
Chapter Eleven
Frequency Domain Design

Sensitivity improvements in one frequency range must be paid for with sensitivity deteriorations
in another frequency range, and the price is higher if the plant is open-loop unstable. This
applies to every controller, no matter how it was designed.

Gunter Stein in the inaugural IEEE Bode Lecture, 1989 [Ste03].

In this chapter we continue to explore the use of frequency domain techniques
with a focus on the design of feedback systems. We begin with amore thorough
description of the performance specifications for control systems and then introduce
the concept of “loop shaping” as a mechanism for designing controllers in the
frequency domain. We also introduce some fundamental limitations to performance
for systems with time delays and right half-plane poles and zeros.

11.1 Sensitivity Functions

In the previous chapter, we considered the use of proportional-integral-derivative
(PID) feedback as a mechanism for designing a feedback controller for a given
process. In this chapter we will expand our approach to include a richer repertoire
of tools for shaping the frequency response of the closed loop system.

One of the key ideas in this chapter is that we can design the behavior of the
closed loop system by focusing on the open loop transfer function. This same
approach was used in studying stability using the Nyquist criterion: we plotted the
Nyquist plot for theopenloop transfer function to determine the stability of the
closedloop system. From a design perspective, the use of loop analysis tools is very
powerful: since the loop transfer function isL = PC, if we can specify the desired
performance in terms of properties ofL, we can directly see the impact of changes
in the controllerC. This is much easier, for example, than trying to reason directly
about the tracking response of the closed loop system, whosetransfer function is
given byGyr = PC/(1 + PC).

We will start by investigating some key properties of the feedback loop. A
block diagram of a basic feedback loop is shown in Figure 11.1.The system loop is
composed of two components: the process and the controller.The controller itself
has two blocks: the feedback blockC and the feedforward blockF . There are two
disturbances acting on the process, the load disturbanced and the measurement
noisen. The load disturbance represents disturbances that drive the process away
from its desired behavior, while the measurement noise represents disturbances that
corrupt information about the process given by the sensors.In the figure, the load
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Figure 11.1: Block diagram of a basic feedback loop with two degrees of freedom. The
controller has a feedback blockC and a feedforward blockF . The external signals are the
reference signalr , the load disturbanced and the measurement noisen. The process output
is η, and the control signal isu.

disturbance is assumed to act on the process input. This is a simplification since
disturbances often enter the process in many different ways, but it allows us to
streamline the presentation without significant loss of generality.

The process outputη is the real variable that we want to control. Control is based
on the measured signaly, where the measurements are corrupted by measurement
noisen. The process is influenced by the controller via the control variable u.
The process is thus a system with three inputs—the control variable u, the load
disturbanced and the measurement noisen—and one output—the measured signal
y. The controller is a system with two inputs and one output. The inputs are the
measured signaly and the reference signalr , and the output is the control signal
u. Note that the control signalu is an input to the process and the output of the
controller, and that the measured signaly is the output of the process and an input
to the controller.

The feedback loop in Figure 11.1 is influenced by three external signals, the
referencer , the load disturbanced and the measurement noisen. Any of the re-
maining signals can be of interest in controller design, depending on the particular
application. Since the system is linear, the relations between the inputs and the in-
teresting signals can be expressed in terms of the transfer functions. The following
relations are obtained from the block diagram in Figure 11.1:
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In addition, we can write the transfer function for the errorbetween the reference
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r and the outputη (not an explicit signal in the diagram), which satisfies

ǫ = r − η =
(

1 −
PC F

1 + PC

)

r +
−P

1 + PC
d +

PC

1 + PC
n.

There are several interesting conclusions we can draw from these equations. First
we can observe that several transfer functions are the same and that the majority of
the relations are given by the following set of six transfer functions, which we call
theGang of Six:

T F =
PC F

1 + PC
, T =

PC

1 + PC
, PS=

P

1 + PC
,

C FS=
C F

1 + PC
, CS=

C

1 + PC
, S =

1

1 + PC
.

(11.2)

The transfer functions in the first column give the response of the process output
and control signal to the reference signal. The second columngives the response
of the control variable to the load disturbance and the noise, and the final column
gives the response of the process output to those two inputs.Notice that only four
transfer functions are required to describe how the system reacts to load disturbances
and measurement noise, and that two additional transfer functions are required to
describe how the system responds to reference signals.

The linear behavior of the system is determined by the six transfer functions
in equation (11.2), and specifications can be expressed in terms of these transfer
functions. The special case whenF = 1 is called a system with (pure) error feed-
back. In this case all control actions are based on feedback from the error only and
the system is completely characterized by four transfer functions, namely, the four
rightmost transfer functions in equation (11.2), which have specific names:

S =
1

1 + PC
sensitivity
function

PS=
P

1 + PC

load
sensitivity
function

T =
PC

1 + PC

complementary
sensitivity
function

CS=
C

1 + PC

noise
sensitivity
function

(11.3)

These transfer functions and their equivalent systems are called theGang of Four.
The load sensitivity function is sometimes called the input sensitivity function and
the noise sensitivity function is sometimes called the output sensitivity function.
These transfer functions have many interesting properties that will be discussed
in detail in the rest of the chapter. Good insight into these properties is essential
in understanding the performance of feedback systems for the purposes of both
analysis and design.

Analyzing the Gang of Six, we find that the feedback controllerC influences
the effects of load disturbances and measurement noise. Notice that measurement
noise enters the process via the feedback. In Section 12.2 it will be shown that
the controller influences the sensitivity of the closed loop to process variations.
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Figure 11.2: A more general representation of a feedback system. The process input u
represents the control signal, which can be manipulated, and the process inputw represents
other signals that influence the process. The process outputy is the vector of measured
variables andz are other signals of interest.

The feedforward partF of the controller influences only the response to command
signals.

In Chapter 9 we focused on the loop transfer function, and we found that its
properties gave useful insights into the properties of a system. To make a proper
assessment of a feedback system it is necessary to consider the properties of all the
transfer functions (11.2) in the Gang of Six or the Gang of Four, as illustrated in
the following example.

Example 11.1 The loop transfer function gives only limited insight
Consider a process with the transfer functionP(s) = 1/(s − a) controlled by a PI
controller with error feedback having the transfer function C(s) = k(s−a)/s. The
loop transfer function isL = k/s, and the sensitivity functions are

T =
PC

1 + PC
=

k

s + k
, PS=

P

1 + PC
=

s

(s − a)(s + k)
,

CS=
C

1 + PC
=

k(s − a)

s + k
, S =

1

1 + PC
=

s

s + k
.

Notice that the factors− a is canceled when computing the loop transfer function
and that this factor also does not appear in the sensitivity function or the comple-
mentary sensitivity function. However, cancellation of the factor is very serious if
a > 0 since the transfer functionPSrelating load disturbances to process output is
then unstable. In particular, a small disturbanced can lead to an unbounded output,
which is clearly not desirable. ∇

The system in Figure 11.1 represents a special case because it is assumed that
the load disturbance enters at the process input and that themeasured output is the
sum of the process variable and the measurement noise. Disturbances can enter in
many different ways, and the sensors may have dynamics. A more abstract way
to capture the general case is shown in Figure 11.2, which has only two blocks
representing the process (P) and the controller (C). The process has two inputs,
the control signalu and a vector of disturbancesw, and two outputs, the measured
signaly and a vector of signalsz that is used to specify performance. The system
in Figure 11.1 can be captured by choosingw = (d, n) andz = (η, ν, e, ǫ). The
process transfer functionP is a 4× 3 matrix, and the controller transfer functionC
is a 1× 2 matrix; compare with Exercise 11.3.
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Figure 11.3: Block diagram of a system with feedforward compensation for improvedre-
sponse to reference signals and measured disturbances (2 DOF system). Three feedforward
elements are present:Fm(s) sets the desired output value,Fu(s) generates the feedforward
commandufr andFd(s) attempts to cancel disturbances.

