
Chapter Five
Linear Systems

Few physical elements display truly linear characteristics. For example the relation between
force on a spring and displacement of the spring is always nonlinear to some degree. The
relation between current through a resistor and voltage drop across it also deviates from a
straight-line relation. However, if in each case the relation is reasonably linear, then it will
be found that the system behavior will be very close to that obtained by assuming an ideal,
linear physical element, and the analytical simplification is so enormous that we make linear
assumptions wherever we can possibly do so in good conscience.

Robert H. Cannon, Dynamics of Physical Systems, 1967 [Can03].

In Chapters 2–4 we considered the construction and analysis of differential
equation models for dynamical systems. In this chapter we specialize our results to
the case of linear, time-invariant input/output systems. Two central concepts are the
matrix exponential and the convolution equation, through which we can completely
characterize the behavior of a linear system. We also describe some properties of
the input/output response and show how to approximate a nonlinear system by a
linear one.

5.1 Basic Definitions
Wehave seen several instances of linear differential equations in the examples in the
previous chapters, including the spring–mass system (damped oscillator) and the
operational amplifier in the presence of small (nonsaturating) input signals. More
generally, many dynamical systems can bemodeled accurately by linear differential
equations. Electrical circuits are one example of a broad class of systems for which
linear models can be used effectively. Linear models are also broadly applicable in
mechanical engineering, for example, as models of small deviations from equilibria
in solid and fluid mechanics. Signal-processing systems, including digital filters of
the sort used inCD andMP3 players, are another source of good examples, although
these are often best modeled in discrete time (as described in more detail in the
exercises).
In many cases, we create systems with a linear input/output response through

the use of feedback. Indeed, it was the desire for linear behavior that led Harold
S. Black to the invention of the negative feedback amplifier. Almost all modern
signal processing systems, whether analog or digital, use feedback to produce linear
or near-linear input/output characteristics. For these systems, it is often useful to
represent the input/output characteristics as linear, ignoring the internal details
required to get that linear response.

Feedback Systems by Astrom and Murray, v2.10d
http://www.cds.caltech.edu/~murray/FBSwiki
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For other systems, nonlinearities cannot be ignored, especially if one cares about
the global behavior of the system. The predator–prey problem is one example of
this: to capture the oscillatory behavior of the interdependent populations we must
include the nonlinear coupling terms. Other examples include switching behavior
and generating periodic motion for locomotion. However, if we care about what
happens near an equilibrium point, it often suffices to approximate the nonlinear
dynamics by their local linearization, as we already explored briefly in Section 4.3.
The linearization is essentially an approximation of the nonlinear dynamics around
the desired operating point.

Linearity
Wenowproceed to define linearity of input/output systemsmore formally. Consider
a state space system of the form

dx
dt

= f (x, u), y = h(x, u), (5.1)

where x ∈ Rn , u ∈ Rp and y ∈ Rq . As in the previous chapters, we will usually
restrict ourselves to the single-input, single-output case by taking p = q = 1. We
also assume that all functions are smooth and that for a reasonable class of inputs
(e.g., piecewise continuous functions of time) the solutions of equation (5.1) exist
for all time.
It will be convenient to assume that the origin x = 0, u = 0 is an equilibrium

point for this system (ẋ = 0) and that h(0, 0) = 0. Indeed, we can do so without
loss of generality. To see this, suppose that (xe, ue) "= (0, 0) is an equilibrium point
of the system with output ye = h(xe, ue). Then we can define a new set of states,
inputs and outputs,

x̃ = x − xe, ũ = u − ue, ỹ = y − ye,

and rewrite the equations of motion in terms of these variables:

d
dt
x̃ = f (x̃ + xe, ũ + ue) =: f̃ (x̃, ũ),

ỹ = h(x̃ + xe, ũ + ue) − ye =: h̃(x̃, ũ).

In the new set of variables, the origin is an equilibrium point with output 0, and
hence we can carry out our analysis in this set of variables. Once we have obtained
our answers in this new set of variables, we simply “translate” them back to the
original coordinates using x = x̃ + xe, u = ũ + ue and y = ỹ + ye.
Returning to the original equations (5.1), now assuming without loss of gener-

ality that the origin is the equilibrium point of interest, we write the output y(t)
corresponding to the initial condition x(0) = x0 and input u(t) as y(t ; x0, u). Using
this notation, a system is said to be a linear input/output system if the following
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Figure 5.1: Superposition of homogeneous and particular solutions. The first row shows the
input, state and output corresponding to the initial condition response. The second row shows
the same variables corresponding to zero initial condition but nonzero input. The third row
is the complete solution, which is the sum of the two individual solutions.

conditions are satisfied:
(i) y(t ; αx1 + βx2, 0) = αy(t ; x1, 0) + βy(t ; x2, 0),
(ii) y(t ; αx0, δu) = αy(t ; x0, 0) + δy(t ; 0, u),
(iii) y(t ; 0, δu1 + γ u2) = δy(t ; 0, u1) + γ y(t ; 0, u2).

(5.2)

Thus, we define a system to be linear if the outputs are jointly linear in the initial
condition response (u = 0) and the forced response (x(0) = 0). Property (iii) is a
statement of the principle of superposition: the response of a linear system to the
sum of two inputs u1 and u2 is the sum of the outputs y1 and y2 corresponding to
the individual inputs.
The general form of a linear state space system is

dx
dt

= Ax + Bu, y = Cx + Du, (5.3)

where A ∈ Rn×n , B ∈ Rn×p, C ∈ Rq×n and D ∈ Rq×p. In the special case of a
single-input, single-output system, B is a column vector, C is a row vector and D
is scalar. Equation (5.3) is a system of linear first-order differential equations with
input u, state x and output y. It is easy to show that given solutions x1(t) and x2(t)
for this set of equations, they satisfy the linearity conditions.
We define xh(t) to be the solution with zero input (the homogeneous solution)

and the solution xp(t) to be the solution with zero initial condition (a particular
solution). Figure 5.1 illustrates how these two individual solutions can be superim-
posed to form the complete solution.
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It is also possible to show that if a finite-dimensional dynamical system is
input/output linear in the sense we have described, it can always be represented
by a state space equation of the form (5.3) through an appropriate choice of state
variables. In Section 5.2 we will give an explicit solution of equation (5.3), but we
illustrate the basic form through a simple example.

Example 5.1 Scalar system
Consider the first-order differential equation

dx
dt

= ax + u, y = x,

with x(0) = x0. Let u1 = A sinω1t and u2 = B cosω2t . The homogeneous solution
is xh(t) = eat x0, and two particular solutions with x(0) = 0 are

xp1(t) = −A
−ω1eat + ω1 cosω1t + a sinω1t

a2 + ω21
,

xp2(t) = B
aeat − a cosω2t + ω2 sinω2t

a2 + ω22
.

Suppose that we now choose x(0) = αx0 and u = u1 + u2. Then the resulting
solution is the weighted sum of the individual solutions:

x(t) = eat
(
αx0 +

Aω1
a2 + ω21

+
Ba

a2 + ω22

)

− A
ω1 cosω1t + a sinω1t

a2 + ω21
+ B

−a cosω2t + ω2 sinω2t
a2 + ω22

.

(5.4)

To see this, substitute equation (5.4) into the differential equation. Thus, the prop-
erties of a linear system are satisfied. ∇

Time Invariance
Time invariance is an important concept that is used to describe a system whose
properties do not change with time. More precisely, for a time-invariant system if
the input u(t) gives output y(t), then if we shift the time at which the input is applied
by a constant amount a, u(t + a) gives the output y(t + a). Systems that are linear
and time-invariant, often called LTI systems, have the interesting property that their
response to an arbitrary input is completely characterized by their response to step
inputs or their response to short “impulses.”
To explore the consequences of time invariance, we first compute the response

to a piecewise constant input. Assume that the system is initially at rest and consider
the piecewise constant input shown in Figure 5.2a. The input has jumps at times tk ,
and its values after the jumps are u(tk). The input can be viewed as a combination
of steps: the first step at time t0 has amplitude u(t0), the second step at time t1 has
amplitude u(t1) − u(t0), etc.
Assuming that the system is initially at an equilibrium point (so that the initial

condition response is zero), the response to the input can be obtained by superim-
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Figure 5.2: Response to piecewise constant inputs. A piecewise constant signal can be rep-
resented as a sum of step signals (a), and the resulting output is the sum of the individual
outputs (b).

posing the responses to a combination of step inputs. Let H(t) be the response to
a unit step applied at time 0. The response to the first step is then H(t − t0)u(t0),
the response to the second step is H(t − t1)

(
u(t1) − u(t0)

)
, and we find that the

complete response is given by

y(t) = H(t − t0)u(t0) + H(t − t1)
(
u(t1) − u(t0)

)
+ · · ·

=
(
H(t − t0) − H(t − t1)

)
u(t0) +

(
H(t − t1) − H(t − t2)

)
u(t1) + · · ·

=
tn<t∑

n=0

∞
(
H(t − tn) − H(t − tn+1)

)
u(tn)

=
tn<t∑

n=0

H(t − tn) − H(t − tn+1)
tn+1 − tn

u(tn)
(
tn+1 − tn

)
.

