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Chapter Five

Linear Systems

Few physical elements display truly linear characteristics. For examplesthtéon between
force on a spring and displacement of the spring is always nonlinear te stegree. The
relation between current through a resistor and voltage drop acrosksd deviates from a
straight-line relation. However, if in each case the relatioméasonablylinear, then it will
be found that the system behavior will be very close to that obtained bynaggan ideal,
linear physical element, and the analytical simplification is so enormousitbahake linear
assumptions wherever we can possibly do so in good conscience.

Robert H. CannorDynamics of Physical Systeyi®67 [Can03].

In Chapters 2—4 we considered the construction and anatysigferential
equation models for dynamical systems. In this chapter weiafize our results
to the case of linear, time-invariant input/output systeiivéo central concepts
are the matrix exponential and the convolution equatiorguth which we can
completely characterize the behavior of a linear systemalsle describe some
properties of the input/output response and show how tooxppate a nonlinear
system by a linear one.

5.1 Basic Definitions

We have seen several instances of linear differential @sain the examples in
the previous chapters, including the spring—mass systampgdd oscillator) and
the operational amplifier in the presence of small (nonstangpRinput signals.
More generally, many dynamical systems can be modeled aetyby linear dif-
ferential equations. Electrical circuits are one example bfoad class of systems
for which linear models can be used effectively. Linear medek also broadly
applicable in mechanical engineering, for example, as tsaafesmall deviations
from equilibria in solid and fluid mechanics. Signal-procegsystems, including
digital filters of the sort used in CD and MP3 players, are anatbarce of good
examples, although these are often best modeled in didaret€as described in
more detail in the exercises).

In many cases, wereatesystems with a linear input/output response through
the use of feedback. Indeed, it was the desire for lineariehthat led Harold
S. Black to the invention of the negative feedback amplifiemédt all modern
signal processing systems, whether analog or digital,esgbfack to produce lin-
ear or near-linear input/output characteristics. Forasstems, it is often useful
to represent the input/output characteristics as lingagring the internal details
required to get that linear response.
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For other systems, nonlinearities cannot be ignored, &dhed one cares
about the global behavior of the system. The predator—pr@ylg@m is one exam-
ple of this: to capture the oscillatory behavior of the idegendent populations
we must include the nonlinear coupling terms. Other examirlelude switch-
ing behavior and generating periodic motion for locomatidowever, if we care
about what happens near an equilibrium point, it often sidftceapproximate
the nonlinear dynamics by their local linearization, as Wweaaly explored briefly
in Section 4.3. The linearization is essentially an approioneof the nonlinear
dynamics around the desired operating point.

Linearity

We now proceed to define linearity of input/output systemsenformally. Con-
sider a state space system of the form

B fxw,  y=hxu), (5.1)
dt

wherex € R", u € RP andy € RY. As in the previous chapters, we will usually

restrict ourselves to the single-input, single-outputdag takingp =q= 1. We

also assume that all functions are smooth and that for amaasoclass of inputs

(e.q., piecewise continuous functions of time) the sohgiof equation (5.1) exist

for all time.

It will be convenient to assume that the origia= 0, u = 0 is an equilibrium
point for this systemx = 0) and thath(0,0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose {ixatue) # (0,0) is an equilibrium point
of the system with outpwe = h(Xe, Ug). Then we can define a new set of states,
inputs and outputs,

)’Z:X_X& GZU—Ue, y:y_y&
and rewrite the equations of motion in terms of these vaesbl

—X
dt
¥ = h(X+Xe, 0+ Ue) — Ye =: h(X, 0).

= (K4 Xe, U4 Ue) =: f(X,00),

2

In the new set of variables, the origin is an equilibrium paiith output 0, and
hence we can carry out our analysis in this set of variablase@e have obtained
our answers in this new set of variables, we simply “trae$l#tem back to the
original coordinates using= X+ Xe, U= 0+ Us andy = Y+ Ve.

Returning to the original equations (5.1), now assumindpeuit loss of gen-
erality that the origin is the equilibrium point of intereste write the outpuy(t)
corresponding to the initial conditiof{0) = Xp and inputu(t) asy(t;xp,u). Using
this notation, a system is said to bdirrear input/output systentf the following
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Figure 5.1: Superposition of homogeneous and particular solutions. The firstirowssthe
input, state and output corresponding to the initial condition responsesetioad row shows
the same variables corresponding to zero initial condition but nonzeub. ipe third row
is the complete solution, which is the sum of the two individual solutions.

conditions are satisfied:
(i) y(t;axi+Bx2,0) = ay(t;xy,0) + By(t; x2, 0),
(i) y(t; axg, Ou) = ay(t;xo,0) + dy(t; O,u), (5.2)
(i) y(t;0,0u1 + yup) = OYy(t;0,u1) + yy(t; 0, uz).

Thus, we define a system to be linear if the outputs are joimibal in the initial
condition responséu = 0) and the forced respongg(0) = 0). Property (iii) is a
statement of therinciple of superpositionthe response of a linear system to the
sum of two inputsu; andus, is the sum of the outputg andy, corresponding to
the individual inputs.

The general form of a linear state space system is

dx
i Ax+ Bu, y =Cx+ Du, (5.3)
where A € R™", B € R™P, C € R™" andD € RY*P, In the special case of a
single-input, single-output systerB,is a column vectorC is a row vector and
is scalar. Equation (5.3) is a system of linear first-ordeeddhtial equations with
inputu, statex and outpuly. It is easy to show that given solutiorgt) andxx(t)
for this set of equations, they satisfy the linearity coiodis.

We definex,(t) to be the solution with zero input (thf@mogeneous solutipn
and the solutionxpy(t) to be the solution with zero initial condition (@articular
solution). Figure 5.1 illustrates how these two individual soluti@as be super-
imposed to form the complete solution.
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It is also possible to show that if a finite-dimensional dynaahsystem is in-
put/output linear in the sense we have described, it canyalya represented by a
state space equation of the form (5.3) through an apprepciatice of state vari-
ables. In Section 5.2 we will give an explicit solution of etjoa (5.3), but we
illustrate the basic form through a simple example.

Example 5.1 Scalar system
Consider the first-order differential equation

dX_aX+U =X
dt_ ) y_ )

with x(0) = Xo. Letu; = Asinwst andu, = Bcoswt. The homogeneous solution
iS Xn(t) = €®'xo, and two particular solutions witk(0) = 0 are

—w € + wy coswt + asinawgt
Xp1(t) = —A
pl( ) 3.2+OJ12 )
ae® — acoswpt + wp sinwpt
+w

Suppose that we now choos@) = aXp andu = u; + uy. Then the resulting solu-
tion is the weighted sum of the individual solutions:

Awy Ba
a2+ 2 + a2+ 2
Wy w5

x(t) = ™ (axo+

5.4
wy cosmt 4+ asinwyt —acoswyt + wp Sinwpt ®.4)
—A > > B > .
a2+ w? a2+ w?
To see this, substitute equation (5.4) into the differémtipation. Thus, the prop-
erties of a linear system are satisfied. O

Time Invariance

Time invariancds an important concept that is used to describe a systemewhos
properties do not change with time. More precisely, for aetimariant system
if the inputu(t) gives outputy(t), then if we shift the time at which the input
is applied by a constant amouat u(t + a) gives the outpuy(t + a). Systems
that are linear and time-invariant, often calle@l systemshave the interesting
property that their response to an arbitrary input is coteptecharacterized by
their response to step inputs or their response to shoriulises.”

To explore the consequences of time invariance, we first ctertpe response
to a piecewise constant input. Assume that the system ialiniat rest and con-
sider the piecewise constant input shown in Figure 5.2a. Tjmet inas jumps at
timesty, and its values after the jumps anéty). The input can be viewed as a
combination of steps: the first step at titgehas amplitudei(tp), the second step
at timet; has amplitudei(t;) — u(tp), etc.