Processes with multiple inputs and outputs can also be considered by regardingu
andy as vectors. Representations at these higher levels of abstraction are useful for
the development of theory because they make it possible to focus on fundamentals
and to solve general problems with a wide range of applications. However, care
must be exercised to maintain the coupling to the real-worldcontrol problems we
intend to solve.

11.2 Feedforward Design

Most of our analysis and design tools up to this point have focused on the role of
feedback and its effect on the dynamics of the system. Feedforward is a simple and
powerful technique that complements feedback. It can be used both to improve the
response to reference signals and to reduce the effect of measurable disturbances.
Feedforward compensation admits perfect elimination of disturbances, but it is
much more sensitive to process variations than feedback compensation. A general
scheme for feedforward was discussed in Section 7.5 using Figure 7.10. A simple
form of feedforward for PID controllers was discussed in Section 10.5. The con-
troller in Figure 11.1 also has a feedforward block to improveresponse to command
signals. An alternative version of feedforward is shown in Figure 11.3, which we
will use in this section to understand some of the trade-offsbetween feedforward
and feedback.

Controllers with two degrees of freedom (feedforward and feedback) have the
advantage that the response to reference signals can be designed independently of
the design for disturbance attenuation and robustness. We will first consider the
response to reference signals, and we will therefore initially assume that the load
disturbanced is zero. LetFm represent the ideal response of the system to reference
signals. The feedforward compensator is characterized by the transfer functionsFu

andFm. When the reference is changed, the transfer functionFu generates the signal
ufr , which is chosen to give the desired output when applied as input to the process.
Under ideal conditions the outputy is then equal toym, the error signal is zero and
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there will be no feedback action. If there are disturbances or modeling errors, the
signalsym andy will differ. The feedback then attempts to bring the error to zero.

To make a formal analysis, we compute the transfer function from reference
input to process output:

Gyr (s) =
P(C Fm + Fu)

1 + PC
= Fm +

P Fu − Fm

1 + PC
, (11.4)

whereP = P2P1. The first term represents the desired transfer function. The second
term can be made small in two ways. Feedforward compensation can be used to
makeP Fu − Fm small, or feedback compensation can be used to make 1+ PC
large. Perfect feedforward compensation is obtained by choosing

Fu =
Fm

P
. (11.5)

Design of feedforward using transfer functions is thus a very simple task. Notice
that the feedforward compensatorFu contains an inverse model of the process
dynamics.

Feedback and feedforward have different properties. Feedforward action is ob-
tained by matching two transfer functions, requiring precise knowledge of the pro-
cess dynamics, while feedback attempts to make the error small by dividing it by
a large quantity. For a controller having integral action, the loop gain is large for
low frequencies, and it is thus sufficient to make sure that thecondition for ideal
feedforward holds at higher frequencies. This is easier thantrying to satisfy the
condition (11.5) for all frequencies.

We will now consider reduction of the effects of the load disturbanced in Fig-
ure 11.3 by feedforward control. We assume that the disturbance signal is measured
and that the disturbance enters the process dynamics in a known way (captured by
P1 andP2). The effect of the disturbance can be reduced by feeding the measured
signal through a dynamical system with the transfer function Fd. Assuming that
the referencer is zero, we can use block diagram algebra to find that the transfer
function from the disturbance to the process output is

Gyd =
P2(1 + Fd P1)

1 + PC
, (11.6)

whereP = P1P2. The effect of the disturbance can be reduced by making 1+ Fd P1

small (feedforward) or by making 1+ PC large (feedback). Perfect compensation
is obtained by choosing

Fd = −P−1
1 , (11.7)

requiring inversion of the transfer functionP1.
As in the case of reference tracking, disturbance attenuation can be accomplished

by combining feedback and feedforward control. Since low-frequency disturbances
can be eliminated by feedback, we require the use of feedforward only for high-
frequency disturbances, and the transfer functionFd in equation (11.7) can then be
computed using an approximation ofP1 for high frequencies.
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Figure 11.4: Feedforward control for vehicle steering. The plot on the left shows the trajectory
generated by the controller for changing lanes. The plots on the right show the lateral deviation
y (top) and the steering angleδ (bottom) for a smooth lane change control using feedforward
(based on the linearized model).

Equations (11.5) and (11.7) give analytic expressions for the feedforward com-
pensator. To obtain a transfer function that can be implemented without difficulties
we require that the feedforward compensator be stable and that it does not require
differentiation. Therefore there may be constraints on possible choices of the de-
sired responseFm, and approximations are needed if the process has zeros in the
right half-plane or time delays.

Example 11.2 Vehicle steering
A linearized model for vehicle steering was given in Example 6.4. The normalized
transfer function from steering angleδ to lateral deviationy is P(s) = (γ s+1)/s2.
For a lane transfer system we would like to have a nice response without overshoot,
and we therefore choose the desired response asFm(s) = a2/(s + a)2, where the
response speed or aggressiveness of the steering is governed by the parametera.
Equation (11.5) gives

Fu =
Fm

P
=

a2s2

(γ s + 1)(s + a)2
,

which is a stable transfer function as long asγ > 0. Figure 11.4 shows the responses
of the system fora = 0.5. The figure shows that a lane change is accomplished
in about 10 vehicle lengths with smooth steering angles. The largest steering angle
is slightly larger than 0.1 rad (6◦). Using the scaled variables, the curve showing
lateral deviations (y as a function oft) can also be interpreted as the vehicle path
(y as a function ofx) with the vehicle length as the length unit. ∇

A major advantage of controllers with two degrees of freedomthat combine
feedback and feedforward is that the control design problemcan be split in two parts.
The feedback controllerC can be designed to give good robustness and effective
disturbance attenuation, and the feedforward part can be designed independently
to give the desired response to command signals.
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11.3 Performance Specifications

A key element of the control design process is how we specify the desired per-
formance of the system. It is also important for users to understand performance
specifications so that they know what to ask for and how to test asystem. Specifi-
cations are often given in terms of robustness to process variations and responses
to reference signals and disturbances. They can be given in terms of both time and
frequency responses. Specifications for the step response to reference signals were
given in Figure 5.9 in Section 5.3 and in Section 6.3. Robustnessspecifications
based on frequency domain concepts were provided in Section 9.3 and will be con-
sidered further in Chapter 12. The specifications discussed previously were based
on the loop transfer function. Since we found in Section 11.1 that a single transfer
function did not always characterize the properties of the closed loop completely,
we will give a more complete discussion of specifications in this section, based on
the full Gang of Six.

The transfer function gives a good characterization of the linear behavior of a
system. To provide specifications it is desirable to capture the characteristic prop-
erties of a system with a few parameters. Common features fortime responses are
overshoot, rise time and settling time, as shown in Figure 5.9. Common features of
frequency responses are resonant peak, peak frequency, gain crossover frequency
and bandwidth. Aresonant peakis a maximum of the gain, and the peak frequency
is the corresponding frequency. Thegain crossover frequencyis the frequency
where the open loop gain is equal one. Thebandwidthis defined as the frequency
range where the closed loop gain is 1/

√
2 of the low-frequency gain (low-pass),

mid-frequency gain (band-pass) or high-frequency gain (high-pass). There are inter-
esting relations between specifications in the time and frequency domains. Roughly
speaking, the behavior of time responses for short times is related to the behavior
of frequency responses at high frequencies, and vice versa.The precise relations
are not trivial to derive.

Response to Reference Signals

Consider the basic feedback loop in Figure 11.1. The response to reference signals
is described by the transfer functionsGyr = PC F/(1+ PC) andGur = C F/(1+
PC) (F = 1 for systems with error feedback). Notice that it is useful to consider
both the response of the output and that of the control signal. In particular, the
control signal response allows us to judge the magnitude andrate of the control
signal required to obtain the output response.