An example of this computation is shown in Figure 5.2b.
The response to a continuous input signal is obtained by taking the limit as

tn+1 − tn → 0, which gives

y(t) =
∫ t

0
H ′(t − τ )u(τ )dτ, (5.5)

where H ′ is the derivative of the step response, also called the impulse response.
The response of a linear time-invariant system to any input can thus be computed
from the step response. Notice that the output depends only on the input since we
assumed the system was initially at rest, x(0) = 0. We will derive equation (5.5)
in a slightly different way in the Section 5.3.
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5.2 The Matrix Exponential
Equation (5.5) shows that the output of a linear system can be written as an integral
over the inputs u(t). In this section and the next we derive a more general version
of this formula, which includes nonzero initial conditions. We begin by exploring
the initial condition response using the matrix exponential.

Initial Condition Response
Although we have shown that the solution of a linear set of differential equations
defines a linear input/output system, we have not fully computed the solution of the
system. We begin by considering the homogeneous response corresponding to the
system

dx
dt

= Ax . (5.6)

For the scalar differential equation
dx
dt

= ax, x ∈ R, a ∈ R,

the solution is given by the exponential

x(t) = eat x(0).

Wewish to generalize this to the vector case, where A becomes a matrix. We define
the matrix exponential as the infinite series

eX = I + X +
1
2
X2 +

1
3!
X3 + · · · =

∞∑

k=0

1
k!
Xk, (5.7)

where X ∈ Rn×n is a square matrix and I is the n × n identity matrix. We make
use of the notation

X0 = I, X2 = XX, Xn = Xn−1X,

which defines what we mean by the “power” of a matrix. Equation (5.7) is easy to
remember since it is just the Taylor series for the scalar exponential, applied to the
matrix X . It can be shown that the series in equation (5.7) converges for any matrix
X ∈ Rn×n in the same way that the normal exponential is defined for any scalar
a ∈ R.
Replacing X in equation (5.7) by At , where t ∈ R, we find that

eAt = I + At +
1
2
A2t2 +

1
3!
A3t3 + · · · =

∞∑

k=0

1
k!
Aktk,

and differentiating this expression with respect to t gives

d
dt
eAt = A + A2t +

1
2
A3t2 + · · · = A

∞∑

k=0

1
k!
Aktk = AeAt . (5.8)
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Multiplying by x(0) from the right, we find that x(t) = eAt x(0) is the solution
to the differential equation (5.6) with initial condition x(0). We summarize this
important result as a proposition.

Proposition 5.1. The solution to the homogeneous system of differential equa-
tions (5.6) is given by

x(t) = eAt x(0).

Notice that the form of the solution is exactly the same as for scalar equations,
but we must put the vector x(0) on the right of the matrix eAt .
The form of the solution immediately allows us to see that the solution is linear

in the initial condition. In particular, if xh1(t) is the solution to equation (5.6) with
initial condition x(0) = x01 and xh2(t) with initial condition x(0) = x02, then the
solution with initial condition x(0) = αx01 + βx02 is given by

x(t) = eAt
(
αx01 + βx02

)
=

(
αeAt x01 + βeAt x02) = αxh1(t) + βxh2(t).

Similarly, we see that the corresponding output is given by

y(t) = Cx(t) = αyh1(t) + βyh2(t),

where yh1(t) and yh2(t) are the outputs corresponding to xh1(t) and xh2(t).
We illustrate computation of the matrix exponential by two examples.

Example 5.2 Double integrator
A very simple linear system that is useful in understanding basic concepts is the
second-order system given by

q̈ = u, y = q.

This system is called a double integrator because the input u is integrated twice to
determine the output y.
In state space form, we write x = (q, q̇) and

dx
dt

=

0 1
0 0


 x +


01


 u.

The dynamics matrix of a double integrator is

A =

0 1
0 0


 ,

and we find by direct calculation that A2 = 0 and hence

eAt =

1 t
0 1


 .

Thus the homogeneous solution (u = 0) for the double integrator is given by

x(t) =

1 t
0 1





x1(0)x2(0)


 =


x1(0) + t x2(0)

x2(0)


 ,

y(t) = x1(0) + t x2(0). ∇
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Example 5.3 Undamped oscillator
Asimplemodel for an oscillator, such as the spring–mass systemwith zero damping,
is

q̈ + ω20q = u.

Putting the system into state space form, the dynamics matrix for this system can
be written as

A =

 0 ω0

−ω0 0


 and eAt =


 cosω0t sinω0t

− sinω0t cosω0t


 .

This expression for eAt can be verified by differentiation:
d
dt
eAt =


−ω0 sinω0t ω0 cosω0t

−ω0 cosω0t −ω0 sinω0t




=

 0 ω0

−ω0 0





 cosω0t sinω0t

− sinω0t cosω0t


 = AeAt .

The solution is then given by

x(t) = eAt x(0) =

 cosω0t sinω0t

− sinω0t cosω0t





x1(0)x2(0)


 .

If the system has damping,

q̈ + 2ζω0q + ω20q = u,

the solution is more complicated, but the matrix exponential can be shown to be

e−ω0ζ t




ζeiωd t − ζe−iωd t

2
√
ζ 2 − 1

+
eiωd t + e−iωd t

2
eiωd t − e−iωd t

2
√
ζ 2 − 1

e−iωd t − eiωd t

2
√
ζ 2 − 1

ζe−iωd t − ζeiωd t

2
√
ζ 2 − 1

+
eiωd t + e−iωd t

2




,

where ωd = ω0
√
ζ 2 − 1. Note that ωd and

√
ζ 2 − 1 can be either real or complex,

but the combinations of terms will always yield a real value for the entries in the
matrix exponential. ∇

An important class of linear systems are those that can be converted into diagonal
form. Suppose that we are given a system

dx
dt

= Ax

such that all the eigenvalues of A are distinct. It can be shown (Exercise 4.14) that
we can find an invertible matrix T such that T AT−1 is diagonal. If we choose a set
of coordinates z = T x , then in the new coordinates the dynamics become

dz
dt

= T
dx
dt

= T Ax = T AT−1z.

By construction of T , this system will be diagonal.
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Now consider a diagonal matrix A and the corresponding kth power of At ,
which is also diagonal:

A =




λ1 0
λ2

. . .

0 λn




, (At)k =




λk1t k 0
λk2t k

. . .

0 λkntk




,

It follows from the series expansion that the matrix exponential is given by

eAt =




eλ1t 0
eλ2t

. . .

0 eλn t




.

A similar expansion can be done in the case where the eigenvalues are complex,
using a block diagonal matrix, similar to what was done in Section 4.3.

Jordan Form
!

Somematriceswith equal eigenvalues cannot be transformed to diagonal form.They
can, however, be transformed to a closely related form, called the Jordan form, in
which the dynamics matrix has the eigenvalues along the diagonal. When there are
equal eigenvalues, there may be 1’s appearing in the superdiagonal indicating that
there is coupling between the states.
More specifically, we define a matrix to be in Jordan form if it can be written

as

J =




J1 0 . . . 0 0
0 J2 0 0 0
...

. . .
. . .

...
0 0 Jk−1 0
0 0 . . . 0 Jk




, where Ji =




λi 1 0 . . . 0
0 λi 1 0
...

. . .
. . .

...
0 0 λi 1
0 0 . . . 0 λi




.

(5.9)
Each matrix Ji is called a Jordan block, and λi for that block corresponds to an
eigenvalue of J . A first-order Jordan block can be represented as a system consisting
of an integrator with feedback λ. A Jordan block of higher order can be represented
as series connections of such systems, as illustrated in Figure 5.3.

Theorem 5.2 (Jordan decomposition). Any matrix A ∈ Rn×n can be transformed
into Jordan form with the eigenvalues of A determining λi in the Jordan form.

Proof. See any standard text on linear algebra, such as Strang [Str88]. The special
case where the eigenvalues are distinct is examined in Exercise 4.14.