Assuming that the system is initially at an equilibrium gddiso that the initial
condition response is zero), the response to the input cabta@ed by superim-
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Figure 5.2: Response to piecewise constant inputs. A piecewise constant sigrize cap-
resented as a sum of step signals (a), and the resulting output is the soenindividual
outputs (b).

posing the responses to a combination of step inputsHI(Btbe the response to
a unit step applied at time 0. The response to the first step fsHifie— to)u(to),

the response to the second stefi& —t1) (u(t1) — u(to)), and we find that the
complete response is given by

y(t) = H(t —to)u(to) + H(t —t2) (u(tz) — u(to)) +---
= (H(t—to) —H(t—t1))u(to) + (H(t —t2) —H(t —t2))u(ty) +---

th<t

_ ZJ(H(t—tn)—H(t—tn+1))u(tn)

NUH(t—ty) — H(t —thy 1)
= u(tn) (th1 —tn).
n; thi1— tn ( n) ( n+1 n)

An example of this computation is shown in Figure 5.2b.

The response to a continuous input signal is obtained by datkia limit as
thi1—th — 0, which gives

t
y(t):/o H'(t — 1)u(t)dr, (5.5)

whereH’ is the derivative of the step response, also calledripilse response
The response of a linear time-invariant system to any inputicas be computed
from the step response. Notice that the output depends ortlyeoinput since we
assumed the system was initially at re$0) = 0. We will derive equation (5.5) in
a slightly different way in the Section 5.3.
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5.2 The Matrix Exponential

Equation (5.5) shows that the output of a linear system carritewas an integral
over the inputai(t). In this section and the next we derive a more general version
of this formula, which includes nonzero initial conditioWge begin by exploring
the initial condition response using the matrix exponéntia

Initial Condition Response

Although we have shown that the solution of a linear set ded#htial equations
defines a linear input/output system, we have not fully comgbtihe solution of
the system. We begin by considering the homogeneous respongsponding to
the system

dx
— =A 5.6
gt = ™ (5.6)
For thescalardifferential equation
dx
R,aeR
dt aX? X 6 ) 6 )

the solution is given by the exponential
X(t) = €*x(0).

We wish to generalize this to the vector case, wielbecomes a matrix. We define
thematrix exponentiahs the infinite series

1 1
eX—I+X+2X2+

il 1
3
— X+ Z k— (5.7)
whereX € R™" is a square matrix andis then x nidentity matrix. We make use
of the notation
X0=1, X?=XX, X"=x"1x,

which defines what we mean by the “power” of a matrix. Equatiaii)(& easy
to remember since it is just the Taylor series for the scalporential, applied to
the matrixX. It can be shown that the series in equation (5.7) conveigyeariy
matrix X € R™" in the same way that the normal exponential is defined for any
scalara € R.

ReplacingX in equation (5.7) byAt, wheret € R, we find that

1 1 © 1
M= | LAt AR AR = > .\l
2 3! Lok

and differentiating this expression with respect tives

d A 2 1,392 Cae Lok At
ae/*_AJrAtJréAt +---—AKZEAt = AN, (5.8)
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Multiplying by x(0) from the right, we find thax(t) = €*'x(0) is the solution to the
differential equation (5.6) with initial conditiox(0). We summarize this important
result as a proposition.

Proposition 5.1. The solution to the homogeneous system of differential equa-
tions(5.6)is given by
x(t) = €\(0).

Notice that the form of the solution is exactly the same aséatar equations,
but we must put the vecto0) on the right of the matrie™.

The form of the solution immediately allows us to see that thet®n is linear
in the initial condition. In particular, ikn; (t) is the solution to equation (5.6) with
initial condition x(0) = Xp1 andxpz(t) with initial condition x(0) = xg2, then the
solution with initial conditionx(0) = axo1 + BXoz2 IS given by

X(t) = eM(axor+ Bxo2) = (A€ %01+ BEMX02) = aX (1) + BXna(t).

Similarly, we see that the corresponding output is given by

y(t) = Cx(t) = ayni(t) + Byna(t),

whereyp (t) andyno(t) are the outputs corresponding®q (t) andxna(t).
We illustrate computation of the matrix exponential by twamples.

Example 5.2 Double integrator
A very simple linear system that is useful in understandiagi®concepts is the
second-order system given by

q=u, y=2aq

This system is called double integratobecause the inputis integrated twice to
determine the output
In state space form, we write= (q,q) and

dx 0 1 0
R GHERHE
The dynamics matrix of a double integrator is
0 1
[0 9]
and we find by direct calculation thAZ = 0 and hence

1t
eL\t:[o 1

Thus the homogeneous solutian=£ 0) for the double integrator is given by

X(t) = [cl) tl] [gggg] _ X1<02(;Eé;<2(0)] 7

y(t) = X]_(O) +tX2(0).




138 CHAPTER 5. LINEAR SYSTEMS

Example 5.3 Undamped oscillator
A simple model for an oscillator, such as the spring—masesywiith zero damp-
ing, is

G+ wfg=u.
Putting the system into state space form, the dynamics nfatrikis system can
be written as

A 0 w and At _ co_scuot sinapt '
—wy O —Sinapt  cosunt

This expression foe can be verified by differentiation:

EeAt— —wpsSinupt (o COStnt
dt = = | —apcoswpt —apSinwpt

0 w coswpt  Sinanpt t
= . == AGA .
—wp O —Sinapt  cosant

The solution is then given by

- [ cosapt  sinaxt) [x.(0)
X(t) = €x(0) = [—sinoq)t COS&Jot] [X;(O)].

If the system has damping,
G+ 20 and+ wha = u,
the solution is more complicated, but the matrix exponénta be shown to be

Zeiwdt _ Ze_iwdt eiwdt +e—ia)dt eioodt _ e—iwdt
+ -
et 2\/72-1 2 2\/02-1
€ efiwdt _ ei(qjt Zefiwdt _ Zeiwut eiwdt + efiwdt

2771 2/2-1 | 2

wherewy = wo+/ {2 — 1. Note thaiwy and+/{? — 1 can be either real or complex,
but the combinations of terms will always yield a real valaethe entries in the

matrix exponential. O

An important class of linear systems are those that can bescenl into diag-
onal form. Suppose that we are given a system

dx
2 A
at

such that all the eigenvalues Afare distinct. It can be shown (Exercise 4.14) that
we can find an invertible matriX such thaff AT~ is diagonal. If we choose a set
of coordinateg = T x, then in the new coordinates the dynamics become

dz_ X _ rpx=TAT 2
dt dt

By construction ofT, this system will be diagonal.
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Now consider a diagonal matri& and the correspondingth power of At,
which is also diagonal:

M 0 AftK 0
A Atk
a=| 7 (k= . ,
0 An 0 )\riftk
It follows from the series expansion that the matrix expaia¢is given by
eht 0
t
|
0 et

A similar expansion can be done in the case where the eigewalre complex,
using a block diagonal matrix, similar to what was done in Bect.3.

Jordan Form @

Some matrices with equal eigenvalues cannot be transforsmdihgional form.
They can, however, be transformed to a closely related foattedt theJordan
form, in which the dynamics matrix has the eigenvalues along ihgodial. When
there are equal eigenvalues, there may be 1's appearing sugperdiagonal indi-
cating that there is coupling between the states.

More specifically, we define a matrix to be in Jordan form if it denwritten
as

J 0 ... 0 0 A1 O ... O

0 » O 0 0 0 A 1 0
= ... |, where J=|: KPR I CXe))

0 0 Jo1 O 0 0 A1

0o 0 ... 0 K 0O 0 ... 0 AN

Each matrixJ; is called aJordan block and A; for that block corresponds to an
eigenvalue ofl. A first-order Jordan block can be represented as a system con-
sisting of an integrator with feedbadk A Jordan block of higher order can be
represented as series connections of such systems, a=thasin Figure 5.3.

Theorem 5.2(Jordan decompositionAny matrix Ac R™*" can be transformed
into Jordan form with the eigenvalues of A determink@n the Jordan form.

Proof. See any standard text on linear algebra, such as Strang [Skt&8$pecial
case where the eigenvalues are distinct is examined in Beefcl4. Ol

Converting a matrix into Jordan form can be complicatedicalgh MATLAB
can do this conversion for numerical matrices usingjtbe dan function. The
structure of the resulting Jordan form is particularly resging since there is no
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Figure 5.3: Representations of linear systems where the dynamics matrices asn Jord
blocks. A first-order Jordan block can be represented as an integrihofeedbackA, as
shown on the left. Second- and third-order Jordan blocks can besepted as series con-
nections of integrators with feedback, as shown on the right.

requirement that the individudl’s be unique, and hence for a given eigenvalue
we can have one or more Jordan blocks of different sizes.

