magnitude 1. A simpleulzdion shows that
ko = 2 satisfies this objective. Thus, the final outer loop contrdiemomes

s+0.3
=2 )
Co(9) s+10

Finally, we can combine the inner and outer loop controllerd eerify that
the system has the desired closed loop performance. The Bodsyajuist plots
corresponding to Figure 11.17 with inner and outer loop abletrs are shown in
Figure 11.19, and we see that the specifications are satisfiaddltion, we show
the Gang of Four in Figure 11.20, and we see that the trandgfetifuns between
all inputs and outputs are reasonable. The sensitivity td thaturbance®Sis
large at low frequency because the controller does not maggral action.

The approach of splitting the dynamics into an inner and aardabp is com-
mon in many control applications and can lead to simplergihssior complex
systems. Indeed, for the aircraft dynamics studied in tkésveole, it is very chal-
lenging to directly design a controller from the lateral ifios x to the inputu;.
The use of the additional measuremenBajreatly simplifies the design because
it can be broken up into simpler pieces. O

11.7 Further Reading

Design by loop shaping was a key element in the early devedopof control, and
systematic design methods were developed; see James|NaciadPhillips [JNP47],
Chestnut and Mayer [CM51], Truxal [Tru55] and Thaler [Tha89%op shap-

ing is also treated in standard textbooks such as FranklinelP@and Emami-

Naeini [FPENO5], Dorf and Bishop [DB04], Kuo and Golnaraghi [6Z} and

Ogata [Oga01]. Systems with two degrees of freedom were aigedlby Horowitz [Hor63],
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Figure 11.20: Gang of Four for vectored thrust aircraft system.

who also discussed the limitations of poles and zeros inigfe half-plane. Fun-
damental results on limitations are given in Bode [Bod45)renrecent presenta-
tions are found in Goodwin, Graebe and Salgado [GGSO01]. Thetesd in Sec-
tion 11.5 is based orf\[stOO]. Much of the early work was based on the loop trans-
fer function; the importance of the sensitivity functiongpaared in connection
with the development in the 1980s that resultetlindesign methods. A compact
presentation is given in the texts by Doyle, Francis and Tabaem [DFT92] and
Zhou, Doyle and Glover [ZDG96]. Loop shaping was integratedhhe robust
control theory in McFarlane and Glover [MG90] and Vinnicaar¥in01]. Com-
prehensive treatments of control system design are givbtaiiejowski [Mac89]
and Goodwin, Graebe and Salgado [GGSO01].

Exercises

11.1 Consider the system in Figure 11.1. Give all signal pairs @natrelated by
the transfer functions/A1+ PC), P/(1+4 PC), C/(1+ PC) andPC/(1+ PC).

11.2 Consider the system in Example 11.1. Choose the parangtersl and
compute the time and frequency responses for all the trafusfetions in the Gang
of Four for controllers withk = 0.2 andk = 5.

11.3 (Equivalence of Figures 11.1 and 11.2) Consider the systemgur&ill.1
and let the outputs of interest lze= (n,v) and the major disturbances be=
(n,d). Show that the system can be represented by Figure 11.2 anthgikatrix
transfer functions?” and¥’. Verify that the elements of the closed loop transfer
functionH,, are the Gang of Four.
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11.4 Consider the spring—mass system given by (2.14), which thedransfer
function 1
P(s)

" m@+cstk
Design a feedforward compensator that gives a responsecwiital damping

((=1).

11.5 (Sensitivity of feedback and feedforward) Consider theesysn Figure 11.1
and letGy, be the transfer function relating the measured signalthe reference

r. Show that the sensitivities @y, with respect to the feedforward and feedback
transfer functiong andC are given bydG,;/dF = CP/(1+PC) anddG,; /dC =
FP/(1+PC)? = GyL/C.

11.6 (Equivalence of controllers with two degrees of freedom) Shwat the sys-
tems in Figures 11.1 and 11.3 give the same responses to cahsigarals if
FmC+ R, =CF.

11.7 (Disturbance attenuation) Consider the feedback systemrsim Figure 11.1.
Assume that the reference signal is constantyietbe the measured output when
there is no feedback ang, be the output with feedback. Show théj§(s) =
S(9)Yoi(S), WwhereSis the sensitivity function.

11.8 (Disturbance reduction through feedback) Consider a prokih which an
output variable has been measured to estimate the potmtéisturbance attenu-
ation by feedback. Suppose an analysis shows that it is pessidesign a closed
loop system with the sensitivity function

s
S =—5——.

Ss) P+s+1

Estimate the possible disturbance reduction when the megslisturbance is

y(t) = 5sin(0.1t) 4+ 3sin(0.17t) + 0.5c050.9t) + 0.1t.

11.9 Show that the effect of high frequency measurement noise @rcahtrol
signal for the system in Example 11.4 can be approximated by

kys
(STs)2/2+sTy+1’

and that the largest value @S(iw)| is kq/T; which occurs forw = /2/Ts.

11.10 (Attenuation of low-frequency sinusoidal disturbancesgggral action elim-
inates constant disturbances and reduces low-frequestiyrioiances because the
controller gain is infinite at zero frequency. A similar ideande used to reduce the
effects of sinusoidal disturbances of known frequewgyoy using the controller

kot ksS
P 22w+ o

This controller has the gai@s(iap) = kp + ks/(2¢) for the frequencywy, which
can be large by choosing a small valueof Assume that the process has the

CS=C=

C(s)
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transfer functiorP(s) = 1/s. Determine the Bode plot of the loop transfer function
and simulate the system. Compare the results with PI control.

11.11 Consider a lead compensator with the transfer function
svVk+ayn
C”(S>_< s+a ) ’

which has zero frequency ga{0) = 1 and high-frequency gaid(«) = k. Show
that the gain required to give a given phase l¢ad

k= (1+2tar?(/n) +2tar(¢/n)w/1+tanz(¢/n)>n,

and that limk = €29,
Nn—-co

11.12 Consider a process with the loop transfer function
- ki’
S—p
with positivezandp. Show that the system is stablepifz< k< 1 or 1< k< p/z,

and that the largest stability marginss, = |p—z|/(p+ 2) is obtained fork =
2p/(p+z). Determine the pole/zero ratios that gives the stabilitygimes,, = 2/3.

L(s)

@ 11.13 Prove the inequalities given by equation (11.18). (Hint: theemaximum
modulus theorem.)

11.14 (Phase margin formulas) Show that the relationship betweeptiase mar-
gin and the values of the sensitivity functions at gain avuesis given by

St = T (i) = 55575

11.15 (Stabilization of an inverted pendulum with visual feedaCknsider sta-
bilization of an inverted pendulum based on visual feedhestkg a video camera
with a 50-Hz frame rate. Let the effective pendulum length.bsssume that we
want the loop transfer function to have a slopengé = —1/2 at the crossover
frequency. Use the gain crossover frequency inequalitgterdhine the minimum
length of the pendulum that can be stabilized if we desiresspimargin of 45

11.16 (Rear-steered bicycle) Consider the simple model of a kciyt Equa-
tion (3.5), which has one pole in the right half-plane. The eigsl also valid for
a bicycle with rear wheel steering, but the sign of the véyosithen reversed and
the system also has a zero in the right half-plane. Use thétsex Exercise 11.12
to give a condition on the physical parameters that admitsraraller with the
stability marginsm.

@ 11.17 Prove the formula (11.20) for the complementary sensitivity