Converting a matrix into Jordan form can be complicated, although MATLAB
can do this conversion for numerical matrices using the jordan function. The
structure of the resulting Jordan form is particularly interesting since there is no
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Figure 5.3:Representations of linear systemswhere the dynamicsmatrices are Jordan blocks.
A first-order Jordan block can be represented as an integrator with feedback λ, as shown on
the left. Second- and third-order Jordan blocks can be represented as series connections of
integrators with feedback, as shown on the right.

requirement that the individual λi ’s be unique, and hence for a given eigenvalue we
can have one or more Jordan blocks of different sizes.
Once a matrix is in Jordan form, the exponential of the matrix can be computed

in terms of the Jordan blocks:

e J =




e J1 0 . . . 0

0 e J2
...

...
. . . 0

0 . . . 0 e Jk .




. (5.10)

This follows from the block diagonal form of J . The exponentials of the Jordan
blocks can in turn be written as

e Ji t =




1 t t2
2! . . . tn−1

(n−1)!

0 1 t . . . tn−2

(n−2)!
... 1 . . .

...
. . . t

0 . . . 0 1




eλi t . (5.11)

When there are multiple eigenvalues, the invariant subspaces associated with
each eigenvalue correspond to the Jordan blocks of thematrix A. Note that λmay be
complex, in which case the transformation T that converts amatrix into Jordan form
will also be complex. When λ has a nonzero imaginary component, the solutions
will have oscillatory components since

eσ+iωt = eσ t(cosωt + i sinωt).

Wecan nowuse these results to proveTheorem4.1,which states that the equilibrium
point xe = 0 of a linear system is asymptotically stable if and only if Re λi < 0.

Proof of Theorem 4.1. Let T ∈ Cn×n be an invertible matrix that transforms A into
Jordan form, J = T AT−1. Using coordinates z = T x , we can write the solution
z(t) as

z(t) = e Jt z(0).
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Since any solution x(t) can bewritten in terms of a solution z(t)with z(0) = T x(0),
it follows that it is sufficient to prove the theorem in the transformed coordinates.
The solution z(t) can be written in terms of the elements of the matrix exponen-

tial. From equation (5.11) these elements all decay to zero for arbitrary z(0) if and
only if Re λi < 0. Furthermore, if any λi has positive real part, then there exists an
initial condition z(0) such that the corresponding solution increases without bound.
Since we can scale this initial condition to be arbitrarily small, it follows that the
equilibrium point is unstable if any eigenvalue has positive real part.

The existence of a canonical form allows us to prove many properties of linear
systems by changing to a set of coordinates in which the Amatrix is in Jordan form.
We illustrate this in the following proposition, which follows along the same lines
as the proof of Theorem 4.1.

Proposition 5.3. Suppose that the system
dx
dt

= Ax

has no eigenvalues with strictly positive real part and one or more eigenvalues
with zero real part. Then the system is stable if and only if the Jordan blocks
corresponding to each eigenvalue with zero real part are scalar (1× 1) blocks.

Proof. See Exercise 5.6b.

The following example illustrates the use of the Jordan form.

Example 5.4 Linear model of a vectored thrust aircraft
Consider the dynamics of a vectored thrust aircraft such as that described in Exam-
ple 2.9. Suppose that we choose u1 = u2 = 0 so that the dynamics of the system
become

dz
dt

=




z4
z5
z6

−g sin z3 − c
m z4

g(cos z3 − 1) − c
m z5

0




, (5.12)

where z = (x, y, θ, ẋ, ẏ, θ̇). The equilibrium points for the system are given by
setting the velocities ẋ , ẏ and θ̇ to zero and choosing the remaining variables to
satisfy

−g sin z3,e = 0
g(cos z3,e − 1) = 0

=⇒ z3,e = θe = 0.

This corresponds to the upright orientation for the aircraft. Note that xe and ye are
not specified. This is becausewe can translate the system to a new (upright) position
and still obtain an equilibrium point.
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(a) Mode 1 (b) Mode 2

Figure 5.4:Modes of vibration for a system consisting of two masses connected by springs.
In (a) the masses move left and right in synchronization in (b) they move toward or against
each other.

To compute the stability of the equilibrium point, we compute the linearization
using equation (4.11):

A =
∂F
∂z

∣∣∣∣
ze

=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −g −c/m 0 0
0 0 0 0 −c/m 0
0 0 0 0 0 0




.

The eigenvalues of the system can be computed as

λ(A) = {0, 0, 0, 0, −c/m, −c/m}.

We see that the linearized system is not asymptotically stable since not all of the
eigenvalues have strictly negative real part.
To determine whether the system is stable in the sense of Lyapunov, we must

make use of the Jordan form. It can be shown that the Jordan form of A is given by

J =




0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 −c/m 0
0 0 0 0 0 −c/m




.

Since the second Jordan block has eigenvalue 0 and is not a simple eigenvalue, the
linearization is unstable. ∇

Eigenvalues and Modes
The eigenvalues and eigenvectors of a system provide a description of the types of
behavior the system can exhibit. For oscillatory systems, the term mode is often
used to describe the vibration patterns that can occur. Figure 5.4 illustrates the
modes for a system consisting of two masses connected by springs. One pattern is
when both masses oscillate left and right in unison, and another is when the masses
move toward and away from each other.
The initial condition response of a linear system can be written in terms of a

matrix exponential involving the dynamicsmatrix A. The properties of thematrix A
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Figure 5.5: The notion of modes for a second-order system with real eigenvalues. The left
figure shows the phase portrait and the modes corresponding to solutions that start on the
eigenvectors (bold lines). The corresponding time functions are shown on the right.

therefore determine the resulting behavior of the system. Given a matrix A ∈ Rn×n ,
recall that v is an eigenvector of A with eigenvalue λ if

Av = λv.

In general λ and v may be complex-valued, although if A is real-valued, then for
any eigenvalue λ its complex conjugate λ∗ will also be an eigenvalue (with v∗ as
the corresponding eigenvector).
Suppose first that λ and v are a real-valued eigenvalue/eigenvector pair for A.

If we look at the solution of the differential equation for x(0) = v , it follows from
the definition of the matrix exponential that

eAtv =
(
I + At +

1
2
A2t2 + · · ·

)
v = v + λtv +

λ2t2

2
v + · · · = eλtv.

The solution thus lies in the subspace spanned by the eigenvector. The eigenvalue
λ describes how the solution varies in time, and this solution is often called a mode
of the system. (In the literature, the term “mode” is also often used to refer to the
eigenvalue rather than the solution.)
If we look at the individual elements of the vectors x and v , it follows that

xi (t)
x j (t)

=
eλtvi
eλtv j

=
vi
v j

,

and hence the ratios of the components of the state x are constants for a (real) mode.
The eigenvector thus gives the “shape” of the solution and is also called a mode
shape of the system. Figure 5.5 illustrates the modes for a second-order system
consisting of a fast mode and a slow mode. Notice that the state variables have the
same sign for the slow mode and different signs for the fast mode.
The situation ismore complicatedwhen the eigenvalues of A are complex. Since

A has real elements, the eigenvalues and the eigenvectors are complex conjugates
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λ = σ ± iω and v = u ± iw, which implies that

u =
v + v∗

2
, w =

v − v∗

2i
.

Making use of the matrix exponential, we have

eAtv = eλt(u + iw) = eσ t
(
(u cosωt − w sinωt) + i(u sinωt + w cosωt)

)
,

from which it follows that

eAtu =
1
2

(
eAtv + eAtv∗

)
= ueσ t cosωt − weσ t sinωt,

eAtw =
1
2i

(
eAtv − eAtv∗

)
= ueσ t sinωt + weσ t cosωt .

A solution with initial conditions in the subspace spanned by the real part u and
imaginary partw of the eigenvector will thus remain in that subspace. The solution
will be a logarithmic spiral characterized by σ and ω. We again call the solution
corresponding to λ a mode of the system, and v the mode shape.
If a matrix A has n distinct eigenvalues λ1, . . . , λn , then the initial condition

response can be written as a linear combination of the modes. To see this, suppose
for simplicity that we have all real eigenvalueswith corresponding unit eigenvectors
v1, . . . , vn . From linear algebra, these eigenvectors are linearly independent, and
we can write the initial condition x(0) as

x(0) = α1v1 + α2v2 + · · · + αnvn.

Using linearity, the initial condition response can be written as

x(t) = α1eλ1tv1 + α2eλ2tv2 + · · · + αneλn tvn.

Thus, the response is a linear combination of the modes of the system, with the
amplitude of the individual modes growing or decaying as eλi t . The case for distinct
complex eigenvalues follows similarly (the case for nondistinct eigenvalues is more
subtle and requiresmaking use of the Jordan formdiscussed in the previous section).