Once a matrix is in Jordan form, the exponential of the mataix be computed
in terms of the Jordan blocks:

er 0 ... O
Jo .
- |0 ¢© . (5.10)
: .0
0 ... 0 ek

This follows from the block diagonal form af. The exponentials of the Jordan
blocks can in turn be written as

2 n—-1
(1t 5 ... 7(;_1)!
tn72
0 1 t =
eft=|. T A (5.11)
.ot
(0 ... 0o 1

When there are multiple eigenvalues, the invariant sulespassociated with
each eigenvalue correspond to the Jordan blocks of thexwatNote thatA may
be complex, in which case the transformatibrihat converts a matrix into Jor-
dan form will also be complex. Wheh has a honzero imaginary component, the
solutions will have oscillatory components since

0@t — o9 (coset + i sinawt).

We can now use these results to prove Theorem 4.1, which shatethe equilib-
rium pointxe = 0 of a linear system is asymptotically stable if and only ifARe O.

Proof of Theorem 4.1Let T € C"™" be an invertible matrix that transformdsnto
Jordan form,) = TATL. Using coordinateg= T x, we can write the solution(t)
as

z(t) = e’'Z(0).
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Since any solution(t) can be written in terms of a solutia) with z(0) = T x(0),

it follows that it is sufficient to prove the theorem in the tséormed coordinates.
The solutionz(t) can be written in terms of the elements of the matrix expo-

nential. From equation (5.11) these elements all decay wfperarbitraryz(0) if

and only if Re\; < 0. Furthermore, if any\; has positive real part, then there ex-

ists an initial conditiorg(0) such that the corresponding solution increases without

bound. Since we can scale this initial condition to be arbiyramall, it follows

that the equilibrium point is unstable if any eigenvalue pasitive real part. [

The existence of a canonical form allows us to prove many ptigseof linear
systems by changing to a set of coordinates in whichAhmeatrix is in Jordan
form. We illustrate this in the following proposition, wiii¢ollows along the same
lines as the proof of Theorem 4.1.

Proposition 5.3. Suppose that the system

dx

— =AX

dt
has no eigenvalues with strictly positive real part and omenore eigenvalues
with zero real part. Then the system is stable if and only ifJitvelan blocks cor-

responding to each eigenvalue with zero real part are scélat 1) blocks.

Proof. See Exercise 5.6b. O

The following example illustrates the use of the Jordan form.

Example 5.4 Linear model of a vectored thrust aircraft

Consider the dynamics of a vectored thrust aircraft suchatsdescribed in Ex-
ample 2.9. Suppose that we chooge-= u, = 0 so that the dynamics of the system
become

( Z
q V4
az_ B , (5.12)
dt —gsinzs — £ 24
g(coszz—1) - =75
0

wherez = (x,y, 8,x,y, 8). The equilibrium points for the system are given by set-
ting the velocitiex,'y andé to zero and choosing the remaining variables to satisfy

—gsinzze=0

— 6.0
9(003239 — 1) = O = Z3,e e

This corresponds to the upright orientation for the aircrisiftte thatxe andye
are not specified. This is because we can translate the systemew (upright)
position and still obtain an equilibrium point.
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Figure 5.4: Modes of vibration for a system consisting of two masses connectedingsp
In (a) the masses move left and right in synchronization in (b) they rntawvard or against
each other.

To compute the stability of the equilibrium point, we comgtite linearization
using equation (4.11):

[oNeNe]

a=F

dzZe_

cNeolNeolNoNoNel
cNeoloNoNoNe

|
(@)
|
(@]
coloor
3
ol oopro

oo
OO oo

The eigenvalues of the system can be computed as
A(A) ={0,0,0,0,—c/m,—c/m}.

We see that the linearized system is not asymptoticallylestsibce not all of the
eigenvalues have strictly negative real part.

To determine whether the system is stable in the sense otugapwe must
make use of the Jordan form. It can be shown that the JordandbA is given by

0/0 0 0/ O 0
0/0 1 0/ O 0
J_0001O 0
|1 0/0 OO0 O 0
0({0 O Ol—c/m| O
0/0 0 0f 0 |—-c/m

Since the second Jordan block has eigenvalue 0 and is not ee®igpnvalue, the
linearization is unstable. 0

Eigenvalues and Modes

The eigenvalues and eigenvectors of a system provide a pescrof the types of
behavior the system can exhibit. For oscillatory systeims térmmodeis often
used to describe the vibration patterns that can occur. €igut illustrates the
modes for a system consisting of two masses connected mgspfOne pattern is
when both masses oscillate left and right in unison, andremas when the masses
move toward and away from each other.

The initial condition response of a linear system can be @mrith terms of a
matrix exponential involving the dynamics matAxThe properties of the matri
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Figure 5.5: The notion of modes for a second-order system with real eigenvalhedeft
figure shows the phase portrait and the modes corresponding to selthianstart on the
eigenvectors (bold lines). The corresponding time functions are sbhawvime right.

therefore determine the resulting behavior of the systemerG matrixA € R"<",
recall thatv is an eigenvector o with eigenvalue\ if

Av=AV.

In generald andv may be complex-valued, althoughAfis real-valued, then for
any eigenvalud its complex conjugat@ * will also be an eigenvalue (with* as
the corresponding eigenvector).

Suppose first thak andv are a real-valued eigenvalue/eigenvector pairXor
If we look at the solution of the differential equation #&(0) = v, it follows from
the definition of the matrix exponential that

2:2
fv= (I +At+ %Aztz—k SV =VAAV /\Tv+ o=y
The solution thus lies in the subspace spanned by the eigenv€be eigenvalue
A describes how the solution varies in time, and this solusarften called anode
of the system. (In the literature, the term “mode” is als@pftised to refer to the
eigenvalue rather than the solution.)
If we look at the individual elements of the vectorandy, it follows that

x(t) ey Vi
X (t) N e)‘th a Vj’

and hence the ratios of the components of the statee constants for a (real)
mode. The eigenvector thus gives the “shape” of the solutimhis also called
a mode shapef the system. Figure 5.5 illustrates the modes for a secodero
system consisting of a fast mode and a slow mode. Notice lieadthte variables
have the same sign for the slow mode and different signs éofatst mode.

The situation is more complicated when the eigenvalued afe complex.
SinceA has real elements, the eigenvalues and the eigenvectorsrapex con-



144 CHAPTER 5. LINEAR SYSTEMS

jugatesr = g +iw andv = u+iw, which implies that
u_v+v* V—V*

W=
2 2i
Making use of the matrix exponential, we have
v = eM(u+iw) = €7 ((ucoswt — wsinwt) + i (usinwt +wcoswt)),

from which it follows that

Mu= %(e‘“v+ eAt\f*> = ue” coswt — wet sinat,
eMtw = % <e/“v— eNv*) = ue”’' sinwt + we’* coswt.

A solution with initial conditions in the subspace spanngadhe real paru and
imaginary partv of the eigenvector will thus remain in that subspace. Thetisoiu
will be a logarithmic spiral characterized lwsyand w. We again call the solution
corresponding tad a mode of the system, andhe mode shape.

If a matrix A hasn distinct eigenvalued, ..., A,, then the initial condition re-
sponse can be written as a linear combination of the modesed&ahis, suppose
for simplicity that we have all real eigenvalues with cop@sding unit eigenvec-
torsvy,...,vh. From linear algebra, these eigenvectors are linearly ieaéent,
and we can write the initial conditiox(0) as

X(0) = a1v1 + 02V2 + -+~ + Vi,
Using linearity, the initial condition response can be teritas
X(t) = alg\lt\/l + Gzef‘ZtVZ + .4 and\ntvn‘

Thus, the response is a linear combination of the modes ofystera, with the

amplitude of the individual modes growing or decayingeis The case for dis-
tinct complex eigenvalues follows similarly (the case fondistinct eigenvalues is
more subtle and requires making use of the Jordan form disdua the previous
section).

Example 5.5 Coupled spring—mass system
Consider the spring—mass system shown in Figure 5.4, buttiittaddition of
dampers on each mass. The equations of motion of the system are

M = — 2Ky — €q1 + Kap, mMbz = kop — 2kap — Cp.