Example 11.3 Third-order system
Consider a process with the transfer functionP(s) = (s+ 1)−3 and a PI controller
with error feedback having the gainskp = 0.6 andki = 0.5. The responses are
illustrated in Figure 11.5. The solid lines show results for a proportional-integral (PI)
controller with error feedback. The dashed lines show results for a controller with
feedforward designed to give the transfer functionGyr = (0.5s + 1)−3. Looking
at the time responses, we find that the controller with feedforward gives a faster
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Figure 11.5: Reference signal responses. The responses in process outputy and control signal
u to a unit step in the reference signalr are shown in (a), and the gain curves ofGyr andGur

are shown in (b). Results with PI control with error feedback are shownby solid lines, and
the dashed lines show results for a controller with a feedforward compensator.

response with no overshoot. However, much larger control signals are required to
obtain the fast response. The largest value of the control signal is 8, compared to 1.2
for the regular PI controller. The controller with feedforward has a larger bandwidth
(marked with◦) and no resonant peak. The transfer functionGur also has higher
gain at high frequencies. ∇

Response to Load Disturbances and Measurement Noise

A simple criterion for disturbance attenuation is to compare the output of the closed
loop system in Figure 11.1 with the output of the corresponding open loop system
obtained by settingC = 0. If we let the disturbances for the open and closed loop
systems be identical, the output of the closed loop system isthen obtained simply
by passing the open loop output through a system with the transfer functionS.
The sensitivity function tells how the variations in the output are influenced by
feedback (Exercise 11.7). Disturbances with frequencies such that|S(i ω)| < 1 are
attenuated, but disturbances with frequencies such that|S(i ω)| > 1 are amplified
by feedback. The maximum sensitivityMs, which occurs at the frequencyωms,
is thus a measure of the largest amplification of the disturbances. The maximum
magnitude of 1/(1 + L) is also the minimum of|1 + L|, which is precisely the
stability marginsm defined in Section 9.3, so thatMs = 1/sm. The maximum
sensitivity is therefore also a robustness measure.

If the sensitivity function is known, the potential improvements by feedback
can be evaluated simply by recording a typical output and filtering it through the
sensitivity function. A plot of the gain curve of the sensitivity function is a good way
to make an assessment of the disturbance attenuation. Since the sensitivity function
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Figure 11.6: Graphical interpretation of the sensitivity function. Gain curves of the loop
transfer function and the sensitivity function (a) can be used to calculate the properties of the
sensitivity function through the relationS = 1/(1+ L). The sensitivity crossover frequency
ωsc and the frequencyωms where the sensitivity has its largest value are indicated in the
sensitivity plot. The Nyquist plot (b) shows the same information in a different form. All
points inside the dashed circle have sensitivities greater than 1.

depends only on the loop transfer function, its properties can also be visualized
graphically using the Nyquist plot of the loop transfer function. This is illustrated
in Figure 11.6. The complex number 1+ L(i ω) can be represented as the vector
from the point−1 to the pointL(i ω) on the Nyquist curve. The sensitivity is thus
less than 1 for all points outside a circle with radius 1 and center at−1. Disturbances
with frequencies in this range are attenuated by the feedback.

The transfer functionGyd from load disturbanced to process outputy for the
system in Figure 11.1 is

Gyd =
P

1 + PC
= PS=

T

C
. (11.8)

Since load disturbances typically have low frequencies, it is natural to focus on the
behavior of the transfer function at low frequencies. For a system withP(0) 6= 0
and a controller with integral action, the controller gain goes to infinity for small
frequencies and we have the following approximation for small s:

Gyd =
T

C
≈

1

C
≈

s

ki
, (11.9)

whereki is the integral gain. Since the sensitivity functionS goes to 1 for larges,
we have the approximationGyd ≈ P for high frequencies.

Measurement noise, which typically has high frequencies, generates rapid vari-
ations in the control variable that are detrimental becausethey cause wear in many
actuators and can even saturate an actuator. It is thus important to keep variations in
the control signal due to measurement noise at reasonable levels—a typical require-
ment is that the variations are only a fraction of the span of the control signal. The
variations can be influenced by filtering and by proper design ofthe high-frequency
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Figure 11.7: Disturbance responses. The time and frequency responses of process outputy
to load disturbanced are shown in (a) and the responses of control signalu to measurement
noisen are shown in (b).

properties of the controller.
The effects of measurement noise are captured by the transferfunction from the

measurement noise to the control signal,

−Gun =
C

1 + PC
= CS=

T

P
. (11.10)

The complementary sensitivity function is close to 1 for low frequencies (ω < ωgc),
andGun can be approximated by−1/P. The sensitivity function is close to 1 for
high frequencies (ω > ωgc), andGun can be approximated by−C.

Example 11.4 Third-order system
Consider a process with the transfer functionP(s) = (s+1)−3 and a proportional-
integral-derivative (PID) controller with gainskp = 0.6, ki = 0.5 andkd = 2.0.
We augment the controller using a second-order noise filter with T f = 0.1, so that
its transfer function is

C(s) =
kds2 + kps + ki

s(s2T2
f /2 + sTf + 1)

.

The system responses are illustrated in Figure 11.7. The response of the output to
a step in the load disturbance in the top part of Figure 11.7a has a peak of 0.28 at
time t = 2.73 s. The frequency response in Figure 11.7a shows that the gain has a
maximum of 0.58 atω = 0.7 rad/s.

The response of the control signal to a step in measurement noise is shown
in Figure 11.7b. The high-frequency roll-off of the transfer function Gun(i ω) is
due to filtering; without it the gain curve in Figure 11.7b wouldcontinue to rise
after 20 rad/s. The step response has a peak of 13 att = 0.08 s. The frequency



326 CHAPTER 11. FREQUENCY DOMAIN DESIGN

response has its peak 20 atω = 14 rad/s. Notice that the peak occurs far above
the peak of the response to load disturbances and far above the gain crossover
frequencyωgc = 0.78 rad/s. An approximation derived in Exercise 11.9 gives
max|CS(i ω)| ≈ kd/T f = 20, which occurs atω =

√
2/Td = 14.1 rad/s. ∇

11.4 Feedback Design via Loop Shaping

One advantage of the Nyquist stability theorem is that it is based on the loop transfer
function, which is related to the controller transfer function throughL = PC. It is
thus easy to see how the controller influences the loop transfer function. To make
an unstable system stable we simply have to bend the Nyquist curve away from the
critical point.

This simple idea is the basis of several different design methods collectively
called loop shaping. These methods are based on choosing a compensator that
gives a loop transfer function with a desired shape. One possibility is to determine
a loop transfer function that gives a closed loop system withthe desired properties
and to compute the controller asC = L/P. Another is to start with the process
transfer function, change its gain and then add poles and zeros until the desired
shape is obtained. In this section we will explore differentloop-shaping methods
for control law design.

Design Considerations

We will first discuss a suitable shape for the loop transfer function that gives good
performance and good stability margins. Figure 11.8 shows a typical loop transfer
function. Good robustness requires good stability margins(or good gain and phase
margins), which imposes requirements on the loop transfer function around the
crossover frequenciesωpc andωgc. The gain ofL at low frequencies must be large
in order to have good tracking of command signals and good attenuation of low-
frequency disturbances. SinceS = 1/(1+ L), it follows that for frequencies where
|L| > 101 disturbances will be attenuated by a factor of 100 and thetracking error is
less than 1%. It is therefore desirable to have a large crossover frequency and a steep
(negative) slope of the gain curve. The gain at low frequencies can be increased by
a controller with integral action, which is also calledlag compensation. To avoid
injecting too much measurement noise into the system, the loop transfer function
should have low gain at high frequencies, which is calledhigh-frequency roll-off.
The choice of gain crossover frequency is a compromise among attenuation of load
disturbances, injection of measurement noise and robustness.