Example 5.5 Coupled spring–mass system
Consider the spring–mass system shown in Figure 5.4, but with the addition of
dampers on each mass. The equations of motion of the system are

mq̈1 = −2kq1 − cq̇1 + kq2, mq̈2 = kq1 − 2kq2 − cq̇2.

In state space form, we define the state to be x = (q1, q2, q̇1, q̇2), andwe can rewrite
the equations as

dx
dt

=




0 0 1 0
0 0 0 1

−
2k
m

k
m

−
c
m

0

k
m

−
2k
m

0 −
c
m




x .
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We now define a transformation z = T x that puts this system into a simpler form.
Let z1 = 1

2 (q1 + q2), z2 = ż1, z3 = 1
2 (q1 − q2) and z4 = ż3, so that

z = T x =
1
2




1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1



x .

In the new coordinates, the dynamics become

dz
dt

=




0 1 0 0

−
k
m

−
c
m

0 0

0 0 0 1

0 0 −
3k
m

−
c
m




z,

and we see that the system is in block diagonal (or modal) form.
In the z coordinates, the states z1 and z2 parameterize one mode with eigen-

values λ ≈ c/(2
√
km) ± i

√
k/m, and the states z3 and z4 another mode with

λ ≈ c/(2
√
3km) ± i

√
3k/m. From the form of the transformation T we see that

thesemodes correspond exactly to themodes in Figure 5.4, in which q1 and q2 move
either toward or against each other. The real and imaginary parts of the eigenvalues
give the decay rates σ and frequencies ω for each mode. ∇

5.3 Input/Output Response
In the previous section we saw how to compute the initial condition response using
the matrix exponential. In this section we derive the convolution equation, which
includes the inputs and outputs as well.

The Convolution Equation
We return to the general input/output case in equation (5.3), repeated here:

dx
dt

= Ax + Bu, y = Cx + Du. (5.13)

Using the matrix exponential, the solution to equation (5.13) can be written as
follows.

Theorem 5.4. The solution to the linear differential equation (5.13) is given by

x(t) = eAt x(0) +
∫ t

0
eA(t−τ )Bu(τ )dτ. (5.14)

Proof. To prove this, we differentiate both sides and use the property (5.8) of the
matrix exponential. This gives

dx
dt

= AeAt x(0) +
∫ t

0
AeA(t−τ )Bu(τ )dτ + Bu(t) = Ax + Bu,
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Figure 5.6: Pulse response and impulse response. (a) The rectangles show pulses of width
5, 2.5 and 0.8, each with total area equal to 1. The arrow denotes an impulse δ(t) defined
by equation (5.17). The corresponding pulse responses for a linear system with eigenvalues
λ = {−0.08, −0.62} are shown in (b) as dashed lines. The solid line is the true impulse
response, which is well approximated by a pulse of duration 0.8.

which proves the result. Notice that the calculation is essentially the same as for
proving the result for a first-order equation.

It follows from equations (5.13) and (5.14) that the input/output relation for a
linear system is given by

y(t) = CeAt x(0) +
∫ t

0
CeA(t−τ )Bu(τ )dτ + Du(t). (5.15)

It is easy to see from this equation that the output is jointly linear in both the
initial conditions and the input, which follows from the linearity of matrix/vector
multiplication and integration.
Equation (5.15) is called the convolution equation, and it represents the general

form of the solution of a system of coupled linear differential equations. We see
immediately that the dynamics of the system, as characterized by the matrix A, play
a critical role in both the stability and performance of the system. Indeed, the matrix
exponential describes bothwhat happens when we perturb the initial condition and
how the system responds to inputs.

Another interpretation of the convolution equation can be given using the concept!
of the impulse response of a system. Consider the application of an input signal
u(t) given by the following equation:

u(t) = pε(t) =






0 t < 0
1/ε 0 ≤ t < ε

0 t ≥ ε.
(5.16)

This signal is a pulse of duration ε and amplitude 1/ε, as illustrated in Figure 5.6a.
We define an impulse δ(t) to be the limit of this signal as ε → 0:

δ(t) = lim
ε→0

pε(t). (5.17)
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This signal, sometimes called a delta function, is not physically achievable but
provides a convenient abstraction in understanding the response of a system. Note
that the integral of an impulse is 1:

∫ t

0
δ(τ ) dτ =

∫ t

0
lim
ε→0

pε(t) dτ = lim
ε→0

∫ t

0
pε(t) dτ

= lim
ε→0

∫ ε

0
1/ε dτ = 1 t > 0.

In particular, the integral of an impulse over an arbitrarily short period of time is
identically 1.
We define the impulse response of a system h(t) to be the output corresponding

to having an impulse as its input:

h(t) =
∫ t

0
CeA(t−τ )Bδ(τ ) dτ = CeAt B, (5.18)

where the second equality follows from the fact that δ(t) is zero everywhere except
the origin and its integral is identically 1.We can nowwrite the convolution equation
in terms of the initial condition response, the convolution of the impulse response
and the input signal, and the direct term:

y(t) = CeAt x(0) +
∫ t

0
h(t − τ )u(τ ) dτ + Du(t). (5.19)

One interpretation of this equation, explored in Exercise 5.2, is that the response
of the linear system is the superposition of the response to an infinite set of shifted
impulses whose magnitudes are given by the input u(t). This is essentially the
argument used in analyzing Figure 5.2 and deriving equation (5.5). Note that the
second term in equation (5.19) is identical to equation (5.5), and it can be shown that
the impulse response is formally equivalent to the derivative of the step response.
The use of pulses as approximations of the impulse function also provides a

mechanism for identifying the dynamics of a system from data. Figure 5.6b shows
the pulse responses of a system for different pulse widths. Notice that the pulse
responses approach the impulse response as the pulse width goes to zero. As a
general rule, if the fastest eigenvalue of a stable system has real part −σmax, then a
pulse of length ε will provide a good estimate of the impulse response if εσmax / 1.
Note that for Figure 5.6, a pulse width of ε = 1 s gives εσmax = 0.62 and the pulse
response is already close to the impulse response.

Coordinate Invariance
The components of the input vector u and the output vector y are given by the chosen
inputs and outputs of amodel, but the state variables depend on the coordinate frame
chosen to represent the state. This choice of coordinates affects the values of the
matrices A, B and C that are used in the model. (The direct term D is not affected
since it maps inputs to outputs.) We now investigate some of the consequences of
changing coordinate systems.
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Figure 5.7:Coupled springmass system. Eachmass is connected to two springswith stiffness
k and a viscous damper with damping coefficient c. The mass on the right is driven through
a spring connected to a sinusoidally varying attachment.

Introduce new coordinates z by the transformation z = T x , where T is an
invertible matrix. It follows from equation (5.3) that

dz
dt

= T (Ax + Bu) = T AT−1z + T Bu =: Ãz + B̃u,

y = Cx + Du = CT−1z + Du =: C̃z + Du.

The transformed system has the same form as equation (5.3), but the matrices A,
B and C are different:

Ã = T AT−1, B̃ = T B, C̃ = CT−1. (5.20)

There are often special choices of coordinate systems that allowus to see a particular
property of the system, hence coordinate transformations can be used to gain new
insight into the dynamics.
We can also compare the solution of the system in transformed coordinates to

that in the original state coordinates. We make use of an important property of the
exponential map,

eT ST−1
= T eST−1,

which can be verified by substitution in the definition of the matrix exponential.
Using this property, it is easy to show that

x(t) = T−1z(t) = T−1eÃt T x(0) + T−1
∫ t

0
eÃ(t−τ ) B̃u(τ ) dτ.

From this form of the equation, we see that if it is possible to transform A into
a form Ã for which the matrix exponential is easy to compute, we can use that
computation to solve the general convolution equation for the untransformed state
x by simple matrix multiplications. This technique is illustrated in the following
example.

Example 5.6 Coupled spring–mass system
Consider the coupled spring–mass system shown in Figure 5.7. The input to this
system is the sinusoidal motion of the end of the rightmost spring, and the output
is the position of each mass, q1 and q2. The equations of motion are given by

mq̈1 = −2kq1 − cq̇1 + kq2, mq̈2 = kq1 − 2kq2 − cq̇2 + ku.
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In state space form, we define the state to be x = (q1, q2, q̇1, q̇2), andwe can rewrite
the equations as

dx
dt

=




0 0 1 0
0 0 0 1

−
2k
m

k
m

−
c
m

0

k
m

−
2k
m

0 −
c
m




x +




0
0
0
k
m




u.