In state space form, we define the state tabe(qs, 02,41, 02), and we can rewrite
the equations as

0 0 1 0
0 0 0 1
dx 2k k c
B X
dt m m m 0
k& 4 _¢
m m m
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We now define a transformatian= T x that puts this system into a simpler form.
Letz; = 3(0h + ), 2 = 21, 23 = 3(Ch — O2) andzs = 73, so that

1 10 0
~1lo 0 1 1

2=Tx=511 10 o0
0O 0 1 -1
In the new coordinates, the dynamics become
0 1 0 0 )
k c
iz | 'm m © °
- = Z,
dt 0 0 0 1
k
0o o X _¢
m m/

and we see that the system is in block diagonahfoda) form.

In thez coordinates, the stategs andz, parameterize one mode with eigenval-
uesA ~ —c/(2m) £i/k/m (for c small), and the statem andz; another mode
with A = —c/(2m) £i,/3k/m. From the form of the transformatioh we see
that these modes correspond exactly to the modes in Figure5wvhich g; and
g2 move either toward or against each other. The real and imagpaats of the
eigenvalues give the decay ratesnd frequencies for each mode. 0

5.3 Input/Output Response

In the previous section we saw how to compute the initial damdresponse using
the matrix exponential. In this section we derive the coatroh equation, which
includes the inputs and outputs as well.

The Convolution Equation

We return to the general input/output case in equation (EeBeated here:

d
d%( = Ax+ Bu, y = Cx+ Du. (5.13)

Using the matrix exponential, the solution to equation $p.dan be written as
follows.

Theorem 5.4. The solution to the linear differential equati¢®.13)is given by
t
X(t) = x(0) + / A-TBY(T)dT. (5.14)
0

Proof. To prove this, we differentiate both sides and use the ptp6r8) of the
matrix exponential. This gives

dx

1
i Aex(0) +/ ALDBY(T)dT + Bu(t) = Ax+ Bu,
0
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Figure 5.6: Pulse response and impulse response. (a) The rectangles shosvgfulgdth

5, 25 and 08, each with total area equal to 1. The arrow denotes an imp@\tsedefined

by equation (5.17). The corresponding pulse responses for a fgstmm with eigenvalues

A = {-0.08,-0.62} are shown in (b) as dashed lines. The solid line is the true impulse
response, which is well approximated by a pulse of durati8n 0

which proves the result. Notice that the calculation is ealy the same as for
proving the result for a first-order equation. O

It follows from equations (5.13) and (5.14) that the inputfmut relation for a
linear system is given by
t
y(t) = CMx(0) + /O Ct-IBY(T)dT + Du(t). (5.15)
It is easy to see from this equation that the output is joilitigar in both the
initial conditions and the input, which follows from the diarity of matrix/vector
multiplication and integration.

Equation (5.15) is called thmonvolution equatioyand it represents the general
form of the solution of a system of coupled linear differahgquations. We see
immediately that the dynamics of the system, as charaetktiy the matrixA,
play a critical role in both the stability and performancetloé system. Indeed,
the matrix exponential describésth what happens when we perturb the initial
condition and how the system responds to inputs.

Another interpretation of the convolution equation can ivergusing the concept
of theimpulse responsef a system. Consider the application of an input signal
u(t) given by the following equation:

0 t<0
ut)=pet)=<¢1l/e 0<t<e (5.16)
0 t>e¢.

This signal is gulseof duratione and amplitude 1¢, as illustrated in Figure 5.6a.
We define animpulsed(t) to be the limit of this signal as — O:

5(t) = lim pe(0). (5.17)
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This signal, sometimes calleddelta function,is not physically achievable but
provides a convenient abstraction in understanding theorese of a system. Note
that the integral of an impulse is 1:

t t t
/Oé(r)dr:/O lanopg(t)dr:yLno/o pe(t)dr

€
=lm [ 1/edt=1 t>0.
e—=0.J0
In particular, the integral of an impulse over an arbitgashort period of time is
identically 1.
We define thémpulse responsef a systenh(t) to be the output corresponding
to having an impulse as its input:

ht) = /0 ' Ct-Tps () dr — CeMB, (5.18)

where the second equality follows from the fact thét) is zero everywhere ex-
cept the origin and its integral is identically 1. We can novitevthe convolution

equation in terms of the initial condition response, thevotution of the impulse

response and the input signal, and the direct term:

y(t) = Ce"x(0) + /ot h(t — T)u(t)dt + Du(t). (5.19)

One interpretation of this equation, explored in Exercigg . that the response
of the linear system is the superposition of the response iofaite set of shifted
impulses whose magnitudes are given by the iyjtit This is essentially the ar-
gument used in analyzing Figure 5.2 and deriving equatid®).(Blote that the
second term in equation (5.19) is identical to equation)(®aBd it can be shown
that the impulse response is formally equivalent to thevdévie of the step re-
sponse.

The use of pulses as approximations of the impulse functiso atovides a
mechanism for identifying the dynamics of a system from daigure 5.6b shows
the pulse responses of a system for different pulse widthsicél that the pulse
responses approach the impulse response as the pulse wikhazero. As a
general rule, if the fastest eigenvalue of a stable systemndad part- omax, then a
pulse of lengtre will provide a good estimate of the impulse responssoif,ax <
1. Note that for Figure 5.6, a pulse width ©f= 1 s giveseOmax = 0.62 and the
pulse response is already close to the impulse response.

Coordinate Invariance

The components of the input vectarand the output vectoy are given by the
chosen inputs and outputs of a model, but the state varidelesnd on the coor-
dinate frame chosen to represent the state. This choice ofioates affects the
values of the matrice8, B andC that are used in the model. (The direct tebm
is not affected since it maps inputs to outputs.) We now itigate some of the
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Figure 5.7: Coupled spring mass system. Each mass is connected to two springs Wth stif
nessk and a viscous damper with damping coefficienThe mass on the right is driven
through a spring connected to a sinusoidally varying attachment.

consequences of changing coordinate systems.
Introduce new coordinatesby the transformatioz = T x, whereT is an in-
vertible matrix. It follows from equation (5.3) that
d .~
d{ — T(Ax+Bu) = TAT 1z+ TBu=: Az+ Bu,
y =Cx+Du=CT 'z4+Du=:Cz+Du.

The transformed system has the same form as equation (5t Bechmatrice®, B
andC are different:

A=TAT B=TB, C=cCcT . (5.20)

There are often special choices of coordinate systems tbat as to see a partic-
ular property of the system, hence coordinate transfoonattan be used to gain
new insight into the dynamics.

We can also compare the solution of the system in transfoneddinates to
that in the original state coordinates. We make use of anitapbproperty of the
exponential map,

—1
T _TeT

which can be verified by substitution in the definition of the mixagxponential.
Using this property, it is easy to show that

X(t) =T z(t) = T 1eNTx(0) + T /O CACDBY(r) dr.

From this form of the equation, we see that if it is possiblerm$formA into

a form A for which the matrix exponential is easy to compute, we canthat
computation to solve the general convolution equationHentntransformed state
x by simple matrix multiplications. This technique is illiestied in the following
example.

Example 5.6 Coupled spring—mass system
Consider the coupled spring—mass system shown in Figurd Be7Zinput to this
system is the sinusoidal motion of the end of the rightmoshgpand the output
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is the position of each masg, andgy. The equations of motion are given by

mde = ko — 2kap — ¢z + ku.

md = —2Ka1 — gy + Kap,

In state space form, we define the state ta be(q:, 02, d1,62), and we can rewrite

the equations as

0 0 1 0 0

0 0 0 1 0
dx 2k k c
—=|-= = —= 0 [x+]|0]u
dt m m m

k2% cof (X

m m m m

This is a coupled set of four differential equations and isegodmplicated to solve

in analytical form.

The dynamics matrix is the same as in Example 5.5, and we caheseor-
dinate transformation defined there to put the system in nfodal:

O 1 0 o 0 )
K
ko4 k
dz_ m m 2m
@t lo o o 1]|%| o
0 o X _c _k
m m?/ 2m/

Note that the resulting matrix equations are block diaganal hence decoupled.
We can solve for the solutions by computing the solutionsvaf $ets of second-
order systems represented by the stétes,) and(zs,z). Indeed, the functional
form of each set of equations is identical to that of a singléng—mass system.
(The explicit solution is derived in Section 6.3.)