Bode’s relations (see Section 9.4) impose restrictions on the shape of the loop
transfer function. Equation (9.8) implies that the slope of the gain curve at gain
crossover cannot be too steep. If the gain curve has a constant slope, we have the
following relation between slopengc and phase marginϕm:

ngc = −2 +
2ϕm

π
[rad]. (11.11)
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Figure 11.8: Gain curve and sensitivity functions for a typical loop transfer function.The plot
on the left shows the gain curve and the plots on the right show the sensitivityfunction and
complementary sensitivity function. The gain crossover frequencyωgc and the slopengc of
the gain curve at crossover are important parameters that determine the robustness of closed
loop systems. At low frequency, a large magnitude forL provides good load disturbance
rejection and reference tracking, while at high frequency a small loop gain is used to avoid
amplifying measurement noise.

This formula is a reasonable approximation when the gain curve does not deviate too
much from a straight line. It follows from equation (11.11) that the phase margins
30◦, 45◦ and 60◦ correspond to the slopes−5/3, −3/2 and−4/3.

Loop shaping is a trial-and-error procedure. We typically start with a Bode plot
of the process transfer function. We then attempt to shape the loop transfer function
by changing the controller gain and adding poles and zeros tothe controller trans-
fer function. Different performance specifications are evaluated for each controller
as we attempt to balance many different requirements by adjusting controller pa-
rameters and complexity. Loop shaping is straightforward toapply to single-input,
single-output systems. It can also be applied to systems with one input and many
outputs by closing the loops one at a time starting with the innermost loop. The only
limitation for minimum phase systems is that large phase leads and high controller
gains may be required to obtain closed loop systems with a fast response. Many
specific procedures are available: they all require experience, but they also give
good insight into the conflicting requirements. There are fundamental limitations
to what can be achieved for systems that are not minimum phase; they will be
discussed in the next section.

Lead and Lag Compensation

A simple way to do loop shaping is to start with the transfer function of the process
and add simple compensators with the transfer function

C(s) = k
s + a

s + b
. (11.12)

The compensator is called alead compensatorif a < b, and alag compensatorif
a > b. The PI controller is a special case of a lag compensator withb = 0, and
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Figure 11.9: Frequency response for lead and lag compensatorsC(s) = k(s+a)/(s+b). Lead
compensation (a) occurs whena < b and provides phase lead betweenω = a andω = b.
Lag compensation (b) corresponds toa > b and provides low-frequency gain. PI control is
a special case of lag compensation and PD control is a special case of lead compensation.
PI/PD frequency responses are shown by dashed curves.

the ideal PD controller is a special case of a lead compensatorwith a = 0. Bode
plots of lead and lag compensators are shown in Figure 11.9. Lagcompensation,
which increases the gain at low frequencies, is typically used to improve tracking
performance and disturbance attenuation at low frequencies. Compensators that are
tailored to specific disturbances can be also designed, as shown in Exercise 11.10.
Lead compensation is typically used to improve phase margin.The following ex-
amples give illustrations.

Example 11.5 Atomic force microscope in tapping mode
A simple model of the dynamics of the vertical motion of an atomic force micro-
scope in tapping mode was given in Exercise 9.2. The transfer function for the
system dynamics is

P(s) =
a(1 − e−sτ )

sτ(s + a)
,

wherea = ζω0, τ = 2πn/ω0 and the gain has been normalized to 1. A Bode plot
of this transfer function for the parametersa = 1 andτ − 0.25 is shown in dashed
curves in Figure 11.10a. To improve the attenuation of load disturbances we increase
the low-frequency gain by introducing an integral controller. The loop transfer
function then becomesL = ki P(s)/s, and we adjust the gain so that the phase
margin is zero, givingki = 8.3. Notice the increase of the gain at low frequencies.
The Bode plot is shown by the dotted line in Figure 11.10a, wherethe critical point
is indicated by◦. To improve the phase margin we introduce proportional action
and we increase the proportional gainkp gradually until reasonable values of the
sensitivities are obtained. The valuekp = 3.5 gives maximum sensitivityMs = 1.6
and maximum complementary sensitivityMt = 1.3. The loop transfer function is
shown in solid lines in Figure 11.10a. Notice the significant increase of the phase
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Figure 11.10: Loop-shaping design of a controller for an atomic force microscope in tapping
mode. (a) Bode plots of the process (dashed), the loop transfer function for an integral
controller with critical gain (dotted) and a PI controller (solid) adjusted to give reasonable
robustness. (b) Gain curves for the Gang of Four for the system.

margin compared with the purely integral controller (dotted line).
To evaluate the design we also compute the gain curves of the transfer functions

in the Gang of Four. They are shown in Figure 11.10b. The peaks of the sensitivity
curves are reasonable, and the plot ofPS shows that the largest value ofPS is
0.3, which implies that the load disturbances are well attenuated. The plot ofCS
shows that the largest controller gain is 6. The controller has a gain of 3.5 at high
frequencies, and hence we may consider adding high-frequency roll-off. ∇

A common problem in the design of feedback systems is that thephase margin
is too small, and phaseleadmust then be added to the system. If we seta < b in
equation (11.12), we add phase lead in the frequency range between the pole/zero
pair (and extending approximately 10× in frequency in each direction). By appro-
priately choosing the location of this phase lead, we can provide additional phase
margin at the gain crossover frequency.

Because the phase of a transfer function is related to the slope of the magnitude,
increasing the phase requires increasing the gain of the loop transfer function over
the frequency range in which the lead compensation is applied. In Exercise 11.11
it is shown that the gain increases exponentially with the amount of phase lead. We
can also think of the lead compensator as changing the slope of the transfer function
and thus shaping the loop transfer function in the crossoverregion (although it can
be applied elsewhere as well).

Example 11.6 Roll control for a vectored thrust aircraft
Consider the control of the roll of a vectored thrust aircraft such as the one illustrated
in Figure 11.11. Following Exercise 8.10, we model the system with a second-order
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(a) Simplified model

Symbol Description Value

m Vehicle mass 4.0 kg

J Vehicle inertia,ϕ3 axis 0.0475 kg m2

r Force moment arm 25.0 cm

c Damping coefficient 0.05 kg m/s

g Gravitational constant 9.8 m/s2

(b) Parameter values

Figure 11.11: Roll control of a vectored thrust aircraft. (a) The roll angleθ is controlled by
applying maneuvering thrusters, resulting in a moment generated byFz. (b) The table lists
the parameter values for a laboratory version of the system.

transfer function of the form
P(s) =

r

Js2
,

with the parameters given in Figure 11.11b. We take as our performance specifica-
tion that we would like less than 1% error in steady state and less than 10% tracking
error up to 10 rad/s.

The open loop transfer function is shown in Figure 11.12a. To achieve our
performance specification, we would like to have a gain of at least 10 at a frequency
of 10 rad/s, requiring the gain crossover frequency to be at ahigher frequency. We
see from the loop shape that in order to achieve the desired performance we cannot
simply increase the gain since this would give a very low phase margin. Instead,
we must increase the phase at the desired crossover frequency.

To accomplish this, we use a lead compensator (11.12) witha = 2 andb = 50.
We then set the gain of the system to provide a large loop gain up to the desired
bandwidth, as shown in Figure 11.12b. We see that this system has a gain of greater
than 10 at all frequencies up to 10 rad/s and that it has more than 60◦ of phase
margin. ∇

The action of a lead compensator is essentially the same as that of the derivative
portion of a PID controller. As described in Section 10.5, we often use a filter for
the derivative action of a PID controller to limit the high-frequency gain. This same
effect is present in a lead compensator through the pole ats = b.

Equation (11.12) is a first-order compensator and can provide up to 90◦ of phase
lead. Larger phase lead can be obtained by using a higher-order lead compensator
(Exercise 11.11):

C(s) = k
(s + a)n

(s + b)n
, a < b.
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Figure 11.12: Control design for a vectored thrust aircraft using lead compensation. The Bode
plot for the open loop processP is shown in (a) and the loop transfer functionL = PC using
a lead compensator in (b). Note the phase lead in the crossover region nearω = 100 rad/s.