This is a coupled set of four differential equations and is quite complicated to solve
in analytical form.
The dynamics matrix is the same as in Example 5.5, and we can use the coor-

dinate transformation defined there to put the system in modal form:

dz
dt

=




0 1 0 0

−
k
m

−
c
m

0 0

0 0 0 1

0 0 −
3k
m

−
c
m




z +




0
k
2m
0

−
k
2m




u.

Note that the resulting matrix equations are block diagonal and hence decoupled.
We can solve for the solutions by computing the solutions of two sets of second-
order systems represented by the states (z1, z2) and (z3, z4). Indeed, the functional
form of each set of equations is identical to that of a single spring–mass system.
(The explicit solution is derived in Section 6.3.)
Once we have solved the two sets of independent second-order equations, we

can recover the dynamics in the original coordinates by inverting the state transfor-
mation and writing x = T−1z. We can also determine the stability of the system
by looking at the stability of the independent second-order systems. ∇

Steady-State Response
Given a linear input/output system

dx
dt

= Ax + Bu, y = Cx + Du, (5.21)

the general form of the solution to equation (5.21) is given by the convolution
equation:

y(t) = CeAt x(0) +
∫ t

0
CeA(t−τ )Bu(τ )dτ + Du(t).

Wesee from the formof this equation that the solution consists of an initial condition
response and an input response.
The input response, corresponding to the last two terms in the equation above,

itself consists of two components—the transient response and the steady-state
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Figure 5.8: Transient versus steady-state response. The input to a linear system is shown in
(a), and the corresponding output with x(0) = 0 is shown in (b). The output signal initially
undergoes a transient before settling into its steady-state behavior.

response. The transient response occurs in the first period of time after the input
is applied and reflects the mismatch between the initial condition and the steady-
state solution. The steady-state response is the portion of the output response that
reflects the long-term behavior of the system under the given inputs. For inputs that
are periodic the steady-state response will often be periodic, and for constant inputs
the response will often be constant. An example of the transient and the steady-state
response for a periodic input is shown in Figure 5.8.
A particularly common form of input is a step input, which represents an abrupt

change in input from one value to another. A unit step (sometimes called the Heav-
iside step function) is defined as

u = S(t) =

{
0 t = 0
1 t > 0.

The step responseof the system (5.21) is defined as the output y(t) starting fromzero
initial condition (or the appropriate equilibrium point) and given a step input. We
note that the step input is discontinuous and hence is not practically implementable.
However, it is a convenient abstraction that is widely used in studying input/output
systems.
We can compute the step response to a linear system using the convolution

equation. Setting x(0) = 0 and using the definition of the step input above, we
have

y(t) =
∫ t

0
CeA(t−τ )Bu(τ )dτ + Du(t) = C

∫ t

0
eA(t−τ )Bdτ + D

= C
∫ t

0
eAσ Bdσ + D = C

(
A−1eAσ B

)∣∣σ=t
σ=0 + D

= CA−1eAt B − CA−1B + D.

If A has eigenvalues with negative real part (implying that the origin is a stable
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Figure 5.9: Sample step response. The rise time, overshoot, settling time and steady-state
value give the key performance properties of the signal.

equilibrium point in the absence of any input), then we can rewrite the solution as

y(t) = CA−1eAt B︸ ︷︷ ︸
transient

+ D − CA−1B︸ ︷︷ ︸
steady-state

, t > 0. (5.22)

The first term is the transient response and decays to zero as t → ∞. The second
term is the steady-state response and represents the value of the output for large
time.
A sample step response is shown in Figure 5.9. Several terms are used when

referring to a step response. The steady-state value yss of a step response is the
final level of the output, assuming it converges. The rise time Tr is the amount of
time required for the signal to go from 10% of its final value to 90% of its final
value. It is possible to define other limits as well, but in this book we shall use these
percentages unless otherwise indicated. The overshoot Mp is the percentage of the
final value by which the signal initially rises above the final value. This usually
assumes that future values of the signal do not overshoot the final value by more
than this initial transient, otherwise the term can be ambiguous. Finally, the settling
time Ts is the amount of time required for the signal to stay within 2% of its final
value for all future times. The settling time is also sometimes defined as reaching 1%
or 5% of the final value (see Exercise 5.7). In general these performance measures
can depend on the amplitude of the input step, but for linear systems the last three
quantities defined above are independent of the size of the step.

Example 5.7 Compartment model
Consider the compartment model illustrated in Figure 5.10 and described in more
detail in Section 3.6. Assume that a drug is administered by constant infusion in
compartment V1 and that the drug has its effect in compartment V2. To assess how
quickly the concentration in the compartment reaches steady state we compute the
step response, which is shown in Figure 5.10b. The step response is quite slow,
with a settling time of 39 min. It is possible to obtain the steady-state concentration
much faster by having a faster injection rate initially, as shown in Figure 5.10c.
The response of the system in this case can be computed by combining two step
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Figure 5.10:Response of a compartmentmodel to a constant drug infusion. A simple diagram
of the system is shown in (a). The step response (b) shows the rate of concentration buildup
in compartment 2. In (c) a pulse of initial concentration is used to speed up the response.

responses (Exercise 5.3). ∇

Another common input signal to a linear system is a sinusoid (or a combination
of sinusoids). The frequency responseof an input/output systemmeasures theway in
which the system responds to a sinusoidal excitation on one of its inputs. Aswe have
already seen for scalar systems, the particular solution associated with a sinusoidal
excitation is itself a sinusoid at the same frequency. Hence we can compare the
magnitude and phase of the output sinusoid to the input. More generally, if a system
has a sinusoidal output response at the same frequency as the input forcing, we can
speak of the frequency response of the system.
To see this in more detail, we must evaluate the convolution equation (5.15) for

u = cosωt . This turns out to be a very messy calculation, but we can make use of
the fact that the system is linear to simplify the derivation. In particular, we note
that

cosωt =
1
2

(
eiωt + e−iωt

)
.

Since the system is linear, it suffices to compute the response of the system to the
complex input u(t) = est and we can then reconstruct the input to a sinusoid by
averaging the responses corresponding to s = iω and s = −iω.
Applying the convolution equation to the input u = est we have

y(t) = CeAt x(0) +
∫ t

0
CeA(t−τ )Besτdτ + Dest

= CeAt x(0) + CeAt
∫ t

0
e(s I−A)τ Bdτ + Dest .

If we assume that none of the eigenvalues of A are equal to s = ±iω, then the
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matrix s I − A is invertible, and we can write

y(t) = CeAt x(0) + CeAt
(
(s I − A)−1e(s I−A)τ B

)∣∣∣
t

0
+ Dest

= CeAt x(0) + CeAt(s I − A)−1
(
e(s I−A)t − I

)
B + Dest

= CeAt x(0) + C(s I − A)−1est B − CeAt(s I − A)−1B + Dest ,

and we obtain

y(t) = CeAt
(
x(0) − (s I − A)−1B

)

︸ ︷︷ ︸
transient

+
(
C(s I − A)−1B + D

)
est

︸ ︷︷ ︸
steady-state

. (5.23)

Notice that once again the solution consists of both a transient component and a
steady-state component. The transient component decays to zero if the system is
asymptotically stable and the steady-state component is proportional to the (com-
plex) input u = est .
We can simplify the form of the solution slightly further by rewriting the steady-

state response as
yss(t) = Meiθest = Me(st+iθ),

where
Meiθ = C(s I − A)−1B + D (5.24)

and M and θ represent the magnitude and phase of the complex number C(s I −
A)−1B + D. When s = iω, we say that M is the gain and θ is the phase of the
system at a given forcing frequency ω. Using linearity and combining the solutions
for s = +iω and s = −iω, we can show that ifwe have an input u = Au sin(ωt+ψ)
and an output y = Ay sin(ωt + ϕ), then

gain(ω) =
Ay
Au

= M, phase(ω) = ϕ − ψ = θ .

The steady-state solution for a sinusoid u = cosωt is now given by

yss(t) = M cos(ωt + θ).

If the phase θ is positive, we say that the output leads the input, otherwise we say
it lags the input.
A sample sinusoidal response is illustrated in Figure 5.11a. The dashed line

shows the input sinusoid, which has amplitude 1. The output sinusoid is shown as a
solid line and has a different amplitude plus a shifted phase. The gain is the ratio of
the amplitudes of the sinusoids, which can be determined by measuring the height
of the peaks. The phase is determined by comparing the ratio of the time between
zero crossings of the input and output to the overall period of the sinusoid:

θ = −2π ·
1T
T

.
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Figure 5.11: Response of a linear system to a sinusoid. (a) A sinusoidal input of magnitude
Au (dashed) gives a sinusoidal output of magnitude Ay (solid), delayed by 1T seconds. (b)
Frequency response, showing gain and phase. The gain is given by the ratio of the output
amplitude to the input amplitude, M = Ay/Au . The phase lag is given by θ = −2π1T/T ;
it is negative for the case shown because the output lags the input.