Once we have solved the two sets of independent second-egdations, we
can recover the dynamics in the original coordinates byrting the state trans-
formation and writingc = T 1z We can also determine the stability of the system
by looking at the stability of the independent second-osystems. O

Steady-State Response

Given a linear input/output system

dx
— = Ax+Bu
gt~ xR

the general form of the solution to equation (5.21) is givgnthe convolution
equation:

y =Cx+Du, (5.22)

y(t) = CeMx(0) + /O tce‘\(t—%au(r)olr +Du(t).

We see from the form of this equation that the solution cassian initial condi-
tion response and an input response.



150 CHAPTER 5. LINEAR SYSTEMS

1 0.1
>
3 =
g3 0 g 0
£ (e} |
Transient | Steady State
-1 . ! L -0.1 ! . .
0 20 40 60 80 0 20 40 60 80
Timet [sec] Timet [sec]
(a) Input (b) Output

Figure 5.8: Transient versus steady-state response. The input to a linear sysieows in
(a), and the corresponding output wikfD) = 0 is shown in (b). The output signal initially
undergoes a transient before settling into its steady-state behavior.

The input response, corresponding to the last two terms irdhation above,
itself consists of two components—thransient responsand thesteady-state re-
sponse The transient response occurs in the first period of time #fieinput
is applied and reflects the mismatch between the initial ¢mmdand the steady-
state solution. The steady-state response is the portidreafutput response that
reflects the long-term behavior of the system under the gimpats. For inputs
that are periodic the steady-state response will often Hedie, and for constant
inputs the response will often be constant. An example ofttuesient and the
steady-state response for a periodic input is shown in Fig&e

A particularly common form of input is step inputwhich represents an abrupt
change in input from one value to anothemAit step(sometimes called the Heav-
iside step function) is defined as

0 t=0
uzs(t):{l t>0

The step responsef the system (5.21) is defined as the outy} starting from
zero initial condition (or the appropriate equilibrium ptiand given a step input.
We note that the step input is discontinuous and hence is nactipally imple-
mentable. However, it is a convenient abstraction that delyiused in studying

input/output systems.
We can compute the step response to a linear system usingitivelation
equation. Settink(0) = 0 and using the definition of the step input above, we

have
t t
y(t) = / CAtDBY(T)dT +Du(t) = C / A-Bdr 4D
0 0

t _ =t
~c [ ¢Bdo+D ~C (A *¢B)[5,+D

—CAlMB-CA 1B+D.

If A has eigenvalues with negative real part (implying that thgim is a stable
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Figure 5.9: Sample step response. The rise time, overshoot, settling time and stasaly-s
value give the key performance properties of the signal.

equilibrium point in the absence of any input), then we cavrite the solution as

y(t)=CA'"B+D-CA'B, t>0. (5.22)
— ——
transient steady-state

The first term is the transient response and decays to zdresa®. The second
term is the steady-state response and represents the ¥ahee @utput for large
time.

A sample step response is shown in Figure 5.9. Several termssatkwhen
referring to a step response. Thieady-state valuesyof a step response is the
final level of the output, assuming it converges. Tise time T is the amount of
time required for the signal to go from 10% of its final value @® of its final
value. Itis possible to define other limits as well, but in thi®k we shall use these
percentages unless otherwise indicated. dvexshoot M is the percentage of the
final value by which the signal initially rises above the finaluea This usually
assumes that future values of the signal do not overshodirtalevalue by more
than this initial transient, otherwise the term can be amnigg. Finally, thesettling
time T is the amount of time required for the signal to stay within @®4ts final
value for all future times. The settling time is also somesrdefined as reaching
1% or 5% of the final value (see Exercise 5.7). In general theserpgance mea-
sures can depend on the amplitude of the input step, butfealisystems the last
three quantities defined above are independent of the sibe atép.

Example 5.7 Compartment model

Consider the compartment model illustrated in Figure 5.XkDdescribed in more
detail in Section 3.6. Assume that a drug is administered Ingtemt infusion in
compartmenY; and that the drug has its effect in compartméntTo assess how
quickly the concentration in the compartment reaches gtetate we compute
the step response, which is shown in Figure 5.10b. The stepnssyis quite slow,
with a settling time of 39 min. It is possible to obtain thesgte-state concentration
much faster by having a faster injection rate initially, &aswn in Figure 5.10c.
The response of the system in this case can be computed byrombivo step



152 CHAPTER 5. LINEAR SYSTEMS

c
ConcentratiorC,
- N
ConcentratiorCy
-

o

N

o
o

20 40

o

20 40

I
~
I
~

Input dosage
o
N
Input dosage
o
N
]

o

o

0 20 40 20 40
Timet [min] Timet [min]

(a) Schematic (b) Step input (c) Pulse input

Figure 5.10: Response of a compartment model to a constant drug infusion. A sdigsle
gram of the system is shown in (a). The step response (b) shows thef @racentration
buildup in compartment 2. In (c) a pulse of initial concentration is used éedpp the
response.

responses (Exercise 5.3). O

Another common input signal to a linear system is a sinuswid combination
of sinusoids). Thérequency respons# an input/output system measures the way
in which the system responds to a sinusoidal excitation @adits inputs. As we
have already seen for scalar systems, the particular snlaisociated with a sinu-
soidal excitation is itself a sinusoid at the same frequeldeynce we can compare
the magnitude and phase of the output sinusoid to the inpatelgenerally, if a
system has a sinusoidal output response at the same fregoagtie input forcing,
we can speak of the frequency response of the system.

To see this in more detail, we must evaluate the convolutipragon (5.15) for
u = coswt. This turns out to be a very messy calculation, but we can magefi
the fact that the system is linear to simplify the derivatibmparticular, we note
that
1
2

Since the system is linear, it suffices to compute the respdrtbe gystem to the
complex inputu(t) = € and we can then reconstruct the input to a sinusoid by
averaging the responses corresponding=a w ands = —iw.

Applying the convolution equation to the input= € we have

coswt = (ej“’t +e*i“").

t
y(t) = CePx(0) + /O CAt-TIBETdr 4+ Dt

1
— Cex(0) + Ce / elS-ATBdr + De.
0

If we assume that none of the eigenvaluesfddre equal tas = +iw, then the
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matrix sl — A is invertible, and we can write
y(t) = CeMx(0) + Ce ((sl — A)*le(s'*A)TB> ’to + De™
= CeMx(0) + CeM(sl — A) L (e<s'*A>t - |) B+ D&
= Ceé"x(0) +C(sl - A) 1B CeM(sl - A) B+ De*,

and we obtain

y(t) = CeMt <x(0) ~(sl— A)’lB> + (C(sl A B4 D) et (5.23)
traagient steady-state

Notice that once again the solution consists of both a tesmigiomponent and a
steady-state component. The transient component decagsdadf zhe system is
asymptotically stable and the steady-state componenbgoptional to the (com-
plex) inputu = e,
We can simplify the form of the solution slightly further bgwriting the steady-
state response as
ySS(t) _ Meieest — ,\/Ie(SH—iG)7

where _
Me® =C(sl—A)1B+D (5.24)

andM and 0 represent the magnitude and phase of the complex nu@(s¢r
A)~B+D. Whens = iw, we say thaiM is thegain and 8 is the phaseof the
system at a given forcing frequenay Using linearity and combining the solutions
for s= +iwands= —iw, we can show that if we have an input A, sin(wt + @)
and an outpuy = Aysin(wt + @), then

gainfw) = ::Z =M, phaséw) =¢ — Y = 6.

The steady-state solution for a sinusaig coswt is now given by
Yss(t) = Mcog wt + 0).

If the phaséd is positive, we say that the outplgadsthe input, otherwise we say
it lagsthe input.