11.5 Fundamental Limitations

Although loop shaping gives us a great deal of flexibility in designing the closed
loop response of a system, there are certain fundamental limits on what can be
achieved. We consider here some of the primary performance limitations that can
occur because of difficult dynamics; additional limitationsrelated to robustness are
considered in the next chapter.

Right Half-Plane Poles and Zeros and Time Delays

There are linear systems that are inherently difficult to control. The limitations are
related to poles and zeros in the right half-plane and time delays. To explore the
limitations caused by poles and zeros in the right half-plane we factor the process
transfer function as

P(s) = Pmp(s)Pap(s), (11.13)

wherePmp is the minimum phase part andPap is the nonminimum phase part. The
factorization is normalized so that|Pap(i ω)| = 1, and the sign is chosen so thatPap

has negative phase. The transfer functionPap is called anall-pass systembecause
it has unit gain for all frequencies. Requiring that the phase margin beϕm, we get

argL(i ωgc) = argPap(i ωgc)+argPmp(i ωgc)+argC(i ωgc) ≥ −π +ϕm, (11.14)

whereC is the controller transfer function. Letngc be the slope of the gain curve
at the crossover frequency. Since|Pap(i ω)| = 1, it follows that

ngc =
d log |L(i ω)|

d logω

∣

∣

∣

∣

ω=ωgc

=
d log |Pmp(i ω)C(i ω)|

d logω

∣

∣

∣

∣

ω=ωgc

.
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Assuming that the slopengc is negative, it has to be larger than−2 for the system
to be stable. It follows from Bode’s relations, equation (9.8), that

argPmp(i ω) + argC(i ω) ≈ ngc
π

2
.

Combining this with equation (11.14) gives the following inequality for the allow-
able phase lag of the all-pass part at the gain crossover frequency:

− argPap(i ωgc) ≤ π − ϕm + ngc
π

2
=: ϕl . (11.15)

This condition, which we call thegain crossover frequency inequality, shows that the
gain crossover frequency must be chosen so that the phase lagof the nonminimum
phase component is not too large. For systems with high robustness requirements
we may choose a phase margin of 60◦ (ϕm = π/3) and a slopengc = −1, which
gives an admissible phase lagϕl = π/6 = 0.52 rad (30◦). For systems where we
can accept a lower robustness we may choose a phase margin of 45◦ (ϕm = π/4) and
the slopengc = −1/2, which gives an admissible phase lagϕl = π/2 = 1.57 rad
(90◦).

The crossover frequency inequality shows that nonminimum phase components
impose severe restrictions on possible crossover frequencies. It also means that there
are systems that cannot be controlled with sufficient stability margins. We illustrate
the limitations in a number of commonly encountered situations.

Example 11.7 Zero in the right half-plane
The nonminimum phase part of the process transfer function for a system with a
right half-plane zero is

Pap(s) =
z − s

z + s
,

wherez > 0. The phase lag of the nonminimum phase part is

− argPap(i ω) = 2 arctan
ω

z
.

Since the phase lag ofPap increases with frequency, the inequality (11.15) gives
the following bound on the crossover frequency:

ωgc < z tan(ϕ l /2). (11.16)

With ϕl = π/3 we getωgc < 0.6z. Slow right half-plane zeros (z small) therefore
give tighter restrictions on possible gain crossover frequencies than fast right half-
plane zeros. ∇

Time delays also impose limitations similar to those given by zeros in the right
half-plane. We can understand this intuitively from the Padé approximation

e−sτ ≈
1 − 0.5sτ

1 + 0.5sτ
=

2/τ − s

2/τ + s
.

A long time delay is thus equivalent to a slow right half-plane zeroz = 2/τ .
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Example 11.8 Pole in the right half-plane
The nonminimum phase part of the transfer function for a system with a pole in the
right half-plane is

Pap(s) =
s + p

s − p
,

wherep > 0. The phase lag of the nonminimum phase part is

− argPap(i ω) = 2 arctan
p

ω
,

and the crossover frequency inequality becomes

ωgc >
p

tan(ϕ l /2)
. (11.17)

Right half-plane poles thus require that the closed loop system have a sufficiently
high bandwidth. Withϕl = π/3 we getωgc > 1.7p. Fast right half-plane poles
(p large) therefore give tighter restrictions on possible gain crossover frequencies
than slow right half-plane poles. The control of unstable systems imposes minimum
bandwidth requirements for process actuators and sensors. ∇

We will now consider systems with a right half-plane zerozand a right half-plane
pole p. If p = z, there will be an unstable subsystem that is neither reachable nor
observable, and the system cannot be stabilized (see Section7.5). We can therefore
expect that the system is difficult to control if the right half-plane pole and zero are
close. A straightforward way to use the crossover frequencyinequality is to plot the
phase of the nonminimum phase factorPap of the process transfer function. Such
a plot, which can be incorporated in an ordinary Bode plot, will immediately show
the permissible gain crossover frequencies. An illustration is given in Figure 11.13,
which shows the phase ofPap for systems with a right half-plane pole/zero pair
and systems with a right half-plane pole and a time delay. If we require that the
phase lagϕ l of the nonminimum phase factor be less than 90◦, we must require that
the ratioz/p be larger than 6 or smaller than 1/6 for systems with right half-plane
poles and zeros and that the productpτ be less than 0.3 for systems with a time
delay and a right half-plane pole. Notice the symmetry in theproblem forz > p
and z < p: in either case the zeros and the poles must be sufficiently farapart
(Exercise 11.12). Also notice that possible values of the gain crossover frequency
ωgc are quite restricted.

Using the theory of functions of complex variables, it can beshown that for
systems with a right half-plane polep and a right half-plane zeroz (or a time delay
τ ), any stabilizing controller gives sensitivity functionswith the property

sup
ω

|S(i ω)| ≥
p + z

|p − z|
, sup

ω
|T(i ω)| ≥ epτ . (11.18)

This result is proven in Exercise 11.13.
As the examples above show, right half-plane poles and zerossignificantly

limit the achievable performance of a system, hence one would like to avoid these
whenever possible. The poles of a system depend on the intrinsic dynamics of the
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Figure 11.13: Example limitations due to the gain crossover frequency inequality. The figures
show the phase lag of the all-pass factorPap as a function of frequency. Since the phase lag
of Pap at the gain crossover frequency cannot be too large, it is necessaryto choose the gain
crossover frequency properly. All systems have a right half-planepole ats = 1. The system
in (a) has zeros ats = 2, 5, 20 and 100 (solid lines) and ats = 0.5, 0.2, 0.05 and 0.01 (dashed
lines). The system in (b) has time delaysτ = 0.02 0.1, 0.5 and 1.

system and are given by the eigenvalues of the dynamics matrix Aof a linear system.
Sensors and actuators have no effect on the poles; the only wayto change poles
is to redesign the system. Notice that this does not imply that unstable systems
should be avoided. Unstable system may actually have advantages; one example is
high-performance supersonic aircraft.

The zeros of a system depend on how the sensors and actuators are coupled to
the states. The zeros depend on all the matricesA, B, C andD in a linear system.
The zeros can thus be influenced by moving the sensors and actuators or by adding
sensors and actuators. Notice that a fully actuated systemB = I does not have any
zeros.

Example 11.9 Balance system
As an example of a system with both right half-plane poles andzeros, consider the
balance system with zero damping, whose dynamics are given by

Hθ F =
ml

−(Mt Jt − m2l 2)s2 + mglMt
,

HpF =
−Jts2 + mgl

s2
(

−(Mt Jt − m2l 2)s2 + mglMt
) .

Assume that we want to stabilize the pendulum by using the cart position as the
measured signal. The transfer function from the input forceF to the cart position
p has poles{0, 0, ±

√

mglMt/(Mt Jt − m2l 2)} and zeros{±
√

mgl/Jt}. Using the
parameters in Example 6.7, the right half-plane pole is atp = 2.68 and the zero is
at z = 2.09. Equation (11.18) then gives|S(i ω)| ≥ 8, which shows that it is not
possible to control the system robustly.
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The right half-plane zero of the system can be eliminated by changing the output
of the system. For example, if we choose the output to correspond to a position at a
distancer along the pendulum, we havey = p − r sinθ and the transfer function
for the linearized output becomes

Hy,F = HpF − r Hθ F =
(mlr − Jt)s2 + mgl

s2
(

−(Mt Jt − m2l 2)s2 + mglMt
) .