A convenient way to view the frequency response is to plot how the gain and
phase in equation (5.24) depend on ω (through s = iω). Figure 5.11b shows an
example of this type of representation.

Example 5.8 Active band-pass filter
Consider the op amp circuit shown in Figure 5.12a. We can derive the dynamics of
the system by writing the nodal equations, which state that the sum of the currents
at any node must be zero. Assuming that v− = v+ = 0, as we did in Section 3.3,
we have

0 =
v1 − v2
R1

− C1
dv2
dt

, 0 = C1
dv2
dt

+
v3
R2

+ C2
dv3
dt

.

Choosing v2 and v3 as our states and using these equations, we obtain
dv2
dt

=
v1 − v2
R1C1

,
dv3
dt

=
−v3
R2C2

−
v1 − v2
R1C2

.

Rewriting these in linear state space form, we obtain

dx
dt

=




−
1

R1C1
0

1
R1C2

−
1

R2C2



x +




1
R1C1
−1
R1C2



u, y =


0 1


 x, (5.25)

where x = (v2, v3), u = v1 and y = v3.
The frequency response for the system can be computed using equation (5.24):

Me jθ = C(s I − A)−1B + D = −
R2
R1

R1C1s
(1+ R1C1s)(1+ R2C2s)

, s = iω.

The magnitude and phase are plotted in Figure 5.12b for R1 = 100 2, R2 = 5 k2
and C1 = C2 = 100 µF. We see that the circuit passes through signals with
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Figure 5.12: Active band-pass filter. The circuit diagram (a) shows an op amp with two RC
filters arranged to provide a band-pass filter. The plot in (b) shows the gain and phase of the
filter as a function of frequency. Note that the phase starts at -90◦ due to the negative gain of
the operational amplifier.

frequencies at about 10 rad/s, but attenuates frequencies below 5 rad/s and above
50 rad/s. At 0.1 rad/s the input signal is attenuated by 20× (0.05). This type of
circuit is called a band-pass filter since it passes through signals in the band of
frequencies between 5 and 50 rad/s. ∇

As in the case of the step response, a number of standard properties are defined
for frequency responses. The gain of a system at ω = 0 is called the zero frequency
gain and corresponds to the ratio between a constant input and the steady output:

M0 = −CA−1B + D.

The zero frequency gain is well defined only if A is invertible (and, in particular, if
it does not have eigenvalues at 0). It is also important to note that the zero frequency
gain is a relevant quantity only when a system is stable about the corresponding
equilibrium point. So, if we apply a constant input u = r , then the corresponding
equilibrium point xe = −A−1Br must be stable in order to talk about the zero
frequency gain. (In electrical engineering, the zero frequency gain is often called
the DC gain. DC stands for direct current and reflects the common separation of
signals in electrical engineering into a direct current (zero frequency) term and an
alternating current (AC) term.)
The bandwidth ωb of a system is the frequency range over which the gain has

decreased by no more than a factor of 1/
√
2 from its reference value. For systems

with nonzero, finite zero frequency gain, the bandwidth is the frequency where
the gain has decreased by 1/

√
2 from the zero frequency gain. For systems that

attenuate low frequencies but pass through high frequencies, the reference gain
is taken as the high-frequency gain. For a system such as the band-pass filter in
Example 5.8, bandwidth is defined as the range of frequencies where the gain is
larger than 1/

√
2 of the gain at the center of the band. (For Example 5.8 this would

give a bandwidth of approximately 50 rad/s.)
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Figure 5.13: AFM frequency response. (a) A block diagram for the vertical dynamics of an
atomic force microscope in contact mode. The plot in (b) shows the gain and phase for the
piezo stack. The response contains two frequency peaks at resonances of the system, along
with an antiresonance at ω = 268 krad/s. The combination of a resonant peak followed by
an antiresonance is common for systems with multiple lightly damped modes.

Another important property of the frequency response is the resonant peak
Mr , the largest value of the frequency response, and the peak frequency ωmr , the
frequencywhere themaximumoccurs. These two properties describe the frequency
of the sinusoidal input that produces the largest possible output and the gain at the
frequency.

Example 5.9 Atomic force microscope in contact mode
Consider the model for the vertical dynamics of the atomic force microscope in
contact mode, discussed in Section 3.5. The basic dynamics are given by equa-
tion (3.23). The piezo stack can be modeled by a second-order system with un-
damped natural frequency ω3 and damping ratio ζ3. The dynamics are then de-
scribed by the linear system

dx
dt

=




0 1 0 0
−k2/(m1 + m2) −c2/(m1 + m2) 1/m2 0

0 0 0 ω3
0 0 −ω3 −2ζ3ω3



x +




0
0
0
ω3



u,

y =
m2

m1 + m2


 m1k2
m1 + m2

m1c2
m1 + m2

1 0

 x,

where the input signal is the drive signal to the amplifier and the output is the elon-
gation of the piezo. The frequency response of the system is shown in Figure 5.13b.
The zero frequency gain of the system isM0 = 1. There are two resonant poles with
peaks Mr1 = 2.12 at ωmr1 = 238 krad/s and Mr2 = 4.29 at ωmr2 = 746 krad/s.
The bandwidth of the system, defined as the lowest frequency where the gain is√
2 less than the zero frequency gain, is ωb = 292 krad/s. There is also a dip in

the gain Md = 0.556 for ωmd = 268 krad/s. This dip, called an antiresonance, is
associated with a dip in the phase and limits the performance when the system is
controlled by simple controllers, as we will see in Chapter 10. ∇
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Sampling
It is often convenient to use both differential and difference equations in modeling
and control. For linear systems it is straightforward to transform from one to the
other. Consider the general linear system described by equation (5.13) and assume
that the control signal is constant over a sampling interval of constant length h. It
follows from equation (5.14) of Theorem 5.4 that

x(t + h) = eAhx(t) +
∫ t+h

t
eA(t+h−τ )Bu(τ ) dτ = 3x(t) + 4u(t), (5.26)

where we have assumed that the discontinuous control signal is continuous from
the right. The behavior of the system at the sampling times t = kh is described by
the difference equation

x[k + 1] = 3x[k]+ 4u[k], y[k] = Cx[k]+ Du[k]. (5.27)

Notice that the difference equation (5.27) is an exact representation of the behavior
of the system at the sampling instants. Similar expressions can also be obtained if
the control signal is linear over the sampling interval.
The transformation from (5.26) to (5.27) is called sampling. The relations be-

tween the system matrices in the continuous and sampled representations are as
follows:

3 = eAh, 4 =
(∫ h

0
eAs ds

)
B; A =

1
h
log3, B =

(∫ h

0
eAs ds

)−1
4.

(5.28)
Notice that if A is invertible, we have

4 = A−1(eAh − I
)
B.

All continuous-time systems can be sampled to obtain a discrete-time version,
but there are discrete-time systems that do not have a continuous-time equivalent.
The precise condition is that the matrix 3 cannot have real eigenvalues on the
negative real axis.

Example 5.10 IBM Lotus server
In Example 2.4 we described how the dynamics of an IBM Lotus server were
obtained as the discrete-time system

y[k + 1] = ay[k]+ bu[k],

where a = 0.43, b = 0.47 and the sampling period is h = 60 s. A differential
equation model is needed if we would like to design control systems based on
continuous-time theory. Such a model is obtained by applying equation (5.28);
hence

A =
log a
h

= −0.0141, B =
(∫ h

0
eAt dt

)−1
b = 0.0116,

and we find that the difference equation can be interpreted as a sampled version of
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the ordinary differential equation

dx
dt

= −0.0141x + 0.0116u.

∇

5.4 Linearization
As described at the beginning of the chapter, a common source of linear system
models is through the approximation of a nonlinear system by a linear one. These
approximations are aimed at studying the local behavior of a system, where the
nonlinear effects are expected to be small. In this section we discuss how to locally
approximate a system by its linearization and what can be said about the approxi-
mation in terms of stability. We begin with an illustration of the basic concept using
the cruise control example from Chapter 3.