A sample sinusoidal response is illustrated in Figure 5.Tha. dashed line
shows the input sinusoid, which has amplitude 1. The outputssid is shown
as a solid line and has a different amplitude plus a shiftetbghThe gain is the
ratio of the amplitudes of the sinusoids, which can be ddtechby measuring
the height of the peaks. The phase is determined by compdregatio of the
time between zero crossings of the input and output to theatiyeeriod of the
sinusoid: AT

0— o120
T
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Figure 5.11:Response of a linear system to a sinusoid. (a) A sinusoidal input ofitnegn
Ay (dashed) gives a sinusoidal output of magnitégesolid), delayed byAT seconds. (b)
Frequency response, showing gain and phase. The gain is giver Iogtit of the output
amplitude to the input amplitud®) = Ay/A,. The phase lag is given b= —2nAT /T it
is negative for the case shown because the output lags the input.

A convenient way to view the frequency response is to plot Hmvgain and
phase in equation (5.24) depend @n(throughs = iw). Figure 5.11b shows an
example of this type of representation.

Example 5.8 Active band-pass filter

Consider the op amp circuit shown in Figure 5.12a. We can eénie dynamics of
the system by writing theodal equationswhich state that the sum of the currents
at any node must be zero. Assuming that=v, = 0, as we did in Section 3.3,

we have

o—VlF;VZ—Cldd\f, o—cl‘ij‘f+£+czz\f.
Choosingv, andvs as our states and using these equations, we obtain
dV2 V1 — V2 dV3 —V3 Vi — V2
dt ~ RCp dt  RC; RG
Rewriting these in linear state space form, we obtain
1 1
x| RG° RC:
at = 1 1 X+ | y= (O 1] X, (5.25)
RC,  RC RiC;

wherex = (v2,Vv3), U= vy andy = vs.
The frequency response for the system can be computed usiatj@y(5.24):

_& RiCis
Ry (1 + Rj_Cj_S) (1 + RzCzS) ’

The magnitude and phase are plotted in Figure 5.12BRfet 100Q, R, =5 kQ
andC; = C, = 100 pF. We see that the circuit passes through signals wihére

S=iw.

Mel® =C(sl—A)"B+D =
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Figure 5.12: Active band-pass filter. The circuit diagram (a) shows an op amp witlR@o
filters arranged to provide a band-pass filter. The plot in (b) showsaimeemd phase of the
filter as a function of frequency. Note that the phase starts atd96 to the negative gain of
the operational amplifier.

cies at about 10 rad/s, but attenuates frequencies belod/$aad above 50 rad/s.

At 0.1 rad/s the input signal is attenuated byx2(.05). This type of circuit is
called aband-pass filtesince it passes through signals in the band of frequencies
between 5 and 50 rad/s. 0

As in the case of the step response, a number of standardesfe defined
for frequency responses. The gain of a system at0 is called thezero frequency
gainand corresponds to the ratio between a constant input arsieady output:

Mo = —CA 1B+D.

The zero frequency gain is well defined onhAifs invertible (and, in particular, if

it does not have eigenvalues at 0). It is also important te tiwt the zero frequency
gain is a relevant quantity only when a system is stable ath@utorresponding
equilibrium point. So, if we apply a constant input=r, then the correspond-
ing equilibrium pointxe = —A~1Br must be stable in order to talk about the zero
frequency gain. (In electrical engineering, the zero fegly gain is often called
the DC gain DC stands for direct current and reflects the common separafi
signals in electrical engineering into a direct currentdZfeequency) term and an
alternating current (AC) term.)

The bandwidthaw, of a system is the frequency range over which the gain has
decreased by no more than a factor ¢{/2 from its reference value. For systems
with nonzero, finite zero frequency gain, the bandwidth isftequency where
the gain has decreased by\12 from the zero frequency gain. For systems that
attenuate low frequencies but pass through high frequenttie reference gain
is taken as the high-frequency gain. For a system such asathafass filter in
Example 5.8, bandwidth is defined as the range of frequencieseithe gain is
larger than 1+/2 of the gain at the center of the band. (For Example 5.8 thisavou
give a bandwidth of approximately 50 rad/s.)
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Figure 5.13: AFM frequency response. (a) A block diagram for the vertical dyioarof an
atomic force microscope in contact mode. The plot in (b) shows the gaiphase for the
piezo stack. The response contains two frequency peaks at ressnafrthe system, along
with an antiresonance ab = 268 krad/s. The combination of a resonant peak followed by
an antiresonance is common for systems with multiple lightly damped modes.

Another important property of the frequency response isghenant peak M
the largest value of the frequency response, angéak frequencyoy, the fre-
guency where the maximum occurs. These two properties desttre frequency
of the sinusoidal input that produces the largest possiltieud and the gain at the
frequency.

Example 5.9 Atomic force microscope in contact mode

Consider the model for the vertical dynamics of the atomicdamicroscope in
contact mode, discussed in Section 3.5. The basic dynamiagiveme by equa-
tion (3.23). The piezo stack can be modeled by a second-oydtgrs with un-
damped natural frequen@y; and damping rati@’s. The dynamics are then de-
scribed by the linear system

0 1 0 0 0
dx [ —k/(M+mp) —co/(M+mp) 1/mp 0 - 01,
dt 0 0 0 w3 o™
0 0 —w3  —2{303 w3
y= 117 [ My ko My Co 0] X
mMm+m M+ M+

where the input signal is the drive signal to the amplifier dreddutput is the elon-
gation of the piezo. The frequency response of the systenoigrsim Figure 5.13b.
The zero frequency gain of the systenVig= 1. There are two resonant poles with
peakdVl;; = 2.12 atwm 1 = 238 krad's andM,2 = 4.29 atwmr, = 746 krad's. The
bandwidth of the system, defined as the lowest frequency vthergain isy/2 less
than the zero frequency gain, ég, = 292 krad's. There is also a dip in the gain
Mg = 0.556 for wg = 268 krad's. This dip, called aantiresonancgis associated
with a dip in the phase and limits the performance when theesyss controlled
by simple controllers, as we will see in Chapter 10. O
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Sampling

It is often convenient to use both differential and diffeverequations in modeling
and control. For linear systems it is straightforward to$&farm from one to the
other. Consider the general linear system described bytiegua.13) and assume
that the control signal is constant over a sampling inteo¥aonstant lengtf. It
follows from equation (5.14) of Theorem 5.4 that

X(t+h) = eAx(t) + /t t+he‘“”“*”Bu(r) dr = Ox(t) +u(t), (5.26)

where we have assumed that the discontinuous control sgyeahtinuous from
the right. The behavior of the system at the sampling timekh is described by
the difference equation

x[k+1] = Ox[K +Tukl,  ylk] =CxK| +Du[K. (5.27)

Notice that the difference equation (5.27) is an exact sepr&tion of the behavior
of the system at the sampling instants. Similar expressiansalso be obtained if
the control signal is linear over the sampling interval.

The transformation from (5.26) to (5.27) is callsampling The relations be-
tween the system matrices in the continuous and sampledsemiations are as
follows:

® = r:(/ohef\Sds)B; A:%Iogdb, B:(/OheAsds)_lr. (5.28)

Notice that ifA is invertible, we have
r=Ae"-1)B.

All continuous-time systems can be sampled to obtain aelisd¢ime version,
but there are discrete-time systems that do not have a congatime equivalent.
The precise conditions depend on the properties of the n&tpgnential expAh)
in equation (5.26).

Example 5.10 IBM Lotus server
In Example 2.4 we described how the dynamics of an IBM Lotusesewere
obtained as the discrete-time system

y[k+ 1] = ay[k] + bulk],

wherea = 0.43, b = 0.47 and the sampling period ts= 60s. A differential

equation model is needed if we would like to design contratems based on
continuous-time theory. Such a model is obtained by applgiggation (5.28);
hence

h -1
A='99%_ 0141  B- (/ e‘“dt> b=00116
h 0

and we find that the difference equation can be interpretedamaled version of
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the ordinary differential equation

31( — _0.0141x+ 0.0118..

5.4 Linearization

As described at the beginning of the chapter, a common saidriieear system
models is through the approximation of a nonlinear systera layear one. These
approximations are aimed at studying the local behavior ®fsdem, where the
nonlinear effects are expected to be small. In this sectierdiscuss how to lo-
cally approximate a system by its linearization and what lsarsaid about the
approximation in terms of stability. We begin with an illcegion of the basic con-
cept using the cruise control example from Chapter 3.