If we chooser sufficiently large, thenmlr − Jt > 0 and we eliminate the right
half-plane zero, obtaining instead two pure imaginary zeros. The gain crossover
frequency inequality is then based just on the right half-plane pole (Example 11.8).
If our admissible phase lag for the nonminimum phase part isϕl = 45◦, then our
gain crossover must satisfy

ωgc >
p

tanϕl /2
= 2.68.

If the actuators have sufficiently high bandwidth, e.g., a factor of 10 aboveωgc or
roughly 4 Hz, then we can provide robust tracking up to this frequency. ∇

Bode’s Integral Formula

In addition to providing adequate phase margin for robust stability, a typical control
design will have to satisfy performance conditions on the sensitivity functions (Gang
of Four). In particular, the sensitivity functionS = 1/(1 + PC) represents the
disturbance attenuation and also relates the tracking error e to the reference signal:
we usually want the sensitivity to be small over the range of frequencies where we
want small tracking error and good disturbance attenuation. A basic problem is to
investigate ifS can be made small over a large frequency range. We will start by
investigating an example.

Example 11.10 System that admits small sensitivities
Consider a closed loop system consisting of a first-order process and a proportional
controller. Let the loop transfer function be

L(s) = PC =
k

s + 1
,

where parameterk is the controller gain. The sensitivity function is

S(s) =
s + 1

s + 1 + k

and we have

|S(i ω)| =

√

1 + ω2

1 + 2k + k2 + ω2
.

This implies that|S(i ω)| < 1 for all finite frequencies and that the sensitivity can be
made arbitrarily small for any finite frequency by makingk sufficiently large. ∇
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The system in Example 11.10 is unfortunately an exception. The key feature
of the system is that the Nyquist curve of the process is completely contained in
the right half-plane. Such systems are calledpassive, and their transfer functions
arepositive real. For typical control systems there are severe constraints on the
sensitivity function. The following theorem, due to Bode, provides insights into the
limits of performance under feedback.

Theorem 11.1 (Bode’s integral formula). Assume that the loop transfer function
L(s) of a feedback system goes to zero faster than1/s as s→ ∞, and let S(s)
be the sensitivity function. If the loop transfer function has poles pk in the right
half-plane, then the sensitivity function satisfies the following integral:

∫ ∞

0
log |S(i ω)| dω =

∫ ∞

0
log

1

|1 + L(i ω)|
dω = π

∑

pk. (11.19)

Equation (11.19) implies that there are fundamental limitations to what can
be achieved by control and that control design can be viewed as a redistribution
of disturbance attenuation over different frequencies. Inparticular, this equation
shows that if the sensitivity function is made smaller for some frequencies, it must
increase at other frequencies so that the integral of log|S(i ω)| remains constant.
This means that if disturbance attenuation is improved in onefrequency range, it
will be worse in another, a property sometime referred to as thewaterbed effect. It
also follows that systems with open loop poles in the right half-plane have larger
overall sensitivity than stable systems.

Equation (11.19) can be regarded as aconservation law: if the loop transfer
function has no poles in the right half-plane, the equation simplifies to

∫ ∞

0
log |S(i ω)|dω = 0.

This formula can be given a nice geometric interpretation as illustrated in Fig-
ure 11.14, which shows log|S(i ω)| as a function ofω. The area over the horizontal
axis must be equal to the area under the axis when the frequency is plotted on a
linear scale. Thus if we wish to make the sensitivity smaller up to some frequency
ωsc, we must balance this by increased sensitivity aboveωsc. Control system design
can be viewed as trading the disturbance attenuation at somefrequencies for distur-
bance amplification at other frequencies. Notice that the system in Example 11.10
violates the condition that lims→∞ sL(s) = 0 and hence the integral formula does
not apply.

There is result analogous to equation (11.19) for the complementary sensitivity
function: ∫ ∞

0

log |T(i ω)|
ω2

dω = π
∑ 1

zi
, (11.20)

where the summation is over all right half-plane zeros. Notice that slow right half-
plane zeros are worse than fast ones and that fast right half-plane poles are worse
than slow ones.
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Figure 11.14: Interpretation of thewaterbed effect. The function log|S(i ω)| is plotted versus
ω in linear scales in (a). According to Bode’s integral formula (11.19), the area of log|S(i ω)|
above zero must be equal to the area below zero. Gunter Stein’s interpretation of design as a
trade-off of sensitivities at different frequencies is shown in (b) (from [Ste03]).

Example 11.11 X-29 aircraft
As an example of the application of Bode’s integral formula,we present an anal-
ysis of the control system for the X-29 aircraft (see Figure 11.15a), which has an
unusual configuration of aerodynamic surfaces that are designed to enhance its
maneuverability. This analysis was originally carried out by Gunter Stein in his
article “Respect the Unstable” [Ste03], which is also the source of the quote at the
beginning of this chapter.

To analyze this system, we make use of a small set of parameters that describe
the key properties of the system. The X-29 has longitudinal dynamics that are very
similar to inverted pendulum dynamics (Exercise 8.3) and, inparticular, have a pair
of poles at approximatelyp = ±6 and a zero atz = 26. The actuators that stabilize
the pitch have a bandwidth ofωa = 40 rad/s and the desired bandwidth of the pitch
control loop isω1 = 3 rad/s. Since the ratio of the zero to the pole is only 4.3, we
may expect that it may be difficult to achieve the specifications.

(a) X-29 aircraft

1

Ms

ω1 ωa

|S
(i

ω
)|

Frequencyω [rad/s]

(b) Sensitivity analysis

Figure 11.15: X-29 flight control system. The aircraft makes use of forward swept wings and
a set of canards on the fuselage to achieve high maneuverability (a). The desired sensitivity
for the closed loop system is shown in (b). We seek to use our control authority to shape the
sensitivity curve so that we have low sensitivity (good performance) upto frequencyω1 by
creating higher sensitivity up to our actuator bandwidthωa.
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To evaluate the achievable performance, we search for a control law such that
the sensitivity function is small up to the desired bandwidth and not greater thanMs

beyond that frequency. Because of the Bode integral formula, we know thatMs must
be greater than 1 at high frequencies to balance the small sensitivity at low frequency.
We thus ask if we can find a controller that has the shape shown inFigure 11.15b
with the smallest value ofMs. Note that the sensitivity above the frequencyωa

is not specified since we have no actuator authority at that frequency. However,
assuming that the process dynamics fall off at high frequency, the sensitivity at
high frequency will approach 1. Thus, we desire to design a closed loop system
that has low sensitivity at frequencies belowω1 and sensitivity that is not too large
betweenω1 andωa.

From Bode’s integral formula, we know that whatever controller we choose,
equation (11.19) must hold. We will assume that the sensitivity function is given
by

|S(i ω)| =

{

ωMs
ω1

ω ≤ ω1

Ms ω1 ≤ ω ≤ ωa,

corresponding to Figure 11.15b. If we further assume that|L(s)| ≤ δ/ω2 for fre-
quencies larger than the actuator bandwidth, Bode’s integral becomes

∫ ∞

0
log |S(i ω)| dω =

∫ ωa

0
log |S(i ω)| dω

=
∫ ω1

0
log

ωMs

ω1
dω + (ωa − ω1) log Ms = πp.

Evaluation of the integral gives−ω1 + ωa log Ms = πp or

Ms = e(πp+ω1)/ωa .

This formula tells us what the achievable value ofMs will be for the given control
specifications. In particular, usingp = 6, ω1 = 3 andωa = 40 rad/s, we find
that Ms = 1.75, which means that in the range of frequencies betweenω1 andωa,
disturbances at the input to the process dynamics (such as wind) will be amplified
by a factor of 1.75 in terms of their effect on the aircraft.