Example 5.11 Cruise control
The dynamics for the cruise control system were derived in Section 3.1 and have
the form

m
dv

dt
= αnuT (αnv) − mgCr sgn(v) −

1
2
ρCv Av2 − mg sin θ, (5.29)

where the first term on the right-hand side of the equation is the force generated
by the engine and the remaining three terms are the rolling friction, aerodynamic
drag and gravitational disturbance force. There is an equilibrium (ve, ue) when the
force applied by the engine balances the disturbance forces.
To explore the behavior of the system near the equilibrium we will linearize the

system. A Taylor series expansion of equation (5.29) around the equilibrium gives

d(v − ve)

dt
= a(v − ve) − bg(θ − θe) + b(u − ue) + higher order terms, (5.30)

where

a =
ueα2nT ′(αnve) − ρCv Ave

m
, bg = g cos θe, b =

αnT (αnve)

m
. (5.31)

Notice that the term corresponding to rolling friction disappears if v = 0. For a car
in fourth gear with ve = 25 m/s, θe = 0 and the numerical values for the car from
Section 3.1, the equilibrium value for the throttle is ue = 0.1687 and the parameters
are a = −0.0101, b = 1.32 and c = 9.8. This linear model describes how small
perturbations in the velocity about the nominal speed evolve in time.
Figure 5.14 shows a simulation of a cruise controller with linear and nonlinear

models; the differences between the linear and nonlinear models are small, and
hence the linearized model provides a reasonable approximation. ∇
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Figure 5.14: Simulated response of a vehicle with PI cruise control as it climbs a hill with a
slope of 4◦. The solid line is the simulation based on a nonlinear model, and the dashed line
shows the corresponding simulation using a linear model. The controller gains are kp = 0.5
and ki = 0.1.

Jacobian Linearization Around an Equilibrium Point
To proceed more formally, consider a single-input, single-output nonlinear system

dx
dt

= f (x, u), x ∈ R
n, u ∈ R,

y = h(x, u), y ∈ R,
(5.32)

with an equilibrium point at x = xe, u = ue. Without loss of generality we can
assume that xe = 0 and ue = 0, although initially we will consider the general case
to make the shift of coordinates explicit.
To study the local behavior of the system around the equilibrium point (xe, ue),

we suppose that x − xe and u − ue are both small, so that nonlinear perturbations
around this equilibrium point can be ignored comparedwith the (lower-order) linear
terms. This is roughly the same type of argument that is used when we do small-
angle approximations, replacing sin θ with θ and cos θ with 1 for θ near zero.
As we did in Chapter 4, we define a new set of state variables z, as well as inputs

v and outputs w:

z = x − xe, v = u − ue, w = y − h(xe, ue).

These variables are all close to zero when we are near the equilibrium point, and so
in these variables the nonlinear terms can be thought of as the higher-order terms in
a Taylor series expansion of the relevant vector fields (assuming for now that these
exist).
Formally, the Jacobian linearization of the nonlinear system (5.32) is

dz
dt

= Az + Bv, w = Cz + Dv, (5.33)
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where

A =
∂ f
∂x

∣∣∣∣
(xe,ue)

, B =
∂ f
∂u

∣∣∣∣
(xe,ue)

, C =
∂h
∂x

∣∣∣∣
(xe,ue)

, D =
∂h
∂u

∣∣∣∣
(xe,ue)

. (5.34)

The system (5.33) approximates the original system (5.32) when we are near the
equilibrium point about which the system was linearized. Using Theorem 4.3, if
the linearization is asymptotically stable, then the equilibrium point xe is locally
asymptotically stable for the full nonlinear system.
It is important to note that we can define the linearization of a system only near

an equilibrium point. To see this, consider a polynomial system
dx
dt

= a0 + a1x + a2x2 + a3x3 + u,

where a0 "= 0. A set of equilibrium points for this system is given by (xe, ue) =
(xe, −a0−a1xe −a2x2e −a3x3e ), and we can linearize around any of them. Suppose
that we try to linearize around the origin of the system x = 0, u = 0. If we drop
the higher-order terms in x , then we get

dx
dt

= a0 + a1x + u,

which is not the Jacobian linearization if a0 "= 0. The constant term must be kept,
and it is not present in (5.33). Furthermore, even if we kept the constant term in the
approximate model, the system would quickly move away from this point (since it
is “driven” by the constant term a0), and hence the approximation could soon fail
to hold.
Software for modeling and simulation frequently has facilities for performing

linearization symbolically or numerically. TheMATLAB commandtrim finds the
equilibrium, and linmod extracts linear state space models from a SIMULINK
system around an operating point.

Example 5.12 Vehicle steering
Consider the vehicle steering system introduced in Example 2.8. The nonlinear
equations of motion for the system are given by equations (2.23)–(2.25) and can
be written as

d
dt




x
y
θ


 =




v cos (α(δ) + θ)
v sin (α(δ) + θ)

v0
b
tan δ




, α(δ) = arctan
(a tan δ

b

)
,

where x , y and θ are the position and orientation of the center of mass of the
vehicle, v0 is the velocity of the rear wheel, b is the distance between the front and
rear wheels and δ is the angle of the front wheel. The function α(δ) is the angle
between the velocity vector and the vehicle’s length axis.
We are interested in the motion of the vehicle about a straight-line path (θ = θ0)

with fixed velocity v0 "= 0. To find the relevant equilibrium point, we first set θ̇ = 0
and we see that we must have δ = 0, corresponding to the steering wheel being
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straight. This also yields α = 0. Looking at the first two equations in the dynamics,
we see that the motion in the xy direction is by definition not at equilibrium since
ξ̇ 2 + η̇2 = v20 "= 0. Therefore we cannot formally linearize the full model.
Suppose instead that we are concerned with the lateral deviation of the vehicle

from a straight line. For simplicity, we let θe = 0, which corresponds to driving
along the x axis. We can then focus on the equations of motion in the y and θ
directions. With some abuse of notation we introduce the state x = (y, θ) and
u = δ. The system is then in standard form with

f (x, u) =




v sin (α(u) + x2)
v0
b
tan u


 , α(u) = arctan

(a tan u
b

)
, h(x, u) = x1.

The equilibrium point of interest is given by x = (0, 0) and u = 0. To compute the
linearizedmodel around this equilibrium point, wemake use of the formulas (5.34).
A straightforward calculation yields

A =
∂ f
∂x

∣∣∣∣ x=0
u=0

=

0 v0
0 0


 , B =

∂ f
∂u

∣∣∣∣ x=0
u=0

=

av0/b

v0/b


 ,

C =
∂h
∂x

∣∣∣∣ x=0
u=0

=

1 0


 , D =

∂h
∂u

∣∣∣∣ x=0
u=0

= 0,

and the linearized system
dx
dt

= Ax + Bu, y = Cx + Du (5.35)

thus provides an approximation to the original nonlinear dynamics.
The linearized model can be simplified further by introducing normalized vari-

ables, as discussed in Section 2.3. For this system, we choose the wheel base b
as the length unit and the unit as the time required to travel a wheel base. The
normalized state is thus z = (x1/b, x2), and the new time variable is τ = v0t/b.
The model (5.35) then becomes

dz
dτ

=

z2 + γ u

u


 =


0 1
0 0


 z +


γ1


 u, y =


1 0


 z, (5.36)

where γ = a/b. The normalized linear model for vehicle steering with nonslipping
wheels is thus a linear system with only one parameter. ∇

Feedback Linearization
Another type of linearization is the use of feedback to convert the dynamics of a
nonlinear system into those of a linear one. We illustrate the basic idea with an
example.

Example 5.13 Cruise control
Consider again the cruise control system from Example 5.11, whose dynamics are
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Figure 5.15: Feedback linearization. A nonlinear feedback of the form u = α(x, v) is used
to modify the dynamics of a nonlinear process so that the response from the input v to the
output y is linear. A linear controller can then be used to regulate the system’s dynamics.

given in equation (5.29):

m
dv

dt
= αnuT (αnv) − mgCr sgn(v) −

1
2
ρCd Av2 − mg sin θ .

If we choose u as a feedback law of the form

u =
1

αnT (αnv)

(
u′ + mgCr sgn(v) +

1
2
ρCv Av2

)
, (5.37)

then the resulting dynamics become

m
dv

dt
= u′ + d, (5.38)

where d = −mg sin θ is the disturbance force due the slope of the road. If we
now define a feedback law for u′ (such as a proportional-integral-derivative [PID]
controller), we can use equation (5.37) to compute the final input that should be
commanded.
Equation (5.38) is a linear differential equation. We have essentially “inverted”

the nonlinearity through the use of the feedback law (5.37). This requires that we
have an accurate measurement of the vehicle velocity v as well as an accurate
model of the torque characteristics of the engine, gear ratios, drag and friction
characteristics and mass of the car. While such a model is not generally available
(remembering that the parameter values can change), if we design a good feedback
law for u′, then we can achieve robustness to these uncertainties. ∇

More generally, we say that a system of the form
dx
dt

= f (x, u), y = h(x),

is feedback linearizable if we can find a control law u = α(x, v) such that the
resulting closed loop system is input/output linear with input v and output y, as
shown in Figure 5.15. To fully characterize such systems is beyond the scope of
this text, but we note that in addition to changes in the input, the general theory also
allows for (nonlinear) changes in the states that are used to describe the system,
keeping only the input and output variables fixed. More details of this process can
be found in the textbooks by Isidori [Isi95] and Khalil [Kha01].



5.5. FURTHER READING 163

One case that comes up relatively frequently, and is hence worth special mention, !
is the set of mechanical systems of the form

M(q)q̈ + C(q, q̇) = B(q)u.

Here q ∈ Rn is the configuration of the mechanical system, M(q) ∈ Rn×n is
the configuration-dependent inertia matrix, C(q, q̇) ∈ Rn represents the Coriolis
forces and additional nonlinear forces (such as stiffness and friction) and B(q) ∈
Rn×p is the input matrix. If p = n, then we have the same number of inputs and
configuration variables, and if we further have that B(q) is an invertible matrix for
all configurations q, then we can choose

u = B−1(q)
(
M(q)v − C(q, q̇)

)
. (5.39)

The resulting dynamics become

M(q)q̈ = M(q)v =⇒ q̈ = v,

which is a linear system. We can now use the tools of linear system theory to
analyze and design control laws for the linearized system, remembering to apply
equation (5.39) to obtain the actual input that will be applied to the system.
This type of control is common in robotics, where it goes by the name of

computed torque, and in aircraft flight control, where it is called dynamic inver-
sion. Some modeling tools like Modelica can generate the code for the inverse
model automatically. One caution is that feedback linearization can often cancel
out beneficial terms in the natural dynamics, and hence it must be used with care.
Extensions that do not require complete cancellation of nonlinearities are discussed
in Khalil [Kha01] and Krstić et al. [KKK95].

5.5 Further Reading
The majority of the material in this chapter is classical and can be found in most
books on dynamics and control theory, including early works on control such as
James, Nichols and Phillips [JNP47] and more recent textbooks such as Dorf and
Bishop [DB04], Franklin, Powell andEmami-Naeini [FPEN05] andOgata [Oga01].
An excellent presentation of linear systems based on the matrix exponential is
given in the book by Brockett [Bro70], a more comprehensive treatment is given by
Rugh [Rug95] and an elegant mathematical treatment is given in Sontag [Son98].
Material on feedback linearization canbe found in books onnonlinear control theory
such as Isidori [Isi95] and Khalil [Kha01]. The idea of characterizing dynamics by
considering the responses to step inputs is due to Heaviside, he also introduced an
operator calculus to analyze linear systems. The unit step is therefore also called
theHeaviside step function. Analysis of linear systems was simplified significantly,
but Heaviside’s work was heavily criticized because of lack of mathematical rigor,
as described in the biography by Nahin [Nah88]. The difficulties were cleared up
later by the mathematician Laurent Schwartz who developed distribution theory
in the late 1940s. In engineering, linear systems have traditionally been analyzed
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using Laplace transforms as described in Gardner and Barnes [GB42]. Use of
the matrix exponential started with developments of control theory in the 1960s,
strongly stimulated by a textbook by Zadeh and Desoer [ZD63]. Use of matrix
techniques expanded rapidly when the powerful methods of numeric linear algebra
were packaged in programs like LabVIEW, MATLAB and Mathematica.

Exercises
5.1 (Response to the derivative of a signal) Show that if y(t) is the output of a
linear system corresponding to input u(t), then the output corresponding to an
input u̇(t) is given by ẏ(t). (Hint: Use the definition of the derivative: ẏ(t) =
limε→0

(
y(t + ε) − y(t)

)
/ε.)

5.2 (Impulse response and convolution) Show that a signal u(t) can be decomposed!
in terms of the impulse function δ(t) as

u(t) =
∫ t

0
δ(t − τ )u(τ ) dτ

and use this decomposition plus the principle of superposition to show that the
response of a linear system to an input u(t) (assuming a zero initial condition) can
be written as

y(t) =
∫ t

0
h(t − τ )u(τ ) dτ,

where h(t) is the impulse response of the system.

5.3 (Pulse response for a compartment model) Consider the compartment model
given in Example 5.7. Compute the step response for the system and compare it
with Figure 5.10b. Use the principle of superposition to compute the response to
the 5 s pulse input shown in Figure 5.10c. Use the parameter values k0 = 0.1,
k1 = 0.1, k2 = 0.5 and b0 = 1.5.

5.4 (Matrix exponential for second-order system) Assume that ζ < 1 and let ωd =
ω0

√
1− ζ 2. Show that

exp

−ζω0 ωd

−ωd −ζω0


 t =


 e−ζω0t cosωd t e−ζω0t sinωd t

−e−ζω0t sinωd t e−ζω0t cosωd t


 .

5.5 (Lyapunov function for a linear system) Consider a linear system ẋ = Ax with
Re λ j < 0 for all eigenvalues λ j of the matrix A. Show that the matrix

P =
∫ ∞

0
eAT τQeAτ dτ

defines a Lyapunov function of the form V (x) = xT Px .

5.6 (Nondiagonal Jordan form) Consider a linear system with a Jordan form that is
non-diagonal.
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(a) Prove Proposition 5.3 by showing that if the system contains a real eigenvalue
λ = 0 with a nontrivial Jordan block, then there exists an initial condition with a
solution that grows in time.
(b) Extend this argument to the case of complex eigenvalues with Re λ = 0 by !
using the block Jordan form

Ji =




0 ω 1 0
−ω 0 0 1
0 0 0 ω
0 0 −ω 0




.

5.7 (Rise time for a first-order system) Consider a first-order system of the form

τ
dx
dt

= −x + u, y = x .

We say that the parameter τ is the time constant for the system since the zero input
system approaches the origin as e−t/τ . For a first-order system of this form, show
that the rise time for a step response of the system is approximately 2τ , and that
1%, 2%, and 5% settling times approximately corresponds to 4.6τ , 4τ and 3τ .

5.8 (Discrete-time systems) Consider a linear discrete-time system of the form

x[k + 1] = Ax[k]+ Bu[k], y[k] = Cx[k]+ Du[k].

(a) Show that the general form of the output of a discrete-time linear system is
given by the discrete-time convolution equation:

y[k] = CAkx[0]+
k−1∑

j=0

CAk− j−1Bu[ j]+ Du[k].

(b) Show that a discrete-time linear system is asymptotically stable if and only if
all the eigenvalues of A have a magnitude strictly less than 1.
(c) Let u[k] = sin(ωk) represent an oscillatory input with frequency ω < π (to
avoid “aliasing”). Show that the steady-state component of the response has gain
M and phase θ , where

Meiθ = C(eiω I − A)−1B + D.

(d) Show that if we have a nonlinear discrete-time system

x[k + 1] = f (x[k], u[k]), x[k] ∈ R
n, u ∈ R,

y[k] = h(x[k], u[k]), y ∈ R,

then we can linearize the system around an equilibrium point (xe, ue) by defining
the matrices A, B, C and D as in equation (5.34).
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5.9 (Keynesian economics) Consider the following simple Keynesian macroeco-
nomic model in the form of a linear discrete-time system discussed in Exercise 5.8:


C[t + 1]
I [t + 1]


 =


 a a
ab − b ab





C[t]I [t]


 +


 a
ab


G[t],

Y [t] = C[t]+ I [t]+ G[t].
Determine the eigenvalues of the dynamics matrix. When are the magnitudes of
the eigenvalues less than 1? Assume that the system is in equilibrium with constant
values capital spending C , investment I and government expenditure G. Explore
what happens when government expenditure increases by 10%. Use the values
a = 0.25 and b = 0.5.

5.10 Consider a scalar system
dx
dt

= 1− x3 + u.

Compute the equilibrium points for the unforced system (u = 0) and use a Taylor
series expansion around the equilibrium point to compute the linearization. Verify
that this agrees with the linearization in equation (5.33).

5.11 (Transcriptional regulation) Consider the dynamics of a genetic circuit that im-
plements self-repression: the protein produced by a gene is a repressor for that gene,
thus restricting its own production. Using the models presented in Example 2.13,
the dynamics for the system can be written as

dm
dt

=
α

1+ kp2
+ α0 − γm − u,

dp
dt

= βm − δp, (5.40)

where u is a disturbance term that affects RNA transcription and m, p ≥ 0. Find
the equilibrium points for the system and use the linearized dynamics around each
equilibrium point to determine the local stability of the equilibrium point and the
step response of the system to a disturbance.