Example 5.11 Cruise control
The dynamics for the cruise control system were derived ini@e&t1 and have
the form

mg\t/ = anuT(anv) —mgG sgnv) — %pCVsz —mgsiné, (5.29)
where the first term on the right-hand side of the equationasahce generated
by the engine and the remaining three terms are the rollinidn, aerodynamic
drag and gravitational disturbance force. There is an dxiifn (ve, ue) when the
force applied by the engine balances the disturbance forces

To explore the behavior of the system near the equilibriumwildinearize the
system. A Taylor series expansion of equation (5.29) art@equilibrium gives

d(v—ve)

ai = a(v—Ve) —bg(6 — B) + b(u—ue) + higher order terms, ~ (5.30)

where

4 Uea 2T’ (anVe) — PCuAVe
m

, by = gCcos6e, b= M.

(5.31)
Notice that the term corresponding to rolling friction gipaars ifv = 0. For a
car in fourth gear with/e = 25 m/s,8. = 0 and the numerical values for the car
from Section 3.1, the equilibrium value for the throttlelis= 0.1687 and the
parameters ara = —0.0101,b = 1.32 andc = 9.8. This linear model describes
how small perturbations in the velocity about the nomin&espevolve in time.
Figure 5.14 shows a simulation of a cruise controller witkedinand nonlinear
models; the differences between the linear and nonlineateiscare small, and
hence the linearized model provides a reasonable approgima O
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Figure 5.14: Simulated response of a vehicle with PI cruise control as it climbs a hill with a
slope of 4. The solid line is the simulation based on a nonlinear model, and the dashed line
shows the corresponding simulation using a linear model. The controltes geekp = 0.5

andk; = 0.1.

Jacobian Linearization Around an Equilibrium Point
To proceed more formally, consider a single-input, sirml#put nonlinear system
dx
dt
y=h(xu), YyeR,

f R" R
(x,u), xeR"UeR, (5.32)

with an equilibrium point ak = Xe, U = Ue. Without loss of generality we can
assume thate = 0 andue = 0, although initially we will consider the general case
to make the shift of coordinates explicit.

To study thdocal behavior of the system around the equilibrium pagiat ue),
we suppose that— xe andu — ue are both small, so that nonlinear perturbations
around this equilibrium point can be ignored compared with(tower-order) lin-
ear terms. This is roughly the same type of argument that id wéen we do
small-angle approximations, replacing 8invith 8 and co® with 1 for 6 near
zero.

As we did in Chapter 4, we define a new set of state variables well as
inputsv and outputsv:

Z=X—Xe, V=U-—Ug, W =Y —h(Xe, Ue).

These variables are all close to zero when we are near thetegum point, and so
in these variables the nonlinear terms can be thought ofeakitfiner-order terms
in a Taylor series expansion of the relevant vector fieldsuassy for now that
these exist).
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Formally, theJacobian linearizatiorof the nonlinear system (5.32) is
dz

rTi Az+ By, w=Cz+ Dy, (5.33)
where
N e e
OX | (xe,ue) U (e, ) OX] (e, U (e )

The system (5.33) approximates the original system (5.32nwhe are near the
equilibrium point about which the system was linearizedingsrheorem 4.3, if
the linearization is asymptotically stable, then the eluiim pointxe is locally
asymptotically stable for the full nonlinear system.

Itis important to note that we can define the linearization ®fstem only near
an equilibrium point. To see this, consider a polynomiateys

dx 2
gp = f0tax+ X +agC +u,

whereag # 0. A set of equilibrium points for this system is given b, ue) =

(Xe, —80 — A1Xe — aX2 — agx3), and we can linearize around any of them. Suppose
that we try to linearize around the origin of the system 0, u = 0. If we drop the
higher-order terms iw, then we get

dx_ +ayX+u
dt_ao 1 )

which isnotthe Jacobian linearization & # 0. The constant term must be kept,
and itis not present in (5.33). Furthermore, even if we kepttmstant term in the
approximate model, the system would quickly move away frioisipoint (since it

is “driven” by the constant terrag), and hence the approximation could soon fail
to hold.

Software for modeling and simulation frequently has faesitfor performing
linearization symbolically or numerically. The MATLAB commai r i mfinds
the equilibrium, andl i nnod extracts linear state space models from a SIMULINK
system around an operating point.

Example 5.12 Vehicle steering

Consider the vehicle steering system introduced in Examjle The nonlinear
equations of motion for the system are given by equatior3}2(2.25) and can
be written as

4 (> vcos(a(d)+0) ans

i atan
—ly| =[vsin a(d)+0) : a(8) = arcta :
o [6] %tané r( b )

wherex, y and 8 are the position and orientation of the center of mass of the
vehicle,vy is the velocity of the rear whedb,is the distance between the front and
rear wheels and is the angle of the front wheel. The functior{d) is the angle
between the velocity vector and the vehicle’s length axis.
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We are interested in the motion of the vehicle about a sttdigé path @ = 6)
with fixed velocityvg # 0. To find the relevant equilibrium point, we first gt 0
and we see that we must hagie= 0, corresponding to the steering wheel being
straight. This also yieldg = 0. Looking at the first two equations in the dynamics,
we see that the motion in the direction is by definitiomot at equilibrium since
X2 +y2 = V2 + 0. Therefore we cannot formally linearize the full model.

Suppose instead that we are concerned with the lateral aeviaftthe vehicle
from a straight line. For simplicity, we le. = 0, which corresponds to driving
along thex axis. We can then focus on the equations of motion inytlaeand 6
directions. With some abuse of notation we introduce thte sta (y, 8) andu= 9.
The system is then in standard form with

vsin(a(u) +x2)
f(x,u) =

atanu>’ h(x.) = 1.

Voo , oa(u) arctar( b
b

The equilibrium point of interest is given by= (0,0) andu = 0. To compute
the linearized model around this equilibrium point, we malke of the formu-
las (5.34). A straightforward calculation yields

A— ﬂ . 0 Vo B— ﬂ _ aVo/b
~ dx|x=0 (0 0)~ ~ dulx=0 | W/b}’
u=0 u=0
oh Jdh
c 0X | x=0 ( ] ’ D OU|x=0 07
u=0 u=0
and the linearized system
dx = Ax+ Bu, y=Cx+Du (5.35)

dt
thus provides an approximation to the original nonlinearadyics.

The linearized model can be simplified further by introduciogmalized vari-
ables, as discussed in Section 2.3. For this system, we chitomséheel base as
the length unit and the unit as the time required to travel eevbase. The nor-
malized state is thus= (x1/b,x2), and the new time variable is= Vgt /b. The
model (5.35) then becomes

dz  (z+w) (0 1 y B

dr_[ y =1lo olZt 1w y= (1 0] Z (5.36)
wherey = a/b. The normalized linear model for vehicle steering with ngoshg
wheels is thus a linear system with only one parameter. O

Feedback Linearization

Another type of linearization is the use of feedback to contree dynamics of a
nonlinear system into those of a linear one. We illustrateliasic idea with an
example.
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Figure 5.15: Feedback linearization. A nonlinear feedback of the form a(x,v) is used
to modify the dynamics of a nonlinear process so that the responsettimmputv to the
outputy is linear. A linear controller can then be used to regulate the system’s dysiam

Example 5.13 Cruise control
Consider again the cruise control system from Example 5.hbse dynamics are
given in equation (5.29):

mdﬁv = apuT(apv) —mgG sgnv) — %pCdA\/2 —mgsin®.

dt
If we chooseu as a feedback law of the form
_ / 1
u= T (o) <u +mgG sgrv) + 2pC\,A\/z , (5.37)
then the resulting dynamics become
dv
ma =u+d, (5.38)

whered = —mgsing@ is the disturbance force due the slope of the road. If we
now define a feedback law fof (such as a proportional-integral-derivative [PID]
controller), we can use equation (5.37) to compute the fir@itithat should be
commanded.

Equation (5.38) is a linear differential equation. We haszasally “inverted”
the nonlinearity through the use of the feedback law (5.8fjs requires that we
have an accurate measurement of the vehicle velacdg well as an accurate
model of the torque characteristics of the engine, geangatirag and friction
characteristics and mass of the car. While such a model igarwrally available
(remembering that the parameter values can change), if sigrda good feedback
law for U, then we can achieve robustness to these uncertainties. O

More generally, we say that a system of the form

dx

dt - f(X,U), y_ h(X)a
is feedback linearizablé we can find a control lawu = a(x,v) such that the
resulting closed loop system is input/output linear withutv and outputy, as
shown in Figure 5.15. To fully characterize such systems yote the scope of
this text, but we note that in addition to changes in the iniietgeneral theory also
allows for (nonlinear) changes in the states that are useggoribe the system,
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keeping only the input and output variables fixed. More defilthis process can
be found in the textbooks by Isidori [Isi95] and Khalil [KhEO

One case that comes up relatively frequently, and is hencehwspecial mention,@
is the set of mechanical systems of the form

M(q)d+C(a,q) = B(q)u.

Hereq € R" is the configuration of the mechanical systévh,g) € R"*" is the
configuration-dependent inertia matr,q, q) € R" represents the Coriolis forces
and additional nonlinear forces (such as stiffness antdrirandB(q) € R™P is

the input matrix. Ifp = n, then we have the same number of inputs and config-
uration variables, and if we further have th&(g) is an invertible matrix for all
configurationgy, then we can choose

u=B"(q)(M(q)v+C(q,q)). (5.39)
The resulting dynamics become
M(@)g=M(v = 4=V

which is a linear system. We can now use the tools of linearesygheory to
analyze and design control laws for the linearized systemgembering to apply
equation (5.39) to obtain the actual input that will be aggblio the system.

This type of control is common in robotics, where it goes byrtame ofcom-
puted torqueand in aircraft flight control, where it is calledi/namic inversion
Some modeling tools like Modelica can generate the code ®inbverse model
automatically. One caution is that feedback linearizatian often cancel out ben-
eficial terms in the natural dynamics, and hence it must be witedcare. Exten-
sions that do not require complete cancellation of nontitiea are discussed in
Khalil [Kha01] and Krst€ et al. [KKK95].

5.5 Further Reading

The majority of the material in this chapter is classical aad be found in most
books on dynamics and control theory, including early warkscontrol such as
James, Nichols and Phillips [JNP47] and more recent textbso&is as Dorf and
Bishop [DB04], Franklin, Powell and Emami-Naeini [FPENO5] and ag®ga01].
An excellent presentation of linear systems based on theixr@tponential is
given in the book by Brockett [Bro70], a more comprehengigatment is given by
Rugh [Rug95] and an elegant mathematical treatment is givSontag [Son98].
Material on feedback linearization can be found in booksamlinear control the-
ory such as Isidori [I1si95] and Khalil [Kha01]. The idea of caeterizing dynamics
by considering the responses to step inputs is due to Hdayisé also introduced
an operator calculus to analyze linear systems. The unitstaprefore also called
theHeaviside step functiodnalysis of linear systems was simplified significantly,
but Heaviside’s work was heavily criticized because of latknathematical rigor,
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as described in the biography by Nahin [Nah88]. The difficaltiesre cleared up
later by the mathematician Laurent Schwartz who develajdbution theoryin
the late 1940s. In engineering, linear systems have toadiiy been analyzed us-
ing Laplace transforms as described in Gardner and Barne4J{zBse of the ma-
trix exponential started with developments of control tlydn the 1960s, strongly
stimulated by a textbook by Zadeh and Desoer [ZD63]. Use ofixigchniques
expanded rapidly when the powerful methods of numeric linégebra were pack-
aged in programs like LabVIEW, MATLAB and Mathematica.

Exercises

5.1(Response to the derivative of a signal) Show thwtif is the output of a linear
system corresponding to inpugt), then the output corresponding to an inp(it) -
is given byy(t). (Hint: Use the definition of the derivativg(t) = Iim£_>o(y(t +

£)—y(t))/€)
5.2(Impulse response and convolution) Show that a sigialcan be decomposed
in terms of the impulse functiod(t)

/6t—r

and use this decomposition plus the principle of superposib show that the
response of a linear system to an inp(tt) (assuming a zero initial condition) can

be written as i
yit) = [ hit=Du(n)ar,
0

whereh(t) is the impulse response of the system.

5.3 (Pulse response for a compartment model) Consider the commgatr model
given in Example 5.7. Compute the step response for the systehtompare
it with Figure 5.10b. Use the principle of superposition tongpate the response
to the 5 s pulse input shown in Figure 5.10c. Use the paramateesky = 0.1,
ki = 0.1, k> = 0.5 andby = 1.5.

5.4 (Matrix exponential for second-order system) Assume ¢hatl and letwy =

woy/1— 2. Show that

lon ]t— [e‘f‘*’otcoswdt e—z‘*btsinwdt]

ex )
p[ —wy  —{wo —e {@igingyt e ¢t cosuyt

5.5 (Lyapunov function for a linear system) Consider a lineatasnx = Ax with
ReA; < O for all eigenvalued j of the matrixA. Show that the matrix

P:/OmeATTQe‘\Tdr

defines a Lyapunov function of the forh(x) = x" Px.



EXERCISES 165

5.6 (Nondiagonal Jordan form) Consider a linear system withrdaloform that
is non-diagonal.

(a) Prove Proposition 5.3 by showing that if the system costaireal eigenvalue
A = 0 with a nontrivial Jordan block, then there exists an iht@andition with a
solution that grows in time.

(b) Extend this argument to the case of complex eigenvaluds ReA = 0 by ?2
using the block Jordan form

0 w 1 O
3o | 0O 0 1
' 10 0 0 w
0 0 —w O
5.7 (Rise time for a first-order system) Consider a first-orderesysaf the form
T dx_ —X+u =X
dt ’ y=x

We say that the parameteis thetime constantor the system since the zero input
system approaches the origined/?. For a first-order system of this form, show
that the rise time for a step response of the system is appat&ly 2r, and that
1%, 2%, and 5% settling times approximately correspondsan 4t and 3.

5.8 (Discrete-time systems) Consider a linear discrete-tiyséesn of the form
x[k+ 1] = AXK] + Bulk], y[k] = Cx[k] 4 DulK].

(a) Show that the general form of the output of a discrete-limear system is
given by the discrete-time convolution equation:

y[k] = CAX[0] + kiCAk—i—lsu[ j] + Dulk].
=

(b) Show that a discrete-time linear system is asymptoyicadible if and only if
all the eigenvalues oA have a magnitude strictly less than 1.

(c) Letulk] = sin(wk) represent an oscillatory input with frequenay< 1 (to
avoid “aliasing”). Show that the steady-state componenhefresponse has gain
M and phasé, where

Me® =Cc(é®l —A)"B+D.
(d) Show that if we have a nonlinear discrete-time system
xk+1] = f(xK,ulk),  xK €R"ueR,
ylk =h(x[k],ulk}),  yeR,

then we can linearize the system around an equilibrium geinte) by defining
the matriced, B, C andD as in equation (5.34).
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5.9 (Keynesian economics) Consider the following simple Keyae macroeco-
nomic model in the form of a linear discrete-time systemulsed in Exercise 5.8:

[CI:[[ttill]]] = [aba—b ;b] [CI:[[tt]]] - [;b] Gltl
Y[t] = Clt) +1[t] + GIt.

Determine the eigenvalues of the dynamics matrix. Whertarenagnitudes of the
eigenvalues less than 1? Assume that the system is in equititwith constant
values capital spendin@, investmentt and government expenditute Explore
what happens when government expenditure increases by W6éothe values
a=0.25andb=0.5.

5.10 Consider a scalar system

dx

—=1-x+u

dt *
Compute the equilibrium points for the unforced systera-(0) and use a Taylor
series expansion around the equilibrium point to compugditiearization. \Verify

that this agrees with the linearization in equation (5.33).

5.11 (Transcriptional regulation) Consider the dynamics of aajie circuit that
implementsself-repressionthe protein produced by a gene is a repressor for that
gene, thus restricting its own production. Using the mogeésented in Exam-
ple 2.13, the dynamics for the system can be written as

dm__a

dt  14+kp?
whereu is a disturbance term that affects RNA transcription amg > 0. Find
the equilibrium points for the system and use the lineardggthmics around each

equilibrium point to determine the local stability of theuddprium point and the
step response of the system to a disturbance.

+ag—ym—u, ((jthO:Bm—ép, (5.40)