Another way to view these results is to compute the phase margin that corre-
sponds to the given level of sensitivity. Since the peak sensitivity normally occurs
at or near the crossover frequency, we can compute the phase margin corresponding
to Ms = 1.75. As shown in Exercise 11.14, the maximum achievable phase margin
for this system is approximately 35◦, which is below the usual design limit of 45◦

in aerospace systems. The zero ats = 26 limits the maximum gain crossover the
can be achieved. ∇

Derivation of Bode’s Formula
�

We now derive Bode’s integral formula (Theorem 11.1). This is atechnical section
that requires some knowledge of the theory of complex variables, in particular
contour integration. Assume that the loop transfer function has distinct poles at
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Figure 11.16: Contour used to prove Bode’s theorem. For each right half-plane polewe create
a path from the imaginary axis that encircles the pole as shown. To avoid clutter we have
shown only one of the paths that enclose one right half-plane.

s = pk in the right half-plane and thatL(s) goes to zero faster than 1/s for large
values ofs.

Consider the integral of the logarithm of the sensitivity functionS(s) = 1/(1+
L(s)) over the contour shown in Figure 11.16. The contour encloses the right
half-plane except for the pointss = pk where the loop transfer functionL(s) =
P(s)C(s) has poles and the sensitivity functionS(s) has zeros. The direction of the
contour is counterclockwise.

The integral of the log of the sensitivity function around this contour is given
by
∫

Ŵ

log(S(s)) ds =
∫ −i R

i R
log(S(s)) ds+

∫

R
log(S(s)) ds+

∑

k

∫

γ

log(S(s)) ds

= I1 + I2 + I3 = 0,

where R is a large semicircle on the right andγk is the contour starting on the
imaginary axis ats = Im pk and a small circle enclosing the polepk. The integral
is zero because the function logS(s) is analytic inside the contour. We have

I1 = −i
∫ i R

−i R
log(S(i ω))dω = −2i

∫ i R

0
log(|S(i ω)|)dω

because the real part of logS(i ω) is an even function and the imaginary part is an
odd function. Furthermore we have

I2 =
∫

R
log(S(s)) ds = −

∫

R
log(1 + L(s)) ds ≈ −

∫

R
L(s) ds.

SinceL(s) goes to zero faster than 1/s for larges, the integral goes to zero when
the radius of the circle goes to infinity.

Next we consider the integralI3. For this purpose we split the contour into three
partsX+, γ andX−, as indicated in Figure 11.16. We can then write the integral as

I3 =
∫

X+

log S(s) ds+
∫

γ

log S(s) ds+
∫

X−
log S(s) ds.
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The contourγ is a small circle with radiusr around the polepk. The magnitude of
the integrand is of the order logr , and the length of the path is 2πr . The integral
thus goes to zero as the radiusr goes to zero. Furthermore, making use of the fact
that X− is oriented oppositely fromX+, we have
∫

X+

log S(s) ds+
∫

X−

log S(s) ds =
∫

X+

(

log S(s)−log S(s − 2π i )
)

ds = 2π Repk.

Since|S(s)| = |S(s − 2π i )|, we have

log S(s) − log S(s − 2π i ) = argS(s) − argS(s − 2π i ) = 2π i,

and we find that
I3 = 2π i

∑

k

Repk.

Letting the small circles go to zero and the large circle go to infinity and adding the
contributions from all right half-plane polespk gives

I1 + I2 + I3 = −2i
∫ R

0
log |S(i ω)|dω + i

∑

k

2π Repk = 0.

Since complex poles appear as complex conjugate pairs,
∑

k Repk =
∑

k pk, which
gives Bode’s formula (11.19).

11.6 Design Example

In this section we present a detailed example that illustrates the main design tech-
niques described in this chapter.

Example 11.12 Lateral control of a vectored thrust aircraft
The problem of controlling the motion of a vertical takeoff and landing (VTOL)
aircraft was introduced in Example 2.9 and in Example 11.6, where we designed a
controller for the roll dynamics. We now wish to control the position of the aircraft,
a problem that requires stabilization of both the attitude and the position.

To control the lateral dynamics of the vectored thrust aircraft, we make use of a
“inner/outer” loop design methodology, as illustrated in Figure 11.17. This diagram
shows the process dynamics and controller divided into two components: aninner
loop consisting of the roll dynamics and control and anouter loopconsisting of
the lateral position dynamics and controller. This decomposition follows the block
diagram representation of the dynamics given in Exercise 8.10.

The approach that we take is to design a controllerCi for the inner loop so
that the resulting closed loop systemHi provides fast and accurate control of the
roll angle for the aircraft. We then design a controller for the lateral position that
uses the approximation that we can directly control the rollangle as an input to
the dynamics controlling the position. Under the assumption that the dynamics of
the roll controller are fast relative to the desired bandwidth of the lateral position
control, we can then combine the inner and outer loop controllers to get a single
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Figure 11.17: Inner/outer control design for a vectored thrust aircraft. The inner loop Hi

controls the roll angle of the aircraft using the vectored thrust. The outerloop controllerCo

commands the roll angle to regulate the lateral position. The process dynamics are decom-
posed into inner loop (Pi ) and outer loop (Po) dynamics, which combine to form the full
dynamics for the aircraft.

.

controller for the entire system. As a performance specification for the entire system,
we would like to have zero steady-state error in the lateral position, a bandwidth of
approximately 1 rad/s and a phase margin of 45◦.

For the inner loop, we choose our design specification to provide the outer loop
with accurate and fast control of the roll. The inner loop dynamics are given by

Pi = Hθu1 =
r

Js2 + cs
.

We choose the desired bandwidth to be 10 rad/s (10 times that of the outer loop)
and the low-frequency error to be no more than 5%. This specification is satisfied
using the lead compensator of Example 11.6 designed previously, so we choose

Ci (s) = k
s + a

s + b
, a = 2, b = 50, k = 1.

The closed loop dynamics for the system satisfy

Hi =
Ci

1 + Ci Pi
− mg

Ci Pi

1 + Ci Pi
=

Ci (1 − mgPi )

1 + Ci Pi
.

A plot of the magnitude of this transfer function is shown in Figure 11.18, and we
see thatHi ≈ −mg= 39.2 is a good approximation up to 10 rad/s.

To design the outer loop controller, we assume the inner looproll control is
perfect, so that we can takeθd as the input to our lateral dynamics. Following the
diagram shown in Exercise 8.10, the outer loop dynamics can bewritten as

P(s) = Hi (0)Po(s) =
Hi (0)

ms2
,

where we replaceHi (s) with Hi (0) to reflect our approximation that the inner loop
will eventually track our commanded input. Of course, this approximation may not
be valid, and so we must verify this when we complete our design.
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Figure 11.18: Outer loop control design for a vectored thrust aircraft. (a) The outerloop
approximates the roll dynamics as a state gain−mg. (b) The Bode plot for the roll dynamics,
indicating that this approximation is accurate up to approximately 10 rad/s.

Our control goal is now to design a controller that gives zerosteady-state error
in x and has a bandwidth of 1 rad/s. The outer loop process dynamicsare given by a
second-order integrator, and we can again use a simple lead compensator to satisfy
the specifications. We also choose the design such that the loop transfer function
for the outer loop has|Lo| < 0.1 for ω > 10 rad/s, so that theHi dynamics can be
neglected. We choose the controller to be of the form

Co(s) = −ko
s + ao

s + bo
,

with the negative sign to cancel the negative sign in the process dynamics. To find the
location of the poles, we note that the phase lead flattens out at approximatelyb/10.
We desire phase lead at crossover, and we desire the crossover atωgc = 1 rad/s, so
this givesbo = 10. To ensure that we have adequate phase lead, we must choose
ao such thatbo/10 < 10ao < bo, which implies thatao should be between 0.1 and
1. We chooseao = 0.3. Finally, we need to set the gain of the system such that at
crossover the loop gain has magnitude 1. A simple calculation shows thatko = 2
satisfies this objective. Thus, the final outer loop controller becomes

Co(s) = 0.8
s + 0.3

s + 10
.

Finally, we can combine the inner and outer loop controllers and verify that
the system has the desired closed loop performance. The Bode and Nyquist plots
corresponding to Figure 11.17 with inner and outer loop controllers are shown in
Figure 11.19, and we see that the specifications are satisfied. Inaddition, we show
the Gang of Four in Figure 11.20, and we see that the transfer functions between all
inputs and outputs are reasonable. The sensitivity to load disturbancesPS is large
at low frequency because the controller does not have integral action.

The approach of splitting the dynamics into an inner and an outer loop is common
in many control applications and can lead to simpler designsfor complex systems.
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Figure 11.19: Inner/outer loop controller for a vectored thrust aircraft. The Bode plot (a)
and Nyquist plot (b) for the transfer function for the combined inner and outer loop transfer
functions are shown. The system has a phase margin of 68◦ and a gain margin of 6.2.

Indeed, for the aircraft dynamics studied in this example, it is very challenging to
directly design a controller from the lateral positionx to the inputu1. The use of the
additional measurement ofθ greatly simplifies the design because it can be broken
up into simpler pieces. ∇

11.7 Further Reading

Design by loop shaping was a key element in the early development of control, and
systematic design methods were developed; see James, Nichols and Phillips [JNP47],
Chestnut and Mayer [CM51], Truxal [Tru55] and Thaler [Tha89].Loop shap-
ing is also treated in standard textbooks such as Franklin, Powell and Emami-
Naeini [FPEN05], Dorf and Bishop [DB04], Kuo and Golnaraghi [KG02] and
Ogata [Oga01]. Systems with two degrees of freedom were developed by Horowitz [Hor63],
who also discussed the limitations of poles and zeros in the right half-plane. Funda-
mental results on limitations are given in Bode [Bod45]; more recent presentations
are found in Goodwin, Graebe and Salgado [GGS01]. The treatmentin Section 11.5
is based on [Åst00]. Much of the early work was based on the loop transfer function;
the importance of the sensitivity functions appeared in connection with the devel-
opment in the 1980s that resulted inH∞ design methods. A compact presentation
is given in the texts by Doyle, Francis and Tannenbaum [DFT92] and Zhou, Doyle
and Glover [ZDG96]. Loop shaping was integrated with the robust control theory
in McFarlane and Glover [MG90] and Vinnicombe [Vin01]. Comprehensive treat-
ments of control system design are given in Maciejowski [Mac89] and Goodwin,
Graebe and Salgado [GGS01].
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Figure 11.20: Gang of Four for vectored thrust aircraft system.

Exercises

11.1 Consider the system in Figure 11.1. Give all signal pairs thatare related by
the transfer functions 1/(1+ PC), P/(1+ PC), C/(1+ PC) andPC/(1+ PC).

11.2 Consider the system in Example 11.1. Choose the parametersa = −1 and
compute the time and frequency responses for all the transfer functions in the Gang
of Four for controllers withk = 0.2 andk = 5.

11.3 (Equivalence of Figures 11.1 and 11.2) Consider the system in Figure 11.1 and
let the outputs of interest bez = (η, ν) and the major disturbances bew = (n, d).
Show that the system can be represented by Figure 11.2 and give the matrix transfer
functionsP andC. Verify that the elements of the closed loop transfer function Hzw

are the Gang of Four.

11.4 Consider the spring–mass system given by (2.14), which has the transfer
function

P(s) =
1

ms2 + cs+ k
.

Design a feedforward compensator that gives a response withcritical damping
(ζ = 1).

11.5 (Sensitivity of feedback and feedforward) Consider the system in Figure 11.1
and letGyr be the transfer function relating the measured signaly to the reference
r . Show that the sensitivities ofGyr with respect to the feedforward and feed-
back transfer functionsF andC are given bydGyr/d F = C P/(1 + PC) and
dGyr/dC = F P/(1 + PC)2 = Gyr L/C.

11.6 (Equivalence of controllers with two degrees of freedom) Showthat the systems
in Figures 11.1 and 11.3 give the same responses to command signals ifFmC+Fu =
C F.
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11.7 (Disturbance attenuation) Consider the feedback system shown in Figure 11.1.
Assume that the reference signal is constant. Letyol be the measured output when
there is no feedback andycl be the output with feedback. Show thatYcl(s) =
S(s)Yol(s), whereS is the sensitivity function.

11.8 (Disturbance reduction through feedback) Consider a problem in which an
output variable has been measured to estimate the potentialfor disturbance attenu-
ation by feedback. Suppose an analysis shows that it is possible to design a closed
loop system with the sensitivity function

S(s) =
s

s2 + s + 1
.

Estimate the possible disturbance reduction when the measured disturbance is

y(t) = 5 sin(0.1 t) + 3 sin(0.17t) + 0.5 cos(0.9 t) + 0.1 t.

11.9 Show that the effect of high frequency measurement noise on the control
signal for the system in Example 11.4 can be approximated by

CS≈ C =
kds

(sTf )2 /2 + sTf + 1
,

and that the largest value of|CS(i ω)| is kd/T f which occurs forω =
√

2/T f .

11.10 (Attenuation of low-frequency sinusoidal disturbances) Integral action elim-
inates constant disturbances and reduces low-frequency disturbances because the
controller gain is infinite at zero frequency. A similar idea can be used to reduce the
effects of sinusoidal disturbances of known frequencyω0 by using the controller

C(s) = kp +
kss

s2 + 2ζω0s + ω2
0

.

This controller has the gainCs(i ω) = kp+ks/(2ζ ) for the frequencyω0, which can
be large by choosing a small value ofζ . Assume that the process has the transfer
function P(s) = 1/s. Determine the Bode plot of the loop transfer function and
simulate the system. Compare the results with PI control.

11.11 Consider a lead compensator with the transfer function

Cn(s) =
(s n

√
k + a

s + a

)n
,

which has zero frequency gainC(0) = 1 and high-frequency gainC(∞) = k.
Show that the gain required to give a given phase leadϕ is

k =
(

1 + 2 tan2(ϕ/n) + 2 tan(ϕ/n)

√

1 + tan2(ϕ/n)
)n

,

and that lim
n→∞

k = e2ϕ .
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11.12 Consider a process with the loop transfer function

L(s) = k
z − s

s − p
,

with positivez and p. Show that the system is stable ifp/z < k < 1 or 1 < k <

p/z, and that the largest stability margin issm = |p − z|/(p + z) is obtained for
k = 2p/(p + z). Determine the pole/zero ratios that gives the stability margin
sm = 2/3.

11.13 Prove the inequalities given by equation (11.18). (Hint: Usethe maximum�
modulus theorem.)

11.14 (Phase margin formulas) Show that the relationship between the phase margin
and the values of the sensitivity functions at gain crossover is given by

|S(i ωgc)| = |T(i ωgc)| =
1

2 sin(ϕm/2)
.

11.15 (Stabilization of an inverted pendulum with visual feedback) Consider sta-
bilization of an inverted pendulum based on visual feedbackusing a video camera
with a 50-Hz frame rate. Let the effective pendulum length bel . Assume that we
want the loop transfer function to have a slope ofngc = −1/2 at the crossover
frequency. Use the gain crossover frequency inequality to determine the minimum
length of the pendulum that can be stabilized if we desire a phase margin of 45◦.

11.16 (Rear-steered bicycle) Consider the simple model of a bicycle in Equa-
tion (3.5), which has one pole in the right half-plane. The model is also valid for a
bicycle with rear wheel steering, but the sign of the velocity is then reversed and
the system also has a zero in the right half-plane. Use the results of Exercise 11.12
to give a condition on the physical parameters that admits a controller with the
stability marginsm.

11.17 Prove the formula (11.20) for the complementary sensitivity.�


